This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 9988.37 12457.69 1492.30 5075.25 7576.24 12391.20 71
testing22277.70 3977.22 4179.14 4886.95 4654.89 7787.18 7991.96 272.29 1371.17 9288.70 11855.19 2491.24 7365.18 14076.32 12291.29 69
baseline275.15 7974.54 7676.98 10681.67 15251.74 15283.84 17391.94 369.97 2858.98 22286.02 16459.73 891.73 6368.37 11370.40 18087.48 160
MVS76.91 4875.48 6181.23 2084.56 7955.21 6580.23 26291.64 458.65 20565.37 13991.48 6345.72 10095.05 1672.11 9689.52 1093.44 11
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19171.82 8190.05 9359.72 996.04 1078.37 5188.40 1493.75 9
testing9978.45 2577.78 3380.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9488.09 13257.29 1592.63 4469.24 10875.13 13691.91 48
ETVMVS75.80 7075.44 6276.89 10986.23 5250.38 18085.55 11991.42 771.30 2168.80 10787.94 13856.42 1989.24 12856.54 21174.75 14291.07 75
VNet77.99 3677.92 3078.19 7687.43 4350.12 18890.93 2391.41 867.48 5275.12 4490.15 9146.77 8791.00 8173.52 8878.46 10293.44 11
IU-MVS89.48 1757.49 1591.38 966.22 6888.26 182.83 2387.60 1892.44 32
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 35
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 35
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3893.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
testing9178.30 3177.54 3680.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9588.04 13655.82 2292.65 4269.61 10575.00 14092.05 43
DPM-MVS82.39 482.36 682.49 580.12 19059.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8593.25 294.80 1
TSAR-MVS + GP.77.82 3777.59 3578.49 6785.25 6950.27 18790.02 2790.57 1556.58 24874.26 5391.60 6054.26 3192.16 5475.87 6779.91 8993.05 21
WTY-MVS77.47 4277.52 3777.30 9488.33 3046.25 27888.46 5090.32 1671.40 1972.32 7791.72 5553.44 3592.37 4966.28 12775.42 13093.28 15
VPA-MVSNet71.12 13970.66 12972.49 21678.75 21344.43 29887.64 6590.02 1763.97 10265.02 14381.58 23242.14 15187.42 20163.42 14763.38 23885.63 199
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22381.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 27
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MS-PatchMatch72.34 11971.26 12175.61 13682.38 13555.55 5388.00 5589.95 1965.38 8356.51 26780.74 24032.28 26892.89 3557.95 19888.10 1578.39 307
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
UWE-MVS72.17 12472.15 10772.21 22282.26 13844.29 30086.83 8989.58 2165.58 7865.82 13485.06 17545.02 11084.35 26954.07 22875.18 13387.99 150
cdsmvs_eth3d_5k18.33 37124.44 3630.00 3920.00 4140.00 4160.00 40389.40 220.00 4080.00 41192.02 4838.55 1900.00 4090.00 4100.00 4070.00 407
test_yl75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21771.19 9089.20 10942.03 15492.77 3869.41 10675.07 13892.01 45
DCV-MVSNet75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21771.19 9089.20 10942.03 15492.77 3869.41 10675.07 13892.01 45
ET-MVSNet_ETH3D75.23 7774.08 8078.67 6284.52 8055.59 5288.92 4489.21 2568.06 4353.13 29590.22 8749.71 6587.62 19672.12 9570.82 17592.82 24
MAR-MVS76.76 5375.60 5980.21 3090.87 754.68 8489.14 4289.11 2662.95 12370.54 10092.33 4141.05 16494.95 1757.90 19986.55 3291.00 77
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tttt051768.33 19266.29 20274.46 16678.08 22649.06 21080.88 25289.08 2754.40 27354.75 28180.77 23951.31 4890.33 10049.35 26158.01 28383.99 223
EI-MVSNet-Vis-set73.19 10672.60 9574.99 16082.56 13349.80 19682.55 21189.00 2866.17 6965.89 13388.98 11243.83 12692.29 5165.38 13969.01 18982.87 248
MVS_030481.58 982.05 780.20 3182.36 13654.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 29
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 22984.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
test_241102_ONE89.48 1756.89 2988.94 3057.53 22784.61 493.29 2458.81 1196.45 1
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13888.88 3258.00 21583.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 31
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3793.87 952.58 4093.91 2884.17 1487.92 1692.39 33
WB-MVSnew69.36 17368.24 16572.72 21079.26 20249.40 20585.72 11388.85 3561.33 15064.59 15282.38 21934.57 24687.53 19946.82 28070.63 17681.22 276
9.1478.19 2785.67 5988.32 5188.84 3659.89 17474.58 5092.62 3746.80 8692.66 4181.40 3685.62 40
thisisatest051573.64 10072.20 10577.97 8081.63 15353.01 12786.69 9288.81 3762.53 13164.06 16085.65 16852.15 4492.50 4658.43 18769.84 18388.39 142
QAPM71.88 12969.33 15279.52 4082.20 13954.30 9286.30 9888.77 3856.61 24759.72 20787.48 14533.90 25395.36 1347.48 27481.49 7188.90 127
test_241102_TWO88.76 3957.50 22983.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 30
SDMVSNet71.89 12870.62 13075.70 13481.70 14951.61 15473.89 30488.72 4066.58 6061.64 19182.38 21937.63 20189.48 12377.44 6065.60 21786.01 187
IB-MVS68.87 274.01 9072.03 11379.94 3883.04 11655.50 5490.24 2688.65 4167.14 5461.38 19381.74 22953.21 3694.28 2360.45 17462.41 24990.03 102
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet-UG-set72.37 11871.73 11474.29 17381.60 15549.29 20881.85 22688.64 4265.29 8765.05 14288.29 12943.18 13891.83 6163.74 14567.97 19681.75 259
test072689.40 2057.45 1792.32 888.63 4357.71 22383.14 1093.96 855.17 25
MSP-MVS82.30 683.47 178.80 5782.99 11952.71 13285.04 13588.63 4366.08 7286.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
3Dnovator64.70 674.46 8472.48 9780.41 2882.84 12555.40 5983.08 19888.61 4567.61 5159.85 20588.66 11934.57 24693.97 2658.42 18988.70 1291.85 51
PHI-MVS77.49 4177.00 4378.95 5285.33 6750.69 17088.57 4988.59 4658.14 21273.60 5793.31 2343.14 14093.79 2973.81 8688.53 1392.37 34
thisisatest053070.47 15368.56 15976.20 12279.78 19451.52 15883.49 18488.58 4757.62 22658.60 23182.79 20551.03 5191.48 6752.84 23862.36 25185.59 200
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 3088.51 4864.83 9073.52 5988.09 13248.07 7292.19 5362.24 15584.53 5191.53 60
GG-mvs-BLEND77.77 8386.68 4950.61 17168.67 33888.45 4968.73 10887.45 14659.15 1090.67 9054.83 22287.67 1792.03 44
patch_mono-280.84 1281.59 1078.62 6490.34 953.77 10288.08 5488.36 5076.17 379.40 2891.09 6555.43 2390.09 10885.01 1280.40 8191.99 47
gg-mvs-nofinetune67.43 21164.53 23776.13 12585.95 5347.79 25564.38 35088.28 5139.34 35366.62 12241.27 38758.69 1389.00 13849.64 25986.62 3091.59 56
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5692.75 3446.88 8593.28 3178.79 4884.07 5491.50 62
test_one_060189.39 2257.29 2088.09 5357.21 23582.06 1393.39 2054.94 29
LFMVS78.52 2477.14 4282.67 389.58 1358.90 791.27 1988.05 5463.22 11974.63 4890.83 7441.38 16394.40 2275.42 7379.90 9094.72 2
VPNet72.07 12571.42 12074.04 17978.64 21847.17 26589.91 3287.97 5572.56 1264.66 14885.04 17641.83 15888.33 16661.17 16460.97 25686.62 178
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 25981.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 61
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS77.64 4077.42 3878.32 7483.75 9752.47 13786.63 9387.80 5758.78 20374.63 4892.38 4047.75 7691.35 7078.18 5586.85 2691.15 73
thres100view90066.87 22865.42 22671.24 24683.29 10843.15 31381.67 23287.78 5859.04 19755.92 27182.18 22443.73 12987.80 18428.80 35366.36 21182.78 250
thres600view766.46 23365.12 23070.47 25783.41 10243.80 30682.15 21887.78 5859.37 18556.02 27082.21 22343.73 12986.90 21626.51 36564.94 22080.71 282
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25478.56 3192.49 3948.20 7192.65 4279.49 4083.04 5890.39 88
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
thres20068.71 18567.27 18673.02 20384.73 7646.76 26885.03 13687.73 6162.34 13559.87 20483.45 19743.15 13988.32 16731.25 34667.91 19783.98 225
FIs70.00 16070.24 14069.30 27477.93 23038.55 34383.99 16987.72 6266.86 5857.66 24884.17 18552.28 4285.31 25452.72 24368.80 19084.02 221
tfpn200view967.57 20766.13 20671.89 23784.05 9045.07 29183.40 18787.71 6360.79 16357.79 24582.76 20643.53 13487.80 18428.80 35366.36 21182.78 250
thres40067.40 21466.13 20671.19 24884.05 9045.07 29183.40 18787.71 6360.79 16357.79 24582.76 20643.53 13487.80 18428.80 35366.36 21180.71 282
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7579.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 28
XXY-MVS70.18 15469.28 15472.89 20877.64 23242.88 31685.06 13487.50 6662.58 13062.66 18182.34 22243.64 13389.83 11458.42 18963.70 23285.96 191
FC-MVSNet-test67.49 20967.91 16966.21 30576.06 25833.06 36280.82 25387.18 6764.44 9354.81 27982.87 20350.40 5882.60 28348.05 27166.55 20982.98 246
EI-MVSNet69.70 16868.70 15872.68 21175.00 27448.90 21879.54 26887.16 6861.05 15663.88 16683.74 19145.87 9790.44 9657.42 20664.68 22478.70 300
MVSTER73.25 10572.33 10076.01 12985.54 6253.76 10383.52 17887.16 6867.06 5563.88 16681.66 23052.77 3890.44 9664.66 14264.69 22383.84 230
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19692.50 4682.75 2486.25 3491.57 58
MVP-Stereo70.97 14370.44 13272.59 21376.03 26051.36 16185.02 13786.99 7160.31 17056.53 26678.92 25640.11 17690.00 10960.00 17890.01 676.41 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SteuartSystems-ACMMP77.08 4676.33 5179.34 4380.98 16955.31 6189.76 3486.91 7262.94 12471.65 8291.56 6142.33 14792.56 4577.14 6283.69 5690.15 98
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20192.28 5282.73 2585.71 3891.57 58
UniMVSNet_NR-MVSNet68.82 18168.29 16470.40 26075.71 26542.59 31984.23 16186.78 7466.31 6658.51 23282.45 21651.57 4684.64 26753.11 23455.96 30383.96 227
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6986.76 7561.48 14980.26 2393.10 2746.53 9092.41 4879.97 3988.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS67.15 476.90 5076.27 5278.80 5780.70 17955.02 7286.39 9586.71 7666.96 5767.91 11389.97 9548.03 7391.41 6975.60 7084.14 5389.96 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet74.37 8672.13 10881.09 2179.58 19656.52 3790.02 2786.70 7752.61 28671.23 8987.20 15031.75 27593.96 2774.30 8375.77 12792.79 26
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8285.46 6449.56 20090.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
EPP-MVSNet71.14 13870.07 14274.33 17179.18 20446.52 27183.81 17486.49 7956.32 25257.95 24184.90 17954.23 3289.14 13358.14 19469.65 18687.33 163
CANet80.90 1181.17 1280.09 3787.62 4254.21 9591.60 1486.47 8073.13 1079.89 2693.10 2749.88 6492.98 3484.09 1684.75 4993.08 20
TSAR-MVS + MP.78.31 3078.26 2578.48 6881.33 16556.31 4281.59 23686.41 8169.61 3181.72 1688.16 13155.09 2788.04 17774.12 8486.31 3391.09 74
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+62.71 772.29 12170.50 13177.65 8683.40 10551.29 16487.32 7386.40 8259.01 19858.49 23588.32 12832.40 26691.27 7157.04 20882.15 6690.38 89
HY-MVS67.03 573.90 9273.14 9076.18 12484.70 7747.36 26075.56 29286.36 8366.27 6770.66 9883.91 18851.05 5089.31 12667.10 12172.61 15891.88 50
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM76.76 5376.07 5578.81 5680.20 18859.11 686.86 8886.23 8568.60 3670.18 10288.84 11651.57 4687.16 20765.48 13386.68 2990.15 98
CLD-MVS75.60 7175.39 6376.24 11980.69 18052.40 13890.69 2486.20 8674.40 865.01 14488.93 11342.05 15390.58 9476.57 6473.96 14685.73 195
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline172.51 11772.12 10973.69 19285.05 7144.46 29683.51 18286.13 8771.61 1764.64 14987.97 13755.00 2889.48 12359.07 18156.05 30287.13 167
ZNCC-MVS75.82 6975.02 6978.23 7583.88 9553.80 10186.91 8786.05 8859.71 17767.85 11490.55 7742.23 14991.02 8072.66 9485.29 4489.87 107
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8892.75 3445.52 10390.37 9871.15 9885.14 4591.91 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS76.08 6174.97 7079.44 4184.27 8753.33 11791.13 2085.88 9065.33 8572.37 7689.34 10632.52 26592.76 4077.90 5875.96 12492.22 39
casdiffmvspermissive77.36 4376.85 4578.88 5580.40 18754.66 8687.06 8285.88 9072.11 1471.57 8488.63 12350.89 5590.35 9976.00 6679.11 9791.63 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test77.20 4477.25 4077.05 10084.60 7849.04 21389.42 3785.83 9265.90 7672.85 6891.98 5245.10 10891.27 7175.02 7784.56 5090.84 80
OpenMVScopyleft61.00 1169.99 16167.55 18077.30 9478.37 22454.07 9984.36 15785.76 9357.22 23456.71 26387.67 14330.79 28192.83 3743.04 29884.06 5585.01 207
PAPR75.20 7874.13 7878.41 7188.31 3255.10 7084.31 15985.66 9463.76 10667.55 11590.73 7543.48 13689.40 12566.36 12677.03 11190.73 82
tt080563.39 25661.31 25869.64 27069.36 33238.87 34178.00 28085.48 9548.82 31155.66 27681.66 23024.38 32486.37 23149.04 26459.36 26783.68 232
TESTMET0.1,172.86 11072.33 10074.46 16681.98 14150.77 16885.13 13085.47 9666.09 7167.30 11683.69 19337.27 21183.57 27765.06 14178.97 9989.05 125
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4780.42 18654.44 9087.76 6285.46 9771.67 1671.38 8788.35 12651.58 4591.22 7479.02 4479.89 9191.83 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs78.08 3477.98 2978.39 7283.53 10053.22 12089.77 3385.45 9866.11 7076.59 4291.99 5054.07 3489.05 13577.34 6177.00 11292.89 23
test_prior78.39 7286.35 5154.91 7685.45 9889.70 11990.55 84
CHOSEN 1792x268876.24 5874.03 8282.88 183.09 11462.84 285.73 11285.39 10069.79 2964.87 14783.49 19641.52 16293.69 3070.55 10181.82 6892.12 40
FMVSNet368.84 18067.40 18373.19 20185.05 7148.53 22885.71 11485.36 10160.90 16257.58 25079.15 25442.16 15086.77 21847.25 27663.40 23584.27 217
ACMMP_NAP76.43 5675.66 5878.73 5981.92 14254.67 8584.06 16785.35 10261.10 15572.99 6591.50 6240.25 17291.00 8176.84 6386.98 2490.51 87
ETV-MVS77.17 4576.74 4678.48 6881.80 14554.55 8886.13 10185.33 10368.20 3973.10 6490.52 7945.23 10790.66 9179.37 4180.95 7390.22 94
EIA-MVS75.92 6475.18 6778.13 7785.14 7051.60 15587.17 8085.32 10464.69 9168.56 10990.53 7845.79 9991.58 6567.21 12082.18 6591.20 71
CostFormer73.89 9372.30 10278.66 6382.36 13656.58 3375.56 29285.30 10566.06 7370.50 10176.88 28157.02 1689.06 13468.27 11568.74 19190.33 90
GST-MVS74.87 8273.90 8377.77 8383.30 10753.45 11085.75 11085.29 10659.22 19066.50 12689.85 9740.94 16590.76 8870.94 10083.35 5789.10 124
WR-MVS67.58 20666.76 19270.04 26775.92 26345.06 29486.23 9985.28 10764.31 9458.50 23481.00 23544.80 11982.00 28849.21 26355.57 30883.06 244
原ACMM176.13 12584.89 7554.59 8785.26 10851.98 29066.70 12087.07 15340.15 17589.70 11951.23 25085.06 4784.10 219
PAPM_NR71.80 13169.98 14377.26 9781.54 15953.34 11678.60 27885.25 10953.46 27960.53 20188.66 11945.69 10189.24 12856.49 21279.62 9589.19 121
ab-mvs70.65 14969.11 15575.29 15180.87 17546.23 27973.48 30885.24 11059.99 17366.65 12180.94 23743.13 14188.69 15063.58 14668.07 19490.95 78
CS-MVS76.77 5276.70 4776.99 10583.55 9948.75 22288.60 4885.18 11166.38 6572.47 7591.62 5945.53 10290.99 8374.48 8082.51 6191.23 70
MVS_Test75.85 6674.93 7178.62 6484.08 8955.20 6683.99 16985.17 11268.07 4273.38 6182.76 20650.44 5789.00 13865.90 12980.61 7791.64 54
tfpnnormal61.47 27459.09 27868.62 28576.29 25541.69 32581.14 24685.16 11354.48 27251.32 30773.63 31432.32 26786.89 21721.78 37955.71 30777.29 319
test1279.24 4486.89 4756.08 4585.16 11372.27 7847.15 8291.10 7985.93 3690.54 86
131471.11 14069.41 14976.22 12079.32 20050.49 17580.23 26285.14 11559.44 18358.93 22488.89 11533.83 25589.60 12261.49 16177.42 11088.57 138
Anonymous2024052969.71 16667.28 18577.00 10483.78 9650.36 18288.87 4685.10 11647.22 31864.03 16283.37 19827.93 29792.10 5757.78 20267.44 20188.53 140
APD-MVScopyleft76.15 6075.68 5777.54 8888.52 2753.44 11187.26 7885.03 11753.79 27674.91 4691.68 5743.80 12790.31 10174.36 8181.82 6888.87 129
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR76.39 5775.38 6479.42 4285.33 6756.47 3888.15 5384.97 11865.15 8866.06 13089.88 9643.79 12892.16 5475.03 7680.03 8889.64 110
FMVSNet267.57 20765.79 21572.90 20682.71 12847.97 24985.15 12984.93 11958.55 20756.71 26378.26 26136.72 22286.67 22146.15 28462.94 24684.07 220
UniMVSNet (Re)67.71 20366.80 19170.45 25874.44 28142.93 31582.42 21584.90 12063.69 10859.63 20980.99 23647.18 8185.23 25751.17 25156.75 29483.19 241
baseline76.86 5176.24 5378.71 6080.47 18554.20 9783.90 17184.88 12171.38 2071.51 8589.15 11150.51 5690.55 9575.71 6878.65 10091.39 64
lupinMVS78.38 2878.11 2879.19 4583.02 11755.24 6391.57 1584.82 12269.12 3476.67 4092.02 4844.82 11790.23 10580.83 3780.09 8592.08 41
PS-MVSNAJss68.78 18467.17 18773.62 19573.01 29848.33 23884.95 14184.81 12359.30 18958.91 22679.84 24637.77 19688.86 14662.83 15163.12 24483.67 233
EG-PatchMatch MVS62.40 26959.59 27370.81 25473.29 29449.05 21185.81 10684.78 12451.85 29344.19 34073.48 31615.52 37089.85 11340.16 30767.24 20273.54 350
test250672.91 10972.43 9974.32 17280.12 19044.18 30383.19 19584.77 12564.02 9965.97 13187.43 14747.67 7788.72 14959.08 18079.66 9390.08 100
NR-MVSNet67.25 21665.99 21071.04 25173.27 29643.91 30485.32 12484.75 12666.05 7453.65 29382.11 22545.05 10985.97 24547.55 27356.18 30083.24 239
sss70.49 15170.13 14171.58 24281.59 15639.02 34080.78 25484.71 12759.34 18666.61 12388.09 13237.17 21385.52 25061.82 16071.02 17390.20 96
EC-MVSNet75.30 7575.20 6575.62 13580.98 16949.00 21487.43 7084.68 12863.49 11470.97 9390.15 9142.86 14491.14 7874.33 8281.90 6786.71 177
Anonymous2023121166.08 23963.67 24273.31 19983.07 11548.75 22286.01 10584.67 12945.27 33256.54 26576.67 28428.06 29688.95 14252.78 24059.95 25982.23 253
CDPH-MVS76.05 6275.19 6678.62 6486.51 5054.98 7487.32 7384.59 13058.62 20670.75 9590.85 7343.10 14290.63 9370.50 10284.51 5290.24 93
MGCFI-Net78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
MP-MVS-pluss75.54 7375.03 6877.04 10181.37 16452.65 13484.34 15884.46 13361.16 15369.14 10491.76 5439.98 17988.99 14078.19 5384.89 4889.48 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS89.55 1453.46 10884.38 13457.02 23773.97 5591.03 6644.57 12191.17 7675.41 7481.78 70
HFP-MVS74.37 8673.13 9278.10 7884.30 8453.68 10485.58 11684.36 13556.82 24165.78 13590.56 7640.70 17090.90 8569.18 10980.88 7489.71 108
ACMMPR73.76 9572.61 9477.24 9883.92 9352.96 12985.58 11684.29 13656.82 24165.12 14090.45 8037.24 21290.18 10669.18 10980.84 7588.58 137
API-MVS74.17 8972.07 11080.49 2590.02 1158.55 887.30 7584.27 13757.51 22865.77 13687.77 14141.61 16095.97 1151.71 24682.63 6086.94 168
TranMVSNet+NR-MVSNet66.94 22665.61 22070.93 25373.45 29243.38 31183.02 20184.25 13865.31 8658.33 23981.90 22839.92 18085.52 25049.43 26054.89 31383.89 229
test1184.25 138
PVSNet_BlendedMVS73.42 10373.30 8573.76 18985.91 5451.83 15086.18 10084.24 14065.40 8269.09 10580.86 23846.70 8888.13 17375.43 7165.92 21681.33 272
PVSNet_Blended76.53 5576.54 4876.50 11585.91 5451.83 15088.89 4584.24 14067.82 4669.09 10589.33 10846.70 8888.13 17375.43 7181.48 7289.55 112
region2R73.75 9672.55 9677.33 9283.90 9452.98 12885.54 12084.09 14256.83 24065.10 14190.45 8037.34 21090.24 10468.89 11180.83 7688.77 133
EPNet78.36 2978.49 2477.97 8085.49 6352.04 14489.36 3984.07 14373.22 977.03 3991.72 5549.32 6890.17 10773.46 8982.77 5991.69 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TEST985.68 5755.42 5687.59 6784.00 14457.72 22272.99 6590.98 6844.87 11588.58 154
train_agg76.91 4876.40 5078.45 7085.68 5755.42 5687.59 6784.00 14457.84 22072.99 6590.98 6844.99 11188.58 15478.19 5385.32 4391.34 68
jason77.01 4776.45 4978.69 6179.69 19554.74 7990.56 2583.99 14668.26 3874.10 5490.91 7142.14 15189.99 11079.30 4279.12 9691.36 66
jason: jason.
test_885.72 5655.31 6187.60 6683.88 14757.84 22072.84 6990.99 6744.99 11188.34 165
UnsupCasMVSNet_eth57.56 30255.15 30264.79 31664.57 36133.12 36173.17 31183.87 14858.98 19941.75 35270.03 34222.54 33579.92 30946.12 28535.31 37381.32 274
cascas69.01 17766.13 20677.66 8579.36 19855.41 5886.99 8383.75 14956.69 24558.92 22581.35 23424.31 32592.10 5753.23 23370.61 17785.46 201
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14583.68 15067.85 4569.36 10390.24 8560.20 792.10 5784.14 1580.40 8192.82 24
HQP3-MVS83.68 15073.12 152
114514_t69.87 16467.88 17175.85 13288.38 2952.35 14086.94 8583.68 15053.70 27755.68 27385.60 16930.07 28691.20 7555.84 21871.02 17383.99 223
HQP-MVS72.34 11971.44 11975.03 15879.02 20751.56 15688.00 5583.68 15065.45 7964.48 15485.13 17337.35 20888.62 15266.70 12273.12 15284.91 209
agg_prior85.64 6054.92 7583.61 15472.53 7488.10 175
MP-MVScopyleft74.99 8174.33 7776.95 10782.89 12353.05 12685.63 11583.50 15557.86 21967.25 11790.24 8543.38 13788.85 14876.03 6582.23 6488.96 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
h-mvs3373.95 9172.89 9377.15 9980.17 18950.37 18184.68 14983.33 15668.08 4071.97 7988.65 12242.50 14591.15 7778.82 4657.78 28989.91 106
GBi-Net67.09 22165.47 22371.96 23082.71 12846.36 27383.52 17883.31 15758.55 20757.58 25076.23 29036.72 22286.20 23247.25 27663.40 23583.32 236
test167.09 22165.47 22371.96 23082.71 12846.36 27383.52 17883.31 15758.55 20757.58 25076.23 29036.72 22286.20 23247.25 27663.40 23583.32 236
FMVSNet164.57 24462.11 25071.96 23077.32 23846.36 27383.52 17883.31 15752.43 28854.42 28476.23 29027.80 29986.20 23242.59 30261.34 25583.32 236
OPM-MVS70.75 14869.58 14774.26 17475.55 26751.34 16286.05 10383.29 16061.94 14162.95 17785.77 16734.15 25088.44 16065.44 13771.07 17282.99 245
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
nrg03072.27 12371.56 11674.42 16875.93 26250.60 17286.97 8483.21 16162.75 12667.15 11884.38 18150.07 5986.66 22271.19 9762.37 25085.99 189
XVS72.92 10871.62 11576.81 11083.41 10252.48 13584.88 14383.20 16258.03 21363.91 16489.63 10135.50 23589.78 11565.50 13180.50 7988.16 143
X-MVStestdata65.85 24162.20 24976.81 11083.41 10252.48 13584.88 14383.20 16258.03 21363.91 1644.82 40635.50 23589.78 11565.50 13180.50 7988.16 143
HPM-MVScopyleft72.60 11471.50 11775.89 13182.02 14051.42 16080.70 25583.05 16456.12 25364.03 16289.53 10237.55 20488.37 16270.48 10380.04 8787.88 151
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft70.81 14769.29 15375.39 14581.52 16151.92 14883.43 18583.03 16556.67 24658.80 22988.91 11431.92 27388.58 15465.89 13073.39 15085.67 196
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CL-MVSNet_self_test62.98 26061.14 26068.50 28865.86 35142.96 31484.37 15682.98 16660.98 15853.95 28972.70 32340.43 17183.71 27541.10 30447.93 34178.83 299
DP-MVS Recon71.99 12670.31 13677.01 10390.65 853.44 11189.37 3882.97 16756.33 25163.56 17189.47 10334.02 25192.15 5654.05 22972.41 16085.43 202
DU-MVS66.84 22965.74 21770.16 26373.27 29642.59 31981.50 23982.92 16863.53 11258.51 23282.11 22540.75 16784.64 26753.11 23455.96 30383.24 239
PMMVS72.98 10772.05 11175.78 13383.57 9848.60 22584.08 16582.85 16961.62 14568.24 11190.33 8428.35 29387.78 18772.71 9376.69 11690.95 78
test111171.06 14170.42 13372.97 20579.48 19741.49 32984.82 14682.74 17064.20 9662.98 17687.43 14735.20 23887.92 17958.54 18678.42 10389.49 114
HQP_MVS70.96 14469.91 14474.12 17777.95 22849.57 19885.76 10882.59 17163.60 11062.15 18683.28 20036.04 23188.30 16865.46 13472.34 16184.49 213
plane_prior582.59 17188.30 16865.46 13472.34 16184.49 213
CP-MVS72.59 11671.46 11876.00 13082.93 12252.32 14186.93 8682.48 17355.15 26363.65 16890.44 8335.03 24288.53 15868.69 11277.83 10687.15 166
SD-MVS76.18 5974.85 7280.18 3285.39 6556.90 2885.75 11082.45 17456.79 24374.48 5191.81 5343.72 13190.75 8974.61 7978.65 10092.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ECVR-MVScopyleft71.81 13071.00 12574.26 17480.12 19043.49 30884.69 14882.16 17564.02 9964.64 14987.43 14735.04 24189.21 13161.24 16379.66 9390.08 100
PGM-MVS72.60 11471.20 12376.80 11282.95 12052.82 13183.07 19982.14 17656.51 24963.18 17389.81 9835.68 23489.76 11767.30 11980.19 8487.83 152
PCF-MVS61.03 1070.10 15668.40 16275.22 15577.15 24451.99 14579.30 27382.12 17756.47 25061.88 18986.48 16243.98 12487.24 20555.37 22072.79 15786.43 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FA-MVS(test-final)69.00 17866.60 19776.19 12383.48 10147.96 25174.73 29982.07 17857.27 23362.18 18578.47 26036.09 22992.89 3553.76 23271.32 17187.73 155
WR-MVS_H58.91 29258.04 28461.54 33369.07 33533.83 35976.91 28681.99 17951.40 29648.17 32274.67 30240.23 17374.15 34631.78 34348.10 33976.64 326
v2v48269.55 17167.64 17775.26 15472.32 30853.83 10084.93 14281.94 18065.37 8460.80 19879.25 25241.62 15988.98 14163.03 15059.51 26482.98 246
MIMVSNet63.12 25960.29 26971.61 23975.92 26346.65 26965.15 34681.94 18059.14 19554.65 28269.47 34425.74 31380.63 29941.03 30569.56 18887.55 159
UnsupCasMVSNet_bld53.86 32150.53 32563.84 31863.52 36534.75 35371.38 32581.92 18246.53 32238.95 36257.93 37420.55 34980.20 30739.91 30834.09 38076.57 327
EPMVS68.45 18965.44 22577.47 9084.91 7456.17 4371.89 32481.91 18361.72 14460.85 19772.49 32436.21 22787.06 21047.32 27571.62 16789.17 122
v14868.24 19566.35 20073.88 18471.76 31151.47 15984.23 16181.90 18463.69 10858.94 22376.44 28643.72 13187.78 18760.63 16855.86 30582.39 252
testing359.97 28060.19 27059.32 34177.60 23330.01 37481.75 23081.79 18553.54 27850.34 31479.94 24348.99 6976.91 33417.19 38850.59 33471.03 364
mPP-MVS71.79 13270.38 13476.04 12882.65 13152.06 14384.45 15581.78 18655.59 25862.05 18889.68 10033.48 25788.28 17065.45 13678.24 10587.77 154
v114468.81 18266.82 19074.80 16272.34 30753.46 10884.68 14981.77 18764.25 9560.28 20277.91 26340.23 17388.95 14260.37 17559.52 26381.97 255
pm-mvs164.12 24862.56 24668.78 28171.68 31238.87 34182.89 20381.57 18855.54 26053.89 29077.82 26537.73 19986.74 21948.46 26953.49 32480.72 281
mvs_anonymous72.29 12170.74 12776.94 10882.85 12454.72 8178.43 27981.54 18963.77 10561.69 19079.32 25051.11 4985.31 25462.15 15775.79 12690.79 81
save fliter85.35 6656.34 4189.31 4081.46 19061.55 146
MVSFormer73.53 10172.19 10677.57 8783.02 11755.24 6381.63 23381.44 19150.28 30076.67 4090.91 7144.82 11786.11 23660.83 16680.09 8591.36 66
test_djsdf63.84 25061.56 25470.70 25568.78 33644.69 29581.63 23381.44 19150.28 30052.27 30276.26 28926.72 30686.11 23660.83 16655.84 30681.29 275
MTGPAbinary81.31 193
MTAPA72.73 11271.22 12277.27 9681.54 15953.57 10667.06 34481.31 19359.41 18468.39 11090.96 7036.07 23089.01 13773.80 8782.45 6389.23 119
tpm270.82 14668.44 16177.98 7980.78 17756.11 4474.21 30381.28 19560.24 17168.04 11275.27 29952.26 4388.50 15955.82 21968.03 19589.33 116
miper_lstm_enhance63.91 24962.30 24868.75 28275.06 27246.78 26769.02 33581.14 19659.68 17952.76 29872.39 32740.71 16977.99 32556.81 21053.09 32781.48 265
jajsoiax63.21 25860.84 26370.32 26168.33 34144.45 29781.23 24381.05 19753.37 28150.96 31177.81 26617.49 36285.49 25259.31 17958.05 28281.02 278
Syy-MVS61.51 27361.35 25762.00 32981.73 14730.09 37280.97 24981.02 19860.93 16055.06 27782.64 21135.09 24080.81 29616.40 39058.32 27575.10 339
myMVS_eth3d63.52 25463.56 24463.40 32281.73 14734.28 35580.97 24981.02 19860.93 16055.06 27782.64 21148.00 7580.81 29623.42 37558.32 27575.10 339
v119267.96 19865.74 21774.63 16371.79 31053.43 11384.06 16780.99 20063.19 12059.56 21177.46 27037.50 20788.65 15158.20 19358.93 27081.79 258
TR-MVS69.71 16667.85 17475.27 15382.94 12148.48 23187.40 7280.86 20157.15 23664.61 15187.08 15232.67 26489.64 12146.38 28271.55 16987.68 157
v14419267.86 19965.76 21674.16 17671.68 31253.09 12484.14 16480.83 20262.85 12559.21 22077.28 27339.30 18388.00 17858.67 18557.88 28781.40 269
mvs_tets62.96 26160.55 26570.19 26268.22 34444.24 30280.90 25180.74 20352.99 28450.82 31377.56 26716.74 36585.44 25359.04 18257.94 28480.89 279
Fast-Effi-MVS+72.73 11271.15 12477.48 8982.75 12754.76 7886.77 9080.64 20463.05 12265.93 13284.01 18644.42 12289.03 13656.45 21576.36 12188.64 135
LPG-MVS_test66.44 23464.58 23672.02 22774.42 28248.60 22583.07 19980.64 20454.69 27053.75 29183.83 18925.73 31486.98 21160.33 17664.71 22180.48 284
LGP-MVS_train72.02 22774.42 28248.60 22580.64 20454.69 27053.75 29183.83 18925.73 31486.98 21160.33 17664.71 22180.48 284
v192192067.45 21065.23 22974.10 17871.51 31552.90 13083.75 17680.44 20762.48 13459.12 22177.13 27436.98 21587.90 18057.53 20458.14 28181.49 263
KD-MVS_2432*160059.04 29056.44 29466.86 29979.07 20545.87 28372.13 32080.42 20855.03 26548.15 32371.01 33536.73 22078.05 32335.21 32730.18 38476.67 323
miper_refine_blended59.04 29056.44 29466.86 29979.07 20545.87 28372.13 32080.42 20855.03 26548.15 32371.01 33536.73 22078.05 32335.21 32730.18 38476.67 323
sd_testset67.79 20265.95 21173.32 19881.70 14946.33 27668.99 33680.30 21066.58 6061.64 19182.38 21930.45 28387.63 19455.86 21765.60 21786.01 187
GA-MVS69.04 17666.70 19476.06 12775.11 27052.36 13983.12 19780.23 21163.32 11760.65 20079.22 25330.98 28088.37 16261.25 16266.41 21087.46 161
v7n62.50 26659.27 27772.20 22367.25 34749.83 19577.87 28280.12 21252.50 28748.80 32173.07 31832.10 26987.90 18046.83 27954.92 31278.86 298
v867.25 21664.99 23274.04 17972.89 30153.31 11882.37 21680.11 21361.54 14754.29 28676.02 29542.89 14388.41 16158.43 18756.36 29580.39 286
dmvs_re67.61 20566.00 20972.42 21881.86 14443.45 30964.67 34980.00 21469.56 3260.07 20385.00 17734.71 24487.63 19451.48 24866.68 20586.17 186
v124066.99 22464.68 23573.93 18271.38 31852.66 13383.39 18979.98 21561.97 14058.44 23877.11 27535.25 23787.81 18256.46 21458.15 27981.33 272
diffmvspermissive75.11 8074.65 7576.46 11678.52 22053.35 11583.28 19379.94 21670.51 2571.64 8388.72 11746.02 9686.08 24177.52 5975.75 12889.96 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_ETH3D62.51 26560.49 26668.57 28768.30 34240.88 33573.89 30479.93 21751.81 29454.77 28079.61 24724.80 32181.10 29249.93 25661.35 25483.73 231
v1066.61 23164.20 24073.83 18772.59 30453.37 11481.88 22579.91 21861.11 15454.09 28875.60 29740.06 17788.26 17156.47 21356.10 30179.86 292
ACMP61.11 966.24 23764.33 23872.00 22974.89 27649.12 20983.18 19679.83 21955.41 26152.29 30182.68 21025.83 31286.10 23860.89 16563.94 23080.78 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023120659.08 28957.59 28663.55 32068.77 33732.14 36780.26 26179.78 22050.00 30449.39 31772.39 32726.64 30778.36 31833.12 33957.94 28480.14 289
test-LLR69.65 16969.01 15671.60 24078.67 21548.17 24185.13 13079.72 22159.18 19363.13 17482.58 21336.91 21780.24 30560.56 17075.17 13486.39 183
test-mter68.36 19067.29 18471.60 24078.67 21548.17 24185.13 13079.72 22153.38 28063.13 17482.58 21327.23 30380.24 30560.56 17075.17 13486.39 183
ACMM58.35 1264.35 24662.01 25171.38 24474.21 28548.51 22982.25 21779.66 22347.61 31654.54 28380.11 24225.26 31786.00 24251.26 24963.16 24279.64 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ambc62.06 32853.98 38129.38 37835.08 39279.65 22441.37 35359.96 3696.27 39282.15 28535.34 32638.22 36974.65 342
MSLP-MVS++74.21 8872.25 10380.11 3681.45 16256.47 3886.32 9779.65 22458.19 21166.36 12792.29 4236.11 22890.66 9167.39 11882.49 6293.18 19
AUN-MVS68.20 19666.35 20073.76 18976.37 25047.45 25879.52 27079.52 22660.98 15862.34 18286.02 16436.59 22586.94 21462.32 15453.47 32586.89 169
APD-MVS_3200maxsize69.62 17068.23 16673.80 18881.58 15748.22 24081.91 22479.50 22748.21 31364.24 15989.75 9931.91 27487.55 19863.08 14973.85 14885.64 198
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22874.74 683.40 894.00 621.51 34594.70 2184.07 1789.68 793.82 7
hse-mvs271.44 13670.68 12873.73 19176.34 25147.44 25979.45 27179.47 22968.08 4071.97 7986.01 16642.50 14586.93 21578.82 4653.46 32686.83 175
xiu_mvs_v1_base_debu71.60 13370.29 13775.55 13977.26 24053.15 12185.34 12179.37 23055.83 25572.54 7190.19 8822.38 33686.66 22273.28 9076.39 11886.85 172
xiu_mvs_v1_base71.60 13370.29 13775.55 13977.26 24053.15 12185.34 12179.37 23055.83 25572.54 7190.19 8822.38 33686.66 22273.28 9076.39 11886.85 172
xiu_mvs_v1_base_debi71.60 13370.29 13775.55 13977.26 24053.15 12185.34 12179.37 23055.83 25572.54 7190.19 8822.38 33686.66 22273.28 9076.39 11886.85 172
CANet_DTU73.71 9773.14 9075.40 14482.61 13250.05 18984.67 15179.36 23369.72 3075.39 4390.03 9429.41 28985.93 24767.99 11679.11 9790.22 94
SR-MVS70.92 14569.73 14674.50 16583.38 10650.48 17684.27 16079.35 23448.96 31066.57 12590.45 8033.65 25687.11 20866.42 12474.56 14385.91 192
IS-MVSNet68.80 18367.55 18072.54 21478.50 22143.43 31081.03 24779.35 23459.12 19657.27 25886.71 15746.05 9587.70 19044.32 29375.60 12986.49 180
BH-RMVSNet70.08 15768.01 16876.27 11884.21 8851.22 16687.29 7679.33 23658.96 20063.63 16986.77 15633.29 25990.30 10344.63 29173.96 14687.30 165
TransMVSNet (Re)62.82 26260.76 26469.02 27673.98 28841.61 32786.36 9679.30 23756.90 23852.53 29976.44 28641.85 15787.60 19738.83 31040.61 36577.86 313
cl____67.43 21165.93 21271.95 23376.33 25248.02 24782.58 20879.12 23861.30 15256.72 26276.92 27946.12 9386.44 22957.98 19656.31 29781.38 271
DIV-MVS_self_test67.43 21165.93 21271.94 23476.33 25248.01 24882.57 20979.11 23961.31 15156.73 26176.92 27946.09 9486.43 23057.98 19656.31 29781.39 270
HyFIR lowres test69.94 16367.58 17877.04 10177.11 24557.29 2081.49 24179.11 23958.27 21058.86 22780.41 24142.33 14786.96 21361.91 15868.68 19286.87 170
miper_enhance_ethall69.77 16568.90 15772.38 21978.93 21049.91 19283.29 19278.85 24164.90 8959.37 21579.46 24852.77 3885.16 25963.78 14458.72 27182.08 254
Baseline_NR-MVSNet65.49 24364.27 23969.13 27574.37 28441.65 32683.39 18978.85 24159.56 18059.62 21076.88 28140.75 16787.44 20049.99 25555.05 31178.28 309
PVSNet_Blended_VisFu73.40 10472.44 9876.30 11781.32 16654.70 8285.81 10678.82 24363.70 10764.53 15385.38 17247.11 8387.38 20367.75 11777.55 10786.81 176
test0.0.03 162.54 26462.44 24762.86 32672.28 30929.51 37782.93 20278.78 24459.18 19353.07 29682.41 21736.91 21777.39 33137.45 31358.96 26981.66 261
FOURS183.24 10949.90 19384.98 13878.76 24547.71 31573.42 60
tpm68.36 19067.48 18270.97 25279.93 19351.34 16276.58 28978.75 24667.73 4763.54 17274.86 30148.33 7072.36 35853.93 23063.71 23189.21 120
tpmrst71.04 14269.77 14574.86 16183.19 11155.86 5175.64 29178.73 24767.88 4464.99 14673.73 31049.96 6379.56 31465.92 12867.85 19889.14 123
pmmvs659.64 28257.15 28967.09 29666.01 34936.86 35080.50 25678.64 24845.05 33449.05 31973.94 30827.28 30286.10 23843.96 29549.94 33678.31 308
anonymousdsp60.46 27957.65 28568.88 27763.63 36445.09 29072.93 31278.63 24946.52 32351.12 30872.80 32221.46 34683.07 28257.79 20153.97 31978.47 304
V4267.66 20465.60 22173.86 18570.69 32553.63 10581.50 23978.61 25063.85 10459.49 21477.49 26937.98 19387.65 19262.33 15358.43 27480.29 287
CP-MVSNet58.54 29857.57 28761.46 33468.50 33933.96 35876.90 28778.60 25151.67 29547.83 32576.60 28534.99 24372.79 35535.45 32447.58 34377.64 317
UGNet68.71 18567.11 18873.50 19780.55 18447.61 25684.08 16578.51 25259.45 18265.68 13782.73 20923.78 32785.08 26152.80 23976.40 11787.80 153
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
cl2268.85 17967.69 17672.35 22078.07 22749.98 19182.45 21478.48 25362.50 13358.46 23677.95 26249.99 6185.17 25862.55 15258.72 27181.90 257
miper_ehance_all_eth68.70 18767.58 17872.08 22576.91 24749.48 20482.47 21378.45 25462.68 12858.28 24077.88 26450.90 5285.01 26261.91 15858.72 27181.75 259
FE-MVS64.15 24760.43 26875.30 15080.85 17649.86 19468.28 34078.37 25550.26 30359.31 21773.79 30926.19 31091.92 6040.19 30666.67 20684.12 218
PEN-MVS58.35 29957.15 28961.94 33067.55 34634.39 35477.01 28578.35 25651.87 29247.72 32676.73 28333.91 25273.75 35034.03 33447.17 34777.68 315
MDTV_nov1_ep1361.56 25481.68 15155.12 6872.41 31678.18 25759.19 19158.85 22869.29 34534.69 24586.16 23536.76 32162.96 245
BH-w/o70.02 15968.51 16074.56 16482.77 12650.39 17986.60 9478.14 25859.77 17659.65 20885.57 17039.27 18487.30 20449.86 25774.94 14185.99 189
PS-CasMVS58.12 30057.03 29161.37 33568.24 34333.80 36076.73 28878.01 25951.20 29747.54 32976.20 29332.85 26172.76 35635.17 32947.37 34577.55 318
c3_l67.97 19766.66 19571.91 23676.20 25649.31 20782.13 22078.00 26061.99 13957.64 24976.94 27849.41 6684.93 26360.62 16957.01 29381.49 263
无先验85.19 12878.00 26049.08 30885.13 26052.78 24087.45 162
PVSNet62.49 869.27 17467.81 17573.64 19384.41 8251.85 14984.63 15277.80 26266.42 6459.80 20684.95 17822.14 34280.44 30355.03 22175.11 13788.62 136
PatchmatchNetpermissive67.07 22363.63 24377.40 9183.10 11258.03 972.11 32277.77 26358.85 20159.37 21570.83 33737.84 19584.93 26342.96 29969.83 18489.26 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Vis-MVSNet (Re-imp)65.52 24265.63 21965.17 31377.49 23630.54 36975.49 29577.73 26459.34 18652.26 30386.69 15849.38 6780.53 30237.07 31775.28 13284.42 215
D2MVS63.49 25561.39 25669.77 26969.29 33348.93 21778.89 27677.71 26560.64 16749.70 31672.10 33227.08 30483.48 27854.48 22562.65 24776.90 321
tpmvs62.45 26859.42 27571.53 24383.93 9254.32 9170.03 33177.61 26651.91 29153.48 29468.29 34837.91 19486.66 22233.36 33658.27 27773.62 349
SCA63.84 25060.01 27275.32 14778.58 21957.92 1061.61 36077.53 26756.71 24457.75 24770.77 33831.97 27179.91 31148.80 26556.36 29588.13 146
Vis-MVSNetpermissive70.61 15069.34 15174.42 16880.95 17448.49 23086.03 10477.51 26858.74 20465.55 13887.78 14034.37 24885.95 24652.53 24480.61 7788.80 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CDS-MVSNet70.48 15269.43 14873.64 19377.56 23548.83 22083.51 18277.45 26963.27 11862.33 18385.54 17143.85 12583.29 28157.38 20774.00 14588.79 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
BH-untuned68.28 19366.40 19973.91 18381.62 15450.01 19085.56 11877.39 27057.63 22557.47 25583.69 19336.36 22687.08 20944.81 28973.08 15584.65 212
Anonymous20240521170.11 15567.88 17176.79 11387.20 4547.24 26489.49 3677.38 27154.88 26866.14 12886.84 15520.93 34891.54 6656.45 21571.62 16791.59 56
PVSNet_057.04 1361.19 27557.24 28873.02 20377.45 23750.31 18579.43 27277.36 27263.96 10347.51 33072.45 32625.03 31983.78 27452.76 24219.22 39684.96 208
tpm cat166.28 23562.78 24576.77 11481.40 16357.14 2270.03 33177.19 27353.00 28358.76 23070.73 34046.17 9286.73 22043.27 29764.46 22586.44 181
TAMVS69.51 17268.16 16773.56 19676.30 25448.71 22482.57 20977.17 27462.10 13761.32 19484.23 18441.90 15683.46 27954.80 22473.09 15488.50 141
FMVSNet558.61 29556.45 29365.10 31477.20 24339.74 33774.77 29877.12 27550.27 30243.28 34667.71 34926.15 31176.90 33636.78 32054.78 31478.65 302
DTE-MVSNet57.03 30455.73 30060.95 33865.94 35032.57 36575.71 29077.09 27651.16 29846.65 33576.34 28832.84 26273.22 35430.94 34744.87 35677.06 320
SR-MVS-dyc-post68.27 19466.87 18972.48 21780.96 17148.14 24381.54 23776.98 27746.42 32562.75 17989.42 10431.17 27986.09 24060.52 17272.06 16483.19 241
RE-MVS-def66.66 19580.96 17148.14 24381.54 23776.98 27746.42 32562.75 17989.42 10429.28 29160.52 17272.06 16483.19 241
RPMNet59.29 28454.25 30774.42 16873.97 28956.57 3460.52 36376.98 27735.72 36557.49 25358.87 37337.73 19985.26 25627.01 36459.93 26081.42 267
eth_miper_zixun_eth66.98 22565.28 22872.06 22675.61 26650.40 17881.00 24876.97 28062.00 13856.99 26076.97 27744.84 11685.58 24958.75 18454.42 31780.21 288
1112_ss70.05 15869.37 15072.10 22480.77 17842.78 31785.12 13376.75 28159.69 17861.19 19592.12 4447.48 7983.84 27253.04 23668.21 19389.66 109
GeoE69.96 16267.88 17176.22 12081.11 16851.71 15384.15 16376.74 28259.83 17560.91 19684.38 18141.56 16188.10 17551.67 24770.57 17888.84 130
Effi-MVS+75.24 7673.61 8480.16 3381.92 14257.42 1985.21 12776.71 28360.68 16673.32 6289.34 10647.30 8091.63 6468.28 11479.72 9291.42 63
IterMVS-LS66.63 23065.36 22770.42 25975.10 27148.90 21881.45 24276.69 28461.05 15655.71 27277.10 27645.86 9883.65 27657.44 20557.88 28778.70 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary67.86 19965.48 22275.00 15988.15 3654.99 7386.10 10276.63 28549.30 30757.80 24486.65 15929.39 29088.94 14445.10 28870.21 18181.06 277
dp64.41 24561.58 25372.90 20682.40 13454.09 9872.53 31476.59 28660.39 16955.68 27370.39 34135.18 23976.90 33639.34 30961.71 25387.73 155
JIA-IIPM52.33 33047.77 33766.03 30671.20 31946.92 26640.00 38976.48 28737.10 36046.73 33337.02 38932.96 26077.88 32735.97 32252.45 33073.29 352
TAPA-MVS56.12 1461.82 27260.18 27166.71 30178.48 22237.97 34675.19 29776.41 28846.82 32157.04 25986.52 16127.67 30177.03 33326.50 36667.02 20485.14 204
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH53.70 1659.78 28155.94 29971.28 24576.59 24948.35 23580.15 26476.11 28949.74 30541.91 35173.45 31716.50 36790.31 10131.42 34457.63 29075.17 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS63.68 25361.01 26271.70 23873.48 29145.98 28181.19 24476.08 29054.33 27452.84 29779.27 25122.21 33987.65 19254.13 22755.54 30981.46 266
EU-MVSNet52.63 32750.72 32458.37 34562.69 36828.13 38272.60 31375.97 29130.94 37640.76 35872.11 33120.16 35070.80 36235.11 33046.11 35376.19 331
HPM-MVS_fast67.86 19966.28 20372.61 21280.67 18148.34 23681.18 24575.95 29250.81 29959.55 21288.05 13527.86 29885.98 24358.83 18373.58 14983.51 234
Fast-Effi-MVS+-dtu66.53 23264.10 24173.84 18672.41 30652.30 14284.73 14775.66 29359.51 18156.34 26879.11 25528.11 29585.85 24857.74 20363.29 23983.35 235
EPNet_dtu66.25 23666.71 19364.87 31578.66 21734.12 35782.80 20475.51 29461.75 14364.47 15786.90 15437.06 21472.46 35743.65 29669.63 18788.02 149
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS63.77 25261.67 25270.08 26572.68 30351.24 16580.44 25775.51 29460.51 16851.41 30673.70 31332.08 27078.91 31554.30 22654.35 31880.08 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net67.32 21566.23 20470.59 25678.85 21141.23 33273.60 30675.45 29661.54 14766.61 12384.53 18038.73 18986.57 22742.48 30374.24 14483.98 225
OMC-MVS65.97 24065.06 23168.71 28372.97 29942.58 32178.61 27775.35 29754.72 26959.31 21786.25 16333.30 25877.88 32757.99 19567.05 20385.66 197
pmmvs562.80 26361.18 25967.66 29269.53 33142.37 32482.65 20775.19 29854.30 27552.03 30478.51 25931.64 27680.67 29848.60 26758.15 27979.95 291
OpenMVS_ROBcopyleft53.19 1759.20 28656.00 29868.83 27971.13 32044.30 29983.64 17775.02 29946.42 32546.48 33673.03 31918.69 35688.14 17227.74 36161.80 25274.05 346
test20.0355.22 31554.07 30858.68 34463.14 36625.00 38577.69 28374.78 30052.64 28543.43 34472.39 32726.21 30974.76 34529.31 35147.05 34976.28 330
our_test_359.11 28855.08 30471.18 24971.42 31653.29 11981.96 22274.52 30148.32 31242.08 34969.28 34628.14 29482.15 28534.35 33345.68 35578.11 312
Effi-MVS+-dtu66.24 23764.96 23370.08 26575.17 26949.64 19782.01 22174.48 30262.15 13657.83 24376.08 29430.59 28283.79 27365.40 13860.93 25776.81 322
IterMVS-SCA-FT59.12 28758.81 28160.08 33970.68 32645.07 29180.42 25874.25 30343.54 34450.02 31573.73 31031.97 27156.74 38151.06 25253.60 32378.42 306
CPTT-MVS67.15 21965.84 21471.07 25080.96 17150.32 18481.94 22374.10 30446.18 32857.91 24287.64 14429.57 28881.31 29164.10 14370.18 18281.56 262
test_fmvsm_n_192075.56 7275.54 6075.61 13674.60 28049.51 20381.82 22874.08 30566.52 6380.40 2293.46 1946.95 8489.72 11886.69 775.30 13187.61 158
MIMVSNet150.35 33547.81 33657.96 34661.53 37027.80 38367.40 34274.06 30643.25 34533.31 37965.38 35716.03 36871.34 36021.80 37847.55 34474.75 341
PLCcopyleft52.38 1860.89 27658.97 28066.68 30381.77 14645.70 28678.96 27574.04 30743.66 34347.63 32783.19 20223.52 33077.78 33037.47 31260.46 25876.55 328
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_111021_LR69.07 17567.91 16972.54 21477.27 23949.56 20079.77 26673.96 30859.33 18860.73 19987.82 13930.19 28581.53 28969.94 10472.19 16386.53 179
PatchT56.60 30652.97 31367.48 29372.94 30046.16 28057.30 37173.78 30938.77 35554.37 28557.26 37637.52 20578.06 32232.02 34152.79 32878.23 311
Test_1112_low_res67.18 21866.23 20470.02 26878.75 21341.02 33383.43 18573.69 31057.29 23258.45 23782.39 21845.30 10680.88 29550.50 25366.26 21588.16 143
MSDG59.44 28355.14 30372.32 22174.69 27750.71 16974.39 30273.58 31144.44 33843.40 34577.52 26819.45 35290.87 8631.31 34557.49 29175.38 335
XVG-OURS-SEG-HR62.02 27059.54 27469.46 27265.30 35445.88 28265.06 34773.57 31246.45 32457.42 25683.35 19926.95 30578.09 32153.77 23164.03 22884.42 215
CVMVSNet60.85 27760.44 26762.07 32775.00 27432.73 36479.54 26873.49 31336.98 36156.28 26983.74 19129.28 29169.53 36646.48 28163.23 24083.94 228
XVG-OURS61.88 27159.34 27669.49 27165.37 35346.27 27764.80 34873.49 31347.04 32057.41 25782.85 20425.15 31878.18 31953.00 23764.98 21984.01 222
USDC54.36 31851.23 32263.76 31964.29 36237.71 34762.84 35773.48 31556.85 23935.47 37171.94 3339.23 38078.43 31738.43 31148.57 33875.13 338
Anonymous2024052151.65 33148.42 33361.34 33656.43 37839.65 33973.57 30773.47 31636.64 36336.59 36763.98 35910.75 37772.25 35935.35 32549.01 33772.11 357
KD-MVS_self_test49.24 33646.85 33956.44 35054.32 37922.87 38857.39 37073.36 31744.36 33937.98 36559.30 37218.97 35571.17 36133.48 33542.44 36175.26 336
test_fmvsmconf_n74.41 8574.05 8175.49 14274.16 28648.38 23482.66 20672.57 31867.05 5675.11 4592.88 3346.35 9187.81 18283.93 1971.71 16690.28 92
XVG-ACMP-BASELINE56.03 31152.85 31565.58 30861.91 36940.95 33463.36 35272.43 31945.20 33346.02 33774.09 3069.20 38178.12 32045.13 28758.27 27777.66 316
ppachtmachnet_test58.56 29654.34 30571.24 24671.42 31654.74 7981.84 22772.27 32049.02 30945.86 33968.99 34726.27 30883.30 28030.12 34843.23 36075.69 332
MDA-MVSNet-bldmvs51.56 33247.75 33863.00 32471.60 31447.32 26169.70 33472.12 32143.81 34227.65 38863.38 36021.97 34375.96 34027.30 36332.19 38165.70 375
test_fmvsmconf0.1_n73.69 9873.15 8875.34 14670.71 32348.26 23982.15 21871.83 32266.75 5974.47 5292.59 3844.89 11487.78 18783.59 2071.35 17089.97 103
旧先验181.57 15847.48 25771.83 32288.66 11936.94 21678.34 10488.67 134
CR-MVSNet62.47 26759.04 27972.77 20973.97 28956.57 3460.52 36371.72 32460.04 17257.49 25365.86 35438.94 18680.31 30442.86 30059.93 26081.42 267
Patchmtry56.56 30752.95 31467.42 29472.53 30550.59 17359.05 36771.72 32437.86 35946.92 33265.86 35438.94 18680.06 30836.94 31946.72 35171.60 360
YYNet153.82 32249.96 32765.41 31170.09 32948.95 21572.30 31771.66 32644.25 34031.89 38063.07 36223.73 32873.95 34833.26 33739.40 36773.34 351
MDA-MVSNet_test_wron53.82 32249.95 32865.43 31070.13 32849.05 21172.30 31771.65 32744.23 34131.85 38163.13 36123.68 32974.01 34733.25 33839.35 36873.23 353
新几何173.30 20083.10 11253.48 10771.43 32845.55 33066.14 12887.17 15133.88 25480.54 30148.50 26880.33 8385.88 194
pmmvs463.34 25761.07 26170.16 26370.14 32750.53 17479.97 26571.41 32955.08 26454.12 28778.58 25832.79 26382.09 28750.33 25457.22 29277.86 313
fmvsm_l_conf0.5_n75.95 6376.16 5475.31 14876.01 26148.44 23384.98 13871.08 33063.50 11381.70 1793.52 1750.00 6087.18 20687.80 576.87 11490.32 91
CMPMVSbinary40.41 2155.34 31452.64 31763.46 32160.88 37243.84 30561.58 36171.06 33130.43 37736.33 36874.63 30324.14 32675.44 34248.05 27166.62 20771.12 363
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet48.21 33846.55 34053.18 35657.73 37618.19 40070.24 32971.02 33245.70 32933.70 37560.23 36818.00 36069.86 36527.97 36034.35 37771.49 362
iter_conf0573.51 10272.24 10477.33 9287.93 3955.97 4887.90 6170.81 33368.72 3564.04 16184.36 18347.54 7890.87 8671.11 9967.75 19985.13 205
fmvsm_l_conf0.5_n_a75.88 6576.07 5575.31 14876.08 25748.34 23685.24 12670.62 33463.13 12181.45 1893.62 1649.98 6287.40 20287.76 676.77 11590.20 96
testgi54.25 31952.57 31859.29 34262.76 36721.65 39272.21 31970.47 33553.25 28241.94 35077.33 27214.28 37177.95 32629.18 35251.72 33278.28 309
F-COLMAP55.96 31353.65 31162.87 32572.76 30242.77 31874.70 30170.37 33640.03 35241.11 35679.36 24917.77 36173.70 35132.80 34053.96 32072.15 356
ACMH+54.58 1558.55 29755.24 30168.50 28874.68 27845.80 28580.27 26070.21 33747.15 31942.77 34875.48 29816.73 36685.98 24335.10 33154.78 31473.72 348
test_fmvsmconf0.01_n71.97 12770.95 12675.04 15766.21 34847.87 25280.35 25970.08 33865.85 7772.69 7091.68 5739.99 17887.67 19182.03 2969.66 18589.58 111
ADS-MVSNet56.17 31051.95 32068.84 27880.60 18253.07 12555.03 37470.02 33944.72 33551.00 30961.19 36622.83 33278.88 31628.54 35653.63 32174.57 343
test_cas_vis1_n_192067.10 22066.60 19768.59 28665.17 35643.23 31283.23 19469.84 34055.34 26270.67 9787.71 14224.70 32376.66 33878.57 5064.20 22685.89 193
fmvsm_s_conf0.5_n74.48 8374.12 7975.56 13876.96 24647.85 25385.32 12469.80 34164.16 9778.74 2993.48 1845.51 10489.29 12786.48 866.62 20789.55 112
test_040256.45 30853.03 31266.69 30276.78 24850.31 18581.76 22969.61 34242.79 34743.88 34172.13 33022.82 33486.46 22816.57 38950.94 33363.31 378
fmvsm_s_conf0.1_n73.80 9473.26 8675.43 14373.28 29547.80 25484.57 15469.43 34363.34 11678.40 3293.29 2444.73 12089.22 13085.99 966.28 21489.26 117
mvsmamba66.93 22764.88 23473.09 20275.06 27247.26 26283.36 19169.21 34462.64 12955.68 27381.43 23329.72 28789.20 13263.35 14863.50 23482.79 249
testdata67.08 29777.59 23445.46 28869.20 34544.47 33771.50 8688.34 12731.21 27870.76 36352.20 24575.88 12585.03 206
fmvsm_s_conf0.5_n_a73.68 9973.15 8875.29 15175.45 26848.05 24683.88 17268.84 34663.43 11578.60 3093.37 2245.32 10588.92 14585.39 1164.04 22788.89 128
test_vis1_n_192068.59 18868.31 16369.44 27369.16 33441.51 32884.63 15268.58 34758.80 20273.26 6388.37 12425.30 31680.60 30079.10 4367.55 20086.23 185
fmvsm_s_conf0.1_n_a72.82 11172.05 11175.12 15670.95 32247.97 24982.72 20568.43 34862.52 13278.17 3393.08 3044.21 12388.86 14684.82 1363.54 23388.54 139
test22279.36 19850.97 16777.99 28167.84 34942.54 34862.84 17886.53 16030.26 28476.91 11385.23 203
pmmvs-eth3d55.97 31252.78 31665.54 30961.02 37146.44 27275.36 29667.72 35049.61 30643.65 34367.58 35021.63 34477.04 33244.11 29444.33 35773.15 354
bld_raw_dy_0_6475.36 7473.18 8781.89 1187.91 4057.01 2486.77 9067.69 35178.56 165.01 14493.99 722.18 34094.84 1984.07 1772.45 15993.82 7
LTVRE_ROB45.45 1952.73 32649.74 32961.69 33269.78 33034.99 35244.52 38267.60 35243.11 34643.79 34274.03 30718.54 35881.45 29028.39 35857.94 28468.62 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D56.40 30953.82 30964.12 31781.12 16745.69 28773.42 30966.14 35335.30 36943.24 34779.88 24422.18 34079.62 31319.10 38564.00 22967.05 369
ADS-MVSNet255.21 31651.44 32166.51 30480.60 18249.56 20055.03 37465.44 35444.72 33551.00 30961.19 36622.83 33275.41 34328.54 35653.63 32174.57 343
OurMVSNet-221017-052.39 32948.73 33263.35 32365.21 35538.42 34468.54 33964.95 35538.19 35639.57 35971.43 33413.23 37379.92 30937.16 31440.32 36671.72 359
SixPastTwentyTwo54.37 31750.10 32667.21 29570.70 32441.46 33074.73 29964.69 35647.56 31739.12 36169.49 34318.49 35984.69 26631.87 34234.20 37975.48 334
test_fmvsmvis_n_192071.29 13770.38 13474.00 18171.04 32148.79 22179.19 27464.62 35762.75 12666.73 11991.99 5040.94 16588.35 16483.00 2273.18 15184.85 211
DP-MVS59.24 28556.12 29768.63 28488.24 3450.35 18382.51 21264.43 35841.10 35146.70 33478.77 25724.75 32288.57 15722.26 37756.29 29966.96 370
CNLPA60.59 27858.44 28267.05 29879.21 20347.26 26279.75 26764.34 35942.46 34951.90 30583.94 18727.79 30075.41 34337.12 31559.49 26578.47 304
ANet_high34.39 35429.59 36048.78 36030.34 40322.28 38955.53 37363.79 36038.11 35715.47 39536.56 3926.94 38759.98 37513.93 3925.64 40664.08 376
dmvs_testset57.65 30158.21 28355.97 35274.62 2799.82 40863.75 35163.34 36167.23 5348.89 32083.68 19539.12 18576.14 33923.43 37459.80 26281.96 256
K. test v354.04 32049.42 33167.92 29168.55 33842.57 32275.51 29463.07 36252.07 28939.21 36064.59 35819.34 35382.21 28437.11 31625.31 38978.97 297
TinyColmap48.15 33944.49 34359.13 34365.73 35238.04 34563.34 35362.86 36338.78 35429.48 38367.23 3526.46 39173.30 35324.59 37041.90 36366.04 373
COLMAP_ROBcopyleft43.60 2050.90 33448.05 33559.47 34067.81 34540.57 33671.25 32662.72 36436.49 36436.19 36973.51 31513.48 37273.92 34920.71 38150.26 33563.92 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL56.66 30553.75 31065.37 31277.91 23145.28 28969.78 33360.38 36541.35 35047.57 32873.73 31016.83 36476.91 33436.99 31859.21 26873.92 347
Gipumacopyleft27.47 36024.26 36537.12 37460.55 37329.17 37911.68 40160.00 36614.18 39310.52 40215.12 4032.20 40363.01 3718.39 39735.65 37219.18 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Patchmatch-test53.33 32548.17 33468.81 28073.31 29342.38 32342.98 38458.23 36732.53 37138.79 36370.77 33839.66 18173.51 35225.18 36852.06 33190.55 84
pmmvs345.53 34441.55 34857.44 34748.97 38939.68 33870.06 33057.66 36828.32 37934.06 37457.29 3758.50 38466.85 36834.86 33234.26 37865.80 374
FPMVS35.40 35233.67 35640.57 36946.34 39228.74 38141.05 38657.05 36920.37 38722.27 39153.38 3806.87 38844.94 3948.62 39647.11 34848.01 388
Patchmatch-RL test58.72 29454.32 30671.92 23563.91 36344.25 30161.73 35955.19 37057.38 23149.31 31854.24 37837.60 20380.89 29462.19 15647.28 34690.63 83
MVS-HIRNet49.01 33744.71 34161.92 33176.06 25846.61 27063.23 35454.90 37124.77 38333.56 37636.60 39121.28 34775.88 34129.49 35062.54 24863.26 379
CHOSEN 280x42057.53 30356.38 29660.97 33774.01 28748.10 24546.30 38154.31 37248.18 31450.88 31277.43 27138.37 19259.16 37954.83 22263.14 24375.66 333
AllTest47.32 34044.66 34255.32 35465.08 35737.50 34862.96 35654.25 37335.45 36733.42 37772.82 3209.98 37859.33 37624.13 37143.84 35869.13 365
TestCases55.32 35465.08 35737.50 34854.25 37335.45 36733.42 37772.82 3209.98 37859.33 37624.13 37143.84 35869.13 365
ITE_SJBPF51.84 35758.03 37531.94 36853.57 37536.67 36241.32 35475.23 30011.17 37651.57 38625.81 36748.04 34072.02 358
TDRefinement40.91 34738.37 35148.55 36150.45 38733.03 36358.98 36850.97 37628.50 37829.89 38267.39 3516.21 39354.51 38317.67 38735.25 37458.11 380
LCM-MVSNet28.07 35823.85 36640.71 36827.46 40818.93 39530.82 39646.19 37712.76 39516.40 39334.70 3941.90 40448.69 39020.25 38224.22 39054.51 383
LCM-MVSNet-Re58.82 29356.54 29265.68 30779.31 20129.09 38061.39 36245.79 37860.73 16537.65 36672.47 32531.42 27781.08 29349.66 25870.41 17986.87 170
lessismore_v067.98 29064.76 36041.25 33145.75 37936.03 37065.63 35619.29 35484.11 27035.67 32321.24 39478.59 303
RPSCF45.77 34344.13 34550.68 35857.67 37729.66 37654.92 37645.25 38026.69 38145.92 33875.92 29617.43 36345.70 39227.44 36245.95 35476.67 323
WB-MVS37.41 35136.37 35240.54 37054.23 38010.43 40765.29 34543.75 38134.86 37027.81 38754.63 37724.94 32063.21 3706.81 40215.00 39747.98 389
door43.27 382
test_fmvs1_n52.55 32851.19 32356.65 34951.90 38430.14 37167.66 34142.84 38332.27 37362.30 18482.02 2279.12 38260.84 37257.82 20054.75 31678.99 296
test_fmvs153.60 32452.54 31956.78 34858.07 37430.26 37068.95 33742.19 38432.46 37263.59 17082.56 21511.55 37460.81 37358.25 19255.27 31079.28 294
SSC-MVS35.20 35334.30 35537.90 37252.58 3828.65 41061.86 35841.64 38531.81 37525.54 38952.94 38223.39 33159.28 3786.10 40312.86 39845.78 391
door-mid41.31 386
EGC-MVSNET33.75 35530.42 35943.75 36764.94 35936.21 35160.47 36540.70 3870.02 4070.10 40853.79 3797.39 38560.26 37411.09 39535.23 37534.79 393
test_vis1_n51.19 33349.66 33055.76 35351.26 38529.85 37567.20 34338.86 38832.12 37459.50 21379.86 2458.78 38358.23 38056.95 20952.46 32979.19 295
PM-MVS46.92 34143.76 34656.41 35152.18 38332.26 36663.21 35538.18 38937.99 35840.78 35766.20 3535.09 39465.42 36948.19 27041.99 36271.54 361
new_pmnet33.56 35631.89 35838.59 37149.01 38820.42 39351.01 37737.92 39020.58 38523.45 39046.79 3856.66 39049.28 38920.00 38431.57 38346.09 390
test_fmvs245.89 34244.32 34450.62 35945.85 39324.70 38658.87 36937.84 39125.22 38252.46 30074.56 3047.07 38654.69 38249.28 26247.70 34272.48 355
DSMNet-mixed38.35 34935.36 35447.33 36248.11 39114.91 40437.87 39036.60 39219.18 38834.37 37359.56 37115.53 36953.01 38520.14 38346.89 35074.07 345
LF4IMVS33.04 35732.55 35734.52 37540.96 39422.03 39044.45 38335.62 39320.42 38628.12 38662.35 3635.03 39531.88 40521.61 38034.42 37649.63 387
PMVScopyleft19.57 2225.07 36422.43 36932.99 37923.12 41022.98 38740.98 38735.19 39415.99 39211.95 40135.87 3931.47 40749.29 3885.41 40531.90 38226.70 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method24.09 36621.07 37033.16 37827.67 4078.35 41226.63 39835.11 3953.40 40414.35 39636.98 3903.46 39835.31 40019.08 38622.95 39155.81 382
test_fmvs337.95 35035.75 35344.55 36635.50 39918.92 39648.32 37834.00 39618.36 39041.31 35561.58 3642.29 40148.06 39142.72 30137.71 37066.66 371
E-PMN19.16 36918.40 37321.44 38536.19 39813.63 40547.59 37930.89 39710.73 3985.91 40516.59 4013.66 39739.77 3965.95 4048.14 40110.92 401
APD_test126.46 36324.41 36432.62 38037.58 39621.74 39140.50 38830.39 39811.45 39716.33 39443.76 3861.63 40641.62 39511.24 39426.82 38834.51 394
EMVS18.42 37017.66 37420.71 38634.13 40012.64 40646.94 38029.94 39910.46 4005.58 40614.93 4044.23 39638.83 3975.24 4067.51 40310.67 402
PMMVS226.71 36222.98 36737.87 37336.89 3978.51 41142.51 38529.32 40019.09 38913.01 39737.54 3882.23 40253.11 38414.54 39111.71 39951.99 386
mvsany_test143.38 34542.57 34745.82 36350.96 38626.10 38455.80 37227.74 40127.15 38047.41 33174.39 30518.67 35744.95 39344.66 29036.31 37166.40 372
test_vis1_rt40.29 34838.64 35045.25 36548.91 39030.09 37259.44 36627.07 40224.52 38438.48 36451.67 3836.71 38949.44 38744.33 29246.59 35256.23 381
testf121.11 36719.08 37127.18 38330.56 40118.28 39833.43 39424.48 4038.02 40112.02 39933.50 3950.75 41035.09 4017.68 39821.32 39228.17 396
APD_test221.11 36719.08 37127.18 38330.56 40118.28 39833.43 39424.48 4038.02 40112.02 39933.50 3950.75 41035.09 4017.68 39821.32 39228.17 396
MVEpermissive16.60 2317.34 37213.39 37529.16 38228.43 40619.72 39413.73 40023.63 4057.23 4037.96 40321.41 3990.80 40936.08 3996.97 40010.39 40031.69 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_f27.12 36124.85 36233.93 37726.17 40915.25 40330.24 39722.38 40612.53 39628.23 38549.43 3842.59 40034.34 40325.12 36926.99 38752.20 385
mvsany_test328.00 35925.98 36134.05 37628.97 40415.31 40234.54 39318.17 40716.24 39129.30 38453.37 3812.79 39933.38 40430.01 34920.41 39553.45 384
tmp_tt9.44 37310.68 3765.73 3892.49 4124.21 41310.48 40218.04 4080.34 40612.59 39820.49 40011.39 3757.03 40813.84 3936.46 4055.95 403
test_vis3_rt24.79 36522.95 36830.31 38128.59 40518.92 39637.43 39117.27 40912.90 39421.28 39229.92 3981.02 40836.35 39828.28 35929.82 38635.65 392
MTMP87.27 7715.34 410
DeepMVS_CXcopyleft13.10 38721.34 4118.99 40910.02 41110.59 3997.53 40430.55 3971.82 40514.55 4066.83 4017.52 40215.75 400
wuyk23d9.11 3748.77 37810.15 38840.18 39516.76 40120.28 3991.01 4122.58 4052.66 4070.98 4070.23 41212.49 4074.08 4076.90 4041.19 404
N_pmnet41.25 34639.77 34945.66 36468.50 3390.82 41472.51 3150.38 41335.61 36635.26 37261.51 36520.07 35167.74 36723.51 37340.63 36468.42 368
test_blank0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
pcd_1.5k_mvsjas3.15 3784.20 3810.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 41037.77 1960.00 4090.00 4100.00 4070.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
sosnet0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
Regformer0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
testmvs6.14 3768.18 3790.01 3900.01 4130.00 41673.40 3100.00 4140.00 4080.02 4090.15 4080.00 4130.00 4090.02 4080.00 4070.02 405
test1236.01 3778.01 3800.01 3900.00 4140.01 41571.93 3230.00 4140.00 4080.02 4090.11 4090.00 4130.00 4090.02 4080.00 4070.02 405
n20.00 414
nn0.00 414
ab-mvs-re7.68 37510.24 3770.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 41192.12 440.00 4130.00 4090.00 4100.00 4070.00 407
uanet0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
WAC-MVS34.28 35522.56 376
PC_three_145266.58 6087.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
eth-test20.00 414
eth-test0.00 414
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
test_0728_THIRD58.00 21581.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 37
GSMVS88.13 146
test_part289.33 2355.48 5582.27 12
sam_mvs138.86 18888.13 146
sam_mvs35.99 233
test_post170.84 32814.72 40534.33 24983.86 27148.80 265
test_post16.22 40237.52 20584.72 265
patchmatchnet-post59.74 37038.41 19179.91 311
gm-plane-assit83.24 10954.21 9570.91 2288.23 13095.25 1466.37 125
test9_res78.72 4985.44 4291.39 64
agg_prior275.65 6985.11 4691.01 76
test_prior456.39 4087.15 81
test_prior289.04 4361.88 14273.55 5891.46 6448.01 7474.73 7885.46 41
旧先验281.73 23145.53 33174.66 4770.48 36458.31 191
新几何281.61 235
原ACMM283.77 175
testdata277.81 32945.64 286
segment_acmp44.97 113
testdata177.55 28464.14 98
plane_prior777.95 22848.46 232
plane_prior678.42 22349.39 20636.04 231
plane_prior483.28 200
plane_prior348.95 21564.01 10162.15 186
plane_prior285.76 10863.60 110
plane_prior178.31 225
plane_prior49.57 19887.43 7064.57 9272.84 156
HQP5-MVS51.56 156
HQP-NCC79.02 20788.00 5565.45 7964.48 154
ACMP_Plane79.02 20788.00 5565.45 7964.48 154
BP-MVS66.70 122
HQP4-MVS64.47 15788.61 15384.91 209
HQP2-MVS37.35 208
NP-MVS78.76 21250.43 17785.12 174
MDTV_nov1_ep13_2view43.62 30771.13 32754.95 26759.29 21936.76 21946.33 28387.32 164
ACMMP++_ref63.20 241
ACMMP++59.38 266
Test By Simon39.38 182