This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR96.69 3596.69 3396.72 8098.58 8891.00 12199.14 10699.45 193.86 5695.15 11498.73 9188.48 6799.76 8697.23 6599.56 5199.40 87
thres100view90093.34 13992.15 15196.90 6997.62 11494.84 3899.06 11799.36 287.96 20990.47 18996.78 19283.29 16298.75 15984.11 25390.69 22497.12 209
tfpn200view993.43 13592.27 14896.90 6997.68 11294.84 3899.18 9399.36 288.45 18890.79 18196.90 18483.31 16098.75 15984.11 25390.69 22497.12 209
thres600view793.18 14492.00 15496.75 7697.62 11494.92 3399.07 11499.36 287.96 20990.47 18996.78 19283.29 16298.71 16382.93 26790.47 22896.61 224
thres40093.39 13792.27 14896.73 7897.68 11294.84 3899.18 9399.36 288.45 18890.79 18196.90 18483.31 16098.75 15984.11 25390.69 22496.61 224
thres20093.69 12692.59 14396.97 6697.76 10994.74 4399.35 7799.36 289.23 16491.21 17896.97 18083.42 15998.77 15785.08 23790.96 22297.39 202
MVS_111021_LR95.78 6595.94 5495.28 14798.19 9887.69 20198.80 14299.26 793.39 6795.04 11698.69 9884.09 15099.76 8696.96 7199.06 7698.38 168
sss94.85 9193.94 10897.58 4096.43 16894.09 5998.93 13099.16 889.50 15995.27 11197.85 13181.50 19699.65 9892.79 15494.02 17598.99 122
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1899.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10399.86 1299.97 7
test250694.80 9294.21 9596.58 8896.41 16992.18 9598.01 22898.96 1190.82 11793.46 14497.28 15985.92 12398.45 17489.82 18497.19 13399.12 113
PVSNet87.13 1293.69 12692.83 13896.28 10697.99 10490.22 14099.38 7298.93 1291.42 10793.66 14197.68 14271.29 27499.64 10087.94 20797.20 13298.98 123
PGM-MVS95.85 6295.65 6896.45 9699.50 4289.77 15798.22 20798.90 1389.19 16696.74 8298.95 7185.91 12599.92 4093.94 13099.46 5699.66 60
MVS_030497.53 1497.15 2298.67 1197.30 13096.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 71
EPNet96.82 3296.68 3497.25 5398.65 8693.10 7599.48 5498.76 1596.54 1397.84 5598.22 12487.49 8499.66 9495.35 10397.78 11999.00 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11298.46 11786.56 11199.46 11895.00 11392.69 18899.50 78
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33698.74 1692.42 8695.65 10594.76 23886.52 11299.49 11295.29 10592.97 18499.53 74
VNet95.08 8594.26 9397.55 4398.07 10193.88 6198.68 15498.73 1890.33 13397.16 7197.43 15579.19 21599.53 10996.91 7391.85 20599.24 102
test_yl95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11898.70 1986.76 23994.65 12397.74 13987.78 7999.44 11995.57 9992.61 18999.44 84
DCV-MVSNet95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11898.70 1986.76 23994.65 12397.74 13987.78 7999.44 11995.57 9992.61 18999.44 84
PVSNet_083.28 1687.31 25985.16 27493.74 20694.78 24184.59 27898.91 13398.69 2189.81 14878.59 32493.23 26861.95 33199.34 13494.75 11755.72 38897.30 204
ACMMPcopyleft94.67 9994.30 9295.79 12899.25 5788.13 19498.41 18898.67 2290.38 13291.43 17298.72 9382.22 18899.95 3193.83 13495.76 15899.29 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
D2MVS87.96 24787.39 24189.70 29991.84 30683.40 29498.31 20298.49 2388.04 20678.23 32890.26 32873.57 24996.79 26184.21 25083.53 27388.90 353
test_fmvsm_n_192097.08 2797.55 1495.67 13397.94 10589.61 16199.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 200
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14697.37 12789.16 16699.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 220
HyFIR lowres test93.68 12893.29 12694.87 16197.57 11988.04 19698.18 21198.47 2587.57 22291.24 17795.05 23285.49 13197.46 23393.22 14692.82 18599.10 115
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14596.51 16589.01 17299.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 216
UniMVSNet (Re)89.50 21988.32 22893.03 21592.21 29790.96 12298.90 13498.39 2789.13 16883.22 25592.03 28381.69 19496.34 29086.79 21972.53 34491.81 283
CHOSEN 280x42096.80 3396.85 2896.66 8497.85 10894.42 5194.76 32898.36 2992.50 8395.62 10697.52 15097.92 197.38 23898.31 4498.80 9298.20 181
VPA-MVSNet89.10 22287.66 23893.45 20992.56 29191.02 12097.97 23198.32 3086.92 23586.03 23292.01 28568.84 28797.10 24890.92 16975.34 31592.23 269
CHOSEN 1792x268894.35 10893.82 11295.95 12397.40 12588.74 18498.41 18898.27 3192.18 9391.43 17296.40 20378.88 21699.81 7993.59 13897.81 11699.30 97
patch_mono-297.10 2697.97 894.49 17599.21 6183.73 29099.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
FIs90.70 19589.87 19493.18 21392.29 29591.12 11498.17 21398.25 3289.11 16983.44 25494.82 23782.26 18796.17 29987.76 20882.76 27992.25 267
UGNet91.91 17290.85 17895.10 15297.06 14788.69 18598.01 22898.24 3492.41 8792.39 15793.61 25960.52 33799.68 9288.14 20497.25 13196.92 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.22 20489.40 20392.67 22791.78 30789.86 15597.89 23398.22 3588.81 17982.96 26194.66 23981.90 19395.96 30885.89 23182.52 28292.20 273
WR-MVS_H86.53 27285.49 27089.66 30191.04 31883.31 29697.53 25598.20 3684.95 27279.64 31190.90 30778.01 22495.33 33076.29 31672.81 34190.35 329
MVS93.92 11892.28 14798.83 795.69 19996.82 896.22 30498.17 3784.89 27384.34 24898.61 10579.32 21499.83 7393.88 13299.43 6099.86 29
PAPM96.35 4395.94 5497.58 4094.10 25795.25 2498.93 13098.17 3794.26 4493.94 13598.72 9389.68 5697.88 20296.36 8499.29 6899.62 66
baseline294.04 11493.80 11394.74 16793.07 28890.25 13798.12 21798.16 3989.86 14686.53 23096.95 18195.56 698.05 19491.44 16494.53 17095.93 239
UniMVSNet_NR-MVSNet89.60 21688.55 22492.75 22392.17 29890.07 14698.74 14998.15 4088.37 19383.21 25693.98 24982.86 17195.93 31086.95 21572.47 34592.25 267
CSCG94.87 9094.71 8595.36 14299.54 3686.49 23099.34 7898.15 4082.71 30990.15 19499.25 2389.48 5799.86 6394.97 11498.82 9199.72 50
test_fmvsmconf_n96.78 3496.84 2996.61 8595.99 19090.25 13799.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
MSLP-MVS++97.50 1797.45 1797.63 3899.65 1693.21 7299.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
h-mvs3392.47 16091.95 15694.05 19697.13 14385.01 27398.36 19798.08 4493.85 5796.27 9196.73 19483.19 16599.43 12295.81 9268.09 36197.70 193
IB-MVS89.43 692.12 16890.83 18195.98 12295.40 21090.78 12599.81 1298.06 4591.23 11185.63 23693.66 25890.63 4298.78 15691.22 16571.85 35198.36 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4697.51 12192.78 8599.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 72
PHI-MVS96.65 3796.46 3897.21 5499.34 5091.77 9999.70 2798.05 4686.48 24798.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4597.59 11792.91 8399.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 87
PVSNet_BlendedMVS93.36 13893.20 12893.84 20398.77 8391.61 10399.47 5698.04 4891.44 10594.21 13092.63 27883.50 15699.87 5897.41 6183.37 27590.05 337
PVSNet_Blended95.94 5995.66 6696.75 7698.77 8391.61 10399.88 498.04 4893.64 6494.21 13097.76 13783.50 15699.87 5897.41 6197.75 12098.79 145
EPMVS92.59 15791.59 16395.59 13797.22 13490.03 15091.78 35698.04 4890.42 13191.66 16690.65 31686.49 11497.46 23381.78 27896.31 14899.28 99
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
testing387.75 25188.22 23086.36 33594.66 24577.41 35199.52 5197.95 5486.05 25281.12 29596.69 19686.18 12089.31 38361.65 37790.12 23092.35 266
testing22294.48 10694.00 10395.95 12397.30 13092.27 9398.82 13997.92 5589.20 16594.82 11897.26 16187.13 9497.32 24191.95 16091.56 21198.25 175
131493.44 13491.98 15597.84 3295.24 21394.38 5296.22 30497.92 5590.18 13682.28 27697.71 14177.63 22699.80 8191.94 16198.67 9899.34 94
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
tfpnnormal83.65 31181.35 31790.56 27491.37 31488.06 19597.29 26297.87 5878.51 34676.20 33390.91 30664.78 31996.47 27861.71 37673.50 33687.13 368
ETVMVS94.50 10593.90 11096.31 10597.48 12492.98 7999.07 11497.86 5988.09 20494.40 12796.90 18488.35 6997.28 24290.72 17592.25 19998.66 157
3Dnovator87.35 1193.17 14691.77 16097.37 4995.41 20993.07 7698.82 13997.85 6091.53 10282.56 26897.58 14871.97 26699.82 7691.01 16899.23 7099.22 105
UWE-MVS93.18 14493.40 12292.50 22996.56 16183.55 29298.09 22397.84 6189.50 15991.72 16496.23 20991.08 3396.70 26386.28 22493.33 18097.26 206
FE-MVS91.38 18090.16 19195.05 15696.46 16787.53 20889.69 37397.84 6182.97 30392.18 15992.00 28784.07 15198.93 15380.71 28595.52 16298.68 153
WR-MVS88.54 24187.22 24692.52 22891.93 30589.50 16298.56 17197.84 6186.99 23081.87 28793.81 25374.25 24695.92 31285.29 23574.43 32592.12 276
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11398.24 12388.17 7299.83 7396.11 8899.60 4999.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11299.14 6490.33 13598.49 17997.82 6591.92 9694.75 12098.88 8287.06 9799.48 11695.40 10297.17 13598.70 152
无先验98.52 17397.82 6587.20 22899.90 5087.64 21099.85 30
EPNet_dtu92.28 16492.15 15192.70 22597.29 13284.84 27598.64 16097.82 6592.91 7793.02 15097.02 17885.48 13395.70 32072.25 34494.89 16897.55 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SDMVSNet91.09 18689.91 19394.65 17096.80 15490.54 13397.78 24097.81 6888.34 19585.73 23395.26 22966.44 30998.26 18294.25 12886.75 24295.14 242
HFP-MVS96.42 4296.26 4296.90 6999.69 890.96 12299.47 5697.81 6890.54 12796.88 7499.05 5687.57 8299.96 2895.65 9499.72 3199.78 38
EI-MVSNet-UG-set95.43 7495.29 7395.86 12699.07 7089.87 15498.43 18597.80 7091.78 9894.11 13298.77 8786.25 11999.48 11694.95 11596.45 14498.22 179
ACMMPR96.28 4796.14 5296.73 7899.68 990.47 13499.47 5697.80 7090.54 12796.83 7999.03 5886.51 11399.95 3195.65 9499.72 3199.75 46
MAR-MVS94.43 10794.09 10095.45 13999.10 6887.47 21098.39 19597.79 7288.37 19394.02 13499.17 3778.64 22199.91 4592.48 15698.85 9098.96 125
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16299.80 2699.94 18
API-MVS94.78 9394.18 9896.59 8799.21 6190.06 14998.80 14297.78 7383.59 29393.85 13799.21 2983.79 15399.97 2192.37 15799.00 8099.74 47
新几何197.40 4798.92 7792.51 9197.77 7585.52 26096.69 8499.06 5588.08 7699.89 5384.88 24199.62 4599.79 36
HPM-MVS++copyleft97.72 1197.59 1398.14 2399.53 4094.76 4299.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
GG-mvs-BLEND96.98 6596.53 16394.81 4187.20 37697.74 7793.91 13696.40 20396.56 296.94 25495.08 10998.95 8599.20 106
gg-mvs-nofinetune90.00 21087.71 23796.89 7396.15 18394.69 4585.15 38297.74 7768.32 38292.97 15160.16 39596.10 396.84 25793.89 13198.87 8999.14 110
旧先验198.97 7392.90 8497.74 7799.15 4191.05 3499.33 6499.60 67
IU-MVS99.63 1895.38 2297.73 8095.54 2899.54 399.69 699.81 2399.99 1
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2597.72 8194.16 4799.30 999.49 993.32 1899.98 9
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22698.71 8578.11 34899.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
test072699.66 1295.20 3099.77 1897.70 8693.95 5099.35 799.54 393.18 21
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 14299.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
testing1195.33 7894.98 8396.37 10297.20 13592.31 9299.29 8297.68 9090.59 12494.43 12597.20 16690.79 4198.60 16895.25 10692.38 19398.18 182
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
test1197.68 90
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 14994.35 25089.10 16899.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 223
testing9194.88 8894.44 9096.21 10897.19 13791.90 9899.23 8897.66 9589.91 14593.66 14197.05 17790.21 5198.50 17193.52 13991.53 21698.25 175
testing9994.88 8894.45 8996.17 11297.20 13591.91 9799.20 9097.66 9589.95 14493.68 14097.06 17590.28 5098.50 17193.52 13991.54 21398.12 184
TEST999.57 3393.17 7399.38 7297.66 9589.57 15698.39 3699.18 3590.88 3899.66 94
train_agg97.20 2397.08 2397.57 4299.57 3393.17 7399.38 7297.66 9590.18 13698.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
region2R96.30 4696.17 4896.70 8199.70 790.31 13699.46 6097.66 9590.55 12697.07 7299.07 5386.85 10299.97 2195.43 10199.74 2999.81 33
SteuartSystems-ACMMP97.25 1997.34 2097.01 6097.38 12691.46 10699.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
EPP-MVSNet93.75 12593.67 11594.01 19895.86 19385.70 25998.67 15697.66 9584.46 27891.36 17597.18 16991.16 3097.79 20892.93 15093.75 17798.53 160
SMA-MVScopyleft97.24 2096.99 2498.00 2999.30 5494.20 5599.16 9797.65 10289.55 15899.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_one_060199.59 2894.89 3497.64 10393.14 7198.93 2299.45 1493.45 17
test_899.55 3593.07 7699.37 7597.64 10390.18 13698.36 3899.19 3290.94 3599.64 100
agg_prior99.54 3692.66 8697.64 10397.98 5299.61 102
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2499.61 2494.45 4998.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.34 5093.85 6299.65 3697.63 10795.69 22
原ACMM196.18 11099.03 7190.08 14597.63 10788.98 17297.00 7398.97 6488.14 7599.71 9088.23 20399.62 4598.76 149
DU-MVS88.83 23187.51 23992.79 22191.46 31290.07 14698.71 15097.62 10988.87 17883.21 25693.68 25674.63 23795.93 31086.95 21572.47 34592.36 263
ZD-MVS99.67 1093.28 7197.61 11087.78 21497.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
CP-MVS96.22 4896.15 5196.42 9899.67 1089.62 16099.70 2797.61 11090.07 14296.00 9499.16 3887.43 8599.92 4096.03 9099.72 3199.70 52
thisisatest053094.00 11593.52 11795.43 14095.76 19790.02 15198.99 12597.60 11286.58 24291.74 16397.36 15894.78 1198.34 17786.37 22392.48 19297.94 189
tttt051793.30 14093.01 13494.17 19095.57 20286.47 23198.51 17697.60 11285.99 25390.55 18697.19 16894.80 1098.31 17885.06 23891.86 20497.74 191
thisisatest051594.75 9494.19 9696.43 9796.13 18892.64 8999.47 5697.60 11287.55 22393.17 14797.59 14794.71 1298.42 17588.28 20293.20 18198.24 178
testdata95.26 14898.20 9687.28 21797.60 11285.21 26498.48 3499.15 4188.15 7498.72 16290.29 17999.45 5899.78 38
ACMMP_NAP96.59 3896.18 4597.81 3498.82 8193.55 6698.88 13597.59 11690.66 12097.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
CVMVSNet90.30 20290.91 17788.46 32094.32 25273.58 36597.61 25397.59 11690.16 13988.43 21097.10 17276.83 23092.86 35982.64 26993.54 17998.93 131
XVS96.47 4196.37 4096.77 7499.62 2290.66 13099.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9499.43 6099.78 38
X-MVStestdata90.69 19688.66 21996.77 7499.62 2290.66 13099.43 6697.58 11892.41 8796.86 7529.59 40787.37 8799.87 5895.65 9499.43 6099.78 38
test22298.32 9291.21 11098.08 22497.58 11883.74 28995.87 9999.02 6086.74 10599.64 4099.81 33
test_prior97.01 6099.58 3091.77 9997.57 12199.49 11299.79 36
CP-MVSNet86.54 27185.45 27189.79 29691.02 31982.78 30597.38 25997.56 12285.37 26279.53 31493.03 27271.86 26895.25 33279.92 29073.43 33991.34 302
test1297.83 3399.33 5394.45 4997.55 12397.56 5788.60 6699.50 11199.71 3499.55 72
PAPR96.35 4395.82 5897.94 3199.63 1894.19 5699.42 6897.55 12392.43 8493.82 13999.12 4887.30 9299.91 4594.02 12999.06 7699.74 47
AdaColmapbinary93.82 12393.06 13196.10 11599.88 189.07 16998.33 19997.55 12386.81 23890.39 19198.65 10075.09 23699.98 993.32 14597.53 12599.26 101
TESTMET0.1,193.82 12393.26 12795.49 13895.21 21690.25 13799.15 10397.54 12689.18 16791.79 16294.87 23589.13 5997.63 22386.21 22596.29 15098.60 158
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15092.06 30088.94 17699.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 221
hse-mvs291.67 17591.51 16592.15 23696.22 17882.61 30897.74 24597.53 12793.85 5796.27 9196.15 21083.19 16597.44 23595.81 9266.86 36896.40 233
AUN-MVS90.17 20689.50 19992.19 23496.21 17982.67 30697.76 24497.53 12788.05 20591.67 16596.15 21083.10 16797.47 23288.11 20566.91 36796.43 232
ZNCC-MVS96.09 5195.81 6096.95 6899.42 4791.19 11199.55 4597.53 12789.72 14995.86 10098.94 7486.59 10999.97 2195.13 10899.56 5199.68 56
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 64
APDe-MVScopyleft97.53 1497.47 1597.70 3699.58 3093.63 6499.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MDTV_nov1_ep1390.47 18896.14 18588.55 18791.34 36397.51 13389.58 15592.24 15890.50 32686.99 10097.61 22577.64 30692.34 195
QAPM91.41 17989.49 20097.17 5695.66 20193.42 7098.60 16697.51 13380.92 33481.39 29497.41 15672.89 25999.87 5882.33 27298.68 9798.21 180
PAPM_NR95.43 7495.05 8196.57 9099.42 4790.14 14298.58 17097.51 13390.65 12292.44 15698.90 7887.77 8199.90 5090.88 17099.32 6599.68 56
TSAR-MVS + MP.97.44 1897.46 1697.39 4899.12 6593.49 6998.52 17397.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs95.77 6695.00 8298.06 2897.35 12895.68 1999.71 2697.50 13691.50 10396.16 9398.61 10586.28 11799.00 15096.19 8691.74 20799.51 77
9.1496.87 2799.34 5099.50 5297.49 13889.41 16298.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
GST-MVS95.97 5695.66 6696.90 6999.49 4591.22 10999.45 6297.48 13989.69 15095.89 9798.72 9386.37 11699.95 3194.62 12399.22 7199.52 75
DP-MVS Recon95.85 6295.15 7797.95 3099.87 294.38 5299.60 3997.48 13986.58 24294.42 12699.13 4687.36 9099.98 993.64 13798.33 10899.48 79
FOURS199.50 4288.94 17699.55 4597.47 14191.32 10998.12 45
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CPTT-MVS94.60 10194.43 9195.09 15399.66 1286.85 22599.44 6397.47 14183.22 29894.34 12998.96 6882.50 17999.55 10694.81 11699.50 5498.88 135
SF-MVS97.22 2296.92 2598.12 2699.11 6694.88 3599.44 6397.45 14489.60 15498.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
MTGPAbinary97.45 144
MTAPA96.09 5195.80 6196.96 6799.29 5591.19 11197.23 26797.45 14492.58 8194.39 12899.24 2586.43 11599.99 596.22 8599.40 6399.71 51
CDPH-MVS96.56 3996.18 4597.70 3699.59 2893.92 6099.13 10997.44 14789.02 17197.90 5499.22 2788.90 6399.49 11294.63 12299.79 2799.68 56
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6599.16 9797.44 14790.08 14198.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu94.67 9994.11 9996.34 10497.14 14291.10 11699.32 8097.43 14992.10 9591.53 17196.38 20683.29 16299.68 9293.42 14496.37 14698.25 175
NR-MVSNet87.74 25486.00 26292.96 21891.46 31290.68 12996.65 29097.42 15088.02 20773.42 35093.68 25677.31 22795.83 31684.26 24971.82 35292.36 263
MP-MVScopyleft96.00 5395.82 5896.54 9199.47 4690.13 14499.36 7697.41 15190.64 12395.49 10898.95 7185.51 13099.98 996.00 9199.59 5099.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS95.90 6195.75 6396.38 10199.58 3089.41 16499.26 8697.41 15190.66 12094.82 11898.95 7186.15 12199.98 995.24 10799.64 4099.74 47
OpenMVScopyleft85.28 1490.75 19488.84 21496.48 9393.58 27693.51 6898.80 14297.41 15182.59 31078.62 32297.49 15268.00 29599.82 7684.52 24798.55 10396.11 237
tt080586.50 27384.79 28291.63 25091.97 30181.49 31796.49 29397.38 15482.24 31882.44 27095.82 21951.22 36998.25 18384.55 24680.96 28995.13 244
SD-MVS97.51 1697.40 1897.81 3499.01 7293.79 6399.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpmvs89.16 22187.76 23593.35 21097.19 13784.75 27790.58 37197.36 15681.99 32184.56 24489.31 34483.98 15298.17 18574.85 32690.00 23197.12 209
PS-CasMVS85.81 28484.58 28789.49 30690.77 32182.11 31197.20 26997.36 15684.83 27479.12 31992.84 27567.42 30195.16 33478.39 30373.25 34091.21 307
SR-MVS96.13 5096.16 5096.07 11699.42 4789.04 17098.59 16897.33 15890.44 13096.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
WB-MVSnew88.69 23788.34 22789.77 29794.30 25685.99 25298.14 21497.31 15987.15 22987.85 21396.07 21469.91 27895.52 32472.83 34291.47 21787.80 361
PatchmatchNetpermissive92.05 17191.04 17495.06 15496.17 18289.04 17091.26 36497.26 16089.56 15790.64 18590.56 32288.35 6997.11 24679.53 29196.07 15599.03 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)92.22 16791.08 17395.64 13496.05 18988.98 17391.60 35997.25 16186.99 23091.84 16192.12 28183.03 16899.00 15086.91 21793.91 17698.93 131
test-LLR93.11 14792.68 14094.40 17994.94 23687.27 21899.15 10397.25 16190.21 13491.57 16794.04 24484.89 14197.58 22785.94 22996.13 15198.36 171
test-mter93.27 14292.89 13794.40 17994.94 23687.27 21899.15 10397.25 16188.95 17491.57 16794.04 24488.03 7797.58 22785.94 22996.13 15198.36 171
PEN-MVS85.21 29283.93 29689.07 31389.89 33281.31 32297.09 27297.24 16484.45 27978.66 32192.68 27768.44 29094.87 33975.98 31870.92 35691.04 311
ab-mvs91.05 18989.17 20796.69 8295.96 19191.72 10192.62 35097.23 16585.61 25989.74 19993.89 25268.55 28899.42 12391.09 16687.84 23798.92 133
APD-MVS_3200maxsize95.64 7195.65 6895.62 13599.24 5887.80 20098.42 18697.22 16688.93 17696.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
SR-MVS-dyc-post95.75 6895.86 5795.41 14199.22 5987.26 22098.40 19197.21 16789.63 15296.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 67
RE-MVS-def95.70 6499.22 5987.26 22098.40 19197.21 16789.63 15296.67 8598.97 6485.24 13796.62 7799.31 6699.60 67
SCA90.64 19789.25 20694.83 16494.95 23588.83 18096.26 30197.21 16790.06 14390.03 19590.62 31866.61 30696.81 25983.16 26394.36 17298.84 138
RPMNet85.07 29481.88 31194.64 17293.47 27886.24 23984.97 38497.21 16764.85 38990.76 18378.80 38680.95 20399.27 13753.76 38892.17 20198.41 165
VPNet88.30 24386.57 25393.49 20891.95 30391.35 10798.18 21197.20 17188.61 18284.52 24694.89 23462.21 33096.76 26289.34 19272.26 34892.36 263
TranMVSNet+NR-MVSNet87.75 25186.31 25792.07 23890.81 32088.56 18698.33 19997.18 17287.76 21581.87 28793.90 25172.45 26195.43 32783.13 26571.30 35592.23 269
cdsmvs_eth3d_5k22.52 37230.03 3750.00 3910.00 4140.00 4160.00 40297.17 1730.00 4090.00 41098.77 8774.35 2440.00 4100.00 4090.00 4080.00 406
tpm291.77 17391.09 17293.82 20494.83 24085.56 26292.51 35197.16 17484.00 28493.83 13890.66 31587.54 8397.17 24487.73 20991.55 21298.72 150
MP-MVS-pluss95.80 6495.30 7297.29 5098.95 7692.66 8698.59 16897.14 17588.95 17493.12 14899.25 2385.62 12799.94 3496.56 8199.48 5599.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchMatch-RL91.47 17790.54 18694.26 18698.20 9686.36 23696.94 27797.14 17587.75 21688.98 20595.75 22071.80 26999.40 12780.92 28397.39 12997.02 215
Anonymous2024052987.66 25585.58 26893.92 20097.59 11785.01 27398.13 21597.13 17766.69 38788.47 20996.01 21655.09 35899.51 11087.00 21484.12 26697.23 208
JIA-IIPM85.97 28084.85 28089.33 30893.23 28573.68 36485.05 38397.13 17769.62 37891.56 16968.03 39388.03 7796.96 25277.89 30593.12 18297.34 203
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12897.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 187
HPM-MVS_fast94.89 8794.62 8695.70 13199.11 6688.44 19099.14 10697.11 17985.82 25595.69 10498.47 11583.46 15899.32 13593.16 14799.63 4499.35 92
DeepC-MVS91.02 494.56 10493.92 10996.46 9497.16 14090.76 12698.39 19597.11 17993.92 5288.66 20798.33 11978.14 22399.85 6795.02 11198.57 10298.78 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 15192.16 15094.65 17096.27 17687.45 21191.83 35597.10 18289.10 17094.68 12290.69 31388.22 7197.73 21889.78 18591.80 20698.77 148
HPM-MVScopyleft95.41 7695.22 7595.99 12199.29 5589.14 16799.17 9697.09 18387.28 22795.40 10998.48 11484.93 14099.38 12895.64 9899.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm cat188.89 22787.27 24493.76 20595.79 19585.32 26790.76 36997.09 18376.14 35785.72 23588.59 34782.92 17098.04 19576.96 31091.43 21897.90 190
dp90.16 20788.83 21594.14 19196.38 17286.42 23291.57 36097.06 18584.76 27588.81 20690.19 33484.29 14897.43 23675.05 32391.35 22198.56 159
xiu_mvs_v2_base96.66 3696.17 4898.11 2797.11 14596.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 187
3Dnovator+87.72 893.43 13591.84 15898.17 2295.73 19895.08 3298.92 13297.04 18691.42 10781.48 29397.60 14674.60 23999.79 8290.84 17198.97 8299.64 62
sd_testset89.23 22088.05 23492.74 22496.80 15485.33 26695.85 31797.03 18888.34 19585.73 23395.26 22961.12 33597.76 21585.61 23386.75 24295.14 242
CDS-MVSNet93.47 13393.04 13394.76 16594.75 24289.45 16398.82 13997.03 18887.91 21190.97 17996.48 20189.06 6096.36 28489.50 18892.81 18798.49 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test0.0.03 188.96 22488.61 22090.03 29091.09 31784.43 28098.97 12897.02 19090.21 13480.29 30396.31 20884.89 14191.93 37372.98 34085.70 25393.73 249
114514_t94.06 11393.05 13297.06 5899.08 6992.26 9498.97 12897.01 19182.58 31192.57 15498.22 12480.68 20499.30 13689.34 19299.02 7999.63 64
CostFormer92.89 15092.48 14594.12 19294.99 23385.89 25492.89 34697.00 19286.98 23395.00 11790.78 30990.05 5397.51 23192.92 15191.73 20898.96 125
test_fmvsmvis_n_192095.47 7395.40 7195.70 13194.33 25190.22 14099.70 2796.98 19396.80 792.75 15298.89 8082.46 18499.92 4098.36 4098.33 10896.97 217
ET-MVSNet_ETH3D92.56 15891.45 16695.88 12596.39 17194.13 5899.46 6096.97 19492.18 9366.94 37698.29 12294.65 1494.28 34994.34 12683.82 27199.24 102
UA-Net93.30 14092.62 14295.34 14396.27 17688.53 18995.88 31496.97 19490.90 11595.37 11097.07 17482.38 18699.10 14783.91 25794.86 16998.38 168
TAMVS92.62 15592.09 15394.20 18994.10 25787.68 20298.41 18896.97 19487.53 22489.74 19996.04 21584.77 14596.49 27788.97 19892.31 19698.42 164
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10092.42 29489.92 15399.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 86
Vis-MVSNetpermissive92.64 15491.85 15795.03 15795.12 22488.23 19198.48 18196.81 19891.61 10092.16 16097.22 16571.58 27298.00 19885.85 23297.81 11698.88 135
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMMVS93.62 13193.90 11092.79 22196.79 15681.40 31998.85 13696.81 19891.25 11096.82 8098.15 12877.02 22998.13 18793.15 14896.30 14998.83 141
ADS-MVSNet88.99 22387.30 24394.07 19496.21 17987.56 20787.15 37796.78 20083.01 30189.91 19787.27 35778.87 21797.01 25174.20 33192.27 19797.64 194
Vis-MVSNet (Re-imp)93.26 14393.00 13594.06 19596.14 18586.71 22898.68 15496.70 20188.30 19789.71 20197.64 14585.43 13496.39 28288.06 20696.32 14799.08 117
Anonymous2023121184.72 29782.65 30890.91 26297.71 11184.55 27997.28 26396.67 20266.88 38679.18 31890.87 30858.47 34396.60 26682.61 27074.20 32991.59 292
Syy-MVS84.10 30984.53 28882.83 35595.14 22265.71 38397.68 24996.66 20386.52 24582.63 26596.84 18968.15 29289.89 37945.62 39391.54 21392.87 254
myMVS_eth3d88.68 23989.07 20987.50 32795.14 22279.74 33497.68 24996.66 20386.52 24582.63 26596.84 18985.22 13889.89 37969.43 35391.54 21392.87 254
EIA-MVS95.11 8395.27 7494.64 17296.34 17386.51 22999.59 4196.62 20592.51 8294.08 13398.64 10186.05 12298.24 18495.07 11098.50 10499.18 107
ETV-MVS96.00 5396.00 5396.00 12096.56 16191.05 11999.63 3796.61 20693.26 7097.39 6298.30 12186.62 10898.13 18798.07 4997.57 12298.82 142
LS3D90.19 20588.72 21794.59 17498.97 7386.33 23896.90 27996.60 20774.96 36184.06 25198.74 9075.78 23399.83 7374.93 32497.57 12297.62 197
EI-MVSNet89.87 21389.38 20491.36 25494.32 25285.87 25597.61 25396.59 20885.10 26685.51 23797.10 17281.30 20196.56 27083.85 25983.03 27791.64 285
MVSTER92.71 15292.32 14693.86 20297.29 13292.95 8299.01 12396.59 20890.09 14085.51 23794.00 24894.61 1596.56 27090.77 17483.03 27792.08 278
cascas90.93 19189.33 20595.76 12995.69 19993.03 7898.99 12596.59 20880.49 33686.79 22894.45 24165.23 31898.60 16893.52 13992.18 20095.66 241
TAPA-MVS87.50 990.35 20089.05 21094.25 18798.48 9185.17 27098.42 18696.58 21182.44 31687.24 22098.53 10782.77 17398.84 15559.09 38297.88 11598.72 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS93.90 12093.62 11694.73 16898.63 8787.00 22398.04 22796.56 21292.19 9292.46 15598.73 9179.49 21399.14 14592.16 15994.34 17398.03 186
PLCcopyleft91.07 394.23 11094.01 10294.87 16199.17 6387.49 20999.25 8796.55 21388.43 19191.26 17698.21 12685.92 12399.86 6389.77 18697.57 12297.24 207
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + GP.96.95 2996.91 2697.07 5798.88 7991.62 10299.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
cl2289.57 21788.79 21691.91 24097.94 10587.62 20597.98 23096.51 21585.03 26982.37 27591.79 29083.65 15496.50 27585.96 22877.89 30291.61 290
xiu_mvs_v1_base_debu94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
xiu_mvs_v1_base94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
xiu_mvs_v1_base_debi94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
lupinMVS96.32 4595.94 5497.44 4495.05 23194.87 3699.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19096.98 7098.97 8299.37 90
mvs_anonymous92.50 15991.65 16295.06 15496.60 16089.64 15997.06 27396.44 22086.64 24184.14 24993.93 25082.49 18096.17 29991.47 16396.08 15499.35 92
VDDNet90.08 20988.54 22594.69 16994.41 24987.68 20298.21 20996.40 22176.21 35693.33 14697.75 13854.93 35998.77 15794.71 12090.96 22297.61 198
RRT_MVS88.91 22688.56 22389.93 29190.31 32781.61 31698.08 22496.38 22289.30 16382.41 27394.84 23673.15 25596.04 30590.38 17782.23 28492.15 274
HQP3-MVS96.37 22386.29 245
PatchT85.44 29083.19 29992.22 23293.13 28783.00 29883.80 39096.37 22370.62 37290.55 18679.63 38584.81 14394.87 33958.18 38491.59 21098.79 145
HQP-MVS91.50 17691.23 17092.29 23193.95 26286.39 23499.16 9796.37 22393.92 5287.57 21596.67 19773.34 25197.77 21093.82 13586.29 24592.72 256
UnsupCasMVSNet_eth78.90 33476.67 33985.58 34182.81 38174.94 35991.98 35496.31 22684.64 27665.84 38087.71 35051.33 36892.23 36972.89 34156.50 38789.56 346
HQP_MVS91.26 18290.95 17692.16 23593.84 26986.07 24999.02 12196.30 22793.38 6886.99 22396.52 19972.92 25797.75 21693.46 14286.17 24892.67 258
plane_prior596.30 22797.75 21693.46 14286.17 24892.67 258
jason95.40 7794.86 8497.03 5992.91 28994.23 5499.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 19996.08 8998.47 10698.96 125
jason: jason.
CLD-MVS91.06 18890.71 18392.10 23794.05 26186.10 24699.55 4596.29 23094.16 4784.70 24397.17 17069.62 28397.82 20694.74 11886.08 25092.39 261
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS90.10 20888.69 21894.33 18392.44 29387.97 19899.08 11396.26 23189.65 15186.92 22593.11 27168.09 29396.96 25282.54 27190.15 22998.05 185
DTE-MVSNet84.14 30782.80 30388.14 32188.95 34679.87 33396.81 28296.24 23283.50 29477.60 33092.52 27967.89 29794.24 35072.64 34369.05 35990.32 330
LFMVS92.23 16690.84 17996.42 9898.24 9591.08 11898.24 20696.22 23383.39 29694.74 12198.31 12061.12 33598.85 15494.45 12592.82 18599.32 95
baseline192.61 15691.28 16996.58 8897.05 14894.63 4697.72 24696.20 23489.82 14788.56 20896.85 18886.85 10297.82 20688.42 20080.10 29397.30 204
FMVSNet388.81 23387.08 24793.99 19996.52 16494.59 4798.08 22496.20 23485.85 25482.12 27991.60 29474.05 24795.40 32979.04 29580.24 29091.99 281
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
dmvs_re88.69 23788.06 23390.59 27193.83 27178.68 34295.75 32096.18 23787.99 20884.48 24796.32 20767.52 29996.94 25484.98 24085.49 25496.14 236
MVSFormer94.71 9894.08 10196.61 8595.05 23194.87 3697.77 24296.17 23886.84 23698.04 4998.52 10885.52 12895.99 30689.83 18298.97 8298.96 125
test_djsdf88.26 24587.73 23689.84 29488.05 35682.21 31097.77 24296.17 23886.84 23682.41 27391.95 28972.07 26595.99 30689.83 18284.50 26191.32 303
MS-PatchMatch86.75 26685.92 26389.22 30991.97 30182.47 30996.91 27896.14 24083.74 28977.73 32993.53 26258.19 34497.37 24076.75 31398.35 10787.84 359
CS-MVS95.75 6896.19 4394.40 17997.88 10786.22 24199.66 3596.12 24192.69 8098.07 4798.89 8087.09 9597.59 22696.71 7498.62 10099.39 89
CS-MVS-test95.98 5596.34 4194.90 16098.06 10287.66 20499.69 3496.10 24293.66 6298.35 3999.05 5686.28 11797.66 22096.96 7198.90 8899.37 90
VDD-MVS91.24 18590.18 19094.45 17897.08 14685.84 25798.40 19196.10 24286.99 23093.36 14598.16 12754.27 36199.20 13896.59 8090.63 22798.31 174
PCF-MVS89.78 591.26 18289.63 19796.16 11495.44 20791.58 10595.29 32496.10 24285.07 26882.75 26297.45 15478.28 22299.78 8480.60 28795.65 16197.12 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_cas_vis1_n_192093.86 12293.74 11494.22 18895.39 21186.08 24799.73 2396.07 24596.38 1797.19 7097.78 13665.46 31799.86 6396.71 7498.92 8696.73 221
test_vis1_n_192093.08 14893.42 12192.04 23996.31 17479.36 33699.83 1096.06 24696.72 998.53 3398.10 12958.57 34299.91 4597.86 5598.79 9596.85 219
MVS_Test93.67 12992.67 14196.69 8296.72 15892.66 8697.22 26896.03 24787.69 22095.12 11594.03 24681.55 19598.28 18189.17 19696.46 14399.14 110
casdiffmvs_mvgpermissive94.00 11593.33 12496.03 11895.22 21590.90 12499.09 11295.99 24890.58 12591.55 17097.37 15779.91 20898.06 19295.01 11295.22 16599.13 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax87.35 25886.51 25589.87 29287.75 36181.74 31497.03 27495.98 24988.47 18580.15 30593.80 25461.47 33296.36 28489.44 19084.47 26291.50 294
PS-MVSNAJss89.54 21889.05 21091.00 26088.77 34784.36 28197.39 25795.97 25088.47 18581.88 28693.80 25482.48 18196.50 27589.34 19283.34 27692.15 274
F-COLMAP92.07 17091.75 16193.02 21698.16 9982.89 30298.79 14695.97 25086.54 24487.92 21297.80 13478.69 22099.65 9885.97 22795.93 15796.53 229
miper_enhance_ethall90.33 20189.70 19692.22 23297.12 14488.93 17898.35 19895.96 25288.60 18383.14 26092.33 28087.38 8696.18 29886.49 22277.89 30291.55 293
TR-MVS90.77 19389.44 20194.76 16596.31 17488.02 19797.92 23295.96 25285.52 26088.22 21197.23 16466.80 30598.09 19084.58 24592.38 19398.17 183
CMPMVSbinary58.40 2180.48 32680.11 32581.59 36185.10 37359.56 38994.14 33595.95 25468.54 38160.71 38593.31 26555.35 35797.87 20383.06 26684.85 25987.33 365
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvsmconf0.01_n94.14 11293.51 11896.04 11786.79 36789.19 16599.28 8595.94 25595.70 2195.50 10798.49 11273.27 25499.79 8298.28 4598.32 11099.15 109
LPG-MVS_test88.86 22888.47 22690.06 28693.35 28380.95 32898.22 20795.94 25587.73 21883.17 25896.11 21266.28 31097.77 21090.19 18085.19 25591.46 296
LGP-MVS_train90.06 28693.35 28380.95 32895.94 25587.73 21883.17 25896.11 21266.28 31097.77 21090.19 18085.19 25591.46 296
OPM-MVS89.76 21489.15 20891.57 25190.53 32485.58 26198.11 21995.93 25892.88 7886.05 23196.47 20267.06 30497.87 20389.29 19586.08 25091.26 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR90.95 19090.66 18591.83 24295.18 22081.14 32695.92 31195.92 25988.40 19290.33 19297.85 13170.66 27799.38 12892.83 15288.83 23494.98 245
XVG-OURS90.83 19290.49 18791.86 24195.23 21481.25 32395.79 31995.92 25988.96 17390.02 19698.03 13071.60 27199.35 13391.06 16787.78 23894.98 245
tpm89.67 21588.95 21291.82 24392.54 29281.43 31892.95 34595.92 25987.81 21390.50 18889.44 34184.99 13995.65 32183.67 26082.71 28098.38 168
EC-MVSNet95.09 8495.17 7694.84 16395.42 20888.17 19299.48 5495.92 25991.47 10497.34 6498.36 11882.77 17397.41 23797.24 6498.58 10198.94 130
ACMM86.95 1388.77 23488.22 23090.43 27793.61 27581.34 32198.50 17795.92 25987.88 21283.85 25295.20 23167.20 30297.89 20186.90 21884.90 25792.06 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline93.91 11993.30 12595.72 13095.10 22890.07 14697.48 25695.91 26491.03 11293.54 14397.68 14279.58 21098.02 19694.27 12795.14 16699.08 117
mvs_tets87.09 26186.22 25889.71 29887.87 35781.39 32096.73 28895.90 26588.19 20179.99 30793.61 25959.96 33996.31 29289.40 19184.34 26391.43 298
XXY-MVS87.75 25186.02 26192.95 21990.46 32589.70 15897.71 24895.90 26584.02 28380.95 29694.05 24367.51 30097.10 24885.16 23678.41 29992.04 280
nrg03090.23 20388.87 21394.32 18491.53 31193.54 6798.79 14695.89 26788.12 20384.55 24594.61 24078.80 21996.88 25692.35 15875.21 31692.53 260
CNLPA93.64 13092.74 13996.36 10398.96 7590.01 15299.19 9195.89 26786.22 25089.40 20298.85 8380.66 20599.84 6988.57 19996.92 13899.24 102
KD-MVS_2432*160082.98 31480.52 32290.38 27994.32 25288.98 17392.87 34795.87 26980.46 33773.79 34887.49 35482.76 17593.29 35670.56 34946.53 39788.87 354
miper_refine_blended82.98 31480.52 32290.38 27994.32 25288.98 17392.87 34795.87 26980.46 33773.79 34887.49 35482.76 17593.29 35670.56 34946.53 39788.87 354
FMVSNet286.90 26384.79 28293.24 21295.11 22592.54 9097.67 25195.86 27182.94 30480.55 30091.17 30362.89 32795.29 33177.23 30779.71 29691.90 282
casdiffmvspermissive93.98 11793.43 12095.61 13695.07 23089.86 15598.80 14295.84 27290.98 11492.74 15397.66 14479.71 20998.10 18994.72 11995.37 16498.87 137
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_ETH3D85.65 28983.79 29791.21 25590.41 32680.75 33095.36 32395.78 27378.76 34581.83 29094.33 24249.86 37496.66 26484.30 24883.52 27496.22 235
Effi-MVS+93.87 12193.15 13096.02 11995.79 19590.76 12696.70 28995.78 27386.98 23395.71 10397.17 17079.58 21098.01 19794.57 12496.09 15399.31 96
EU-MVSNet84.19 30684.42 29183.52 35388.64 35067.37 38296.04 30995.76 27585.29 26378.44 32593.18 26970.67 27691.48 37575.79 32075.98 31291.70 284
BH-w/o92.32 16291.79 15993.91 20196.85 15186.18 24399.11 11195.74 27688.13 20284.81 24197.00 17977.26 22897.91 19989.16 19798.03 11397.64 194
anonymousdsp86.69 26785.75 26689.53 30386.46 36982.94 29996.39 29595.71 27783.97 28579.63 31290.70 31268.85 28695.94 30986.01 22684.02 26789.72 343
Fast-Effi-MVS+91.72 17490.79 18294.49 17595.89 19287.40 21399.54 5095.70 27885.01 27189.28 20495.68 22177.75 22597.57 23083.22 26295.06 16798.51 161
IS-MVSNet93.00 14992.51 14494.49 17596.14 18587.36 21498.31 20295.70 27888.58 18490.17 19397.50 15183.02 16997.22 24387.06 21296.07 15598.90 134
diffmvspermissive94.59 10294.19 9695.81 12795.54 20490.69 12898.70 15295.68 28091.61 10095.96 9597.81 13380.11 20698.06 19296.52 8295.76 15898.67 154
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v7n84.42 30482.75 30689.43 30788.15 35481.86 31396.75 28695.67 28180.53 33578.38 32689.43 34269.89 27996.35 28973.83 33572.13 34990.07 335
ACMP87.39 1088.71 23688.24 22990.12 28593.91 26781.06 32798.50 17795.67 28189.43 16180.37 30295.55 22265.67 31297.83 20590.55 17684.51 26091.47 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CL-MVSNet_self_test79.89 33078.34 33184.54 34881.56 38375.01 35896.88 28095.62 28381.10 33075.86 33885.81 36668.49 28990.26 37763.21 37256.51 38688.35 356
V4287.00 26285.68 26790.98 26189.91 33086.08 24798.32 20195.61 28483.67 29282.72 26390.67 31474.00 24896.53 27281.94 27774.28 32890.32 330
XVG-ACMP-BASELINE85.86 28284.95 27888.57 31889.90 33177.12 35294.30 33295.60 28587.40 22682.12 27992.99 27453.42 36497.66 22085.02 23983.83 26990.92 314
Anonymous20240521188.84 22987.03 24894.27 18598.14 10084.18 28498.44 18495.58 28676.79 35589.34 20396.88 18753.42 36499.54 10887.53 21187.12 24199.09 116
miper_ehance_all_eth88.94 22588.12 23291.40 25295.32 21286.93 22497.85 23795.55 28784.19 28181.97 28491.50 29684.16 14995.91 31384.69 24377.89 30291.36 301
CANet_DTU94.31 10993.35 12397.20 5597.03 14994.71 4498.62 16295.54 28895.61 2797.21 6798.47 11571.88 26799.84 6988.38 20197.46 12797.04 214
v2v48287.27 26085.76 26591.78 24889.59 33687.58 20698.56 17195.54 28884.53 27782.51 26991.78 29173.11 25696.47 27882.07 27474.14 33191.30 304
BH-untuned91.46 17890.84 17993.33 21196.51 16584.83 27698.84 13895.50 29086.44 24983.50 25396.70 19575.49 23597.77 21086.78 22097.81 11697.40 201
v14886.38 27585.06 27590.37 28189.47 34184.10 28598.52 17395.48 29183.80 28880.93 29790.22 33274.60 23996.31 29280.92 28371.55 35390.69 323
IterMVS-LS88.34 24287.44 24091.04 25994.10 25785.85 25698.10 22095.48 29185.12 26582.03 28391.21 30281.35 20095.63 32283.86 25875.73 31491.63 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dcpmvs_295.67 7096.18 4594.12 19298.82 8184.22 28397.37 26095.45 29390.70 11995.77 10298.63 10390.47 4498.68 16499.20 2099.22 7199.45 83
v114486.83 26585.31 27391.40 25289.75 33487.21 22298.31 20295.45 29383.22 29882.70 26490.78 30973.36 25096.36 28479.49 29274.69 32290.63 325
v119286.32 27684.71 28491.17 25689.53 33986.40 23398.13 21595.44 29582.52 31382.42 27290.62 31871.58 27296.33 29177.23 30774.88 31990.79 318
v14419286.40 27484.89 27990.91 26289.48 34085.59 26098.21 20995.43 29682.45 31582.62 26790.58 32172.79 26096.36 28478.45 30274.04 33290.79 318
Effi-MVS+-dtu89.97 21290.68 18487.81 32495.15 22171.98 37197.87 23695.40 29791.92 9687.57 21591.44 29774.27 24596.84 25789.45 18993.10 18394.60 247
c3_l88.19 24687.23 24591.06 25894.97 23486.17 24497.72 24695.38 29883.43 29581.68 29191.37 29882.81 17295.72 31984.04 25673.70 33391.29 305
eth_miper_zixun_eth87.76 25087.00 24990.06 28694.67 24482.65 30797.02 27695.37 29984.19 28181.86 28991.58 29581.47 19795.90 31483.24 26173.61 33491.61 290
v886.11 27884.45 28991.10 25789.99 32986.85 22597.24 26695.36 30081.99 32179.89 30989.86 33774.53 24196.39 28278.83 29972.32 34790.05 337
v192192086.02 27984.44 29090.77 26889.32 34285.20 26898.10 22095.35 30182.19 31982.25 27790.71 31170.73 27596.30 29576.85 31274.49 32490.80 317
pmmvs487.58 25786.17 26091.80 24489.58 33788.92 17997.25 26595.28 30282.54 31280.49 30193.17 27075.62 23496.05 30482.75 26878.90 29790.42 328
GBi-Net86.67 26884.96 27691.80 24495.11 22588.81 18196.77 28395.25 30382.94 30482.12 27990.25 32962.89 32794.97 33679.04 29580.24 29091.62 287
test186.67 26884.96 27691.80 24495.11 22588.81 18196.77 28395.25 30382.94 30482.12 27990.25 32962.89 32794.97 33679.04 29580.24 29091.62 287
FMVSNet183.94 31081.32 31891.80 24491.94 30488.81 18196.77 28395.25 30377.98 34778.25 32790.25 32950.37 37394.97 33673.27 33877.81 30691.62 287
mvsany_test194.57 10395.09 8092.98 21795.84 19482.07 31298.76 14895.24 30692.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 192
cl____87.82 24886.79 25290.89 26494.88 23885.43 26397.81 23895.24 30682.91 30880.71 29991.22 30181.97 19295.84 31581.34 28075.06 31791.40 300
miper_lstm_enhance86.90 26386.20 25989.00 31494.53 24781.19 32496.74 28795.24 30682.33 31780.15 30590.51 32581.99 19094.68 34580.71 28573.58 33591.12 309
UnsupCasMVSNet_bld73.85 35070.14 35484.99 34479.44 38875.73 35588.53 37495.24 30670.12 37661.94 38474.81 39041.41 38693.62 35368.65 35651.13 39485.62 374
v124085.77 28684.11 29390.73 26989.26 34385.15 27197.88 23595.23 31081.89 32482.16 27890.55 32369.60 28496.31 29275.59 32174.87 32090.72 322
DIV-MVS_self_test87.82 24886.81 25190.87 26594.87 23985.39 26597.81 23895.22 31182.92 30780.76 29891.31 30081.99 19095.81 31781.36 27975.04 31891.42 299
v1085.73 28784.01 29590.87 26590.03 32886.73 22797.20 26995.22 31181.25 32979.85 31089.75 33873.30 25396.28 29676.87 31172.64 34389.61 345
test_fmvs192.35 16192.94 13690.57 27297.19 13775.43 35799.55 4594.97 31395.20 3396.82 8097.57 14959.59 34099.84 6997.30 6398.29 11196.46 231
BH-RMVSNet91.25 18489.99 19295.03 15796.75 15788.55 18798.65 15894.95 31487.74 21787.74 21497.80 13468.27 29198.14 18680.53 28897.49 12698.41 165
GeoE90.60 19889.56 19893.72 20795.10 22885.43 26399.41 6994.94 31583.96 28687.21 22196.83 19174.37 24397.05 25080.50 28993.73 17898.67 154
ACMH83.09 1784.60 29982.61 30990.57 27293.18 28682.94 29996.27 29994.92 31681.01 33272.61 35993.61 25956.54 35097.79 20874.31 32981.07 28890.99 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs1_n91.07 18791.41 16790.06 28694.10 25774.31 36199.18 9394.84 31794.81 3596.37 9097.46 15350.86 37299.82 7697.14 6697.90 11496.04 238
test111192.12 16891.19 17194.94 15996.15 18387.36 21498.12 21794.84 31790.85 11690.97 17997.26 16165.60 31598.37 17689.74 18797.14 13699.07 119
ECVR-MVScopyleft92.29 16391.33 16895.15 15196.41 16987.84 19998.10 22094.84 31790.82 11791.42 17497.28 15965.61 31498.49 17390.33 17897.19 13399.12 113
IterMVS85.81 28484.67 28589.22 30993.51 27783.67 29196.32 29894.80 32085.09 26778.69 32090.17 33566.57 30893.17 35879.48 29377.42 30890.81 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB81.71 1984.59 30082.72 30790.18 28392.89 29083.18 29793.15 34394.74 32178.99 34275.14 34392.69 27665.64 31397.63 22369.46 35281.82 28689.74 342
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs184.68 29882.78 30590.40 27889.58 33785.18 26997.31 26194.73 32281.93 32376.05 33592.01 28565.48 31696.11 30278.75 30069.14 35889.91 340
IterMVS-SCA-FT85.73 28784.64 28689.00 31493.46 28082.90 30196.27 29994.70 32385.02 27078.62 32290.35 32766.61 30693.33 35579.38 29477.36 30990.76 320
1112_ss92.71 15291.55 16496.20 10995.56 20391.12 11498.48 18194.69 32488.29 19886.89 22698.50 11087.02 9898.66 16584.75 24289.77 23298.81 143
Test_1112_low_res92.27 16590.97 17596.18 11095.53 20591.10 11698.47 18394.66 32588.28 19986.83 22793.50 26387.00 9998.65 16784.69 24389.74 23398.80 144
Fast-Effi-MVS+-dtu88.84 22988.59 22289.58 30293.44 28178.18 34698.65 15894.62 32688.46 18784.12 25095.37 22868.91 28596.52 27382.06 27591.70 20994.06 248
our_test_384.47 30382.80 30389.50 30489.01 34483.90 28897.03 27494.56 32781.33 32875.36 34290.52 32471.69 27094.54 34768.81 35576.84 31090.07 335
ppachtmachnet_test83.63 31281.57 31589.80 29589.01 34485.09 27297.13 27194.50 32878.84 34376.14 33491.00 30569.78 28094.61 34663.40 37174.36 32689.71 344
test_vis1_n90.40 19990.27 18990.79 26791.55 31076.48 35399.12 11094.44 32994.31 4397.34 6496.95 18143.60 38399.42 12397.57 5997.60 12196.47 230
YYNet179.64 33277.04 33787.43 32987.80 35979.98 33296.23 30394.44 32973.83 36651.83 39087.53 35267.96 29692.07 37266.00 36667.75 36590.23 332
MDA-MVSNet_test_wron79.65 33177.05 33687.45 32887.79 36080.13 33196.25 30294.44 32973.87 36551.80 39187.47 35668.04 29492.12 37166.02 36567.79 36490.09 333
MIMVSNet84.48 30281.83 31292.42 23091.73 30887.36 21485.52 38094.42 33281.40 32781.91 28587.58 35151.92 36792.81 36173.84 33488.15 23697.08 213
MVP-Stereo86.61 27085.83 26488.93 31688.70 34983.85 28996.07 30894.41 33382.15 32075.64 34091.96 28867.65 29896.45 28077.20 30998.72 9686.51 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG88.29 24486.37 25694.04 19796.90 15086.15 24596.52 29294.36 33477.89 35179.22 31796.95 18169.72 28199.59 10473.20 33992.58 19196.37 234
iter_conf05_1194.23 11093.49 11996.46 9497.51 12191.32 10899.96 194.31 33595.62 2699.32 899.22 2757.79 34598.59 17098.00 5099.64 4099.46 81
ACMH+83.78 1584.21 30582.56 31089.15 31193.73 27479.16 33796.43 29494.28 33681.09 33174.00 34794.03 24654.58 36097.67 21976.10 31778.81 29890.63 325
Patchmatch-test86.25 27784.06 29492.82 22094.42 24882.88 30382.88 39194.23 33771.58 36979.39 31590.62 31889.00 6296.42 28163.03 37391.37 22099.16 108
CR-MVSNet88.83 23187.38 24293.16 21493.47 27886.24 23984.97 38494.20 33888.92 17790.76 18386.88 36184.43 14694.82 34170.64 34892.17 20198.41 165
Patchmtry83.61 31381.64 31389.50 30493.36 28282.84 30484.10 38794.20 33869.47 37979.57 31386.88 36184.43 14694.78 34268.48 35774.30 32790.88 315
EG-PatchMatch MVS79.92 32877.59 33386.90 33287.06 36677.90 35096.20 30694.06 34074.61 36266.53 37888.76 34640.40 38896.20 29767.02 36283.66 27286.61 369
KD-MVS_self_test77.47 34275.88 34282.24 35681.59 38268.93 38092.83 34994.02 34177.03 35373.14 35383.39 37155.44 35690.42 37667.95 35857.53 38587.38 363
K. test v381.04 32479.77 32784.83 34587.41 36270.23 37795.60 32293.93 34283.70 29167.51 37489.35 34355.76 35293.58 35476.67 31468.03 36290.67 324
RPSCF85.33 29185.55 26984.67 34794.63 24662.28 38693.73 33893.76 34374.38 36485.23 24097.06 17564.09 32198.31 17880.98 28186.08 25093.41 253
MVS-HIRNet79.01 33375.13 34590.66 27093.82 27281.69 31585.16 38193.75 34454.54 39174.17 34659.15 39757.46 34796.58 26963.74 37094.38 17193.72 250
pmmvs585.87 28184.40 29290.30 28288.53 35184.23 28298.60 16693.71 34581.53 32680.29 30392.02 28464.51 32095.52 32482.04 27678.34 30091.15 308
pmmvs679.90 32977.31 33587.67 32584.17 37678.13 34795.86 31693.68 34667.94 38372.67 35889.62 34050.98 37195.75 31874.80 32766.04 36989.14 351
OurMVSNet-221017-084.13 30883.59 29885.77 34087.81 35870.24 37694.89 32793.65 34786.08 25176.53 33293.28 26761.41 33396.14 30180.95 28277.69 30790.93 313
Anonymous2024052178.63 33776.90 33883.82 35182.82 38072.86 36795.72 32193.57 34873.55 36772.17 36084.79 36849.69 37592.51 36665.29 36874.50 32386.09 373
DP-MVS88.75 23586.56 25495.34 14398.92 7787.45 21197.64 25293.52 34970.55 37381.49 29297.25 16374.43 24299.88 5471.14 34794.09 17498.67 154
ITE_SJBPF87.93 32292.26 29676.44 35493.47 35087.67 22179.95 30895.49 22556.50 35197.38 23875.24 32282.33 28389.98 339
USDC84.74 29682.93 30190.16 28491.73 30883.54 29395.00 32693.30 35188.77 18073.19 35293.30 26653.62 36397.65 22275.88 31981.54 28789.30 348
ADS-MVSNet287.62 25686.88 25089.86 29396.21 17979.14 33887.15 37792.99 35283.01 30189.91 19787.27 35778.87 21792.80 36274.20 33192.27 19797.64 194
Anonymous2023120680.76 32579.42 32984.79 34684.78 37472.98 36696.53 29192.97 35379.56 34074.33 34488.83 34561.27 33492.15 37060.59 37975.92 31389.24 350
iter_conf0593.48 13293.18 12994.39 18297.15 14194.17 5799.30 8192.97 35392.38 9086.70 22995.42 22695.67 596.59 26794.67 12184.32 26492.39 261
MDA-MVSNet-bldmvs77.82 34174.75 34787.03 33188.33 35278.52 34496.34 29792.85 35575.57 35848.87 39387.89 34957.32 34892.49 36760.79 37864.80 37390.08 334
test20.0378.51 33877.48 33481.62 36083.07 37971.03 37396.11 30792.83 35681.66 32569.31 36689.68 33957.53 34687.29 38958.65 38368.47 36086.53 370
COLMAP_ROBcopyleft82.69 1884.54 30182.82 30289.70 29996.72 15878.85 33995.89 31292.83 35671.55 37077.54 33195.89 21859.40 34199.14 14567.26 36188.26 23591.11 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs285.10 29385.45 27184.02 35089.85 33365.63 38498.49 17992.59 35890.45 12985.43 23993.32 26443.94 38196.59 26790.81 17284.19 26589.85 341
SixPastTwentyTwo82.63 31681.58 31485.79 33988.12 35571.01 37495.17 32592.54 35984.33 28072.93 35792.08 28260.41 33895.61 32374.47 32874.15 33090.75 321
FMVSNet582.29 31780.54 32187.52 32693.79 27384.01 28693.73 33892.47 36076.92 35474.27 34586.15 36563.69 32589.24 38469.07 35474.79 32189.29 349
new-patchmatchnet74.80 34972.40 35281.99 35978.36 39072.20 37094.44 33092.36 36177.06 35263.47 38279.98 38451.04 37088.85 38560.53 38054.35 38984.92 380
mvsmamba89.99 21189.42 20291.69 24990.64 32386.34 23798.40 19192.27 36291.01 11384.80 24294.93 23376.12 23196.51 27492.81 15383.84 26892.21 271
new_pmnet76.02 34473.71 34982.95 35483.88 37772.85 36891.26 36492.26 36370.44 37462.60 38381.37 37847.64 37892.32 36861.85 37572.10 35083.68 383
AllTest84.97 29583.12 30090.52 27596.82 15278.84 34095.89 31292.17 36477.96 34975.94 33695.50 22355.48 35499.18 13971.15 34587.14 23993.55 251
TestCases90.52 27596.82 15278.84 34092.17 36477.96 34975.94 33695.50 22355.48 35499.18 13971.15 34587.14 23993.55 251
pmmvs-eth3d78.71 33676.16 34186.38 33480.25 38781.19 32494.17 33492.13 36677.97 34866.90 37782.31 37555.76 35292.56 36573.63 33762.31 37885.38 375
MIMVSNet175.92 34573.30 35083.81 35281.29 38475.57 35692.26 35292.05 36773.09 36867.48 37586.18 36440.87 38787.64 38855.78 38670.68 35788.21 357
ambc79.60 36472.76 39756.61 39176.20 39592.01 36868.25 37080.23 38323.34 39694.73 34373.78 33660.81 37987.48 362
LF4IMVS81.94 32081.17 31984.25 34987.23 36568.87 38193.35 34291.93 36983.35 29775.40 34193.00 27349.25 37796.65 26578.88 29878.11 30187.22 367
TransMVSNet (Re)81.97 31979.61 32889.08 31289.70 33584.01 28697.26 26491.85 37078.84 34373.07 35691.62 29367.17 30395.21 33367.50 36059.46 38288.02 358
Baseline_NR-MVSNet85.83 28384.82 28188.87 31788.73 34883.34 29598.63 16191.66 37180.41 33982.44 27091.35 29974.63 23795.42 32884.13 25271.39 35487.84 359
testgi82.29 31781.00 32086.17 33787.24 36474.84 36097.39 25791.62 37288.63 18175.85 33995.42 22646.07 38091.55 37466.87 36479.94 29492.12 276
TDRefinement78.01 33975.31 34386.10 33870.06 39873.84 36393.59 34191.58 37374.51 36373.08 35591.04 30449.63 37697.12 24574.88 32559.47 38187.33 365
OpenMVS_ROBcopyleft73.86 2077.99 34075.06 34686.77 33383.81 37877.94 34996.38 29691.53 37467.54 38468.38 36987.13 36043.94 38196.08 30355.03 38781.83 28586.29 372
test_040278.81 33576.33 34086.26 33691.18 31678.44 34595.88 31491.34 37568.55 38070.51 36389.91 33652.65 36694.99 33547.14 39279.78 29585.34 377
MTMP99.21 8991.09 376
DeepMVS_CXcopyleft76.08 36690.74 32251.65 39990.84 37786.47 24857.89 38787.98 34835.88 39192.60 36365.77 36765.06 37283.97 382
test_fmvs375.09 34775.19 34474.81 36877.45 39154.08 39495.93 31090.64 37882.51 31473.29 35181.19 37922.29 39786.29 39085.50 23467.89 36384.06 381
lessismore_v085.08 34385.59 37269.28 37990.56 37967.68 37390.21 33354.21 36295.46 32673.88 33362.64 37690.50 327
Gipumacopyleft54.77 36552.22 36962.40 38286.50 36859.37 39050.20 40090.35 38036.52 39841.20 39949.49 40018.33 40181.29 39332.10 39965.34 37146.54 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TinyColmap80.42 32777.94 33287.85 32392.09 29978.58 34393.74 33789.94 38174.99 36069.77 36491.78 29146.09 37997.58 22765.17 36977.89 30287.38 363
test_method70.10 35468.66 35774.41 37086.30 37155.84 39294.47 32989.82 38235.18 39966.15 37984.75 36930.54 39377.96 40070.40 35160.33 38089.44 347
FPMVS61.57 35860.32 36165.34 37860.14 40542.44 40691.02 36789.72 38344.15 39442.63 39780.93 38019.02 39980.59 39742.50 39472.76 34273.00 391
test_f71.94 35270.82 35375.30 36772.77 39653.28 39591.62 35889.66 38475.44 35964.47 38178.31 38720.48 39889.56 38278.63 30166.02 37083.05 386
LCM-MVSNet60.07 36156.37 36371.18 37254.81 40748.67 40082.17 39289.48 38537.95 39749.13 39269.12 39113.75 40581.76 39259.28 38151.63 39383.10 385
pmmvs372.86 35169.76 35682.17 35773.86 39474.19 36294.20 33389.01 38664.23 39067.72 37280.91 38241.48 38588.65 38662.40 37454.02 39083.68 383
bld_raw_dy_0_6491.37 18189.75 19596.23 10797.51 12190.58 13299.16 9788.98 38795.64 2587.18 22299.20 3057.19 34998.66 16598.00 5084.86 25899.46 81
LCM-MVSNet-Re88.59 24088.61 22088.51 31995.53 20572.68 36996.85 28188.43 38888.45 18873.14 35390.63 31775.82 23294.38 34892.95 14995.71 16098.48 163
Patchmatch-RL test81.90 32180.13 32487.23 33080.71 38570.12 37884.07 38888.19 38983.16 30070.57 36182.18 37687.18 9392.59 36482.28 27362.78 37598.98 123
mvsany_test375.85 34674.52 34879.83 36373.53 39560.64 38891.73 35787.87 39083.91 28770.55 36282.52 37331.12 39293.66 35286.66 22162.83 37485.19 379
DSMNet-mixed81.60 32281.43 31682.10 35884.36 37560.79 38793.63 34086.74 39179.00 34179.32 31687.15 35963.87 32389.78 38166.89 36391.92 20395.73 240
PM-MVS74.88 34872.85 35180.98 36278.98 38964.75 38590.81 36885.77 39280.95 33368.23 37182.81 37229.08 39492.84 36076.54 31562.46 37785.36 376
door85.30 393
APD_test168.93 35566.98 35874.77 36980.62 38653.15 39687.97 37585.01 39453.76 39259.26 38687.52 35325.19 39589.95 37856.20 38567.33 36681.19 387
door-mid84.90 395
EGC-MVSNET60.70 36055.37 36476.72 36586.35 37071.08 37289.96 37284.44 3960.38 4081.50 40984.09 37037.30 38988.10 38740.85 39773.44 33870.97 393
WB-MVS66.44 35666.29 35966.89 37674.84 39244.93 40393.00 34484.09 39771.15 37155.82 38881.63 37763.79 32480.31 39821.85 40250.47 39575.43 389
SSC-MVS65.42 35765.20 36066.06 37773.96 39343.83 40492.08 35383.54 39869.77 37754.73 38980.92 38163.30 32679.92 39920.48 40348.02 39674.44 390
dmvs_testset77.17 34378.99 33071.71 37187.25 36338.55 40891.44 36181.76 39985.77 25669.49 36595.94 21769.71 28284.37 39152.71 39076.82 31192.21 271
PMMVS258.97 36255.07 36570.69 37462.72 40255.37 39385.97 37980.52 40049.48 39345.94 39468.31 39215.73 40380.78 39649.79 39137.12 39975.91 388
ANet_high50.71 36746.17 37064.33 37944.27 40952.30 39876.13 39678.73 40164.95 38827.37 40255.23 39914.61 40467.74 40236.01 39818.23 40272.95 392
PMVScopyleft41.42 2345.67 36842.50 37155.17 38434.28 41032.37 41066.24 39878.71 40230.72 40022.04 40559.59 3964.59 40977.85 40127.49 40058.84 38355.29 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt81.31 32380.05 32685.11 34291.29 31570.66 37598.98 12777.39 40385.76 25768.80 36782.40 37436.56 39099.44 11992.67 15586.55 24485.24 378
tmp_tt53.66 36652.86 36856.05 38332.75 41141.97 40773.42 39776.12 40421.91 40439.68 40096.39 20542.59 38465.10 40378.00 30414.92 40461.08 396
testf156.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
APD_test256.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
MVEpermissive44.00 2241.70 36937.64 37453.90 38549.46 40843.37 40565.09 39966.66 40726.19 40325.77 40448.53 4013.58 41163.35 40426.15 40127.28 40054.97 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 37040.93 37241.29 38661.97 40333.83 40984.00 38965.17 40827.17 40127.56 40146.72 40217.63 40260.41 40519.32 40418.82 40129.61 401
EMVS39.96 37139.88 37340.18 38759.57 40632.12 41184.79 38664.57 40926.27 40226.14 40344.18 40518.73 40059.29 40617.03 40517.67 40329.12 402
test_vis3_rt61.29 35958.75 36268.92 37567.41 39952.84 39791.18 36659.23 41066.96 38541.96 39858.44 39811.37 40694.72 34474.25 33057.97 38459.20 397
N_pmnet70.19 35369.87 35571.12 37388.24 35330.63 41295.85 31728.70 41170.18 37568.73 36886.55 36364.04 32293.81 35153.12 38973.46 33788.94 352
wuyk23d16.71 37416.73 37816.65 38860.15 40425.22 41341.24 4015.17 4126.56 4055.48 4083.61 4083.64 41022.72 40715.20 4069.52 4051.99 405
testmvs18.81 37323.05 3766.10 3904.48 4122.29 41597.78 2403.00 4133.27 40618.60 40662.71 3941.53 4132.49 40914.26 4071.80 40613.50 404
test12316.58 37519.47 3777.91 3893.59 4135.37 41494.32 3311.39 4142.49 40713.98 40744.60 4042.91 4122.65 40811.35 4080.57 40715.70 403
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.87 3779.16 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40982.48 1810.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
n20.00 415
nn0.00 415
ab-mvs-re8.21 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.50 1100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.74 33467.75 359
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
eth-test20.00 414
eth-test0.00 414
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
GSMVS98.84 138
test_part299.54 3695.42 2098.13 43
sam_mvs188.39 6898.84 138
sam_mvs87.08 96
test_post190.74 37041.37 40685.38 13596.36 28483.16 263
test_post46.00 40387.37 8797.11 246
patchmatchnet-post84.86 36788.73 6596.81 259
gm-plane-assit94.69 24388.14 19388.22 20097.20 16698.29 18090.79 173
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
test_prior492.00 9699.41 69
test_prior299.57 4391.43 10698.12 4598.97 6490.43 4598.33 4299.81 23
旧先验298.67 15685.75 25898.96 2198.97 15293.84 133
新几何298.26 205
原ACMM298.69 153
testdata299.88 5484.16 251
segment_acmp90.56 43
testdata197.89 23392.43 84
plane_prior793.84 26985.73 258
plane_prior693.92 26686.02 25172.92 257
plane_prior496.52 199
plane_prior385.91 25393.65 6386.99 223
plane_prior299.02 12193.38 68
plane_prior193.90 268
plane_prior86.07 24999.14 10693.81 6086.26 247
HQP5-MVS86.39 234
HQP-NCC93.95 26299.16 9793.92 5287.57 215
ACMP_Plane93.95 26299.16 9793.92 5287.57 215
BP-MVS93.82 135
HQP4-MVS87.57 21597.77 21092.72 256
HQP2-MVS73.34 251
NP-MVS93.94 26586.22 24196.67 197
MDTV_nov1_ep13_2view91.17 11391.38 36287.45 22593.08 14986.67 10787.02 21398.95 129
ACMMP++_ref82.64 281
ACMMP++83.83 269
Test By Simon83.62 155