This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
thres20088.92 13887.65 15092.73 10096.30 9985.62 4997.85 6798.86 184.38 16684.82 17093.99 19375.12 16098.01 15270.86 29586.67 20194.56 220
thres100view90088.30 15986.95 17192.33 11796.10 10684.90 7197.14 12698.85 282.69 21083.41 18893.66 20075.43 15097.93 15469.04 30386.24 20894.17 222
tfpn200view988.48 15287.15 16592.47 10996.21 10285.30 5797.44 10098.85 283.37 19383.99 18093.82 19675.36 15397.93 15469.04 30386.24 20894.17 222
thres600view788.06 16486.70 17592.15 12996.10 10685.17 6397.14 12698.85 282.70 20983.41 18893.66 20075.43 15097.82 16367.13 31285.88 21293.45 238
thres40088.42 15587.15 16592.23 12396.21 10285.30 5797.44 10098.85 283.37 19383.99 18093.82 19675.36 15397.93 15469.04 30386.24 20893.45 238
MVS_111021_HR93.41 4093.39 4393.47 7497.34 8582.83 10797.56 8998.27 689.16 6389.71 11297.14 10279.77 7799.56 6693.65 6997.94 5998.02 81
sss90.87 10489.96 11393.60 6494.15 16983.84 8997.14 12698.13 785.93 12789.68 11396.09 13271.67 20199.30 8387.69 14389.16 17497.66 112
MM95.85 695.74 1096.15 896.34 9689.50 999.18 698.10 895.68 196.64 2197.92 6080.72 6599.80 2599.16 197.96 5799.15 24
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 6098.09 989.99 5392.34 7596.97 11081.30 6298.99 10788.54 13398.88 2099.20 22
VNet92.11 7091.22 8394.79 2596.91 9186.98 2797.91 6497.96 1086.38 11893.65 6095.74 13870.16 21798.95 11193.39 7188.87 17998.43 57
MVS_030495.36 1095.20 1795.85 1194.89 14589.22 1298.83 2697.88 1194.68 495.14 3997.99 5480.80 6499.81 2198.60 697.95 5898.50 52
test_yl91.46 8690.53 9694.24 3997.41 8085.18 5998.08 5397.72 1280.94 23589.85 10996.14 13075.61 14298.81 11990.42 11288.56 18498.74 37
DCV-MVSNet91.46 8690.53 9694.24 3997.41 8085.18 5998.08 5397.72 1280.94 23589.85 10996.14 13075.61 14298.81 11990.42 11288.56 18498.74 37
WTY-MVS92.65 5991.68 7595.56 1496.00 10888.90 1398.23 4497.65 1488.57 7089.82 11197.22 10079.29 8099.06 10489.57 12288.73 18198.73 41
EPNet94.06 3294.15 3193.76 5497.27 8784.35 7998.29 4297.64 1594.57 695.36 3496.88 11379.96 7699.12 10091.30 9596.11 10297.82 101
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS84.06 691.63 8290.37 10295.39 1796.12 10588.25 1590.22 32797.58 1688.33 7690.50 10491.96 22579.26 8199.06 10490.29 11489.07 17598.88 33
baseline290.39 11290.21 10690.93 16990.86 26780.99 14895.20 24097.41 1786.03 12580.07 23294.61 17890.58 697.47 18587.29 14789.86 16994.35 221
test250690.96 10190.39 10092.65 10393.54 18682.46 11496.37 18397.35 1886.78 11487.55 14495.25 15377.83 10597.50 18284.07 17094.80 11897.98 88
PVSNet82.34 989.02 13587.79 14892.71 10195.49 12481.50 13997.70 7997.29 1987.76 8885.47 16395.12 16556.90 30498.90 11580.33 20594.02 12897.71 109
testing22291.09 9690.49 9892.87 9395.82 11685.04 6696.51 17397.28 2086.05 12489.13 12295.34 15280.16 7496.62 23185.82 15688.31 18796.96 153
PGM-MVS91.93 7391.80 7392.32 11998.27 5079.74 18495.28 23497.27 2183.83 18490.89 10097.78 7076.12 13599.56 6688.82 13097.93 6197.66 112
IB-MVS85.34 488.67 14687.14 16793.26 7793.12 20284.32 8098.76 2797.27 2187.19 10579.36 23890.45 24983.92 4698.53 12984.41 16769.79 31896.93 155
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvsm_n_192094.81 1995.60 1192.45 11095.29 13080.96 15099.29 397.21 2394.50 797.29 1498.44 2982.15 5699.78 2898.56 797.68 6696.61 168
patch_mono-295.14 1396.08 792.33 11798.44 4377.84 24198.43 3797.21 2392.58 2197.68 1197.65 7886.88 2599.83 1698.25 997.60 6899.33 17
MVS90.60 10888.64 13396.50 594.25 16590.53 893.33 28997.21 2377.59 29678.88 24197.31 9471.52 20499.69 4989.60 12198.03 5599.27 20
ETVMVS90.99 9990.26 10393.19 8195.81 11785.64 4896.97 14297.18 2685.43 13588.77 13194.86 17382.00 5896.37 23882.70 19288.60 18297.57 119
CSCG92.02 7191.65 7693.12 8398.53 3680.59 15997.47 9797.18 2677.06 30584.64 17597.98 5783.98 4499.52 6990.72 10497.33 7799.23 21
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11594.56 15282.01 11999.07 1697.13 2892.09 2596.25 2698.53 2276.47 12799.80 2598.39 894.71 12095.22 205
PHI-MVS93.59 3893.63 3793.48 7298.05 5881.76 13198.64 3297.13 2882.60 21294.09 5698.49 2680.35 6899.85 1094.74 5798.62 3398.83 34
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1797.12 3094.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 29
h-mvs3389.30 13188.95 12990.36 18695.07 13876.04 27496.96 14497.11 3190.39 4892.22 7795.10 16674.70 16598.86 11693.14 7765.89 35096.16 181
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3295.17 392.11 7998.46 2887.33 2499.97 297.21 2899.31 499.63 7
testing1192.48 6392.04 7093.78 5395.94 11286.00 3797.56 8997.08 3387.52 9489.32 12095.40 15084.60 3598.02 15191.93 9289.04 17697.32 136
VPA-MVSNet85.32 20883.83 21489.77 20690.25 27782.63 10996.36 18497.07 3483.03 20181.21 21789.02 26661.58 26696.31 24185.02 16470.95 30790.36 258
UWE-MVS88.56 15188.91 13187.50 25394.17 16872.19 31395.82 21597.05 3584.96 15084.78 17193.51 20481.33 6094.75 31279.43 21689.17 17395.57 194
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 597.02 3694.40 991.46 8797.08 10683.32 4999.69 4992.83 8198.70 3199.04 27
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GG-mvs-BLEND93.49 7194.94 14286.26 3381.62 37497.00 3788.32 13894.30 18491.23 596.21 24588.49 13597.43 7498.00 86
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12493.38 19481.71 13498.86 2596.98 3891.64 3196.85 1698.55 1975.58 14599.77 2997.88 1993.68 13495.18 206
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3893.39 1696.45 2598.79 890.17 1099.99 189.33 12699.25 699.70 3
gg-mvs-nofinetune85.48 20782.90 23193.24 7894.51 15885.82 4279.22 37896.97 4061.19 37687.33 14753.01 39490.58 696.07 24886.07 15597.23 8097.81 102
NCCC95.63 795.94 894.69 2899.21 685.15 6499.16 796.96 4194.11 1195.59 3398.64 1785.07 3299.91 495.61 4799.10 999.00 29
FIs86.73 18786.10 18088.61 22490.05 28380.21 17196.14 19896.95 4285.56 13478.37 24692.30 21876.73 12495.28 29379.51 21479.27 26290.35 259
PVSNet_077.72 1581.70 26878.95 28589.94 19990.77 27076.72 26495.96 20496.95 4285.01 14870.24 32688.53 27452.32 32598.20 14786.68 15444.08 39194.89 210
HPM-MVS++copyleft95.32 1195.48 1494.85 2498.62 3486.04 3697.81 7196.93 4492.45 2295.69 3298.50 2585.38 3099.85 1094.75 5699.18 798.65 45
MSLP-MVS++94.28 2694.39 2793.97 4798.30 4984.06 8598.64 3296.93 4490.71 4293.08 6898.70 1579.98 7599.21 8894.12 6499.07 1198.63 46
testing9991.91 7491.35 8093.60 6495.98 11085.70 4497.31 11196.92 4686.82 11288.91 12695.25 15384.26 4297.89 16188.80 13187.94 19197.21 144
testing9191.90 7591.31 8293.66 6095.99 10985.68 4697.39 10796.89 4786.75 11688.85 12895.23 15683.93 4597.90 16088.91 12887.89 19297.41 131
UniMVSNet (Re)85.31 20984.23 20988.55 22589.75 28780.55 16196.72 16096.89 4785.42 13678.40 24588.93 26775.38 15295.52 28378.58 22568.02 33589.57 275
FC-MVSNet-test85.96 19785.39 18887.66 24689.38 29678.02 23295.65 22196.87 4985.12 14577.34 25391.94 22776.28 13394.74 31377.09 24078.82 26690.21 262
EI-MVSNet-Vis-set91.84 7791.77 7492.04 13497.60 7181.17 14396.61 16696.87 4988.20 7889.19 12197.55 8678.69 9299.14 9790.29 11490.94 16495.80 188
IU-MVS99.03 1585.34 5496.86 5192.05 2998.74 198.15 1198.97 1799.42 13
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
EI-MVSNet-UG-set91.35 9091.22 8391.73 14597.39 8280.68 15796.47 17596.83 5287.92 8488.30 13997.36 9377.84 10499.13 9989.43 12589.45 17195.37 200
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6799.12 1296.78 5588.72 6797.79 798.91 288.48 1799.82 1898.15 1198.97 1799.74 1
test_241102_TWO96.78 5588.72 6797.70 998.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6796.78 5588.72 6797.79 798.90 588.48 1799.82 18
test072699.05 985.18 5999.11 1596.78 5588.75 6597.65 1298.91 287.69 22
MSP-MVS95.62 896.54 192.86 9498.31 4880.10 17597.42 10496.78 5592.20 2497.11 1598.29 3593.46 199.10 10196.01 4099.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
无先验96.87 15096.78 5577.39 29899.52 6979.95 21198.43 57
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 5498.13 5096.77 6188.38 7497.70 998.77 1092.06 399.84 1297.47 2499.37 199.70 3
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1796.77 6199.84 1297.90 1798.85 2199.45 10
SMA-MVScopyleft94.70 2194.68 2194.76 2698.02 5985.94 4097.47 9796.77 6185.32 13897.92 398.70 1583.09 5199.84 1295.79 4499.08 1098.49 53
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_LR91.60 8491.64 7791.47 15495.74 11978.79 21096.15 19796.77 6188.49 7288.64 13397.07 10772.33 19499.19 9393.13 7996.48 9796.43 173
3Dnovator82.32 1089.33 13087.64 15194.42 3393.73 18285.70 4497.73 7796.75 6586.73 11776.21 27395.93 13462.17 25999.68 5181.67 19897.81 6297.88 93
DPE-MVScopyleft95.32 1195.55 1294.64 2998.79 2384.87 7297.77 7396.74 6686.11 12196.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PVSNet_BlendedMVS90.05 11889.96 11390.33 18797.47 7683.86 8798.02 5996.73 6787.98 8289.53 11789.61 26176.42 12999.57 6494.29 6179.59 25987.57 325
PVSNet_Blended93.13 4292.98 4893.57 6697.47 7683.86 8799.32 296.73 6791.02 4089.53 11796.21 12976.42 12999.57 6494.29 6195.81 11097.29 140
ACMMPcopyleft90.39 11289.97 11291.64 14897.58 7378.21 22896.78 15796.72 6984.73 15584.72 17397.23 9971.22 20699.63 5788.37 13892.41 15297.08 150
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
新几何193.12 8397.44 7881.60 13896.71 7074.54 32291.22 9497.57 8279.13 8499.51 7177.40 23998.46 3998.26 69
test_one_060198.91 1884.56 7896.70 7188.06 8096.57 2398.77 1088.04 20
HFP-MVS92.89 4992.86 5192.98 8998.71 2581.12 14497.58 8796.70 7185.20 14391.75 8497.97 5978.47 9399.71 4590.95 9898.41 4298.12 77
ACMMPR92.69 5792.67 5492.75 9898.66 2880.57 16097.58 8796.69 7385.20 14391.57 8697.92 6077.01 11799.67 5390.95 9898.41 4298.00 86
DeepPCF-MVS89.82 194.61 2296.17 589.91 20097.09 9070.21 33398.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
thisisatest053089.65 12589.02 12691.53 15293.46 19280.78 15596.52 17196.67 7581.69 22883.79 18594.90 17288.85 1597.68 16777.80 22887.49 19796.14 182
tttt051788.57 15088.19 14189.71 20793.00 20475.99 27895.67 21996.67 7580.78 23981.82 21194.40 18288.97 1497.58 17376.05 25386.31 20595.57 194
thisisatest051590.95 10290.26 10393.01 8894.03 17784.27 8397.91 6496.67 7583.18 19686.87 15395.51 14888.66 1697.85 16280.46 20489.01 17796.92 157
ACMMP_NAP93.46 3993.23 4594.17 4297.16 8884.28 8296.82 15496.65 7886.24 11994.27 5397.99 5477.94 10199.83 1693.39 7198.57 3498.39 59
TEST998.64 3183.71 9097.82 6996.65 7884.29 17195.16 3698.09 4784.39 3799.36 81
train_agg94.28 2694.45 2593.74 5598.64 3183.71 9097.82 6996.65 7884.50 16295.16 3698.09 4784.33 3899.36 8195.91 4398.96 1998.16 73
131488.94 13787.20 16494.17 4293.21 19685.73 4393.33 28996.64 8182.89 20475.98 27696.36 12666.83 23399.39 7783.52 18596.02 10697.39 134
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2098.86 2185.68 4698.06 5696.64 8193.64 1491.74 8598.54 2080.17 7399.90 592.28 8698.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_898.63 3383.64 9397.81 7196.63 8384.50 16295.10 4098.11 4684.33 3899.23 86
FE-MVS86.06 19684.15 21191.78 14494.33 16479.81 17984.58 36696.61 8476.69 30785.00 16787.38 28970.71 21398.37 13970.39 29891.70 16097.17 147
原ACMM191.22 16297.77 6578.10 23196.61 8481.05 23491.28 9397.42 9177.92 10398.98 10879.85 21398.51 3596.59 169
MAR-MVS90.63 10790.22 10591.86 14098.47 4278.20 22997.18 11996.61 8483.87 18388.18 14098.18 4068.71 22199.75 3683.66 18197.15 8197.63 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ZD-MVS99.09 883.22 10296.60 8782.88 20593.61 6298.06 5282.93 5299.14 9795.51 5098.49 38
SteuartSystems-ACMMP94.13 3194.44 2693.20 8095.41 12681.35 14199.02 2196.59 8889.50 5994.18 5598.36 3283.68 4899.45 7594.77 5598.45 4098.81 35
Skip Steuart: Steuart Systems R&D Blog.
D2MVS82.67 25481.55 25186.04 28187.77 31376.47 26695.21 23996.58 8982.66 21170.26 32585.46 32360.39 27295.80 26576.40 24979.18 26385.83 352
save fliter98.24 5183.34 9998.61 3496.57 9091.32 34
TESTMET0.1,189.83 12289.34 12391.31 15692.54 21980.19 17297.11 12996.57 9086.15 12086.85 15491.83 22979.32 7996.95 21381.30 19992.35 15396.77 163
agg_prior98.59 3583.13 10396.56 9294.19 5499.16 96
旧先验197.39 8279.58 18996.54 9398.08 5084.00 4397.42 7597.62 116
WR-MVS_H81.02 27780.09 27183.79 31688.08 30971.26 32894.46 25996.54 9380.08 25872.81 30886.82 29970.36 21592.65 34364.18 32767.50 34187.46 330
9.1494.26 3098.10 5798.14 4796.52 9584.74 15494.83 4798.80 782.80 5499.37 8095.95 4298.42 41
region2R92.72 5592.70 5392.79 9798.68 2680.53 16497.53 9296.51 9685.22 14191.94 8297.98 5777.26 11299.67 5390.83 10298.37 4598.18 71
EPP-MVSNet89.76 12389.72 11989.87 20193.78 17976.02 27797.22 11396.51 9679.35 27185.11 16595.01 16984.82 3397.10 20787.46 14688.21 18996.50 171
ZNCC-MVS92.75 5192.60 5693.23 7998.24 5181.82 12997.63 8396.50 9885.00 14991.05 9697.74 7178.38 9499.80 2590.48 10798.34 4798.07 79
test1196.50 98
EPNet_dtu87.65 17387.89 14586.93 26794.57 15171.37 32796.72 16096.50 9888.56 7187.12 15195.02 16875.91 13994.01 32866.62 31590.00 16795.42 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata90.13 19295.92 11374.17 29696.49 10173.49 33194.82 4897.99 5478.80 9097.93 15483.53 18497.52 7098.29 66
DVP-MVScopyleft95.58 995.91 994.57 3099.05 985.18 5999.06 1796.46 10288.75 6596.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test22296.15 10478.41 21995.87 21196.46 10271.97 34289.66 11497.45 8776.33 13298.24 5098.30 65
XVS92.69 5792.71 5292.63 10598.52 3780.29 16797.37 10896.44 10487.04 10791.38 8897.83 6877.24 11499.59 6090.46 10898.07 5398.02 81
X-MVStestdata86.26 19384.14 21292.63 10598.52 3780.29 16797.37 10896.44 10487.04 10791.38 8820.73 40577.24 11499.59 6090.46 10898.07 5398.02 81
SF-MVS94.17 2994.05 3394.55 3197.56 7485.95 3897.73 7796.43 10684.02 17695.07 4298.74 1482.93 5299.38 7895.42 5198.51 3598.32 62
TSAR-MVS + MP.94.79 2095.17 1893.64 6197.66 6984.10 8495.85 21396.42 10791.26 3597.49 1396.80 11886.50 2798.49 13195.54 4999.03 1398.33 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APDe-MVScopyleft94.56 2394.75 2093.96 4898.84 2283.40 9898.04 5896.41 10885.79 12995.00 4398.28 3684.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
UniMVSNet_NR-MVSNet85.49 20684.59 20188.21 23589.44 29579.36 19396.71 16296.41 10885.22 14178.11 24890.98 24276.97 11995.14 30079.14 22068.30 33290.12 264
test_prior93.09 8598.68 2681.91 12496.40 11099.06 10498.29 66
CP-MVS92.54 6292.60 5692.34 11598.50 4079.90 17898.40 3996.40 11084.75 15390.48 10598.09 4777.40 11199.21 8891.15 9798.23 5197.92 92
CANet94.89 1694.64 2295.63 1397.55 7588.12 1699.06 1796.39 11294.07 1295.34 3597.80 6976.83 12299.87 897.08 3097.64 6798.89 32
GST-MVS92.43 6592.22 6593.04 8798.17 5481.64 13697.40 10696.38 11384.71 15690.90 9997.40 9277.55 10999.76 3189.75 12097.74 6497.72 107
alignmvs92.97 4792.26 6395.12 1995.54 12387.77 2098.67 3096.38 11388.04 8193.01 6997.45 8779.20 8398.60 12593.25 7688.76 18098.99 31
PAPM92.87 5092.40 5994.30 3592.25 22987.85 1996.40 18296.38 11391.07 3888.72 13296.90 11182.11 5797.37 19190.05 11797.70 6597.67 111
test_fmvsmconf_n93.99 3394.36 2892.86 9492.82 21181.12 14499.26 496.37 11693.47 1595.16 3698.21 3879.00 8599.64 5598.21 1096.73 9397.83 99
test1294.25 3898.34 4685.55 5096.35 11792.36 7480.84 6399.22 8798.31 4897.98 88
MTGPAbinary96.33 118
MTAPA92.45 6492.31 6192.86 9497.90 6180.85 15392.88 30096.33 11887.92 8490.20 10898.18 4076.71 12599.76 3192.57 8598.09 5297.96 91
ET-MVSNet_ETH3D90.01 11989.03 12592.95 9094.38 16286.77 3098.14 4796.31 12089.30 6163.33 35696.72 12290.09 1193.63 33590.70 10582.29 24398.46 55
EPMVS87.47 17685.90 18292.18 12695.41 12682.26 11887.00 35196.28 12185.88 12884.23 17785.57 32075.07 16196.26 24271.14 29392.50 15098.03 80
WB-MVSnew84.08 22983.51 22285.80 28391.34 25676.69 26595.62 22396.27 12281.77 22681.81 21292.81 21258.23 28894.70 31466.66 31487.06 19885.99 349
CDPH-MVS93.12 4392.91 4993.74 5598.65 3083.88 8697.67 8296.26 12383.00 20293.22 6698.24 3781.31 6199.21 8889.12 12798.74 3098.14 75
WR-MVS84.32 22582.96 22988.41 22789.38 29680.32 16696.59 16796.25 12483.97 17876.63 26390.36 25167.53 22694.86 31075.82 25670.09 31690.06 269
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12290.52 27381.92 12398.42 3896.24 12591.17 3696.02 3098.35 3375.34 15699.74 3897.84 2094.58 12295.05 207
UGNet87.73 17186.55 17691.27 15995.16 13579.11 20196.35 18596.23 12688.14 7987.83 14390.48 24850.65 33199.09 10280.13 21094.03 12795.60 193
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpnnormal78.14 30175.42 30886.31 27788.33 30779.24 19694.41 26196.22 12773.51 32969.81 32885.52 32255.43 31495.75 26847.65 38267.86 33783.95 365
FOURS198.51 3978.01 23398.13 5096.21 12883.04 20094.39 52
MP-MVScopyleft92.61 6092.67 5492.42 11398.13 5679.73 18597.33 11096.20 12985.63 13190.53 10397.66 7478.14 9999.70 4892.12 8898.30 4997.85 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR92.74 5292.17 6694.45 3298.89 2084.87 7297.20 11696.20 12987.73 8988.40 13698.12 4578.71 9199.76 3187.99 14096.28 9898.74 37
SD-MVS94.84 1895.02 1994.29 3697.87 6484.61 7697.76 7596.19 13189.59 5896.66 2098.17 4384.33 3899.60 5996.09 3998.50 3798.66 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CHOSEN 280x42091.71 8191.85 7191.29 15894.94 14282.69 10887.89 34496.17 13285.94 12687.27 14894.31 18390.27 995.65 27594.04 6595.86 10895.53 196
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 5094.42 16184.61 7699.13 1196.15 13392.06 2797.92 398.52 2384.52 3699.74 3898.76 595.67 11197.22 142
CHOSEN 1792x268891.07 9890.21 10693.64 6195.18 13483.53 9596.26 19096.13 13488.92 6484.90 16993.10 21072.86 18899.62 5888.86 12995.67 11197.79 103
PAPM_NR91.46 8690.82 9093.37 7598.50 4081.81 13095.03 25096.13 13484.65 15886.10 15997.65 7879.24 8299.75 3683.20 18796.88 8798.56 49
CostFormer89.08 13488.39 13891.15 16493.13 20179.15 20088.61 33896.11 13683.14 19789.58 11686.93 29883.83 4796.87 21988.22 13985.92 21197.42 130
mPP-MVS91.88 7691.82 7292.07 13198.38 4478.63 21397.29 11296.09 13785.12 14588.45 13597.66 7475.53 14699.68 5189.83 11898.02 5697.88 93
APD-MVScopyleft93.61 3793.59 3893.69 5998.76 2483.26 10197.21 11496.09 13782.41 21694.65 4998.21 3881.96 5998.81 11994.65 5898.36 4699.01 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MDTV_nov1_ep1383.69 21594.09 17381.01 14786.78 35396.09 13783.81 18584.75 17284.32 33774.44 17196.54 23263.88 32985.07 220
FA-MVS(test-final)87.71 17286.23 17992.17 12794.19 16780.55 16187.16 35096.07 14082.12 22185.98 16088.35 27672.04 19998.49 13180.26 20789.87 16897.48 128
QAPM86.88 18284.51 20393.98 4694.04 17585.89 4197.19 11796.05 14173.62 32875.12 28895.62 14462.02 26299.74 3870.88 29496.06 10496.30 180
MP-MVS-pluss92.58 6192.35 6093.29 7697.30 8682.53 11196.44 17896.04 14284.68 15789.12 12398.37 3177.48 11099.74 3893.31 7598.38 4497.59 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13288.08 30981.62 13797.97 6296.01 14390.62 4396.58 2298.33 3474.09 17599.71 4597.23 2793.46 13994.86 211
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 5894.50 15984.30 8199.14 1096.00 14491.94 3097.91 598.60 1884.78 3499.77 2998.84 496.03 10597.08 150
tpm287.35 17786.26 17890.62 17992.93 20978.67 21288.06 34395.99 14579.33 27287.40 14586.43 30980.28 7096.40 23680.23 20885.73 21596.79 161
SDMVSNet87.02 17985.61 18491.24 16094.14 17083.30 10093.88 27795.98 14684.30 16979.63 23592.01 22158.23 28897.68 16790.28 11682.02 24492.75 241
DeepC-MVS86.58 391.53 8591.06 8892.94 9194.52 15581.89 12595.95 20595.98 14690.76 4183.76 18696.76 11973.24 18699.71 4591.67 9496.96 8497.22 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test-LLR88.48 15287.98 14489.98 19692.26 22777.23 25597.11 12995.96 14883.76 18786.30 15791.38 23372.30 19596.78 22580.82 20191.92 15795.94 185
test-mter88.95 13688.60 13489.98 19692.26 22777.23 25597.11 12995.96 14885.32 13886.30 15791.38 23376.37 13196.78 22580.82 20191.92 15795.94 185
DP-MVS Recon91.72 8090.85 8994.34 3499.50 185.00 6998.51 3695.96 14880.57 24488.08 14197.63 8076.84 12099.89 785.67 15894.88 11798.13 76
cdsmvs_eth3d_5k21.43 37228.57 3750.00 3910.00 4140.00 4160.00 40295.93 1510.00 4090.00 41097.66 7463.57 2520.00 4100.00 4090.00 4080.00 406
hse-mvs288.22 16288.21 14088.25 23393.54 18673.41 29995.41 23195.89 15290.39 4892.22 7794.22 18674.70 16596.66 23093.14 7764.37 35594.69 219
AUN-MVS86.25 19485.57 18588.26 23293.57 18573.38 30095.45 22995.88 15383.94 18085.47 16394.21 18773.70 18296.67 22983.54 18364.41 35494.73 218
TAMVS88.48 15287.79 14890.56 18191.09 26179.18 19896.45 17795.88 15383.64 19083.12 19293.33 20575.94 13895.74 27182.40 19388.27 18896.75 165
PVSNet_Blended_VisFu91.24 9290.77 9192.66 10295.09 13682.40 11597.77 7395.87 15588.26 7786.39 15593.94 19476.77 12399.27 8488.80 13194.00 13096.31 179
OpenMVScopyleft79.58 1486.09 19583.62 21993.50 7090.95 26386.71 3297.44 10095.83 15675.35 31472.64 30995.72 13957.42 30199.64 5571.41 28895.85 10994.13 225
CDS-MVSNet89.50 12788.96 12891.14 16591.94 24680.93 15197.09 13395.81 15784.26 17284.72 17394.20 18880.31 6995.64 27683.37 18688.96 17896.85 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ94.17 2993.52 4096.10 995.65 12192.35 298.21 4595.79 15892.42 2396.24 2798.18 4071.04 20999.17 9596.77 3397.39 7696.79 161
testing380.74 28181.17 25779.44 34691.15 26063.48 36497.16 12395.76 15980.83 23771.36 31693.15 20978.22 9787.30 38043.19 38779.67 25887.55 328
SR-MVS92.16 6892.27 6291.83 14398.37 4578.41 21996.67 16595.76 15982.19 22091.97 8098.07 5176.44 12898.64 12393.71 6897.27 7998.45 56
3Dnovator+82.88 889.63 12687.85 14694.99 2194.49 16086.76 3197.84 6895.74 16186.10 12275.47 28596.02 13365.00 24599.51 7182.91 19197.07 8398.72 42
HPM-MVScopyleft91.62 8391.53 7891.89 13997.88 6379.22 19796.99 13795.73 16282.07 22289.50 11997.19 10175.59 14498.93 11490.91 10097.94 5997.54 120
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs87.08 17884.94 19893.48 7293.34 19583.67 9288.82 33595.70 16381.18 23284.55 17690.14 25662.72 25698.94 11385.49 16082.54 24097.85 97
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 13892.02 698.19 4695.68 16492.06 2796.01 3198.14 4470.83 21298.96 10996.74 3596.57 9596.76 164
CP-MVSNet81.01 27880.08 27283.79 31687.91 31270.51 33094.29 26995.65 16580.83 23772.54 31188.84 26863.71 25192.32 34668.58 30768.36 33188.55 302
PatchmatchNetpermissive86.83 18485.12 19591.95 13794.12 17282.27 11786.55 35595.64 16684.59 16082.98 19584.99 33277.26 11295.96 25668.61 30691.34 16297.64 114
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
API-MVS90.18 11688.97 12793.80 5298.66 2882.95 10697.50 9695.63 16775.16 31786.31 15697.69 7272.49 19299.90 581.26 20096.07 10398.56 49
AdaColmapbinary88.81 14287.61 15492.39 11499.33 479.95 17696.70 16495.58 16877.51 29783.05 19496.69 12361.90 26599.72 4384.29 16893.47 13897.50 126
SCA85.63 20383.64 21891.60 15192.30 22581.86 12792.88 30095.56 16984.85 15182.52 19685.12 33058.04 29195.39 28673.89 27387.58 19697.54 120
dp84.30 22682.31 24090.28 18894.24 16677.97 23486.57 35495.53 17079.94 26280.75 22185.16 32871.49 20596.39 23763.73 33083.36 22996.48 172
HyFIR lowres test89.36 12988.60 13491.63 15094.91 14480.76 15695.60 22495.53 17082.56 21384.03 17991.24 23778.03 10096.81 22387.07 15088.41 18697.32 136
APD-MVS_3200maxsize91.23 9391.35 8090.89 17297.89 6276.35 27096.30 18895.52 17279.82 26391.03 9797.88 6574.70 16598.54 12892.11 8996.89 8697.77 104
lupinMVS93.87 3593.58 3994.75 2793.00 20488.08 1799.15 895.50 17391.03 3994.90 4497.66 7478.84 8897.56 17494.64 5997.46 7198.62 47
tt080581.20 27679.06 28487.61 24786.50 32472.97 30893.66 28095.48 17474.11 32476.23 27291.99 22341.36 36797.40 18877.44 23874.78 28892.45 244
HPM-MVS_fast90.38 11490.17 10891.03 16797.61 7077.35 25397.15 12595.48 17479.51 26988.79 12996.90 11171.64 20398.81 11987.01 15197.44 7396.94 154
VPNet84.69 21882.92 23090.01 19489.01 29883.45 9796.71 16295.46 17685.71 13079.65 23492.18 22056.66 30796.01 25283.05 19067.84 33890.56 255
114514_t88.79 14487.57 15592.45 11098.21 5381.74 13296.99 13795.45 17775.16 31782.48 19795.69 14168.59 22298.50 13080.33 20595.18 11597.10 149
SR-MVS-dyc-post91.29 9191.45 7990.80 17497.76 6776.03 27596.20 19595.44 17880.56 24590.72 10197.84 6675.76 14198.61 12491.99 9096.79 9097.75 105
RE-MVS-def91.18 8697.76 6776.03 27596.20 19595.44 17880.56 24590.72 10197.84 6673.36 18591.99 9096.79 9097.75 105
JIA-IIPM79.00 29777.20 29684.40 31189.74 28964.06 36175.30 38895.44 17862.15 37081.90 20959.08 39278.92 8695.59 28066.51 31885.78 21493.54 235
RPMNet79.85 28775.92 30691.64 14890.16 28079.75 18279.02 38095.44 17858.43 38682.27 20572.55 38373.03 18798.41 13846.10 38486.25 20696.75 165
DU-MVS84.57 22183.33 22588.28 23188.76 29979.36 19396.43 18095.41 18285.42 13678.11 24890.82 24367.61 22395.14 30079.14 22068.30 33290.33 260
EI-MVSNet85.80 20085.20 19187.59 24991.55 25177.41 25195.13 24495.36 18380.43 25080.33 22794.71 17673.72 18095.97 25376.96 24378.64 26889.39 276
MVSTER89.25 13388.92 13090.24 18995.98 11084.66 7596.79 15695.36 18387.19 10580.33 22790.61 24790.02 1295.97 25385.38 16178.64 26890.09 267
CPTT-MVS89.72 12489.87 11789.29 21198.33 4773.30 30297.70 7995.35 18575.68 31387.40 14597.44 9070.43 21498.25 14489.56 12396.90 8596.33 178
EIA-MVS91.73 7892.05 6990.78 17694.52 15576.40 26998.06 5695.34 18689.19 6288.90 12797.28 9877.56 10897.73 16690.77 10396.86 8998.20 70
tpmvs83.04 24880.77 26189.84 20295.43 12577.96 23585.59 36195.32 18775.31 31676.27 27183.70 34273.89 17797.41 18759.53 34481.93 24694.14 224
PS-CasMVS80.27 28579.18 28183.52 32287.56 31669.88 33594.08 27295.29 18880.27 25572.08 31388.51 27559.22 28292.23 34867.49 30968.15 33488.45 308
TSAR-MVS + GP.94.35 2594.50 2393.89 4997.38 8483.04 10598.10 5295.29 18891.57 3293.81 5897.45 8786.64 2699.43 7696.28 3894.01 12999.20 22
tpmrst88.36 15687.38 16191.31 15694.36 16379.92 17787.32 34895.26 19085.32 13888.34 13786.13 31480.60 6796.70 22783.78 17585.34 21997.30 139
ETV-MVS92.72 5592.87 5092.28 12194.54 15481.89 12597.98 6095.21 19189.77 5793.11 6796.83 11577.23 11697.50 18295.74 4595.38 11497.44 129
NR-MVSNet83.35 24081.52 25388.84 21988.76 29981.31 14294.45 26095.16 19284.65 15867.81 33490.82 24370.36 21594.87 30974.75 26466.89 34790.33 260
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10388.45 30580.81 15499.00 2295.11 19393.21 1794.00 5797.91 6276.84 12099.59 6097.91 1696.55 9697.54 120
jason92.73 5392.23 6494.21 4190.50 27487.30 2698.65 3195.09 19490.61 4492.76 7297.13 10375.28 15797.30 19493.32 7496.75 9298.02 81
jason: jason.
tpm cat183.63 23781.38 25490.39 18593.53 19178.19 23085.56 36295.09 19470.78 34878.51 24483.28 34574.80 16497.03 20866.77 31384.05 22495.95 184
cascas86.50 18884.48 20592.55 10892.64 21785.95 3897.04 13695.07 19675.32 31580.50 22391.02 24054.33 32297.98 15386.79 15387.62 19493.71 233
CVMVSNet84.83 21685.57 18582.63 32991.55 25160.38 37495.13 24495.03 19780.60 24382.10 20794.71 17666.40 23690.19 36874.30 27090.32 16697.31 138
test0.0.03 182.79 25282.48 23883.74 31886.81 32272.22 31196.52 17195.03 19783.76 18773.00 30593.20 20672.30 19588.88 37164.15 32877.52 27790.12 264
PMMVS89.46 12889.92 11588.06 23794.64 14969.57 33996.22 19294.95 19987.27 10191.37 9096.54 12565.88 23797.39 18988.54 13393.89 13197.23 141
CS-MVS92.73 5393.48 4190.48 18396.27 10075.93 28098.55 3594.93 20089.32 6094.54 5197.67 7378.91 8797.02 20993.80 6697.32 7898.49 53
Anonymous2024052983.15 24580.60 26590.80 17495.74 11978.27 22396.81 15594.92 20160.10 38181.89 21092.54 21645.82 35298.82 11879.25 21978.32 27495.31 202
mvs_anonymous88.68 14587.62 15391.86 14094.80 14781.69 13593.53 28594.92 20182.03 22378.87 24290.43 25075.77 14095.34 28985.04 16393.16 14398.55 51
CLD-MVS87.97 16787.48 15889.44 20992.16 23480.54 16398.14 4794.92 20191.41 3379.43 23795.40 15062.34 25897.27 19790.60 10682.90 23590.50 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
xiu_mvs_v1_base_debu90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
xiu_mvs_v1_base90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
xiu_mvs_v1_base_debi90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
GA-MVS85.79 20184.04 21391.02 16889.47 29480.27 16996.90 14994.84 20785.57 13280.88 21989.08 26456.56 30896.47 23577.72 23185.35 21896.34 176
TranMVSNet+NR-MVSNet83.24 24481.71 24987.83 24187.71 31478.81 20996.13 20094.82 20884.52 16176.18 27490.78 24564.07 25094.60 31774.60 26866.59 34990.09 267
HQP3-MVS94.80 20983.01 232
HQP-MVS87.91 16987.55 15688.98 21792.08 23878.48 21597.63 8394.80 20990.52 4582.30 20194.56 17965.40 24197.32 19287.67 14483.01 23291.13 249
TAPA-MVS81.61 1285.02 21383.67 21689.06 21496.79 9273.27 30595.92 20794.79 21174.81 32080.47 22496.83 11571.07 20898.19 14849.82 37792.57 14895.71 191
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PEN-MVS79.47 29378.26 28983.08 32586.36 32668.58 34393.85 27894.77 21279.76 26471.37 31588.55 27259.79 27492.46 34464.50 32665.40 35188.19 313
CS-MVS-test92.98 4693.67 3690.90 17196.52 9476.87 26098.68 2994.73 21390.36 5094.84 4697.89 6477.94 10197.15 20594.28 6397.80 6398.70 43
HQP_MVS87.50 17587.09 16888.74 22291.86 24777.96 23597.18 11994.69 21489.89 5581.33 21594.15 18964.77 24797.30 19487.08 14882.82 23690.96 251
plane_prior594.69 21497.30 19487.08 14882.82 23690.96 251
tpm85.55 20584.47 20688.80 22190.19 27975.39 28588.79 33694.69 21484.83 15283.96 18285.21 32678.22 9794.68 31676.32 25178.02 27696.34 176
FMVSNet384.71 21782.71 23590.70 17894.55 15387.71 2195.92 20794.67 21781.73 22775.82 28088.08 28166.99 23194.47 32071.23 29075.38 28589.91 271
UA-Net88.92 13888.48 13790.24 18994.06 17477.18 25793.04 29794.66 21887.39 9891.09 9593.89 19574.92 16298.18 14975.83 25591.43 16195.35 201
LFMVS89.27 13287.64 15194.16 4497.16 8885.52 5197.18 11994.66 21879.17 27789.63 11596.57 12455.35 31598.22 14689.52 12489.54 17098.74 37
MVS_Test90.29 11589.18 12493.62 6395.23 13184.93 7094.41 26194.66 21884.31 16790.37 10791.02 24075.13 15997.82 16383.11 18994.42 12498.12 77
canonicalmvs92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
VDDNet86.44 18984.51 20392.22 12491.56 25081.83 12897.10 13294.64 22169.50 35487.84 14295.19 16048.01 34197.92 15989.82 11986.92 19996.89 158
baseline188.85 14187.49 15792.93 9295.21 13386.85 2995.47 22894.61 22387.29 10083.11 19394.99 17080.70 6696.89 21782.28 19473.72 29295.05 207
PatchT79.75 28876.85 30088.42 22689.55 29275.49 28477.37 38494.61 22363.07 36782.46 19873.32 38075.52 14793.41 33951.36 37184.43 22296.36 174
MS-PatchMatch83.05 24781.82 24886.72 27289.64 29079.10 20294.88 25394.59 22579.70 26670.67 32289.65 26050.43 33396.82 22270.82 29795.99 10784.25 362
casdiffmvs_mvgpermissive91.13 9590.45 9993.17 8292.99 20783.58 9497.46 9994.56 22687.69 9087.19 15094.98 17174.50 17097.60 17191.88 9392.79 14698.34 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline90.76 10590.10 10992.74 9992.90 21082.56 11094.60 25894.56 22687.69 9089.06 12595.67 14273.76 17997.51 18190.43 11192.23 15598.16 73
OMC-MVS88.80 14388.16 14290.72 17795.30 12977.92 23894.81 25594.51 22886.80 11384.97 16896.85 11467.53 22698.60 12585.08 16287.62 19495.63 192
MVSFormer91.36 8990.57 9593.73 5793.00 20488.08 1794.80 25694.48 22980.74 24094.90 4497.13 10378.84 8895.10 30383.77 17697.46 7198.02 81
test_djsdf83.00 25082.45 23984.64 30584.07 35669.78 33694.80 25694.48 22980.74 24075.41 28687.70 28561.32 26995.10 30383.77 17679.76 25589.04 291
casdiffmvspermissive90.95 10290.39 10092.63 10592.82 21182.53 11196.83 15294.47 23187.69 9088.47 13495.56 14774.04 17697.54 17890.90 10192.74 14797.83 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS84.09 586.77 18685.00 19792.08 13092.06 24183.07 10492.14 30894.47 23179.63 26776.90 26094.78 17571.15 20799.20 9272.87 27991.05 16393.98 228
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDD-MVS88.28 16087.02 17092.06 13295.09 13680.18 17397.55 9194.45 23383.09 19889.10 12495.92 13647.97 34298.49 13193.08 8086.91 20097.52 125
test_cas_vis1_n_192089.90 12190.02 11189.54 20890.14 28274.63 29198.71 2894.43 23493.04 1992.40 7396.35 12753.41 32499.08 10395.59 4896.16 10094.90 209
PLCcopyleft83.97 788.00 16687.38 16189.83 20398.02 5976.46 26797.16 12394.43 23479.26 27681.98 20896.28 12869.36 21999.27 8477.71 23292.25 15493.77 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EC-MVSNet91.73 7892.11 6790.58 18093.54 18677.77 24498.07 5594.40 23687.44 9692.99 7097.11 10574.59 16996.87 21993.75 6797.08 8297.11 148
sd_testset84.62 21983.11 22889.17 21294.14 17077.78 24391.54 31894.38 23784.30 16979.63 23592.01 22152.28 32696.98 21177.67 23382.02 24492.75 241
FMVSNet282.79 25280.44 26789.83 20392.66 21485.43 5395.42 23094.35 23879.06 28074.46 29287.28 29056.38 31094.31 32369.72 30274.68 28989.76 273
test_vis1_n_192089.95 12090.59 9488.03 23992.36 22168.98 34299.12 1294.34 23993.86 1393.64 6197.01 10951.54 32899.59 6096.76 3496.71 9495.53 196
nrg03086.79 18585.43 18790.87 17388.76 29985.34 5497.06 13594.33 24084.31 16780.45 22591.98 22472.36 19396.36 23988.48 13671.13 30590.93 253
RRT_MVS83.88 23283.27 22685.71 28687.53 31872.12 31595.35 23394.33 24083.81 18575.86 27991.28 23660.55 27195.09 30583.93 17276.76 27989.90 272
ACMM80.70 1383.72 23682.85 23386.31 27791.19 25872.12 31595.88 21094.29 24280.44 24877.02 25891.96 22555.24 31697.14 20679.30 21880.38 25389.67 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS83.84 23382.00 24589.35 21087.13 32081.38 14095.72 21794.26 24380.15 25775.92 27890.63 24661.96 26496.52 23378.98 22273.28 29790.14 263
Syy-MVS77.97 30478.05 29077.74 35392.13 23556.85 38093.97 27494.23 24482.43 21473.39 29893.57 20257.95 29487.86 37532.40 39382.34 24188.51 303
myMVS_eth3d81.93 26582.18 24181.18 33792.13 23567.18 34993.97 27494.23 24482.43 21473.39 29893.57 20276.98 11887.86 37550.53 37582.34 24188.51 303
cl2285.11 21284.17 21087.92 24095.06 14078.82 20795.51 22694.22 24679.74 26576.77 26187.92 28375.96 13795.68 27279.93 21272.42 29989.27 283
OPM-MVS85.84 19985.10 19688.06 23788.34 30677.83 24295.72 21794.20 24787.89 8680.45 22594.05 19158.57 28597.26 19883.88 17382.76 23889.09 288
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNet (Re-imp)88.88 14088.87 13288.91 21893.89 17874.43 29496.93 14794.19 24884.39 16583.22 19195.67 14278.24 9694.70 31478.88 22394.40 12597.61 117
Anonymous2023121179.72 28977.19 29787.33 25795.59 12277.16 25895.18 24394.18 24959.31 38472.57 31086.20 31347.89 34495.66 27374.53 26969.24 32489.18 285
PS-MVSNAJss84.91 21584.30 20886.74 26885.89 33674.40 29594.95 25194.16 25083.93 18176.45 26690.11 25771.04 20995.77 26683.16 18879.02 26590.06 269
LPG-MVS_test84.20 22783.49 22386.33 27490.88 26473.06 30695.28 23494.13 25182.20 21876.31 26893.20 20654.83 32096.95 21383.72 17880.83 25088.98 294
LGP-MVS_train86.33 27490.88 26473.06 30694.13 25182.20 21876.31 26893.20 20654.83 32096.95 21383.72 17880.83 25088.98 294
V4283.04 24881.53 25287.57 25186.27 32979.09 20395.87 21194.11 25380.35 25277.22 25686.79 30165.32 24396.02 25177.74 23070.14 31287.61 324
XVG-OURS-SEG-HR85.74 20285.16 19487.49 25590.22 27871.45 32691.29 31994.09 25481.37 23083.90 18495.22 15760.30 27397.53 18085.58 15984.42 22393.50 236
XVG-OURS85.18 21084.38 20787.59 24990.42 27671.73 32391.06 32294.07 25582.00 22483.29 19095.08 16756.42 30997.55 17683.70 18083.42 22893.49 237
miper_enhance_ethall85.95 19885.20 19188.19 23694.85 14679.76 18196.00 20294.06 25682.98 20377.74 25188.76 26979.42 7895.46 28580.58 20372.42 29989.36 281
v2v48283.46 23981.86 24788.25 23386.19 33079.65 18796.34 18694.02 25781.56 22977.32 25488.23 27865.62 23896.03 24977.77 22969.72 32089.09 288
jajsoiax82.12 26381.15 25885.03 29984.19 35470.70 32994.22 27093.95 25883.07 19973.48 29789.75 25949.66 33795.37 28882.24 19579.76 25589.02 292
test_fmvsmconf0.01_n91.08 9790.68 9392.29 12082.43 36480.12 17497.94 6393.93 25992.07 2691.97 8097.60 8167.56 22599.53 6897.09 2995.56 11397.21 144
v114482.90 25181.27 25687.78 24386.29 32879.07 20496.14 19893.93 25980.05 25977.38 25286.80 30065.50 23995.93 25875.21 26170.13 31388.33 311
KD-MVS_2432*160077.63 30774.92 31285.77 28490.86 26779.44 19088.08 34193.92 26176.26 30967.05 33882.78 34772.15 19791.92 35161.53 33741.62 39485.94 350
miper_refine_blended77.63 30774.92 31285.77 28490.86 26779.44 19088.08 34193.92 26176.26 30967.05 33882.78 34772.15 19791.92 35161.53 33741.62 39485.94 350
test_fmvsmvis_n_192092.12 6992.10 6892.17 12790.87 26681.04 14698.34 4193.90 26392.71 2087.24 14997.90 6374.83 16399.72 4396.96 3196.20 9995.76 190
UnsupCasMVSNet_eth73.25 33170.57 33681.30 33577.53 37866.33 35487.24 34993.89 26480.38 25157.90 37781.59 35242.91 36290.56 36565.18 32448.51 38587.01 335
v7n79.32 29577.34 29585.28 29584.05 35772.89 31093.38 28793.87 26575.02 31970.68 32184.37 33659.58 27795.62 27867.60 30867.50 34187.32 332
dcpmvs_293.10 4493.46 4292.02 13597.77 6579.73 18594.82 25493.86 26686.91 10991.33 9196.76 11985.20 3198.06 15096.90 3297.60 6898.27 68
Vis-MVSNetpermissive88.67 14687.82 14791.24 16092.68 21378.82 20796.95 14593.85 26787.55 9387.07 15295.13 16463.43 25397.21 19977.58 23596.15 10197.70 110
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v14882.41 26080.89 25986.99 26686.18 33176.81 26296.27 18993.82 26880.49 24775.28 28786.11 31567.32 22995.75 26875.48 25967.03 34688.42 309
BH-w/o88.24 16187.47 15990.54 18295.03 14178.54 21497.41 10593.82 26884.08 17478.23 24794.51 18169.34 22097.21 19980.21 20994.58 12295.87 187
TR-MVS86.30 19284.93 19990.42 18494.63 15077.58 24896.57 16893.82 26880.30 25382.42 19995.16 16258.74 28497.55 17674.88 26387.82 19396.13 183
v119282.31 26180.55 26687.60 24885.94 33478.47 21895.85 21393.80 27179.33 27276.97 25986.51 30463.33 25495.87 26173.11 27870.13 31388.46 307
ACMP81.66 1184.00 23083.22 22786.33 27491.53 25372.95 30995.91 20993.79 27283.70 18973.79 29592.22 21954.31 32396.89 21783.98 17179.74 25789.16 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v14419282.43 25780.73 26287.54 25285.81 33778.22 22595.98 20393.78 27379.09 27977.11 25786.49 30564.66 24995.91 25974.20 27169.42 32188.49 305
mvs_tets81.74 26780.71 26384.84 30084.22 35370.29 33293.91 27693.78 27382.77 20873.37 30089.46 26247.36 34795.31 29281.99 19679.55 26188.92 298
F-COLMAP84.50 22383.44 22487.67 24595.22 13272.22 31195.95 20593.78 27375.74 31276.30 27095.18 16159.50 27898.45 13572.67 28186.59 20392.35 246
UniMVSNet_ETH3D80.86 28078.75 28687.22 26286.31 32772.02 31791.95 30993.76 27673.51 32975.06 28990.16 25543.04 36195.66 27376.37 25078.55 27193.98 228
Fast-Effi-MVS+87.93 16886.94 17290.92 17094.04 17579.16 19998.26 4393.72 27781.29 23183.94 18392.90 21169.83 21896.68 22876.70 24591.74 15996.93 155
v192192082.02 26480.23 27087.41 25685.62 33877.92 23895.79 21693.69 27878.86 28376.67 26286.44 30762.50 25795.83 26372.69 28069.77 31988.47 306
DTE-MVSNet78.37 29977.06 29882.32 33285.22 34567.17 35293.40 28693.66 27978.71 28570.53 32388.29 27759.06 28392.23 34861.38 34063.28 36087.56 326
v881.88 26680.06 27487.32 25886.63 32379.04 20594.41 26193.65 28078.77 28473.19 30485.57 32066.87 23295.81 26473.84 27567.61 34087.11 333
diffmvspermissive91.17 9490.74 9292.44 11293.11 20382.50 11396.25 19193.62 28187.79 8790.40 10695.93 13473.44 18497.42 18693.62 7092.55 14997.41 131
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ADS-MVSNet81.26 27478.36 28789.96 19893.78 17979.78 18079.48 37693.60 28273.09 33480.14 22979.99 36162.15 26095.24 29559.49 34583.52 22694.85 212
PatchMatch-RL85.00 21483.66 21789.02 21695.86 11474.55 29392.49 30493.60 28279.30 27479.29 23991.47 23158.53 28698.45 13570.22 29992.17 15694.07 227
anonymousdsp80.98 27979.97 27584.01 31381.73 36670.44 33192.49 30493.58 28477.10 30472.98 30686.31 31157.58 29794.90 30879.32 21778.63 27086.69 338
CL-MVSNet_self_test75.81 31974.14 32180.83 34078.33 37667.79 34694.22 27093.52 28577.28 30169.82 32781.54 35361.47 26889.22 37057.59 35353.51 37685.48 354
miper_ehance_all_eth84.57 22183.60 22087.50 25392.64 21778.25 22495.40 23293.47 28679.28 27576.41 26787.64 28676.53 12695.24 29578.58 22572.42 29989.01 293
v124081.70 26879.83 27887.30 26085.50 33977.70 24795.48 22793.44 28778.46 28876.53 26586.44 30760.85 27095.84 26271.59 28770.17 31188.35 310
v1081.43 27279.53 28087.11 26386.38 32578.87 20694.31 26593.43 28877.88 29273.24 30385.26 32465.44 24095.75 26872.14 28467.71 33986.72 337
IterMVS-LS83.93 23182.80 23487.31 25991.46 25477.39 25295.66 22093.43 28880.44 24875.51 28487.26 29273.72 18095.16 29976.99 24170.72 30989.39 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net82.42 25880.43 26888.39 22892.66 21481.95 12094.30 26693.38 29079.06 28075.82 28085.66 31656.38 31093.84 33071.23 29075.38 28589.38 278
test182.42 25880.43 26888.39 22892.66 21481.95 12094.30 26693.38 29079.06 28075.82 28085.66 31656.38 31093.84 33071.23 29075.38 28589.38 278
FMVSNet179.50 29276.54 30288.39 22888.47 30481.95 12094.30 26693.38 29073.14 33372.04 31485.66 31643.86 35593.84 33065.48 32272.53 29889.38 278
BH-untuned86.95 18185.94 18189.99 19594.52 15577.46 25096.78 15793.37 29381.80 22576.62 26493.81 19866.64 23497.02 20976.06 25293.88 13295.48 198
Effi-MVS+-dtu84.61 22084.90 20083.72 31991.96 24463.14 36694.95 25193.34 29485.57 13279.79 23387.12 29561.99 26395.61 27983.55 18285.83 21392.41 245
CMPMVSbinary54.94 2175.71 32174.56 31679.17 34879.69 37255.98 38289.59 32993.30 29560.28 37953.85 38389.07 26547.68 34696.33 24076.55 24681.02 24885.22 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cl____83.27 24282.12 24286.74 26892.20 23075.95 27995.11 24693.27 29678.44 28974.82 29087.02 29774.19 17395.19 29774.67 26669.32 32289.09 288
DIV-MVS_self_test83.27 24282.12 24286.74 26892.19 23175.92 28195.11 24693.26 29778.44 28974.81 29187.08 29674.19 17395.19 29774.66 26769.30 32389.11 287
dmvs_re84.10 22882.90 23187.70 24491.41 25573.28 30390.59 32593.19 29885.02 14777.96 25093.68 19957.92 29696.18 24675.50 25880.87 24993.63 234
miper_lstm_enhance81.66 27080.66 26484.67 30491.19 25871.97 31991.94 31093.19 29877.86 29372.27 31285.26 32473.46 18393.42 33873.71 27667.05 34588.61 301
eth_miper_zixun_eth83.12 24682.01 24486.47 27391.85 24974.80 28994.33 26493.18 30079.11 27875.74 28387.25 29372.71 18995.32 29176.78 24467.13 34489.27 283
pmmvs482.54 25680.79 26087.79 24286.11 33280.49 16593.55 28493.18 30077.29 30073.35 30189.40 26365.26 24495.05 30775.32 26073.61 29387.83 319
XVG-ACMP-BASELINE79.38 29477.90 29283.81 31584.98 34767.14 35389.03 33493.18 30080.26 25672.87 30788.15 28038.55 37296.26 24276.05 25378.05 27588.02 316
CANet_DTU90.98 10090.04 11093.83 5194.76 14886.23 3496.32 18793.12 30393.11 1893.71 5996.82 11763.08 25599.48 7384.29 16895.12 11695.77 189
IS-MVSNet88.67 14688.16 14290.20 19193.61 18376.86 26196.77 15993.07 30484.02 17683.62 18795.60 14574.69 16896.24 24478.43 22793.66 13697.49 127
c3_l83.80 23482.65 23687.25 26192.10 23777.74 24695.25 23793.04 30578.58 28676.01 27587.21 29475.25 15895.11 30277.54 23668.89 32688.91 299
UnsupCasMVSNet_bld68.60 34864.50 35280.92 33974.63 38767.80 34583.97 36892.94 30665.12 36554.63 38268.23 38835.97 37792.17 35060.13 34344.83 38982.78 369
MVP-Stereo82.65 25581.67 25085.59 29186.10 33378.29 22293.33 28992.82 30777.75 29469.17 33287.98 28259.28 28195.76 26771.77 28596.88 8782.73 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+90.70 10689.90 11693.09 8593.61 18383.48 9695.20 24092.79 30883.22 19591.82 8395.70 14071.82 20097.48 18491.25 9693.67 13598.32 62
EU-MVSNet76.92 31476.95 29976.83 35684.10 35554.73 38791.77 31392.71 30972.74 33769.57 32988.69 27058.03 29387.43 37964.91 32570.00 31788.33 311
pm-mvs180.05 28678.02 29186.15 27985.42 34075.81 28295.11 24692.69 31077.13 30270.36 32487.43 28858.44 28795.27 29471.36 28964.25 35687.36 331
1112_ss88.60 14987.47 15992.00 13693.21 19680.97 14996.47 17592.46 31183.64 19080.86 22097.30 9680.24 7197.62 17077.60 23485.49 21697.40 133
test_fmvs187.79 17088.52 13685.62 29092.98 20864.31 35897.88 6692.42 31287.95 8392.24 7695.82 13747.94 34398.44 13795.31 5294.09 12694.09 226
Test_1112_low_res88.03 16586.73 17391.94 13893.15 19980.88 15296.44 17892.41 31383.59 19280.74 22291.16 23880.18 7297.59 17277.48 23785.40 21797.36 135
test_fmvs1_n86.34 19186.72 17485.17 29787.54 31763.64 36396.91 14892.37 31487.49 9591.33 9195.58 14640.81 37098.46 13495.00 5493.49 13793.41 240
BH-RMVSNet86.84 18385.28 19091.49 15395.35 12880.26 17096.95 14592.21 31582.86 20681.77 21395.46 14959.34 28097.64 16969.79 30193.81 13396.57 170
GeoE86.36 19085.20 19189.83 20393.17 19876.13 27297.53 9292.11 31679.58 26880.99 21894.01 19266.60 23596.17 24773.48 27789.30 17297.20 146
LS3D82.22 26279.94 27689.06 21497.43 7974.06 29893.20 29592.05 31761.90 37173.33 30295.21 15859.35 27999.21 8854.54 36492.48 15193.90 230
EG-PatchMatch MVS74.92 32372.02 33083.62 32083.76 36173.28 30393.62 28292.04 31868.57 35658.88 37383.80 34131.87 38595.57 28256.97 35778.67 26782.00 376
IterMVS80.67 28279.16 28285.20 29689.79 28576.08 27392.97 29991.86 31980.28 25471.20 31885.14 32957.93 29591.34 35872.52 28270.74 30888.18 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf05_1191.95 7291.17 8794.29 3696.33 9785.50 5299.61 191.84 32094.36 1097.89 698.51 2446.72 34898.24 14596.54 3698.75 2899.13 25
MIMVSNet79.18 29675.99 30588.72 22387.37 31980.66 15879.96 37591.82 32177.38 29974.33 29381.87 35141.78 36490.74 36466.36 32083.10 23194.76 214
IterMVS-SCA-FT80.51 28479.10 28384.73 30289.63 29174.66 29092.98 29891.81 32280.05 25971.06 32085.18 32758.04 29191.40 35772.48 28370.70 31088.12 315
our_test_377.90 30575.37 30985.48 29385.39 34176.74 26393.63 28191.67 32373.39 33265.72 34784.65 33558.20 29093.13 34157.82 35167.87 33686.57 340
pmmvs581.34 27379.54 27986.73 27185.02 34676.91 25996.22 19291.65 32477.65 29573.55 29688.61 27155.70 31394.43 32174.12 27273.35 29688.86 300
ACMH75.40 1777.99 30274.96 31087.10 26490.67 27176.41 26893.19 29691.64 32572.47 34063.44 35587.61 28743.34 35897.16 20258.34 34973.94 29187.72 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_n85.60 20485.70 18385.33 29484.79 34864.98 35696.83 15291.61 32687.36 9991.00 9894.84 17436.14 37697.18 20195.66 4693.03 14493.82 231
Fast-Effi-MVS+-dtu83.33 24182.60 23785.50 29289.55 29269.38 34096.09 20191.38 32782.30 21775.96 27791.41 23256.71 30595.58 28175.13 26284.90 22191.54 247
YYNet173.53 33070.43 33782.85 32784.52 35171.73 32391.69 31591.37 32867.63 35746.79 38681.21 35555.04 31890.43 36655.93 36059.70 36786.38 342
ppachtmachnet_test77.19 31174.22 31986.13 28085.39 34178.22 22593.98 27391.36 32971.74 34467.11 33784.87 33356.67 30693.37 34052.21 36964.59 35386.80 336
Anonymous20240521184.41 22481.93 24691.85 14296.78 9378.41 21997.44 10091.34 33070.29 35084.06 17894.26 18541.09 36898.96 10979.46 21582.65 23998.17 72
MDA-MVSNet_test_wron73.54 32970.43 33782.86 32684.55 34971.85 32091.74 31491.32 33167.63 35746.73 38781.09 35655.11 31790.42 36755.91 36159.76 36686.31 343
CR-MVSNet83.53 23881.36 25590.06 19390.16 28079.75 18279.02 38091.12 33284.24 17382.27 20580.35 35975.45 14893.67 33463.37 33386.25 20696.75 165
Patchmtry77.36 31074.59 31585.67 28889.75 28775.75 28377.85 38391.12 33260.28 37971.23 31780.35 35975.45 14893.56 33657.94 35067.34 34387.68 322
LTVRE_ROB73.68 1877.99 30275.74 30784.74 30190.45 27572.02 31786.41 35691.12 33272.57 33966.63 34287.27 29154.95 31996.98 21156.29 35975.98 28085.21 356
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 31276.06 30480.55 34183.78 36060.00 37690.35 32691.05 33577.01 30666.62 34387.92 28347.73 34594.03 32771.63 28668.44 33087.62 323
CNLPA86.96 18085.37 18991.72 14697.59 7279.34 19597.21 11491.05 33574.22 32378.90 24096.75 12167.21 23098.95 11174.68 26590.77 16596.88 159
Anonymous2024052172.06 33869.91 33978.50 35177.11 38161.67 37191.62 31790.97 33765.52 36462.37 36179.05 36436.32 37590.96 36257.75 35268.52 32982.87 367
KD-MVS_self_test70.97 34269.31 34275.95 36176.24 38655.39 38687.45 34690.94 33870.20 35162.96 36077.48 36844.01 35488.09 37361.25 34153.26 37784.37 361
pmmvs674.65 32571.67 33183.60 32179.13 37469.94 33493.31 29290.88 33961.05 37865.83 34684.15 33943.43 35794.83 31166.62 31560.63 36586.02 348
test111188.11 16387.04 16991.35 15593.15 19978.79 21096.57 16890.78 34086.88 11185.04 16695.20 15957.23 30397.39 18983.88 17394.59 12197.87 95
ECVR-MVScopyleft88.35 15787.25 16391.65 14793.54 18679.40 19296.56 17090.78 34086.78 11485.57 16295.25 15357.25 30297.56 17484.73 16694.80 11897.98 88
Anonymous2023120675.29 32273.64 32380.22 34280.75 36763.38 36593.36 28890.71 34273.09 33467.12 33683.70 34250.33 33490.85 36353.63 36770.10 31586.44 341
USDC78.65 29876.25 30385.85 28287.58 31574.60 29289.58 33090.58 34384.05 17563.13 35788.23 27840.69 37196.86 22166.57 31775.81 28386.09 347
MSDG80.62 28377.77 29389.14 21393.43 19377.24 25491.89 31190.18 34469.86 35368.02 33391.94 22752.21 32798.84 11759.32 34783.12 23091.35 248
ACMH+76.62 1677.47 30974.94 31185.05 29891.07 26271.58 32593.26 29390.01 34571.80 34364.76 35088.55 27241.62 36596.48 23462.35 33671.00 30687.09 334
FMVSNet576.46 31674.16 32083.35 32490.05 28376.17 27189.58 33089.85 34671.39 34665.29 34980.42 35850.61 33287.70 37861.05 34269.24 32486.18 345
ambc76.02 35968.11 39351.43 38864.97 39689.59 34760.49 36974.49 37617.17 39592.46 34461.50 33952.85 37984.17 363
test_fmvs279.59 29079.90 27778.67 34982.86 36355.82 38495.20 24089.55 34881.09 23380.12 23189.80 25834.31 38193.51 33787.82 14178.36 27386.69 338
ITE_SJBPF82.38 33087.00 32165.59 35589.55 34879.99 26169.37 33091.30 23541.60 36695.33 29062.86 33574.63 29086.24 344
pmmvs-eth3d73.59 32870.66 33582.38 33076.40 38473.38 30089.39 33389.43 35072.69 33860.34 37077.79 36746.43 35091.26 36066.42 31957.06 37082.51 371
test20.0372.36 33671.15 33375.98 36077.79 37759.16 37892.40 30689.35 35174.09 32561.50 36584.32 33748.09 34085.54 38550.63 37462.15 36383.24 366
SixPastTwentyTwo76.04 31774.32 31881.22 33684.54 35061.43 37291.16 32089.30 35277.89 29164.04 35286.31 31148.23 33994.29 32463.54 33263.84 35887.93 318
TransMVSNet (Re)76.94 31374.38 31784.62 30685.92 33575.25 28695.28 23489.18 35373.88 32767.22 33586.46 30659.64 27594.10 32659.24 34852.57 38084.50 360
MIMVSNet169.44 34466.65 34877.84 35276.48 38362.84 36787.42 34788.97 35466.96 36257.75 37879.72 36332.77 38485.83 38446.32 38363.42 35984.85 358
K. test v373.62 32771.59 33279.69 34482.98 36259.85 37790.85 32488.83 35577.13 30258.90 37282.11 34943.62 35691.72 35565.83 32154.10 37587.50 329
Baseline_NR-MVSNet81.22 27580.07 27384.68 30385.32 34475.12 28796.48 17488.80 35676.24 31177.28 25586.40 31067.61 22394.39 32275.73 25766.73 34884.54 359
MDA-MVSNet-bldmvs71.45 34067.94 34581.98 33485.33 34368.50 34492.35 30788.76 35770.40 34942.99 39081.96 35046.57 34991.31 35948.75 38154.39 37486.11 346
new-patchmatchnet68.85 34765.93 34977.61 35473.57 38963.94 36290.11 32888.73 35871.62 34555.08 38173.60 37840.84 36987.22 38151.35 37248.49 38681.67 379
Patchmatch-test78.25 30074.72 31488.83 22091.20 25774.10 29773.91 39188.70 35959.89 38266.82 34085.12 33078.38 9494.54 31848.84 38079.58 26097.86 96
iter_conf0590.14 11789.79 11891.17 16395.85 11586.93 2897.68 8188.67 36089.93 5481.73 21492.80 21390.37 896.03 24990.44 11080.65 25290.56 255
OpenMVS_ROBcopyleft68.52 2073.02 33369.57 34083.37 32380.54 37071.82 32193.60 28388.22 36162.37 36961.98 36383.15 34635.31 38095.47 28445.08 38575.88 28282.82 368
mvsany_test187.58 17488.22 13985.67 28889.78 28667.18 34995.25 23787.93 36283.96 17988.79 12997.06 10872.52 19194.53 31992.21 8786.45 20495.30 203
RPSCF77.73 30676.63 30181.06 33888.66 30355.76 38587.77 34587.88 36364.82 36674.14 29492.79 21449.22 33896.81 22367.47 31076.88 27890.62 254
mvsmamba85.17 21184.54 20287.05 26587.94 31175.11 28896.22 19287.79 36486.91 10978.55 24391.77 23064.93 24695.91 25986.94 15279.80 25490.12 264
MVS-HIRNet71.36 34167.00 34684.46 31090.58 27269.74 33779.15 37987.74 36546.09 39161.96 36450.50 39545.14 35395.64 27653.74 36688.11 19088.00 317
DP-MVS81.47 27178.28 28891.04 16698.14 5578.48 21595.09 24986.97 36661.14 37771.12 31992.78 21559.59 27699.38 7853.11 36886.61 20295.27 204
COLMAP_ROBcopyleft73.24 1975.74 32073.00 32783.94 31492.38 22069.08 34191.85 31286.93 36761.48 37465.32 34890.27 25242.27 36396.93 21650.91 37375.63 28485.80 353
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs369.56 34369.19 34370.67 36569.01 39147.05 39190.87 32386.81 36871.31 34766.79 34177.15 36916.40 39683.17 38881.84 19762.51 36281.79 378
test_040272.68 33469.54 34182.09 33388.67 30271.81 32292.72 30286.77 36961.52 37362.21 36283.91 34043.22 35993.76 33334.60 39272.23 30280.72 380
testgi74.88 32473.40 32479.32 34780.13 37161.75 36993.21 29486.64 37079.49 27066.56 34491.06 23935.51 37988.67 37256.79 35871.25 30487.56 326
TDRefinement69.20 34665.78 35079.48 34566.04 39662.21 36888.21 34086.12 37162.92 36861.03 36885.61 31933.23 38294.16 32555.82 36253.02 37882.08 375
ADS-MVSNet279.57 29177.53 29485.71 28693.78 17972.13 31479.48 37686.11 37273.09 33480.14 22979.99 36162.15 26090.14 36959.49 34583.52 22694.85 212
LF4IMVS72.36 33670.82 33476.95 35579.18 37356.33 38186.12 35886.11 37269.30 35563.06 35886.66 30233.03 38392.25 34765.33 32368.64 32882.28 374
TinyColmap72.41 33568.99 34482.68 32888.11 30869.59 33888.41 33985.20 37465.55 36357.91 37684.82 33430.80 38795.94 25751.38 37068.70 32782.49 373
pmmvs365.75 35162.18 35476.45 35867.12 39564.54 35788.68 33785.05 37554.77 39057.54 37973.79 37729.40 38886.21 38355.49 36347.77 38778.62 382
bld_raw_dy_0_6488.31 15886.38 17794.07 4596.33 9784.79 7497.19 11784.75 37694.48 882.36 20098.47 2746.18 35198.30 14396.54 3681.13 24799.13 25
new_pmnet66.18 35063.18 35375.18 36376.27 38561.74 37083.79 36984.66 37756.64 38851.57 38471.85 38631.29 38687.93 37449.98 37662.55 36175.86 385
AllTest75.92 31873.06 32684.47 30892.18 23267.29 34791.07 32184.43 37867.63 35763.48 35390.18 25338.20 37397.16 20257.04 35573.37 29488.97 296
TestCases84.47 30892.18 23267.29 34784.43 37867.63 35763.48 35390.18 25338.20 37397.16 20257.04 35573.37 29488.97 296
LCM-MVSNet-Re83.75 23583.54 22184.39 31293.54 18664.14 36092.51 30384.03 38083.90 18266.14 34586.59 30367.36 22892.68 34284.89 16592.87 14596.35 175
Gipumacopyleft45.11 36642.05 36854.30 38280.69 36851.30 38935.80 40083.81 38128.13 39627.94 40034.53 40011.41 40376.70 39621.45 39954.65 37234.90 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet52.52 36048.24 36365.35 37047.63 40741.45 39972.55 39283.62 38231.75 39537.66 39357.92 3939.19 40576.76 39549.26 37844.60 39077.84 383
FPMVS55.09 35852.93 36161.57 37655.98 40040.51 40183.11 37283.41 38337.61 39434.95 39571.95 38414.40 39776.95 39429.81 39465.16 35267.25 389
Patchmatch-RL test76.65 31574.01 32284.55 30777.37 38064.23 35978.49 38282.84 38478.48 28764.63 35173.40 37976.05 13691.70 35676.99 24157.84 36997.72 107
DSMNet-mixed73.13 33272.45 32875.19 36277.51 37946.82 39285.09 36482.01 38567.61 36169.27 33181.33 35450.89 33086.28 38254.54 36483.80 22592.46 243
lessismore_v079.98 34380.59 36958.34 37980.87 38658.49 37483.46 34443.10 36093.89 32963.11 33448.68 38487.72 320
test_f64.01 35262.13 35569.65 36663.00 39845.30 39783.66 37080.68 38761.30 37555.70 38072.62 38214.23 39884.64 38669.84 30058.11 36879.00 381
door80.13 388
door-mid79.75 389
PM-MVS69.32 34566.93 34776.49 35773.60 38855.84 38385.91 35979.32 39074.72 32161.09 36778.18 36621.76 39291.10 36170.86 29556.90 37182.51 371
mvsany_test367.19 34965.34 35172.72 36463.08 39748.57 39083.12 37178.09 39172.07 34161.21 36677.11 37022.94 39187.78 37778.59 22451.88 38181.80 377
dmvs_testset72.00 33973.36 32567.91 36783.83 35931.90 40785.30 36377.12 39282.80 20763.05 35992.46 21761.54 26782.55 39042.22 38971.89 30389.29 282
ANet_high46.22 36341.28 37061.04 37739.91 40946.25 39570.59 39376.18 39358.87 38523.09 40148.00 39812.58 40166.54 40128.65 39613.62 40270.35 387
test_method56.77 35554.53 35963.49 37476.49 38240.70 40075.68 38774.24 39419.47 40248.73 38571.89 38519.31 39365.80 40257.46 35447.51 38883.97 364
APD_test156.56 35653.58 36065.50 36967.93 39446.51 39477.24 38672.95 39538.09 39342.75 39175.17 37313.38 39982.78 38940.19 39054.53 37367.23 390
EGC-MVSNET52.46 36147.56 36467.15 36881.98 36560.11 37582.54 37372.44 3960.11 4080.70 40974.59 37525.11 39083.26 38729.04 39561.51 36458.09 393
PMMVS250.90 36246.31 36564.67 37155.53 40146.67 39377.30 38571.02 39740.89 39234.16 39659.32 3919.83 40476.14 39740.09 39128.63 39971.21 386
WB-MVS57.26 35456.22 35760.39 37869.29 39035.91 40586.39 35770.06 39859.84 38346.46 38872.71 38151.18 32978.11 39215.19 40234.89 39767.14 391
SSC-MVS56.01 35754.96 35859.17 37968.42 39234.13 40684.98 36569.23 39958.08 38745.36 38971.67 38750.30 33577.46 39314.28 40332.33 39865.91 392
test_vis1_rt73.96 32672.40 32978.64 35083.91 35861.16 37395.63 22268.18 40076.32 30860.09 37174.77 37429.01 38997.54 17887.74 14275.94 28177.22 384
MTMP97.53 9268.16 401
DeepMVS_CXcopyleft64.06 37378.53 37543.26 39868.11 40269.94 35238.55 39276.14 37218.53 39479.34 39143.72 38641.62 39469.57 388
PMVScopyleft34.80 2339.19 36835.53 37150.18 38329.72 41030.30 40859.60 39866.20 40326.06 39917.91 40349.53 3963.12 40974.09 39818.19 40149.40 38346.14 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf145.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
APD_test245.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
tmp_tt41.54 36741.93 36940.38 38520.10 41126.84 40961.93 39759.09 40614.81 40428.51 39980.58 35735.53 37848.33 40663.70 33113.11 40345.96 399
MVEpermissive35.65 2233.85 36929.49 37446.92 38441.86 40836.28 40450.45 39956.52 40718.75 40318.28 40237.84 3992.41 41058.41 40318.71 40020.62 40046.06 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 37032.39 37233.65 38653.35 40325.70 41074.07 39053.33 40821.08 40017.17 40433.63 40211.85 40254.84 40412.98 40414.04 40120.42 401
EMVS31.70 37131.45 37332.48 38750.72 40623.95 41174.78 38952.30 40920.36 40116.08 40531.48 40312.80 40053.60 40511.39 40513.10 40419.88 402
test_vis3_rt54.10 35951.04 36263.27 37558.16 39946.08 39684.17 36749.32 41056.48 38936.56 39449.48 3978.03 40691.91 35367.29 31149.87 38251.82 396
N_pmnet61.30 35360.20 35664.60 37284.32 35217.00 41391.67 31610.98 41161.77 37258.45 37578.55 36549.89 33691.83 35442.27 38863.94 35784.97 357
wuyk23d14.10 37313.89 37614.72 38855.23 40222.91 41233.83 4013.56 4124.94 4054.11 4062.28 4082.06 41119.66 40710.23 4068.74 4051.59 405
testmvs9.92 37412.94 3770.84 3900.65 4120.29 41593.78 2790.39 4130.42 4062.85 40715.84 4060.17 4130.30 4092.18 4070.21 4061.91 404
test1239.07 37511.73 3781.11 3890.50 4130.77 41489.44 3320.20 4140.34 4072.15 40810.72 4070.34 4120.32 4081.79 4080.08 4072.23 403
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.92 3777.89 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40971.04 2090.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
n20.00 415
nn0.00 415
ab-mvs-re8.11 37610.81 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.30 960.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS67.18 34949.00 379
PC_three_145291.12 3798.33 298.42 3092.51 299.81 2198.96 399.37 199.70 3
eth-test20.00 414
eth-test0.00 414
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1299.11 299.37 199.74 1
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
GSMVS97.54 120
test_part298.90 1985.14 6596.07 29
sam_mvs177.59 10797.54 120
sam_mvs75.35 155
test_post185.88 36030.24 40473.77 17895.07 30673.89 273
test_post33.80 40176.17 13495.97 253
patchmatchnet-post77.09 37177.78 10695.39 286
gm-plane-assit92.27 22679.64 18884.47 16495.15 16397.93 15485.81 157
test9_res96.00 4199.03 1398.31 64
agg_prior294.30 6099.00 1598.57 48
test_prior482.34 11697.75 76
test_prior298.37 4086.08 12394.57 5098.02 5383.14 5095.05 5398.79 26
旧先验296.97 14274.06 32696.10 2897.76 16588.38 137
新几何296.42 181
原ACMM296.84 151
testdata299.48 7376.45 248
segment_acmp82.69 55
testdata195.57 22587.44 96
plane_prior791.86 24777.55 249
plane_prior691.98 24377.92 23864.77 247
plane_prior494.15 189
plane_prior377.75 24590.17 5281.33 215
plane_prior297.18 11989.89 55
plane_prior191.95 245
plane_prior77.96 23597.52 9590.36 5082.96 234
HQP5-MVS78.48 215
HQP-NCC92.08 23897.63 8390.52 4582.30 201
ACMP_Plane92.08 23897.63 8390.52 4582.30 201
BP-MVS87.67 144
HQP4-MVS82.30 20197.32 19291.13 249
HQP2-MVS65.40 241
NP-MVS92.04 24278.22 22594.56 179
MDTV_nov1_ep13_2view81.74 13286.80 35280.65 24285.65 16174.26 17276.52 24796.98 152
ACMMP++_ref78.45 272
ACMMP++79.05 264
Test By Simon71.65 202