| testing11 | | | 79.18 22 | 78.85 21 | 80.16 33 | 88.33 30 | 56.99 26 | 88.31 52 | 92.06 1 | 72.82 11 | 70.62 99 | 88.37 124 | 57.69 14 | 92.30 50 | 75.25 75 | 76.24 123 | 91.20 71 |
|
| testing222 | | | 77.70 39 | 77.22 41 | 79.14 48 | 86.95 46 | 54.89 77 | 87.18 79 | 91.96 2 | 72.29 13 | 71.17 92 | 88.70 118 | 55.19 24 | 91.24 73 | 65.18 140 | 76.32 122 | 91.29 69 |
|
| baseline2 | | | 75.15 79 | 74.54 76 | 76.98 106 | 81.67 152 | 51.74 152 | 83.84 173 | 91.94 3 | 69.97 28 | 58.98 222 | 86.02 164 | 59.73 8 | 91.73 63 | 68.37 113 | 70.40 180 | 87.48 160 |
|
| MVS | | | 76.91 48 | 75.48 61 | 81.23 20 | 84.56 79 | 55.21 65 | 80.23 262 | 91.64 4 | 58.65 205 | 65.37 139 | 91.48 63 | 45.72 100 | 95.05 16 | 72.11 96 | 89.52 10 | 93.44 11 |
|
| CSCG | | | 80.41 15 | 79.72 15 | 82.49 5 | 89.12 25 | 57.67 13 | 89.29 41 | 91.54 5 | 59.19 191 | 71.82 81 | 90.05 93 | 59.72 9 | 96.04 10 | 78.37 51 | 88.40 14 | 93.75 9 |
|
| testing99 | | | 78.45 25 | 77.78 33 | 80.45 27 | 88.28 33 | 56.81 32 | 87.95 59 | 91.49 6 | 71.72 15 | 70.84 94 | 88.09 132 | 57.29 15 | 92.63 44 | 69.24 108 | 75.13 136 | 91.91 48 |
|
| ETVMVS | | | 75.80 70 | 75.44 62 | 76.89 109 | 86.23 52 | 50.38 180 | 85.55 119 | 91.42 7 | 71.30 21 | 68.80 107 | 87.94 138 | 56.42 19 | 89.24 128 | 56.54 211 | 74.75 142 | 91.07 75 |
|
| VNet | | | 77.99 36 | 77.92 30 | 78.19 76 | 87.43 43 | 50.12 188 | 90.93 23 | 91.41 8 | 67.48 52 | 75.12 44 | 90.15 91 | 46.77 87 | 91.00 81 | 73.52 88 | 78.46 102 | 93.44 11 |
|
| IU-MVS | | | | | | 89.48 17 | 57.49 15 | | 91.38 9 | 66.22 68 | 88.26 1 | | | | 82.83 23 | 87.60 18 | 92.44 32 |
|
| MSC_two_6792asdad | | | | | 81.53 16 | 91.77 4 | 56.03 46 | | 91.10 10 | | | | | 96.22 8 | 81.46 34 | 86.80 27 | 92.34 35 |
|
| No_MVS | | | | | 81.53 16 | 91.77 4 | 56.03 46 | | 91.10 10 | | | | | 96.22 8 | 81.46 34 | 86.80 27 | 92.34 35 |
|
| MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 14 | 93.77 1 | 91.10 10 | 75.95 4 | 77.10 38 | 93.09 29 | 54.15 33 | 95.57 12 | 85.80 10 | 85.87 37 | 93.31 13 |
|
| testing91 | | | 78.30 31 | 77.54 36 | 80.61 23 | 88.16 35 | 57.12 23 | 87.94 60 | 91.07 13 | 71.43 18 | 70.75 95 | 88.04 136 | 55.82 22 | 92.65 42 | 69.61 105 | 75.00 140 | 92.05 43 |
|
| DPM-MVS | | | 82.39 4 | 82.36 6 | 82.49 5 | 80.12 190 | 59.50 5 | 92.24 9 | 90.72 14 | 69.37 33 | 83.22 9 | 94.47 2 | 63.81 5 | 93.18 33 | 74.02 85 | 93.25 2 | 94.80 1 |
|
| TSAR-MVS + GP. | | | 77.82 37 | 77.59 35 | 78.49 67 | 85.25 69 | 50.27 187 | 90.02 27 | 90.57 15 | 56.58 248 | 74.26 53 | 91.60 60 | 54.26 31 | 92.16 54 | 75.87 67 | 79.91 89 | 93.05 21 |
|
| WTY-MVS | | | 77.47 42 | 77.52 37 | 77.30 94 | 88.33 30 | 46.25 278 | 88.46 50 | 90.32 16 | 71.40 19 | 72.32 77 | 91.72 55 | 53.44 35 | 92.37 49 | 66.28 127 | 75.42 130 | 93.28 15 |
|
| VPA-MVSNet | | | 71.12 139 | 70.66 129 | 72.49 216 | 78.75 213 | 44.43 298 | 87.64 65 | 90.02 17 | 63.97 102 | 65.02 143 | 81.58 232 | 42.14 151 | 87.42 201 | 63.42 147 | 63.38 238 | 85.63 199 |
|
| DVP-MVS |  | | 81.30 10 | 81.00 13 | 82.20 8 | 89.40 20 | 57.45 17 | 92.34 6 | 89.99 18 | 57.71 223 | 81.91 14 | 93.64 13 | 55.17 25 | 96.44 2 | 81.68 30 | 87.13 21 | 92.72 27 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MS-PatchMatch | | | 72.34 119 | 71.26 121 | 75.61 136 | 82.38 135 | 55.55 53 | 88.00 55 | 89.95 19 | 65.38 83 | 56.51 267 | 80.74 240 | 32.28 268 | 92.89 35 | 57.95 198 | 88.10 15 | 78.39 307 |
|
| MM | | | 82.69 2 | 83.29 3 | 80.89 22 | 84.38 83 | 55.40 59 | 92.16 10 | 89.85 20 | 75.28 5 | 82.41 11 | 93.86 10 | 54.30 30 | 93.98 25 | 90.29 1 | 87.13 21 | 93.30 14 |
|
| UWE-MVS | | | 72.17 124 | 72.15 107 | 72.21 222 | 82.26 138 | 44.29 300 | 86.83 89 | 89.58 21 | 65.58 78 | 65.82 134 | 85.06 175 | 45.02 110 | 84.35 269 | 54.07 228 | 75.18 133 | 87.99 150 |
|
| cdsmvs_eth3d_5k | | | 18.33 371 | 24.44 363 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 89.40 22 | 0.00 408 | 0.00 411 | 92.02 48 | 38.55 190 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| test_yl | | | 75.85 66 | 74.83 73 | 78.91 53 | 88.08 37 | 51.94 146 | 91.30 17 | 89.28 23 | 57.91 217 | 71.19 90 | 89.20 109 | 42.03 154 | 92.77 38 | 69.41 106 | 75.07 138 | 92.01 45 |
|
| DCV-MVSNet | | | 75.85 66 | 74.83 73 | 78.91 53 | 88.08 37 | 51.94 146 | 91.30 17 | 89.28 23 | 57.91 217 | 71.19 90 | 89.20 109 | 42.03 154 | 92.77 38 | 69.41 106 | 75.07 138 | 92.01 45 |
|
| ET-MVSNet_ETH3D | | | 75.23 77 | 74.08 80 | 78.67 62 | 84.52 80 | 55.59 52 | 88.92 44 | 89.21 25 | 68.06 43 | 53.13 295 | 90.22 87 | 49.71 65 | 87.62 196 | 72.12 95 | 70.82 175 | 92.82 24 |
|
| MAR-MVS | | | 76.76 53 | 75.60 59 | 80.21 30 | 90.87 7 | 54.68 84 | 89.14 42 | 89.11 26 | 62.95 123 | 70.54 100 | 92.33 41 | 41.05 164 | 94.95 17 | 57.90 199 | 86.55 32 | 91.00 77 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| tttt0517 | | | 68.33 192 | 66.29 202 | 74.46 166 | 78.08 226 | 49.06 210 | 80.88 252 | 89.08 27 | 54.40 273 | 54.75 281 | 80.77 239 | 51.31 48 | 90.33 100 | 49.35 261 | 58.01 283 | 83.99 223 |
|
| EI-MVSNet-Vis-set | | | 73.19 106 | 72.60 95 | 74.99 160 | 82.56 133 | 49.80 196 | 82.55 211 | 89.00 28 | 66.17 69 | 65.89 133 | 88.98 112 | 43.83 126 | 92.29 51 | 65.38 139 | 69.01 189 | 82.87 248 |
|
| MVS_0304 | | | 81.58 9 | 82.05 7 | 80.20 31 | 82.36 136 | 54.70 82 | 91.13 20 | 88.95 29 | 74.49 7 | 80.04 25 | 93.64 13 | 52.40 41 | 93.27 32 | 88.85 4 | 86.56 31 | 92.61 29 |
|
| SED-MVS | | | 81.92 7 | 81.75 9 | 82.44 7 | 89.48 17 | 56.89 29 | 92.48 4 | 88.94 30 | 57.50 229 | 84.61 4 | 94.09 3 | 58.81 11 | 96.37 6 | 82.28 27 | 87.60 18 | 94.06 3 |
|
| test_241102_ONE | | | | | | 89.48 17 | 56.89 29 | | 88.94 30 | 57.53 227 | 84.61 4 | 93.29 24 | 58.81 11 | 96.45 1 | | | |
|
| DVP-MVS++ | | | 82.44 3 | 82.38 5 | 82.62 4 | 91.77 4 | 57.49 15 | 84.98 138 | 88.88 32 | 58.00 215 | 83.60 6 | 93.39 20 | 67.21 2 | 96.39 4 | 81.64 32 | 91.98 4 | 93.98 5 |
|
| test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 11 | 92.34 6 | 88.88 32 | | | | | 96.39 4 | 81.68 30 | 87.13 21 | 92.47 31 |
|
| CNVR-MVS | | | 81.76 8 | 81.90 8 | 81.33 19 | 90.04 10 | 57.70 12 | 91.71 11 | 88.87 34 | 70.31 26 | 77.64 37 | 93.87 9 | 52.58 40 | 93.91 28 | 84.17 14 | 87.92 16 | 92.39 33 |
|
| WB-MVSnew | | | 69.36 173 | 68.24 165 | 72.72 210 | 79.26 202 | 49.40 205 | 85.72 113 | 88.85 35 | 61.33 150 | 64.59 152 | 82.38 219 | 34.57 246 | 87.53 199 | 46.82 280 | 70.63 176 | 81.22 276 |
|
| 9.14 | | | | 78.19 27 | | 85.67 59 | | 88.32 51 | 88.84 36 | 59.89 174 | 74.58 50 | 92.62 37 | 46.80 86 | 92.66 41 | 81.40 36 | 85.62 40 | |
|
| thisisatest0515 | | | 73.64 100 | 72.20 105 | 77.97 80 | 81.63 153 | 53.01 127 | 86.69 92 | 88.81 37 | 62.53 131 | 64.06 160 | 85.65 168 | 52.15 44 | 92.50 46 | 58.43 187 | 69.84 183 | 88.39 142 |
|
| QAPM | | | 71.88 129 | 69.33 152 | 79.52 40 | 82.20 139 | 54.30 92 | 86.30 98 | 88.77 38 | 56.61 247 | 59.72 207 | 87.48 145 | 33.90 253 | 95.36 13 | 47.48 274 | 81.49 71 | 88.90 127 |
|
| test_241102_TWO | | | | | | | | | 88.76 39 | 57.50 229 | 83.60 6 | 94.09 3 | 56.14 21 | 96.37 6 | 82.28 27 | 87.43 20 | 92.55 30 |
|
| SDMVSNet | | | 71.89 128 | 70.62 130 | 75.70 134 | 81.70 149 | 51.61 154 | 73.89 304 | 88.72 40 | 66.58 60 | 61.64 191 | 82.38 219 | 37.63 201 | 89.48 123 | 77.44 60 | 65.60 217 | 86.01 187 |
|
| IB-MVS | | 68.87 2 | 74.01 90 | 72.03 113 | 79.94 38 | 83.04 116 | 55.50 54 | 90.24 26 | 88.65 41 | 67.14 54 | 61.38 193 | 81.74 229 | 53.21 36 | 94.28 23 | 60.45 174 | 62.41 249 | 90.03 102 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| EI-MVSNet-UG-set | | | 72.37 118 | 71.73 114 | 74.29 173 | 81.60 155 | 49.29 208 | 81.85 226 | 88.64 42 | 65.29 87 | 65.05 142 | 88.29 129 | 43.18 138 | 91.83 61 | 63.74 145 | 67.97 196 | 81.75 259 |
|
| test0726 | | | | | | 89.40 20 | 57.45 17 | 92.32 8 | 88.63 43 | 57.71 223 | 83.14 10 | 93.96 8 | 55.17 25 | | | | |
|
| MSP-MVS | | | 82.30 6 | 83.47 1 | 78.80 57 | 82.99 119 | 52.71 132 | 85.04 135 | 88.63 43 | 66.08 72 | 86.77 3 | 92.75 34 | 72.05 1 | 91.46 68 | 83.35 21 | 93.53 1 | 92.23 37 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| 3Dnovator | | 64.70 6 | 74.46 84 | 72.48 97 | 80.41 28 | 82.84 125 | 55.40 59 | 83.08 198 | 88.61 45 | 67.61 51 | 59.85 205 | 88.66 119 | 34.57 246 | 93.97 26 | 58.42 189 | 88.70 12 | 91.85 51 |
|
| PHI-MVS | | | 77.49 41 | 77.00 43 | 78.95 52 | 85.33 67 | 50.69 170 | 88.57 49 | 88.59 46 | 58.14 212 | 73.60 57 | 93.31 23 | 43.14 140 | 93.79 29 | 73.81 86 | 88.53 13 | 92.37 34 |
|
| thisisatest0530 | | | 70.47 153 | 68.56 159 | 76.20 122 | 79.78 194 | 51.52 158 | 83.49 184 | 88.58 47 | 57.62 226 | 58.60 231 | 82.79 205 | 51.03 51 | 91.48 67 | 52.84 238 | 62.36 251 | 85.59 200 |
|
| MG-MVS | | | 78.42 27 | 76.99 44 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 30 | 88.51 48 | 64.83 90 | 73.52 59 | 88.09 132 | 48.07 72 | 92.19 53 | 62.24 155 | 84.53 51 | 91.53 60 |
|
| GG-mvs-BLEND | | | | | 77.77 83 | 86.68 49 | 50.61 171 | 68.67 338 | 88.45 49 | | 68.73 108 | 87.45 146 | 59.15 10 | 90.67 90 | 54.83 222 | 87.67 17 | 92.03 44 |
|
| patch_mono-2 | | | 80.84 12 | 81.59 10 | 78.62 64 | 90.34 9 | 53.77 102 | 88.08 54 | 88.36 50 | 76.17 3 | 79.40 28 | 91.09 65 | 55.43 23 | 90.09 108 | 85.01 12 | 80.40 81 | 91.99 47 |
|
| gg-mvs-nofinetune | | | 67.43 211 | 64.53 237 | 76.13 125 | 85.95 53 | 47.79 255 | 64.38 350 | 88.28 51 | 39.34 353 | 66.62 122 | 41.27 387 | 58.69 13 | 89.00 138 | 49.64 259 | 86.62 30 | 91.59 56 |
|
| NCCC | | | 79.57 19 | 79.23 19 | 80.59 24 | 89.50 15 | 56.99 26 | 91.38 16 | 88.17 52 | 67.71 48 | 73.81 56 | 92.75 34 | 46.88 85 | 93.28 31 | 78.79 48 | 84.07 54 | 91.50 62 |
|
| test_one_0601 | | | | | | 89.39 22 | 57.29 20 | | 88.09 53 | 57.21 235 | 82.06 13 | 93.39 20 | 54.94 29 | | | | |
|
| LFMVS | | | 78.52 24 | 77.14 42 | 82.67 3 | 89.58 13 | 58.90 7 | 91.27 19 | 88.05 54 | 63.22 119 | 74.63 48 | 90.83 74 | 41.38 163 | 94.40 22 | 75.42 73 | 79.90 90 | 94.72 2 |
|
| VPNet | | | 72.07 125 | 71.42 120 | 74.04 179 | 78.64 218 | 47.17 265 | 89.91 32 | 87.97 55 | 72.56 12 | 64.66 148 | 85.04 176 | 41.83 158 | 88.33 166 | 61.17 164 | 60.97 256 | 86.62 178 |
|
| DPE-MVS |  | | 79.82 18 | 79.66 16 | 80.29 29 | 89.27 24 | 55.08 71 | 88.70 47 | 87.92 56 | 55.55 259 | 81.21 19 | 93.69 12 | 56.51 18 | 94.27 24 | 78.36 52 | 85.70 39 | 91.51 61 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SF-MVS | | | 77.64 40 | 77.42 38 | 78.32 74 | 83.75 97 | 52.47 137 | 86.63 93 | 87.80 57 | 58.78 203 | 74.63 48 | 92.38 40 | 47.75 76 | 91.35 70 | 78.18 55 | 86.85 26 | 91.15 73 |
|
| thres100view900 | | | 66.87 228 | 65.42 226 | 71.24 246 | 83.29 108 | 43.15 313 | 81.67 232 | 87.78 58 | 59.04 197 | 55.92 271 | 82.18 224 | 43.73 129 | 87.80 184 | 28.80 353 | 66.36 211 | 82.78 250 |
|
| thres600view7 | | | 66.46 233 | 65.12 230 | 70.47 257 | 83.41 102 | 43.80 306 | 82.15 218 | 87.78 58 | 59.37 185 | 56.02 270 | 82.21 223 | 43.73 129 | 86.90 216 | 26.51 365 | 64.94 220 | 80.71 282 |
|
| APDe-MVS |  | | 78.44 26 | 78.20 26 | 79.19 45 | 88.56 26 | 54.55 88 | 89.76 34 | 87.77 60 | 55.91 254 | 78.56 31 | 92.49 39 | 48.20 71 | 92.65 42 | 79.49 40 | 83.04 58 | 90.39 88 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| thres200 | | | 68.71 185 | 67.27 186 | 73.02 203 | 84.73 76 | 46.76 268 | 85.03 136 | 87.73 61 | 62.34 135 | 59.87 204 | 83.45 197 | 43.15 139 | 88.32 167 | 31.25 346 | 67.91 197 | 83.98 225 |
|
| FIs | | | 70.00 160 | 70.24 140 | 69.30 274 | 77.93 230 | 38.55 343 | 83.99 169 | 87.72 62 | 66.86 58 | 57.66 248 | 84.17 185 | 52.28 42 | 85.31 254 | 52.72 243 | 68.80 190 | 84.02 221 |
|
| tfpn200view9 | | | 67.57 207 | 66.13 206 | 71.89 237 | 84.05 90 | 45.07 291 | 83.40 187 | 87.71 63 | 60.79 163 | 57.79 245 | 82.76 206 | 43.53 134 | 87.80 184 | 28.80 353 | 66.36 211 | 82.78 250 |
|
| thres400 | | | 67.40 214 | 66.13 206 | 71.19 248 | 84.05 90 | 45.07 291 | 83.40 187 | 87.71 63 | 60.79 163 | 57.79 245 | 82.76 206 | 43.53 134 | 87.80 184 | 28.80 353 | 66.36 211 | 80.71 282 |
|
| HPM-MVS++ |  | | 80.50 14 | 80.71 14 | 79.88 39 | 87.34 44 | 55.20 66 | 89.93 30 | 87.55 65 | 66.04 75 | 79.46 27 | 93.00 32 | 53.10 37 | 91.76 62 | 80.40 38 | 89.56 9 | 92.68 28 |
|
| XXY-MVS | | | 70.18 154 | 69.28 154 | 72.89 208 | 77.64 232 | 42.88 316 | 85.06 134 | 87.50 66 | 62.58 130 | 62.66 181 | 82.34 222 | 43.64 133 | 89.83 114 | 58.42 189 | 63.70 232 | 85.96 191 |
|
| FC-MVSNet-test | | | 67.49 209 | 67.91 169 | 66.21 305 | 76.06 258 | 33.06 362 | 80.82 253 | 87.18 67 | 64.44 93 | 54.81 279 | 82.87 203 | 50.40 58 | 82.60 283 | 48.05 271 | 66.55 209 | 82.98 246 |
|
| EI-MVSNet | | | 69.70 168 | 68.70 158 | 72.68 211 | 75.00 274 | 48.90 218 | 79.54 268 | 87.16 68 | 61.05 156 | 63.88 166 | 83.74 191 | 45.87 97 | 90.44 96 | 57.42 206 | 64.68 224 | 78.70 300 |
|
| MVSTER | | | 73.25 105 | 72.33 100 | 76.01 129 | 85.54 62 | 53.76 103 | 83.52 178 | 87.16 68 | 67.06 55 | 63.88 166 | 81.66 230 | 52.77 38 | 90.44 96 | 64.66 142 | 64.69 223 | 83.84 230 |
|
| PS-MVSNAJ | | | 80.06 16 | 79.52 17 | 81.68 15 | 85.58 61 | 60.97 3 | 91.69 12 | 87.02 70 | 70.62 23 | 80.75 21 | 93.22 26 | 37.77 196 | 92.50 46 | 82.75 24 | 86.25 34 | 91.57 58 |
|
| MVP-Stereo | | | 70.97 143 | 70.44 132 | 72.59 213 | 76.03 260 | 51.36 161 | 85.02 137 | 86.99 71 | 60.31 170 | 56.53 266 | 78.92 256 | 40.11 176 | 90.00 109 | 60.00 178 | 90.01 6 | 76.41 329 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| SteuartSystems-ACMMP | | | 77.08 46 | 76.33 51 | 79.34 43 | 80.98 169 | 55.31 61 | 89.76 34 | 86.91 72 | 62.94 124 | 71.65 82 | 91.56 61 | 42.33 147 | 92.56 45 | 77.14 62 | 83.69 56 | 90.15 98 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 79.86 17 | 79.31 18 | 81.53 16 | 85.03 73 | 60.73 4 | 91.65 13 | 86.86 73 | 70.30 27 | 80.77 20 | 93.07 31 | 37.63 201 | 92.28 52 | 82.73 25 | 85.71 38 | 91.57 58 |
|
| UniMVSNet_NR-MVSNet | | | 68.82 181 | 68.29 164 | 70.40 260 | 75.71 265 | 42.59 319 | 84.23 161 | 86.78 74 | 66.31 66 | 58.51 232 | 82.45 216 | 51.57 46 | 84.64 267 | 53.11 234 | 55.96 303 | 83.96 227 |
|
| SMA-MVS |  | | 79.10 23 | 78.76 22 | 80.12 35 | 84.42 81 | 55.87 50 | 87.58 69 | 86.76 75 | 61.48 149 | 80.26 23 | 93.10 27 | 46.53 90 | 92.41 48 | 79.97 39 | 88.77 11 | 92.08 41 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| DeepC-MVS | | 67.15 4 | 76.90 50 | 76.27 52 | 78.80 57 | 80.70 179 | 55.02 72 | 86.39 95 | 86.71 76 | 66.96 57 | 67.91 113 | 89.97 95 | 48.03 73 | 91.41 69 | 75.60 70 | 84.14 53 | 89.96 104 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| VDDNet | | | 74.37 86 | 72.13 108 | 81.09 21 | 79.58 196 | 56.52 37 | 90.02 27 | 86.70 77 | 52.61 286 | 71.23 89 | 87.20 150 | 31.75 275 | 93.96 27 | 74.30 83 | 75.77 127 | 92.79 26 |
|
| DeepPCF-MVS | | 69.37 1 | 80.65 13 | 81.56 11 | 77.94 82 | 85.46 64 | 49.56 200 | 90.99 22 | 86.66 78 | 70.58 24 | 80.07 24 | 95.30 1 | 56.18 20 | 90.97 84 | 82.57 26 | 86.22 35 | 93.28 15 |
|
| EPP-MVSNet | | | 71.14 138 | 70.07 142 | 74.33 171 | 79.18 204 | 46.52 271 | 83.81 174 | 86.49 79 | 56.32 252 | 57.95 241 | 84.90 179 | 54.23 32 | 89.14 133 | 58.14 194 | 69.65 186 | 87.33 163 |
|
| CANet | | | 80.90 11 | 81.17 12 | 80.09 37 | 87.62 42 | 54.21 95 | 91.60 14 | 86.47 80 | 73.13 10 | 79.89 26 | 93.10 27 | 49.88 64 | 92.98 34 | 84.09 16 | 84.75 49 | 93.08 20 |
|
| TSAR-MVS + MP. | | | 78.31 30 | 78.26 25 | 78.48 68 | 81.33 165 | 56.31 42 | 81.59 236 | 86.41 81 | 69.61 31 | 81.72 16 | 88.16 131 | 55.09 27 | 88.04 177 | 74.12 84 | 86.31 33 | 91.09 74 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| 3Dnovator+ | | 62.71 7 | 72.29 121 | 70.50 131 | 77.65 86 | 83.40 105 | 51.29 164 | 87.32 73 | 86.40 82 | 59.01 198 | 58.49 235 | 88.32 128 | 32.40 266 | 91.27 71 | 57.04 208 | 82.15 66 | 90.38 89 |
|
| HY-MVS | | 67.03 5 | 73.90 92 | 73.14 90 | 76.18 124 | 84.70 77 | 47.36 260 | 75.56 292 | 86.36 83 | 66.27 67 | 70.66 98 | 83.91 188 | 51.05 50 | 89.31 126 | 67.10 121 | 72.61 158 | 91.88 50 |
|
| DELS-MVS | | | 82.32 5 | 82.50 4 | 81.79 13 | 86.80 48 | 56.89 29 | 92.77 3 | 86.30 84 | 77.83 2 | 77.88 34 | 92.13 43 | 60.24 6 | 94.78 20 | 78.97 45 | 89.61 8 | 93.69 10 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| PAPM | | | 76.76 53 | 76.07 55 | 78.81 56 | 80.20 188 | 59.11 6 | 86.86 88 | 86.23 85 | 68.60 36 | 70.18 102 | 88.84 116 | 51.57 46 | 87.16 207 | 65.48 133 | 86.68 29 | 90.15 98 |
|
| CLD-MVS | | | 75.60 71 | 75.39 63 | 76.24 119 | 80.69 180 | 52.40 138 | 90.69 24 | 86.20 86 | 74.40 8 | 65.01 144 | 88.93 113 | 42.05 153 | 90.58 94 | 76.57 64 | 73.96 146 | 85.73 195 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| baseline1 | | | 72.51 117 | 72.12 109 | 73.69 192 | 85.05 71 | 44.46 296 | 83.51 182 | 86.13 87 | 71.61 17 | 64.64 149 | 87.97 137 | 55.00 28 | 89.48 123 | 59.07 181 | 56.05 302 | 87.13 167 |
|
| ZNCC-MVS | | | 75.82 69 | 75.02 69 | 78.23 75 | 83.88 95 | 53.80 101 | 86.91 87 | 86.05 88 | 59.71 177 | 67.85 114 | 90.55 77 | 42.23 149 | 91.02 80 | 72.66 94 | 85.29 44 | 89.87 107 |
|
| DeepC-MVS_fast | | 67.50 3 | 78.00 35 | 77.63 34 | 79.13 49 | 88.52 27 | 55.12 68 | 89.95 29 | 85.98 89 | 68.31 37 | 71.33 88 | 92.75 34 | 45.52 103 | 90.37 98 | 71.15 98 | 85.14 45 | 91.91 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| VDD-MVS | | | 76.08 61 | 74.97 70 | 79.44 41 | 84.27 87 | 53.33 117 | 91.13 20 | 85.88 90 | 65.33 85 | 72.37 76 | 89.34 106 | 32.52 265 | 92.76 40 | 77.90 58 | 75.96 124 | 92.22 39 |
|
| casdiffmvs |  | | 77.36 43 | 76.85 45 | 78.88 55 | 80.40 187 | 54.66 86 | 87.06 82 | 85.88 90 | 72.11 14 | 71.57 84 | 88.63 123 | 50.89 55 | 90.35 99 | 76.00 66 | 79.11 97 | 91.63 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CS-MVS-test | | | 77.20 44 | 77.25 40 | 77.05 100 | 84.60 78 | 49.04 213 | 89.42 37 | 85.83 92 | 65.90 76 | 72.85 68 | 91.98 52 | 45.10 108 | 91.27 71 | 75.02 77 | 84.56 50 | 90.84 80 |
|
| OpenMVS |  | 61.00 11 | 69.99 161 | 67.55 180 | 77.30 94 | 78.37 224 | 54.07 99 | 84.36 157 | 85.76 93 | 57.22 234 | 56.71 263 | 87.67 143 | 30.79 281 | 92.83 37 | 43.04 298 | 84.06 55 | 85.01 207 |
|
| PAPR | | | 75.20 78 | 74.13 78 | 78.41 71 | 88.31 32 | 55.10 70 | 84.31 159 | 85.66 94 | 63.76 106 | 67.55 115 | 90.73 75 | 43.48 136 | 89.40 125 | 66.36 126 | 77.03 111 | 90.73 82 |
|
| tt0805 | | | 63.39 256 | 61.31 258 | 69.64 270 | 69.36 332 | 38.87 341 | 78.00 280 | 85.48 95 | 48.82 311 | 55.66 276 | 81.66 230 | 24.38 324 | 86.37 231 | 49.04 264 | 59.36 267 | 83.68 232 |
|
| TESTMET0.1,1 | | | 72.86 110 | 72.33 100 | 74.46 166 | 81.98 141 | 50.77 168 | 85.13 130 | 85.47 96 | 66.09 71 | 67.30 116 | 83.69 193 | 37.27 211 | 83.57 277 | 65.06 141 | 78.97 99 | 89.05 125 |
|
| casdiffmvs_mvg |  | | 77.75 38 | 77.28 39 | 79.16 47 | 80.42 186 | 54.44 90 | 87.76 62 | 85.46 97 | 71.67 16 | 71.38 87 | 88.35 126 | 51.58 45 | 91.22 74 | 79.02 44 | 79.89 91 | 91.83 52 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| alignmvs | | | 78.08 34 | 77.98 29 | 78.39 72 | 83.53 100 | 53.22 120 | 89.77 33 | 85.45 98 | 66.11 70 | 76.59 42 | 91.99 50 | 54.07 34 | 89.05 135 | 77.34 61 | 77.00 112 | 92.89 23 |
|
| test_prior | | | | | 78.39 72 | 86.35 51 | 54.91 76 | | 85.45 98 | | | | | 89.70 119 | | | 90.55 84 |
|
| CHOSEN 1792x2688 | | | 76.24 58 | 74.03 82 | 82.88 1 | 83.09 114 | 62.84 2 | 85.73 112 | 85.39 100 | 69.79 29 | 64.87 147 | 83.49 196 | 41.52 162 | 93.69 30 | 70.55 101 | 81.82 68 | 92.12 40 |
|
| FMVSNet3 | | | 68.84 180 | 67.40 183 | 73.19 201 | 85.05 71 | 48.53 228 | 85.71 114 | 85.36 101 | 60.90 162 | 57.58 250 | 79.15 254 | 42.16 150 | 86.77 218 | 47.25 276 | 63.40 235 | 84.27 217 |
|
| ACMMP_NAP | | | 76.43 56 | 75.66 58 | 78.73 59 | 81.92 142 | 54.67 85 | 84.06 167 | 85.35 102 | 61.10 155 | 72.99 65 | 91.50 62 | 40.25 172 | 91.00 81 | 76.84 63 | 86.98 24 | 90.51 87 |
|
| ETV-MVS | | | 77.17 45 | 76.74 46 | 78.48 68 | 81.80 145 | 54.55 88 | 86.13 101 | 85.33 103 | 68.20 39 | 73.10 64 | 90.52 79 | 45.23 107 | 90.66 91 | 79.37 41 | 80.95 73 | 90.22 94 |
|
| EIA-MVS | | | 75.92 64 | 75.18 67 | 78.13 77 | 85.14 70 | 51.60 155 | 87.17 80 | 85.32 104 | 64.69 91 | 68.56 109 | 90.53 78 | 45.79 99 | 91.58 65 | 67.21 120 | 82.18 65 | 91.20 71 |
|
| CostFormer | | | 73.89 93 | 72.30 102 | 78.66 63 | 82.36 136 | 56.58 33 | 75.56 292 | 85.30 105 | 66.06 73 | 70.50 101 | 76.88 281 | 57.02 16 | 89.06 134 | 68.27 115 | 68.74 191 | 90.33 90 |
|
| GST-MVS | | | 74.87 82 | 73.90 83 | 77.77 83 | 83.30 107 | 53.45 110 | 85.75 110 | 85.29 106 | 59.22 190 | 66.50 126 | 89.85 97 | 40.94 165 | 90.76 88 | 70.94 100 | 83.35 57 | 89.10 124 |
|
| WR-MVS | | | 67.58 206 | 66.76 192 | 70.04 267 | 75.92 263 | 45.06 294 | 86.23 99 | 85.28 107 | 64.31 94 | 58.50 234 | 81.00 235 | 44.80 119 | 82.00 288 | 49.21 263 | 55.57 308 | 83.06 244 |
|
| 原ACMM1 | | | | | 76.13 125 | 84.89 75 | 54.59 87 | | 85.26 108 | 51.98 290 | 66.70 120 | 87.07 153 | 40.15 175 | 89.70 119 | 51.23 250 | 85.06 47 | 84.10 219 |
|
| PAPM_NR | | | 71.80 131 | 69.98 143 | 77.26 97 | 81.54 159 | 53.34 116 | 78.60 278 | 85.25 109 | 53.46 279 | 60.53 201 | 88.66 119 | 45.69 101 | 89.24 128 | 56.49 212 | 79.62 95 | 89.19 121 |
|
| ab-mvs | | | 70.65 149 | 69.11 155 | 75.29 151 | 80.87 175 | 46.23 279 | 73.48 308 | 85.24 110 | 59.99 173 | 66.65 121 | 80.94 237 | 43.13 141 | 88.69 150 | 63.58 146 | 68.07 194 | 90.95 78 |
|
| CS-MVS | | | 76.77 52 | 76.70 47 | 76.99 105 | 83.55 99 | 48.75 222 | 88.60 48 | 85.18 111 | 66.38 65 | 72.47 75 | 91.62 59 | 45.53 102 | 90.99 83 | 74.48 80 | 82.51 61 | 91.23 70 |
|
| MVS_Test | | | 75.85 66 | 74.93 71 | 78.62 64 | 84.08 89 | 55.20 66 | 83.99 169 | 85.17 112 | 68.07 42 | 73.38 61 | 82.76 206 | 50.44 57 | 89.00 138 | 65.90 129 | 80.61 77 | 91.64 54 |
|
| tfpnnormal | | | 61.47 274 | 59.09 278 | 68.62 285 | 76.29 255 | 41.69 325 | 81.14 246 | 85.16 113 | 54.48 272 | 51.32 307 | 73.63 314 | 32.32 267 | 86.89 217 | 21.78 379 | 55.71 307 | 77.29 319 |
|
| test12 | | | | | 79.24 44 | 86.89 47 | 56.08 45 | | 85.16 113 | | 72.27 78 | | 47.15 82 | 91.10 79 | | 85.93 36 | 90.54 86 |
|
| 1314 | | | 71.11 140 | 69.41 149 | 76.22 120 | 79.32 200 | 50.49 175 | 80.23 262 | 85.14 115 | 59.44 183 | 58.93 224 | 88.89 115 | 33.83 255 | 89.60 122 | 61.49 161 | 77.42 110 | 88.57 138 |
|
| Anonymous20240529 | | | 69.71 166 | 67.28 185 | 77.00 104 | 83.78 96 | 50.36 182 | 88.87 46 | 85.10 116 | 47.22 318 | 64.03 162 | 83.37 198 | 27.93 297 | 92.10 57 | 57.78 202 | 67.44 201 | 88.53 140 |
|
| APD-MVS |  | | 76.15 60 | 75.68 57 | 77.54 88 | 88.52 27 | 53.44 111 | 87.26 78 | 85.03 117 | 53.79 276 | 74.91 46 | 91.68 57 | 43.80 127 | 90.31 101 | 74.36 81 | 81.82 68 | 88.87 129 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MVS_111021_HR | | | 76.39 57 | 75.38 64 | 79.42 42 | 85.33 67 | 56.47 38 | 88.15 53 | 84.97 118 | 65.15 88 | 66.06 130 | 89.88 96 | 43.79 128 | 92.16 54 | 75.03 76 | 80.03 88 | 89.64 110 |
|
| FMVSNet2 | | | 67.57 207 | 65.79 215 | 72.90 206 | 82.71 128 | 47.97 249 | 85.15 129 | 84.93 119 | 58.55 207 | 56.71 263 | 78.26 261 | 36.72 222 | 86.67 221 | 46.15 284 | 62.94 246 | 84.07 220 |
|
| UniMVSNet (Re) | | | 67.71 203 | 66.80 191 | 70.45 258 | 74.44 281 | 42.93 315 | 82.42 215 | 84.90 120 | 63.69 108 | 59.63 209 | 80.99 236 | 47.18 81 | 85.23 257 | 51.17 251 | 56.75 294 | 83.19 241 |
|
| baseline | | | 76.86 51 | 76.24 53 | 78.71 60 | 80.47 185 | 54.20 97 | 83.90 171 | 84.88 121 | 71.38 20 | 71.51 85 | 89.15 111 | 50.51 56 | 90.55 95 | 75.71 68 | 78.65 100 | 91.39 64 |
|
| lupinMVS | | | 78.38 28 | 78.11 28 | 79.19 45 | 83.02 117 | 55.24 63 | 91.57 15 | 84.82 122 | 69.12 34 | 76.67 40 | 92.02 48 | 44.82 117 | 90.23 105 | 80.83 37 | 80.09 85 | 92.08 41 |
|
| PS-MVSNAJss | | | 68.78 184 | 67.17 187 | 73.62 195 | 73.01 298 | 48.33 238 | 84.95 141 | 84.81 123 | 59.30 189 | 58.91 226 | 79.84 246 | 37.77 196 | 88.86 146 | 62.83 151 | 63.12 244 | 83.67 233 |
|
| EG-PatchMatch MVS | | | 62.40 269 | 59.59 273 | 70.81 254 | 73.29 294 | 49.05 211 | 85.81 106 | 84.78 124 | 51.85 293 | 44.19 340 | 73.48 316 | 15.52 370 | 89.85 113 | 40.16 307 | 67.24 202 | 73.54 350 |
|
| test2506 | | | 72.91 109 | 72.43 99 | 74.32 172 | 80.12 190 | 44.18 303 | 83.19 195 | 84.77 125 | 64.02 99 | 65.97 131 | 87.43 147 | 47.67 77 | 88.72 149 | 59.08 180 | 79.66 93 | 90.08 100 |
|
| NR-MVSNet | | | 67.25 216 | 65.99 210 | 71.04 251 | 73.27 296 | 43.91 304 | 85.32 124 | 84.75 126 | 66.05 74 | 53.65 293 | 82.11 225 | 45.05 109 | 85.97 245 | 47.55 273 | 56.18 300 | 83.24 239 |
|
| sss | | | 70.49 151 | 70.13 141 | 71.58 242 | 81.59 156 | 39.02 340 | 80.78 254 | 84.71 127 | 59.34 186 | 66.61 123 | 88.09 132 | 37.17 213 | 85.52 250 | 61.82 160 | 71.02 173 | 90.20 96 |
|
| EC-MVSNet | | | 75.30 75 | 75.20 65 | 75.62 135 | 80.98 169 | 49.00 214 | 87.43 70 | 84.68 128 | 63.49 114 | 70.97 93 | 90.15 91 | 42.86 144 | 91.14 78 | 74.33 82 | 81.90 67 | 86.71 177 |
|
| Anonymous20231211 | | | 66.08 239 | 63.67 242 | 73.31 199 | 83.07 115 | 48.75 222 | 86.01 105 | 84.67 129 | 45.27 332 | 56.54 265 | 76.67 284 | 28.06 296 | 88.95 142 | 52.78 240 | 59.95 259 | 82.23 253 |
|
| CDPH-MVS | | | 76.05 62 | 75.19 66 | 78.62 64 | 86.51 50 | 54.98 74 | 87.32 73 | 84.59 130 | 58.62 206 | 70.75 95 | 90.85 73 | 43.10 142 | 90.63 93 | 70.50 102 | 84.51 52 | 90.24 93 |
|
| MGCFI-Net | | | 78.17 32 | 77.86 31 | 79.12 50 | 84.30 84 | 54.22 93 | 87.71 63 | 84.57 131 | 67.70 49 | 77.70 35 | 92.11 46 | 50.90 52 | 89.95 111 | 78.18 55 | 77.54 108 | 93.20 17 |
|
| canonicalmvs | | | 78.17 32 | 77.86 31 | 79.12 50 | 84.30 84 | 54.22 93 | 87.71 63 | 84.57 131 | 67.70 49 | 77.70 35 | 92.11 46 | 50.90 52 | 89.95 111 | 78.18 55 | 77.54 108 | 93.20 17 |
|
| MP-MVS-pluss | | | 75.54 73 | 75.03 68 | 77.04 101 | 81.37 164 | 52.65 134 | 84.34 158 | 84.46 133 | 61.16 153 | 69.14 104 | 91.76 54 | 39.98 179 | 88.99 140 | 78.19 53 | 84.89 48 | 89.48 115 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ZD-MVS | | | | | | 89.55 14 | 53.46 108 | | 84.38 134 | 57.02 237 | 73.97 55 | 91.03 66 | 44.57 121 | 91.17 76 | 75.41 74 | 81.78 70 | |
|
| HFP-MVS | | | 74.37 86 | 73.13 92 | 78.10 78 | 84.30 84 | 53.68 104 | 85.58 116 | 84.36 135 | 56.82 241 | 65.78 135 | 90.56 76 | 40.70 170 | 90.90 85 | 69.18 109 | 80.88 74 | 89.71 108 |
|
| ACMMPR | | | 73.76 95 | 72.61 94 | 77.24 98 | 83.92 93 | 52.96 129 | 85.58 116 | 84.29 136 | 56.82 241 | 65.12 140 | 90.45 80 | 37.24 212 | 90.18 106 | 69.18 109 | 80.84 75 | 88.58 137 |
|
| API-MVS | | | 74.17 89 | 72.07 110 | 80.49 25 | 90.02 11 | 58.55 8 | 87.30 75 | 84.27 137 | 57.51 228 | 65.77 136 | 87.77 141 | 41.61 160 | 95.97 11 | 51.71 246 | 82.63 60 | 86.94 168 |
|
| TranMVSNet+NR-MVSNet | | | 66.94 226 | 65.61 220 | 70.93 253 | 73.45 292 | 43.38 311 | 83.02 201 | 84.25 138 | 65.31 86 | 58.33 239 | 81.90 228 | 39.92 180 | 85.52 250 | 49.43 260 | 54.89 313 | 83.89 229 |
|
| test11 | | | | | | | | | 84.25 138 | | | | | | | | |
|
| PVSNet_BlendedMVS | | | 73.42 103 | 73.30 85 | 73.76 189 | 85.91 54 | 51.83 150 | 86.18 100 | 84.24 140 | 65.40 82 | 69.09 105 | 80.86 238 | 46.70 88 | 88.13 173 | 75.43 71 | 65.92 216 | 81.33 272 |
|
| PVSNet_Blended | | | 76.53 55 | 76.54 48 | 76.50 115 | 85.91 54 | 51.83 150 | 88.89 45 | 84.24 140 | 67.82 46 | 69.09 105 | 89.33 108 | 46.70 88 | 88.13 173 | 75.43 71 | 81.48 72 | 89.55 112 |
|
| region2R | | | 73.75 96 | 72.55 96 | 77.33 92 | 83.90 94 | 52.98 128 | 85.54 120 | 84.09 142 | 56.83 240 | 65.10 141 | 90.45 80 | 37.34 210 | 90.24 104 | 68.89 111 | 80.83 76 | 88.77 133 |
|
| EPNet | | | 78.36 29 | 78.49 24 | 77.97 80 | 85.49 63 | 52.04 144 | 89.36 39 | 84.07 143 | 73.22 9 | 77.03 39 | 91.72 55 | 49.32 68 | 90.17 107 | 73.46 89 | 82.77 59 | 91.69 53 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TEST9 | | | | | | 85.68 57 | 55.42 56 | 87.59 67 | 84.00 144 | 57.72 222 | 72.99 65 | 90.98 68 | 44.87 115 | 88.58 154 | | | |
|
| train_agg | | | 76.91 48 | 76.40 50 | 78.45 70 | 85.68 57 | 55.42 56 | 87.59 67 | 84.00 144 | 57.84 220 | 72.99 65 | 90.98 68 | 44.99 111 | 88.58 154 | 78.19 53 | 85.32 43 | 91.34 68 |
|
| jason | | | 77.01 47 | 76.45 49 | 78.69 61 | 79.69 195 | 54.74 79 | 90.56 25 | 83.99 146 | 68.26 38 | 74.10 54 | 90.91 71 | 42.14 151 | 89.99 110 | 79.30 42 | 79.12 96 | 91.36 66 |
| jason: jason. |
| test_8 | | | | | | 85.72 56 | 55.31 61 | 87.60 66 | 83.88 147 | 57.84 220 | 72.84 69 | 90.99 67 | 44.99 111 | 88.34 165 | | | |
|
| UnsupCasMVSNet_eth | | | 57.56 302 | 55.15 302 | 64.79 316 | 64.57 361 | 33.12 361 | 73.17 311 | 83.87 148 | 58.98 199 | 41.75 352 | 70.03 342 | 22.54 335 | 79.92 309 | 46.12 285 | 35.31 373 | 81.32 274 |
|
| cascas | | | 69.01 177 | 66.13 206 | 77.66 85 | 79.36 198 | 55.41 58 | 86.99 83 | 83.75 149 | 56.69 245 | 58.92 225 | 81.35 234 | 24.31 325 | 92.10 57 | 53.23 233 | 70.61 177 | 85.46 201 |
|
| dcpmvs_2 | | | 79.33 21 | 78.94 20 | 80.49 25 | 89.75 12 | 56.54 36 | 84.83 145 | 83.68 150 | 67.85 45 | 69.36 103 | 90.24 85 | 60.20 7 | 92.10 57 | 84.14 15 | 80.40 81 | 92.82 24 |
|
| HQP3-MVS | | | | | | | | | 83.68 150 | | | | | | | 73.12 152 | |
|
| 114514_t | | | 69.87 164 | 67.88 171 | 75.85 132 | 88.38 29 | 52.35 140 | 86.94 85 | 83.68 150 | 53.70 277 | 55.68 273 | 85.60 169 | 30.07 286 | 91.20 75 | 55.84 218 | 71.02 173 | 83.99 223 |
|
| HQP-MVS | | | 72.34 119 | 71.44 119 | 75.03 158 | 79.02 207 | 51.56 156 | 88.00 55 | 83.68 150 | 65.45 79 | 64.48 154 | 85.13 173 | 37.35 208 | 88.62 152 | 66.70 122 | 73.12 152 | 84.91 209 |
|
| agg_prior | | | | | | 85.64 60 | 54.92 75 | | 83.61 154 | | 72.53 74 | | | 88.10 175 | | | |
|
| MP-MVS |  | | 74.99 81 | 74.33 77 | 76.95 107 | 82.89 123 | 53.05 126 | 85.63 115 | 83.50 155 | 57.86 219 | 67.25 117 | 90.24 85 | 43.38 137 | 88.85 148 | 76.03 65 | 82.23 64 | 88.96 126 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| h-mvs33 | | | 73.95 91 | 72.89 93 | 77.15 99 | 80.17 189 | 50.37 181 | 84.68 149 | 83.33 156 | 68.08 40 | 71.97 79 | 88.65 122 | 42.50 145 | 91.15 77 | 78.82 46 | 57.78 289 | 89.91 106 |
|
| GBi-Net | | | 67.09 221 | 65.47 223 | 71.96 230 | 82.71 128 | 46.36 273 | 83.52 178 | 83.31 157 | 58.55 207 | 57.58 250 | 76.23 290 | 36.72 222 | 86.20 232 | 47.25 276 | 63.40 235 | 83.32 236 |
|
| test1 | | | 67.09 221 | 65.47 223 | 71.96 230 | 82.71 128 | 46.36 273 | 83.52 178 | 83.31 157 | 58.55 207 | 57.58 250 | 76.23 290 | 36.72 222 | 86.20 232 | 47.25 276 | 63.40 235 | 83.32 236 |
|
| FMVSNet1 | | | 64.57 244 | 62.11 250 | 71.96 230 | 77.32 238 | 46.36 273 | 83.52 178 | 83.31 157 | 52.43 288 | 54.42 284 | 76.23 290 | 27.80 299 | 86.20 232 | 42.59 302 | 61.34 255 | 83.32 236 |
|
| OPM-MVS | | | 70.75 148 | 69.58 147 | 74.26 174 | 75.55 267 | 51.34 162 | 86.05 103 | 83.29 160 | 61.94 141 | 62.95 177 | 85.77 167 | 34.15 250 | 88.44 160 | 65.44 137 | 71.07 172 | 82.99 245 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| nrg030 | | | 72.27 123 | 71.56 116 | 74.42 168 | 75.93 262 | 50.60 172 | 86.97 84 | 83.21 161 | 62.75 126 | 67.15 118 | 84.38 181 | 50.07 59 | 86.66 222 | 71.19 97 | 62.37 250 | 85.99 189 |
|
| XVS | | | 72.92 108 | 71.62 115 | 76.81 110 | 83.41 102 | 52.48 135 | 84.88 143 | 83.20 162 | 58.03 213 | 63.91 164 | 89.63 101 | 35.50 235 | 89.78 115 | 65.50 131 | 80.50 79 | 88.16 143 |
|
| X-MVStestdata | | | 65.85 241 | 62.20 249 | 76.81 110 | 83.41 102 | 52.48 135 | 84.88 143 | 83.20 162 | 58.03 213 | 63.91 164 | 4.82 406 | 35.50 235 | 89.78 115 | 65.50 131 | 80.50 79 | 88.16 143 |
|
| HPM-MVS |  | | 72.60 114 | 71.50 117 | 75.89 131 | 82.02 140 | 51.42 160 | 80.70 255 | 83.05 164 | 56.12 253 | 64.03 162 | 89.53 102 | 37.55 204 | 88.37 162 | 70.48 103 | 80.04 87 | 87.88 151 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| ACMMP |  | | 70.81 147 | 69.29 153 | 75.39 145 | 81.52 161 | 51.92 148 | 83.43 185 | 83.03 165 | 56.67 246 | 58.80 229 | 88.91 114 | 31.92 273 | 88.58 154 | 65.89 130 | 73.39 150 | 85.67 196 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CL-MVSNet_self_test | | | 62.98 260 | 61.14 260 | 68.50 288 | 65.86 351 | 42.96 314 | 84.37 156 | 82.98 166 | 60.98 158 | 53.95 289 | 72.70 323 | 40.43 171 | 83.71 275 | 41.10 304 | 47.93 341 | 78.83 299 |
|
| DP-MVS Recon | | | 71.99 126 | 70.31 136 | 77.01 103 | 90.65 8 | 53.44 111 | 89.37 38 | 82.97 167 | 56.33 251 | 63.56 171 | 89.47 103 | 34.02 251 | 92.15 56 | 54.05 229 | 72.41 160 | 85.43 202 |
|
| DU-MVS | | | 66.84 229 | 65.74 217 | 70.16 263 | 73.27 296 | 42.59 319 | 81.50 239 | 82.92 168 | 63.53 112 | 58.51 232 | 82.11 225 | 40.75 167 | 84.64 267 | 53.11 234 | 55.96 303 | 83.24 239 |
|
| PMMVS | | | 72.98 107 | 72.05 111 | 75.78 133 | 83.57 98 | 48.60 225 | 84.08 165 | 82.85 169 | 61.62 145 | 68.24 111 | 90.33 84 | 28.35 293 | 87.78 187 | 72.71 93 | 76.69 116 | 90.95 78 |
|
| test1111 | | | 71.06 141 | 70.42 133 | 72.97 205 | 79.48 197 | 41.49 329 | 84.82 146 | 82.74 170 | 64.20 96 | 62.98 176 | 87.43 147 | 35.20 238 | 87.92 179 | 58.54 186 | 78.42 103 | 89.49 114 |
|
| HQP_MVS | | | 70.96 144 | 69.91 144 | 74.12 177 | 77.95 228 | 49.57 198 | 85.76 108 | 82.59 171 | 63.60 110 | 62.15 186 | 83.28 200 | 36.04 231 | 88.30 168 | 65.46 134 | 72.34 161 | 84.49 213 |
|
| plane_prior5 | | | | | | | | | 82.59 171 | | | | | 88.30 168 | 65.46 134 | 72.34 161 | 84.49 213 |
|
| CP-MVS | | | 72.59 116 | 71.46 118 | 76.00 130 | 82.93 122 | 52.32 141 | 86.93 86 | 82.48 173 | 55.15 263 | 63.65 168 | 90.44 83 | 35.03 242 | 88.53 158 | 68.69 112 | 77.83 106 | 87.15 166 |
|
| SD-MVS | | | 76.18 59 | 74.85 72 | 80.18 32 | 85.39 65 | 56.90 28 | 85.75 110 | 82.45 174 | 56.79 243 | 74.48 51 | 91.81 53 | 43.72 131 | 90.75 89 | 74.61 79 | 78.65 100 | 92.91 22 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ECVR-MVS |  | | 71.81 130 | 71.00 125 | 74.26 174 | 80.12 190 | 43.49 308 | 84.69 148 | 82.16 175 | 64.02 99 | 64.64 149 | 87.43 147 | 35.04 241 | 89.21 131 | 61.24 163 | 79.66 93 | 90.08 100 |
|
| PGM-MVS | | | 72.60 114 | 71.20 123 | 76.80 112 | 82.95 120 | 52.82 131 | 83.07 199 | 82.14 176 | 56.51 249 | 63.18 173 | 89.81 98 | 35.68 234 | 89.76 117 | 67.30 119 | 80.19 84 | 87.83 152 |
|
| PCF-MVS | | 61.03 10 | 70.10 156 | 68.40 162 | 75.22 155 | 77.15 244 | 51.99 145 | 79.30 273 | 82.12 177 | 56.47 250 | 61.88 189 | 86.48 162 | 43.98 124 | 87.24 205 | 55.37 220 | 72.79 157 | 86.43 182 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| FA-MVS(test-final) | | | 69.00 178 | 66.60 197 | 76.19 123 | 83.48 101 | 47.96 251 | 74.73 299 | 82.07 178 | 57.27 233 | 62.18 185 | 78.47 260 | 36.09 229 | 92.89 35 | 53.76 232 | 71.32 171 | 87.73 155 |
|
| WR-MVS_H | | | 58.91 292 | 58.04 284 | 61.54 333 | 69.07 335 | 33.83 359 | 76.91 286 | 81.99 179 | 51.40 296 | 48.17 322 | 74.67 302 | 40.23 173 | 74.15 346 | 31.78 343 | 48.10 339 | 76.64 326 |
|
| v2v482 | | | 69.55 171 | 67.64 177 | 75.26 154 | 72.32 308 | 53.83 100 | 84.93 142 | 81.94 180 | 65.37 84 | 60.80 198 | 79.25 252 | 41.62 159 | 88.98 141 | 63.03 150 | 59.51 264 | 82.98 246 |
|
| MIMVSNet | | | 63.12 259 | 60.29 269 | 71.61 239 | 75.92 263 | 46.65 269 | 65.15 346 | 81.94 180 | 59.14 195 | 54.65 282 | 69.47 344 | 25.74 313 | 80.63 299 | 41.03 305 | 69.56 188 | 87.55 159 |
|
| UnsupCasMVSNet_bld | | | 53.86 321 | 50.53 325 | 63.84 318 | 63.52 365 | 34.75 353 | 71.38 325 | 81.92 182 | 46.53 322 | 38.95 362 | 57.93 374 | 20.55 349 | 80.20 307 | 39.91 308 | 34.09 380 | 76.57 327 |
|
| EPMVS | | | 68.45 189 | 65.44 225 | 77.47 90 | 84.91 74 | 56.17 43 | 71.89 324 | 81.91 183 | 61.72 144 | 60.85 197 | 72.49 324 | 36.21 227 | 87.06 210 | 47.32 275 | 71.62 167 | 89.17 122 |
|
| v148 | | | 68.24 195 | 66.35 200 | 73.88 184 | 71.76 311 | 51.47 159 | 84.23 161 | 81.90 184 | 63.69 108 | 58.94 223 | 76.44 286 | 43.72 131 | 87.78 187 | 60.63 168 | 55.86 305 | 82.39 252 |
|
| testing3 | | | 59.97 280 | 60.19 270 | 59.32 341 | 77.60 233 | 30.01 374 | 81.75 230 | 81.79 185 | 53.54 278 | 50.34 314 | 79.94 243 | 48.99 69 | 76.91 334 | 17.19 388 | 50.59 334 | 71.03 364 |
|
| mPP-MVS | | | 71.79 132 | 70.38 134 | 76.04 128 | 82.65 131 | 52.06 143 | 84.45 155 | 81.78 186 | 55.59 258 | 62.05 188 | 89.68 100 | 33.48 257 | 88.28 170 | 65.45 136 | 78.24 105 | 87.77 154 |
|
| v1144 | | | 68.81 182 | 66.82 190 | 74.80 162 | 72.34 307 | 53.46 108 | 84.68 149 | 81.77 187 | 64.25 95 | 60.28 202 | 77.91 263 | 40.23 173 | 88.95 142 | 60.37 175 | 59.52 263 | 81.97 255 |
|
| pm-mvs1 | | | 64.12 248 | 62.56 246 | 68.78 281 | 71.68 312 | 38.87 341 | 82.89 203 | 81.57 188 | 55.54 260 | 53.89 290 | 77.82 265 | 37.73 199 | 86.74 219 | 48.46 269 | 53.49 324 | 80.72 281 |
|
| mvs_anonymous | | | 72.29 121 | 70.74 127 | 76.94 108 | 82.85 124 | 54.72 81 | 78.43 279 | 81.54 189 | 63.77 105 | 61.69 190 | 79.32 250 | 51.11 49 | 85.31 254 | 62.15 157 | 75.79 126 | 90.79 81 |
|
| save fliter | | | | | | 85.35 66 | 56.34 41 | 89.31 40 | 81.46 190 | 61.55 146 | | | | | | | |
|
| MVSFormer | | | 73.53 101 | 72.19 106 | 77.57 87 | 83.02 117 | 55.24 63 | 81.63 233 | 81.44 191 | 50.28 300 | 76.67 40 | 90.91 71 | 44.82 117 | 86.11 236 | 60.83 166 | 80.09 85 | 91.36 66 |
|
| test_djsdf | | | 63.84 250 | 61.56 254 | 70.70 255 | 68.78 336 | 44.69 295 | 81.63 233 | 81.44 191 | 50.28 300 | 52.27 302 | 76.26 289 | 26.72 306 | 86.11 236 | 60.83 166 | 55.84 306 | 81.29 275 |
|
| MTGPA |  | | | | | | | | 81.31 193 | | | | | | | | |
|
| MTAPA | | | 72.73 112 | 71.22 122 | 77.27 96 | 81.54 159 | 53.57 106 | 67.06 344 | 81.31 193 | 59.41 184 | 68.39 110 | 90.96 70 | 36.07 230 | 89.01 137 | 73.80 87 | 82.45 63 | 89.23 119 |
|
| tpm2 | | | 70.82 146 | 68.44 161 | 77.98 79 | 80.78 177 | 56.11 44 | 74.21 303 | 81.28 195 | 60.24 171 | 68.04 112 | 75.27 299 | 52.26 43 | 88.50 159 | 55.82 219 | 68.03 195 | 89.33 116 |
|
| miper_lstm_enhance | | | 63.91 249 | 62.30 248 | 68.75 282 | 75.06 272 | 46.78 267 | 69.02 335 | 81.14 196 | 59.68 179 | 52.76 298 | 72.39 327 | 40.71 169 | 77.99 325 | 56.81 210 | 53.09 327 | 81.48 265 |
|
| jajsoiax | | | 63.21 258 | 60.84 263 | 70.32 261 | 68.33 341 | 44.45 297 | 81.23 243 | 81.05 197 | 53.37 281 | 50.96 311 | 77.81 266 | 17.49 362 | 85.49 252 | 59.31 179 | 58.05 282 | 81.02 278 |
|
| Syy-MVS | | | 61.51 273 | 61.35 257 | 62.00 329 | 81.73 147 | 30.09 372 | 80.97 249 | 81.02 198 | 60.93 160 | 55.06 277 | 82.64 211 | 35.09 240 | 80.81 296 | 16.40 390 | 58.32 275 | 75.10 339 |
|
| myMVS_eth3d | | | 63.52 254 | 63.56 244 | 63.40 322 | 81.73 147 | 34.28 355 | 80.97 249 | 81.02 198 | 60.93 160 | 55.06 277 | 82.64 211 | 48.00 75 | 80.81 296 | 23.42 375 | 58.32 275 | 75.10 339 |
|
| v1192 | | | 67.96 198 | 65.74 217 | 74.63 163 | 71.79 310 | 53.43 113 | 84.06 167 | 80.99 200 | 63.19 120 | 59.56 211 | 77.46 270 | 37.50 207 | 88.65 151 | 58.20 193 | 58.93 270 | 81.79 258 |
|
| TR-MVS | | | 69.71 166 | 67.85 174 | 75.27 153 | 82.94 121 | 48.48 231 | 87.40 72 | 80.86 201 | 57.15 236 | 64.61 151 | 87.08 152 | 32.67 264 | 89.64 121 | 46.38 282 | 71.55 169 | 87.68 157 |
|
| v144192 | | | 67.86 199 | 65.76 216 | 74.16 176 | 71.68 312 | 53.09 124 | 84.14 164 | 80.83 202 | 62.85 125 | 59.21 220 | 77.28 273 | 39.30 183 | 88.00 178 | 58.67 185 | 57.88 287 | 81.40 269 |
|
| mvs_tets | | | 62.96 261 | 60.55 265 | 70.19 262 | 68.22 344 | 44.24 302 | 80.90 251 | 80.74 203 | 52.99 284 | 50.82 313 | 77.56 267 | 16.74 365 | 85.44 253 | 59.04 182 | 57.94 284 | 80.89 279 |
|
| Fast-Effi-MVS+ | | | 72.73 112 | 71.15 124 | 77.48 89 | 82.75 127 | 54.76 78 | 86.77 90 | 80.64 204 | 63.05 122 | 65.93 132 | 84.01 186 | 44.42 122 | 89.03 136 | 56.45 215 | 76.36 121 | 88.64 135 |
|
| LPG-MVS_test | | | 66.44 234 | 64.58 236 | 72.02 227 | 74.42 282 | 48.60 225 | 83.07 199 | 80.64 204 | 54.69 270 | 53.75 291 | 83.83 189 | 25.73 314 | 86.98 211 | 60.33 176 | 64.71 221 | 80.48 284 |
|
| LGP-MVS_train | | | | | 72.02 227 | 74.42 282 | 48.60 225 | | 80.64 204 | 54.69 270 | 53.75 291 | 83.83 189 | 25.73 314 | 86.98 211 | 60.33 176 | 64.71 221 | 80.48 284 |
|
| v1921920 | | | 67.45 210 | 65.23 229 | 74.10 178 | 71.51 315 | 52.90 130 | 83.75 176 | 80.44 207 | 62.48 134 | 59.12 221 | 77.13 274 | 36.98 215 | 87.90 180 | 57.53 204 | 58.14 281 | 81.49 263 |
|
| KD-MVS_2432*1600 | | | 59.04 290 | 56.44 294 | 66.86 299 | 79.07 205 | 45.87 283 | 72.13 320 | 80.42 208 | 55.03 265 | 48.15 323 | 71.01 335 | 36.73 220 | 78.05 323 | 35.21 327 | 30.18 384 | 76.67 323 |
|
| miper_refine_blended | | | 59.04 290 | 56.44 294 | 66.86 299 | 79.07 205 | 45.87 283 | 72.13 320 | 80.42 208 | 55.03 265 | 48.15 323 | 71.01 335 | 36.73 220 | 78.05 323 | 35.21 327 | 30.18 384 | 76.67 323 |
|
| sd_testset | | | 67.79 202 | 65.95 211 | 73.32 198 | 81.70 149 | 46.33 276 | 68.99 336 | 80.30 210 | 66.58 60 | 61.64 191 | 82.38 219 | 30.45 283 | 87.63 194 | 55.86 217 | 65.60 217 | 86.01 187 |
|
| GA-MVS | | | 69.04 176 | 66.70 194 | 76.06 127 | 75.11 270 | 52.36 139 | 83.12 197 | 80.23 211 | 63.32 117 | 60.65 200 | 79.22 253 | 30.98 280 | 88.37 162 | 61.25 162 | 66.41 210 | 87.46 161 |
|
| v7n | | | 62.50 266 | 59.27 277 | 72.20 223 | 67.25 347 | 49.83 195 | 77.87 282 | 80.12 212 | 52.50 287 | 48.80 321 | 73.07 318 | 32.10 269 | 87.90 180 | 46.83 279 | 54.92 312 | 78.86 298 |
|
| v8 | | | 67.25 216 | 64.99 232 | 74.04 179 | 72.89 301 | 53.31 118 | 82.37 216 | 80.11 213 | 61.54 147 | 54.29 286 | 76.02 295 | 42.89 143 | 88.41 161 | 58.43 187 | 56.36 295 | 80.39 286 |
|
| dmvs_re | | | 67.61 205 | 66.00 209 | 72.42 218 | 81.86 144 | 43.45 309 | 64.67 349 | 80.00 214 | 69.56 32 | 60.07 203 | 85.00 177 | 34.71 244 | 87.63 194 | 51.48 248 | 66.68 205 | 86.17 186 |
|
| v1240 | | | 66.99 224 | 64.68 235 | 73.93 182 | 71.38 318 | 52.66 133 | 83.39 189 | 79.98 215 | 61.97 140 | 58.44 238 | 77.11 275 | 35.25 237 | 87.81 182 | 56.46 214 | 58.15 279 | 81.33 272 |
|
| diffmvs |  | | 75.11 80 | 74.65 75 | 76.46 116 | 78.52 220 | 53.35 115 | 83.28 193 | 79.94 216 | 70.51 25 | 71.64 83 | 88.72 117 | 46.02 96 | 86.08 241 | 77.52 59 | 75.75 128 | 89.96 104 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UniMVSNet_ETH3D | | | 62.51 265 | 60.49 266 | 68.57 287 | 68.30 342 | 40.88 335 | 73.89 304 | 79.93 217 | 51.81 294 | 54.77 280 | 79.61 247 | 24.80 321 | 81.10 292 | 49.93 256 | 61.35 254 | 83.73 231 |
|
| v10 | | | 66.61 231 | 64.20 240 | 73.83 187 | 72.59 304 | 53.37 114 | 81.88 225 | 79.91 218 | 61.11 154 | 54.09 288 | 75.60 297 | 40.06 177 | 88.26 171 | 56.47 213 | 56.10 301 | 79.86 292 |
|
| ACMP | | 61.11 9 | 66.24 237 | 64.33 238 | 72.00 229 | 74.89 276 | 49.12 209 | 83.18 196 | 79.83 219 | 55.41 261 | 52.29 301 | 82.68 210 | 25.83 312 | 86.10 238 | 60.89 165 | 63.94 230 | 80.78 280 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| Anonymous20231206 | | | 59.08 289 | 57.59 286 | 63.55 320 | 68.77 337 | 32.14 367 | 80.26 261 | 79.78 220 | 50.00 304 | 49.39 317 | 72.39 327 | 26.64 307 | 78.36 318 | 33.12 339 | 57.94 284 | 80.14 289 |
|
| test-LLR | | | 69.65 169 | 69.01 156 | 71.60 240 | 78.67 215 | 48.17 241 | 85.13 130 | 79.72 221 | 59.18 193 | 63.13 174 | 82.58 213 | 36.91 217 | 80.24 305 | 60.56 170 | 75.17 134 | 86.39 183 |
|
| test-mter | | | 68.36 190 | 67.29 184 | 71.60 240 | 78.67 215 | 48.17 241 | 85.13 130 | 79.72 221 | 53.38 280 | 63.13 174 | 82.58 213 | 27.23 303 | 80.24 305 | 60.56 170 | 75.17 134 | 86.39 183 |
|
| ACMM | | 58.35 12 | 64.35 246 | 62.01 251 | 71.38 244 | 74.21 285 | 48.51 229 | 82.25 217 | 79.66 223 | 47.61 316 | 54.54 283 | 80.11 242 | 25.26 317 | 86.00 242 | 51.26 249 | 63.16 242 | 79.64 293 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ambc | | | | | 62.06 328 | 53.98 381 | 29.38 378 | 35.08 392 | 79.65 224 | | 41.37 353 | 59.96 369 | 6.27 392 | 82.15 285 | 35.34 326 | 38.22 369 | 74.65 342 |
|
| MSLP-MVS++ | | | 74.21 88 | 72.25 103 | 80.11 36 | 81.45 162 | 56.47 38 | 86.32 97 | 79.65 224 | 58.19 211 | 66.36 127 | 92.29 42 | 36.11 228 | 90.66 91 | 67.39 118 | 82.49 62 | 93.18 19 |
|
| AUN-MVS | | | 68.20 196 | 66.35 200 | 73.76 189 | 76.37 250 | 47.45 258 | 79.52 270 | 79.52 226 | 60.98 158 | 62.34 182 | 86.02 164 | 36.59 225 | 86.94 214 | 62.32 154 | 53.47 325 | 86.89 169 |
|
| APD-MVS_3200maxsize | | | 69.62 170 | 68.23 166 | 73.80 188 | 81.58 157 | 48.22 240 | 81.91 224 | 79.50 227 | 48.21 313 | 64.24 159 | 89.75 99 | 31.91 274 | 87.55 198 | 63.08 149 | 73.85 148 | 85.64 198 |
|
| iter_conf05_11 | | | 79.47 20 | 78.68 23 | 81.84 12 | 87.91 40 | 57.01 24 | 93.27 2 | 79.49 228 | 74.74 6 | 83.40 8 | 94.00 6 | 21.51 345 | 94.70 21 | 84.07 17 | 89.68 7 | 93.82 7 |
|
| hse-mvs2 | | | 71.44 136 | 70.68 128 | 73.73 191 | 76.34 251 | 47.44 259 | 79.45 271 | 79.47 229 | 68.08 40 | 71.97 79 | 86.01 166 | 42.50 145 | 86.93 215 | 78.82 46 | 53.46 326 | 86.83 175 |
|
| xiu_mvs_v1_base_debu | | | 71.60 133 | 70.29 137 | 75.55 139 | 77.26 240 | 53.15 121 | 85.34 121 | 79.37 230 | 55.83 255 | 72.54 71 | 90.19 88 | 22.38 336 | 86.66 222 | 73.28 90 | 76.39 118 | 86.85 172 |
|
| xiu_mvs_v1_base | | | 71.60 133 | 70.29 137 | 75.55 139 | 77.26 240 | 53.15 121 | 85.34 121 | 79.37 230 | 55.83 255 | 72.54 71 | 90.19 88 | 22.38 336 | 86.66 222 | 73.28 90 | 76.39 118 | 86.85 172 |
|
| xiu_mvs_v1_base_debi | | | 71.60 133 | 70.29 137 | 75.55 139 | 77.26 240 | 53.15 121 | 85.34 121 | 79.37 230 | 55.83 255 | 72.54 71 | 90.19 88 | 22.38 336 | 86.66 222 | 73.28 90 | 76.39 118 | 86.85 172 |
|
| CANet_DTU | | | 73.71 97 | 73.14 90 | 75.40 144 | 82.61 132 | 50.05 189 | 84.67 151 | 79.36 233 | 69.72 30 | 75.39 43 | 90.03 94 | 29.41 289 | 85.93 247 | 67.99 116 | 79.11 97 | 90.22 94 |
|
| SR-MVS | | | 70.92 145 | 69.73 146 | 74.50 165 | 83.38 106 | 50.48 176 | 84.27 160 | 79.35 234 | 48.96 310 | 66.57 125 | 90.45 80 | 33.65 256 | 87.11 208 | 66.42 124 | 74.56 143 | 85.91 192 |
|
| IS-MVSNet | | | 68.80 183 | 67.55 180 | 72.54 214 | 78.50 221 | 43.43 310 | 81.03 247 | 79.35 234 | 59.12 196 | 57.27 258 | 86.71 157 | 46.05 95 | 87.70 190 | 44.32 293 | 75.60 129 | 86.49 180 |
|
| BH-RMVSNet | | | 70.08 157 | 68.01 168 | 76.27 118 | 84.21 88 | 51.22 166 | 87.29 76 | 79.33 236 | 58.96 200 | 63.63 169 | 86.77 156 | 33.29 259 | 90.30 103 | 44.63 291 | 73.96 146 | 87.30 165 |
|
| TransMVSNet (Re) | | | 62.82 262 | 60.76 264 | 69.02 276 | 73.98 288 | 41.61 327 | 86.36 96 | 79.30 237 | 56.90 238 | 52.53 299 | 76.44 286 | 41.85 157 | 87.60 197 | 38.83 310 | 40.61 365 | 77.86 313 |
|
| cl____ | | | 67.43 211 | 65.93 212 | 71.95 233 | 76.33 252 | 48.02 247 | 82.58 208 | 79.12 238 | 61.30 152 | 56.72 262 | 76.92 279 | 46.12 93 | 86.44 229 | 57.98 196 | 56.31 297 | 81.38 271 |
|
| DIV-MVS_self_test | | | 67.43 211 | 65.93 212 | 71.94 234 | 76.33 252 | 48.01 248 | 82.57 209 | 79.11 239 | 61.31 151 | 56.73 261 | 76.92 279 | 46.09 94 | 86.43 230 | 57.98 196 | 56.31 297 | 81.39 270 |
|
| HyFIR lowres test | | | 69.94 163 | 67.58 178 | 77.04 101 | 77.11 245 | 57.29 20 | 81.49 241 | 79.11 239 | 58.27 210 | 58.86 227 | 80.41 241 | 42.33 147 | 86.96 213 | 61.91 158 | 68.68 192 | 86.87 170 |
|
| miper_enhance_ethall | | | 69.77 165 | 68.90 157 | 72.38 219 | 78.93 210 | 49.91 192 | 83.29 192 | 78.85 241 | 64.90 89 | 59.37 215 | 79.46 248 | 52.77 38 | 85.16 259 | 63.78 144 | 58.72 271 | 82.08 254 |
|
| Baseline_NR-MVSNet | | | 65.49 243 | 64.27 239 | 69.13 275 | 74.37 284 | 41.65 326 | 83.39 189 | 78.85 241 | 59.56 180 | 59.62 210 | 76.88 281 | 40.75 167 | 87.44 200 | 49.99 255 | 55.05 311 | 78.28 309 |
|
| PVSNet_Blended_VisFu | | | 73.40 104 | 72.44 98 | 76.30 117 | 81.32 166 | 54.70 82 | 85.81 106 | 78.82 243 | 63.70 107 | 64.53 153 | 85.38 172 | 47.11 83 | 87.38 203 | 67.75 117 | 77.55 107 | 86.81 176 |
|
| test0.0.03 1 | | | 62.54 264 | 62.44 247 | 62.86 326 | 72.28 309 | 29.51 377 | 82.93 202 | 78.78 244 | 59.18 193 | 53.07 296 | 82.41 217 | 36.91 217 | 77.39 331 | 37.45 313 | 58.96 269 | 81.66 261 |
|
| FOURS1 | | | | | | 83.24 109 | 49.90 193 | 84.98 138 | 78.76 245 | 47.71 315 | 73.42 60 | | | | | | |
|
| tpm | | | 68.36 190 | 67.48 182 | 70.97 252 | 79.93 193 | 51.34 162 | 76.58 289 | 78.75 246 | 67.73 47 | 63.54 172 | 74.86 301 | 48.33 70 | 72.36 358 | 53.93 230 | 63.71 231 | 89.21 120 |
|
| tpmrst | | | 71.04 142 | 69.77 145 | 74.86 161 | 83.19 111 | 55.86 51 | 75.64 291 | 78.73 247 | 67.88 44 | 64.99 146 | 73.73 310 | 49.96 63 | 79.56 314 | 65.92 128 | 67.85 198 | 89.14 123 |
|
| pmmvs6 | | | 59.64 282 | 57.15 289 | 67.09 296 | 66.01 349 | 36.86 350 | 80.50 256 | 78.64 248 | 45.05 334 | 49.05 319 | 73.94 308 | 27.28 302 | 86.10 238 | 43.96 295 | 49.94 336 | 78.31 308 |
|
| anonymousdsp | | | 60.46 279 | 57.65 285 | 68.88 277 | 63.63 364 | 45.09 290 | 72.93 312 | 78.63 249 | 46.52 323 | 51.12 308 | 72.80 322 | 21.46 346 | 83.07 282 | 57.79 201 | 53.97 319 | 78.47 304 |
|
| V42 | | | 67.66 204 | 65.60 221 | 73.86 185 | 70.69 325 | 53.63 105 | 81.50 239 | 78.61 250 | 63.85 104 | 59.49 214 | 77.49 269 | 37.98 193 | 87.65 192 | 62.33 153 | 58.43 274 | 80.29 287 |
|
| CP-MVSNet | | | 58.54 298 | 57.57 287 | 61.46 334 | 68.50 339 | 33.96 358 | 76.90 287 | 78.60 251 | 51.67 295 | 47.83 325 | 76.60 285 | 34.99 243 | 72.79 355 | 35.45 324 | 47.58 343 | 77.64 317 |
|
| UGNet | | | 68.71 185 | 67.11 188 | 73.50 197 | 80.55 184 | 47.61 256 | 84.08 165 | 78.51 252 | 59.45 182 | 65.68 137 | 82.73 209 | 23.78 327 | 85.08 261 | 52.80 239 | 76.40 117 | 87.80 153 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| cl22 | | | 68.85 179 | 67.69 176 | 72.35 220 | 78.07 227 | 49.98 191 | 82.45 214 | 78.48 253 | 62.50 133 | 58.46 236 | 77.95 262 | 49.99 61 | 85.17 258 | 62.55 152 | 58.72 271 | 81.90 257 |
|
| miper_ehance_all_eth | | | 68.70 187 | 67.58 178 | 72.08 225 | 76.91 247 | 49.48 204 | 82.47 213 | 78.45 254 | 62.68 128 | 58.28 240 | 77.88 264 | 50.90 52 | 85.01 262 | 61.91 158 | 58.72 271 | 81.75 259 |
|
| FE-MVS | | | 64.15 247 | 60.43 268 | 75.30 150 | 80.85 176 | 49.86 194 | 68.28 340 | 78.37 255 | 50.26 303 | 59.31 217 | 73.79 309 | 26.19 310 | 91.92 60 | 40.19 306 | 66.67 206 | 84.12 218 |
|
| PEN-MVS | | | 58.35 299 | 57.15 289 | 61.94 330 | 67.55 346 | 34.39 354 | 77.01 285 | 78.35 256 | 51.87 292 | 47.72 326 | 76.73 283 | 33.91 252 | 73.75 350 | 34.03 334 | 47.17 347 | 77.68 315 |
|
| MDTV_nov1_ep13 | | | | 61.56 254 | | 81.68 151 | 55.12 68 | 72.41 316 | 78.18 257 | 59.19 191 | 58.85 228 | 69.29 345 | 34.69 245 | 86.16 235 | 36.76 321 | 62.96 245 | |
|
| BH-w/o | | | 70.02 159 | 68.51 160 | 74.56 164 | 82.77 126 | 50.39 179 | 86.60 94 | 78.14 258 | 59.77 176 | 59.65 208 | 85.57 170 | 39.27 184 | 87.30 204 | 49.86 257 | 74.94 141 | 85.99 189 |
|
| PS-CasMVS | | | 58.12 300 | 57.03 291 | 61.37 335 | 68.24 343 | 33.80 360 | 76.73 288 | 78.01 259 | 51.20 297 | 47.54 329 | 76.20 293 | 32.85 261 | 72.76 356 | 35.17 329 | 47.37 345 | 77.55 318 |
|
| c3_l | | | 67.97 197 | 66.66 195 | 71.91 236 | 76.20 256 | 49.31 207 | 82.13 220 | 78.00 260 | 61.99 139 | 57.64 249 | 76.94 278 | 49.41 66 | 84.93 263 | 60.62 169 | 57.01 293 | 81.49 263 |
|
| 无先验 | | | | | | | | 85.19 128 | 78.00 260 | 49.08 308 | | | | 85.13 260 | 52.78 240 | | 87.45 162 |
|
| PVSNet | | 62.49 8 | 69.27 174 | 67.81 175 | 73.64 193 | 84.41 82 | 51.85 149 | 84.63 152 | 77.80 262 | 66.42 64 | 59.80 206 | 84.95 178 | 22.14 342 | 80.44 303 | 55.03 221 | 75.11 137 | 88.62 136 |
|
| PatchmatchNet |  | | 67.07 223 | 63.63 243 | 77.40 91 | 83.10 112 | 58.03 9 | 72.11 322 | 77.77 263 | 58.85 201 | 59.37 215 | 70.83 337 | 37.84 195 | 84.93 263 | 42.96 299 | 69.83 184 | 89.26 117 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| Vis-MVSNet (Re-imp) | | | 65.52 242 | 65.63 219 | 65.17 313 | 77.49 236 | 30.54 369 | 75.49 295 | 77.73 264 | 59.34 186 | 52.26 303 | 86.69 158 | 49.38 67 | 80.53 302 | 37.07 317 | 75.28 132 | 84.42 215 |
|
| D2MVS | | | 63.49 255 | 61.39 256 | 69.77 269 | 69.29 333 | 48.93 217 | 78.89 276 | 77.71 265 | 60.64 167 | 49.70 316 | 72.10 332 | 27.08 304 | 83.48 278 | 54.48 225 | 62.65 247 | 76.90 321 |
|
| tpmvs | | | 62.45 268 | 59.42 275 | 71.53 243 | 83.93 92 | 54.32 91 | 70.03 331 | 77.61 266 | 51.91 291 | 53.48 294 | 68.29 348 | 37.91 194 | 86.66 222 | 33.36 336 | 58.27 277 | 73.62 349 |
|
| SCA | | | 63.84 250 | 60.01 272 | 75.32 147 | 78.58 219 | 57.92 10 | 61.61 360 | 77.53 267 | 56.71 244 | 57.75 247 | 70.77 338 | 31.97 271 | 79.91 311 | 48.80 265 | 56.36 295 | 88.13 146 |
|
| Vis-MVSNet |  | | 70.61 150 | 69.34 151 | 74.42 168 | 80.95 174 | 48.49 230 | 86.03 104 | 77.51 268 | 58.74 204 | 65.55 138 | 87.78 140 | 34.37 248 | 85.95 246 | 52.53 244 | 80.61 77 | 88.80 131 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| CDS-MVSNet | | | 70.48 152 | 69.43 148 | 73.64 193 | 77.56 235 | 48.83 220 | 83.51 182 | 77.45 269 | 63.27 118 | 62.33 183 | 85.54 171 | 43.85 125 | 83.29 281 | 57.38 207 | 74.00 145 | 88.79 132 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| BH-untuned | | | 68.28 193 | 66.40 199 | 73.91 183 | 81.62 154 | 50.01 190 | 85.56 118 | 77.39 270 | 57.63 225 | 57.47 255 | 83.69 193 | 36.36 226 | 87.08 209 | 44.81 289 | 73.08 155 | 84.65 212 |
|
| Anonymous202405211 | | | 70.11 155 | 67.88 171 | 76.79 113 | 87.20 45 | 47.24 264 | 89.49 36 | 77.38 271 | 54.88 268 | 66.14 128 | 86.84 155 | 20.93 348 | 91.54 66 | 56.45 215 | 71.62 167 | 91.59 56 |
|
| PVSNet_0 | | 57.04 13 | 61.19 275 | 57.24 288 | 73.02 203 | 77.45 237 | 50.31 185 | 79.43 272 | 77.36 272 | 63.96 103 | 47.51 330 | 72.45 326 | 25.03 319 | 83.78 274 | 52.76 242 | 19.22 396 | 84.96 208 |
|
| tpm cat1 | | | 66.28 235 | 62.78 245 | 76.77 114 | 81.40 163 | 57.14 22 | 70.03 331 | 77.19 273 | 53.00 283 | 58.76 230 | 70.73 340 | 46.17 92 | 86.73 220 | 43.27 297 | 64.46 225 | 86.44 181 |
|
| TAMVS | | | 69.51 172 | 68.16 167 | 73.56 196 | 76.30 254 | 48.71 224 | 82.57 209 | 77.17 274 | 62.10 137 | 61.32 194 | 84.23 184 | 41.90 156 | 83.46 279 | 54.80 224 | 73.09 154 | 88.50 141 |
|
| FMVSNet5 | | | 58.61 295 | 56.45 293 | 65.10 314 | 77.20 243 | 39.74 337 | 74.77 298 | 77.12 275 | 50.27 302 | 43.28 346 | 67.71 349 | 26.15 311 | 76.90 336 | 36.78 320 | 54.78 314 | 78.65 302 |
|
| DTE-MVSNet | | | 57.03 304 | 55.73 300 | 60.95 338 | 65.94 350 | 32.57 365 | 75.71 290 | 77.09 276 | 51.16 298 | 46.65 335 | 76.34 288 | 32.84 262 | 73.22 354 | 30.94 347 | 44.87 356 | 77.06 320 |
|
| SR-MVS-dyc-post | | | 68.27 194 | 66.87 189 | 72.48 217 | 80.96 171 | 48.14 243 | 81.54 237 | 76.98 277 | 46.42 325 | 62.75 179 | 89.42 104 | 31.17 279 | 86.09 240 | 60.52 172 | 72.06 164 | 83.19 241 |
|
| RE-MVS-def | | | | 66.66 195 | | 80.96 171 | 48.14 243 | 81.54 237 | 76.98 277 | 46.42 325 | 62.75 179 | 89.42 104 | 29.28 291 | | 60.52 172 | 72.06 164 | 83.19 241 |
|
| RPMNet | | | 59.29 284 | 54.25 307 | 74.42 168 | 73.97 289 | 56.57 34 | 60.52 363 | 76.98 277 | 35.72 365 | 57.49 253 | 58.87 373 | 37.73 199 | 85.26 256 | 27.01 364 | 59.93 260 | 81.42 267 |
|
| eth_miper_zixun_eth | | | 66.98 225 | 65.28 228 | 72.06 226 | 75.61 266 | 50.40 178 | 81.00 248 | 76.97 280 | 62.00 138 | 56.99 260 | 76.97 277 | 44.84 116 | 85.58 249 | 58.75 184 | 54.42 317 | 80.21 288 |
|
| 1112_ss | | | 70.05 158 | 69.37 150 | 72.10 224 | 80.77 178 | 42.78 317 | 85.12 133 | 76.75 281 | 59.69 178 | 61.19 195 | 92.12 44 | 47.48 79 | 83.84 272 | 53.04 236 | 68.21 193 | 89.66 109 |
|
| GeoE | | | 69.96 162 | 67.88 171 | 76.22 120 | 81.11 168 | 51.71 153 | 84.15 163 | 76.74 282 | 59.83 175 | 60.91 196 | 84.38 181 | 41.56 161 | 88.10 175 | 51.67 247 | 70.57 178 | 88.84 130 |
|
| Effi-MVS+ | | | 75.24 76 | 73.61 84 | 80.16 33 | 81.92 142 | 57.42 19 | 85.21 127 | 76.71 283 | 60.68 166 | 73.32 62 | 89.34 106 | 47.30 80 | 91.63 64 | 68.28 114 | 79.72 92 | 91.42 63 |
|
| IterMVS-LS | | | 66.63 230 | 65.36 227 | 70.42 259 | 75.10 271 | 48.90 218 | 81.45 242 | 76.69 284 | 61.05 156 | 55.71 272 | 77.10 276 | 45.86 98 | 83.65 276 | 57.44 205 | 57.88 287 | 78.70 300 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| AdaColmap |  | | 67.86 199 | 65.48 222 | 75.00 159 | 88.15 36 | 54.99 73 | 86.10 102 | 76.63 285 | 49.30 307 | 57.80 244 | 86.65 159 | 29.39 290 | 88.94 144 | 45.10 288 | 70.21 181 | 81.06 277 |
|
| dp | | | 64.41 245 | 61.58 253 | 72.90 206 | 82.40 134 | 54.09 98 | 72.53 314 | 76.59 286 | 60.39 169 | 55.68 273 | 70.39 341 | 35.18 239 | 76.90 336 | 39.34 309 | 61.71 253 | 87.73 155 |
|
| JIA-IIPM | | | 52.33 330 | 47.77 337 | 66.03 306 | 71.20 319 | 46.92 266 | 40.00 389 | 76.48 287 | 37.10 360 | 46.73 333 | 37.02 389 | 32.96 260 | 77.88 327 | 35.97 322 | 52.45 330 | 73.29 352 |
|
| TAPA-MVS | | 56.12 14 | 61.82 272 | 60.18 271 | 66.71 301 | 78.48 222 | 37.97 346 | 75.19 297 | 76.41 288 | 46.82 321 | 57.04 259 | 86.52 161 | 27.67 301 | 77.03 333 | 26.50 366 | 67.02 204 | 85.14 204 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMH | | 53.70 16 | 59.78 281 | 55.94 299 | 71.28 245 | 76.59 249 | 48.35 235 | 80.15 264 | 76.11 289 | 49.74 305 | 41.91 351 | 73.45 317 | 16.50 367 | 90.31 101 | 31.42 344 | 57.63 290 | 75.17 337 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| RRT_MVS | | | 63.68 253 | 61.01 262 | 71.70 238 | 73.48 291 | 45.98 281 | 81.19 244 | 76.08 290 | 54.33 274 | 52.84 297 | 79.27 251 | 22.21 339 | 87.65 192 | 54.13 227 | 55.54 309 | 81.46 266 |
|
| EU-MVSNet | | | 52.63 327 | 50.72 324 | 58.37 345 | 62.69 368 | 28.13 382 | 72.60 313 | 75.97 291 | 30.94 376 | 40.76 358 | 72.11 331 | 20.16 350 | 70.80 362 | 35.11 330 | 46.11 353 | 76.19 331 |
|
| HPM-MVS_fast | | | 67.86 199 | 66.28 203 | 72.61 212 | 80.67 181 | 48.34 236 | 81.18 245 | 75.95 292 | 50.81 299 | 59.55 212 | 88.05 135 | 27.86 298 | 85.98 243 | 58.83 183 | 73.58 149 | 83.51 234 |
|
| Fast-Effi-MVS+-dtu | | | 66.53 232 | 64.10 241 | 73.84 186 | 72.41 306 | 52.30 142 | 84.73 147 | 75.66 293 | 59.51 181 | 56.34 268 | 79.11 255 | 28.11 295 | 85.85 248 | 57.74 203 | 63.29 239 | 83.35 235 |
|
| EPNet_dtu | | | 66.25 236 | 66.71 193 | 64.87 315 | 78.66 217 | 34.12 357 | 82.80 204 | 75.51 294 | 61.75 143 | 64.47 157 | 86.90 154 | 37.06 214 | 72.46 357 | 43.65 296 | 69.63 187 | 88.02 149 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IterMVS | | | 63.77 252 | 61.67 252 | 70.08 265 | 72.68 303 | 51.24 165 | 80.44 257 | 75.51 294 | 60.51 168 | 51.41 306 | 73.70 313 | 32.08 270 | 78.91 315 | 54.30 226 | 54.35 318 | 80.08 290 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| UA-Net | | | 67.32 215 | 66.23 204 | 70.59 256 | 78.85 211 | 41.23 332 | 73.60 306 | 75.45 296 | 61.54 147 | 66.61 123 | 84.53 180 | 38.73 189 | 86.57 227 | 42.48 303 | 74.24 144 | 83.98 225 |
|
| OMC-MVS | | | 65.97 240 | 65.06 231 | 68.71 283 | 72.97 299 | 42.58 321 | 78.61 277 | 75.35 297 | 54.72 269 | 59.31 217 | 86.25 163 | 33.30 258 | 77.88 327 | 57.99 195 | 67.05 203 | 85.66 197 |
|
| pmmvs5 | | | 62.80 263 | 61.18 259 | 67.66 292 | 69.53 331 | 42.37 324 | 82.65 207 | 75.19 298 | 54.30 275 | 52.03 304 | 78.51 259 | 31.64 276 | 80.67 298 | 48.60 267 | 58.15 279 | 79.95 291 |
|
| OpenMVS_ROB |  | 53.19 17 | 59.20 286 | 56.00 298 | 68.83 279 | 71.13 320 | 44.30 299 | 83.64 177 | 75.02 299 | 46.42 325 | 46.48 336 | 73.03 319 | 18.69 356 | 88.14 172 | 27.74 361 | 61.80 252 | 74.05 346 |
|
| test20.03 | | | 55.22 315 | 54.07 308 | 58.68 344 | 63.14 366 | 25.00 385 | 77.69 283 | 74.78 300 | 52.64 285 | 43.43 344 | 72.39 327 | 26.21 309 | 74.76 345 | 29.31 351 | 47.05 349 | 76.28 330 |
|
| our_test_3 | | | 59.11 288 | 55.08 304 | 71.18 249 | 71.42 316 | 53.29 119 | 81.96 222 | 74.52 301 | 48.32 312 | 42.08 349 | 69.28 346 | 28.14 294 | 82.15 285 | 34.35 333 | 45.68 355 | 78.11 312 |
|
| Effi-MVS+-dtu | | | 66.24 237 | 64.96 233 | 70.08 265 | 75.17 269 | 49.64 197 | 82.01 221 | 74.48 302 | 62.15 136 | 57.83 243 | 76.08 294 | 30.59 282 | 83.79 273 | 65.40 138 | 60.93 257 | 76.81 322 |
|
| IterMVS-SCA-FT | | | 59.12 287 | 58.81 281 | 60.08 339 | 70.68 326 | 45.07 291 | 80.42 258 | 74.25 303 | 43.54 344 | 50.02 315 | 73.73 310 | 31.97 271 | 56.74 381 | 51.06 252 | 53.60 323 | 78.42 306 |
|
| CPTT-MVS | | | 67.15 219 | 65.84 214 | 71.07 250 | 80.96 171 | 50.32 184 | 81.94 223 | 74.10 304 | 46.18 328 | 57.91 242 | 87.64 144 | 29.57 288 | 81.31 291 | 64.10 143 | 70.18 182 | 81.56 262 |
|
| test_fmvsm_n_1920 | | | 75.56 72 | 75.54 60 | 75.61 136 | 74.60 280 | 49.51 203 | 81.82 228 | 74.08 305 | 66.52 63 | 80.40 22 | 93.46 19 | 46.95 84 | 89.72 118 | 86.69 7 | 75.30 131 | 87.61 158 |
|
| MIMVSNet1 | | | 50.35 335 | 47.81 336 | 57.96 346 | 61.53 370 | 27.80 383 | 67.40 342 | 74.06 306 | 43.25 345 | 33.31 379 | 65.38 357 | 16.03 368 | 71.34 360 | 21.80 378 | 47.55 344 | 74.75 341 |
|
| PLC |  | 52.38 18 | 60.89 276 | 58.97 280 | 66.68 303 | 81.77 146 | 45.70 286 | 78.96 275 | 74.04 307 | 43.66 343 | 47.63 327 | 83.19 202 | 23.52 330 | 77.78 330 | 37.47 312 | 60.46 258 | 76.55 328 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MVS_111021_LR | | | 69.07 175 | 67.91 169 | 72.54 214 | 77.27 239 | 49.56 200 | 79.77 266 | 73.96 308 | 59.33 188 | 60.73 199 | 87.82 139 | 30.19 285 | 81.53 289 | 69.94 104 | 72.19 163 | 86.53 179 |
|
| PatchT | | | 56.60 306 | 52.97 313 | 67.48 293 | 72.94 300 | 46.16 280 | 57.30 371 | 73.78 309 | 38.77 355 | 54.37 285 | 57.26 376 | 37.52 205 | 78.06 322 | 32.02 341 | 52.79 328 | 78.23 311 |
|
| Test_1112_low_res | | | 67.18 218 | 66.23 204 | 70.02 268 | 78.75 213 | 41.02 333 | 83.43 185 | 73.69 310 | 57.29 232 | 58.45 237 | 82.39 218 | 45.30 106 | 80.88 295 | 50.50 253 | 66.26 215 | 88.16 143 |
|
| MSDG | | | 59.44 283 | 55.14 303 | 72.32 221 | 74.69 277 | 50.71 169 | 74.39 302 | 73.58 311 | 44.44 338 | 43.40 345 | 77.52 268 | 19.45 352 | 90.87 86 | 31.31 345 | 57.49 291 | 75.38 335 |
|
| XVG-OURS-SEG-HR | | | 62.02 270 | 59.54 274 | 69.46 272 | 65.30 354 | 45.88 282 | 65.06 347 | 73.57 312 | 46.45 324 | 57.42 256 | 83.35 199 | 26.95 305 | 78.09 321 | 53.77 231 | 64.03 228 | 84.42 215 |
|
| CVMVSNet | | | 60.85 277 | 60.44 267 | 62.07 327 | 75.00 274 | 32.73 364 | 79.54 268 | 73.49 313 | 36.98 361 | 56.28 269 | 83.74 191 | 29.28 291 | 69.53 366 | 46.48 281 | 63.23 240 | 83.94 228 |
|
| XVG-OURS | | | 61.88 271 | 59.34 276 | 69.49 271 | 65.37 353 | 46.27 277 | 64.80 348 | 73.49 313 | 47.04 320 | 57.41 257 | 82.85 204 | 25.15 318 | 78.18 319 | 53.00 237 | 64.98 219 | 84.01 222 |
|
| USDC | | | 54.36 318 | 51.23 322 | 63.76 319 | 64.29 362 | 37.71 347 | 62.84 357 | 73.48 315 | 56.85 239 | 35.47 371 | 71.94 333 | 9.23 380 | 78.43 317 | 38.43 311 | 48.57 338 | 75.13 338 |
|
| Anonymous20240521 | | | 51.65 331 | 48.42 333 | 61.34 336 | 56.43 378 | 39.65 339 | 73.57 307 | 73.47 316 | 36.64 363 | 36.59 367 | 63.98 359 | 10.75 377 | 72.25 359 | 35.35 325 | 49.01 337 | 72.11 357 |
|
| KD-MVS_self_test | | | 49.24 336 | 46.85 339 | 56.44 350 | 54.32 379 | 22.87 388 | 57.39 370 | 73.36 317 | 44.36 339 | 37.98 365 | 59.30 372 | 18.97 355 | 71.17 361 | 33.48 335 | 42.44 361 | 75.26 336 |
|
| test_fmvsmconf_n | | | 74.41 85 | 74.05 81 | 75.49 142 | 74.16 286 | 48.38 234 | 82.66 206 | 72.57 318 | 67.05 56 | 75.11 45 | 92.88 33 | 46.35 91 | 87.81 182 | 83.93 19 | 71.71 166 | 90.28 92 |
|
| XVG-ACMP-BASELINE | | | 56.03 311 | 52.85 315 | 65.58 308 | 61.91 369 | 40.95 334 | 63.36 352 | 72.43 319 | 45.20 333 | 46.02 337 | 74.09 306 | 9.20 381 | 78.12 320 | 45.13 287 | 58.27 277 | 77.66 316 |
|
| ppachtmachnet_test | | | 58.56 296 | 54.34 305 | 71.24 246 | 71.42 316 | 54.74 79 | 81.84 227 | 72.27 320 | 49.02 309 | 45.86 339 | 68.99 347 | 26.27 308 | 83.30 280 | 30.12 348 | 43.23 360 | 75.69 332 |
|
| MDA-MVSNet-bldmvs | | | 51.56 332 | 47.75 338 | 63.00 324 | 71.60 314 | 47.32 261 | 69.70 334 | 72.12 321 | 43.81 342 | 27.65 388 | 63.38 360 | 21.97 343 | 75.96 340 | 27.30 363 | 32.19 381 | 65.70 375 |
|
| test_fmvsmconf0.1_n | | | 73.69 98 | 73.15 88 | 75.34 146 | 70.71 323 | 48.26 239 | 82.15 218 | 71.83 322 | 66.75 59 | 74.47 52 | 92.59 38 | 44.89 114 | 87.78 187 | 83.59 20 | 71.35 170 | 89.97 103 |
|
| 旧先验1 | | | | | | 81.57 158 | 47.48 257 | | 71.83 322 | | | 88.66 119 | 36.94 216 | | | 78.34 104 | 88.67 134 |
|
| CR-MVSNet | | | 62.47 267 | 59.04 279 | 72.77 209 | 73.97 289 | 56.57 34 | 60.52 363 | 71.72 324 | 60.04 172 | 57.49 253 | 65.86 354 | 38.94 186 | 80.31 304 | 42.86 300 | 59.93 260 | 81.42 267 |
|
| Patchmtry | | | 56.56 307 | 52.95 314 | 67.42 294 | 72.53 305 | 50.59 173 | 59.05 367 | 71.72 324 | 37.86 359 | 46.92 332 | 65.86 354 | 38.94 186 | 80.06 308 | 36.94 319 | 46.72 351 | 71.60 360 |
|
| YYNet1 | | | 53.82 322 | 49.96 327 | 65.41 311 | 70.09 329 | 48.95 215 | 72.30 317 | 71.66 326 | 44.25 340 | 31.89 380 | 63.07 362 | 23.73 328 | 73.95 348 | 33.26 337 | 39.40 367 | 73.34 351 |
|
| MDA-MVSNet_test_wron | | | 53.82 322 | 49.95 328 | 65.43 310 | 70.13 328 | 49.05 211 | 72.30 317 | 71.65 327 | 44.23 341 | 31.85 381 | 63.13 361 | 23.68 329 | 74.01 347 | 33.25 338 | 39.35 368 | 73.23 353 |
|
| 新几何1 | | | | | 73.30 200 | 83.10 112 | 53.48 107 | | 71.43 328 | 45.55 330 | 66.14 128 | 87.17 151 | 33.88 254 | 80.54 301 | 48.50 268 | 80.33 83 | 85.88 194 |
|
| pmmvs4 | | | 63.34 257 | 61.07 261 | 70.16 263 | 70.14 327 | 50.53 174 | 79.97 265 | 71.41 329 | 55.08 264 | 54.12 287 | 78.58 258 | 32.79 263 | 82.09 287 | 50.33 254 | 57.22 292 | 77.86 313 |
|
| fmvsm_l_conf0.5_n | | | 75.95 63 | 76.16 54 | 75.31 148 | 76.01 261 | 48.44 233 | 84.98 138 | 71.08 330 | 63.50 113 | 81.70 17 | 93.52 17 | 50.00 60 | 87.18 206 | 87.80 5 | 76.87 114 | 90.32 91 |
|
| CMPMVS |  | 40.41 21 | 55.34 314 | 52.64 317 | 63.46 321 | 60.88 372 | 43.84 305 | 61.58 361 | 71.06 331 | 30.43 377 | 36.33 368 | 74.63 303 | 24.14 326 | 75.44 342 | 48.05 271 | 66.62 207 | 71.12 363 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new-patchmatchnet | | | 48.21 338 | 46.55 340 | 53.18 356 | 57.73 376 | 18.19 400 | 70.24 329 | 71.02 332 | 45.70 329 | 33.70 375 | 60.23 368 | 18.00 360 | 69.86 365 | 27.97 360 | 34.35 377 | 71.49 362 |
|
| iter_conf05 | | | 73.51 102 | 72.24 104 | 77.33 92 | 87.93 39 | 55.97 48 | 87.90 61 | 70.81 333 | 68.72 35 | 64.04 161 | 84.36 183 | 47.54 78 | 90.87 86 | 71.11 99 | 67.75 199 | 85.13 205 |
|
| fmvsm_l_conf0.5_n_a | | | 75.88 65 | 76.07 55 | 75.31 148 | 76.08 257 | 48.34 236 | 85.24 126 | 70.62 334 | 63.13 121 | 81.45 18 | 93.62 16 | 49.98 62 | 87.40 202 | 87.76 6 | 76.77 115 | 90.20 96 |
|
| testgi | | | 54.25 319 | 52.57 318 | 59.29 342 | 62.76 367 | 21.65 392 | 72.21 319 | 70.47 335 | 53.25 282 | 41.94 350 | 77.33 272 | 14.28 371 | 77.95 326 | 29.18 352 | 51.72 332 | 78.28 309 |
|
| F-COLMAP | | | 55.96 313 | 53.65 311 | 62.87 325 | 72.76 302 | 42.77 318 | 74.70 301 | 70.37 336 | 40.03 352 | 41.11 356 | 79.36 249 | 17.77 361 | 73.70 351 | 32.80 340 | 53.96 320 | 72.15 356 |
|
| ACMH+ | | 54.58 15 | 58.55 297 | 55.24 301 | 68.50 288 | 74.68 278 | 45.80 285 | 80.27 260 | 70.21 337 | 47.15 319 | 42.77 348 | 75.48 298 | 16.73 366 | 85.98 243 | 35.10 331 | 54.78 314 | 73.72 348 |
|
| test_fmvsmconf0.01_n | | | 71.97 127 | 70.95 126 | 75.04 157 | 66.21 348 | 47.87 252 | 80.35 259 | 70.08 338 | 65.85 77 | 72.69 70 | 91.68 57 | 39.99 178 | 87.67 191 | 82.03 29 | 69.66 185 | 89.58 111 |
|
| ADS-MVSNet | | | 56.17 310 | 51.95 320 | 68.84 278 | 80.60 182 | 53.07 125 | 55.03 374 | 70.02 339 | 44.72 335 | 51.00 309 | 61.19 366 | 22.83 332 | 78.88 316 | 28.54 356 | 53.63 321 | 74.57 343 |
|
| test_cas_vis1_n_1920 | | | 67.10 220 | 66.60 197 | 68.59 286 | 65.17 356 | 43.23 312 | 83.23 194 | 69.84 340 | 55.34 262 | 70.67 97 | 87.71 142 | 24.70 323 | 76.66 338 | 78.57 50 | 64.20 226 | 85.89 193 |
|
| fmvsm_s_conf0.5_n | | | 74.48 83 | 74.12 79 | 75.56 138 | 76.96 246 | 47.85 253 | 85.32 124 | 69.80 341 | 64.16 97 | 78.74 29 | 93.48 18 | 45.51 104 | 89.29 127 | 86.48 8 | 66.62 207 | 89.55 112 |
|
| test_0402 | | | 56.45 308 | 53.03 312 | 66.69 302 | 76.78 248 | 50.31 185 | 81.76 229 | 69.61 342 | 42.79 347 | 43.88 341 | 72.13 330 | 22.82 334 | 86.46 228 | 16.57 389 | 50.94 333 | 63.31 378 |
|
| fmvsm_s_conf0.1_n | | | 73.80 94 | 73.26 86 | 75.43 143 | 73.28 295 | 47.80 254 | 84.57 154 | 69.43 343 | 63.34 116 | 78.40 32 | 93.29 24 | 44.73 120 | 89.22 130 | 85.99 9 | 66.28 214 | 89.26 117 |
|
| mvsmamba | | | 66.93 227 | 64.88 234 | 73.09 202 | 75.06 272 | 47.26 262 | 83.36 191 | 69.21 344 | 62.64 129 | 55.68 273 | 81.43 233 | 29.72 287 | 89.20 132 | 63.35 148 | 63.50 234 | 82.79 249 |
|
| testdata | | | | | 67.08 297 | 77.59 234 | 45.46 288 | | 69.20 345 | 44.47 337 | 71.50 86 | 88.34 127 | 31.21 278 | 70.76 363 | 52.20 245 | 75.88 125 | 85.03 206 |
|
| fmvsm_s_conf0.5_n_a | | | 73.68 99 | 73.15 88 | 75.29 151 | 75.45 268 | 48.05 246 | 83.88 172 | 68.84 346 | 63.43 115 | 78.60 30 | 93.37 22 | 45.32 105 | 88.92 145 | 85.39 11 | 64.04 227 | 88.89 128 |
|
| test_vis1_n_1920 | | | 68.59 188 | 68.31 163 | 69.44 273 | 69.16 334 | 41.51 328 | 84.63 152 | 68.58 347 | 58.80 202 | 73.26 63 | 88.37 124 | 25.30 316 | 80.60 300 | 79.10 43 | 67.55 200 | 86.23 185 |
|
| fmvsm_s_conf0.1_n_a | | | 72.82 111 | 72.05 111 | 75.12 156 | 70.95 322 | 47.97 249 | 82.72 205 | 68.43 348 | 62.52 132 | 78.17 33 | 93.08 30 | 44.21 123 | 88.86 146 | 84.82 13 | 63.54 233 | 88.54 139 |
|
| test222 | | | | | | 79.36 198 | 50.97 167 | 77.99 281 | 67.84 349 | 42.54 348 | 62.84 178 | 86.53 160 | 30.26 284 | | | 76.91 113 | 85.23 203 |
|
| pmmvs-eth3d | | | 55.97 312 | 52.78 316 | 65.54 309 | 61.02 371 | 46.44 272 | 75.36 296 | 67.72 350 | 49.61 306 | 43.65 343 | 67.58 350 | 21.63 344 | 77.04 332 | 44.11 294 | 44.33 357 | 73.15 354 |
|
| bld_raw_dy_0_64 | | | 75.36 74 | 73.18 87 | 81.89 11 | 87.91 40 | 57.01 24 | 86.77 90 | 67.69 351 | 78.56 1 | 65.01 144 | 93.99 7 | 22.18 340 | 94.84 19 | 84.07 17 | 72.45 159 | 93.82 7 |
|
| LTVRE_ROB | | 45.45 19 | 52.73 326 | 49.74 329 | 61.69 332 | 69.78 330 | 34.99 352 | 44.52 382 | 67.60 352 | 43.11 346 | 43.79 342 | 74.03 307 | 18.54 358 | 81.45 290 | 28.39 358 | 57.94 284 | 68.62 367 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| LS3D | | | 56.40 309 | 53.82 309 | 64.12 317 | 81.12 167 | 45.69 287 | 73.42 309 | 66.14 353 | 35.30 369 | 43.24 347 | 79.88 244 | 22.18 340 | 79.62 313 | 19.10 385 | 64.00 229 | 67.05 369 |
|
| ADS-MVSNet2 | | | 55.21 316 | 51.44 321 | 66.51 304 | 80.60 182 | 49.56 200 | 55.03 374 | 65.44 354 | 44.72 335 | 51.00 309 | 61.19 366 | 22.83 332 | 75.41 343 | 28.54 356 | 53.63 321 | 74.57 343 |
|
| OurMVSNet-221017-0 | | | 52.39 329 | 48.73 332 | 63.35 323 | 65.21 355 | 38.42 344 | 68.54 339 | 64.95 355 | 38.19 356 | 39.57 359 | 71.43 334 | 13.23 373 | 79.92 309 | 37.16 314 | 40.32 366 | 71.72 359 |
|
| SixPastTwentyTwo | | | 54.37 317 | 50.10 326 | 67.21 295 | 70.70 324 | 41.46 330 | 74.73 299 | 64.69 356 | 47.56 317 | 39.12 361 | 69.49 343 | 18.49 359 | 84.69 266 | 31.87 342 | 34.20 379 | 75.48 334 |
|
| test_fmvsmvis_n_1920 | | | 71.29 137 | 70.38 134 | 74.00 181 | 71.04 321 | 48.79 221 | 79.19 274 | 64.62 357 | 62.75 126 | 66.73 119 | 91.99 50 | 40.94 165 | 88.35 164 | 83.00 22 | 73.18 151 | 84.85 211 |
|
| DP-MVS | | | 59.24 285 | 56.12 297 | 68.63 284 | 88.24 34 | 50.35 183 | 82.51 212 | 64.43 358 | 41.10 351 | 46.70 334 | 78.77 257 | 24.75 322 | 88.57 157 | 22.26 377 | 56.29 299 | 66.96 370 |
|
| CNLPA | | | 60.59 278 | 58.44 282 | 67.05 298 | 79.21 203 | 47.26 262 | 79.75 267 | 64.34 359 | 42.46 349 | 51.90 305 | 83.94 187 | 27.79 300 | 75.41 343 | 37.12 315 | 59.49 265 | 78.47 304 |
|
| ANet_high | | | 34.39 354 | 29.59 360 | 48.78 360 | 30.34 403 | 22.28 389 | 55.53 373 | 63.79 360 | 38.11 357 | 15.47 395 | 36.56 392 | 6.94 387 | 59.98 375 | 13.93 392 | 5.64 406 | 64.08 376 |
|
| dmvs_testset | | | 57.65 301 | 58.21 283 | 55.97 352 | 74.62 279 | 9.82 408 | 63.75 351 | 63.34 361 | 67.23 53 | 48.89 320 | 83.68 195 | 39.12 185 | 76.14 339 | 23.43 374 | 59.80 262 | 81.96 256 |
|
| K. test v3 | | | 54.04 320 | 49.42 331 | 67.92 291 | 68.55 338 | 42.57 322 | 75.51 294 | 63.07 362 | 52.07 289 | 39.21 360 | 64.59 358 | 19.34 353 | 82.21 284 | 37.11 316 | 25.31 389 | 78.97 297 |
|
| TinyColmap | | | 48.15 339 | 44.49 343 | 59.13 343 | 65.73 352 | 38.04 345 | 63.34 353 | 62.86 363 | 38.78 354 | 29.48 383 | 67.23 352 | 6.46 391 | 73.30 353 | 24.59 370 | 41.90 363 | 66.04 373 |
|
| COLMAP_ROB |  | 43.60 20 | 50.90 334 | 48.05 335 | 59.47 340 | 67.81 345 | 40.57 336 | 71.25 326 | 62.72 364 | 36.49 364 | 36.19 369 | 73.51 315 | 13.48 372 | 73.92 349 | 20.71 381 | 50.26 335 | 63.92 377 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PatchMatch-RL | | | 56.66 305 | 53.75 310 | 65.37 312 | 77.91 231 | 45.28 289 | 69.78 333 | 60.38 365 | 41.35 350 | 47.57 328 | 73.73 310 | 16.83 364 | 76.91 334 | 36.99 318 | 59.21 268 | 73.92 347 |
|
| Gipuma |  | | 27.47 360 | 24.26 365 | 37.12 374 | 60.55 373 | 29.17 379 | 11.68 401 | 60.00 366 | 14.18 393 | 10.52 402 | 15.12 403 | 2.20 403 | 63.01 371 | 8.39 397 | 35.65 372 | 19.18 399 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| Patchmatch-test | | | 53.33 325 | 48.17 334 | 68.81 280 | 73.31 293 | 42.38 323 | 42.98 384 | 58.23 367 | 32.53 371 | 38.79 363 | 70.77 338 | 39.66 181 | 73.51 352 | 25.18 368 | 52.06 331 | 90.55 84 |
|
| pmmvs3 | | | 45.53 344 | 41.55 348 | 57.44 347 | 48.97 389 | 39.68 338 | 70.06 330 | 57.66 368 | 28.32 379 | 34.06 374 | 57.29 375 | 8.50 384 | 66.85 368 | 34.86 332 | 34.26 378 | 65.80 374 |
|
| FPMVS | | | 35.40 352 | 33.67 356 | 40.57 369 | 46.34 392 | 28.74 381 | 41.05 386 | 57.05 369 | 20.37 387 | 22.27 391 | 53.38 380 | 6.87 388 | 44.94 394 | 8.62 396 | 47.11 348 | 48.01 388 |
|
| Patchmatch-RL test | | | 58.72 294 | 54.32 306 | 71.92 235 | 63.91 363 | 44.25 301 | 61.73 359 | 55.19 370 | 57.38 231 | 49.31 318 | 54.24 378 | 37.60 203 | 80.89 294 | 62.19 156 | 47.28 346 | 90.63 83 |
|
| MVS-HIRNet | | | 49.01 337 | 44.71 341 | 61.92 331 | 76.06 258 | 46.61 270 | 63.23 354 | 54.90 371 | 24.77 383 | 33.56 376 | 36.60 391 | 21.28 347 | 75.88 341 | 29.49 350 | 62.54 248 | 63.26 379 |
|
| CHOSEN 280x420 | | | 57.53 303 | 56.38 296 | 60.97 337 | 74.01 287 | 48.10 245 | 46.30 381 | 54.31 372 | 48.18 314 | 50.88 312 | 77.43 271 | 38.37 192 | 59.16 379 | 54.83 222 | 63.14 243 | 75.66 333 |
|
| AllTest | | | 47.32 340 | 44.66 342 | 55.32 354 | 65.08 357 | 37.50 348 | 62.96 356 | 54.25 373 | 35.45 367 | 33.42 377 | 72.82 320 | 9.98 378 | 59.33 376 | 24.13 371 | 43.84 358 | 69.13 365 |
|
| TestCases | | | | | 55.32 354 | 65.08 357 | 37.50 348 | | 54.25 373 | 35.45 367 | 33.42 377 | 72.82 320 | 9.98 378 | 59.33 376 | 24.13 371 | 43.84 358 | 69.13 365 |
|
| ITE_SJBPF | | | | | 51.84 357 | 58.03 375 | 31.94 368 | | 53.57 375 | 36.67 362 | 41.32 354 | 75.23 300 | 11.17 376 | 51.57 386 | 25.81 367 | 48.04 340 | 72.02 358 |
|
| TDRefinement | | | 40.91 347 | 38.37 351 | 48.55 361 | 50.45 387 | 33.03 363 | 58.98 368 | 50.97 376 | 28.50 378 | 29.89 382 | 67.39 351 | 6.21 393 | 54.51 383 | 17.67 387 | 35.25 374 | 58.11 380 |
|
| LCM-MVSNet | | | 28.07 358 | 23.85 366 | 40.71 368 | 27.46 408 | 18.93 395 | 30.82 396 | 46.19 377 | 12.76 395 | 16.40 393 | 34.70 394 | 1.90 404 | 48.69 390 | 20.25 382 | 24.22 390 | 54.51 383 |
|
| LCM-MVSNet-Re | | | 58.82 293 | 56.54 292 | 65.68 307 | 79.31 201 | 29.09 380 | 61.39 362 | 45.79 378 | 60.73 165 | 37.65 366 | 72.47 325 | 31.42 277 | 81.08 293 | 49.66 258 | 70.41 179 | 86.87 170 |
|
| lessismore_v0 | | | | | 67.98 290 | 64.76 360 | 41.25 331 | | 45.75 379 | | 36.03 370 | 65.63 356 | 19.29 354 | 84.11 270 | 35.67 323 | 21.24 394 | 78.59 303 |
|
| RPSCF | | | 45.77 343 | 44.13 345 | 50.68 358 | 57.67 377 | 29.66 376 | 54.92 376 | 45.25 380 | 26.69 381 | 45.92 338 | 75.92 296 | 17.43 363 | 45.70 392 | 27.44 362 | 45.95 354 | 76.67 323 |
|
| WB-MVS | | | 37.41 351 | 36.37 352 | 40.54 370 | 54.23 380 | 10.43 407 | 65.29 345 | 43.75 381 | 34.86 370 | 27.81 387 | 54.63 377 | 24.94 320 | 63.21 370 | 6.81 402 | 15.00 397 | 47.98 389 |
|
| door | | | | | | | | | 43.27 382 | | | | | | | | |
|
| test_fmvs1_n | | | 52.55 328 | 51.19 323 | 56.65 349 | 51.90 384 | 30.14 371 | 67.66 341 | 42.84 383 | 32.27 373 | 62.30 184 | 82.02 227 | 9.12 382 | 60.84 372 | 57.82 200 | 54.75 316 | 78.99 296 |
|
| test_fmvs1 | | | 53.60 324 | 52.54 319 | 56.78 348 | 58.07 374 | 30.26 370 | 68.95 337 | 42.19 384 | 32.46 372 | 63.59 170 | 82.56 215 | 11.55 374 | 60.81 373 | 58.25 192 | 55.27 310 | 79.28 294 |
|
| SSC-MVS | | | 35.20 353 | 34.30 355 | 37.90 372 | 52.58 382 | 8.65 410 | 61.86 358 | 41.64 385 | 31.81 375 | 25.54 389 | 52.94 382 | 23.39 331 | 59.28 378 | 6.10 403 | 12.86 398 | 45.78 391 |
|
| door-mid | | | | | | | | | 41.31 386 | | | | | | | | |
|
| EGC-MVSNET | | | 33.75 355 | 30.42 359 | 43.75 367 | 64.94 359 | 36.21 351 | 60.47 365 | 40.70 387 | 0.02 407 | 0.10 408 | 53.79 379 | 7.39 385 | 60.26 374 | 11.09 395 | 35.23 375 | 34.79 393 |
|
| test_vis1_n | | | 51.19 333 | 49.66 330 | 55.76 353 | 51.26 385 | 29.85 375 | 67.20 343 | 38.86 388 | 32.12 374 | 59.50 213 | 79.86 245 | 8.78 383 | 58.23 380 | 56.95 209 | 52.46 329 | 79.19 295 |
|
| PM-MVS | | | 46.92 341 | 43.76 346 | 56.41 351 | 52.18 383 | 32.26 366 | 63.21 355 | 38.18 389 | 37.99 358 | 40.78 357 | 66.20 353 | 5.09 394 | 65.42 369 | 48.19 270 | 41.99 362 | 71.54 361 |
|
| new_pmnet | | | 33.56 356 | 31.89 358 | 38.59 371 | 49.01 388 | 20.42 393 | 51.01 377 | 37.92 390 | 20.58 385 | 23.45 390 | 46.79 385 | 6.66 390 | 49.28 389 | 20.00 384 | 31.57 383 | 46.09 390 |
|
| test_fmvs2 | | | 45.89 342 | 44.32 344 | 50.62 359 | 45.85 393 | 24.70 386 | 58.87 369 | 37.84 391 | 25.22 382 | 52.46 300 | 74.56 304 | 7.07 386 | 54.69 382 | 49.28 262 | 47.70 342 | 72.48 355 |
|
| DSMNet-mixed | | | 38.35 349 | 35.36 354 | 47.33 362 | 48.11 391 | 14.91 404 | 37.87 390 | 36.60 392 | 19.18 388 | 34.37 373 | 59.56 371 | 15.53 369 | 53.01 385 | 20.14 383 | 46.89 350 | 74.07 345 |
|
| LF4IMVS | | | 33.04 357 | 32.55 357 | 34.52 375 | 40.96 394 | 22.03 390 | 44.45 383 | 35.62 393 | 20.42 386 | 28.12 386 | 62.35 363 | 5.03 395 | 31.88 405 | 21.61 380 | 34.42 376 | 49.63 387 |
|
| PMVS |  | 19.57 22 | 25.07 364 | 22.43 369 | 32.99 379 | 23.12 410 | 22.98 387 | 40.98 387 | 35.19 394 | 15.99 392 | 11.95 401 | 35.87 393 | 1.47 407 | 49.29 388 | 5.41 405 | 31.90 382 | 26.70 398 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_method | | | 24.09 366 | 21.07 370 | 33.16 378 | 27.67 407 | 8.35 412 | 26.63 398 | 35.11 395 | 3.40 404 | 14.35 396 | 36.98 390 | 3.46 398 | 35.31 400 | 19.08 386 | 22.95 391 | 55.81 382 |
|
| test_fmvs3 | | | 37.95 350 | 35.75 353 | 44.55 366 | 35.50 399 | 18.92 396 | 48.32 378 | 34.00 396 | 18.36 390 | 41.31 355 | 61.58 364 | 2.29 401 | 48.06 391 | 42.72 301 | 37.71 370 | 66.66 371 |
|
| E-PMN | | | 19.16 369 | 18.40 373 | 21.44 385 | 36.19 398 | 13.63 405 | 47.59 379 | 30.89 397 | 10.73 398 | 5.91 405 | 16.59 401 | 3.66 397 | 39.77 396 | 5.95 404 | 8.14 401 | 10.92 401 |
|
| APD_test1 | | | 26.46 363 | 24.41 364 | 32.62 380 | 37.58 396 | 21.74 391 | 40.50 388 | 30.39 398 | 11.45 397 | 16.33 394 | 43.76 386 | 1.63 406 | 41.62 395 | 11.24 394 | 26.82 388 | 34.51 394 |
|
| EMVS | | | 18.42 370 | 17.66 374 | 20.71 386 | 34.13 400 | 12.64 406 | 46.94 380 | 29.94 399 | 10.46 400 | 5.58 406 | 14.93 404 | 4.23 396 | 38.83 397 | 5.24 406 | 7.51 403 | 10.67 402 |
|
| PMMVS2 | | | 26.71 362 | 22.98 367 | 37.87 373 | 36.89 397 | 8.51 411 | 42.51 385 | 29.32 400 | 19.09 389 | 13.01 397 | 37.54 388 | 2.23 402 | 53.11 384 | 14.54 391 | 11.71 399 | 51.99 386 |
|
| mvsany_test1 | | | 43.38 345 | 42.57 347 | 45.82 363 | 50.96 386 | 26.10 384 | 55.80 372 | 27.74 401 | 27.15 380 | 47.41 331 | 74.39 305 | 18.67 357 | 44.95 393 | 44.66 290 | 36.31 371 | 66.40 372 |
|
| test_vis1_rt | | | 40.29 348 | 38.64 350 | 45.25 365 | 48.91 390 | 30.09 372 | 59.44 366 | 27.07 402 | 24.52 384 | 38.48 364 | 51.67 383 | 6.71 389 | 49.44 387 | 44.33 292 | 46.59 352 | 56.23 381 |
|
| testf1 | | | 21.11 367 | 19.08 371 | 27.18 383 | 30.56 401 | 18.28 398 | 33.43 394 | 24.48 403 | 8.02 401 | 12.02 399 | 33.50 395 | 0.75 410 | 35.09 401 | 7.68 398 | 21.32 392 | 28.17 396 |
|
| APD_test2 | | | 21.11 367 | 19.08 371 | 27.18 383 | 30.56 401 | 18.28 398 | 33.43 394 | 24.48 403 | 8.02 401 | 12.02 399 | 33.50 395 | 0.75 410 | 35.09 401 | 7.68 398 | 21.32 392 | 28.17 396 |
|
| MVE |  | 16.60 23 | 17.34 372 | 13.39 375 | 29.16 382 | 28.43 406 | 19.72 394 | 13.73 400 | 23.63 405 | 7.23 403 | 7.96 403 | 21.41 399 | 0.80 409 | 36.08 399 | 6.97 400 | 10.39 400 | 31.69 395 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_f | | | 27.12 361 | 24.85 362 | 33.93 377 | 26.17 409 | 15.25 403 | 30.24 397 | 22.38 406 | 12.53 396 | 28.23 385 | 49.43 384 | 2.59 400 | 34.34 403 | 25.12 369 | 26.99 387 | 52.20 385 |
|
| mvsany_test3 | | | 28.00 359 | 25.98 361 | 34.05 376 | 28.97 404 | 15.31 402 | 34.54 393 | 18.17 407 | 16.24 391 | 29.30 384 | 53.37 381 | 2.79 399 | 33.38 404 | 30.01 349 | 20.41 395 | 53.45 384 |
|
| tmp_tt | | | 9.44 373 | 10.68 376 | 5.73 389 | 2.49 412 | 4.21 413 | 10.48 402 | 18.04 408 | 0.34 406 | 12.59 398 | 20.49 400 | 11.39 375 | 7.03 408 | 13.84 393 | 6.46 405 | 5.95 403 |
|
| test_vis3_rt | | | 24.79 365 | 22.95 368 | 30.31 381 | 28.59 405 | 18.92 396 | 37.43 391 | 17.27 409 | 12.90 394 | 21.28 392 | 29.92 398 | 1.02 408 | 36.35 398 | 28.28 359 | 29.82 386 | 35.65 392 |
|
| MTMP | | | | | | | | 87.27 77 | 15.34 410 | | | | | | | | |
|
| DeepMVS_CX |  | | | | 13.10 387 | 21.34 411 | 8.99 409 | | 10.02 411 | 10.59 399 | 7.53 404 | 30.55 397 | 1.82 405 | 14.55 406 | 6.83 401 | 7.52 402 | 15.75 400 |
|
| wuyk23d | | | 9.11 374 | 8.77 378 | 10.15 388 | 40.18 395 | 16.76 401 | 20.28 399 | 1.01 412 | 2.58 405 | 2.66 407 | 0.98 407 | 0.23 412 | 12.49 407 | 4.08 407 | 6.90 404 | 1.19 404 |
|
| N_pmnet | | | 41.25 346 | 39.77 349 | 45.66 364 | 68.50 339 | 0.82 414 | 72.51 315 | 0.38 413 | 35.61 366 | 35.26 372 | 61.51 365 | 20.07 351 | 67.74 367 | 23.51 373 | 40.63 364 | 68.42 368 |
|
| test_blank | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 0.00 414 | 0.00 408 | 0.00 411 | 0.00 410 | 0.00 413 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| uanet_test | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 0.00 414 | 0.00 408 | 0.00 411 | 0.00 410 | 0.00 413 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| DCPMVS | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 0.00 414 | 0.00 408 | 0.00 411 | 0.00 410 | 0.00 413 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| pcd_1.5k_mvsjas | | | 3.15 378 | 4.20 381 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 0.00 414 | 0.00 408 | 0.00 411 | 0.00 410 | 37.77 196 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| sosnet-low-res | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 0.00 414 | 0.00 408 | 0.00 411 | 0.00 410 | 0.00 413 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| sosnet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 0.00 414 | 0.00 408 | 0.00 411 | 0.00 410 | 0.00 413 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| uncertanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 0.00 414 | 0.00 408 | 0.00 411 | 0.00 410 | 0.00 413 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| Regformer | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 0.00 414 | 0.00 408 | 0.00 411 | 0.00 410 | 0.00 413 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| testmvs | | | 6.14 376 | 8.18 379 | 0.01 390 | 0.01 413 | 0.00 416 | 73.40 310 | 0.00 414 | 0.00 408 | 0.02 409 | 0.15 408 | 0.00 413 | 0.00 409 | 0.02 408 | 0.00 407 | 0.02 405 |
|
| test123 | | | 6.01 377 | 8.01 380 | 0.01 390 | 0.00 414 | 0.01 415 | 71.93 323 | 0.00 414 | 0.00 408 | 0.02 409 | 0.11 409 | 0.00 413 | 0.00 409 | 0.02 408 | 0.00 407 | 0.02 405 |
|
| n2 | | | | | | | | | 0.00 414 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 414 | | | | | | | | |
|
| ab-mvs-re | | | 7.68 375 | 10.24 377 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 0.00 414 | 0.00 408 | 0.00 411 | 92.12 44 | 0.00 413 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| uanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 414 | 0.00 416 | 0.00 403 | 0.00 414 | 0.00 408 | 0.00 411 | 0.00 410 | 0.00 413 | 0.00 409 | 0.00 410 | 0.00 407 | 0.00 407 |
|
| WAC-MVS | | | | | | | 34.28 355 | | | | | | | | 22.56 376 | | |
|
| PC_three_1452 | | | | | | | | | | 66.58 60 | 87.27 2 | 93.70 11 | 66.82 4 | 94.95 17 | 89.74 3 | 91.98 4 | 93.98 5 |
|
| eth-test2 | | | | | | 0.00 414 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 414 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 81.71 14 | 92.05 3 | 55.97 48 | 92.48 4 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 2 | 92.55 3 | 94.06 3 |
|
| test_0728_THIRD | | | | | | | | | | 58.00 215 | 81.91 14 | 93.64 13 | 56.54 17 | 96.44 2 | 81.64 32 | 86.86 25 | 92.23 37 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.13 146 |
|
| test_part2 | | | | | | 89.33 23 | 55.48 55 | | | | 82.27 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 38.86 188 | | | | 88.13 146 |
|
| sam_mvs | | | | | | | | | | | | | 35.99 233 | | | | |
|
| test_post1 | | | | | | | | 70.84 328 | | | | 14.72 405 | 34.33 249 | 83.86 271 | 48.80 265 | | |
|
| test_post | | | | | | | | | | | | 16.22 402 | 37.52 205 | 84.72 265 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 59.74 370 | 38.41 191 | 79.91 311 | | | |
|
| gm-plane-assit | | | | | | 83.24 109 | 54.21 95 | | | 70.91 22 | | 88.23 130 | | 95.25 14 | 66.37 125 | | |
|
| test9_res | | | | | | | | | | | | | | | 78.72 49 | 85.44 42 | 91.39 64 |
|
| agg_prior2 | | | | | | | | | | | | | | | 75.65 69 | 85.11 46 | 91.01 76 |
|
| test_prior4 | | | | | | | 56.39 40 | 87.15 81 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 89.04 43 | | 61.88 142 | 73.55 58 | 91.46 64 | 48.01 74 | | 74.73 78 | 85.46 41 | |
|
| 旧先验2 | | | | | | | | 81.73 231 | | 45.53 331 | 74.66 47 | | | 70.48 364 | 58.31 191 | | |
|
| 新几何2 | | | | | | | | 81.61 235 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 83.77 175 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 77.81 329 | 45.64 286 | | |
|
| segment_acmp | | | | | | | | | | | | | 44.97 113 | | | | |
|
| testdata1 | | | | | | | | 77.55 284 | | 64.14 98 | | | | | | | |
|
| plane_prior7 | | | | | | 77.95 228 | 48.46 232 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 78.42 223 | 49.39 206 | | | | | | 36.04 231 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 83.28 200 | | | | | |
|
| plane_prior3 | | | | | | | 48.95 215 | | | 64.01 101 | 62.15 186 | | | | | | |
|
| plane_prior2 | | | | | | | | 85.76 108 | | 63.60 110 | | | | | | | |
|
| plane_prior1 | | | | | | 78.31 225 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 49.57 198 | 87.43 70 | | 64.57 92 | | | | | | 72.84 156 | |
|
| HQP5-MVS | | | | | | | 51.56 156 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 79.02 207 | | 88.00 55 | | 65.45 79 | 64.48 154 | | | | | | |
|
| ACMP_Plane | | | | | | 79.02 207 | | 88.00 55 | | 65.45 79 | 64.48 154 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 66.70 122 | | |
|
| HQP4-MVS | | | | | | | | | | | 64.47 157 | | | 88.61 153 | | | 84.91 209 |
|
| HQP2-MVS | | | | | | | | | | | | | 37.35 208 | | | | |
|
| NP-MVS | | | | | | 78.76 212 | 50.43 177 | | | | | 85.12 174 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 43.62 307 | 71.13 327 | | 54.95 267 | 59.29 219 | | 36.76 219 | | 46.33 283 | | 87.32 164 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 241 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 59.38 266 | |
|
| Test By Simon | | | | | | | | | | | | | 39.38 182 | | | | |
|