This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
thres20088.92 12987.65 13892.73 10196.30 10985.62 4597.85 5498.86 184.38 14584.82 15493.99 17975.12 15598.01 14470.86 27286.67 18594.56 206
thres100view90088.30 14786.95 15892.33 11696.10 11584.90 6597.14 11298.85 282.69 18883.41 17293.66 18575.43 14697.93 14669.04 27886.24 19194.17 208
tfpn200view988.48 14287.15 15392.47 11096.21 11185.30 5297.44 8798.85 283.37 17283.99 16493.82 18275.36 14997.93 14669.04 27886.24 19194.17 208
thres600view788.06 15186.70 16192.15 12296.10 11585.17 5897.14 11298.85 282.70 18783.41 17293.66 18575.43 14697.82 15367.13 28785.88 19593.45 221
thres40088.42 14587.15 15392.23 11996.21 11185.30 5297.44 8798.85 283.37 17283.99 16493.82 18275.36 14997.93 14669.04 27886.24 19193.45 221
MVS_111021_HR93.41 4193.39 4093.47 7397.34 9782.83 10597.56 7898.27 689.16 4589.71 10797.14 10079.77 7699.56 5593.65 5397.94 6698.02 84
sss90.87 9589.96 10293.60 6394.15 16883.84 8397.14 11298.13 785.93 10489.68 10896.09 12871.67 19199.30 7687.69 12789.16 16397.66 114
MG-MVS94.25 2593.72 3595.85 1199.38 389.35 1197.98 4898.09 889.99 3592.34 6996.97 10881.30 6298.99 10588.54 11998.88 2199.20 22
VNet92.11 6791.22 8094.79 2496.91 10386.98 2697.91 5197.96 986.38 9593.65 5395.74 13370.16 20798.95 11093.39 5788.87 16798.43 53
test_yl91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21089.85 10496.14 12675.61 13998.81 11890.42 10088.56 17298.74 35
DCV-MVSNet91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21089.85 10496.14 12675.61 13998.81 11890.42 10088.56 17298.74 35
WTY-MVS92.65 5991.68 7495.56 1396.00 11788.90 1298.23 3297.65 1288.57 5589.82 10697.22 9879.29 7999.06 10189.57 11088.73 16998.73 39
EPNet94.06 3194.15 2993.76 5397.27 9984.35 7298.29 3097.64 1394.57 495.36 2696.88 11179.96 7599.12 9891.30 8496.11 10497.82 102
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS84.06 691.63 7890.37 9395.39 1696.12 11488.25 1490.22 30397.58 1488.33 6290.50 9891.96 20179.26 8199.06 10190.29 10289.07 16498.88 31
baseline290.39 10590.21 9690.93 15690.86 25380.99 14695.20 22097.41 1586.03 10280.07 21394.61 16490.58 697.47 17187.29 13189.86 15994.35 207
PVSNet82.34 989.02 12687.79 13692.71 10295.49 12981.50 13797.70 6897.29 1687.76 7485.47 14995.12 15456.90 28898.90 11480.33 18594.02 12497.71 111
PGM-MVS91.93 6991.80 7292.32 11798.27 5679.74 17895.28 21597.27 1783.83 16390.89 9497.78 6976.12 13199.56 5588.82 11797.93 6897.66 114
IB-MVS85.34 488.67 13787.14 15593.26 7693.12 19784.32 7398.76 1797.27 1787.19 8879.36 21790.45 22483.92 4198.53 12984.41 15069.79 29196.93 149
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS90.60 10088.64 12396.50 594.25 16690.53 893.33 26697.21 1977.59 27178.88 22097.31 9271.52 19499.69 4089.60 10998.03 6499.27 20
CSCG92.02 6891.65 7593.12 8298.53 4180.59 15697.47 8597.18 2077.06 28084.64 15897.98 5783.98 4099.52 5790.72 9397.33 8199.23 21
PHI-MVS93.59 3993.63 3693.48 7098.05 6881.76 13098.64 2197.13 2182.60 19094.09 5098.49 2580.35 6899.85 1094.74 4398.62 3598.83 32
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 997.12 2294.66 396.79 1198.78 1186.42 2799.95 397.59 1299.18 799.00 27
h-mvs3389.30 12288.95 12090.36 17295.07 14276.04 26296.96 13297.11 2390.39 3192.22 7095.10 15574.70 15998.86 11593.14 6465.89 32496.16 174
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 1597.10 2495.17 292.11 7298.46 2687.33 2399.97 297.21 1699.31 499.63 7
VPA-MVSNet85.32 19183.83 19689.77 19490.25 26282.63 10796.36 16997.07 2583.03 18081.21 19889.02 24161.58 25896.31 22385.02 14870.95 27990.36 237
Regformer-194.00 3394.04 3293.87 5098.41 4884.29 7497.43 9197.04 2689.50 4092.75 6698.13 4182.60 5799.26 7993.55 5596.99 8898.06 81
DELS-MVS94.98 1294.49 2096.44 696.42 10890.59 799.21 297.02 2794.40 591.46 8197.08 10483.32 4699.69 4092.83 6898.70 3399.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GG-mvs-BLEND93.49 6994.94 14786.26 3181.62 34197.00 2888.32 12894.30 17091.23 596.21 22788.49 12197.43 7898.00 89
Regformer-293.92 3494.01 3393.67 5998.41 4883.75 8497.43 9197.00 2889.43 4292.69 6798.13 4182.48 5899.22 8293.51 5696.99 8898.04 82
DPM-MVS96.21 295.53 1098.26 196.26 11095.09 199.15 496.98 3093.39 996.45 1798.79 1090.17 999.99 189.33 11499.25 699.70 3
Regformer-393.19 4293.19 4493.19 8098.10 6583.01 10397.08 12196.98 3088.98 4691.35 8697.89 6280.80 6499.23 8092.30 7495.20 11597.32 135
gg-mvs-nofinetune85.48 19082.90 21093.24 7794.51 16185.82 3979.22 34596.97 3261.19 34787.33 13653.01 35990.58 696.07 22986.07 13997.23 8397.81 103
NCCC95.63 695.94 794.69 2799.21 785.15 5999.16 396.96 3394.11 695.59 2498.64 2185.07 3199.91 495.61 3199.10 999.00 27
FIs86.73 17386.10 16588.61 21390.05 26780.21 16796.14 18396.95 3485.56 11378.37 22692.30 19676.73 12095.28 27379.51 19479.27 23790.35 238
PVSNet_077.72 1581.70 24778.95 26189.94 18790.77 25676.72 25395.96 18996.95 3485.01 12770.24 30288.53 25052.32 30898.20 14186.68 13844.08 35994.89 197
HPM-MVS++copyleft95.32 1095.48 1194.85 2398.62 3886.04 3497.81 5896.93 3692.45 1195.69 2398.50 2485.38 3099.85 1094.75 4299.18 798.65 42
MSLP-MVS++94.28 2394.39 2493.97 4798.30 5584.06 7998.64 2196.93 3690.71 2693.08 6098.70 1879.98 7499.21 8494.12 4999.07 1198.63 43
Regformer-493.06 4693.12 4592.89 9498.10 6582.20 11697.08 12196.92 3888.87 4891.23 8897.89 6280.57 6799.19 8992.21 7695.20 11597.29 139
UniMVSNet (Re)85.31 19284.23 19288.55 21489.75 27080.55 15896.72 14796.89 3985.42 11478.40 22588.93 24375.38 14895.52 26378.58 20468.02 30889.57 254
FC-MVSNet-test85.96 18185.39 17287.66 23389.38 27978.02 22495.65 20596.87 4085.12 12577.34 23291.94 20376.28 12994.74 29377.09 21778.82 24190.21 242
EI-MVSNet-Vis-set91.84 7291.77 7392.04 12697.60 8281.17 14196.61 15396.87 4088.20 6489.19 11697.55 8278.69 9199.14 9590.29 10290.94 15495.80 181
IU-MVS99.03 1685.34 4996.86 4292.05 1598.74 198.15 398.97 1799.42 13
MSC_two_6792asdad97.14 399.05 1092.19 496.83 4399.81 2098.08 698.81 2599.43 11
No_MVS97.14 399.05 1092.19 496.83 4399.81 2098.08 698.81 2599.43 11
EI-MVSNet-UG-set91.35 8691.22 8091.73 13597.39 9380.68 15496.47 15996.83 4387.92 6988.30 12997.36 9177.84 10299.13 9789.43 11389.45 16195.37 191
ETH3 D test640095.56 995.41 1296.00 999.02 1989.42 998.75 1896.80 4687.28 8395.88 2298.95 285.92 2999.41 6697.15 1798.95 2099.18 24
SED-MVS95.88 596.22 494.87 2299.03 1685.03 6199.12 696.78 4788.72 5197.79 498.91 388.48 1699.82 1798.15 398.97 1799.74 1
test_241102_TWO96.78 4788.72 5197.70 698.91 387.86 2099.82 1798.15 399.00 1599.47 9
test_241102_ONE99.03 1685.03 6196.78 4788.72 5197.79 498.90 688.48 1699.82 17
test072699.05 1085.18 5499.11 896.78 4788.75 4997.65 898.91 387.69 21
MSP-MVS95.62 796.54 192.86 9598.31 5480.10 17097.42 9396.78 4792.20 1397.11 1098.29 3193.46 199.10 9996.01 2499.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
无先验96.87 13796.78 4777.39 27399.52 5779.95 19098.43 53
DVP-MVS++.96.05 496.41 394.96 2199.05 1085.34 4998.13 3896.77 5388.38 5997.70 698.77 1292.06 399.84 1297.47 1399.37 199.70 3
test_0728_SECOND95.14 1799.04 1586.14 3399.06 996.77 5399.84 1297.90 898.85 2299.45 10
SMA-MVScopyleft94.70 1694.68 1694.76 2598.02 6985.94 3797.47 8596.77 5385.32 11797.92 398.70 1883.09 5099.84 1295.79 2899.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_LR91.60 8091.64 7691.47 14395.74 12278.79 20396.15 18296.77 5388.49 5788.64 12397.07 10572.33 18599.19 8993.13 6696.48 10196.43 166
3Dnovator82.32 1089.33 12187.64 13994.42 3393.73 18185.70 4397.73 6696.75 5786.73 9476.21 25295.93 13062.17 25099.68 4281.67 17897.81 6997.88 96
DPE-MVScopyleft95.32 1095.55 994.64 2898.79 2584.87 6697.77 6096.74 5886.11 9896.54 1698.89 788.39 1899.74 3297.67 1199.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PVSNet_BlendedMVS90.05 11089.96 10290.33 17497.47 8783.86 8198.02 4796.73 5987.98 6889.53 11289.61 23576.42 12599.57 5394.29 4779.59 23487.57 303
PVSNet_Blended93.13 4392.98 4793.57 6497.47 8783.86 8199.32 196.73 5991.02 2489.53 11296.21 12576.42 12599.57 5394.29 4795.81 11197.29 139
ACMMPcopyleft90.39 10589.97 10191.64 13797.58 8478.21 22096.78 14396.72 6184.73 13384.72 15697.23 9771.22 19699.63 4888.37 12492.41 14397.08 146
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
新几何193.12 8297.44 8981.60 13696.71 6274.54 29591.22 8997.57 7879.13 8499.51 6077.40 21698.46 4398.26 66
test_one_060198.91 2084.56 7196.70 6388.06 6696.57 1598.77 1288.04 19
HFP-MVS92.89 4992.86 5092.98 8998.71 2781.12 14297.58 7696.70 6385.20 12391.75 7697.97 5978.47 9299.71 3690.95 8798.41 4898.12 77
#test#92.99 4792.99 4692.98 8998.71 2781.12 14297.77 6096.70 6385.75 10791.75 7697.97 5978.47 9299.71 3691.36 8398.41 4898.12 77
ACMMPR92.69 5792.67 5492.75 9998.66 3280.57 15797.58 7696.69 6685.20 12391.57 8097.92 6177.01 11599.67 4490.95 8798.41 4898.00 89
DeepPCF-MVS89.82 194.61 1796.17 589.91 18897.09 10270.21 31698.99 1496.69 6695.57 195.08 3199.23 186.40 2899.87 897.84 1098.66 3499.65 6
thisisatest053089.65 11689.02 11791.53 14193.46 18980.78 15296.52 15696.67 6881.69 20383.79 16994.90 16088.85 1497.68 15777.80 20787.49 18296.14 175
tttt051788.57 14188.19 12989.71 19593.00 19975.99 26695.67 20396.67 6880.78 21381.82 19494.40 16888.97 1397.58 16176.05 23186.31 18895.57 187
thisisatest051590.95 9390.26 9493.01 8894.03 17484.27 7697.91 5196.67 6883.18 17586.87 14195.51 14288.66 1597.85 15280.46 18489.01 16596.92 151
112190.66 9889.82 10793.16 8197.39 9381.71 13393.33 26696.66 7174.45 29691.38 8297.55 8279.27 8099.52 5779.95 19098.43 4598.26 66
ACMMP_NAP93.46 4093.23 4394.17 4297.16 10084.28 7596.82 14096.65 7286.24 9694.27 4497.99 5577.94 10099.83 1693.39 5798.57 3698.39 55
TEST998.64 3583.71 8597.82 5696.65 7284.29 14995.16 2898.09 4684.39 3499.36 74
train_agg94.28 2394.45 2193.74 5498.64 3583.71 8597.82 5696.65 7284.50 14195.16 2898.09 4684.33 3599.36 7495.91 2798.96 1998.16 72
131488.94 12887.20 15194.17 4293.21 19285.73 4293.33 26696.64 7582.89 18375.98 25596.36 12366.83 22499.39 6783.52 16696.02 10797.39 133
DeepC-MVS_fast89.06 294.48 1994.30 2795.02 1998.86 2385.68 4498.06 4496.64 7593.64 891.74 7898.54 2280.17 7399.90 592.28 7598.75 3099.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_898.63 3783.64 8897.81 5896.63 7784.50 14195.10 3098.11 4584.33 3599.23 80
testtj94.09 3094.08 3094.09 4599.28 683.32 9597.59 7596.61 7883.60 17094.77 3998.46 2682.72 5599.64 4695.29 3698.42 4699.32 17
原ACMM191.22 15097.77 7778.10 22396.61 7881.05 20991.28 8797.42 8877.92 10198.98 10679.85 19398.51 3896.59 162
MAR-MVS90.63 9990.22 9591.86 13198.47 4778.20 22197.18 10696.61 7883.87 16288.18 13098.18 3568.71 21299.75 3083.66 16197.15 8597.63 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ZD-MVS99.09 983.22 9796.60 8182.88 18493.61 5498.06 5182.93 5199.14 9595.51 3398.49 42
SteuartSystems-ACMMP94.13 2894.44 2293.20 7995.41 13181.35 13999.02 1396.59 8289.50 4094.18 4898.36 3083.68 4399.45 6494.77 4198.45 4498.81 33
Skip Steuart: Steuart Systems R&D Blog.
D2MVS82.67 23481.55 23086.04 26587.77 29476.47 25495.21 21996.58 8382.66 18970.26 30185.46 29760.39 26295.80 24576.40 22679.18 23885.83 327
save fliter98.24 5783.34 9398.61 2396.57 8491.32 18
TESTMET0.1,189.83 11289.34 11491.31 14592.54 21180.19 16897.11 11596.57 8486.15 9786.85 14291.83 20579.32 7896.95 19681.30 17992.35 14496.77 157
agg_prior194.10 2994.31 2693.48 7098.59 3983.13 9897.77 6096.56 8684.38 14594.19 4598.13 4184.66 3399.16 9395.74 2998.74 3198.15 74
agg_prior98.59 3983.13 9896.56 8694.19 4599.16 93
DWT-MVSNet_test90.52 10489.80 10892.70 10395.73 12482.20 11693.69 25796.55 8888.34 6187.04 14095.34 14586.53 2597.55 16376.32 22888.66 17098.34 56
旧先验197.39 9379.58 18396.54 8998.08 4984.00 3997.42 7997.62 118
WR-MVS_H81.02 25580.09 24983.79 29588.08 29271.26 31194.46 23896.54 8980.08 23272.81 28586.82 27370.36 20592.65 32164.18 30167.50 31487.46 307
ETH3D-3000-0.194.43 2094.42 2394.45 3197.78 7685.78 4097.98 4896.53 9185.29 12095.45 2598.81 883.36 4599.38 6896.07 2398.53 3798.19 69
9.1494.26 2898.10 6598.14 3596.52 9284.74 13294.83 3798.80 982.80 5499.37 7295.95 2698.42 46
region2R92.72 5592.70 5392.79 9898.68 2980.53 16097.53 8096.51 9385.22 12191.94 7497.98 5777.26 10999.67 4490.83 9198.37 5398.18 70
EPP-MVSNet89.76 11489.72 10989.87 18993.78 17876.02 26597.22 10096.51 9379.35 24585.11 15195.01 15884.82 3297.10 19087.46 13088.21 17696.50 164
ZNCC-MVS92.75 5192.60 5693.23 7898.24 5781.82 12897.63 7196.50 9585.00 12891.05 9197.74 7078.38 9499.80 2390.48 9698.34 5598.07 80
test1196.50 95
EPNet_dtu87.65 15887.89 13386.93 25194.57 15571.37 31096.72 14796.50 9588.56 5687.12 13895.02 15775.91 13594.01 30666.62 28990.00 15895.42 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata90.13 17995.92 11974.17 28396.49 9873.49 30494.82 3897.99 5578.80 8997.93 14683.53 16597.52 7498.29 63
DVP-MVScopyleft95.58 895.91 894.57 2999.05 1085.18 5499.06 996.46 9988.75 4996.69 1298.76 1487.69 2199.76 2497.90 898.85 2298.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test22296.15 11378.41 21195.87 19696.46 9971.97 31589.66 10997.45 8476.33 12898.24 5898.30 62
XVS92.69 5792.71 5192.63 10698.52 4280.29 16397.37 9696.44 10187.04 9191.38 8297.83 6777.24 11199.59 5190.46 9798.07 6298.02 84
X-MVStestdata86.26 17884.14 19492.63 10698.52 4280.29 16397.37 9696.44 10187.04 9191.38 8220.73 36977.24 11199.59 5190.46 9798.07 6298.02 84
SF-MVS94.17 2694.05 3194.55 3097.56 8585.95 3597.73 6696.43 10384.02 15595.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
TSAR-MVS + MP.94.79 1595.17 1393.64 6097.66 8084.10 7895.85 19896.42 10491.26 2097.49 996.80 11686.50 2698.49 13195.54 3299.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ETH3D cwj APD-0.1693.91 3693.76 3494.36 3496.70 10685.74 4197.22 10096.41 10583.94 15894.13 4998.69 2083.13 4999.37 7295.25 3798.39 5197.97 92
APDe-MVS94.56 1894.75 1593.96 4898.84 2483.40 9298.04 4696.41 10585.79 10695.00 3498.28 3284.32 3899.18 9197.35 1598.77 2999.28 19
UniMVSNet_NR-MVSNet85.49 18984.59 18588.21 22489.44 27879.36 18696.71 14996.41 10585.22 12178.11 22890.98 21676.97 11695.14 28079.14 20068.30 30590.12 244
test_prior394.03 3294.34 2593.09 8498.68 2981.91 12298.37 2896.40 10886.08 10094.57 4198.02 5283.14 4799.06 10195.05 3898.79 2798.29 63
test_prior93.09 8498.68 2981.91 12296.40 10899.06 10198.29 63
CP-MVS92.54 6292.60 5692.34 11598.50 4579.90 17398.40 2696.40 10884.75 13190.48 9998.09 4677.40 10899.21 8491.15 8698.23 5997.92 95
CANet94.89 1394.64 1795.63 1297.55 8688.12 1599.06 996.39 11194.07 795.34 2797.80 6876.83 11899.87 897.08 1897.64 7398.89 30
GST-MVS92.43 6492.22 6493.04 8798.17 6281.64 13597.40 9596.38 11284.71 13490.90 9397.40 9077.55 10699.76 2489.75 10897.74 7197.72 109
alignmvs92.97 4892.26 6295.12 1895.54 12887.77 1998.67 1996.38 11288.04 6793.01 6197.45 8479.20 8398.60 12593.25 6288.76 16898.99 29
PAPM92.87 5092.40 5894.30 3692.25 22087.85 1896.40 16896.38 11291.07 2288.72 12296.90 10982.11 5997.37 17590.05 10497.70 7297.67 113
test1294.25 3898.34 5285.55 4696.35 11592.36 6880.84 6399.22 8298.31 5697.98 91
zzz-MVS92.74 5292.71 5192.86 9597.90 7180.85 15096.47 15996.33 11687.92 6990.20 10298.18 3576.71 12199.76 2492.57 7298.09 6097.96 93
MTGPAbinary96.33 116
MTAPA92.45 6392.31 6092.86 9597.90 7180.85 15092.88 27996.33 11687.92 6990.20 10298.18 3576.71 12199.76 2492.57 7298.09 6097.96 93
ET-MVSNet_ETH3D90.01 11189.03 11692.95 9194.38 16486.77 2898.14 3596.31 11989.30 4363.33 33196.72 11990.09 1093.63 31390.70 9482.29 22498.46 51
EPMVS87.47 16085.90 16892.18 12195.41 13182.26 11587.00 32696.28 12085.88 10584.23 16185.57 29475.07 15696.26 22471.14 27092.50 14198.03 83
CDPH-MVS93.12 4492.91 4893.74 5498.65 3483.88 8097.67 7096.26 12183.00 18193.22 5898.24 3381.31 6199.21 8489.12 11598.74 3198.14 75
WR-MVS84.32 20882.96 20888.41 21689.38 27980.32 16296.59 15496.25 12283.97 15776.63 24290.36 22667.53 21794.86 29175.82 23470.09 28990.06 248
UGNet87.73 15786.55 16291.27 14895.16 13979.11 19496.35 17096.23 12388.14 6587.83 13390.48 22250.65 31199.09 10080.13 18994.03 12395.60 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpnnormal78.14 27875.42 28486.31 26188.33 28979.24 18994.41 24096.22 12473.51 30269.81 30485.52 29655.43 29895.75 24847.65 35467.86 31083.95 340
FOURS198.51 4478.01 22598.13 3896.21 12583.04 17994.39 43
MP-MVScopyleft92.61 6092.67 5492.42 11398.13 6479.73 17997.33 9896.20 12685.63 10990.53 9797.66 7278.14 9899.70 3992.12 7798.30 5797.85 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR92.74 5292.17 6594.45 3198.89 2284.87 6697.20 10496.20 12687.73 7588.40 12698.12 4478.71 9099.76 2487.99 12696.28 10298.74 35
SD-MVS94.84 1495.02 1494.29 3797.87 7584.61 7097.76 6496.19 12889.59 3996.66 1498.17 3984.33 3599.60 5096.09 2298.50 4198.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CHOSEN 280x42091.71 7691.85 7091.29 14794.94 14782.69 10687.89 32096.17 12985.94 10387.27 13794.31 16990.27 895.65 25594.04 5095.86 10995.53 188
CHOSEN 1792x268891.07 9190.21 9693.64 6095.18 13883.53 8996.26 17696.13 13088.92 4784.90 15393.10 19172.86 18099.62 4988.86 11695.67 11297.79 104
PAPM_NR91.46 8290.82 8693.37 7498.50 4581.81 12995.03 22996.13 13084.65 13786.10 14797.65 7679.24 8299.75 3083.20 16996.88 9398.56 46
CostFormer89.08 12588.39 12791.15 15193.13 19679.15 19388.61 31496.11 13283.14 17689.58 11186.93 27283.83 4296.87 20288.22 12585.92 19497.42 130
mPP-MVS91.88 7191.82 7192.07 12498.38 5078.63 20597.29 9996.09 13385.12 12588.45 12597.66 7275.53 14299.68 4289.83 10698.02 6597.88 96
APD-MVScopyleft93.61 3893.59 3793.69 5798.76 2683.26 9697.21 10296.09 13382.41 19294.65 4098.21 3481.96 6098.81 11894.65 4498.36 5499.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MDTV_nov1_ep1383.69 19794.09 17081.01 14586.78 32896.09 13383.81 16484.75 15584.32 31174.44 16496.54 21463.88 30385.07 203
QAPM86.88 16784.51 18693.98 4694.04 17285.89 3897.19 10596.05 13673.62 30175.12 26795.62 13962.02 25399.74 3270.88 27196.06 10696.30 173
MP-MVS-pluss92.58 6192.35 5993.29 7597.30 9882.53 10996.44 16496.04 13784.68 13589.12 11798.37 2977.48 10799.74 3293.31 6198.38 5297.59 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
tpm287.35 16186.26 16490.62 16592.93 20278.67 20488.06 31995.99 13879.33 24687.40 13486.43 28380.28 7096.40 21880.23 18785.73 19896.79 155
DeepC-MVS86.58 391.53 8191.06 8492.94 9294.52 15881.89 12495.95 19095.98 13990.76 2583.76 17096.76 11773.24 17899.71 3691.67 8196.96 9097.22 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test-LLR88.48 14287.98 13289.98 18492.26 21877.23 24597.11 11595.96 14083.76 16586.30 14591.38 20872.30 18696.78 20880.82 18191.92 14895.94 178
test-mter88.95 12788.60 12489.98 18492.26 21877.23 24597.11 11595.96 14085.32 11786.30 14591.38 20876.37 12796.78 20880.82 18191.92 14895.94 178
DP-MVS Recon91.72 7590.85 8594.34 3599.50 185.00 6398.51 2595.96 14080.57 21888.08 13197.63 7776.84 11799.89 785.67 14194.88 11998.13 76
cdsmvs_eth3d_5k21.43 33628.57 3390.00 3550.00 3780.00 3790.00 36695.93 1430.00 3730.00 37497.66 7263.57 2420.00 3740.00 3720.00 3720.00 370
hse-mvs288.22 15088.21 12888.25 22293.54 18573.41 28695.41 21395.89 14490.39 3192.22 7094.22 17274.70 15996.66 21393.14 6464.37 32994.69 205
AUN-MVS86.25 17985.57 16988.26 22193.57 18473.38 28795.45 21195.88 14583.94 15885.47 14994.21 17373.70 17496.67 21283.54 16464.41 32894.73 204
TAMVS88.48 14287.79 13690.56 16791.09 24879.18 19196.45 16295.88 14583.64 16883.12 17693.33 18775.94 13495.74 25182.40 17488.27 17596.75 159
PVSNet_Blended_VisFu91.24 8890.77 8792.66 10495.09 14082.40 11297.77 6095.87 14788.26 6386.39 14393.94 18076.77 11999.27 7788.80 11894.00 12696.31 172
OpenMVScopyleft79.58 1486.09 18083.62 20193.50 6890.95 25086.71 3097.44 8795.83 14875.35 28772.64 28695.72 13457.42 28799.64 4671.41 26595.85 11094.13 211
CDS-MVSNet89.50 11888.96 11991.14 15291.94 23680.93 14897.09 11995.81 14984.26 15084.72 15694.20 17480.31 6995.64 25683.37 16788.96 16696.85 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ94.17 2693.52 3996.10 895.65 12692.35 298.21 3395.79 15092.42 1296.24 1898.18 3571.04 19999.17 9296.77 1997.39 8096.79 155
SR-MVS92.16 6692.27 6191.83 13498.37 5178.41 21196.67 15295.76 15182.19 19691.97 7398.07 5076.44 12498.64 12293.71 5297.27 8298.45 52
3Dnovator+82.88 889.63 11787.85 13494.99 2094.49 16286.76 2997.84 5595.74 15286.10 9975.47 26496.02 12965.00 23699.51 6082.91 17397.07 8798.72 40
HPM-MVScopyleft91.62 7991.53 7791.89 13097.88 7479.22 19096.99 12695.73 15382.07 19789.50 11497.19 9975.59 14198.93 11390.91 8997.94 6697.54 121
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs87.08 16384.94 18293.48 7093.34 19183.67 8788.82 31195.70 15481.18 20784.55 15990.14 23162.72 24698.94 11285.49 14382.54 22397.85 99
xiu_mvs_v2_base93.92 3493.26 4295.91 1095.07 14292.02 698.19 3495.68 15592.06 1496.01 2198.14 4070.83 20298.96 10796.74 2096.57 9996.76 158
test117291.64 7792.00 6990.54 16898.20 6174.48 28096.45 16295.65 15681.97 20091.63 7998.02 5275.76 13798.61 12393.16 6397.17 8498.52 49
CP-MVSNet81.01 25680.08 25083.79 29587.91 29370.51 31394.29 24895.65 15680.83 21272.54 28888.84 24463.71 24192.32 32468.58 28368.36 30488.55 281
PatchmatchNetpermissive86.83 16985.12 17991.95 12894.12 16982.27 11486.55 33095.64 15884.59 13982.98 17984.99 30677.26 10995.96 23668.61 28291.34 15297.64 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
API-MVS90.18 10988.97 11893.80 5298.66 3282.95 10497.50 8495.63 15975.16 29086.31 14497.69 7172.49 18399.90 581.26 18096.07 10598.56 46
AdaColmapbinary88.81 13387.61 14292.39 11499.33 479.95 17196.70 15195.58 16077.51 27283.05 17896.69 12061.90 25799.72 3584.29 15193.47 13297.50 126
SCA85.63 18783.64 20091.60 14092.30 21681.86 12692.88 27995.56 16184.85 12982.52 18085.12 30458.04 27995.39 26673.89 25087.58 18197.54 121
dp84.30 20982.31 22090.28 17594.24 16777.97 22686.57 32995.53 16279.94 23680.75 20285.16 30271.49 19596.39 21963.73 30483.36 21296.48 165
HyFIR lowres test89.36 12088.60 12491.63 13994.91 14980.76 15395.60 20695.53 16282.56 19184.03 16391.24 21178.03 9996.81 20687.07 13488.41 17497.32 135
APD-MVS_3200maxsize91.23 8991.35 7990.89 15897.89 7376.35 25896.30 17495.52 16479.82 23791.03 9297.88 6474.70 15998.54 12892.11 7896.89 9297.77 106
lupinMVS93.87 3793.58 3894.75 2693.00 19988.08 1699.15 495.50 16591.03 2394.90 3597.66 7278.84 8797.56 16294.64 4597.46 7598.62 44
HPM-MVS_fast90.38 10790.17 9891.03 15497.61 8177.35 24397.15 11195.48 16679.51 24388.79 12196.90 10971.64 19398.81 11887.01 13597.44 7796.94 148
VPNet84.69 20182.92 20990.01 18289.01 28183.45 9196.71 14995.46 16785.71 10879.65 21592.18 19856.66 29196.01 23283.05 17267.84 31190.56 234
114514_t88.79 13587.57 14392.45 11198.21 6081.74 13196.99 12695.45 16875.16 29082.48 18195.69 13668.59 21398.50 13080.33 18595.18 11797.10 145
SR-MVS-dyc-post91.29 8791.45 7890.80 16097.76 7876.03 26396.20 18095.44 16980.56 21990.72 9597.84 6575.76 13798.61 12391.99 7996.79 9697.75 107
RE-MVS-def91.18 8397.76 7876.03 26396.20 18095.44 16980.56 21990.72 9597.84 6573.36 17791.99 7996.79 9697.75 107
JIA-IIPM79.00 27377.20 27184.40 29089.74 27264.06 34075.30 35495.44 16962.15 34281.90 19259.08 35778.92 8695.59 26066.51 29285.78 19793.54 218
RPMNet79.85 26475.92 28291.64 13790.16 26579.75 17679.02 34795.44 16958.43 35682.27 18872.55 35173.03 17998.41 13546.10 35686.25 18996.75 159
DU-MVS84.57 20383.33 20688.28 22088.76 28279.36 18696.43 16695.41 17385.42 11478.11 22890.82 21767.61 21595.14 28079.14 20068.30 30590.33 239
EI-MVSNet85.80 18485.20 17587.59 23591.55 24177.41 24195.13 22395.36 17480.43 22480.33 20894.71 16273.72 17295.97 23376.96 22078.64 24389.39 256
MVSTER89.25 12488.92 12190.24 17695.98 11884.66 6996.79 14295.36 17487.19 8880.33 20890.61 22190.02 1195.97 23385.38 14478.64 24390.09 246
CPTT-MVS89.72 11589.87 10689.29 20098.33 5373.30 28997.70 6895.35 17675.68 28687.40 13497.44 8770.43 20498.25 13989.56 11196.90 9196.33 171
EIA-MVS91.73 7392.05 6890.78 16294.52 15876.40 25798.06 4495.34 17789.19 4488.90 12097.28 9677.56 10597.73 15690.77 9296.86 9598.20 68
RRT_test8_iter0587.14 16286.41 16389.32 19994.41 16381.10 14497.06 12395.33 17884.67 13676.27 25090.48 22283.60 4496.33 22185.10 14570.78 28090.53 235
tpmvs83.04 22880.77 23989.84 19095.43 13077.96 22785.59 33595.32 17975.31 28976.27 25083.70 31673.89 16997.41 17359.53 31881.93 22594.14 210
PS-CasMVS80.27 26279.18 25883.52 30287.56 29769.88 31894.08 25295.29 18080.27 22972.08 29088.51 25159.22 27292.23 32667.49 28568.15 30788.45 285
TSAR-MVS + GP.94.35 2294.50 1993.89 4997.38 9683.04 10298.10 4095.29 18091.57 1693.81 5197.45 8486.64 2499.43 6596.28 2194.01 12599.20 22
tpmrst88.36 14687.38 14991.31 14594.36 16579.92 17287.32 32495.26 18285.32 11788.34 12786.13 28880.60 6696.70 21083.78 15585.34 20297.30 138
ETV-MVS92.72 5592.87 4992.28 11894.54 15781.89 12497.98 4895.21 18389.77 3893.11 5996.83 11377.23 11397.50 16995.74 2995.38 11397.44 129
NR-MVSNet83.35 22081.52 23288.84 20888.76 28281.31 14094.45 23995.16 18484.65 13767.81 31090.82 21770.36 20594.87 29074.75 24166.89 32190.33 239
MVS_030478.43 27576.70 27683.60 30088.22 29069.81 31992.91 27895.10 18572.32 31478.71 22280.29 33533.78 35493.37 31768.77 28180.23 23087.63 300
jason92.73 5492.23 6394.21 4190.50 25987.30 2598.65 2095.09 18690.61 2792.76 6597.13 10175.28 15297.30 17893.32 6096.75 9898.02 84
jason: jason.
tpm cat183.63 21781.38 23390.39 17193.53 18878.19 22285.56 33695.09 18670.78 32078.51 22483.28 31974.80 15897.03 19166.77 28884.05 20795.95 177
cascas86.50 17484.48 18892.55 10992.64 20985.95 3597.04 12595.07 18875.32 28880.50 20491.02 21454.33 30697.98 14586.79 13687.62 17993.71 217
abl_689.80 11389.71 11090.07 18096.53 10775.52 27194.48 23795.04 18981.12 20889.22 11597.00 10768.83 21198.96 10789.86 10595.27 11495.73 183
CVMVSNet84.83 19885.57 16982.63 30991.55 24160.38 35095.13 22395.03 19080.60 21782.10 19094.71 16266.40 22790.19 34574.30 24790.32 15797.31 137
test0.0.03 182.79 23282.48 21883.74 29786.81 30172.22 29696.52 15695.03 19083.76 16573.00 28293.20 18872.30 18688.88 34864.15 30277.52 25190.12 244
RRT_MVS86.89 16685.96 16689.68 19695.01 14684.13 7796.33 17294.98 19284.20 15280.10 21292.07 19970.52 20395.01 28883.30 16877.14 25289.91 250
PMMVS89.46 11989.92 10488.06 22694.64 15369.57 32396.22 17894.95 19387.27 8491.37 8596.54 12265.88 22897.39 17488.54 11993.89 12797.23 141
Anonymous2024052983.15 22580.60 24390.80 16095.74 12278.27 21596.81 14194.92 19460.10 35281.89 19392.54 19545.82 32898.82 11779.25 19978.32 24895.31 193
mvs_anonymous88.68 13687.62 14191.86 13194.80 15181.69 13493.53 26294.92 19482.03 19878.87 22190.43 22575.77 13695.34 26985.04 14793.16 13698.55 48
CLD-MVS87.97 15487.48 14689.44 19792.16 22580.54 15998.14 3594.92 19491.41 1779.43 21695.40 14462.34 24897.27 18190.60 9582.90 21890.50 236
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
xiu_mvs_v1_base_debu90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
xiu_mvs_v1_base90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
xiu_mvs_v1_base_debi90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
CS-MVS93.12 4493.27 4192.64 10593.86 17783.12 10098.85 1694.85 20088.61 5494.19 4597.42 8879.02 8597.02 19294.89 4097.77 7097.78 105
GA-MVS85.79 18584.04 19591.02 15589.47 27780.27 16596.90 13694.84 20185.57 11080.88 20089.08 23956.56 29296.47 21777.72 21085.35 20196.34 169
TranMVSNet+NR-MVSNet83.24 22481.71 22887.83 22987.71 29578.81 20296.13 18594.82 20284.52 14076.18 25390.78 21964.07 24094.60 29674.60 24566.59 32390.09 246
HQP3-MVS94.80 20383.01 215
HQP-MVS87.91 15687.55 14488.98 20592.08 22778.48 20797.63 7194.80 20390.52 2882.30 18494.56 16565.40 23297.32 17687.67 12883.01 21591.13 228
TAPA-MVS81.61 1285.02 19583.67 19889.06 20296.79 10473.27 29195.92 19294.79 20574.81 29380.47 20596.83 11371.07 19898.19 14249.82 35092.57 13995.71 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PEN-MVS79.47 26978.26 26583.08 30586.36 30468.58 32693.85 25594.77 20679.76 23871.37 29288.55 24859.79 26492.46 32264.50 30065.40 32588.19 290
HQP_MVS87.50 15987.09 15688.74 21191.86 23777.96 22797.18 10694.69 20789.89 3681.33 19694.15 17564.77 23797.30 17887.08 13282.82 21990.96 230
plane_prior594.69 20797.30 17887.08 13282.82 21990.96 230
tpm85.55 18884.47 18988.80 21090.19 26475.39 27388.79 31294.69 20784.83 13083.96 16685.21 30078.22 9794.68 29576.32 22878.02 25096.34 169
FMVSNet384.71 20082.71 21590.70 16494.55 15687.71 2095.92 19294.67 21081.73 20275.82 25988.08 25666.99 22294.47 29871.23 26775.38 25889.91 250
UA-Net88.92 12988.48 12690.24 17694.06 17177.18 24793.04 27594.66 21187.39 8191.09 9093.89 18174.92 15798.18 14375.83 23391.43 15195.35 192
LFMVS89.27 12387.64 13994.16 4497.16 10085.52 4797.18 10694.66 21179.17 25189.63 11096.57 12155.35 29998.22 14089.52 11289.54 16098.74 35
MVS_Test90.29 10889.18 11593.62 6295.23 13584.93 6494.41 24094.66 21184.31 14790.37 10191.02 21475.13 15497.82 15383.11 17194.42 12198.12 77
canonicalmvs92.27 6591.22 8095.41 1595.80 12188.31 1397.09 11994.64 21488.49 5792.99 6297.31 9272.68 18298.57 12793.38 5988.58 17199.36 16
VDDNet86.44 17584.51 18692.22 12091.56 24081.83 12797.10 11894.64 21469.50 32687.84 13295.19 14848.01 32097.92 15189.82 10786.92 18396.89 152
baseline188.85 13287.49 14592.93 9395.21 13786.85 2795.47 21094.61 21687.29 8283.11 17794.99 15980.70 6596.89 20082.28 17573.72 26495.05 195
PatchT79.75 26576.85 27588.42 21589.55 27575.49 27277.37 35194.61 21663.07 33982.46 18273.32 35075.52 14393.41 31651.36 34584.43 20596.36 167
MS-PatchMatch83.05 22781.82 22786.72 25689.64 27379.10 19594.88 23294.59 21879.70 24070.67 29889.65 23450.43 31396.82 20570.82 27495.99 10884.25 337
baseline90.76 9690.10 9992.74 10092.90 20382.56 10894.60 23694.56 21987.69 7689.06 11995.67 13773.76 17197.51 16890.43 9992.23 14698.16 72
OMC-MVS88.80 13488.16 13090.72 16395.30 13477.92 23094.81 23394.51 22086.80 9384.97 15296.85 11267.53 21798.60 12585.08 14687.62 17995.63 185
MVSFormer91.36 8590.57 8993.73 5693.00 19988.08 1694.80 23494.48 22180.74 21494.90 3597.13 10178.84 8795.10 28483.77 15697.46 7598.02 84
test_djsdf83.00 23082.45 21984.64 28484.07 33369.78 32094.80 23494.48 22180.74 21475.41 26587.70 26061.32 26095.10 28483.77 15679.76 23189.04 270
casdiffmvs90.95 9390.39 9292.63 10692.82 20482.53 10996.83 13994.47 22387.69 7688.47 12495.56 14174.04 16897.54 16690.90 9092.74 13897.83 101
PCF-MVS84.09 586.77 17285.00 18192.08 12392.06 23083.07 10192.14 28794.47 22379.63 24176.90 23994.78 16171.15 19799.20 8872.87 25691.05 15393.98 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDD-MVS88.28 14887.02 15792.06 12595.09 14080.18 16997.55 7994.45 22583.09 17789.10 11895.92 13247.97 32198.49 13193.08 6786.91 18497.52 125
PLCcopyleft83.97 788.00 15387.38 14989.83 19198.02 6976.46 25597.16 11094.43 22679.26 25081.98 19196.28 12469.36 20999.27 7777.71 21192.25 14593.77 216
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DROMVSNet91.73 7392.11 6690.58 16693.54 18577.77 23498.07 4394.40 22787.44 7992.99 6297.11 10374.59 16396.87 20293.75 5197.08 8697.11 144
CS-MVS-test91.92 7092.11 6691.37 14494.00 17579.66 18098.39 2794.38 22887.14 9092.87 6497.05 10677.17 11496.97 19591.44 8296.55 10097.47 128
FMVSNet282.79 23280.44 24589.83 19192.66 20685.43 4895.42 21294.35 22979.06 25474.46 27187.28 26456.38 29494.31 30169.72 27774.68 26189.76 252
nrg03086.79 17185.43 17190.87 15988.76 28285.34 4997.06 12394.33 23084.31 14780.45 20691.98 20072.36 18496.36 22088.48 12271.13 27790.93 232
ACMM80.70 1383.72 21682.85 21186.31 26191.19 24672.12 29995.88 19594.29 23180.44 22277.02 23791.96 20155.24 30097.14 18979.30 19880.38 22989.67 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS83.84 21382.00 22489.35 19887.13 29981.38 13895.72 20194.26 23280.15 23175.92 25890.63 22061.96 25696.52 21578.98 20273.28 27090.14 243
cl2285.11 19484.17 19387.92 22895.06 14478.82 20095.51 20894.22 23379.74 23976.77 24087.92 25875.96 13395.68 25279.93 19272.42 27289.27 262
OPM-MVS85.84 18385.10 18088.06 22688.34 28877.83 23395.72 20194.20 23487.89 7280.45 20694.05 17758.57 27597.26 18283.88 15482.76 22189.09 267
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNet (Re-imp)88.88 13188.87 12288.91 20693.89 17674.43 28196.93 13594.19 23584.39 14483.22 17595.67 13778.24 9694.70 29478.88 20394.40 12297.61 119
Anonymous2023121179.72 26677.19 27287.33 24295.59 12777.16 24895.18 22294.18 23659.31 35472.57 28786.20 28747.89 32295.66 25374.53 24669.24 29789.18 264
PS-MVSNAJss84.91 19784.30 19186.74 25285.89 31474.40 28294.95 23094.16 23783.93 16076.45 24590.11 23271.04 19995.77 24683.16 17079.02 24090.06 248
LPG-MVS_test84.20 21083.49 20486.33 25890.88 25173.06 29295.28 21594.13 23882.20 19476.31 24793.20 18854.83 30496.95 19683.72 15880.83 22788.98 273
LGP-MVS_train86.33 25890.88 25173.06 29294.13 23882.20 19476.31 24793.20 18854.83 30496.95 19683.72 15880.83 22788.98 273
V4283.04 22881.53 23187.57 23786.27 30779.09 19695.87 19694.11 24080.35 22677.22 23586.79 27565.32 23496.02 23177.74 20970.14 28587.61 302
test_part184.72 19982.85 21190.34 17395.73 12484.79 6896.75 14694.10 24179.05 25775.97 25689.51 23667.69 21495.94 23779.34 19667.50 31490.30 241
XVG-OURS-SEG-HR85.74 18685.16 17887.49 24090.22 26371.45 30991.29 29794.09 24281.37 20583.90 16895.22 14660.30 26397.53 16785.58 14284.42 20693.50 219
XVG-OURS85.18 19384.38 19087.59 23590.42 26171.73 30691.06 30094.07 24382.00 19983.29 17495.08 15656.42 29397.55 16383.70 16083.42 21193.49 220
miper_enhance_ethall85.95 18285.20 17588.19 22594.85 15079.76 17596.00 18794.06 24482.98 18277.74 23088.76 24579.42 7795.46 26580.58 18372.42 27289.36 261
v2v48283.46 21981.86 22688.25 22286.19 30879.65 18196.34 17194.02 24581.56 20477.32 23388.23 25365.62 22996.03 23077.77 20869.72 29389.09 267
jajsoiax82.12 24381.15 23685.03 27884.19 33170.70 31294.22 24993.95 24683.07 17873.48 27689.75 23349.66 31695.37 26882.24 17679.76 23189.02 271
v114482.90 23181.27 23587.78 23186.29 30679.07 19796.14 18393.93 24780.05 23377.38 23186.80 27465.50 23095.93 23975.21 23870.13 28688.33 288
KD-MVS_2432*160077.63 28374.92 28885.77 26890.86 25379.44 18488.08 31793.92 24876.26 28267.05 31482.78 32172.15 18891.92 32961.53 31141.62 36085.94 325
miper_refine_blended77.63 28374.92 28885.77 26890.86 25379.44 18488.08 31793.92 24876.26 28267.05 31482.78 32172.15 18891.92 32961.53 31141.62 36085.94 325
UnsupCasMVSNet_eth73.25 30670.57 31081.30 31577.53 35166.33 33487.24 32593.89 25080.38 22557.90 34981.59 32642.91 33890.56 34265.18 29848.51 35387.01 312
v7n79.32 27177.34 27085.28 27584.05 33472.89 29593.38 26493.87 25175.02 29270.68 29784.37 31059.58 26795.62 25867.60 28467.50 31487.32 309
Vis-MVSNetpermissive88.67 13787.82 13591.24 14992.68 20578.82 20096.95 13393.85 25287.55 7887.07 13995.13 15363.43 24397.21 18377.58 21396.15 10397.70 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v14882.41 24080.89 23786.99 25086.18 30976.81 25196.27 17593.82 25380.49 22175.28 26686.11 28967.32 22095.75 24875.48 23667.03 32088.42 286
BH-w/o88.24 14987.47 14790.54 16895.03 14578.54 20697.41 9493.82 25384.08 15378.23 22794.51 16769.34 21097.21 18380.21 18894.58 12095.87 180
TR-MVS86.30 17784.93 18390.42 17094.63 15477.58 23896.57 15593.82 25380.30 22782.42 18395.16 15058.74 27497.55 16374.88 24087.82 17896.13 176
v119282.31 24180.55 24487.60 23485.94 31278.47 21095.85 19893.80 25679.33 24676.97 23886.51 27863.33 24495.87 24173.11 25570.13 28688.46 284
ACMP81.66 1184.00 21183.22 20786.33 25891.53 24372.95 29495.91 19493.79 25783.70 16773.79 27492.22 19754.31 30796.89 20083.98 15379.74 23389.16 265
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v14419282.43 23780.73 24087.54 23885.81 31578.22 21795.98 18893.78 25879.09 25377.11 23686.49 27964.66 23995.91 24074.20 24869.42 29488.49 282
mvs_tets81.74 24680.71 24184.84 27984.22 33070.29 31593.91 25493.78 25882.77 18673.37 27789.46 23747.36 32595.31 27281.99 17779.55 23688.92 277
F-COLMAP84.50 20583.44 20587.67 23295.22 13672.22 29695.95 19093.78 25875.74 28576.30 24995.18 14959.50 26898.45 13372.67 25886.59 18792.35 225
UniMVSNet_ETH3D80.86 25878.75 26287.22 24786.31 30572.02 30091.95 28893.76 26173.51 30275.06 26890.16 23043.04 33795.66 25376.37 22778.55 24693.98 213
Fast-Effi-MVS+87.93 15586.94 15990.92 15794.04 17279.16 19298.26 3193.72 26281.29 20683.94 16792.90 19269.83 20896.68 21176.70 22291.74 15096.93 149
v192192082.02 24480.23 24887.41 24185.62 31677.92 23095.79 20093.69 26378.86 25876.67 24186.44 28162.50 24795.83 24372.69 25769.77 29288.47 283
DTE-MVSNet78.37 27677.06 27382.32 31285.22 32367.17 33293.40 26393.66 26478.71 26070.53 29988.29 25259.06 27392.23 32661.38 31463.28 33487.56 304
v881.88 24580.06 25287.32 24386.63 30279.04 19894.41 24093.65 26578.77 25973.19 28185.57 29466.87 22395.81 24473.84 25267.61 31387.11 310
diffmvs91.17 9090.74 8892.44 11293.11 19882.50 11196.25 17793.62 26687.79 7390.40 10095.93 13073.44 17697.42 17293.62 5492.55 14097.41 131
ADS-MVSNet81.26 25378.36 26389.96 18693.78 17879.78 17479.48 34393.60 26773.09 30780.14 21079.99 33662.15 25195.24 27559.49 31983.52 20994.85 198
PatchMatch-RL85.00 19683.66 19989.02 20495.86 12074.55 27992.49 28393.60 26779.30 24879.29 21891.47 20658.53 27698.45 13370.22 27592.17 14794.07 212
anonymousdsp80.98 25779.97 25384.01 29281.73 33970.44 31492.49 28393.58 26977.10 27972.98 28386.31 28557.58 28394.90 28979.32 19778.63 24586.69 315
CL-MVSNet_self_test75.81 29574.14 29780.83 31978.33 34967.79 32994.22 24993.52 27077.28 27669.82 30381.54 32761.47 25989.22 34757.59 32753.51 34685.48 329
miper_ehance_all_eth84.57 20383.60 20287.50 23992.64 20978.25 21695.40 21493.47 27179.28 24976.41 24687.64 26176.53 12395.24 27578.58 20472.42 27289.01 272
bset_n11_16_dypcd84.35 20782.83 21388.91 20682.54 33882.07 11894.12 25193.47 27185.39 11678.55 22388.98 24262.23 24995.11 28286.75 13773.42 26689.55 255
v124081.70 24779.83 25587.30 24585.50 31777.70 23795.48 20993.44 27378.46 26376.53 24486.44 28160.85 26195.84 24271.59 26470.17 28488.35 287
v1081.43 25179.53 25787.11 24886.38 30378.87 19994.31 24493.43 27477.88 26773.24 28085.26 29865.44 23195.75 24872.14 26167.71 31286.72 314
IterMVS-LS83.93 21282.80 21487.31 24491.46 24477.39 24295.66 20493.43 27480.44 22275.51 26387.26 26673.72 17295.16 27976.99 21870.72 28289.39 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net82.42 23880.43 24688.39 21792.66 20681.95 11994.30 24593.38 27679.06 25475.82 25985.66 29056.38 29493.84 30871.23 26775.38 25889.38 258
test182.42 23880.43 24688.39 21792.66 20681.95 11994.30 24593.38 27679.06 25475.82 25985.66 29056.38 29493.84 30871.23 26775.38 25889.38 258
FMVSNet179.50 26876.54 27888.39 21788.47 28781.95 11994.30 24593.38 27673.14 30672.04 29185.66 29043.86 33193.84 30865.48 29672.53 27189.38 258
BH-untuned86.95 16585.94 16789.99 18394.52 15877.46 24096.78 14393.37 27981.80 20176.62 24393.81 18466.64 22597.02 19276.06 23093.88 12895.48 189
Effi-MVS+-dtu84.61 20284.90 18483.72 29891.96 23363.14 34394.95 23093.34 28085.57 11079.79 21487.12 26961.99 25495.61 25983.55 16285.83 19692.41 224
mvs-test186.83 16987.17 15285.81 26791.96 23365.24 33697.90 5393.34 28085.57 11084.51 16095.14 15261.99 25497.19 18583.55 16290.55 15695.00 196
CMPMVSbinary54.94 2175.71 29774.56 29279.17 32679.69 34555.98 35689.59 30593.30 28260.28 35053.85 35489.07 24047.68 32496.33 22176.55 22381.02 22685.22 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cl____83.27 22282.12 22186.74 25292.20 22175.95 26795.11 22593.27 28378.44 26474.82 26987.02 27174.19 16695.19 27774.67 24369.32 29589.09 267
DIV-MVS_self_test83.27 22282.12 22186.74 25292.19 22275.92 26895.11 22593.26 28478.44 26474.81 27087.08 27074.19 16695.19 27774.66 24469.30 29689.11 266
miper_lstm_enhance81.66 24980.66 24284.67 28391.19 24671.97 30291.94 28993.19 28577.86 26872.27 28985.26 29873.46 17593.42 31573.71 25367.05 31988.61 280
eth_miper_zixun_eth83.12 22682.01 22386.47 25791.85 23974.80 27694.33 24393.18 28679.11 25275.74 26287.25 26772.71 18195.32 27176.78 22167.13 31889.27 262
pmmvs482.54 23680.79 23887.79 23086.11 31080.49 16193.55 26193.18 28677.29 27573.35 27889.40 23865.26 23595.05 28775.32 23773.61 26587.83 296
XVG-ACMP-BASELINE79.38 27077.90 26783.81 29484.98 32567.14 33389.03 31093.18 28680.26 23072.87 28488.15 25538.55 34696.26 22476.05 23178.05 24988.02 293
CANet_DTU90.98 9290.04 10093.83 5194.76 15286.23 3296.32 17393.12 28993.11 1093.71 5296.82 11563.08 24599.48 6284.29 15195.12 11895.77 182
IS-MVSNet88.67 13788.16 13090.20 17893.61 18276.86 25096.77 14593.07 29084.02 15583.62 17195.60 14074.69 16296.24 22678.43 20693.66 13197.49 127
c3_l83.80 21482.65 21687.25 24692.10 22677.74 23695.25 21893.04 29178.58 26176.01 25487.21 26875.25 15395.11 28277.54 21468.89 29988.91 278
UnsupCasMVSNet_bld68.60 32164.50 32480.92 31874.63 36067.80 32883.97 33892.94 29265.12 33754.63 35368.23 35535.97 35092.17 32860.13 31744.83 35782.78 344
MVP-Stereo82.65 23581.67 22985.59 27286.10 31178.29 21493.33 26692.82 29377.75 26969.17 30887.98 25759.28 27195.76 24771.77 26296.88 9382.73 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+90.70 9789.90 10593.09 8493.61 18283.48 9095.20 22092.79 29483.22 17491.82 7595.70 13571.82 19097.48 17091.25 8593.67 13098.32 58
EU-MVSNet76.92 29076.95 27476.83 33184.10 33254.73 36091.77 29292.71 29572.74 31069.57 30588.69 24658.03 28187.43 35364.91 29970.00 29088.33 288
xxxxxxxxxxxxxcwj94.38 2194.62 1893.68 5898.24 5783.34 9398.61 2392.69 29691.32 1895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
pm-mvs180.05 26378.02 26686.15 26385.42 31875.81 26995.11 22592.69 29677.13 27770.36 30087.43 26358.44 27795.27 27471.36 26664.25 33087.36 308
1112_ss88.60 14087.47 14792.00 12793.21 19280.97 14796.47 15992.46 29883.64 16880.86 20197.30 9480.24 7197.62 15977.60 21285.49 19997.40 132
Test_1112_low_res88.03 15286.73 16091.94 12993.15 19580.88 14996.44 16492.41 29983.59 17180.74 20391.16 21280.18 7297.59 16077.48 21585.40 20097.36 134
BH-RMVSNet86.84 16885.28 17491.49 14295.35 13380.26 16696.95 13392.21 30082.86 18581.77 19595.46 14359.34 27097.64 15869.79 27693.81 12996.57 163
GeoE86.36 17685.20 17589.83 19193.17 19476.13 26097.53 8092.11 30179.58 24280.99 19994.01 17866.60 22696.17 22873.48 25489.30 16297.20 143
LS3D82.22 24279.94 25489.06 20297.43 9074.06 28593.20 27392.05 30261.90 34373.33 27995.21 14759.35 26999.21 8454.54 33892.48 14293.90 215
EG-PatchMatch MVS74.92 29972.02 30483.62 29983.76 33673.28 29093.62 25992.04 30368.57 32858.88 34583.80 31531.87 35895.57 26256.97 33178.67 24282.00 351
IterMVS80.67 25979.16 25985.20 27689.79 26976.08 26192.97 27791.86 30480.28 22871.20 29485.14 30357.93 28291.34 33572.52 25970.74 28188.18 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet79.18 27275.99 28188.72 21287.37 29880.66 15579.96 34291.82 30577.38 27474.33 27281.87 32541.78 34090.74 34166.36 29483.10 21494.76 200
IterMVS-SCA-FT80.51 26179.10 26084.73 28189.63 27474.66 27792.98 27691.81 30680.05 23371.06 29685.18 30158.04 27991.40 33472.48 26070.70 28388.12 292
our_test_377.90 28175.37 28585.48 27485.39 31976.74 25293.63 25891.67 30773.39 30565.72 32284.65 30958.20 27893.13 31957.82 32567.87 30986.57 316
pmmvs581.34 25279.54 25686.73 25585.02 32476.91 24996.22 17891.65 30877.65 27073.55 27588.61 24755.70 29794.43 29974.12 24973.35 26988.86 279
ACMH75.40 1777.99 27974.96 28687.10 24990.67 25776.41 25693.19 27491.64 30972.47 31363.44 33087.61 26243.34 33497.16 18658.34 32373.94 26387.72 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+-dtu83.33 22182.60 21785.50 27389.55 27569.38 32496.09 18691.38 31082.30 19375.96 25791.41 20756.71 28995.58 26175.13 23984.90 20491.54 226
YYNet173.53 30570.43 31182.85 30784.52 32871.73 30691.69 29491.37 31167.63 32946.79 35781.21 32955.04 30290.43 34355.93 33459.70 33986.38 318
ppachtmachnet_test77.19 28774.22 29586.13 26485.39 31978.22 21793.98 25391.36 31271.74 31767.11 31384.87 30756.67 29093.37 31752.21 34364.59 32786.80 313
Anonymous20240521184.41 20681.93 22591.85 13396.78 10578.41 21197.44 8791.34 31370.29 32284.06 16294.26 17141.09 34398.96 10779.46 19582.65 22298.17 71
MDA-MVSNet_test_wron73.54 30470.43 31182.86 30684.55 32671.85 30391.74 29391.32 31467.63 32946.73 35881.09 33055.11 30190.42 34455.91 33559.76 33886.31 319
CR-MVSNet83.53 21881.36 23490.06 18190.16 26579.75 17679.02 34791.12 31584.24 15182.27 18880.35 33375.45 14493.67 31263.37 30786.25 18996.75 159
Patchmtry77.36 28674.59 29185.67 27189.75 27075.75 27077.85 35091.12 31560.28 35071.23 29380.35 33375.45 14493.56 31457.94 32467.34 31787.68 299
LTVRE_ROB73.68 1877.99 27975.74 28384.74 28090.45 26072.02 30086.41 33191.12 31572.57 31266.63 31787.27 26554.95 30396.98 19456.29 33375.98 25485.21 331
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 28876.06 28080.55 32083.78 33560.00 35190.35 30291.05 31877.01 28166.62 31887.92 25847.73 32394.03 30571.63 26368.44 30387.62 301
CNLPA86.96 16485.37 17391.72 13697.59 8379.34 18897.21 10291.05 31874.22 29778.90 21996.75 11867.21 22198.95 11074.68 24290.77 15596.88 153
Anonymous2024052172.06 31369.91 31378.50 32777.11 35461.67 34891.62 29690.97 32065.52 33662.37 33579.05 33936.32 34990.96 33957.75 32668.52 30282.87 342
KD-MVS_self_test70.97 31669.31 31675.95 33676.24 35955.39 35987.45 32290.94 32170.20 32362.96 33477.48 34344.01 33088.09 35061.25 31553.26 34784.37 336
pmmvs674.65 30171.67 30583.60 30079.13 34769.94 31793.31 27090.88 32261.05 34965.83 32184.15 31343.43 33394.83 29266.62 28960.63 33786.02 324
Anonymous2023120675.29 29873.64 29980.22 32180.75 34063.38 34293.36 26590.71 32373.09 30767.12 31283.70 31650.33 31490.85 34053.63 34170.10 28886.44 317
USDC78.65 27476.25 27985.85 26687.58 29674.60 27889.58 30690.58 32484.05 15463.13 33288.23 25340.69 34596.86 20466.57 29175.81 25686.09 323
MSDG80.62 26077.77 26889.14 20193.43 19077.24 24491.89 29090.18 32569.86 32568.02 30991.94 20352.21 30998.84 11659.32 32183.12 21391.35 227
ACMH+76.62 1677.47 28574.94 28785.05 27791.07 24971.58 30893.26 27190.01 32671.80 31664.76 32588.55 24841.62 34196.48 21662.35 31071.00 27887.09 311
FMVSNet576.46 29274.16 29683.35 30490.05 26776.17 25989.58 30689.85 32771.39 31965.29 32480.42 33250.61 31287.70 35261.05 31669.24 29786.18 321
ambc76.02 33468.11 36351.43 36164.97 36089.59 32860.49 34274.49 34617.17 36592.46 32261.50 31352.85 34984.17 338
ITE_SJBPF82.38 31087.00 30065.59 33589.55 32979.99 23569.37 30691.30 21041.60 34295.33 27062.86 30974.63 26286.24 320
pmmvs-eth3d73.59 30370.66 30982.38 31076.40 35773.38 28789.39 30989.43 33072.69 31160.34 34377.79 34246.43 32791.26 33766.42 29357.06 34182.51 346
test20.0372.36 31171.15 30775.98 33577.79 35059.16 35392.40 28589.35 33174.09 29861.50 33984.32 31148.09 31985.54 35850.63 34862.15 33683.24 341
SixPastTwentyTwo76.04 29374.32 29481.22 31684.54 32761.43 34991.16 29889.30 33277.89 26664.04 32786.31 28548.23 31894.29 30263.54 30663.84 33287.93 295
TransMVSNet (Re)76.94 28974.38 29384.62 28585.92 31375.25 27495.28 21589.18 33373.88 30067.22 31186.46 28059.64 26594.10 30459.24 32252.57 35084.50 335
MIMVSNet169.44 31766.65 32177.84 32876.48 35662.84 34487.42 32388.97 33466.96 33457.75 35079.72 33832.77 35785.83 35746.32 35563.42 33384.85 333
K. test v373.62 30271.59 30679.69 32382.98 33759.85 35290.85 30188.83 33577.13 27758.90 34482.11 32343.62 33291.72 33265.83 29554.10 34587.50 306
Baseline_NR-MVSNet81.22 25480.07 25184.68 28285.32 32275.12 27596.48 15888.80 33676.24 28477.28 23486.40 28467.61 21594.39 30075.73 23566.73 32284.54 334
MDA-MVSNet-bldmvs71.45 31467.94 31881.98 31485.33 32168.50 32792.35 28688.76 33770.40 32142.99 35981.96 32446.57 32691.31 33648.75 35354.39 34486.11 322
new-patchmatchnet68.85 32065.93 32277.61 32973.57 36263.94 34190.11 30488.73 33871.62 31855.08 35273.60 34840.84 34487.22 35451.35 34648.49 35481.67 352
Patchmatch-test78.25 27774.72 29088.83 20991.20 24574.10 28473.91 35788.70 33959.89 35366.82 31685.12 30478.38 9494.54 29748.84 35279.58 23597.86 98
OpenMVS_ROBcopyleft68.52 2073.02 30869.57 31483.37 30380.54 34371.82 30493.60 26088.22 34062.37 34161.98 33783.15 32035.31 35395.47 26445.08 35775.88 25582.82 343
RPSCF77.73 28276.63 27781.06 31788.66 28655.76 35887.77 32187.88 34164.82 33874.14 27392.79 19349.22 31796.81 20667.47 28676.88 25390.62 233
MVS-HIRNet71.36 31567.00 31984.46 28990.58 25869.74 32179.15 34687.74 34246.09 35961.96 33850.50 36045.14 32995.64 25653.74 34088.11 17788.00 294
DP-MVS81.47 25078.28 26491.04 15398.14 6378.48 20795.09 22886.97 34361.14 34871.12 29592.78 19459.59 26699.38 6853.11 34286.61 18695.27 194
COLMAP_ROBcopyleft73.24 1975.74 29673.00 30283.94 29392.38 21269.08 32591.85 29186.93 34461.48 34665.32 32390.27 22742.27 33996.93 19950.91 34775.63 25785.80 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_040272.68 30969.54 31582.09 31388.67 28571.81 30592.72 28186.77 34561.52 34562.21 33683.91 31443.22 33593.76 31134.60 36172.23 27580.72 353
testgi74.88 30073.40 30079.32 32580.13 34461.75 34693.21 27286.64 34679.49 24466.56 31991.06 21335.51 35288.67 34956.79 33271.25 27687.56 304
TDRefinement69.20 31965.78 32379.48 32466.04 36562.21 34588.21 31686.12 34762.92 34061.03 34185.61 29333.23 35594.16 30355.82 33653.02 34882.08 350
ADS-MVSNet279.57 26777.53 26985.71 27093.78 17872.13 29879.48 34386.11 34873.09 30780.14 21079.99 33662.15 25190.14 34659.49 31983.52 20994.85 198
LF4IMVS72.36 31170.82 30876.95 33079.18 34656.33 35586.12 33286.11 34869.30 32763.06 33386.66 27633.03 35692.25 32565.33 29768.64 30182.28 349
TinyColmap72.41 31068.99 31782.68 30888.11 29169.59 32288.41 31585.20 35065.55 33557.91 34884.82 30830.80 36095.94 23751.38 34468.70 30082.49 348
pmmvs365.75 32362.18 32676.45 33367.12 36464.54 33788.68 31385.05 35154.77 35857.54 35173.79 34729.40 36186.21 35655.49 33747.77 35578.62 354
new_pmnet66.18 32263.18 32575.18 33876.27 35861.74 34783.79 33984.66 35256.64 35751.57 35571.85 35431.29 35987.93 35149.98 34962.55 33575.86 356
AllTest75.92 29473.06 30184.47 28792.18 22367.29 33091.07 29984.43 35367.63 32963.48 32890.18 22838.20 34797.16 18657.04 32973.37 26788.97 275
TestCases84.47 28792.18 22367.29 33084.43 35367.63 32963.48 32890.18 22838.20 34797.16 18657.04 32973.37 26788.97 275
LCM-MVSNet-Re83.75 21583.54 20384.39 29193.54 18564.14 33992.51 28284.03 35583.90 16166.14 32086.59 27767.36 21992.68 32084.89 14992.87 13796.35 168
Gipumacopyleft45.11 33042.05 33254.30 34680.69 34151.30 36235.80 36483.81 35628.13 36327.94 36534.53 36411.41 37076.70 36221.45 36454.65 34334.90 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet52.52 32748.24 33065.35 33947.63 37141.45 36772.55 35883.62 35731.75 36237.66 36157.92 3589.19 37276.76 36149.26 35144.60 35877.84 355
FPMVS55.09 32652.93 32961.57 34455.98 36640.51 36983.11 34083.41 35837.61 36134.95 36271.95 35214.40 36676.95 36029.81 36265.16 32667.25 360
Patchmatch-RL test76.65 29174.01 29884.55 28677.37 35364.23 33878.49 34982.84 35978.48 26264.63 32673.40 34976.05 13291.70 33376.99 21857.84 34097.72 109
DSMNet-mixed73.13 30772.45 30375.19 33777.51 35246.82 36385.09 33782.01 36067.61 33369.27 30781.33 32850.89 31086.28 35554.54 33883.80 20892.46 223
lessismore_v079.98 32280.59 34258.34 35480.87 36158.49 34683.46 31843.10 33693.89 30763.11 30848.68 35287.72 297
door80.13 362
door-mid79.75 363
PM-MVS69.32 31866.93 32076.49 33273.60 36155.84 35785.91 33379.32 36474.72 29461.09 34078.18 34121.76 36291.10 33870.86 27256.90 34282.51 346
ANet_high46.22 32941.28 33461.04 34539.91 37346.25 36570.59 35976.18 36558.87 35523.09 36648.00 36212.58 36866.54 36528.65 36313.62 36670.35 358
test_method56.77 32554.53 32863.49 34376.49 35540.70 36875.68 35374.24 36619.47 36748.73 35671.89 35319.31 36365.80 36657.46 32847.51 35683.97 339
PMMVS250.90 32846.31 33164.67 34055.53 36746.67 36477.30 35271.02 36740.89 36034.16 36359.32 3569.83 37176.14 36340.09 36028.63 36371.21 357
MTMP97.53 8068.16 368
DeepMVS_CXcopyleft64.06 34278.53 34843.26 36668.11 36969.94 32438.55 36076.14 34518.53 36479.34 35943.72 35841.62 36069.57 359
PMVScopyleft34.80 2339.19 33235.53 33550.18 34729.72 37430.30 37159.60 36266.20 37026.06 36417.91 36849.53 3613.12 37374.09 36418.19 36649.40 35146.14 361
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt41.54 33141.93 33340.38 34920.10 37526.84 37261.93 36159.09 37114.81 36928.51 36480.58 33135.53 35148.33 37063.70 30513.11 36745.96 363
MVEpermissive35.65 2233.85 33329.49 33846.92 34841.86 37236.28 37050.45 36356.52 37218.75 36818.28 36737.84 3632.41 37458.41 36718.71 36520.62 36446.06 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 33432.39 33633.65 35053.35 36925.70 37374.07 35653.33 37321.08 36517.17 36933.63 36611.85 36954.84 36812.98 36714.04 36520.42 365
EMVS31.70 33531.45 33732.48 35150.72 37023.95 37474.78 35552.30 37420.36 36616.08 37031.48 36712.80 36753.60 36911.39 36813.10 36819.88 366
N_pmnet61.30 32460.20 32764.60 34184.32 32917.00 37691.67 29510.98 37561.77 34458.45 34778.55 34049.89 31591.83 33142.27 35963.94 33184.97 332
wuyk23d14.10 33713.89 34014.72 35255.23 36822.91 37533.83 3653.56 3764.94 3704.11 3712.28 3722.06 37519.66 37110.23 3698.74 3691.59 369
testmvs9.92 33812.94 3410.84 3540.65 3760.29 37893.78 2560.39 3770.42 3712.85 37215.84 3700.17 3770.30 3732.18 3700.21 3701.91 368
test1239.07 33911.73 3421.11 3530.50 3770.77 37789.44 3080.20 3780.34 3722.15 37310.72 3710.34 3760.32 3721.79 3710.08 3712.23 367
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas5.92 3417.89 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37371.04 1990.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
n20.00 379
nn0.00 379
ab-mvs-re8.11 34010.81 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37497.30 940.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145291.12 2198.33 298.42 2892.51 299.81 2098.96 299.37 199.70 3
eth-test20.00 378
eth-test0.00 378
OPU-MVS97.30 299.19 892.31 399.12 698.54 2292.06 399.84 1299.11 199.37 199.74 1
test_0728_THIRD88.38 5996.69 1298.76 1489.64 1299.76 2497.47 1398.84 2499.38 14
GSMVS97.54 121
test_part298.90 2185.14 6096.07 20
sam_mvs177.59 10497.54 121
sam_mvs75.35 151
test_post185.88 33430.24 36873.77 17095.07 28673.89 250
test_post33.80 36576.17 13095.97 233
patchmatchnet-post77.09 34477.78 10395.39 266
gm-plane-assit92.27 21779.64 18284.47 14395.15 15197.93 14685.81 140
test9_res96.00 2599.03 1398.31 61
agg_prior294.30 4699.00 1598.57 45
test_prior482.34 11397.75 65
test_prior298.37 2886.08 10094.57 4198.02 5283.14 4795.05 3898.79 27
旧先验296.97 13174.06 29996.10 1997.76 15588.38 123
新几何296.42 167
原ACMM296.84 138
testdata299.48 6276.45 225
segment_acmp82.69 56
testdata195.57 20787.44 79
plane_prior791.86 23777.55 239
plane_prior691.98 23277.92 23064.77 237
plane_prior494.15 175
plane_prior377.75 23590.17 3481.33 196
plane_prior297.18 10689.89 36
plane_prior191.95 235
plane_prior77.96 22797.52 8390.36 3382.96 217
HQP5-MVS78.48 207
HQP-NCC92.08 22797.63 7190.52 2882.30 184
ACMP_Plane92.08 22797.63 7190.52 2882.30 184
BP-MVS87.67 128
HQP4-MVS82.30 18497.32 17691.13 228
HQP2-MVS65.40 232
NP-MVS92.04 23178.22 21794.56 165
MDTV_nov1_ep13_2view81.74 13186.80 32780.65 21685.65 14874.26 16576.52 22496.98 147
ACMMP++_ref78.45 247
ACMMP++79.05 239
Test By Simon71.65 192