This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
testing1179.18 2278.85 2380.16 3388.33 3056.99 2688.31 5292.06 172.82 1070.62 10188.37 12757.69 1792.30 5075.25 7476.24 12891.20 73
testing22277.70 4077.22 4279.14 4886.95 4554.89 7887.18 7991.96 272.29 1271.17 9388.70 12055.19 2891.24 7465.18 14676.32 12791.29 71
baseline275.15 8074.54 7876.98 10781.67 15851.74 15583.84 17391.94 369.97 2758.98 22886.02 16859.73 991.73 6468.37 11770.40 18787.48 167
MVS76.91 4975.48 6281.23 1984.56 8255.21 6580.23 26491.64 458.65 20965.37 14491.48 6245.72 10495.05 1672.11 9889.52 1093.44 9
CSCG80.41 1579.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19571.82 8290.05 9559.72 1096.04 1078.37 5088.40 1493.75 7
testing9978.45 2677.78 3480.45 2888.28 3356.81 3287.95 5991.49 671.72 1470.84 9688.09 13557.29 1992.63 4469.24 11175.13 14391.91 49
ETVMVS75.80 7175.44 6376.89 11086.23 5450.38 18385.55 11891.42 771.30 2068.80 11187.94 14156.42 2389.24 13056.54 22074.75 15091.07 77
VNet77.99 3777.92 3178.19 7887.43 4250.12 19190.93 2291.41 867.48 5275.12 4390.15 9346.77 9191.00 8273.52 8978.46 10393.44 9
IU-MVS89.48 1757.49 1791.38 966.22 6988.26 182.83 2287.60 1892.44 32
UBG78.86 2478.86 2278.86 5787.80 4055.43 5587.67 6491.21 1072.83 972.10 7988.40 12658.53 1689.08 13573.21 9477.98 10792.08 41
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
No_MVS81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1175.95 377.10 3793.09 2754.15 3795.57 1285.80 1085.87 3893.31 11
testing9178.30 3277.54 3780.61 2388.16 3557.12 2587.94 6091.07 1471.43 1770.75 9788.04 13955.82 2692.65 4269.61 10875.00 14792.05 44
DPM-MVS82.39 482.36 782.49 580.12 19859.50 592.24 890.72 1569.37 3383.22 894.47 263.81 593.18 3274.02 8493.25 294.80 1
TSAR-MVS + GP.77.82 3877.59 3678.49 6985.25 7150.27 19090.02 2690.57 1656.58 25274.26 5391.60 5954.26 3592.16 5575.87 6679.91 9093.05 20
WTY-MVS77.47 4377.52 3877.30 9588.33 3046.25 28588.46 5090.32 1771.40 1872.32 7791.72 5453.44 3992.37 4966.28 13175.42 13793.28 13
VPA-MVSNet71.12 14470.66 13272.49 22378.75 22144.43 30487.64 6590.02 1863.97 10565.02 14981.58 23842.14 15787.42 20463.42 15563.38 24385.63 207
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 1957.71 22781.91 1493.64 1255.17 2996.44 281.68 2987.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MS-PatchMatch72.34 12271.26 12475.61 13982.38 14055.55 5288.00 5589.95 2065.38 8556.51 27480.74 24532.28 28292.89 3457.95 20688.10 1578.39 314
MM82.69 283.29 380.89 2284.38 8655.40 5992.16 1089.85 2175.28 482.41 1193.86 854.30 3493.98 2390.29 187.13 2193.30 12
UWE-MVS72.17 12772.15 10972.21 23082.26 14244.29 30686.83 8989.58 2265.58 8065.82 13985.06 17945.02 11484.35 27454.07 23675.18 14087.99 157
balanced_conf0380.28 1679.73 1581.90 1186.47 5159.34 680.45 25889.51 2369.76 2971.05 9486.66 16258.68 1593.24 3184.64 1490.40 693.14 18
cdsmvs_eth3d_5k18.33 38524.44 3770.00 4060.00 4280.00 4300.00 41789.40 240.00 4220.00 42592.02 4638.55 1980.00 4230.00 4240.00 4210.00 421
test_yl75.85 6774.83 7478.91 5488.08 3751.94 14991.30 1789.28 2557.91 22171.19 9189.20 11142.03 16092.77 3869.41 10975.07 14592.01 46
DCV-MVSNet75.85 6774.83 7478.91 5488.08 3751.94 14991.30 1789.28 2557.91 22171.19 9189.20 11142.03 16092.77 3869.41 10975.07 14592.01 46
ET-MVSNet_ETH3D75.23 7874.08 8278.67 6484.52 8355.59 5188.92 4489.21 2768.06 4253.13 30390.22 8949.71 6987.62 19972.12 9770.82 18292.82 25
MAR-MVS76.76 5475.60 6080.21 3190.87 754.68 8589.14 4289.11 2862.95 12670.54 10292.33 3941.05 17094.95 1757.90 20886.55 3291.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tttt051768.33 20066.29 21074.46 17278.08 23449.06 21580.88 25389.08 2954.40 27854.75 28880.77 24451.31 5190.33 10049.35 26958.01 28983.99 231
EI-MVSNet-Vis-set73.19 10972.60 9874.99 16582.56 13849.80 19982.55 21089.00 3066.17 7065.89 13888.98 11443.83 13092.29 5165.38 14569.01 19682.87 256
SED-MVS81.92 881.75 982.44 789.48 1756.89 2992.48 388.94 3157.50 23384.61 494.09 358.81 1296.37 682.28 2687.60 1894.06 3
test_241102_ONE89.48 1756.89 2988.94 3157.53 23184.61 493.29 2258.81 1296.45 1
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1784.98 13788.88 3358.00 21983.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3396.39 481.68 2987.13 2192.47 31
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1491.71 1188.87 3570.31 2577.64 3693.87 752.58 4493.91 2684.17 1587.92 1692.39 33
WB-MVSnew69.36 18168.24 17272.72 21779.26 21049.40 21085.72 11288.85 3661.33 15364.59 15782.38 22334.57 26087.53 20246.82 28870.63 18381.22 283
9.1478.19 2885.67 6188.32 5188.84 3759.89 17874.58 5092.62 3546.80 9092.66 4181.40 3585.62 41
thisisatest051573.64 10372.20 10777.97 8281.63 15953.01 12986.69 9188.81 3862.53 13364.06 16585.65 17252.15 4792.50 4658.43 19569.84 19088.39 147
QAPM71.88 13269.33 15879.52 4082.20 14354.30 9386.30 9788.77 3956.61 25159.72 21387.48 14833.90 26795.36 1347.48 28281.49 7288.90 130
test_241102_TWO88.76 4057.50 23383.60 694.09 356.14 2596.37 682.28 2687.43 2092.55 30
SDMVSNet71.89 13170.62 13375.70 13781.70 15551.61 15773.89 31088.72 4166.58 6161.64 19682.38 22337.63 20989.48 12377.44 5965.60 22386.01 195
IB-MVS68.87 274.01 9272.03 11579.94 3883.04 11955.50 5390.24 2588.65 4267.14 5561.38 19881.74 23553.21 4094.28 2160.45 18262.41 25590.03 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet-UG-set72.37 12171.73 11674.29 17981.60 16149.29 21381.85 22788.64 4365.29 8965.05 14888.29 13243.18 14391.83 6263.74 15367.97 20381.75 267
test072689.40 2057.45 1992.32 788.63 4457.71 22783.14 993.96 655.17 29
MSP-MVS82.30 683.47 178.80 5982.99 12252.71 13485.04 13488.63 4466.08 7386.77 392.75 3272.05 191.46 6983.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
3Dnovator64.70 674.46 8572.48 10080.41 2982.84 13055.40 5983.08 19788.61 4667.61 5159.85 21188.66 12134.57 26093.97 2458.42 19788.70 1291.85 52
PHI-MVS77.49 4277.00 4478.95 5385.33 6950.69 17388.57 4988.59 4758.14 21673.60 5793.31 2143.14 14593.79 2773.81 8788.53 1392.37 34
thisisatest053070.47 15968.56 16576.20 12379.78 20251.52 16183.49 18488.58 4857.62 23058.60 23782.79 20951.03 5491.48 6852.84 24662.36 25785.59 208
MG-MVS78.42 2876.99 4582.73 293.17 164.46 189.93 2988.51 4964.83 9273.52 5988.09 13548.07 7692.19 5462.24 16284.53 5291.53 62
GG-mvs-BLEND77.77 8586.68 4850.61 17468.67 34588.45 5068.73 11287.45 14959.15 1190.67 9054.83 23187.67 1792.03 45
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10488.08 5488.36 5176.17 279.40 2791.09 6455.43 2790.09 10885.01 1280.40 8291.99 48
gg-mvs-nofinetune67.43 21964.53 24476.13 12685.95 5547.79 26364.38 35988.28 5239.34 36466.62 12741.27 40158.69 1489.00 14049.64 26786.62 3191.59 58
NCCC79.57 2079.23 2080.59 2489.50 1556.99 2691.38 1688.17 5367.71 4873.81 5692.75 3246.88 8993.28 3078.79 4784.07 5591.50 64
test_one_060189.39 2257.29 2288.09 5457.21 23982.06 1393.39 1854.94 33
LFMVS78.52 2577.14 4382.67 389.58 1358.90 891.27 1988.05 5563.22 12274.63 4890.83 7541.38 16994.40 2075.42 7279.90 9194.72 2
VPNet72.07 12871.42 12274.04 18578.64 22647.17 27289.91 3187.97 5672.56 1164.66 15385.04 18041.83 16488.33 17061.17 17260.97 26286.62 186
DPE-MVScopyleft79.82 1979.66 1780.29 3089.27 2455.08 7288.70 4787.92 5755.55 26381.21 1993.69 1156.51 2294.27 2278.36 5185.70 4091.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS77.64 4177.42 3978.32 7683.75 10052.47 13986.63 9287.80 5858.78 20774.63 4892.38 3847.75 8191.35 7178.18 5486.85 2791.15 75
thres100view90066.87 23565.42 23471.24 25383.29 11143.15 32181.67 23487.78 5959.04 20155.92 27882.18 22943.73 13387.80 18828.80 36366.36 21782.78 258
thres600view766.46 24165.12 23870.47 26483.41 10543.80 31282.15 21987.78 5959.37 18956.02 27782.21 22843.73 13386.90 21926.51 37564.94 22680.71 289
APDe-MVScopyleft78.44 2778.20 2779.19 4588.56 2654.55 8989.76 3387.77 6155.91 25878.56 3092.49 3748.20 7592.65 4279.49 3983.04 5990.39 91
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
thres20068.71 19367.27 19473.02 21084.73 7846.76 27585.03 13587.73 6262.34 13759.87 21083.45 20043.15 14488.32 17131.25 35667.91 20483.98 233
FIs70.00 16670.24 14569.30 28177.93 23838.55 35183.99 16887.72 6366.86 5957.66 25484.17 18852.28 4585.31 25952.72 25168.80 19784.02 229
tfpn200view967.57 21566.13 21471.89 24584.05 9345.07 29783.40 18787.71 6460.79 16757.79 25182.76 21043.53 13887.80 18828.80 36366.36 21782.78 258
thres40067.40 22266.13 21471.19 25584.05 9345.07 29783.40 18787.71 6460.79 16757.79 25182.76 21043.53 13887.80 18828.80 36366.36 21780.71 289
MVSMamba_PlusPlus75.28 7673.39 8780.96 2180.85 18358.25 1074.47 30787.61 6650.53 30465.24 14583.41 20157.38 1892.83 3673.92 8687.13 2191.80 54
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4355.20 6789.93 2987.55 6766.04 7679.46 2693.00 3053.10 4191.76 6380.40 3789.56 992.68 29
XXY-MVS70.18 16069.28 16072.89 21577.64 24042.88 32485.06 13387.50 6862.58 13262.66 18682.34 22743.64 13789.83 11458.42 19763.70 23885.96 199
WBMVS73.93 9473.39 8775.55 14287.82 3955.21 6589.37 3787.29 6967.27 5363.70 17280.30 24760.32 686.47 23161.58 16862.85 25284.97 215
FC-MVSNet-test67.49 21767.91 17666.21 31376.06 26733.06 37280.82 25487.18 7064.44 9554.81 28682.87 20750.40 6282.60 29048.05 27966.55 21582.98 254
EI-MVSNet69.70 17568.70 16472.68 21875.00 28248.90 22379.54 27187.16 7161.05 16063.88 17083.74 19445.87 10190.44 9657.42 21564.68 23078.70 307
MVSTER73.25 10872.33 10376.01 13085.54 6453.76 10583.52 17887.16 7167.06 5663.88 17081.66 23652.77 4290.44 9664.66 15064.69 22983.84 238
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6360.97 391.69 1287.02 7370.62 2280.75 2193.22 2437.77 20492.50 4682.75 2386.25 3591.57 60
MVP-Stereo70.97 14970.44 13572.59 22076.03 26951.36 16485.02 13686.99 7460.31 17456.53 27378.92 26140.11 18490.00 10960.00 18690.01 776.41 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SteuartSystems-ACMMP77.08 4776.33 5279.34 4380.98 17655.31 6189.76 3386.91 7562.94 12771.65 8391.56 6042.33 15392.56 4577.14 6183.69 5790.15 101
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7560.73 491.65 1386.86 7670.30 2680.77 2093.07 2937.63 20992.28 5282.73 2485.71 3991.57 60
UniMVSNet_NR-MVSNet68.82 18968.29 17170.40 26775.71 27442.59 32784.23 16086.78 7766.31 6758.51 23882.45 22051.57 4984.64 27253.11 24255.96 30983.96 235
SMA-MVScopyleft79.10 2378.76 2480.12 3584.42 8455.87 4987.58 6986.76 7861.48 15280.26 2393.10 2546.53 9492.41 4879.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS67.15 476.90 5176.27 5378.80 5980.70 18755.02 7386.39 9486.71 7966.96 5867.91 11889.97 9748.03 7791.41 7075.60 6984.14 5489.96 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet74.37 8772.13 11081.09 2079.58 20456.52 3790.02 2686.70 8052.61 29071.23 9087.20 15331.75 28993.96 2574.30 8275.77 13492.79 27
MVS_030482.10 782.64 480.47 2786.63 4954.69 8492.20 986.66 8174.48 582.63 1093.80 950.83 5993.70 2890.11 286.44 3393.01 21
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8485.46 6649.56 20390.99 2186.66 8170.58 2380.07 2495.30 156.18 2490.97 8582.57 2586.22 3693.28 13
RRT-MVS73.29 10771.37 12379.07 5284.63 8054.16 9978.16 28386.64 8361.67 14760.17 20882.35 22640.63 17892.26 5370.19 10677.87 10890.81 83
EPP-MVSNet71.14 14370.07 14774.33 17779.18 21246.52 27883.81 17486.49 8456.32 25657.95 24784.90 18354.23 3689.14 13458.14 20269.65 19387.33 171
CANet80.90 1181.17 1280.09 3787.62 4154.21 9691.60 1486.47 8573.13 879.89 2593.10 2549.88 6892.98 3384.09 1784.75 5093.08 19
TSAR-MVS + MP.78.31 3178.26 2678.48 7081.33 17256.31 4281.59 23886.41 8669.61 3181.72 1688.16 13455.09 3188.04 18174.12 8386.31 3491.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+62.71 772.29 12470.50 13477.65 8883.40 10851.29 16787.32 7386.40 8759.01 20258.49 24188.32 13132.40 28091.27 7257.04 21782.15 6790.38 92
HY-MVS67.03 573.90 9573.14 9376.18 12584.70 7947.36 26875.56 29786.36 8866.27 6870.66 10083.91 19151.05 5389.31 12867.10 12572.61 16691.88 51
DELS-MVS82.32 582.50 581.79 1286.80 4756.89 2992.77 286.30 8977.83 177.88 3392.13 4160.24 794.78 1978.97 4489.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM76.76 5476.07 5678.81 5880.20 19659.11 786.86 8886.23 9068.60 3570.18 10488.84 11851.57 4987.16 21065.48 13986.68 3090.15 101
CLD-MVS75.60 7275.39 6476.24 12080.69 18852.40 14090.69 2386.20 9174.40 665.01 15088.93 11542.05 15990.58 9476.57 6373.96 15485.73 203
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
reproduce_monomvs69.71 17268.52 16673.29 20886.43 5248.21 24783.91 17086.17 9268.02 4354.91 28577.46 27542.96 14888.86 14868.44 11648.38 34582.80 257
baseline172.51 12072.12 11173.69 19985.05 7344.46 30283.51 18286.13 9371.61 1664.64 15487.97 14055.00 3289.48 12359.07 18956.05 30887.13 175
ZNCC-MVS75.82 7075.02 7078.23 7783.88 9853.80 10386.91 8786.05 9459.71 18167.85 11990.55 7942.23 15591.02 8172.66 9685.29 4589.87 110
DeepC-MVS_fast67.50 378.00 3677.63 3579.13 4988.52 2755.12 6989.95 2885.98 9568.31 3671.33 8992.75 3245.52 10790.37 9871.15 10185.14 4691.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS76.08 6274.97 7179.44 4184.27 9053.33 11991.13 2085.88 9665.33 8772.37 7689.34 10832.52 27992.76 4077.90 5775.96 13192.22 39
casdiffmvspermissive77.36 4476.85 4678.88 5680.40 19554.66 8787.06 8285.88 9672.11 1371.57 8588.63 12550.89 5890.35 9976.00 6579.11 9891.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SPE-MVS-test77.20 4577.25 4177.05 10184.60 8149.04 21889.42 3685.83 9865.90 7772.85 6891.98 5045.10 11291.27 7275.02 7684.56 5190.84 82
OpenMVScopyleft61.00 1169.99 16767.55 18777.30 9578.37 23254.07 10184.36 15685.76 9957.22 23856.71 27087.67 14630.79 29592.83 3643.04 30784.06 5685.01 214
PAPR75.20 7974.13 8078.41 7388.31 3255.10 7184.31 15885.66 10063.76 10967.55 12090.73 7743.48 14089.40 12566.36 13077.03 11590.73 85
tt080563.39 26361.31 26669.64 27769.36 34138.87 34978.00 28485.48 10148.82 31655.66 28281.66 23624.38 33786.37 23549.04 27259.36 27383.68 240
TESTMET0.1,172.86 11372.33 10374.46 17281.98 14550.77 17185.13 12985.47 10266.09 7267.30 12183.69 19637.27 21983.57 28365.06 14878.97 10089.05 128
casdiffmvs_mvgpermissive77.75 3977.28 4079.16 4780.42 19454.44 9187.76 6185.46 10371.67 1571.38 8888.35 12951.58 4891.22 7579.02 4379.89 9291.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs78.08 3577.98 3078.39 7483.53 10353.22 12289.77 3285.45 10466.11 7176.59 4191.99 4854.07 3889.05 13777.34 6077.00 11692.89 23
test_prior78.39 7486.35 5354.91 7785.45 10489.70 11990.55 87
CHOSEN 1792x268876.24 5974.03 8482.88 183.09 11762.84 285.73 11185.39 10669.79 2864.87 15283.49 19941.52 16893.69 2970.55 10381.82 6992.12 40
FMVSNet368.84 18867.40 19173.19 20985.05 7348.53 23485.71 11385.36 10760.90 16657.58 25679.15 25942.16 15686.77 22147.25 28463.40 24084.27 225
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14854.67 8684.06 16685.35 10861.10 15972.99 6591.50 6140.25 18091.00 8276.84 6286.98 2590.51 90
ETV-MVS77.17 4676.74 4778.48 7081.80 15154.55 8986.13 10085.33 10968.20 3873.10 6490.52 8145.23 11190.66 9179.37 4080.95 7490.22 97
EIA-MVS75.92 6575.18 6878.13 7985.14 7251.60 15887.17 8085.32 11064.69 9368.56 11390.53 8045.79 10391.58 6667.21 12482.18 6691.20 73
CostFormer73.89 9672.30 10578.66 6582.36 14156.58 3375.56 29785.30 11166.06 7470.50 10376.88 28757.02 2089.06 13668.27 11968.74 19890.33 93
GST-MVS74.87 8373.90 8577.77 8583.30 11053.45 11285.75 10985.29 11259.22 19466.50 13189.85 9940.94 17290.76 8870.94 10283.35 5889.10 127
WR-MVS67.58 21466.76 20070.04 27475.92 27245.06 30086.23 9885.28 11364.31 9758.50 24081.00 24044.80 12382.00 29549.21 27155.57 31483.06 252
原ACMM176.13 12684.89 7754.59 8885.26 11451.98 29466.70 12587.07 15640.15 18389.70 11951.23 25885.06 4884.10 227
PAPM_NR71.80 13469.98 14877.26 9881.54 16553.34 11878.60 28185.25 11553.46 28360.53 20688.66 12145.69 10589.24 13056.49 22179.62 9689.19 124
ab-mvs70.65 15569.11 16175.29 15580.87 18246.23 28673.48 31485.24 11659.99 17766.65 12680.94 24243.13 14688.69 15363.58 15468.07 20190.95 80
CS-MVS76.77 5376.70 4876.99 10683.55 10248.75 22888.60 4885.18 11766.38 6672.47 7591.62 5845.53 10690.99 8474.48 7982.51 6291.23 72
MVS_Test75.85 6774.93 7278.62 6684.08 9255.20 6783.99 16885.17 11868.07 4173.38 6182.76 21050.44 6189.00 14065.90 13580.61 7891.64 56
tfpnnormal61.47 28159.09 28568.62 29276.29 26341.69 33381.14 24785.16 11954.48 27651.32 31473.63 32132.32 28186.89 22021.78 38955.71 31377.29 326
test1279.24 4486.89 4656.08 4585.16 11972.27 7847.15 8691.10 8085.93 3790.54 89
131471.11 14569.41 15576.22 12179.32 20850.49 17880.23 26485.14 12159.44 18758.93 23088.89 11733.83 26989.60 12261.49 16977.42 11388.57 141
Anonymous2024052969.71 17267.28 19377.00 10583.78 9950.36 18588.87 4685.10 12247.22 32764.03 16683.37 20227.93 31092.10 5857.78 21167.44 20788.53 143
APD-MVScopyleft76.15 6175.68 5877.54 9088.52 2753.44 11387.26 7885.03 12353.79 28074.91 4691.68 5643.80 13190.31 10174.36 8081.82 6988.87 132
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR76.39 5875.38 6579.42 4285.33 6956.47 3888.15 5384.97 12465.15 9066.06 13589.88 9843.79 13292.16 5575.03 7580.03 8989.64 113
FMVSNet267.57 21565.79 22372.90 21382.71 13347.97 25785.15 12884.93 12558.55 21156.71 27078.26 26636.72 23586.67 22446.15 29362.94 25184.07 228
UniMVSNet (Re)67.71 21166.80 19970.45 26574.44 28942.93 32382.42 21684.90 12663.69 11159.63 21580.99 24147.18 8585.23 26251.17 25956.75 30083.19 249
baseline76.86 5276.24 5478.71 6280.47 19354.20 9883.90 17184.88 12771.38 1971.51 8689.15 11350.51 6090.55 9575.71 6778.65 10191.39 66
lupinMVS78.38 2978.11 2979.19 4583.02 12055.24 6391.57 1584.82 12869.12 3476.67 3992.02 4644.82 12190.23 10580.83 3680.09 8692.08 41
PS-MVSNAJss68.78 19267.17 19573.62 20273.01 30648.33 24484.95 14084.81 12959.30 19358.91 23279.84 25237.77 20488.86 14862.83 15863.12 24983.67 241
EG-PatchMatch MVS62.40 27659.59 28070.81 26173.29 30149.05 21685.81 10584.78 13051.85 29744.19 34973.48 32315.52 38189.85 11340.16 31667.24 20873.54 359
test250672.91 11272.43 10274.32 17880.12 19844.18 30983.19 19484.77 13164.02 10265.97 13687.43 15047.67 8288.72 15259.08 18879.66 9490.08 103
NR-MVSNet67.25 22465.99 21871.04 25873.27 30343.91 31085.32 12384.75 13266.05 7553.65 30182.11 23045.05 11385.97 25047.55 28156.18 30683.24 247
sss70.49 15770.13 14671.58 24981.59 16239.02 34880.78 25584.71 13359.34 19066.61 12888.09 13537.17 22385.52 25561.82 16771.02 18090.20 99
EC-MVSNet75.30 7575.20 6675.62 13880.98 17649.00 21987.43 7084.68 13463.49 11770.97 9590.15 9342.86 15091.14 7974.33 8181.90 6886.71 185
Anonymous2023121166.08 24763.67 25073.31 20683.07 11848.75 22886.01 10484.67 13545.27 34156.54 27276.67 29028.06 30988.95 14452.78 24859.95 26582.23 261
CDPH-MVS76.05 6375.19 6778.62 6686.51 5054.98 7587.32 7384.59 13658.62 21070.75 9790.85 7443.10 14790.63 9370.50 10484.51 5390.24 96
sasdasda78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13767.70 4977.70 3492.11 4450.90 5589.95 11178.18 5477.54 11193.20 15
canonicalmvs78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13767.70 4977.70 3492.11 4450.90 5589.95 11178.18 5477.54 11193.20 15
MP-MVS-pluss75.54 7475.03 6977.04 10281.37 17152.65 13684.34 15784.46 13961.16 15669.14 10891.76 5339.98 18788.99 14278.19 5284.89 4989.48 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS89.55 1453.46 11084.38 14057.02 24173.97 5591.03 6544.57 12591.17 7775.41 7381.78 71
HFP-MVS74.37 8773.13 9578.10 8084.30 8753.68 10685.58 11584.36 14156.82 24565.78 14090.56 7840.70 17790.90 8669.18 11280.88 7589.71 111
ACMMPR73.76 9872.61 9777.24 9983.92 9652.96 13185.58 11584.29 14256.82 24565.12 14690.45 8237.24 22190.18 10669.18 11280.84 7688.58 140
API-MVS74.17 9072.07 11280.49 2590.02 1158.55 987.30 7584.27 14357.51 23265.77 14187.77 14441.61 16695.97 1151.71 25482.63 6186.94 176
TranMVSNet+NR-MVSNet66.94 23465.61 22870.93 26073.45 29943.38 31783.02 20084.25 14465.31 8858.33 24581.90 23439.92 18885.52 25549.43 26854.89 31883.89 237
test1184.25 144
PVSNet_BlendedMVS73.42 10573.30 8973.76 19685.91 5651.83 15386.18 9984.24 14665.40 8469.09 10980.86 24346.70 9288.13 17775.43 7065.92 22281.33 279
PVSNet_Blended76.53 5676.54 4976.50 11685.91 5651.83 15388.89 4584.24 14667.82 4669.09 10989.33 11046.70 9288.13 17775.43 7081.48 7389.55 115
region2R73.75 9972.55 9977.33 9483.90 9752.98 13085.54 11984.09 14856.83 24465.10 14790.45 8237.34 21890.24 10468.89 11480.83 7788.77 136
EPNet78.36 3078.49 2577.97 8285.49 6552.04 14789.36 3984.07 14973.22 777.03 3891.72 5449.32 7290.17 10773.46 9082.77 6091.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TEST985.68 5955.42 5687.59 6784.00 15057.72 22672.99 6590.98 6744.87 11988.58 158
train_agg76.91 4976.40 5178.45 7285.68 5955.42 5687.59 6784.00 15057.84 22472.99 6590.98 6744.99 11588.58 15878.19 5285.32 4491.34 70
jason77.01 4876.45 5078.69 6379.69 20354.74 8090.56 2483.99 15268.26 3774.10 5490.91 7242.14 15789.99 11079.30 4179.12 9791.36 68
jason: jason.
test_885.72 5855.31 6187.60 6683.88 15357.84 22472.84 6990.99 6644.99 11588.34 169
UnsupCasMVSNet_eth57.56 31055.15 30964.79 32464.57 37033.12 37173.17 31783.87 15458.98 20341.75 36170.03 34922.54 34879.92 31746.12 29435.31 38181.32 281
cascas69.01 18566.13 21477.66 8779.36 20655.41 5886.99 8383.75 15556.69 24958.92 23181.35 23924.31 33892.10 5853.23 24170.61 18485.46 209
dcpmvs_279.33 2178.94 2180.49 2589.75 1256.54 3684.83 14483.68 15667.85 4569.36 10590.24 8760.20 892.10 5884.14 1680.40 8292.82 25
HQP3-MVS83.68 15673.12 160
114514_t69.87 17067.88 17875.85 13388.38 2952.35 14286.94 8583.68 15653.70 28155.68 28085.60 17330.07 30091.20 7655.84 22771.02 18083.99 231
HQP-MVS72.34 12271.44 12175.03 16379.02 21551.56 15988.00 5583.68 15665.45 8164.48 15985.13 17737.35 21688.62 15566.70 12673.12 16084.91 217
agg_prior85.64 6254.92 7683.61 16072.53 7488.10 179
MP-MVScopyleft74.99 8274.33 7976.95 10882.89 12753.05 12885.63 11483.50 16157.86 22367.25 12290.24 8743.38 14288.85 15176.03 6482.23 6588.96 129
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
h-mvs3373.95 9372.89 9677.15 10080.17 19750.37 18484.68 14883.33 16268.08 3971.97 8088.65 12442.50 15191.15 7878.82 4557.78 29589.91 109
GBi-Net67.09 22965.47 23171.96 23882.71 13346.36 28083.52 17883.31 16358.55 21157.58 25676.23 29636.72 23586.20 23747.25 28463.40 24083.32 244
test167.09 22965.47 23171.96 23882.71 13346.36 28083.52 17883.31 16358.55 21157.58 25676.23 29636.72 23586.20 23747.25 28463.40 24083.32 244
FMVSNet164.57 25262.11 25871.96 23877.32 24646.36 28083.52 17883.31 16352.43 29254.42 29176.23 29627.80 31286.20 23742.59 31161.34 26183.32 244
OPM-MVS70.75 15469.58 15374.26 18075.55 27651.34 16586.05 10283.29 16661.94 14362.95 18285.77 17134.15 26488.44 16465.44 14371.07 17982.99 253
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
nrg03072.27 12671.56 11874.42 17475.93 27150.60 17586.97 8483.21 16762.75 12967.15 12384.38 18550.07 6386.66 22571.19 10062.37 25685.99 197
XVS72.92 11171.62 11776.81 11183.41 10552.48 13784.88 14283.20 16858.03 21763.91 16889.63 10335.50 24989.78 11565.50 13780.50 8088.16 150
X-MVStestdata65.85 24962.20 25776.81 11183.41 10552.48 13784.88 14283.20 16858.03 21763.91 1684.82 42035.50 24989.78 11565.50 13780.50 8088.16 150
HPM-MVScopyleft72.60 11771.50 11975.89 13282.02 14451.42 16380.70 25683.05 17056.12 25764.03 16689.53 10437.55 21288.37 16670.48 10580.04 8887.88 158
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft70.81 15369.29 15975.39 14981.52 16751.92 15183.43 18583.03 17156.67 25058.80 23588.91 11631.92 28788.58 15865.89 13673.39 15885.67 204
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CL-MVSNet_self_test62.98 26761.14 26868.50 29565.86 36042.96 32284.37 15582.98 17260.98 16253.95 29772.70 33040.43 17983.71 28141.10 31347.93 34878.83 306
DP-MVS Recon71.99 12970.31 14177.01 10490.65 853.44 11389.37 3782.97 17356.33 25563.56 17689.47 10534.02 26592.15 5754.05 23772.41 16785.43 210
DU-MVS66.84 23665.74 22570.16 27073.27 30342.59 32781.50 24182.92 17463.53 11558.51 23882.11 23040.75 17484.64 27253.11 24255.96 30983.24 247
PMMVS72.98 11072.05 11375.78 13483.57 10148.60 23184.08 16482.85 17561.62 14868.24 11690.33 8628.35 30687.78 19172.71 9576.69 12190.95 80
test111171.06 14770.42 13872.97 21279.48 20541.49 33784.82 14582.74 17664.20 9962.98 18187.43 15035.20 25287.92 18358.54 19478.42 10489.49 117
HQP_MVS70.96 15069.91 14974.12 18377.95 23649.57 20185.76 10782.59 17763.60 11362.15 19183.28 20436.04 24588.30 17265.46 14072.34 16884.49 221
plane_prior582.59 17788.30 17265.46 14072.34 16884.49 221
CP-MVS72.59 11971.46 12076.00 13182.93 12552.32 14386.93 8682.48 17955.15 26763.65 17390.44 8535.03 25688.53 16268.69 11577.83 10987.15 174
SD-MVS76.18 6074.85 7380.18 3285.39 6756.90 2885.75 10982.45 18056.79 24774.48 5191.81 5243.72 13590.75 8974.61 7878.65 10192.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ECVR-MVScopyleft71.81 13371.00 12874.26 18080.12 19843.49 31484.69 14782.16 18164.02 10264.64 15487.43 15035.04 25589.21 13361.24 17179.66 9490.08 103
PGM-MVS72.60 11771.20 12676.80 11382.95 12352.82 13383.07 19882.14 18256.51 25363.18 17889.81 10035.68 24889.76 11767.30 12380.19 8587.83 159
PCF-MVS61.03 1070.10 16268.40 16975.22 16077.15 25251.99 14879.30 27682.12 18356.47 25461.88 19486.48 16643.98 12887.24 20855.37 22972.79 16586.43 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FA-MVS(test-final)69.00 18666.60 20576.19 12483.48 10447.96 25974.73 30482.07 18457.27 23762.18 19078.47 26536.09 24392.89 3453.76 24071.32 17887.73 162
WR-MVS_H58.91 29958.04 29161.54 34269.07 34433.83 36976.91 29081.99 18551.40 30048.17 33074.67 30840.23 18174.15 35531.78 35348.10 34676.64 333
v2v48269.55 17867.64 18475.26 15972.32 31653.83 10284.93 14181.94 18665.37 8660.80 20379.25 25741.62 16588.98 14363.03 15759.51 27082.98 254
MIMVSNet63.12 26660.29 27671.61 24675.92 27246.65 27665.15 35581.94 18659.14 19954.65 28969.47 35125.74 32680.63 30741.03 31469.56 19587.55 166
UnsupCasMVSNet_bld53.86 32950.53 33363.84 32663.52 37534.75 36271.38 33281.92 18846.53 33138.95 37457.93 38720.55 35980.20 31539.91 31734.09 38876.57 334
EPMVS68.45 19765.44 23377.47 9284.91 7656.17 4371.89 33181.91 18961.72 14660.85 20272.49 33136.21 24187.06 21347.32 28371.62 17489.17 125
v14868.24 20366.35 20873.88 19171.76 32051.47 16284.23 16081.90 19063.69 11158.94 22976.44 29243.72 13587.78 19160.63 17655.86 31182.39 260
testing359.97 28760.19 27759.32 35077.60 24130.01 38581.75 23181.79 19153.54 28250.34 32179.94 24948.99 7376.91 34317.19 40050.59 34071.03 373
mPP-MVS71.79 13570.38 13976.04 12982.65 13652.06 14684.45 15481.78 19255.59 26262.05 19389.68 10233.48 27188.28 17465.45 14278.24 10687.77 161
v114468.81 19066.82 19874.80 16872.34 31553.46 11084.68 14881.77 19364.25 9860.28 20777.91 26840.23 18188.95 14460.37 18359.52 26981.97 263
pm-mvs164.12 25662.56 25468.78 28871.68 32138.87 34982.89 20281.57 19455.54 26453.89 29877.82 27037.73 20786.74 22248.46 27753.49 33080.72 288
mvs_anonymous72.29 12470.74 13076.94 10982.85 12954.72 8278.43 28281.54 19563.77 10861.69 19579.32 25651.11 5285.31 25962.15 16475.79 13390.79 84
save fliter85.35 6856.34 4189.31 4081.46 19661.55 149
MVSFormer73.53 10472.19 10877.57 8983.02 12055.24 6381.63 23581.44 19750.28 30576.67 3990.91 7244.82 12186.11 24160.83 17480.09 8691.36 68
test_djsdf63.84 25861.56 26270.70 26268.78 34544.69 30181.63 23581.44 19750.28 30552.27 30976.26 29526.72 31986.11 24160.83 17455.84 31281.29 282
MTGPAbinary81.31 199
MTAPA72.73 11571.22 12577.27 9781.54 16553.57 10867.06 35281.31 19959.41 18868.39 11490.96 6936.07 24489.01 13973.80 8882.45 6489.23 122
tpm270.82 15268.44 16877.98 8180.78 18556.11 4474.21 30981.28 20160.24 17568.04 11775.27 30552.26 4688.50 16355.82 22868.03 20289.33 119
miper_lstm_enhance63.91 25762.30 25668.75 28975.06 28146.78 27469.02 34281.14 20259.68 18352.76 30572.39 33440.71 17677.99 33456.81 21953.09 33381.48 273
jajsoiax63.21 26560.84 27070.32 26868.33 35044.45 30381.23 24581.05 20353.37 28550.96 31877.81 27117.49 37285.49 25759.31 18758.05 28881.02 285
Syy-MVS61.51 28061.35 26562.00 33881.73 15330.09 38380.97 25081.02 20460.93 16455.06 28382.64 21535.09 25480.81 30416.40 40258.32 28175.10 347
myMVS_eth3d63.52 26163.56 25263.40 33081.73 15334.28 36480.97 25081.02 20460.93 16455.06 28382.64 21548.00 8080.81 30423.42 38558.32 28175.10 347
reproduce-ours71.77 13670.43 13675.78 13481.96 14649.54 20682.54 21181.01 20648.77 31769.21 10690.96 6937.13 22489.40 12566.28 13176.01 12988.39 147
our_new_method71.77 13670.43 13675.78 13481.96 14649.54 20682.54 21181.01 20648.77 31769.21 10690.96 6937.13 22489.40 12566.28 13176.01 12988.39 147
v119267.96 20665.74 22574.63 16971.79 31953.43 11584.06 16680.99 20863.19 12359.56 21777.46 27537.50 21588.65 15458.20 20158.93 27681.79 266
TR-MVS69.71 17267.85 18175.27 15882.94 12448.48 23787.40 7280.86 20957.15 24064.61 15687.08 15532.67 27889.64 12146.38 29171.55 17687.68 164
v14419267.86 20765.76 22474.16 18271.68 32153.09 12684.14 16380.83 21062.85 12859.21 22677.28 27939.30 19188.00 18258.67 19357.88 29381.40 276
mvs_tets62.96 26860.55 27270.19 26968.22 35344.24 30880.90 25280.74 21152.99 28850.82 32077.56 27216.74 37685.44 25859.04 19057.94 29080.89 286
Fast-Effi-MVS+72.73 11571.15 12777.48 9182.75 13254.76 7986.77 9080.64 21263.05 12565.93 13784.01 18944.42 12689.03 13856.45 22476.36 12688.64 138
LPG-MVS_test66.44 24264.58 24372.02 23574.42 29048.60 23183.07 19880.64 21254.69 27453.75 29983.83 19225.73 32786.98 21460.33 18464.71 22780.48 291
LGP-MVS_train72.02 23574.42 29048.60 23180.64 21254.69 27453.75 29983.83 19225.73 32786.98 21460.33 18464.71 22780.48 291
reproduce_model71.07 14669.67 15275.28 15781.51 16848.82 22681.73 23280.57 21547.81 32368.26 11590.78 7636.49 23988.60 15765.12 14774.76 14988.42 146
v192192067.45 21865.23 23774.10 18471.51 32452.90 13283.75 17680.44 21662.48 13659.12 22777.13 28036.98 22887.90 18457.53 21358.14 28781.49 271
KD-MVS_2432*160059.04 29756.44 30166.86 30779.07 21345.87 28972.13 32780.42 21755.03 26948.15 33171.01 34236.73 23378.05 33235.21 33730.18 39476.67 330
miper_refine_blended59.04 29756.44 30166.86 30779.07 21345.87 28972.13 32780.42 21755.03 26948.15 33171.01 34236.73 23378.05 33235.21 33730.18 39476.67 330
sd_testset67.79 21065.95 21973.32 20581.70 15546.33 28368.99 34380.30 21966.58 6161.64 19682.38 22330.45 29787.63 19755.86 22665.60 22386.01 195
GA-MVS69.04 18466.70 20276.06 12875.11 27952.36 14183.12 19680.23 22063.32 12060.65 20579.22 25830.98 29488.37 16661.25 17066.41 21687.46 168
v7n62.50 27359.27 28472.20 23167.25 35649.83 19877.87 28680.12 22152.50 29148.80 32973.07 32532.10 28387.90 18446.83 28754.92 31778.86 305
v867.25 22464.99 24074.04 18572.89 30953.31 12082.37 21780.11 22261.54 15054.29 29476.02 30142.89 14988.41 16558.43 19556.36 30180.39 293
dmvs_re67.61 21366.00 21772.42 22581.86 15043.45 31564.67 35880.00 22369.56 3260.07 20985.00 18134.71 25887.63 19751.48 25666.68 21186.17 194
v124066.99 23264.68 24273.93 18971.38 32752.66 13583.39 18979.98 22461.97 14258.44 24477.11 28135.25 25187.81 18656.46 22358.15 28581.33 279
MGCFI-Net74.07 9174.64 7772.34 22882.90 12643.33 31980.04 26779.96 22565.61 7974.93 4591.85 5148.01 7880.86 30371.41 9977.10 11492.84 24
diffmvspermissive75.11 8174.65 7676.46 11778.52 22853.35 11783.28 19279.94 22670.51 2471.64 8488.72 11946.02 10086.08 24677.52 5875.75 13589.96 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_ETH3D62.51 27260.49 27368.57 29468.30 35140.88 34373.89 31079.93 22751.81 29854.77 28779.61 25324.80 33481.10 29949.93 26461.35 26083.73 239
v1066.61 23964.20 24873.83 19472.59 31253.37 11681.88 22679.91 22861.11 15854.09 29675.60 30340.06 18588.26 17556.47 22256.10 30779.86 299
ACMP61.11 966.24 24564.33 24672.00 23774.89 28449.12 21483.18 19579.83 22955.41 26552.29 30882.68 21425.83 32586.10 24360.89 17363.94 23680.78 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023120659.08 29657.59 29363.55 32868.77 34632.14 37780.26 26379.78 23050.00 30949.39 32572.39 33426.64 32078.36 32733.12 34957.94 29080.14 296
test-LLR69.65 17669.01 16271.60 24778.67 22348.17 24885.13 12979.72 23159.18 19763.13 17982.58 21736.91 23080.24 31360.56 17875.17 14186.39 191
test-mter68.36 19867.29 19271.60 24778.67 22348.17 24885.13 12979.72 23153.38 28463.13 17982.58 21727.23 31680.24 31360.56 17875.17 14186.39 191
ACMM58.35 1264.35 25462.01 25971.38 25174.21 29348.51 23582.25 21879.66 23347.61 32554.54 29080.11 24825.26 33086.00 24751.26 25763.16 24779.64 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ambc62.06 33753.98 39329.38 38935.08 40679.65 23441.37 36259.96 3826.27 40582.15 29235.34 33638.22 37674.65 351
MSLP-MVS++74.21 8972.25 10680.11 3681.45 16956.47 3886.32 9679.65 23458.19 21566.36 13292.29 4036.11 24290.66 9167.39 12282.49 6393.18 17
AUN-MVS68.20 20466.35 20873.76 19676.37 25847.45 26679.52 27379.52 23660.98 16262.34 18786.02 16836.59 23886.94 21762.32 16153.47 33186.89 177
APD-MVS_3200maxsize69.62 17768.23 17373.80 19581.58 16348.22 24681.91 22579.50 23748.21 32164.24 16489.75 10131.91 28887.55 20163.08 15673.85 15685.64 206
hse-mvs271.44 14170.68 13173.73 19876.34 25947.44 26779.45 27479.47 23868.08 3971.97 8086.01 17042.50 15186.93 21878.82 4553.46 33286.83 183
xiu_mvs_v1_base_debu71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
xiu_mvs_v1_base71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
xiu_mvs_v1_base_debi71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
CANet_DTU73.71 10073.14 9375.40 14882.61 13750.05 19284.67 15079.36 24269.72 3075.39 4290.03 9629.41 30285.93 25267.99 12079.11 9890.22 97
SR-MVS70.92 15169.73 15174.50 17183.38 10950.48 17984.27 15979.35 24348.96 31566.57 13090.45 8233.65 27087.11 21166.42 12874.56 15185.91 200
IS-MVSNet68.80 19167.55 18772.54 22178.50 22943.43 31681.03 24879.35 24359.12 20057.27 26486.71 16046.05 9987.70 19444.32 30275.60 13686.49 188
BH-RMVSNet70.08 16368.01 17576.27 11984.21 9151.22 16987.29 7679.33 24558.96 20463.63 17486.77 15933.29 27390.30 10344.63 30073.96 15487.30 173
TransMVSNet (Re)62.82 26960.76 27169.02 28373.98 29641.61 33586.36 9579.30 24656.90 24252.53 30676.44 29241.85 16387.60 20038.83 31940.61 37277.86 320
cl____67.43 21965.93 22071.95 24176.33 26048.02 25582.58 20779.12 24761.30 15556.72 26976.92 28546.12 9786.44 23357.98 20456.31 30381.38 278
DIV-MVS_self_test67.43 21965.93 22071.94 24276.33 26048.01 25682.57 20879.11 24861.31 15456.73 26876.92 28546.09 9886.43 23457.98 20456.31 30381.39 277
HyFIR lowres test69.94 16967.58 18577.04 10277.11 25357.29 2281.49 24379.11 24858.27 21458.86 23380.41 24642.33 15386.96 21661.91 16568.68 19986.87 178
miper_enhance_ethall69.77 17168.90 16372.38 22678.93 21849.91 19583.29 19178.85 25064.90 9159.37 22179.46 25452.77 4285.16 26463.78 15258.72 27782.08 262
Baseline_NR-MVSNet65.49 25164.27 24769.13 28274.37 29241.65 33483.39 18978.85 25059.56 18459.62 21676.88 28740.75 17487.44 20349.99 26355.05 31678.28 316
PVSNet_Blended_VisFu73.40 10672.44 10176.30 11881.32 17354.70 8385.81 10578.82 25263.70 11064.53 15885.38 17647.11 8787.38 20667.75 12177.55 11086.81 184
test0.0.03 162.54 27162.44 25562.86 33572.28 31829.51 38882.93 20178.78 25359.18 19753.07 30482.41 22136.91 23077.39 34037.45 32258.96 27581.66 269
FOURS183.24 11249.90 19684.98 13778.76 25447.71 32473.42 60
tpm68.36 19867.48 19070.97 25979.93 20151.34 16576.58 29378.75 25567.73 4763.54 17774.86 30748.33 7472.36 36753.93 23863.71 23789.21 123
tpmrst71.04 14869.77 15074.86 16783.19 11455.86 5075.64 29678.73 25667.88 4464.99 15173.73 31749.96 6779.56 32365.92 13467.85 20589.14 126
pmmvs659.64 28957.15 29667.09 30466.01 35836.86 35980.50 25778.64 25745.05 34349.05 32773.94 31527.28 31586.10 24343.96 30449.94 34278.31 315
anonymousdsp60.46 28657.65 29268.88 28463.63 37445.09 29672.93 31878.63 25846.52 33251.12 31572.80 32921.46 35683.07 28957.79 21053.97 32478.47 311
V4267.66 21265.60 22973.86 19270.69 33453.63 10781.50 24178.61 25963.85 10759.49 22077.49 27437.98 20187.65 19662.33 16058.43 28080.29 294
CP-MVSNet58.54 30557.57 29461.46 34368.50 34833.96 36876.90 29178.60 26051.67 29947.83 33476.60 29134.99 25772.79 36435.45 33447.58 35077.64 324
UGNet68.71 19367.11 19673.50 20480.55 19247.61 26484.08 16478.51 26159.45 18665.68 14282.73 21323.78 34085.08 26652.80 24776.40 12287.80 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
cl2268.85 18767.69 18372.35 22778.07 23549.98 19482.45 21578.48 26262.50 13558.46 24277.95 26749.99 6585.17 26362.55 15958.72 27781.90 265
miper_ehance_all_eth68.70 19567.58 18572.08 23376.91 25549.48 20982.47 21478.45 26362.68 13158.28 24677.88 26950.90 5585.01 26761.91 16558.72 27781.75 267
FE-MVS64.15 25560.43 27575.30 15480.85 18349.86 19768.28 34778.37 26450.26 30859.31 22373.79 31626.19 32391.92 6140.19 31566.67 21284.12 226
PEN-MVS58.35 30657.15 29661.94 33967.55 35534.39 36377.01 28978.35 26551.87 29647.72 33576.73 28933.91 26673.75 35934.03 34447.17 35477.68 322
MonoMVSNet66.80 23764.41 24573.96 18876.21 26448.07 25376.56 29478.26 26664.34 9654.32 29374.02 31437.21 22286.36 23664.85 14953.96 32587.45 169
MDTV_nov1_ep1361.56 26281.68 15755.12 6972.41 32378.18 26759.19 19558.85 23469.29 35334.69 25986.16 24036.76 33062.96 250
BH-w/o70.02 16568.51 16774.56 17082.77 13150.39 18286.60 9378.14 26859.77 18059.65 21485.57 17439.27 19287.30 20749.86 26574.94 14885.99 197
PS-CasMVS58.12 30757.03 29861.37 34468.24 35233.80 37076.73 29278.01 26951.20 30147.54 33876.20 29932.85 27572.76 36535.17 33947.37 35277.55 325
c3_l67.97 20566.66 20371.91 24476.20 26549.31 21282.13 22178.00 27061.99 14157.64 25576.94 28449.41 7084.93 26860.62 17757.01 29981.49 271
无先验85.19 12778.00 27049.08 31385.13 26552.78 24887.45 169
PVSNet62.49 869.27 18267.81 18273.64 20084.41 8551.85 15284.63 15177.80 27266.42 6559.80 21284.95 18222.14 35380.44 31155.03 23075.11 14488.62 139
PatchmatchNetpermissive67.07 23163.63 25177.40 9383.10 11558.03 1172.11 32977.77 27358.85 20559.37 22170.83 34437.84 20384.93 26842.96 30869.83 19189.26 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Vis-MVSNet (Re-imp)65.52 25065.63 22765.17 32177.49 24430.54 37975.49 30077.73 27459.34 19052.26 31086.69 16149.38 7180.53 31037.07 32675.28 13984.42 223
D2MVS63.49 26261.39 26469.77 27669.29 34248.93 22278.89 27977.71 27560.64 17149.70 32372.10 33927.08 31783.48 28454.48 23462.65 25376.90 328
tpmvs62.45 27559.42 28271.53 25083.93 9554.32 9270.03 33877.61 27651.91 29553.48 30268.29 35737.91 20286.66 22533.36 34658.27 28373.62 358
SCA63.84 25860.01 27975.32 15178.58 22757.92 1261.61 37177.53 27756.71 24857.75 25370.77 34531.97 28579.91 31948.80 27356.36 30188.13 153
Vis-MVSNetpermissive70.61 15669.34 15774.42 17480.95 18148.49 23686.03 10377.51 27858.74 20865.55 14387.78 14334.37 26285.95 25152.53 25280.61 7888.80 134
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CDS-MVSNet70.48 15869.43 15473.64 20077.56 24348.83 22583.51 18277.45 27963.27 12162.33 18885.54 17543.85 12983.29 28857.38 21674.00 15388.79 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
BH-untuned68.28 20166.40 20773.91 19081.62 16050.01 19385.56 11777.39 28057.63 22957.47 26183.69 19636.36 24087.08 21244.81 29873.08 16384.65 220
Anonymous20240521170.11 16167.88 17876.79 11487.20 4447.24 27189.49 3577.38 28154.88 27266.14 13386.84 15820.93 35891.54 6756.45 22471.62 17491.59 58
PVSNet_057.04 1361.19 28257.24 29573.02 21077.45 24550.31 18879.43 27577.36 28263.96 10647.51 33972.45 33325.03 33283.78 28052.76 25019.22 40884.96 216
tpm cat166.28 24362.78 25376.77 11581.40 17057.14 2470.03 33877.19 28353.00 28758.76 23670.73 34746.17 9686.73 22343.27 30664.46 23186.44 189
TAMVS69.51 17968.16 17473.56 20376.30 26248.71 23082.57 20877.17 28462.10 13961.32 19984.23 18741.90 16283.46 28554.80 23373.09 16288.50 144
FMVSNet558.61 30256.45 30065.10 32277.20 25139.74 34574.77 30377.12 28550.27 30743.28 35567.71 35826.15 32476.90 34536.78 32954.78 31978.65 309
DTE-MVSNet57.03 31255.73 30760.95 34765.94 35932.57 37575.71 29577.09 28651.16 30246.65 34476.34 29432.84 27673.22 36330.94 35744.87 36377.06 327
SR-MVS-dyc-post68.27 20266.87 19772.48 22480.96 17848.14 25081.54 23976.98 28746.42 33462.75 18489.42 10631.17 29386.09 24560.52 18072.06 17183.19 249
RE-MVS-def66.66 20380.96 17848.14 25081.54 23976.98 28746.42 33462.75 18489.42 10629.28 30460.52 18072.06 17183.19 249
RPMNet59.29 29154.25 31574.42 17473.97 29756.57 3460.52 37476.98 28735.72 37657.49 25958.87 38637.73 20785.26 26127.01 37459.93 26681.42 274
eth_miper_zixun_eth66.98 23365.28 23672.06 23475.61 27550.40 18181.00 24976.97 29062.00 14056.99 26676.97 28344.84 12085.58 25458.75 19254.42 32280.21 295
mvsmamba69.38 18067.52 18974.95 16682.86 12852.22 14567.36 35076.75 29161.14 15749.43 32482.04 23237.26 22084.14 27573.93 8576.91 11788.50 144
1112_ss70.05 16469.37 15672.10 23280.77 18642.78 32585.12 13276.75 29159.69 18261.19 20092.12 4247.48 8383.84 27853.04 24468.21 20089.66 112
GeoE69.96 16867.88 17876.22 12181.11 17551.71 15684.15 16276.74 29359.83 17960.91 20184.38 18541.56 16788.10 17951.67 25570.57 18588.84 133
Effi-MVS+75.24 7773.61 8680.16 3381.92 14857.42 2185.21 12676.71 29460.68 17073.32 6289.34 10847.30 8491.63 6568.28 11879.72 9391.42 65
IterMVS-LS66.63 23865.36 23570.42 26675.10 28048.90 22381.45 24476.69 29561.05 16055.71 27977.10 28245.86 10283.65 28257.44 21457.88 29378.70 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary67.86 20765.48 23075.00 16488.15 3654.99 7486.10 10176.63 29649.30 31257.80 25086.65 16329.39 30388.94 14645.10 29770.21 18881.06 284
dp64.41 25361.58 26172.90 21382.40 13954.09 10072.53 32176.59 29760.39 17355.68 28070.39 34835.18 25376.90 34539.34 31861.71 25987.73 162
JIA-IIPM52.33 33847.77 34666.03 31471.20 32846.92 27340.00 40376.48 29837.10 37146.73 34237.02 40332.96 27477.88 33635.97 33252.45 33673.29 361
TAPA-MVS56.12 1461.82 27960.18 27866.71 30978.48 23037.97 35575.19 30276.41 29946.82 33057.04 26586.52 16527.67 31477.03 34226.50 37667.02 21085.14 212
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH53.70 1659.78 28855.94 30671.28 25276.59 25748.35 24180.15 26676.11 30049.74 31041.91 36073.45 32416.50 37890.31 10131.42 35457.63 29675.17 345
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EU-MVSNet52.63 33550.72 33258.37 35462.69 37828.13 39472.60 32075.97 30130.94 38740.76 36872.11 33820.16 36070.80 37135.11 34046.11 36076.19 338
HPM-MVS_fast67.86 20766.28 21172.61 21980.67 18948.34 24281.18 24675.95 30250.81 30359.55 21888.05 13827.86 31185.98 24858.83 19173.58 15783.51 242
Fast-Effi-MVS+-dtu66.53 24064.10 24973.84 19372.41 31452.30 14484.73 14675.66 30359.51 18556.34 27579.11 26028.11 30885.85 25357.74 21263.29 24483.35 243
EPNet_dtu66.25 24466.71 20164.87 32378.66 22534.12 36782.80 20375.51 30461.75 14564.47 16286.90 15737.06 22672.46 36643.65 30569.63 19488.02 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS63.77 26061.67 26070.08 27272.68 31151.24 16880.44 25975.51 30460.51 17251.41 31373.70 32032.08 28478.91 32454.30 23554.35 32380.08 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net67.32 22366.23 21270.59 26378.85 21941.23 34073.60 31275.45 30661.54 15066.61 12884.53 18438.73 19786.57 23042.48 31274.24 15283.98 233
OMC-MVS65.97 24865.06 23968.71 29072.97 30742.58 32978.61 28075.35 30754.72 27359.31 22386.25 16733.30 27277.88 33657.99 20367.05 20985.66 205
pmmvs562.80 27061.18 26767.66 29969.53 34042.37 33282.65 20675.19 30854.30 27952.03 31178.51 26431.64 29080.67 30648.60 27558.15 28579.95 298
OpenMVS_ROBcopyleft53.19 1759.20 29356.00 30568.83 28671.13 32944.30 30583.64 17775.02 30946.42 33446.48 34573.03 32618.69 36688.14 17627.74 37161.80 25874.05 355
kuosan50.20 34550.09 33550.52 36973.09 30529.09 39165.25 35474.89 31048.27 32041.34 36360.85 38043.45 14167.48 37718.59 39825.07 40055.01 394
test20.0355.22 32354.07 31658.68 35363.14 37625.00 39777.69 28774.78 31152.64 28943.43 35372.39 33426.21 32274.76 35429.31 36147.05 35676.28 337
our_test_359.11 29555.08 31171.18 25671.42 32553.29 12181.96 22374.52 31248.32 31942.08 35869.28 35428.14 30782.15 29234.35 34345.68 36278.11 319
Effi-MVS+-dtu66.24 24564.96 24170.08 27275.17 27849.64 20082.01 22274.48 31362.15 13857.83 24976.08 30030.59 29683.79 27965.40 14460.93 26376.81 329
IterMVS-SCA-FT59.12 29458.81 28860.08 34870.68 33545.07 29780.42 26074.25 31443.54 35450.02 32273.73 31731.97 28556.74 39451.06 26053.60 32978.42 313
CPTT-MVS67.15 22765.84 22271.07 25780.96 17850.32 18781.94 22474.10 31546.18 33757.91 24887.64 14729.57 30181.31 29864.10 15170.18 18981.56 270
test_fmvsm_n_192075.56 7375.54 6175.61 13974.60 28849.51 20881.82 22974.08 31666.52 6480.40 2293.46 1746.95 8889.72 11886.69 775.30 13887.61 165
MIMVSNet150.35 34447.81 34557.96 35561.53 38027.80 39567.40 34974.06 31743.25 35533.31 39265.38 36816.03 37971.34 36921.80 38847.55 35174.75 349
PLCcopyleft52.38 1860.89 28358.97 28766.68 31181.77 15245.70 29278.96 27874.04 31843.66 35347.63 33683.19 20623.52 34377.78 33937.47 32160.46 26476.55 335
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_111021_LR69.07 18367.91 17672.54 22177.27 24749.56 20379.77 26973.96 31959.33 19260.73 20487.82 14230.19 29981.53 29669.94 10772.19 17086.53 187
PatchT56.60 31452.97 32167.48 30072.94 30846.16 28757.30 38273.78 32038.77 36654.37 29257.26 38937.52 21378.06 33132.02 35152.79 33478.23 318
Test_1112_low_res67.18 22666.23 21270.02 27578.75 22141.02 34183.43 18573.69 32157.29 23658.45 24382.39 22245.30 11080.88 30250.50 26166.26 22188.16 150
MSDG59.44 29055.14 31072.32 22974.69 28550.71 17274.39 30873.58 32244.44 34843.40 35477.52 27319.45 36290.87 8731.31 35557.49 29775.38 342
XVG-OURS-SEG-HR62.02 27759.54 28169.46 27965.30 36345.88 28865.06 35673.57 32346.45 33357.42 26283.35 20326.95 31878.09 33053.77 23964.03 23484.42 223
CVMVSNet60.85 28460.44 27462.07 33675.00 28232.73 37479.54 27173.49 32436.98 37256.28 27683.74 19429.28 30469.53 37546.48 29063.23 24583.94 236
XVG-OURS61.88 27859.34 28369.49 27865.37 36246.27 28464.80 35773.49 32447.04 32957.41 26382.85 20825.15 33178.18 32853.00 24564.98 22584.01 230
USDC54.36 32651.23 33063.76 32764.29 37137.71 35662.84 36773.48 32656.85 24335.47 38371.94 3409.23 39378.43 32638.43 32048.57 34475.13 346
Anonymous2024052151.65 33948.42 34261.34 34556.43 39039.65 34773.57 31373.47 32736.64 37436.59 37963.98 37010.75 38972.25 36835.35 33549.01 34372.11 366
KD-MVS_self_test49.24 34646.85 34956.44 35954.32 39122.87 40057.39 38173.36 32844.36 34937.98 37759.30 38518.97 36571.17 37033.48 34542.44 36875.26 344
test_fmvsmconf_n74.41 8674.05 8375.49 14674.16 29448.38 24082.66 20572.57 32967.05 5775.11 4492.88 3146.35 9587.81 18683.93 1871.71 17390.28 95
XVG-ACMP-BASELINE56.03 31952.85 32365.58 31661.91 37940.95 34263.36 36272.43 33045.20 34246.02 34674.09 3129.20 39478.12 32945.13 29658.27 28377.66 323
ppachtmachnet_test58.56 30354.34 31371.24 25371.42 32554.74 8081.84 22872.27 33149.02 31445.86 34868.99 35526.27 32183.30 28730.12 35843.23 36775.69 339
MDA-MVSNet-bldmvs51.56 34047.75 34763.00 33271.60 32347.32 26969.70 34172.12 33243.81 35227.65 40163.38 37121.97 35475.96 34927.30 37332.19 38965.70 384
dongtai43.51 35544.07 35641.82 38063.75 37321.90 40463.80 36072.05 33339.59 36333.35 39154.54 39141.04 17157.30 39210.75 40917.77 40946.26 403
test_fmvsmconf0.1_n73.69 10173.15 9175.34 15070.71 33248.26 24582.15 21971.83 33466.75 6074.47 5292.59 3644.89 11887.78 19183.59 1971.35 17789.97 106
旧先验181.57 16447.48 26571.83 33488.66 12136.94 22978.34 10588.67 137
CR-MVSNet62.47 27459.04 28672.77 21673.97 29756.57 3460.52 37471.72 33660.04 17657.49 25965.86 36338.94 19480.31 31242.86 30959.93 26681.42 274
Patchmtry56.56 31552.95 32267.42 30172.53 31350.59 17659.05 37871.72 33637.86 37046.92 34165.86 36338.94 19480.06 31636.94 32846.72 35871.60 369
YYNet153.82 33049.96 33665.41 31970.09 33848.95 22072.30 32471.66 33844.25 35031.89 39363.07 37323.73 34173.95 35733.26 34739.40 37473.34 360
MDA-MVSNet_test_wron53.82 33049.95 33765.43 31870.13 33749.05 21672.30 32471.65 33944.23 35131.85 39463.13 37223.68 34274.01 35633.25 34839.35 37573.23 362
新几何173.30 20783.10 11553.48 10971.43 34045.55 33966.14 13387.17 15433.88 26880.54 30948.50 27680.33 8485.88 202
pmmvs463.34 26461.07 26970.16 27070.14 33650.53 17779.97 26871.41 34155.08 26854.12 29578.58 26332.79 27782.09 29450.33 26257.22 29877.86 320
fmvsm_l_conf0.5_n75.95 6476.16 5575.31 15276.01 27048.44 23984.98 13771.08 34263.50 11681.70 1793.52 1550.00 6487.18 20987.80 576.87 11990.32 94
CMPMVSbinary40.41 2155.34 32252.64 32563.46 32960.88 38243.84 31161.58 37271.06 34330.43 38836.33 38074.63 30924.14 33975.44 35148.05 27966.62 21371.12 372
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet48.21 34846.55 35053.18 36557.73 38718.19 41470.24 33671.02 34445.70 33833.70 38760.23 38118.00 37069.86 37427.97 37034.35 38571.49 371
fmvsm_l_conf0.5_n_a75.88 6676.07 5675.31 15276.08 26648.34 24285.24 12570.62 34563.13 12481.45 1893.62 1449.98 6687.40 20587.76 676.77 12090.20 99
testgi54.25 32752.57 32659.29 35162.76 37721.65 40672.21 32670.47 34653.25 28641.94 35977.33 27814.28 38277.95 33529.18 36251.72 33878.28 316
F-COLMAP55.96 32153.65 31962.87 33472.76 31042.77 32674.70 30670.37 34740.03 36241.11 36679.36 25517.77 37173.70 36032.80 35053.96 32572.15 365
ACMH+54.58 1558.55 30455.24 30868.50 29574.68 28645.80 29180.27 26270.21 34847.15 32842.77 35775.48 30416.73 37785.98 24835.10 34154.78 31973.72 357
test_fmvsmconf0.01_n71.97 13070.95 12975.04 16266.21 35747.87 26080.35 26170.08 34965.85 7872.69 7091.68 5639.99 18687.67 19582.03 2869.66 19289.58 114
ADS-MVSNet56.17 31851.95 32868.84 28580.60 19053.07 12755.03 38670.02 35044.72 34551.00 31661.19 37822.83 34578.88 32528.54 36653.63 32774.57 352
test_cas_vis1_n_192067.10 22866.60 20568.59 29365.17 36543.23 32083.23 19369.84 35155.34 26670.67 9987.71 14524.70 33676.66 34778.57 4964.20 23285.89 201
fmvsm_s_conf0.5_n74.48 8474.12 8175.56 14176.96 25447.85 26185.32 12369.80 35264.16 10078.74 2893.48 1645.51 10889.29 12986.48 866.62 21389.55 115
test_040256.45 31653.03 32066.69 31076.78 25650.31 18881.76 23069.61 35342.79 35743.88 35072.13 33722.82 34786.46 23216.57 40150.94 33963.31 388
fmvsm_s_conf0.1_n73.80 9773.26 9075.43 14773.28 30247.80 26284.57 15369.43 35463.34 11978.40 3193.29 2244.73 12489.22 13285.99 966.28 22089.26 120
testdata67.08 30577.59 24245.46 29469.20 35544.47 34771.50 8788.34 13031.21 29270.76 37252.20 25375.88 13285.03 213
mmtdpeth57.93 30854.78 31267.39 30272.32 31643.38 31772.72 31968.93 35654.45 27756.85 26762.43 37417.02 37483.46 28557.95 20630.31 39375.31 343
fmvsm_s_conf0.5_n_a73.68 10273.15 9175.29 15575.45 27748.05 25483.88 17268.84 35763.43 11878.60 2993.37 2045.32 10988.92 14785.39 1164.04 23388.89 131
test_vis1_n_192068.59 19668.31 17069.44 28069.16 34341.51 33684.63 15168.58 35858.80 20673.26 6388.37 12725.30 32980.60 30879.10 4267.55 20686.23 193
fmvsm_s_conf0.1_n_a72.82 11472.05 11375.12 16170.95 33147.97 25782.72 20468.43 35962.52 13478.17 3293.08 2844.21 12788.86 14884.82 1363.54 23988.54 142
test22279.36 20650.97 17077.99 28567.84 36042.54 35862.84 18386.53 16430.26 29876.91 11785.23 211
pmmvs-eth3d55.97 32052.78 32465.54 31761.02 38146.44 27975.36 30167.72 36149.61 31143.65 35267.58 35921.63 35577.04 34144.11 30344.33 36473.15 363
LTVRE_ROB45.45 1952.73 33449.74 33861.69 34169.78 33934.99 36144.52 39567.60 36243.11 35643.79 35174.03 31318.54 36881.45 29728.39 36857.94 29068.62 376
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs5depth50.97 34246.98 34862.95 33356.63 38934.23 36662.73 36867.35 36345.03 34448.00 33365.41 36710.40 39079.88 32136.00 33131.27 39274.73 350
LS3D56.40 31753.82 31764.12 32581.12 17445.69 29373.42 31566.14 36435.30 38043.24 35679.88 25022.18 35279.62 32219.10 39664.00 23567.05 378
ADS-MVSNet255.21 32451.44 32966.51 31280.60 19049.56 20355.03 38665.44 36544.72 34551.00 31661.19 37822.83 34575.41 35228.54 36653.63 32774.57 352
OurMVSNet-221017-052.39 33748.73 34163.35 33165.21 36438.42 35268.54 34664.95 36638.19 36739.57 37171.43 34113.23 38479.92 31737.16 32340.32 37371.72 368
SixPastTwentyTwo54.37 32550.10 33467.21 30370.70 33341.46 33874.73 30464.69 36747.56 32639.12 37369.49 35018.49 36984.69 27131.87 35234.20 38775.48 341
test_fmvsmvis_n_192071.29 14270.38 13974.00 18771.04 33048.79 22779.19 27764.62 36862.75 12966.73 12491.99 4840.94 17288.35 16883.00 2173.18 15984.85 219
DP-MVS59.24 29256.12 30468.63 29188.24 3450.35 18682.51 21364.43 36941.10 36146.70 34378.77 26224.75 33588.57 16122.26 38756.29 30566.96 379
CNLPA60.59 28558.44 28967.05 30679.21 21147.26 27079.75 27064.34 37042.46 35951.90 31283.94 19027.79 31375.41 35237.12 32459.49 27178.47 311
ANet_high34.39 36829.59 37448.78 37230.34 41722.28 40255.53 38563.79 37138.11 36815.47 40936.56 4066.94 40059.98 38613.93 4055.64 42064.08 386
dmvs_testset57.65 30958.21 29055.97 36174.62 2879.82 42263.75 36163.34 37267.23 5448.89 32883.68 19839.12 19376.14 34823.43 38459.80 26881.96 264
K. test v354.04 32849.42 34067.92 29868.55 34742.57 33075.51 29963.07 37352.07 29339.21 37264.59 36919.34 36382.21 29137.11 32525.31 39978.97 304
TinyColmap48.15 34944.49 35359.13 35265.73 36138.04 35363.34 36362.86 37438.78 36529.48 39667.23 3616.46 40473.30 36224.59 38041.90 37066.04 382
COLMAP_ROBcopyleft43.60 2050.90 34348.05 34459.47 34967.81 35440.57 34471.25 33362.72 37536.49 37536.19 38173.51 32213.48 38373.92 35820.71 39150.26 34163.92 387
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL56.66 31353.75 31865.37 32077.91 23945.28 29569.78 34060.38 37641.35 36047.57 33773.73 31716.83 37576.91 34336.99 32759.21 27473.92 356
Gipumacopyleft27.47 37424.26 37937.12 38860.55 38329.17 39011.68 41560.00 37714.18 40710.52 41615.12 4172.20 41763.01 3818.39 41135.65 38019.18 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Patchmatch-test53.33 33348.17 34368.81 28773.31 30042.38 33142.98 39858.23 37832.53 38238.79 37570.77 34539.66 18973.51 36125.18 37852.06 33790.55 87
pmmvs345.53 35441.55 36057.44 35648.97 40339.68 34670.06 33757.66 37928.32 39134.06 38657.29 3888.50 39766.85 37834.86 34234.26 38665.80 383
FPMVS35.40 36633.67 37040.57 38246.34 40628.74 39341.05 40057.05 38020.37 40022.27 40553.38 3946.87 40144.94 4078.62 41047.11 35548.01 401
MVStest138.35 36234.53 36849.82 37151.43 39730.41 38050.39 39055.25 38117.56 40426.45 40265.85 36511.72 38557.00 39314.79 40317.31 41062.05 390
Patchmatch-RL test58.72 30154.32 31471.92 24363.91 37244.25 30761.73 37055.19 38257.38 23549.31 32654.24 39237.60 21180.89 30162.19 16347.28 35390.63 86
MVS-HIRNet49.01 34744.71 35161.92 34076.06 26746.61 27763.23 36454.90 38324.77 39633.56 38836.60 40521.28 35775.88 35029.49 36062.54 25463.26 389
CHOSEN 280x42057.53 31156.38 30360.97 34674.01 29548.10 25246.30 39454.31 38448.18 32250.88 31977.43 27738.37 20059.16 39054.83 23163.14 24875.66 340
AllTest47.32 35044.66 35255.32 36365.08 36637.50 35762.96 36654.25 38535.45 37833.42 38972.82 3279.98 39159.33 38724.13 38143.84 36569.13 374
TestCases55.32 36365.08 36637.50 35754.25 38535.45 37833.42 38972.82 3279.98 39159.33 38724.13 38143.84 36569.13 374
ITE_SJBPF51.84 36658.03 38631.94 37853.57 38736.67 37341.32 36475.23 30611.17 38851.57 39925.81 37748.04 34772.02 367
TDRefinement40.91 35938.37 36348.55 37350.45 40033.03 37358.98 37950.97 38828.50 38929.89 39567.39 3606.21 40654.51 39617.67 39935.25 38258.11 391
ttmdpeth40.58 36037.50 36449.85 37049.40 40122.71 40156.65 38346.78 38928.35 39040.29 37069.42 3525.35 40761.86 38220.16 39321.06 40664.96 385
LCM-MVSNet28.07 37223.85 38040.71 38127.46 42218.93 40930.82 41046.19 39012.76 40916.40 40734.70 4081.90 41848.69 40320.25 39224.22 40154.51 395
LCM-MVSNet-Re58.82 30056.54 29965.68 31579.31 20929.09 39161.39 37345.79 39160.73 16937.65 37872.47 33231.42 29181.08 30049.66 26670.41 18686.87 178
lessismore_v067.98 29764.76 36941.25 33945.75 39236.03 38265.63 36619.29 36484.11 27635.67 33321.24 40578.59 310
RPSCF45.77 35344.13 35550.68 36757.67 38829.66 38754.92 38845.25 39326.69 39345.92 34775.92 30217.43 37345.70 40527.44 37245.95 36176.67 330
WB-MVS37.41 36536.37 36540.54 38354.23 39210.43 42165.29 35343.75 39434.86 38127.81 40054.63 39024.94 33363.21 3806.81 41615.00 41147.98 402
door43.27 395
test_fmvs1_n52.55 33651.19 33156.65 35851.90 39630.14 38267.66 34842.84 39632.27 38462.30 18982.02 2339.12 39560.84 38357.82 20954.75 32178.99 303
test_fmvs153.60 33252.54 32756.78 35758.07 38530.26 38168.95 34442.19 39732.46 38363.59 17582.56 21911.55 38660.81 38458.25 20055.27 31579.28 301
SSC-MVS35.20 36734.30 36937.90 38652.58 3948.65 42461.86 36941.64 39831.81 38625.54 40352.94 39623.39 34459.28 3896.10 41712.86 41245.78 405
door-mid41.31 399
EGC-MVSNET33.75 36930.42 37343.75 37964.94 36836.21 36060.47 37640.70 4000.02 4210.10 42253.79 3937.39 39860.26 38511.09 40835.23 38334.79 407
mamv442.60 35744.05 35738.26 38559.21 38438.00 35444.14 39739.03 40125.03 39540.61 36968.39 35637.01 22724.28 41946.62 28936.43 37852.50 397
test_vis1_n51.19 34149.66 33955.76 36251.26 39829.85 38667.20 35138.86 40232.12 38559.50 21979.86 2518.78 39658.23 39156.95 21852.46 33579.19 302
PM-MVS46.92 35143.76 35856.41 36052.18 39532.26 37663.21 36538.18 40337.99 36940.78 36766.20 3625.09 40865.42 37948.19 27841.99 36971.54 370
new_pmnet33.56 37031.89 37238.59 38449.01 40220.42 40751.01 38937.92 40420.58 39823.45 40446.79 3996.66 40349.28 40220.00 39531.57 39146.09 404
test_fmvs245.89 35244.32 35450.62 36845.85 40724.70 39858.87 38037.84 40525.22 39452.46 30774.56 3107.07 39954.69 39549.28 27047.70 34972.48 364
DSMNet-mixed38.35 36235.36 36747.33 37448.11 40514.91 41837.87 40436.60 40619.18 40134.37 38559.56 38415.53 38053.01 39820.14 39446.89 35774.07 354
LF4IMVS33.04 37132.55 37134.52 38940.96 40822.03 40344.45 39635.62 40720.42 39928.12 39962.35 3755.03 40931.88 41821.61 39034.42 38449.63 400
PMVScopyleft19.57 2225.07 37822.43 38332.99 39323.12 42422.98 39940.98 40135.19 40815.99 40611.95 41535.87 4071.47 42149.29 4015.41 41931.90 39026.70 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method24.09 38021.07 38433.16 39227.67 4218.35 42626.63 41235.11 4093.40 41814.35 41036.98 4043.46 41235.31 41319.08 39722.95 40255.81 393
test_fmvs337.95 36435.75 36644.55 37835.50 41318.92 41048.32 39134.00 41018.36 40341.31 36561.58 3762.29 41548.06 40442.72 31037.71 37766.66 380
E-PMN19.16 38318.40 38721.44 39936.19 41213.63 41947.59 39230.89 41110.73 4125.91 41916.59 4153.66 41139.77 4095.95 4188.14 41510.92 415
APD_test126.46 37724.41 37832.62 39437.58 41021.74 40540.50 40230.39 41211.45 41116.33 40843.76 4001.63 42041.62 40811.24 40726.82 39834.51 408
EMVS18.42 38417.66 38820.71 40034.13 41412.64 42046.94 39329.94 41310.46 4145.58 42014.93 4184.23 41038.83 4105.24 4207.51 41710.67 416
PMMVS226.71 37622.98 38137.87 38736.89 4118.51 42542.51 39929.32 41419.09 40213.01 41137.54 4022.23 41653.11 39714.54 40411.71 41351.99 399
mvsany_test143.38 35642.57 35945.82 37550.96 39926.10 39655.80 38427.74 41527.15 39247.41 34074.39 31118.67 36744.95 40644.66 29936.31 37966.40 381
test_vis1_rt40.29 36138.64 36245.25 37748.91 40430.09 38359.44 37727.07 41624.52 39738.48 37651.67 3976.71 40249.44 40044.33 30146.59 35956.23 392
testf121.11 38119.08 38527.18 39730.56 41518.28 41233.43 40824.48 4178.02 41512.02 41333.50 4090.75 42435.09 4147.68 41221.32 40328.17 410
APD_test221.11 38119.08 38527.18 39730.56 41518.28 41233.43 40824.48 4178.02 41512.02 41333.50 4090.75 42435.09 4147.68 41221.32 40328.17 410
MVEpermissive16.60 2317.34 38613.39 38929.16 39628.43 42019.72 40813.73 41423.63 4197.23 4177.96 41721.41 4130.80 42336.08 4126.97 41410.39 41431.69 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_f27.12 37524.85 37633.93 39126.17 42315.25 41730.24 41122.38 42012.53 41028.23 39849.43 3982.59 41434.34 41625.12 37926.99 39752.20 398
mvsany_test328.00 37325.98 37534.05 39028.97 41815.31 41634.54 40718.17 42116.24 40529.30 39753.37 3952.79 41333.38 41730.01 35920.41 40753.45 396
tmp_tt9.44 38710.68 3905.73 4032.49 4264.21 42710.48 41618.04 4220.34 42012.59 41220.49 41411.39 3877.03 42213.84 4066.46 4195.95 417
test_vis3_rt24.79 37922.95 38230.31 39528.59 41918.92 41037.43 40517.27 42312.90 40821.28 40629.92 4121.02 42236.35 41128.28 36929.82 39635.65 406
MTMP87.27 7715.34 424
DeepMVS_CXcopyleft13.10 40121.34 4258.99 42310.02 42510.59 4137.53 41830.55 4111.82 41914.55 4206.83 4157.52 41615.75 414
wuyk23d9.11 3888.77 39210.15 40240.18 40916.76 41520.28 4131.01 4262.58 4192.66 4210.98 4210.23 42612.49 4214.08 4216.90 4181.19 418
N_pmnet41.25 35839.77 36145.66 37668.50 3480.82 42872.51 3220.38 42735.61 37735.26 38461.51 37720.07 36167.74 37623.51 38340.63 37168.42 377
mmdepth0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
test_blank0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
pcd_1.5k_mvsjas3.15 3924.20 3950.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 42437.77 2040.00 4230.00 4240.00 4210.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
sosnet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
Regformer0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
testmvs6.14 3908.18 3930.01 4040.01 4270.00 43073.40 3160.00 4280.00 4220.02 4230.15 4220.00 4270.00 4230.02 4220.00 4210.02 419
test1236.01 3918.01 3940.01 4040.00 4280.01 42971.93 3300.00 4280.00 4220.02 4230.11 4230.00 4270.00 4230.02 4220.00 4210.02 419
n20.00 428
nn0.00 428
ab-mvs-re7.68 38910.24 3910.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 42592.12 420.00 4270.00 4230.00 4240.00 4210.00 421
uanet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
WAC-MVS34.28 36422.56 386
PC_three_145266.58 6187.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
eth-test20.00 428
eth-test0.00 428
OPU-MVS81.71 1392.05 355.97 4892.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
test_0728_THIRD58.00 21981.91 1493.64 1256.54 2196.44 281.64 3186.86 2692.23 37
GSMVS88.13 153
test_part289.33 2355.48 5482.27 12
sam_mvs138.86 19688.13 153
sam_mvs35.99 247
test_post170.84 33514.72 41934.33 26383.86 27748.80 273
test_post16.22 41637.52 21384.72 270
patchmatchnet-post59.74 38338.41 19979.91 319
gm-plane-assit83.24 11254.21 9670.91 2188.23 13395.25 1466.37 129
test9_res78.72 4885.44 4391.39 66
agg_prior275.65 6885.11 4791.01 78
test_prior456.39 4087.15 81
test_prior289.04 4361.88 14473.55 5891.46 6348.01 7874.73 7785.46 42
旧先验281.73 23245.53 34074.66 4770.48 37358.31 199
新几何281.61 237
原ACMM283.77 175
testdata277.81 33845.64 295
segment_acmp44.97 117
testdata177.55 28864.14 101
plane_prior777.95 23648.46 238
plane_prior678.42 23149.39 21136.04 245
plane_prior483.28 204
plane_prior348.95 22064.01 10462.15 191
plane_prior285.76 10763.60 113
plane_prior178.31 233
plane_prior49.57 20187.43 7064.57 9472.84 164
HQP5-MVS51.56 159
HQP-NCC79.02 21588.00 5565.45 8164.48 159
ACMP_Plane79.02 21588.00 5565.45 8164.48 159
BP-MVS66.70 126
HQP4-MVS64.47 16288.61 15684.91 217
HQP2-MVS37.35 216
NP-MVS78.76 22050.43 18085.12 178
MDTV_nov1_ep13_2view43.62 31371.13 33454.95 27159.29 22536.76 23246.33 29287.32 172
ACMMP++_ref63.20 246
ACMMP++59.38 272
Test By Simon39.38 190