This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR96.69 3696.69 3696.72 8498.58 9291.00 12599.14 10499.45 193.86 5595.15 12098.73 9288.48 7599.76 8997.23 7099.56 5299.40 93
thres100view90093.34 14792.15 16096.90 7397.62 11994.84 4199.06 11699.36 287.96 21590.47 19996.78 19583.29 17098.75 16684.11 26390.69 23497.12 219
tfpn200view993.43 14292.27 15796.90 7397.68 11794.84 4199.18 9299.36 288.45 19490.79 19196.90 18783.31 16898.75 16684.11 26390.69 23497.12 219
thres600view793.18 15292.00 16396.75 8097.62 11994.92 3699.07 11399.36 287.96 21590.47 19996.78 19583.29 17098.71 17082.93 27790.47 23896.61 234
thres40093.39 14492.27 15796.73 8297.68 11794.84 4199.18 9299.36 288.45 19490.79 19196.90 18783.31 16898.75 16684.11 26390.69 23496.61 234
thres20093.69 13492.59 15296.97 7097.76 11494.74 4699.35 7699.36 289.23 17091.21 18896.97 18383.42 16798.77 16385.08 24790.96 23297.39 212
MVS_111021_LR95.78 6995.94 5895.28 15598.19 10387.69 21098.80 14199.26 793.39 6895.04 12298.69 9984.09 15899.76 8996.96 7699.06 8098.38 176
sss94.85 9993.94 11597.58 4396.43 17694.09 6298.93 12999.16 889.50 16595.27 11797.85 13481.50 20599.65 10192.79 16494.02 18298.99 130
MM97.76 1197.39 2098.86 598.30 9796.83 799.81 1299.13 997.66 298.29 4198.96 7085.84 13499.90 5099.72 398.80 9699.85 30
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11399.06 1094.45 4196.42 9398.70 9888.81 7199.74 9195.35 11399.86 1299.97 7
test250694.80 10094.21 10196.58 9396.41 17892.18 10098.01 23398.96 1190.82 12293.46 15297.28 16285.92 13198.45 18189.82 19397.19 13999.12 120
PVSNet87.13 1293.69 13492.83 14696.28 11097.99 10990.22 14499.38 7198.93 1291.42 11193.66 14997.68 14571.29 28799.64 10387.94 21797.20 13898.98 131
PGM-MVS95.85 6695.65 7296.45 10099.50 4289.77 16198.22 21398.90 1389.19 17296.74 8698.95 7385.91 13399.92 4193.94 14199.46 5799.66 64
EPNet96.82 3396.68 3797.25 5798.65 9093.10 8099.48 5398.76 1496.54 1397.84 5698.22 12787.49 9299.66 9795.35 11397.78 12599.00 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS95.97 6095.11 8598.54 1397.62 11996.65 999.44 6298.74 1592.25 9395.21 11898.46 11986.56 11999.46 12195.00 12492.69 19699.50 84
HY-MVS88.56 795.29 8594.23 10098.48 1497.72 11596.41 1394.03 34998.74 1592.42 8995.65 11194.76 24486.52 12099.49 11595.29 11692.97 19299.53 79
VNet95.08 9194.26 9997.55 4698.07 10693.88 6498.68 15498.73 1790.33 13997.16 7297.43 15879.19 22799.53 11296.91 7891.85 21399.24 109
test_yl95.27 8694.60 9397.28 5598.53 9392.98 8499.05 11798.70 1886.76 24694.65 12997.74 14287.78 8799.44 12295.57 10992.61 19799.44 90
DCV-MVSNet95.27 8694.60 9397.28 5598.53 9392.98 8499.05 11798.70 1886.76 24694.65 12997.74 14287.78 8799.44 12295.57 10992.61 19799.44 90
PVSNet_083.28 1687.31 26885.16 28393.74 21494.78 25284.59 28798.91 13298.69 2089.81 15478.59 33493.23 27561.95 34599.34 13794.75 12855.72 40197.30 214
ACMMPcopyleft94.67 10794.30 9895.79 13499.25 5788.13 20398.41 19298.67 2190.38 13891.43 18298.72 9482.22 19699.95 3293.83 14595.76 16599.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
D2MVS87.96 25687.39 25089.70 30791.84 31983.40 30398.31 20798.49 2288.04 21278.23 33890.26 34073.57 26296.79 27284.21 26083.53 28188.90 364
test_fmvsm_n_192097.08 2797.55 1495.67 13997.94 11089.61 16599.93 198.48 2397.08 599.08 1499.13 4788.17 8099.93 3999.11 2399.06 8097.47 210
fmvsm_s_conf0.5_n96.19 5396.49 4095.30 15497.37 13389.16 17099.86 598.47 2495.68 2398.87 2299.15 4282.44 19399.92 4199.14 2197.43 13496.83 230
HyFIR lowres test93.68 13693.29 13594.87 16997.57 12588.04 20598.18 21798.47 2487.57 22891.24 18795.05 24085.49 13997.46 24393.22 15792.82 19399.10 123
fmvsm_s_conf0.5_n_a95.97 6096.19 4795.31 15396.51 17389.01 17899.81 1298.39 2695.46 2899.19 1399.16 3981.44 20899.91 4698.83 2896.97 14397.01 226
UniMVSNet (Re)89.50 22988.32 23793.03 22492.21 31090.96 12698.90 13398.39 2689.13 17483.22 26492.03 29281.69 20296.34 29986.79 22972.53 35491.81 292
CHOSEN 280x42096.80 3496.85 2896.66 8997.85 11394.42 5494.76 34098.36 2892.50 8695.62 11297.52 15397.92 197.38 24898.31 4898.80 9698.20 191
VPA-MVSNet89.10 23287.66 24793.45 21792.56 30491.02 12497.97 23698.32 2986.92 24286.03 24192.01 29468.84 30197.10 25990.92 17975.34 32492.23 279
CHOSEN 1792x268894.35 11693.82 12195.95 12997.40 13188.74 19198.41 19298.27 3092.18 9591.43 18296.40 20778.88 22899.81 7993.59 14997.81 12299.30 104
patch_mono-297.10 2697.97 894.49 18399.21 6183.73 29999.62 3898.25 3195.28 3099.38 698.91 7892.28 2999.94 3599.61 1099.22 7499.78 41
FIs90.70 20589.87 20593.18 22292.29 30891.12 11898.17 21998.25 3189.11 17583.44 26394.82 24382.26 19596.17 31087.76 21882.76 28792.25 277
UGNet91.91 18190.85 18895.10 16097.06 15388.69 19298.01 23398.24 3392.41 9092.39 16793.61 26660.52 35199.68 9588.14 21497.25 13796.92 228
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.22 21589.40 21392.67 23791.78 32089.86 15997.89 23898.22 3488.81 18582.96 27194.66 24581.90 20195.96 31885.89 24182.52 29092.20 282
WR-MVS_H86.53 28185.49 27989.66 30991.04 33283.31 30597.53 26198.20 3584.95 27979.64 32190.90 31978.01 23895.33 34176.29 32672.81 35190.35 340
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6586.69 11499.96 2899.72 398.92 9099.69 58
MVS93.92 12692.28 15698.83 795.69 21096.82 896.22 31298.17 3684.89 28084.34 25798.61 10679.32 22599.83 7393.88 14399.43 6199.86 29
PAPM96.35 4795.94 5897.58 4394.10 26995.25 2698.93 12998.17 3694.26 4393.94 14398.72 9489.68 6097.88 21296.36 9099.29 6999.62 72
baseline294.04 12293.80 12294.74 17593.07 30090.25 14198.12 22398.16 3989.86 15286.53 23996.95 18495.56 698.05 20391.44 17494.53 17795.93 249
UniMVSNet_NR-MVSNet89.60 22688.55 23392.75 23392.17 31190.07 15098.74 14898.15 4088.37 19983.21 26593.98 25582.86 17995.93 32086.95 22572.47 35592.25 277
CSCG94.87 9894.71 9195.36 14999.54 3686.49 23999.34 7798.15 4082.71 31890.15 20499.25 2689.48 6299.86 6394.97 12598.82 9599.72 53
test_fmvsmconf_n96.78 3596.84 2996.61 9095.99 20090.25 14199.90 398.13 4296.68 1198.42 3698.92 7785.34 14499.88 5499.12 2299.08 7899.70 55
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7799.70 2798.13 4294.61 3697.78 5899.46 1089.85 5799.81 7997.97 5499.91 699.88 26
h-mvs3392.47 16891.95 16594.05 20397.13 14885.01 28198.36 20298.08 4493.85 5696.27 9596.73 19883.19 17399.43 12595.81 10268.09 37297.70 203
IB-MVS89.43 692.12 17690.83 19195.98 12895.40 22190.78 12999.81 1298.06 4591.23 11685.63 24693.66 26590.63 4498.78 16291.22 17571.85 36198.36 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5097.51 12892.78 9099.85 898.05 4696.78 899.60 199.23 2990.42 4899.92 4199.55 1398.50 10899.55 77
PHI-MVS96.65 4096.46 4297.21 5899.34 5091.77 10499.70 2798.05 4686.48 25498.05 4999.20 3289.33 6399.96 2898.38 4399.62 4699.90 22
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 4997.59 12392.91 8899.86 598.04 4896.70 1099.58 299.26 2490.90 3999.94 3599.57 1298.66 10399.40 93
PVSNet_BlendedMVS93.36 14693.20 13793.84 21198.77 8791.61 10899.47 5598.04 4891.44 10994.21 13792.63 28683.50 16499.87 5897.41 6483.37 28390.05 348
PVSNet_Blended95.94 6395.66 7096.75 8098.77 8791.61 10899.88 498.04 4893.64 6394.21 13797.76 14083.50 16499.87 5897.41 6497.75 12698.79 153
EPMVS92.59 16591.59 17395.59 14497.22 14090.03 15491.78 37098.04 4890.42 13791.66 17690.65 32886.49 12297.46 24381.78 28896.31 15599.28 106
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 9999.33 2292.62 25100.00 198.99 2599.93 199.98 6
testing387.75 26088.22 23986.36 34594.66 25677.41 36199.52 5097.95 5486.05 25981.12 30496.69 20086.18 12889.31 39761.65 39090.12 24092.35 276
reproduce_monomvs92.11 17891.82 16892.98 22698.25 9890.55 13698.38 20197.93 5594.81 3380.46 31192.37 28896.46 397.17 25494.06 13973.61 34391.23 316
testing22294.48 11494.00 10995.95 12997.30 13692.27 9898.82 13897.92 5689.20 17194.82 12497.26 16487.13 10297.32 25191.95 17091.56 21998.25 185
131493.44 14191.98 16497.84 3495.24 22494.38 5596.22 31297.92 5690.18 14282.28 28597.71 14477.63 24099.80 8191.94 17198.67 10299.34 101
NCCC98.12 598.11 398.13 2599.76 694.46 5199.81 1297.88 5896.54 1398.84 2499.46 1092.55 2699.98 998.25 5099.93 199.94 18
tfpnnormal83.65 32281.35 32890.56 28391.37 32888.06 20497.29 26997.87 5978.51 35676.20 34490.91 31864.78 33396.47 28761.71 38973.50 34687.13 379
ETVMVS94.50 11393.90 11896.31 10997.48 13092.98 8499.07 11397.86 6088.09 21094.40 13396.90 18788.35 7797.28 25290.72 18592.25 20798.66 165
3Dnovator87.35 1193.17 15491.77 17097.37 5395.41 22093.07 8198.82 13897.85 6191.53 10682.56 27897.58 15171.97 27999.82 7691.01 17899.23 7399.22 112
UWE-MVS93.18 15293.40 13192.50 23996.56 16983.55 30198.09 22997.84 6289.50 16591.72 17496.23 21391.08 3596.70 27486.28 23493.33 18897.26 216
FE-MVS91.38 19090.16 20295.05 16496.46 17587.53 21789.69 38797.84 6282.97 31192.18 16992.00 29684.07 15998.93 15880.71 29595.52 16998.68 161
WR-MVS88.54 25087.22 25592.52 23891.93 31889.50 16698.56 17497.84 6286.99 23781.87 29693.81 26074.25 25995.92 32285.29 24574.43 33492.12 285
DELS-MVS97.12 2596.60 3898.68 1198.03 10896.57 1199.84 997.84 6296.36 1895.20 11998.24 12688.17 8099.83 7396.11 9799.60 5099.64 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set95.76 7195.63 7496.17 11799.14 6490.33 13998.49 18397.82 6691.92 9894.75 12698.88 8387.06 10599.48 11995.40 11297.17 14198.70 160
无先验98.52 17797.82 6687.20 23599.90 5087.64 22099.85 30
EPNet_dtu92.28 17292.15 16092.70 23597.29 13784.84 28498.64 16097.82 6692.91 8093.02 15897.02 18185.48 14195.70 33172.25 35594.89 17597.55 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SDMVSNet91.09 19689.91 20494.65 17896.80 16290.54 13797.78 24597.81 6988.34 20185.73 24395.26 23766.44 32398.26 18994.25 13886.75 25295.14 252
HFP-MVS96.42 4696.26 4696.90 7399.69 890.96 12699.47 5597.81 6990.54 13396.88 7699.05 5787.57 9099.96 2895.65 10499.72 3299.78 41
EI-MVSNet-UG-set95.43 8095.29 7895.86 13299.07 7089.87 15898.43 18997.80 7191.78 10094.11 13998.77 8886.25 12799.48 11994.95 12696.45 15198.22 189
ACMMPR96.28 5196.14 5696.73 8299.68 990.47 13899.47 5597.80 7190.54 13396.83 8199.03 5986.51 12199.95 3295.65 10499.72 3299.75 49
UBG95.73 7495.41 7596.69 8696.97 15693.23 7699.13 10797.79 7391.28 11494.38 13596.78 19592.37 2898.56 17696.17 9493.84 18498.26 184
MAR-MVS94.43 11594.09 10695.45 14699.10 6887.47 21998.39 19997.79 7388.37 19994.02 14299.17 3878.64 23399.91 4692.48 16698.85 9498.96 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS97.86 897.25 2299.68 198.25 9899.10 199.76 2197.78 7596.61 1298.15 4399.53 793.62 16100.00 191.79 17299.80 2699.94 18
API-MVS94.78 10194.18 10496.59 9299.21 6190.06 15398.80 14197.78 7583.59 30093.85 14599.21 3183.79 16199.97 2192.37 16799.00 8499.74 50
新几何197.40 5198.92 8192.51 9697.77 7785.52 26796.69 8899.06 5688.08 8499.89 5384.88 25199.62 4699.79 38
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 9097.75 7895.66 2498.21 4299.29 2391.10 3499.99 597.68 6099.87 999.68 60
GG-mvs-BLEND96.98 6996.53 17194.81 4487.20 39097.74 7993.91 14496.40 20796.56 296.94 26595.08 12098.95 8999.20 113
gg-mvs-nofinetune90.00 22187.71 24696.89 7796.15 19294.69 4885.15 39797.74 7968.32 39692.97 15960.16 41096.10 496.84 26893.89 14298.87 9399.14 117
旧先验198.97 7392.90 8997.74 7999.15 4291.05 3699.33 6599.60 73
IU-MVS99.63 1895.38 2497.73 8295.54 2699.54 399.69 799.81 2399.99 1
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8394.17 4499.30 899.54 393.32 1899.98 999.70 599.81 2399.99 1
test_241102_TWO97.72 8394.17 4499.23 1099.54 393.14 2399.98 999.70 599.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8394.16 4699.30 899.49 993.32 1899.98 9
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8097.72 8394.50 3898.64 3099.54 393.32 1899.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS93.56 196.55 4497.84 1092.68 23698.71 8978.11 35899.70 2797.71 8798.18 197.36 6599.76 190.37 5099.94 3599.27 1699.54 5499.99 1
test072699.66 1295.20 3299.77 1897.70 8893.95 4999.35 799.54 393.18 21
MSP-MVS97.77 1098.18 296.53 9799.54 3690.14 14699.41 6897.70 8895.46 2898.60 3199.19 3395.71 599.49 11598.15 5299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSC_two_6792asdad99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
testing1195.33 8494.98 8996.37 10697.20 14192.31 9799.29 8097.68 9290.59 12994.43 13197.20 16990.79 4398.60 17495.25 11792.38 20198.18 192
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9293.01 7499.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9299.98 999.64 899.82 1999.96 10
test1197.68 92
fmvsm_s_conf0.1_n95.56 7895.68 6995.20 15794.35 26189.10 17299.50 5197.67 9694.76 3598.68 2999.03 5981.13 21199.86 6398.63 3297.36 13696.63 233
testing9194.88 9694.44 9696.21 11397.19 14391.90 10399.23 8797.66 9789.91 15193.66 14997.05 18090.21 5398.50 17793.52 15091.53 22498.25 185
testing9994.88 9694.45 9596.17 11797.20 14191.91 10299.20 8997.66 9789.95 15093.68 14897.06 17890.28 5298.50 17793.52 15091.54 22198.12 194
TEST999.57 3393.17 7899.38 7197.66 9789.57 16298.39 3799.18 3690.88 4099.66 97
train_agg97.20 2397.08 2397.57 4599.57 3393.17 7899.38 7197.66 9790.18 14298.39 3799.18 3690.94 3799.66 9798.58 3699.85 1399.88 26
region2R96.30 5096.17 5296.70 8599.70 790.31 14099.46 5997.66 9790.55 13297.07 7399.07 5486.85 10999.97 2195.43 11199.74 2999.81 35
SteuartSystems-ACMMP97.25 1997.34 2197.01 6497.38 13291.46 11199.75 2297.66 9794.14 4898.13 4499.26 2492.16 3099.66 9797.91 5699.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
EPP-MVSNet93.75 13393.67 12494.01 20595.86 20485.70 26798.67 15697.66 9784.46 28591.36 18597.18 17291.16 3297.79 21892.93 16193.75 18598.53 168
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5999.16 9697.65 10489.55 16499.22 1299.52 890.34 5199.99 598.32 4799.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_one_060199.59 2894.89 3797.64 10593.14 7398.93 2199.45 1493.45 17
test_899.55 3593.07 8199.37 7497.64 10590.18 14298.36 3999.19 3390.94 3799.64 103
agg_prior99.54 3692.66 9197.64 10597.98 5399.61 105
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5298.85 13597.64 10596.51 1695.88 10299.39 1887.35 9999.99 596.61 8599.69 3899.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.34 5093.85 6599.65 3697.63 10995.69 22
原ACMM196.18 11599.03 7190.08 14997.63 10988.98 17897.00 7498.97 6588.14 8399.71 9388.23 21399.62 4698.76 157
DU-MVS88.83 24087.51 24892.79 23191.46 32690.07 15098.71 14997.62 11188.87 18483.21 26593.68 26374.63 25095.93 32086.95 22572.47 35592.36 273
ZD-MVS99.67 1093.28 7597.61 11287.78 22097.41 6399.16 3990.15 5499.56 10898.35 4599.70 37
CP-MVS96.22 5296.15 5596.42 10299.67 1089.62 16499.70 2797.61 11290.07 14896.00 9899.16 3987.43 9399.92 4196.03 9999.72 3299.70 55
thisisatest053094.00 12393.52 12795.43 14795.76 20890.02 15598.99 12497.60 11486.58 24991.74 17397.36 16194.78 1198.34 18486.37 23392.48 20097.94 199
tttt051793.30 14893.01 14294.17 19795.57 21386.47 24098.51 18097.60 11485.99 26090.55 19697.19 17194.80 1098.31 18585.06 24891.86 21297.74 201
thisisatest051594.75 10294.19 10296.43 10196.13 19792.64 9499.47 5597.60 11487.55 22993.17 15597.59 15094.71 1298.42 18288.28 21293.20 18998.24 188
testdata95.26 15698.20 10187.28 22697.60 11485.21 27198.48 3599.15 4288.15 8298.72 16990.29 18899.45 5999.78 41
ACMMP_NAP96.59 4196.18 4997.81 3698.82 8593.55 6998.88 13497.59 11890.66 12597.98 5399.14 4586.59 117100.00 196.47 8999.46 5799.89 25
CVMVSNet90.30 21390.91 18788.46 32894.32 26373.58 37897.61 25997.59 11890.16 14588.43 22197.10 17576.83 24492.86 37182.64 27993.54 18798.93 139
XVS96.47 4596.37 4496.77 7899.62 2290.66 13499.43 6597.58 12092.41 9096.86 7798.96 7087.37 9599.87 5895.65 10499.43 6199.78 41
X-MVStestdata90.69 20688.66 22996.77 7899.62 2290.66 13499.43 6597.58 12092.41 9096.86 7729.59 42287.37 9599.87 5895.65 10499.43 6199.78 41
test22298.32 9691.21 11498.08 23097.58 12083.74 29695.87 10399.02 6186.74 11299.64 4299.81 35
test_prior97.01 6499.58 3091.77 10497.57 12399.49 11599.79 38
CP-MVSNet86.54 28085.45 28089.79 30491.02 33382.78 31497.38 26697.56 12485.37 26979.53 32493.03 27971.86 28195.25 34379.92 30073.43 34991.34 311
test1297.83 3599.33 5394.45 5297.55 12597.56 5988.60 7499.50 11499.71 3699.55 77
PAPR96.35 4795.82 6297.94 3399.63 1894.19 6099.42 6797.55 12592.43 8793.82 14799.12 4987.30 10099.91 4694.02 14099.06 8099.74 50
AdaColmapbinary93.82 13193.06 13996.10 12099.88 189.07 17398.33 20497.55 12586.81 24590.39 20198.65 10175.09 24999.98 993.32 15697.53 13199.26 108
TESTMET0.1,193.82 13193.26 13695.49 14595.21 22790.25 14199.15 10197.54 12889.18 17391.79 17294.87 24289.13 6497.63 23386.21 23596.29 15798.60 166
fmvsm_s_conf0.1_n_a95.16 8895.15 8295.18 15892.06 31388.94 18299.29 8097.53 12994.46 3998.98 1898.99 6379.99 21799.85 6798.24 5196.86 14696.73 231
hse-mvs291.67 18491.51 17592.15 24696.22 18782.61 31797.74 25197.53 12993.85 5696.27 9596.15 21583.19 17397.44 24595.81 10266.86 37996.40 243
AUN-MVS90.17 21789.50 21092.19 24496.21 18882.67 31597.76 25097.53 12988.05 21191.67 17596.15 21583.10 17597.47 24288.11 21566.91 37896.43 242
ZNCC-MVS96.09 5595.81 6496.95 7299.42 4791.19 11599.55 4497.53 12989.72 15595.86 10498.94 7686.59 11799.97 2195.13 11999.56 5299.68 60
CANet97.00 2896.49 4098.55 1298.86 8496.10 1699.83 1097.52 13395.90 1997.21 6998.90 7982.66 18699.93 3998.71 2998.80 9699.63 70
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6799.56 4397.52 13393.59 6498.01 5299.12 4990.80 4299.55 10999.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MDTV_nov1_ep1390.47 19996.14 19488.55 19591.34 37797.51 13589.58 16192.24 16890.50 33886.99 10897.61 23577.64 31692.34 203
QAPM91.41 18889.49 21197.17 6095.66 21293.42 7398.60 16997.51 13580.92 34481.39 30397.41 15972.89 27299.87 5882.33 28298.68 10198.21 190
PAPM_NR95.43 8095.05 8796.57 9599.42 4790.14 14698.58 17397.51 13590.65 12792.44 16598.90 7987.77 8999.90 5090.88 18099.32 6699.68 60
TSAR-MVS + MP.97.44 1897.46 1797.39 5299.12 6593.49 7298.52 17797.50 13894.46 3998.99 1798.64 10291.58 3199.08 15198.49 4099.83 1599.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs95.77 7095.00 8898.06 2997.35 13495.68 2099.71 2697.50 13891.50 10796.16 9798.61 10686.28 12599.00 15496.19 9391.74 21599.51 82
9.1496.87 2799.34 5099.50 5197.49 14089.41 16998.59 3299.43 1689.78 5899.69 9498.69 3099.62 46
GST-MVS95.97 6095.66 7096.90 7399.49 4591.22 11399.45 6197.48 14189.69 15695.89 10198.72 9486.37 12499.95 3294.62 13399.22 7499.52 80
DP-MVS Recon95.85 6695.15 8297.95 3299.87 294.38 5599.60 3997.48 14186.58 24994.42 13299.13 4787.36 9899.98 993.64 14898.33 11499.48 86
FOURS199.50 4288.94 18299.55 4497.47 14391.32 11398.12 46
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14393.95 4999.07 1599.46 1093.18 2199.97 2199.64 899.82 1999.69 58
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CPTT-MVS94.60 10994.43 9795.09 16199.66 1286.85 23499.44 6297.47 14383.22 30594.34 13698.96 7082.50 18799.55 10994.81 12799.50 5598.88 143
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14689.60 16098.70 2799.42 1790.42 4899.72 9298.47 4199.65 4099.77 46
MTGPAbinary97.45 146
MTAPA96.09 5595.80 6596.96 7199.29 5591.19 11597.23 27497.45 14692.58 8494.39 13499.24 2886.43 12399.99 596.22 9299.40 6499.71 54
CDPH-MVS96.56 4396.18 4997.70 3999.59 2893.92 6399.13 10797.44 14989.02 17797.90 5599.22 3088.90 7099.49 11594.63 13299.79 2799.68 60
APD-MVScopyleft96.95 2996.72 3597.63 4199.51 4193.58 6899.16 9697.44 14990.08 14798.59 3299.07 5489.06 6599.42 12697.92 5599.66 3999.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu94.67 10794.11 10596.34 10897.14 14791.10 12099.32 7997.43 15192.10 9791.53 18196.38 21083.29 17099.68 9593.42 15596.37 15398.25 185
NR-MVSNet87.74 26386.00 27192.96 22891.46 32690.68 13396.65 29797.42 15288.02 21373.42 36393.68 26377.31 24195.83 32684.26 25971.82 36292.36 273
MP-MVScopyleft96.00 5795.82 6296.54 9699.47 4690.13 14899.36 7597.41 15390.64 12895.49 11498.95 7385.51 13899.98 996.00 10099.59 5199.52 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS95.90 6595.75 6796.38 10599.58 3089.41 16899.26 8597.41 15390.66 12594.82 12498.95 7386.15 12999.98 995.24 11899.64 4299.74 50
OpenMVScopyleft85.28 1490.75 20488.84 22496.48 9893.58 28893.51 7198.80 14197.41 15382.59 31978.62 33297.49 15568.00 30999.82 7684.52 25798.55 10796.11 247
reproduce-ours96.66 3796.80 3296.22 11198.95 7789.03 17698.62 16397.38 15693.42 6696.80 8499.36 1988.92 6899.80 8198.51 3899.26 7199.82 32
our_new_method96.66 3796.80 3296.22 11198.95 7789.03 17698.62 16397.38 15693.42 6696.80 8499.36 1988.92 6899.80 8198.51 3899.26 7199.82 32
tt080586.50 28284.79 29191.63 25991.97 31481.49 32596.49 30197.38 15682.24 32782.44 28095.82 22551.22 38498.25 19084.55 25680.96 29695.13 254
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6699.33 7897.38 15693.73 6098.83 2599.02 6190.87 4199.88 5498.69 3099.74 2999.77 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpmvs89.16 23187.76 24493.35 21997.19 14384.75 28690.58 38597.36 16081.99 33184.56 25389.31 35783.98 16098.17 19474.85 33690.00 24197.12 219
PS-CasMVS85.81 29384.58 29689.49 31490.77 33582.11 32097.20 27697.36 16084.83 28179.12 32992.84 28267.42 31595.16 34578.39 31373.25 35091.21 317
reproduce_model96.57 4296.75 3496.02 12498.93 8088.46 19898.56 17497.34 16293.18 7296.96 7599.35 2188.69 7399.80 8198.53 3799.21 7799.79 38
SR-MVS96.13 5496.16 5496.07 12199.42 4789.04 17498.59 17197.33 16390.44 13696.84 7999.12 4986.75 11199.41 12997.47 6399.44 6099.76 48
WB-MVSnew88.69 24688.34 23689.77 30594.30 26785.99 26098.14 22097.31 16487.15 23687.85 22496.07 21969.91 29195.52 33572.83 35291.47 22587.80 372
PatchmatchNetpermissive92.05 18091.04 18495.06 16296.17 19189.04 17491.26 37897.26 16589.56 16390.64 19590.56 33488.35 7797.11 25779.53 30196.07 16299.03 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)92.22 17591.08 18395.64 14096.05 19988.98 17991.60 37397.25 16686.99 23791.84 17192.12 29083.03 17699.00 15486.91 22793.91 18398.93 139
test-LLR93.11 15592.68 14894.40 18794.94 24787.27 22799.15 10197.25 16690.21 14091.57 17794.04 25084.89 14997.58 23785.94 23996.13 15898.36 180
test-mter93.27 15092.89 14594.40 18794.94 24787.27 22799.15 10197.25 16688.95 18091.57 17794.04 25088.03 8597.58 23785.94 23996.13 15898.36 180
PEN-MVS85.21 30183.93 30589.07 32189.89 34481.31 33097.09 27997.24 16984.45 28678.66 33192.68 28568.44 30494.87 35075.98 32870.92 36691.04 321
ab-mvs91.05 19989.17 21796.69 8695.96 20191.72 10692.62 36397.23 17085.61 26689.74 21093.89 25968.55 30299.42 12691.09 17687.84 24798.92 141
APD-MVS_3200maxsize95.64 7795.65 7295.62 14299.24 5887.80 20998.42 19097.22 17188.93 18296.64 9198.98 6485.49 13999.36 13396.68 8299.27 7099.70 55
SR-MVS-dyc-post95.75 7295.86 6195.41 14899.22 5987.26 22998.40 19597.21 17289.63 15896.67 8998.97 6586.73 11399.36 13396.62 8399.31 6799.60 73
RE-MVS-def95.70 6899.22 5987.26 22998.40 19597.21 17289.63 15896.67 8998.97 6585.24 14596.62 8399.31 6799.60 73
SCA90.64 20889.25 21694.83 17294.95 24688.83 18696.26 30997.21 17290.06 14990.03 20590.62 33066.61 32096.81 27083.16 27394.36 17998.84 146
RPMNet85.07 30381.88 32294.64 18093.47 29086.24 24784.97 39997.21 17264.85 40390.76 19378.80 40180.95 21399.27 14053.76 40292.17 20998.41 173
VPNet88.30 25286.57 26293.49 21691.95 31691.35 11298.18 21797.20 17688.61 18884.52 25594.89 24162.21 34496.76 27389.34 20172.26 35892.36 273
TranMVSNet+NR-MVSNet87.75 26086.31 26692.07 24890.81 33488.56 19498.33 20497.18 17787.76 22181.87 29693.90 25872.45 27495.43 33883.13 27571.30 36592.23 279
cdsmvs_eth3d_5k22.52 38730.03 3900.00 4060.00 4290.00 4310.00 41797.17 1780.00 4240.00 42598.77 8874.35 2570.00 4250.00 4240.00 4230.00 421
tpm291.77 18291.09 18293.82 21294.83 25185.56 27092.51 36497.16 17984.00 29193.83 14690.66 32787.54 9197.17 25487.73 21991.55 22098.72 158
MP-MVS-pluss95.80 6895.30 7797.29 5498.95 7792.66 9198.59 17197.14 18088.95 18093.12 15699.25 2685.62 13599.94 3596.56 8799.48 5699.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchMatch-RL91.47 18690.54 19694.26 19398.20 10186.36 24596.94 28497.14 18087.75 22288.98 21695.75 22671.80 28299.40 13080.92 29397.39 13597.02 225
Anonymous2024052987.66 26485.58 27793.92 20897.59 12385.01 28198.13 22197.13 18266.69 40188.47 22096.01 22155.09 37099.51 11387.00 22484.12 27497.23 218
JIA-IIPM85.97 28984.85 28989.33 31693.23 29773.68 37785.05 39897.13 18269.62 39291.56 17968.03 40888.03 8596.96 26377.89 31593.12 19097.34 213
PS-MVSNAJ96.87 3196.40 4398.29 1997.35 13497.29 599.03 11997.11 18495.83 2098.97 1999.14 4582.48 18999.60 10698.60 3399.08 7898.00 197
HPM-MVS_fast94.89 9494.62 9295.70 13799.11 6688.44 19999.14 10497.11 18485.82 26295.69 11098.47 11783.46 16699.32 13893.16 15899.63 4599.35 99
DeepC-MVS91.02 494.56 11293.92 11696.46 9997.16 14690.76 13098.39 19997.11 18493.92 5188.66 21898.33 12278.14 23799.85 6795.02 12298.57 10698.78 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 15992.16 15994.65 17896.27 18587.45 22091.83 36997.10 18789.10 17694.68 12890.69 32588.22 7997.73 22889.78 19491.80 21498.77 156
HPM-MVScopyleft95.41 8295.22 8095.99 12799.29 5589.14 17199.17 9597.09 18887.28 23495.40 11598.48 11684.93 14899.38 13195.64 10899.65 4099.47 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm cat188.89 23687.27 25393.76 21395.79 20685.32 27590.76 38397.09 18876.14 36985.72 24588.59 36082.92 17898.04 20476.96 32091.43 22697.90 200
dp90.16 21888.83 22594.14 19896.38 18186.42 24191.57 37497.06 19084.76 28288.81 21790.19 34684.29 15697.43 24675.05 33391.35 23098.56 167
xiu_mvs_v2_base96.66 3796.17 5298.11 2897.11 15096.96 699.01 12297.04 19195.51 2798.86 2399.11 5382.19 19799.36 13398.59 3598.14 11898.00 197
3Dnovator+87.72 893.43 14291.84 16798.17 2395.73 20995.08 3598.92 13197.04 19191.42 11181.48 30297.60 14974.60 25299.79 8590.84 18198.97 8699.64 68
sd_testset89.23 23088.05 24392.74 23496.80 16285.33 27495.85 32697.03 19388.34 20185.73 24395.26 23761.12 34997.76 22585.61 24386.75 25295.14 252
CDS-MVSNet93.47 14093.04 14194.76 17394.75 25389.45 16798.82 13897.03 19387.91 21790.97 18996.48 20589.06 6596.36 29389.50 19792.81 19598.49 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test0.0.03 188.96 23488.61 23090.03 29991.09 33184.43 28998.97 12797.02 19590.21 14080.29 31396.31 21284.89 14991.93 38572.98 35085.70 26393.73 259
114514_t94.06 12193.05 14097.06 6299.08 6992.26 9998.97 12797.01 19682.58 32092.57 16398.22 12780.68 21499.30 13989.34 20199.02 8399.63 70
CostFormer92.89 15892.48 15494.12 19994.99 24485.89 26292.89 35997.00 19786.98 24095.00 12390.78 32190.05 5697.51 24192.92 16291.73 21698.96 133
test_fmvsmvis_n_192095.47 7995.40 7695.70 13794.33 26290.22 14499.70 2796.98 19896.80 792.75 16098.89 8182.46 19299.92 4198.36 4498.33 11496.97 227
ET-MVSNet_ETH3D92.56 16691.45 17695.88 13196.39 18094.13 6199.46 5996.97 19992.18 9566.94 39098.29 12594.65 1494.28 36094.34 13683.82 27899.24 109
UA-Net93.30 14892.62 15195.34 15196.27 18588.53 19795.88 32396.97 19990.90 12095.37 11697.07 17782.38 19499.10 15083.91 26794.86 17698.38 176
TAMVS92.62 16392.09 16294.20 19694.10 26987.68 21198.41 19296.97 19987.53 23089.74 21096.04 22084.77 15396.49 28688.97 20792.31 20498.42 172
kuosan84.40 31483.34 30887.60 33495.87 20379.21 34692.39 36596.87 20276.12 37073.79 36093.98 25581.51 20490.63 38964.13 38275.42 32392.95 264
test_fmvsmconf0.1_n95.94 6395.79 6696.40 10492.42 30789.92 15799.79 1796.85 20396.53 1597.22 6898.67 10082.71 18599.84 6998.92 2798.98 8599.43 92
dongtai81.36 33480.61 33283.62 36794.25 26873.32 37995.15 33796.81 20473.56 38069.79 37792.81 28381.00 21286.80 40452.08 40570.06 36890.75 331
Vis-MVSNetpermissive92.64 16291.85 16695.03 16595.12 23588.23 20098.48 18596.81 20491.61 10392.16 17097.22 16871.58 28598.00 20785.85 24297.81 12298.88 143
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMMVS93.62 13993.90 11892.79 23196.79 16481.40 32798.85 13596.81 20491.25 11596.82 8298.15 13177.02 24398.13 19693.15 15996.30 15698.83 149
ADS-MVSNet88.99 23387.30 25294.07 20196.21 18887.56 21687.15 39196.78 20783.01 30989.91 20787.27 37178.87 22997.01 26274.20 34192.27 20597.64 204
balanced_conf0396.83 3296.51 3997.81 3697.60 12295.15 3498.40 19596.77 20893.00 7698.69 2896.19 21489.75 5998.76 16598.45 4299.72 3299.51 82
MVSMamba_PlusPlus95.73 7495.15 8297.44 4797.28 13994.35 5798.26 21096.75 20983.09 30897.84 5695.97 22289.59 6198.48 18097.86 5799.73 3199.49 85
WBMVS91.35 19190.49 19793.94 20796.97 15693.40 7499.27 8496.71 21087.40 23283.10 27091.76 30292.38 2796.23 30788.95 20877.89 30992.17 283
Vis-MVSNet (Re-imp)93.26 15193.00 14394.06 20296.14 19486.71 23798.68 15496.70 21188.30 20389.71 21297.64 14885.43 14296.39 29188.06 21696.32 15499.08 125
Anonymous2023121184.72 30682.65 31890.91 27197.71 11684.55 28897.28 27096.67 21266.88 40079.18 32890.87 32058.47 35796.60 27782.61 28074.20 33891.59 301
Syy-MVS84.10 31984.53 29782.83 37095.14 23365.71 39797.68 25596.66 21386.52 25282.63 27596.84 19268.15 30689.89 39345.62 40891.54 22192.87 265
myMVS_eth3d88.68 24889.07 21987.50 33695.14 23379.74 34397.68 25596.66 21386.52 25282.63 27596.84 19285.22 14689.89 39369.43 36491.54 22192.87 265
EIA-MVS95.11 8995.27 7994.64 18096.34 18286.51 23899.59 4096.62 21592.51 8594.08 14098.64 10286.05 13098.24 19195.07 12198.50 10899.18 114
ETV-MVS96.00 5796.00 5796.00 12696.56 16991.05 12399.63 3796.61 21693.26 7197.39 6498.30 12486.62 11698.13 19698.07 5397.57 12898.82 150
LS3D90.19 21688.72 22794.59 18298.97 7386.33 24696.90 28696.60 21774.96 37484.06 26098.74 9175.78 24699.83 7374.93 33497.57 12897.62 207
EI-MVSNet89.87 22389.38 21491.36 26394.32 26385.87 26397.61 25996.59 21885.10 27385.51 24797.10 17581.30 21096.56 28083.85 26983.03 28591.64 294
MVSTER92.71 16092.32 15593.86 21097.29 13792.95 8799.01 12296.59 21890.09 14685.51 24794.00 25494.61 1596.56 28090.77 18483.03 28592.08 287
cascas90.93 20189.33 21595.76 13595.69 21093.03 8398.99 12496.59 21880.49 34686.79 23894.45 24765.23 33298.60 17493.52 15092.18 20895.66 251
TAPA-MVS87.50 990.35 21189.05 22094.25 19498.48 9585.17 27898.42 19096.58 22182.44 32587.24 23198.53 10882.77 18198.84 16059.09 39697.88 12198.72 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS93.90 12893.62 12594.73 17698.63 9187.00 23298.04 23296.56 22292.19 9492.46 16498.73 9279.49 22499.14 14892.16 16994.34 18098.03 196
PLCcopyleft91.07 394.23 11994.01 10894.87 16999.17 6387.49 21899.25 8696.55 22388.43 19791.26 18698.21 12985.92 13199.86 6389.77 19597.57 12897.24 217
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + GP.96.95 2996.91 2697.07 6198.88 8391.62 10799.58 4196.54 22495.09 3296.84 7998.63 10491.16 3299.77 8899.04 2496.42 15299.81 35
cl2289.57 22788.79 22691.91 25097.94 11087.62 21497.98 23596.51 22585.03 27682.37 28491.79 29983.65 16296.50 28485.96 23877.89 30991.61 299
xiu_mvs_v1_base_debu94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
xiu_mvs_v1_base94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
xiu_mvs_v1_base_debi94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
lupinMVS96.32 4995.94 5897.44 4795.05 24294.87 3999.86 596.50 22693.82 5898.04 5098.77 8885.52 13698.09 19996.98 7598.97 8699.37 96
mvs_anonymous92.50 16791.65 17295.06 16296.60 16889.64 16397.06 28096.44 23086.64 24884.14 25893.93 25782.49 18896.17 31091.47 17396.08 16199.35 99
VDDNet90.08 22088.54 23494.69 17794.41 26087.68 21198.21 21596.40 23176.21 36893.33 15497.75 14154.93 37298.77 16394.71 13190.96 23297.61 208
mvsmamba94.27 11893.91 11795.35 15096.42 17788.61 19397.77 24796.38 23291.17 11794.05 14195.27 23678.41 23597.96 20897.36 6698.40 11299.48 86
HQP3-MVS96.37 23386.29 255
PatchT85.44 29983.19 30992.22 24293.13 29983.00 30783.80 40596.37 23370.62 38690.55 19679.63 40084.81 15194.87 35058.18 39891.59 21898.79 153
HQP-MVS91.50 18591.23 18092.29 24193.95 27486.39 24399.16 9696.37 23393.92 5187.57 22696.67 20173.34 26497.77 22093.82 14686.29 25592.72 267
UnsupCasMVSNet_eth78.90 34776.67 35285.58 35382.81 39574.94 37291.98 36896.31 23684.64 28365.84 39487.71 36451.33 38392.23 38172.89 35156.50 40089.56 357
HQP_MVS91.26 19290.95 18692.16 24593.84 28186.07 25799.02 12096.30 23793.38 6986.99 23396.52 20372.92 27097.75 22693.46 15386.17 25892.67 269
plane_prior596.30 23797.75 22693.46 15386.17 25892.67 269
jason95.40 8394.86 9097.03 6392.91 30194.23 5899.70 2796.30 23793.56 6596.73 8798.52 10981.46 20797.91 20996.08 9898.47 11198.96 133
jason: jason.
CLD-MVS91.06 19890.71 19392.10 24794.05 27386.10 25499.55 4496.29 24094.16 4684.70 25297.17 17369.62 29697.82 21694.74 12986.08 26092.39 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS90.10 21988.69 22894.33 19092.44 30687.97 20799.08 11296.26 24189.65 15786.92 23593.11 27868.09 30796.96 26382.54 28190.15 23998.05 195
DTE-MVSNet84.14 31782.80 31388.14 32988.95 35879.87 34296.81 28996.24 24283.50 30177.60 34192.52 28767.89 31194.24 36172.64 35369.05 37090.32 341
LFMVS92.23 17490.84 18996.42 10298.24 10091.08 12298.24 21296.22 24383.39 30394.74 12798.31 12361.12 34998.85 15994.45 13592.82 19399.32 102
baseline192.61 16491.28 17996.58 9397.05 15494.63 4997.72 25296.20 24489.82 15388.56 21996.85 19186.85 10997.82 21688.42 21080.10 30097.30 214
FMVSNet388.81 24287.08 25693.99 20696.52 17294.59 5098.08 23096.20 24485.85 26182.12 28891.60 30574.05 26095.40 34079.04 30580.24 29791.99 290
sasdasda95.02 9293.96 11398.20 2197.53 12695.92 1798.71 14996.19 24691.78 10095.86 10498.49 11379.53 22299.03 15296.12 9591.42 22799.66 64
canonicalmvs95.02 9293.96 11398.20 2197.53 12695.92 1798.71 14996.19 24691.78 10095.86 10498.49 11379.53 22299.03 15296.12 9591.42 22799.66 64
dmvs_re88.69 24688.06 24290.59 28093.83 28378.68 35295.75 32996.18 24887.99 21484.48 25696.32 21167.52 31396.94 26584.98 25085.49 26496.14 246
MVSFormer94.71 10694.08 10796.61 9095.05 24294.87 3997.77 24796.17 24986.84 24398.04 5098.52 10985.52 13695.99 31689.83 19198.97 8698.96 133
test_djsdf88.26 25487.73 24589.84 30288.05 36882.21 31997.77 24796.17 24986.84 24382.41 28391.95 29872.07 27895.99 31689.83 19184.50 27091.32 312
MS-PatchMatch86.75 27585.92 27289.22 31791.97 31482.47 31896.91 28596.14 25183.74 29677.73 34093.53 26958.19 35897.37 25076.75 32398.35 11387.84 370
CS-MVS95.75 7296.19 4794.40 18797.88 11286.22 24999.66 3596.12 25292.69 8398.07 4898.89 8187.09 10397.59 23696.71 8098.62 10499.39 95
MGCFI-Net94.89 9493.84 12098.06 2997.49 12995.55 2198.64 16096.10 25391.60 10595.75 10898.46 11979.31 22698.98 15695.95 10191.24 23199.65 67
SPE-MVS-test95.98 5996.34 4594.90 16898.06 10787.66 21399.69 3496.10 25393.66 6198.35 4099.05 5786.28 12597.66 23096.96 7698.90 9299.37 96
VDD-MVS91.24 19590.18 20194.45 18697.08 15285.84 26598.40 19596.10 25386.99 23793.36 15398.16 13054.27 37499.20 14196.59 8690.63 23798.31 183
PCF-MVS89.78 591.26 19289.63 20896.16 11995.44 21891.58 11095.29 33596.10 25385.07 27582.75 27297.45 15778.28 23699.78 8780.60 29795.65 16897.12 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_cas_vis1_n_192093.86 13093.74 12394.22 19595.39 22286.08 25599.73 2396.07 25796.38 1797.19 7197.78 13965.46 33199.86 6396.71 8098.92 9096.73 231
test_vis1_n_192093.08 15693.42 13092.04 24996.31 18379.36 34599.83 1096.06 25896.72 998.53 3498.10 13258.57 35699.91 4697.86 5798.79 9996.85 229
MVS_Test93.67 13792.67 14996.69 8696.72 16692.66 9197.22 27596.03 25987.69 22695.12 12194.03 25281.55 20398.28 18889.17 20596.46 15099.14 117
casdiffmvs_mvgpermissive94.00 12393.33 13396.03 12395.22 22690.90 12899.09 11195.99 26090.58 13091.55 18097.37 16079.91 21898.06 20195.01 12395.22 17299.13 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax87.35 26786.51 26489.87 30087.75 37381.74 32397.03 28195.98 26188.47 19180.15 31593.80 26161.47 34696.36 29389.44 19984.47 27191.50 303
PS-MVSNAJss89.54 22889.05 22091.00 26988.77 35984.36 29097.39 26495.97 26288.47 19181.88 29593.80 26182.48 18996.50 28489.34 20183.34 28492.15 284
F-COLMAP92.07 17991.75 17193.02 22598.16 10482.89 31198.79 14595.97 26286.54 25187.92 22397.80 13778.69 23299.65 10185.97 23795.93 16496.53 239
miper_enhance_ethall90.33 21289.70 20792.22 24297.12 14988.93 18498.35 20395.96 26488.60 18983.14 26992.33 28987.38 9496.18 30986.49 23277.89 30991.55 302
TR-MVS90.77 20389.44 21294.76 17396.31 18388.02 20697.92 23795.96 26485.52 26788.22 22297.23 16766.80 31998.09 19984.58 25592.38 20198.17 193
CMPMVSbinary58.40 2180.48 33880.11 33781.59 37685.10 38659.56 40394.14 34895.95 26668.54 39560.71 39993.31 27255.35 36997.87 21383.06 27684.85 26887.33 376
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvsmconf0.01_n94.14 12093.51 12896.04 12286.79 37989.19 16999.28 8395.94 26795.70 2195.50 11398.49 11373.27 26799.79 8598.28 4998.32 11699.15 116
LPG-MVS_test88.86 23788.47 23590.06 29593.35 29580.95 33698.22 21395.94 26787.73 22483.17 26796.11 21766.28 32497.77 22090.19 18985.19 26591.46 305
LGP-MVS_train90.06 29593.35 29580.95 33695.94 26787.73 22483.17 26796.11 21766.28 32497.77 22090.19 18985.19 26591.46 305
OPM-MVS89.76 22489.15 21891.57 26090.53 33785.58 26998.11 22595.93 27092.88 8186.05 24096.47 20667.06 31897.87 21389.29 20486.08 26091.26 315
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mamv491.41 18893.57 12684.91 35897.11 15058.11 40595.68 33195.93 27082.09 33089.78 20995.71 22790.09 5598.24 19197.26 6898.50 10898.38 176
XVG-OURS-SEG-HR90.95 20090.66 19591.83 25295.18 23181.14 33495.92 32095.92 27288.40 19890.33 20297.85 13470.66 29099.38 13192.83 16388.83 24494.98 255
XVG-OURS90.83 20290.49 19791.86 25195.23 22581.25 33195.79 32895.92 27288.96 17990.02 20698.03 13371.60 28499.35 13691.06 17787.78 24894.98 255
tpm89.67 22588.95 22291.82 25392.54 30581.43 32692.95 35895.92 27287.81 21990.50 19889.44 35484.99 14795.65 33283.67 27082.71 28898.38 176
EC-MVSNet95.09 9095.17 8194.84 17195.42 21988.17 20199.48 5395.92 27291.47 10897.34 6698.36 12182.77 18197.41 24797.24 6998.58 10598.94 138
ACMM86.95 1388.77 24388.22 23990.43 28693.61 28781.34 32998.50 18195.92 27287.88 21883.85 26195.20 23967.20 31697.89 21186.90 22884.90 26792.06 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline93.91 12793.30 13495.72 13695.10 23990.07 15097.48 26295.91 27791.03 11893.54 15197.68 14579.58 22098.02 20594.27 13795.14 17399.08 125
mvs_tets87.09 27086.22 26789.71 30687.87 36981.39 32896.73 29595.90 27888.19 20779.99 31793.61 26659.96 35396.31 30189.40 20084.34 27291.43 307
XXY-MVS87.75 26086.02 27092.95 22990.46 33889.70 16297.71 25495.90 27884.02 29080.95 30594.05 24967.51 31497.10 25985.16 24678.41 30692.04 289
nrg03090.23 21488.87 22394.32 19191.53 32593.54 7098.79 14595.89 28088.12 20984.55 25494.61 24678.80 23196.88 26792.35 16875.21 32592.53 271
CNLPA93.64 13892.74 14796.36 10798.96 7690.01 15699.19 9095.89 28086.22 25789.40 21398.85 8480.66 21599.84 6988.57 20996.92 14599.24 109
KD-MVS_2432*160082.98 32580.52 33490.38 28894.32 26388.98 17992.87 36095.87 28280.46 34773.79 36087.49 36882.76 18393.29 36870.56 36046.53 41288.87 365
miper_refine_blended82.98 32580.52 33490.38 28894.32 26388.98 17992.87 36095.87 28280.46 34773.79 36087.49 36882.76 18393.29 36870.56 36046.53 41288.87 365
FMVSNet286.90 27284.79 29193.24 22195.11 23692.54 9597.67 25795.86 28482.94 31280.55 30991.17 31462.89 34195.29 34277.23 31779.71 30391.90 291
casdiffmvspermissive93.98 12593.43 12995.61 14395.07 24189.86 15998.80 14195.84 28590.98 11992.74 16197.66 14779.71 21998.10 19894.72 13095.37 17198.87 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_ETH3D85.65 29883.79 30691.21 26490.41 33980.75 33995.36 33395.78 28678.76 35581.83 29994.33 24849.86 38996.66 27584.30 25883.52 28296.22 245
Effi-MVS+93.87 12993.15 13896.02 12495.79 20690.76 13096.70 29695.78 28686.98 24095.71 10997.17 17379.58 22098.01 20694.57 13496.09 16099.31 103
RRT-MVS93.39 14492.64 15095.64 14096.11 19888.75 19097.40 26395.77 28889.46 16792.70 16295.42 23372.98 26998.81 16196.91 7896.97 14399.37 96
EU-MVSNet84.19 31684.42 30083.52 36888.64 36267.37 39696.04 31895.76 28985.29 27078.44 33593.18 27670.67 28991.48 38775.79 33075.98 32091.70 293
BH-w/o92.32 17091.79 16993.91 20996.85 15986.18 25199.11 11095.74 29088.13 20884.81 25197.00 18277.26 24297.91 20989.16 20698.03 11997.64 204
anonymousdsp86.69 27685.75 27589.53 31186.46 38182.94 30896.39 30395.71 29183.97 29279.63 32290.70 32468.85 30095.94 31986.01 23684.02 27589.72 354
Fast-Effi-MVS+91.72 18390.79 19294.49 18395.89 20287.40 22299.54 4995.70 29285.01 27889.28 21595.68 22877.75 23997.57 24083.22 27295.06 17498.51 169
IS-MVSNet93.00 15792.51 15394.49 18396.14 19487.36 22398.31 20795.70 29288.58 19090.17 20397.50 15483.02 17797.22 25387.06 22296.07 16298.90 142
diffmvspermissive94.59 11094.19 10295.81 13395.54 21590.69 13298.70 15295.68 29491.61 10395.96 9997.81 13680.11 21698.06 20196.52 8895.76 16598.67 162
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v7n84.42 31382.75 31689.43 31588.15 36681.86 32296.75 29395.67 29580.53 34578.38 33689.43 35569.89 29296.35 29873.83 34572.13 35990.07 346
ACMP87.39 1088.71 24588.24 23890.12 29493.91 27981.06 33598.50 18195.67 29589.43 16880.37 31295.55 22965.67 32697.83 21590.55 18684.51 26991.47 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CL-MVSNet_self_test79.89 34278.34 34384.54 36281.56 39775.01 37196.88 28795.62 29781.10 34075.86 34985.81 38068.49 30390.26 39163.21 38556.51 39988.35 367
V4287.00 27185.68 27690.98 27089.91 34286.08 25598.32 20695.61 29883.67 29982.72 27390.67 32674.00 26196.53 28281.94 28774.28 33790.32 341
XVG-ACMP-BASELINE85.86 29184.95 28788.57 32689.90 34377.12 36294.30 34495.60 29987.40 23282.12 28892.99 28153.42 37897.66 23085.02 24983.83 27690.92 324
Anonymous20240521188.84 23887.03 25794.27 19298.14 10584.18 29398.44 18895.58 30076.79 36689.34 21496.88 19053.42 37899.54 11187.53 22187.12 25199.09 124
miper_ehance_all_eth88.94 23588.12 24191.40 26195.32 22386.93 23397.85 24295.55 30184.19 28881.97 29391.50 30784.16 15795.91 32384.69 25377.89 30991.36 310
CANet_DTU94.31 11793.35 13297.20 5997.03 15594.71 4798.62 16395.54 30295.61 2597.21 6998.47 11771.88 28099.84 6988.38 21197.46 13397.04 224
v2v48287.27 26985.76 27491.78 25889.59 34887.58 21598.56 17495.54 30284.53 28482.51 27991.78 30073.11 26896.47 28782.07 28474.14 34091.30 313
BH-untuned91.46 18790.84 18993.33 22096.51 17384.83 28598.84 13795.50 30486.44 25683.50 26296.70 19975.49 24897.77 22086.78 23097.81 12297.40 211
v14886.38 28485.06 28490.37 29089.47 35384.10 29498.52 17795.48 30583.80 29580.93 30690.22 34474.60 25296.31 30180.92 29371.55 36390.69 334
IterMVS-LS88.34 25187.44 24991.04 26894.10 26985.85 26498.10 22695.48 30585.12 27282.03 29291.21 31381.35 20995.63 33383.86 26875.73 32291.63 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dcpmvs_295.67 7696.18 4994.12 19998.82 8584.22 29297.37 26795.45 30790.70 12495.77 10798.63 10490.47 4698.68 17199.20 2099.22 7499.45 89
v114486.83 27485.31 28291.40 26189.75 34687.21 23198.31 20795.45 30783.22 30582.70 27490.78 32173.36 26396.36 29379.49 30274.69 33190.63 336
v119286.32 28584.71 29391.17 26589.53 35186.40 24298.13 22195.44 30982.52 32282.42 28290.62 33071.58 28596.33 30077.23 31774.88 32890.79 328
v14419286.40 28384.89 28890.91 27189.48 35285.59 26898.21 21595.43 31082.45 32482.62 27790.58 33372.79 27396.36 29378.45 31274.04 34190.79 328
Effi-MVS+-dtu89.97 22290.68 19487.81 33295.15 23271.98 38597.87 24195.40 31191.92 9887.57 22691.44 30874.27 25896.84 26889.45 19893.10 19194.60 257
c3_l88.19 25587.23 25491.06 26794.97 24586.17 25297.72 25295.38 31283.43 30281.68 30091.37 30982.81 18095.72 33084.04 26673.70 34291.29 314
eth_miper_zixun_eth87.76 25987.00 25890.06 29594.67 25582.65 31697.02 28395.37 31384.19 28881.86 29891.58 30681.47 20695.90 32483.24 27173.61 34391.61 299
v886.11 28784.45 29891.10 26689.99 34186.85 23497.24 27395.36 31481.99 33179.89 31989.86 35074.53 25496.39 29178.83 30972.32 35790.05 348
v192192086.02 28884.44 29990.77 27789.32 35485.20 27698.10 22695.35 31582.19 32882.25 28690.71 32370.73 28896.30 30476.85 32274.49 33390.80 327
pmmvs487.58 26686.17 26991.80 25489.58 34988.92 18597.25 27295.28 31682.54 32180.49 31093.17 27775.62 24796.05 31582.75 27878.90 30490.42 339
GBi-Net86.67 27784.96 28591.80 25495.11 23688.81 18796.77 29095.25 31782.94 31282.12 28890.25 34162.89 34194.97 34779.04 30580.24 29791.62 296
test186.67 27784.96 28591.80 25495.11 23688.81 18796.77 29095.25 31782.94 31282.12 28890.25 34162.89 34194.97 34779.04 30580.24 29791.62 296
FMVSNet183.94 32081.32 32991.80 25491.94 31788.81 18796.77 29095.25 31777.98 35778.25 33790.25 34150.37 38894.97 34773.27 34877.81 31491.62 296
mvsany_test194.57 11195.09 8692.98 22695.84 20582.07 32198.76 14795.24 32092.87 8296.45 9298.71 9784.81 15199.15 14497.68 6095.49 17097.73 202
cl____87.82 25786.79 26190.89 27394.88 24985.43 27197.81 24395.24 32082.91 31680.71 30891.22 31281.97 20095.84 32581.34 29075.06 32691.40 309
miper_lstm_enhance86.90 27286.20 26889.00 32294.53 25881.19 33296.74 29495.24 32082.33 32680.15 31590.51 33781.99 19894.68 35680.71 29573.58 34591.12 319
UnsupCasMVSNet_bld73.85 36570.14 36984.99 35779.44 40375.73 36888.53 38895.24 32070.12 39061.94 39874.81 40541.41 40193.62 36568.65 36851.13 40885.62 388
v124085.77 29584.11 30290.73 27889.26 35585.15 27997.88 24095.23 32481.89 33482.16 28790.55 33569.60 29796.31 30175.59 33174.87 32990.72 333
DIV-MVS_self_test87.82 25786.81 26090.87 27494.87 25085.39 27397.81 24395.22 32582.92 31580.76 30791.31 31181.99 19895.81 32781.36 28975.04 32791.42 308
v1085.73 29684.01 30490.87 27490.03 34086.73 23697.20 27695.22 32581.25 33979.85 32089.75 35173.30 26696.28 30576.87 32172.64 35389.61 356
test_fmvs192.35 16992.94 14490.57 28197.19 14375.43 37099.55 4494.97 32795.20 3196.82 8297.57 15259.59 35499.84 6997.30 6798.29 11796.46 241
BH-RMVSNet91.25 19489.99 20395.03 16596.75 16588.55 19598.65 15894.95 32887.74 22387.74 22597.80 13768.27 30598.14 19580.53 29897.49 13298.41 173
GeoE90.60 20989.56 20993.72 21595.10 23985.43 27199.41 6894.94 32983.96 29387.21 23296.83 19474.37 25697.05 26180.50 29993.73 18698.67 162
ACMH83.09 1784.60 30882.61 31990.57 28193.18 29882.94 30896.27 30794.92 33081.01 34272.61 37293.61 26656.54 36297.79 21874.31 33981.07 29590.99 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs1_n91.07 19791.41 17790.06 29594.10 26974.31 37499.18 9294.84 33194.81 3396.37 9497.46 15650.86 38799.82 7697.14 7197.90 12096.04 248
test111192.12 17691.19 18194.94 16796.15 19287.36 22398.12 22394.84 33190.85 12190.97 18997.26 16465.60 32998.37 18389.74 19697.14 14299.07 127
ECVR-MVScopyleft92.29 17191.33 17895.15 15996.41 17887.84 20898.10 22694.84 33190.82 12291.42 18497.28 16265.61 32898.49 17990.33 18797.19 13999.12 120
IterMVS85.81 29384.67 29489.22 31793.51 28983.67 30096.32 30694.80 33485.09 27478.69 33090.17 34766.57 32293.17 37079.48 30377.42 31690.81 326
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB81.71 1984.59 30982.72 31790.18 29292.89 30283.18 30693.15 35694.74 33578.99 35275.14 35492.69 28465.64 32797.63 23369.46 36381.82 29389.74 353
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs184.68 30782.78 31590.40 28789.58 34985.18 27797.31 26894.73 33681.93 33376.05 34692.01 29465.48 33096.11 31378.75 31069.14 36989.91 351
IterMVS-SCA-FT85.73 29684.64 29589.00 32293.46 29282.90 31096.27 30794.70 33785.02 27778.62 33290.35 33966.61 32093.33 36779.38 30477.36 31790.76 330
1112_ss92.71 16091.55 17496.20 11495.56 21491.12 11898.48 18594.69 33888.29 20486.89 23698.50 11187.02 10698.66 17284.75 25289.77 24298.81 151
Test_1112_low_res92.27 17390.97 18596.18 11595.53 21691.10 12098.47 18794.66 33988.28 20586.83 23793.50 27087.00 10798.65 17384.69 25389.74 24398.80 152
Fast-Effi-MVS+-dtu88.84 23888.59 23289.58 31093.44 29378.18 35698.65 15894.62 34088.46 19384.12 25995.37 23568.91 29996.52 28382.06 28591.70 21794.06 258
our_test_384.47 31282.80 31389.50 31289.01 35683.90 29797.03 28194.56 34181.33 33875.36 35390.52 33671.69 28394.54 35868.81 36776.84 31890.07 346
ppachtmachnet_test83.63 32381.57 32689.80 30389.01 35685.09 28097.13 27894.50 34278.84 35376.14 34591.00 31669.78 29394.61 35763.40 38474.36 33589.71 355
test_vis1_n90.40 21090.27 20090.79 27691.55 32476.48 36499.12 10994.44 34394.31 4297.34 6696.95 18443.60 39899.42 12697.57 6297.60 12796.47 240
MonoMVSNet90.69 20689.78 20693.45 21791.78 32084.97 28396.51 30094.44 34390.56 13185.96 24290.97 31778.61 23496.27 30695.35 11383.79 27999.11 122
YYNet179.64 34577.04 35087.43 33887.80 37179.98 34196.23 31194.44 34373.83 37951.83 40587.53 36667.96 31092.07 38466.00 37867.75 37690.23 343
MDA-MVSNet_test_wron79.65 34477.05 34987.45 33787.79 37280.13 34096.25 31094.44 34373.87 37851.80 40687.47 37068.04 30892.12 38366.02 37767.79 37590.09 344
MIMVSNet84.48 31181.83 32392.42 24091.73 32287.36 22385.52 39494.42 34781.40 33781.91 29487.58 36551.92 38192.81 37373.84 34488.15 24697.08 223
MVP-Stereo86.61 27985.83 27388.93 32488.70 36183.85 29896.07 31794.41 34882.15 32975.64 35191.96 29767.65 31296.45 28977.20 31998.72 10086.51 382
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG88.29 25386.37 26594.04 20496.90 15886.15 25396.52 29994.36 34977.89 36179.22 32796.95 18469.72 29499.59 10773.20 34992.58 19996.37 244
ACMH+83.78 1584.21 31582.56 32189.15 31993.73 28679.16 34796.43 30294.28 35081.09 34174.00 35994.03 25254.58 37397.67 22976.10 32778.81 30590.63 336
Patchmatch-test86.25 28684.06 30392.82 23094.42 25982.88 31282.88 40694.23 35171.58 38379.39 32590.62 33089.00 6796.42 29063.03 38691.37 22999.16 115
CR-MVSNet88.83 24087.38 25193.16 22393.47 29086.24 24784.97 39994.20 35288.92 18390.76 19386.88 37584.43 15494.82 35270.64 35992.17 20998.41 173
Patchmtry83.61 32481.64 32489.50 31293.36 29482.84 31384.10 40294.20 35269.47 39379.57 32386.88 37584.43 15494.78 35368.48 36974.30 33690.88 325
EG-PatchMatch MVS79.92 34077.59 34686.90 34287.06 37877.90 36096.20 31494.06 35474.61 37566.53 39288.76 35940.40 40396.20 30867.02 37483.66 28086.61 380
KD-MVS_self_test77.47 35675.88 35582.24 37181.59 39668.93 39492.83 36294.02 35577.03 36373.14 36683.39 38555.44 36890.42 39067.95 37057.53 39887.38 374
K. test v381.04 33679.77 33984.83 35987.41 37470.23 39195.60 33293.93 35683.70 29867.51 38889.35 35655.76 36493.58 36676.67 32468.03 37390.67 335
RPSCF85.33 30085.55 27884.67 36194.63 25762.28 40093.73 35193.76 35774.38 37785.23 25097.06 17864.09 33598.31 18580.98 29186.08 26093.41 263
MVS-HIRNet79.01 34675.13 35990.66 27993.82 28481.69 32485.16 39693.75 35854.54 40674.17 35859.15 41257.46 36096.58 27963.74 38394.38 17893.72 260
pmmvs585.87 29084.40 30190.30 29188.53 36384.23 29198.60 16993.71 35981.53 33680.29 31392.02 29364.51 33495.52 33582.04 28678.34 30791.15 318
pmmvs679.90 34177.31 34887.67 33384.17 38978.13 35795.86 32593.68 36067.94 39772.67 37189.62 35350.98 38695.75 32874.80 33766.04 38089.14 362
OurMVSNet-221017-084.13 31883.59 30785.77 35287.81 37070.24 39094.89 33993.65 36186.08 25876.53 34393.28 27461.41 34796.14 31280.95 29277.69 31590.93 323
Anonymous2024052178.63 35076.90 35183.82 36582.82 39472.86 38195.72 33093.57 36273.55 38172.17 37384.79 38249.69 39092.51 37865.29 38074.50 33286.09 385
DP-MVS88.75 24486.56 26395.34 15198.92 8187.45 22097.64 25893.52 36370.55 38781.49 30197.25 16674.43 25599.88 5471.14 35894.09 18198.67 162
ITE_SJBPF87.93 33092.26 30976.44 36593.47 36487.67 22779.95 31895.49 23256.50 36397.38 24875.24 33282.33 29189.98 350
USDC84.74 30582.93 31190.16 29391.73 32283.54 30295.00 33893.30 36588.77 18673.19 36593.30 27353.62 37797.65 23275.88 32981.54 29489.30 359
ADS-MVSNet287.62 26586.88 25989.86 30196.21 18879.14 34887.15 39192.99 36683.01 30989.91 20787.27 37178.87 22992.80 37474.20 34192.27 20597.64 204
Anonymous2023120680.76 33779.42 34184.79 36084.78 38772.98 38096.53 29892.97 36779.56 35074.33 35688.83 35861.27 34892.15 38260.59 39275.92 32189.24 361
MDA-MVSNet-bldmvs77.82 35574.75 36187.03 34088.33 36478.52 35496.34 30592.85 36875.57 37148.87 40887.89 36357.32 36192.49 37960.79 39164.80 38490.08 345
test20.0378.51 35177.48 34781.62 37583.07 39371.03 38796.11 31692.83 36981.66 33569.31 38089.68 35257.53 35987.29 40358.65 39768.47 37186.53 381
COLMAP_ROBcopyleft82.69 1884.54 31082.82 31289.70 30796.72 16678.85 34995.89 32192.83 36971.55 38477.54 34295.89 22459.40 35599.14 14867.26 37388.26 24591.11 320
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs285.10 30285.45 28084.02 36489.85 34565.63 39898.49 18392.59 37190.45 13585.43 24993.32 27143.94 39696.59 27890.81 18284.19 27389.85 352
SixPastTwentyTwo82.63 32781.58 32585.79 35188.12 36771.01 38895.17 33692.54 37284.33 28772.93 37092.08 29160.41 35295.61 33474.47 33874.15 33990.75 331
FMVSNet582.29 32880.54 33387.52 33593.79 28584.01 29593.73 35192.47 37376.92 36474.27 35786.15 37963.69 33989.24 39869.07 36674.79 33089.29 360
new-patchmatchnet74.80 36472.40 36781.99 37478.36 40572.20 38494.44 34292.36 37477.06 36263.47 39679.98 39951.04 38588.85 39960.53 39354.35 40284.92 395
new_pmnet76.02 35973.71 36382.95 36983.88 39072.85 38291.26 37892.26 37570.44 38862.60 39781.37 39347.64 39392.32 38061.85 38872.10 36083.68 398
AllTest84.97 30483.12 31090.52 28496.82 16078.84 35095.89 32192.17 37677.96 35975.94 34795.50 23055.48 36699.18 14271.15 35687.14 24993.55 261
TestCases90.52 28496.82 16078.84 35092.17 37677.96 35975.94 34795.50 23055.48 36699.18 14271.15 35687.14 24993.55 261
pmmvs-eth3d78.71 34976.16 35486.38 34480.25 40281.19 33294.17 34792.13 37877.97 35866.90 39182.31 39055.76 36492.56 37773.63 34762.31 38985.38 390
MIMVSNet175.92 36073.30 36583.81 36681.29 39875.57 36992.26 36692.05 37973.09 38267.48 38986.18 37840.87 40287.64 40255.78 40070.68 36788.21 368
ambc79.60 37972.76 41256.61 40676.20 41092.01 38068.25 38480.23 39823.34 41194.73 35473.78 34660.81 39287.48 373
LF4IMVS81.94 33181.17 33084.25 36387.23 37768.87 39593.35 35591.93 38183.35 30475.40 35293.00 28049.25 39296.65 27678.88 30878.11 30887.22 378
TransMVSNet (Re)81.97 33079.61 34089.08 32089.70 34784.01 29597.26 27191.85 38278.84 35373.07 36991.62 30467.17 31795.21 34467.50 37259.46 39588.02 369
MVStest176.56 35873.43 36485.96 35086.30 38380.88 33894.26 34591.74 38361.98 40558.53 40189.96 34869.30 29891.47 38859.26 39549.56 41085.52 389
Baseline_NR-MVSNet85.83 29284.82 29088.87 32588.73 36083.34 30498.63 16291.66 38480.41 34982.44 28091.35 31074.63 25095.42 33984.13 26271.39 36487.84 370
mmtdpeth83.69 32182.59 32086.99 34192.82 30376.98 36396.16 31591.63 38582.89 31792.41 16682.90 38654.95 37198.19 19396.27 9153.27 40485.81 386
testgi82.29 32881.00 33186.17 34787.24 37674.84 37397.39 26491.62 38688.63 18775.85 35095.42 23346.07 39591.55 38666.87 37679.94 30192.12 285
TDRefinement78.01 35375.31 35786.10 34870.06 41373.84 37693.59 35491.58 38774.51 37673.08 36891.04 31549.63 39197.12 25674.88 33559.47 39487.33 376
OpenMVS_ROBcopyleft73.86 2077.99 35475.06 36086.77 34383.81 39177.94 35996.38 30491.53 38867.54 39868.38 38387.13 37443.94 39696.08 31455.03 40181.83 29286.29 384
ttmdpeth79.80 34377.91 34585.47 35483.34 39275.75 36795.32 33491.45 38976.84 36574.81 35591.71 30353.98 37694.13 36272.42 35461.29 39086.51 382
test_040278.81 34876.33 35386.26 34691.18 33078.44 35595.88 32391.34 39068.55 39470.51 37689.91 34952.65 38094.99 34647.14 40779.78 30285.34 392
MTMP99.21 8891.09 391
DeepMVS_CXcopyleft76.08 38190.74 33651.65 41490.84 39286.47 25557.89 40287.98 36235.88 40692.60 37565.77 37965.06 38383.97 397
test_fmvs375.09 36275.19 35874.81 38377.45 40654.08 40995.93 31990.64 39382.51 32373.29 36481.19 39422.29 41286.29 40585.50 24467.89 37484.06 396
lessismore_v085.08 35685.59 38569.28 39390.56 39467.68 38790.21 34554.21 37595.46 33773.88 34362.64 38790.50 338
Gipumacopyleft54.77 38052.22 38462.40 39786.50 38059.37 40450.20 41590.35 39536.52 41341.20 41449.49 41518.33 41681.29 40832.10 41465.34 38246.54 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TinyColmap80.42 33977.94 34487.85 33192.09 31278.58 35393.74 35089.94 39674.99 37369.77 37891.78 30046.09 39497.58 23765.17 38177.89 30987.38 374
test_method70.10 36968.66 37274.41 38586.30 38355.84 40794.47 34189.82 39735.18 41466.15 39384.75 38330.54 40877.96 41570.40 36260.33 39389.44 358
FPMVS61.57 37360.32 37665.34 39360.14 42042.44 42191.02 38189.72 39844.15 40942.63 41280.93 39519.02 41480.59 41242.50 40972.76 35273.00 406
test_f71.94 36770.82 36875.30 38272.77 41153.28 41091.62 37289.66 39975.44 37264.47 39578.31 40220.48 41389.56 39678.63 31166.02 38183.05 401
LCM-MVSNet60.07 37656.37 37871.18 38754.81 42248.67 41582.17 40789.48 40037.95 41249.13 40769.12 40613.75 42081.76 40759.28 39451.63 40783.10 400
mvs5depth78.17 35275.56 35685.97 34980.43 40176.44 36585.46 39589.24 40176.39 36778.17 33988.26 36151.73 38295.73 32969.31 36561.09 39185.73 387
pmmvs372.86 36669.76 37182.17 37273.86 40974.19 37594.20 34689.01 40264.23 40467.72 38680.91 39741.48 40088.65 40062.40 38754.02 40383.68 398
LCM-MVSNet-Re88.59 24988.61 23088.51 32795.53 21672.68 38396.85 28888.43 40388.45 19473.14 36690.63 32975.82 24594.38 35992.95 16095.71 16798.48 171
Patchmatch-RL test81.90 33280.13 33687.23 33980.71 39970.12 39284.07 40388.19 40483.16 30770.57 37482.18 39187.18 10192.59 37682.28 28362.78 38698.98 131
mvsany_test375.85 36174.52 36279.83 37873.53 41060.64 40291.73 37187.87 40583.91 29470.55 37582.52 38831.12 40793.66 36486.66 23162.83 38585.19 394
DSMNet-mixed81.60 33381.43 32782.10 37384.36 38860.79 40193.63 35386.74 40679.00 35179.32 32687.15 37363.87 33789.78 39566.89 37591.92 21195.73 250
PM-MVS74.88 36372.85 36680.98 37778.98 40464.75 39990.81 38285.77 40780.95 34368.23 38582.81 38729.08 40992.84 37276.54 32562.46 38885.36 391
door85.30 408
APD_test168.93 37066.98 37374.77 38480.62 40053.15 41187.97 38985.01 40953.76 40759.26 40087.52 36725.19 41089.95 39256.20 39967.33 37781.19 402
door-mid84.90 410
EGC-MVSNET60.70 37555.37 37976.72 38086.35 38271.08 38689.96 38684.44 4110.38 4231.50 42484.09 38437.30 40488.10 40140.85 41273.44 34870.97 408
WB-MVS66.44 37166.29 37466.89 39174.84 40744.93 41893.00 35784.09 41271.15 38555.82 40381.63 39263.79 33880.31 41321.85 41750.47 40975.43 404
SSC-MVS65.42 37265.20 37566.06 39273.96 40843.83 41992.08 36783.54 41369.77 39154.73 40480.92 39663.30 34079.92 41420.48 41848.02 41174.44 405
dmvs_testset77.17 35778.99 34271.71 38687.25 37538.55 42391.44 37581.76 41485.77 26369.49 37995.94 22369.71 29584.37 40652.71 40476.82 31992.21 281
PMMVS258.97 37755.07 38070.69 38962.72 41755.37 40885.97 39380.52 41549.48 40845.94 40968.31 40715.73 41880.78 41149.79 40637.12 41475.91 403
ANet_high50.71 38246.17 38564.33 39444.27 42452.30 41376.13 41178.73 41664.95 40227.37 41755.23 41414.61 41967.74 41736.01 41318.23 41772.95 407
PMVScopyleft41.42 2345.67 38342.50 38655.17 39934.28 42532.37 42566.24 41378.71 41730.72 41522.04 42059.59 4114.59 42477.85 41627.49 41558.84 39655.29 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt81.31 33580.05 33885.11 35591.29 32970.66 38998.98 12677.39 41885.76 26468.80 38182.40 38936.56 40599.44 12292.67 16586.55 25485.24 393
tmp_tt53.66 38152.86 38356.05 39832.75 42641.97 42273.42 41276.12 41921.91 41939.68 41596.39 20942.59 39965.10 41878.00 31414.92 41961.08 411
testf156.38 37853.73 38164.31 39564.84 41545.11 41680.50 40875.94 42038.87 41042.74 41075.07 40311.26 42281.19 40941.11 41053.27 40466.63 409
APD_test256.38 37853.73 38164.31 39564.84 41545.11 41680.50 40875.94 42038.87 41042.74 41075.07 40311.26 42281.19 40941.11 41053.27 40466.63 409
MVEpermissive44.00 2241.70 38437.64 38953.90 40049.46 42343.37 42065.09 41466.66 42226.19 41825.77 41948.53 4163.58 42663.35 41926.15 41627.28 41554.97 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 38540.93 38741.29 40161.97 41833.83 42484.00 40465.17 42327.17 41627.56 41646.72 41717.63 41760.41 42019.32 41918.82 41629.61 416
EMVS39.96 38639.88 38840.18 40259.57 42132.12 42684.79 40164.57 42426.27 41726.14 41844.18 42018.73 41559.29 42117.03 42017.67 41829.12 417
test_vis3_rt61.29 37458.75 37768.92 39067.41 41452.84 41291.18 38059.23 42566.96 39941.96 41358.44 41311.37 42194.72 35574.25 34057.97 39759.20 412
N_pmnet70.19 36869.87 37071.12 38888.24 36530.63 42795.85 32628.70 42670.18 38968.73 38286.55 37764.04 33693.81 36353.12 40373.46 34788.94 363
wuyk23d16.71 38916.73 39316.65 40360.15 41925.22 42841.24 4165.17 4276.56 4205.48 4233.61 4233.64 42522.72 42215.20 4219.52 4201.99 420
testmvs18.81 38823.05 3916.10 4054.48 4272.29 43097.78 2453.00 4283.27 42118.60 42162.71 4091.53 4282.49 42414.26 4221.80 42113.50 419
test12316.58 39019.47 3927.91 4043.59 4285.37 42994.32 3431.39 4292.49 42213.98 42244.60 4192.91 4272.65 42311.35 4230.57 42215.70 418
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.87 3929.16 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42482.48 1890.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
n20.00 430
nn0.00 430
ab-mvs-re8.21 39110.94 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42598.50 1110.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS79.74 34367.75 371
PC_three_145294.60 3799.41 499.12 4995.50 799.96 2899.84 299.92 399.97 7
eth-test20.00 429
eth-test0.00 429
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3395.12 899.97 2199.90 199.92 399.99 1
test_0728_THIRD93.01 7499.07 1599.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
GSMVS98.84 146
test_part299.54 3695.42 2298.13 44
sam_mvs188.39 7698.84 146
sam_mvs87.08 104
test_post190.74 38441.37 42185.38 14396.36 29383.16 273
test_post46.00 41887.37 9597.11 257
patchmatchnet-post84.86 38188.73 7296.81 270
gm-plane-assit94.69 25488.14 20288.22 20697.20 16998.29 18790.79 183
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5999.87 999.91 21
test_prior492.00 10199.41 68
test_prior299.57 4291.43 11098.12 4698.97 6590.43 4798.33 4699.81 23
旧先验298.67 15685.75 26598.96 2098.97 15793.84 144
新几何298.26 210
原ACMM298.69 153
testdata299.88 5484.16 261
segment_acmp90.56 45
testdata197.89 23892.43 87
plane_prior793.84 28185.73 266
plane_prior693.92 27886.02 25972.92 270
plane_prior496.52 203
plane_prior385.91 26193.65 6286.99 233
plane_prior299.02 12093.38 69
plane_prior193.90 280
plane_prior86.07 25799.14 10493.81 5986.26 257
HQP5-MVS86.39 243
HQP-NCC93.95 27499.16 9693.92 5187.57 226
ACMP_Plane93.95 27499.16 9693.92 5187.57 226
BP-MVS93.82 146
HQP4-MVS87.57 22697.77 22092.72 267
HQP2-MVS73.34 264
NP-MVS93.94 27786.22 24996.67 201
MDTV_nov1_ep13_2view91.17 11791.38 37687.45 23193.08 15786.67 11587.02 22398.95 137
ACMMP++_ref82.64 289
ACMMP++83.83 276
Test By Simon83.62 163