This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR96.69 3896.69 3596.72 9098.58 10491.00 12699.14 9199.45 193.86 3795.15 11098.73 9388.48 7399.76 7397.23 5499.56 5999.40 95
thres100view90093.34 13392.15 14496.90 7797.62 12894.84 3899.06 10099.36 287.96 19790.47 17796.78 18083.29 16298.75 15384.11 23890.69 20997.12 205
tfpn200view993.43 12992.27 14096.90 7797.68 12694.84 3899.18 7999.36 288.45 17890.79 16996.90 17583.31 16098.75 15384.11 23890.69 20997.12 205
thres600view793.18 13992.00 14796.75 8697.62 12894.92 3399.07 9899.36 287.96 19790.47 17796.78 18083.29 16298.71 15782.93 25290.47 21396.61 214
thres40093.39 13192.27 14096.73 8897.68 12694.84 3899.18 7999.36 288.45 17890.79 16996.90 17583.31 16098.75 15384.11 23890.69 20996.61 214
thres20093.69 12092.59 13596.97 7297.76 12394.74 4399.35 6799.36 289.23 15591.21 16596.97 17283.42 15998.77 15185.08 22390.96 20797.39 199
MVS_111021_LR95.78 7095.94 6095.28 14298.19 11387.69 19498.80 12699.26 793.39 4895.04 11298.69 9984.09 15199.76 7396.96 6199.06 8798.38 171
sss94.85 9193.94 10797.58 4396.43 16794.09 6098.93 11399.16 889.50 14995.27 10797.85 13081.50 19299.65 8992.79 14494.02 17098.99 127
MG-MVS97.24 1996.83 3198.47 1499.79 595.71 1799.07 9899.06 994.45 2496.42 8498.70 9888.81 6899.74 7595.35 9699.86 1299.97 7
test250694.80 9294.21 9596.58 9796.41 16892.18 9998.01 21498.96 1090.82 10893.46 13697.28 15485.92 12898.45 16389.82 17197.19 13299.12 118
PVSNet87.13 1293.69 12092.83 13096.28 11197.99 11990.22 14299.38 6298.93 1191.42 9593.66 13497.68 14071.29 26899.64 9187.94 19797.20 13198.98 128
PGM-MVS95.85 6795.65 7296.45 10499.50 4789.77 15798.22 19398.90 1289.19 15696.74 7798.95 7485.91 13099.92 4193.94 12299.46 6499.66 70
EPNet96.82 3696.68 3697.25 5898.65 10093.10 7999.48 4398.76 1396.54 597.84 5198.22 12487.49 9099.66 8595.35 9697.78 12199.00 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS95.97 6295.11 8198.54 1297.62 12896.65 899.44 5398.74 1492.25 7695.21 10898.46 11786.56 11699.46 11695.00 10492.69 18199.50 87
HY-MVS88.56 795.29 8194.23 9498.48 1397.72 12496.41 1294.03 32098.74 1492.42 7195.65 10294.76 22186.52 11799.49 10995.29 9892.97 17799.53 83
VNet95.08 8794.26 9397.55 4698.07 11693.88 6298.68 14098.73 1690.33 12297.16 6397.43 15179.19 20899.53 10296.91 6391.85 19699.24 109
test_yl95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22594.65 11897.74 13787.78 8499.44 11795.57 9292.61 18299.44 93
DCV-MVSNet95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22594.65 11897.74 13787.78 8499.44 11795.57 9292.61 18299.44 93
PVSNet_083.28 1687.31 24585.16 25993.74 19894.78 23384.59 27198.91 11698.69 1989.81 13878.59 30893.23 25161.95 32099.34 13194.75 10855.72 36597.30 201
ACMMPcopyleft94.67 9994.30 9295.79 12799.25 6988.13 18798.41 17498.67 2090.38 12091.43 15998.72 9582.22 18499.95 3493.83 12695.76 15699.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
D2MVS87.96 23387.39 22589.70 28591.84 29083.40 28698.31 18898.49 2188.04 19578.23 31290.26 31073.57 24496.79 24484.21 23583.53 25588.90 337
HyFIR lowres test93.68 12293.29 11894.87 15497.57 13288.04 18998.18 19798.47 2287.57 21091.24 16495.05 21485.49 13597.46 21993.22 13692.82 17899.10 120
UniMVSNet (Re)89.50 20688.32 21493.03 20892.21 28390.96 12798.90 11798.39 2389.13 15883.22 24192.03 26681.69 19096.34 27486.79 20972.53 32691.81 266
CHOSEN 280x42096.80 3796.85 2996.66 9497.85 12294.42 5294.76 31298.36 2492.50 6695.62 10397.52 14797.92 197.38 22498.31 3998.80 10198.20 182
VPA-MVSNet89.10 20887.66 22193.45 20292.56 27891.02 12597.97 21798.32 2586.92 22186.03 22092.01 26868.84 28097.10 23290.92 15875.34 29692.23 250
CHOSEN 1792x268894.35 10693.82 11095.95 12397.40 13588.74 17798.41 17498.27 2692.18 7891.43 15996.40 19078.88 20999.81 6793.59 13097.81 11899.30 104
patch_mono-297.10 2797.97 894.49 16799.21 7383.73 28399.62 2898.25 2795.28 1899.38 498.91 8092.28 2899.94 3799.61 899.22 8399.78 42
FIs90.70 18389.87 18293.18 20692.29 28191.12 11998.17 19998.25 2789.11 15983.44 23994.82 21982.26 18396.17 28587.76 19882.76 26292.25 248
UGNet91.91 16390.85 16995.10 14597.06 15088.69 17898.01 21498.24 2992.41 7292.39 14893.61 24360.52 32599.68 8388.14 19397.25 13096.92 212
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.22 19189.40 19092.67 21891.78 29189.86 15597.89 21998.22 3088.81 16982.96 24794.66 22281.90 18995.96 29485.89 21982.52 26592.20 253
MVS_030484.13 29282.66 29188.52 30693.07 27480.15 32295.81 30398.21 3179.27 32086.85 21486.40 34541.33 36794.69 32976.36 29986.69 22690.73 306
WR-MVS_H86.53 25885.49 25689.66 28891.04 30083.31 28897.53 24098.20 3284.95 25479.64 29590.90 28978.01 21795.33 31576.29 30072.81 32290.35 314
MVS93.92 11392.28 13998.83 695.69 19496.82 796.22 28998.17 3384.89 25584.34 23298.61 10579.32 20799.83 6293.88 12499.43 6899.86 32
PAPM96.35 4995.94 6097.58 4394.10 24595.25 2398.93 11398.17 3394.26 2593.94 12998.72 9589.68 5997.88 18996.36 7599.29 7899.62 76
baseline294.04 11093.80 11194.74 16093.07 27490.25 14098.12 20298.16 3589.86 13586.53 21896.95 17395.56 698.05 18191.44 15294.53 16595.93 225
UniMVSNet_NR-MVSNet89.60 20388.55 21092.75 21592.17 28490.07 14798.74 13298.15 3688.37 18483.21 24293.98 23382.86 17095.93 29686.95 20672.47 32792.25 248
CSCG94.87 9094.71 8595.36 13999.54 4086.49 22499.34 6998.15 3682.71 28990.15 18299.25 2789.48 6199.86 5794.97 10598.82 10099.72 59
MSLP-MVS++97.50 1597.45 1497.63 4199.65 1993.21 7599.70 1698.13 3894.61 2097.78 5299.46 1189.85 5599.81 6797.97 4499.91 699.88 28
h-mvs3392.47 15391.95 14994.05 18797.13 14685.01 26598.36 18398.08 3993.85 3896.27 8596.73 18283.19 16599.43 11995.81 8568.09 34397.70 191
IB-MVS89.43 692.12 15990.83 17295.98 12295.40 20590.78 13099.81 598.06 4091.23 10085.63 22293.66 24290.63 4198.78 15091.22 15371.85 33398.36 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PHI-MVS96.65 4096.46 4097.21 5999.34 5891.77 10199.70 1698.05 4186.48 23198.05 4399.20 3389.33 6299.96 3098.38 3499.62 5199.90 24
PVSNet_BlendedMVS93.36 13293.20 12093.84 19498.77 9791.61 10799.47 4598.04 4291.44 9294.21 12492.63 26283.50 15699.87 5297.41 5083.37 25790.05 322
PVSNet_Blended95.94 6495.66 7096.75 8698.77 9791.61 10799.88 198.04 4293.64 4594.21 12497.76 13583.50 15699.87 5297.41 5097.75 12298.79 149
EPMVS92.59 15091.59 15695.59 13397.22 14190.03 15191.78 33898.04 4290.42 11991.66 15490.65 29886.49 11997.46 21981.78 26396.31 14599.28 106
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1999.90 799.96 10
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1697.98 4697.18 295.96 9199.33 2392.62 26100.00 198.99 1999.93 199.98 6
Regformer-196.97 3096.80 3297.47 4799.46 5293.11 7898.89 11897.94 4792.89 5996.90 6699.02 6189.78 5699.53 10297.06 5599.26 8099.75 53
Regformer-296.94 3396.78 3397.42 4999.46 5292.97 8598.89 11897.93 4892.86 6196.88 6799.02 6189.74 5899.53 10297.03 5699.26 8099.75 53
131493.44 12891.98 14897.84 3395.24 20794.38 5396.22 28997.92 4990.18 12782.28 26097.71 13977.63 21999.80 6991.94 14998.67 10599.34 101
Regformer-396.50 4496.36 4396.91 7699.34 5891.72 10498.71 13397.90 5092.48 6796.00 8898.95 7488.60 7099.52 10596.44 7398.83 9899.49 88
Regformer-496.45 4796.33 4696.81 8399.34 5891.44 11198.71 13397.88 5192.43 6895.97 9098.95 7488.42 7499.51 10696.40 7498.83 9899.49 88
NCCC98.12 598.11 398.13 2399.76 694.46 4999.81 597.88 5196.54 598.84 1899.46 1192.55 2799.98 1098.25 4099.93 199.94 18
tfpnnormal83.65 29581.35 30190.56 26191.37 29788.06 18897.29 24897.87 5378.51 32676.20 31790.91 28864.78 31096.47 26161.71 35673.50 31787.13 351
3Dnovator87.35 1193.17 14091.77 15397.37 5495.41 20493.07 8098.82 12497.85 5491.53 8982.56 25397.58 14671.97 26099.82 6591.01 15799.23 8299.22 112
WR-MVS88.54 22587.22 23092.52 21991.93 28989.50 16198.56 15797.84 5586.99 21781.87 27193.81 23774.25 24195.92 29885.29 22174.43 30692.12 256
DELS-MVS97.12 2596.60 3798.68 1098.03 11896.57 1099.84 397.84 5596.36 895.20 10998.24 12388.17 7899.83 6296.11 8099.60 5699.64 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set95.76 7295.63 7496.17 11599.14 7790.33 13898.49 16697.82 5791.92 8294.75 11598.88 8487.06 10299.48 11495.40 9597.17 13498.70 156
无先验98.52 15997.82 5787.20 21699.90 4587.64 20099.85 33
EPNet_dtu92.28 15692.15 14492.70 21697.29 13984.84 26798.64 14697.82 5792.91 5893.02 14297.02 17085.48 13795.70 30672.25 32694.89 16397.55 197
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HFP-MVS96.42 4896.26 4796.90 7799.69 990.96 12799.47 4597.81 6090.54 11696.88 6799.05 5787.57 8799.96 3095.65 8799.72 3499.78 42
#test#96.48 4596.34 4496.90 7799.69 990.96 12799.53 4097.81 6090.94 10596.88 6799.05 5787.57 8799.96 3095.87 8499.72 3499.78 42
EI-MVSNet-UG-set95.43 7795.29 7695.86 12599.07 8389.87 15498.43 17197.80 6291.78 8594.11 12698.77 8986.25 12599.48 11494.95 10696.45 14198.22 180
ACMMPR96.28 5396.14 5696.73 8899.68 1290.47 13799.47 4597.80 6290.54 11696.83 7599.03 6086.51 11899.95 3495.65 8799.72 3499.75 53
MAR-MVS94.43 10594.09 10095.45 13699.10 8187.47 20298.39 18197.79 6488.37 18494.02 12899.17 3978.64 21499.91 4392.48 14598.85 9798.96 130
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS97.86 897.25 1999.68 198.25 10999.10 199.76 1197.78 6596.61 498.15 3699.53 793.62 17100.00 191.79 15099.80 2799.94 18
API-MVS94.78 9394.18 9896.59 9699.21 7390.06 15098.80 12697.78 6583.59 27493.85 13199.21 3283.79 15399.97 2392.37 14699.00 9099.74 56
新几何197.40 5198.92 9092.51 9597.77 6785.52 24196.69 7999.06 5688.08 8199.89 4884.88 22799.62 5199.79 38
HPM-MVS++copyleft97.72 1097.59 1198.14 2299.53 4594.76 4299.19 7797.75 6895.66 1398.21 3599.29 2491.10 3399.99 597.68 4899.87 999.68 66
112195.19 8494.45 9097.42 4998.88 9292.58 9396.22 28997.75 6885.50 24396.86 7099.01 6588.59 7299.90 4587.64 20099.60 5699.79 38
testtj97.23 2197.05 2297.75 3899.75 793.34 7399.16 8297.74 7091.28 9898.40 3099.29 2489.95 5499.98 1098.20 4199.70 3999.94 18
GG-mvs-BLEND96.98 7196.53 16494.81 4187.20 35197.74 7093.91 13096.40 19096.56 296.94 23895.08 10198.95 9499.20 113
gg-mvs-nofinetune90.00 19787.71 22096.89 8296.15 18194.69 4685.15 35797.74 7068.32 35992.97 14360.16 36996.10 396.84 24093.89 12398.87 9699.14 116
旧先验198.97 8692.90 8797.74 7099.15 4391.05 3499.33 7499.60 78
IU-MVS99.63 2195.38 2197.73 7495.54 1599.54 199.69 599.81 2399.99 1
ETH3 D test640097.67 1197.33 1898.69 999.69 996.43 1199.63 2697.73 7491.05 10198.66 2399.53 790.59 4299.71 7899.32 1299.80 2799.91 22
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 897.72 7694.17 2699.30 699.54 393.32 1999.98 1099.70 399.81 2399.99 1
test_241102_TWO97.72 7694.17 2699.23 899.54 393.14 2499.98 1099.70 399.82 1999.99 1
test_241102_ONE99.63 2195.24 2497.72 7694.16 2899.30 699.49 1093.32 1999.98 10
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7397.72 7694.50 2298.64 2499.54 393.32 1999.97 2399.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS93.56 196.55 4397.84 1092.68 21798.71 9978.11 33699.70 1697.71 8098.18 197.36 5999.76 190.37 5099.94 3799.27 1399.54 6199.99 1
test072699.66 1595.20 2999.77 897.70 8193.95 3199.35 599.54 393.18 22
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14399.41 5997.70 8195.46 1798.60 2599.19 3495.71 499.49 10998.15 4299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8399.98 1099.55 1099.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8399.98 1099.55 1099.83 1599.96 10
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3597.68 8593.01 5399.23 899.45 1695.12 899.98 1099.25 1599.92 399.97 7
test_0728_SECOND98.77 799.66 1596.37 1399.72 1397.68 8599.98 1099.64 699.82 1999.96 10
test1197.68 85
TEST999.57 3793.17 7699.38 6297.66 8889.57 14698.39 3199.18 3790.88 3799.66 85
train_agg97.20 2397.08 2197.57 4599.57 3793.17 7699.38 6297.66 8890.18 12798.39 3199.18 3790.94 3599.66 8598.58 2899.85 1399.88 28
region2R96.30 5296.17 5296.70 9199.70 890.31 13999.46 5097.66 8890.55 11597.07 6499.07 5486.85 10699.97 2395.43 9499.74 3299.81 35
SteuartSystems-ACMMP97.25 1897.34 1797.01 6597.38 13691.46 11099.75 1297.66 8894.14 3098.13 3799.26 2692.16 2999.66 8597.91 4699.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
EPP-MVSNet93.75 11993.67 11294.01 18995.86 18985.70 25198.67 14297.66 8884.46 26091.36 16297.18 16391.16 3197.79 19592.93 14093.75 17198.53 163
SMA-MVScopyleft97.24 1996.99 2598.00 3099.30 6594.20 5699.16 8297.65 9389.55 14899.22 1099.52 990.34 5199.99 598.32 3899.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_one_060199.59 3194.89 3497.64 9493.14 5298.93 1699.45 1693.45 18
test_899.55 3993.07 8099.37 6597.64 9490.18 12798.36 3399.19 3490.94 3599.64 91
agg_prior197.12 2597.03 2397.38 5399.54 4092.66 8899.35 6797.64 9490.38 12097.98 4799.17 3990.84 3999.61 9498.57 2999.78 3199.87 31
agg_prior99.54 4092.66 8897.64 9497.98 4799.61 94
DeepC-MVS_fast93.52 297.16 2496.84 3098.13 2399.61 2794.45 5098.85 12197.64 9496.51 795.88 9499.39 2187.35 9799.99 596.61 6899.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.34 5893.85 6399.65 2497.63 9995.69 11
原ACMM196.18 11399.03 8490.08 14697.63 9988.98 16297.00 6598.97 6788.14 8099.71 7888.23 19299.62 5198.76 153
DU-MVS88.83 21787.51 22392.79 21391.46 29590.07 14798.71 13397.62 10188.87 16883.21 24293.68 24074.63 23095.93 29686.95 20672.47 32792.36 245
ZD-MVS99.67 1393.28 7497.61 10287.78 20297.41 5799.16 4190.15 5299.56 9898.35 3599.70 39
CP-MVS96.22 5496.15 5596.42 10699.67 1389.62 16099.70 1697.61 10290.07 13396.00 8899.16 4187.43 9199.92 4196.03 8299.72 3499.70 62
thisisatest053094.00 11193.52 11495.43 13795.76 19290.02 15298.99 10997.60 10486.58 22891.74 15297.36 15394.78 1298.34 16686.37 21292.48 18597.94 188
tttt051793.30 13493.01 12794.17 18195.57 19786.47 22598.51 16297.60 10485.99 23690.55 17497.19 16294.80 1198.31 16785.06 22491.86 19597.74 190
thisisatest051594.75 9494.19 9696.43 10596.13 18692.64 9299.47 4597.60 10487.55 21193.17 13997.59 14594.71 1398.42 16488.28 19193.20 17498.24 179
testdata95.26 14398.20 11187.28 20997.60 10485.21 24698.48 2999.15 4388.15 7998.72 15690.29 16699.45 6699.78 42
ACMMP_NAP96.59 4196.18 4997.81 3598.82 9593.55 6898.88 12097.59 10890.66 11197.98 4799.14 4586.59 114100.00 196.47 7299.46 6499.89 27
CVMVSNet90.30 18990.91 16888.46 30894.32 24173.58 35097.61 23897.59 10890.16 13088.43 19897.10 16676.83 22392.86 34382.64 25493.54 17398.93 136
XVS96.47 4696.37 4296.77 8499.62 2590.66 13599.43 5697.58 11092.41 7296.86 7098.96 7287.37 9399.87 5295.65 8799.43 6899.78 42
X-MVStestdata90.69 18488.66 20596.77 8499.62 2590.66 13599.43 5697.58 11092.41 7296.86 7029.59 38087.37 9399.87 5295.65 8799.43 6899.78 42
test22298.32 10891.21 11498.08 20997.58 11083.74 27095.87 9599.02 6186.74 10999.64 4799.81 35
test_prior397.07 2897.09 2097.01 6599.58 3391.77 10199.57 3297.57 11391.43 9398.12 3998.97 6790.43 4599.49 10998.33 3699.81 2399.79 38
test_prior97.01 6599.58 3391.77 10197.57 11399.49 10999.79 38
CP-MVSNet86.54 25785.45 25789.79 28391.02 30182.78 29797.38 24497.56 11585.37 24479.53 29893.03 25671.86 26295.25 31779.92 27473.43 32091.34 286
test1297.83 3499.33 6494.45 5097.55 11697.56 5388.60 7099.50 10899.71 3899.55 82
PAPR96.35 4995.82 6497.94 3299.63 2194.19 5799.42 5897.55 11692.43 6893.82 13399.12 4887.30 9899.91 4394.02 12099.06 8799.74 56
AdaColmapbinary93.82 11793.06 12396.10 11799.88 189.07 16598.33 18597.55 11686.81 22490.39 17998.65 10075.09 22999.98 1093.32 13597.53 12699.26 108
TESTMET0.1,193.82 11793.26 11995.49 13495.21 20990.25 14099.15 8897.54 11989.18 15791.79 15194.87 21789.13 6397.63 20986.21 21396.29 14798.60 161
hse-mvs291.67 16691.51 15892.15 22696.22 17682.61 30097.74 23297.53 12093.85 3896.27 8596.15 19583.19 16597.44 22195.81 8566.86 34896.40 221
AUN-MVS90.17 19389.50 18692.19 22496.21 17782.67 29897.76 23197.53 12088.05 19491.67 15396.15 19583.10 16797.47 21888.11 19466.91 34796.43 220
ZNCC-MVS96.09 5795.81 6696.95 7599.42 5491.19 11599.55 3597.53 12089.72 13995.86 9698.94 7986.59 11499.97 2395.13 10099.56 5999.68 66
ETH3D-3000-0.197.29 1797.01 2498.12 2599.18 7594.97 3299.47 4597.52 12389.85 13698.79 2099.46 1190.41 4999.69 8098.78 2199.67 4299.70 62
CANet97.00 2996.49 3998.55 1198.86 9496.10 1599.83 497.52 12395.90 997.21 6198.90 8182.66 17699.93 4098.71 2298.80 10199.63 74
APDe-MVS97.53 1297.47 1297.70 3999.58 3393.63 6699.56 3497.52 12393.59 4698.01 4699.12 4890.80 4099.55 9999.26 1499.79 2999.93 21
MDTV_nov1_ep1390.47 17996.14 18388.55 18091.34 34197.51 12689.58 14592.24 14990.50 30886.99 10597.61 21177.64 28992.34 187
QAPM91.41 17189.49 18797.17 6195.66 19693.42 7298.60 15297.51 12680.92 31381.39 27897.41 15272.89 25399.87 5282.33 25798.68 10498.21 181
PAPM_NR95.43 7795.05 8296.57 9999.42 5490.14 14398.58 15697.51 12690.65 11392.44 14798.90 8187.77 8699.90 4590.88 15999.32 7599.68 66
TSAR-MVS + MP.97.44 1697.46 1397.39 5299.12 7893.49 7198.52 15997.50 12994.46 2398.99 1398.64 10191.58 3099.08 14498.49 3099.83 1599.60 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs95.77 7195.00 8398.06 2897.35 13795.68 1899.71 1597.50 12991.50 9096.16 8798.61 10586.28 12399.00 14696.19 7891.74 19899.51 86
9.1496.87 2899.34 5899.50 4297.49 13189.41 15198.59 2699.43 1889.78 5699.69 8098.69 2399.62 51
GST-MVS95.97 6295.66 7096.90 7799.49 5091.22 11399.45 5297.48 13289.69 14095.89 9398.72 9586.37 12299.95 3494.62 11499.22 8399.52 84
DP-MVS Recon95.85 6795.15 8097.95 3199.87 294.38 5399.60 2997.48 13286.58 22894.42 12099.13 4787.36 9699.98 1093.64 12998.33 11499.48 90
FOURS199.50 4788.94 17099.55 3597.47 13491.32 9798.12 39
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1397.47 13493.95 3199.07 1199.46 1193.18 2299.97 2399.64 699.82 1999.69 65
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CPTT-MVS94.60 10294.43 9195.09 14699.66 1586.85 21999.44 5397.47 13483.22 27994.34 12398.96 7282.50 17799.55 9994.81 10799.50 6298.88 139
SF-MVS97.22 2296.92 2698.12 2599.11 7994.88 3599.44 5397.45 13789.60 14498.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
zzz-MVS96.21 5595.96 5996.96 7399.29 6691.19 11598.69 13897.45 13792.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
MTGPAbinary97.45 137
MTAPA96.09 5795.80 6796.96 7399.29 6691.19 11597.23 25397.45 13792.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
CDPH-MVS96.56 4296.18 4997.70 3999.59 3193.92 6199.13 9497.44 14189.02 16197.90 5099.22 3188.90 6799.49 10994.63 11399.79 2999.68 66
APD-MVScopyleft96.95 3196.72 3497.63 4199.51 4693.58 6799.16 8297.44 14190.08 13298.59 2699.07 5489.06 6499.42 12097.92 4599.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu94.67 9994.11 9996.34 11097.14 14591.10 12199.32 7197.43 14392.10 8191.53 15896.38 19383.29 16299.68 8393.42 13496.37 14398.25 178
NR-MVSNet87.74 24086.00 24892.96 21091.46 29590.68 13496.65 27697.42 14488.02 19673.42 33493.68 24077.31 22095.83 30284.26 23471.82 33492.36 245
MP-MVScopyleft96.00 5995.82 6496.54 10099.47 5190.13 14599.36 6697.41 14590.64 11495.49 10498.95 7485.51 13499.98 1096.00 8399.59 5899.52 84
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS95.90 6695.75 6896.38 10899.58 3389.41 16399.26 7497.41 14590.66 11194.82 11498.95 7486.15 12699.98 1095.24 9999.64 4799.74 56
OpenMVScopyleft85.28 1490.75 18288.84 20096.48 10293.58 26293.51 7098.80 12697.41 14582.59 29078.62 30697.49 14968.00 28799.82 6584.52 23298.55 11096.11 224
ETH3D cwj APD-0.1696.94 3396.58 3898.01 2998.62 10294.73 4499.13 9497.38 14888.44 18198.53 2899.39 2189.66 6099.69 8098.43 3399.61 5599.61 77
SD-MVS97.51 1397.40 1697.81 3599.01 8593.79 6599.33 7097.38 14893.73 4298.83 1999.02 6190.87 3899.88 4998.69 2399.74 3299.77 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpmvs89.16 20787.76 21893.35 20397.19 14284.75 26990.58 34897.36 15081.99 30084.56 22989.31 32683.98 15298.17 17274.85 31090.00 21597.12 205
PS-CasMVS85.81 26984.58 27189.49 29390.77 30382.11 30497.20 25597.36 15084.83 25679.12 30392.84 25967.42 29295.16 31978.39 28673.25 32191.21 291
SR-MVS96.13 5696.16 5496.07 11899.42 5489.04 16698.59 15497.33 15290.44 11896.84 7399.12 4886.75 10899.41 12297.47 4999.44 6799.76 52
PatchmatchNetpermissive92.05 16291.04 16595.06 14896.17 18089.04 16691.26 34297.26 15389.56 14790.64 17390.56 30488.35 7697.11 23079.53 27596.07 15299.03 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-LLR93.11 14192.68 13294.40 17194.94 22887.27 21099.15 8897.25 15490.21 12491.57 15594.04 22884.89 14397.58 21385.94 21796.13 14898.36 174
test-mter93.27 13692.89 12994.40 17194.94 22887.27 21099.15 8897.25 15488.95 16491.57 15594.04 22888.03 8297.58 21385.94 21796.13 14898.36 174
test117295.92 6596.07 5795.46 13599.42 5487.24 21498.51 16297.24 15690.29 12396.56 8399.12 4886.73 11099.36 12697.33 5299.42 7199.78 42
PEN-MVS85.21 27783.93 27989.07 30089.89 31581.31 31397.09 25897.24 15684.45 26178.66 30592.68 26168.44 28394.87 32475.98 30270.92 33891.04 295
ab-mvs91.05 17789.17 19496.69 9295.96 18791.72 10492.62 33397.23 15885.61 24089.74 18793.89 23668.55 28199.42 12091.09 15587.84 22198.92 137
APD-MVS_3200maxsize95.64 7695.65 7295.62 13199.24 7087.80 19398.42 17297.22 15988.93 16696.64 8298.98 6685.49 13599.36 12696.68 6599.27 7999.70 62
SR-MVS-dyc-post95.75 7395.86 6395.41 13899.22 7187.26 21298.40 17797.21 16089.63 14296.67 8098.97 6786.73 11099.36 12696.62 6699.31 7699.60 78
RE-MVS-def95.70 6999.22 7187.26 21298.40 17797.21 16089.63 14296.67 8098.97 6785.24 14096.62 6699.31 7699.60 78
SCA90.64 18589.25 19394.83 15794.95 22788.83 17396.26 28697.21 16090.06 13490.03 18390.62 30066.61 29896.81 24283.16 24894.36 16798.84 142
RPMNet85.07 27881.88 29594.64 16493.47 26486.24 23384.97 35997.21 16064.85 36590.76 17178.80 36380.95 19799.27 13453.76 36692.17 19298.41 168
VPNet88.30 22986.57 23993.49 20191.95 28791.35 11298.18 19797.20 16488.61 17284.52 23194.89 21662.21 31996.76 24589.34 18072.26 33092.36 245
TranMVSNet+NR-MVSNet87.75 23886.31 24392.07 22890.81 30288.56 17998.33 18597.18 16587.76 20381.87 27193.90 23572.45 25595.43 31283.13 25071.30 33792.23 250
cdsmvs_eth3d_5k22.52 34530.03 3480.00 3640.00 3870.00 3880.00 37597.17 1660.00 3820.00 38398.77 8974.35 2380.00 3830.00 3810.00 3810.00 379
tpm291.77 16491.09 16493.82 19594.83 23285.56 25592.51 33497.16 16784.00 26693.83 13290.66 29787.54 8997.17 22887.73 19991.55 20298.72 154
MP-MVS-pluss95.80 6995.30 7597.29 5598.95 8992.66 8898.59 15497.14 16888.95 16493.12 14099.25 2785.62 13199.94 3796.56 7099.48 6399.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchMatch-RL91.47 16990.54 17794.26 17898.20 11186.36 23096.94 26397.14 16887.75 20488.98 19395.75 20271.80 26399.40 12380.92 26897.39 12997.02 211
Anonymous2024052987.66 24185.58 25493.92 19197.59 13185.01 26598.13 20097.13 17066.69 36388.47 19796.01 20055.09 34299.51 10687.00 20584.12 24697.23 204
JIA-IIPM85.97 26584.85 26589.33 29593.23 27173.68 34985.05 35897.13 17069.62 35591.56 15768.03 36788.03 8296.96 23677.89 28893.12 17597.34 200
PS-MVSNAJ96.87 3596.40 4198.29 1897.35 13797.29 599.03 10497.11 17295.83 1098.97 1499.14 4582.48 17999.60 9698.60 2599.08 8698.00 186
HPM-MVS_fast94.89 8994.62 8695.70 13099.11 7988.44 18399.14 9197.11 17285.82 23895.69 10198.47 11583.46 15899.32 13293.16 13799.63 5099.35 99
DeepC-MVS91.02 494.56 10493.92 10896.46 10397.16 14390.76 13198.39 18197.11 17293.92 3388.66 19598.33 11978.14 21699.85 5995.02 10398.57 10998.78 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 14492.16 14394.65 16396.27 17487.45 20391.83 33797.10 17589.10 16094.68 11790.69 29588.22 7797.73 20489.78 17291.80 19798.77 152
HPM-MVScopyleft95.41 7995.22 7895.99 12199.29 6689.14 16499.17 8197.09 17687.28 21595.40 10598.48 11484.93 14299.38 12495.64 9199.65 4499.47 91
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm cat188.89 21387.27 22893.76 19695.79 19085.32 25990.76 34697.09 17676.14 33785.72 22188.59 32982.92 16998.04 18276.96 29391.43 20397.90 189
dp90.16 19488.83 20194.14 18296.38 17186.42 22691.57 33997.06 17884.76 25788.81 19490.19 31684.29 14997.43 22275.05 30791.35 20698.56 162
xiu_mvs_v2_base96.66 3996.17 5298.11 2797.11 14896.96 699.01 10797.04 17995.51 1698.86 1799.11 5382.19 18599.36 12698.59 2798.14 11598.00 186
3Dnovator+87.72 893.43 12991.84 15198.17 2195.73 19395.08 3198.92 11597.04 17991.42 9581.48 27797.60 14474.60 23299.79 7090.84 16098.97 9199.64 72
CDS-MVSNet93.47 12793.04 12594.76 15894.75 23489.45 16298.82 12497.03 18187.91 19990.97 16796.48 18889.06 6496.36 26889.50 17592.81 18098.49 165
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test0.0.03 188.96 21088.61 20690.03 27791.09 29984.43 27398.97 11197.02 18290.21 12480.29 28796.31 19484.89 14391.93 35772.98 32385.70 23593.73 232
114514_t94.06 10993.05 12497.06 6399.08 8292.26 9798.97 11197.01 18382.58 29192.57 14598.22 12480.68 19899.30 13389.34 18099.02 8999.63 74
CostFormer92.89 14392.48 13794.12 18394.99 22585.89 24692.89 32997.00 18486.98 21995.00 11390.78 29190.05 5397.51 21792.92 14191.73 19998.96 130
ET-MVSNet_ETH3D92.56 15191.45 15995.88 12496.39 17094.13 5999.46 5096.97 18592.18 7866.94 35698.29 12294.65 1594.28 33494.34 11883.82 25199.24 109
UA-Net93.30 13492.62 13495.34 14096.27 17488.53 18295.88 29996.97 18590.90 10695.37 10697.07 16882.38 18299.10 14383.91 24294.86 16498.38 171
abl_694.63 10194.48 8995.09 14698.61 10386.96 21798.06 21296.97 18589.31 15295.86 9698.56 10779.82 20199.64 9194.53 11698.65 10698.66 160
TAMVS92.62 14892.09 14694.20 18094.10 24587.68 19598.41 17496.97 18587.53 21289.74 18796.04 19984.77 14696.49 26088.97 18692.31 18898.42 167
Vis-MVSNetpermissive92.64 14791.85 15095.03 15095.12 21688.23 18498.48 16796.81 18991.61 8792.16 15097.22 16071.58 26698.00 18585.85 22097.81 11898.88 139
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMMVS93.62 12593.90 10992.79 21396.79 15881.40 31098.85 12196.81 18991.25 9996.82 7698.15 12877.02 22298.13 17493.15 13896.30 14698.83 145
ADS-MVSNet88.99 20987.30 22794.07 18596.21 17787.56 20087.15 35296.78 19183.01 28289.91 18587.27 33878.87 21097.01 23574.20 31492.27 18997.64 192
Vis-MVSNet (Re-imp)93.26 13793.00 12894.06 18696.14 18386.71 22298.68 14096.70 19288.30 18689.71 18997.64 14385.43 13896.39 26688.06 19596.32 14499.08 122
Anonymous2023121184.72 28182.65 29290.91 25297.71 12584.55 27297.28 24996.67 19366.88 36279.18 30290.87 29058.47 32996.60 24982.61 25574.20 31091.59 276
EIA-MVS95.11 8595.27 7794.64 16496.34 17286.51 22399.59 3096.62 19492.51 6594.08 12798.64 10186.05 12798.24 17195.07 10298.50 11199.18 114
ETV-MVS96.00 5996.00 5896.00 12096.56 16391.05 12499.63 2696.61 19593.26 5197.39 5898.30 12186.62 11398.13 17498.07 4397.57 12398.82 146
LS3D90.19 19288.72 20394.59 16698.97 8686.33 23296.90 26596.60 19674.96 34084.06 23698.74 9275.78 22699.83 6274.93 30897.57 12397.62 195
EI-MVSNet89.87 20089.38 19191.36 24294.32 24185.87 24797.61 23896.59 19785.10 24885.51 22397.10 16681.30 19696.56 25383.85 24483.03 26091.64 269
MVSTER92.71 14592.32 13893.86 19397.29 13992.95 8699.01 10796.59 19790.09 13185.51 22394.00 23294.61 1696.56 25390.77 16283.03 26092.08 259
cascas90.93 17989.33 19295.76 12895.69 19493.03 8298.99 10996.59 19780.49 31586.79 21694.45 22565.23 30998.60 16193.52 13192.18 19195.66 227
TAPA-MVS87.50 990.35 18789.05 19694.25 17998.48 10785.17 26298.42 17296.58 20082.44 29587.24 20798.53 10882.77 17298.84 14959.09 36197.88 11798.72 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS93.90 11593.62 11394.73 16198.63 10187.00 21698.04 21396.56 20192.19 7792.46 14698.73 9379.49 20699.14 14192.16 14894.34 16898.03 185
test_part188.43 22786.68 23893.67 20097.56 13392.40 9698.12 20296.55 20282.26 29780.31 28693.16 25474.59 23496.62 24885.00 22672.61 32591.99 263
PLCcopyleft91.07 394.23 10894.01 10294.87 15499.17 7687.49 20199.25 7596.55 20288.43 18291.26 16398.21 12685.92 12899.86 5789.77 17397.57 12397.24 203
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + GP.96.95 3196.91 2797.07 6298.88 9291.62 10699.58 3196.54 20495.09 1996.84 7398.63 10391.16 3199.77 7299.04 1896.42 14299.81 35
cl2289.57 20488.79 20291.91 22997.94 12087.62 19897.98 21696.51 20585.03 25182.37 25991.79 27283.65 15496.50 25885.96 21677.89 28491.61 274
xiu_mvs_v1_base_debu94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
xiu_mvs_v1_base94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
xiu_mvs_v1_base_debi94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
lupinMVS96.32 5195.94 6097.44 4895.05 22394.87 3699.86 296.50 20693.82 4098.04 4498.77 8985.52 13298.09 17796.98 6098.97 9199.37 97
mvs_anonymous92.50 15291.65 15595.06 14896.60 16289.64 15997.06 25996.44 21086.64 22784.14 23493.93 23482.49 17896.17 28591.47 15196.08 15199.35 99
VDDNet90.08 19688.54 21194.69 16294.41 24087.68 19598.21 19596.40 21176.21 33693.33 13897.75 13654.93 34398.77 15194.71 11190.96 20797.61 196
RRT_MVS88.91 21288.56 20989.93 27890.31 30981.61 30898.08 20996.38 21289.30 15382.41 25794.84 21873.15 24996.04 29190.38 16482.23 26792.15 254
HQP3-MVS96.37 21386.29 227
PatchT85.44 27583.19 28292.22 22293.13 27383.00 29083.80 36596.37 21370.62 35090.55 17479.63 36284.81 14594.87 32458.18 36391.59 20198.79 149
HQP-MVS91.50 16891.23 16292.29 22193.95 24986.39 22899.16 8296.37 21393.92 3387.57 20296.67 18473.34 24697.77 19793.82 12786.29 22792.72 237
UnsupCasMVSNet_eth78.90 31776.67 32185.58 32782.81 36374.94 34491.98 33696.31 21684.64 25865.84 36087.71 33251.33 35292.23 35372.89 32456.50 36489.56 330
HQP_MVS91.26 17290.95 16792.16 22593.84 25686.07 24299.02 10596.30 21793.38 4986.99 20996.52 18672.92 25197.75 20293.46 13286.17 23092.67 239
plane_prior596.30 21797.75 20293.46 13286.17 23092.67 239
jason95.40 8094.86 8497.03 6492.91 27694.23 5599.70 1696.30 21793.56 4796.73 7898.52 10981.46 19497.91 18696.08 8198.47 11298.96 130
jason: jason.
CLD-MVS91.06 17690.71 17492.10 22794.05 24886.10 24099.55 3596.29 22094.16 2884.70 22897.17 16469.62 27697.82 19394.74 10986.08 23292.39 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS90.10 19588.69 20494.33 17592.44 28087.97 19199.08 9796.26 22189.65 14186.92 21293.11 25568.09 28596.96 23682.54 25690.15 21498.05 184
DTE-MVSNet84.14 29182.80 28688.14 30988.95 33079.87 32596.81 26896.24 22283.50 27577.60 31492.52 26367.89 28994.24 33572.64 32569.05 34190.32 315
test_low_dy_conf_00188.79 22088.33 21390.16 27189.83 31682.22 30297.87 22296.22 22388.25 18984.24 23395.09 21371.11 26996.19 28288.63 18783.76 25292.06 260
LFMVS92.23 15890.84 17096.42 10698.24 11091.08 12398.24 19296.22 22383.39 27794.74 11698.31 12061.12 32498.85 14894.45 11792.82 17899.32 102
baseline192.61 14991.28 16196.58 9797.05 15194.63 4797.72 23396.20 22589.82 13788.56 19696.85 17886.85 10697.82 19388.42 18980.10 27597.30 201
FMVSNet388.81 21987.08 23193.99 19096.52 16594.59 4898.08 20996.20 22585.85 23782.12 26391.60 27674.05 24295.40 31479.04 27980.24 27291.99 263
canonicalmvs95.02 8893.96 10698.20 2097.53 13495.92 1698.71 13396.19 22791.78 8595.86 9698.49 11379.53 20599.03 14596.12 7991.42 20499.66 70
MVSFormer94.71 9894.08 10196.61 9595.05 22394.87 3697.77 22996.17 22886.84 22298.04 4498.52 10985.52 13295.99 29289.83 16998.97 9198.96 130
test_djsdf88.26 23187.73 21989.84 28188.05 34082.21 30397.77 22996.17 22886.84 22282.41 25791.95 27172.07 25995.99 29289.83 16984.50 24191.32 287
MS-PatchMatch86.75 25285.92 24989.22 29691.97 28682.47 30196.91 26496.14 23083.74 27077.73 31393.53 24658.19 33097.37 22676.75 29698.35 11387.84 343
CS-MVS95.75 7396.19 4894.40 17197.88 12186.22 23599.66 2396.12 23192.69 6298.07 4298.89 8387.09 10097.59 21296.71 6498.62 10799.39 96
CS-MVS-test95.98 6196.34 4494.90 15398.06 11787.66 19799.69 2296.10 23293.66 4398.35 3499.05 5786.28 12397.66 20696.96 6198.90 9599.37 97
VDD-MVS91.24 17590.18 18094.45 17097.08 14985.84 24998.40 17796.10 23286.99 21793.36 13798.16 12754.27 34599.20 13596.59 6990.63 21298.31 177
PCF-MVS89.78 591.26 17289.63 18496.16 11695.44 20291.58 10995.29 30896.10 23285.07 25082.75 24997.45 15078.28 21599.78 7180.60 27195.65 15997.12 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_Test93.67 12392.67 13396.69 9296.72 16092.66 8897.22 25496.03 23587.69 20895.12 11194.03 23081.55 19198.28 17089.17 18496.46 14099.14 116
jajsoiax87.35 24486.51 24189.87 27987.75 34581.74 30697.03 26095.98 23688.47 17580.15 28993.80 23861.47 32196.36 26889.44 17884.47 24391.50 278
PS-MVSNAJss89.54 20589.05 19691.00 25088.77 33184.36 27497.39 24295.97 23788.47 17581.88 27093.80 23882.48 17996.50 25889.34 18083.34 25992.15 254
F-COLMAP92.07 16191.75 15493.02 20998.16 11482.89 29498.79 13095.97 23786.54 23087.92 20097.80 13378.69 21399.65 8985.97 21595.93 15496.53 219
miper_enhance_ethall90.33 18889.70 18392.22 22297.12 14788.93 17198.35 18495.96 23988.60 17383.14 24692.33 26487.38 9296.18 28386.49 21177.89 28491.55 277
TR-MVS90.77 18189.44 18894.76 15896.31 17388.02 19097.92 21895.96 23985.52 24188.22 19997.23 15966.80 29798.09 17784.58 23192.38 18698.17 183
CMPMVSbinary58.40 2180.48 30980.11 30981.59 34485.10 35559.56 37094.14 31995.95 24168.54 35860.71 36493.31 24855.35 34197.87 19083.06 25184.85 23987.33 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LPG-MVS_test88.86 21488.47 21290.06 27493.35 26980.95 31998.22 19395.94 24287.73 20683.17 24496.11 19766.28 30197.77 19790.19 16785.19 23691.46 280
LGP-MVS_train90.06 27493.35 26980.95 31995.94 24287.73 20683.17 24496.11 19766.28 30197.77 19790.19 16785.19 23691.46 280
OPM-MVS89.76 20189.15 19591.57 23990.53 30685.58 25498.11 20595.93 24492.88 6086.05 21996.47 18967.06 29697.87 19089.29 18386.08 23291.26 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR90.95 17890.66 17691.83 23195.18 21381.14 31795.92 29695.92 24588.40 18390.33 18097.85 13070.66 27299.38 12492.83 14288.83 21894.98 228
XVG-OURS90.83 18090.49 17891.86 23095.23 20881.25 31495.79 30495.92 24588.96 16390.02 18498.03 12971.60 26599.35 13091.06 15687.78 22294.98 228
tpm89.67 20288.95 19891.82 23292.54 27981.43 30992.95 32895.92 24587.81 20190.50 17689.44 32384.99 14195.65 30783.67 24582.71 26398.38 171
DROMVSNet95.09 8695.17 7994.84 15695.42 20388.17 18599.48 4395.92 24591.47 9197.34 6098.36 11882.77 17297.41 22397.24 5398.58 10898.94 135
ACMM86.95 1388.77 22188.22 21690.43 26493.61 26181.34 31298.50 16495.92 24587.88 20083.85 23795.20 21267.20 29497.89 18886.90 20884.90 23892.06 260
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline93.91 11493.30 11795.72 12995.10 22090.07 14797.48 24195.91 25091.03 10293.54 13597.68 14079.58 20398.02 18394.27 11995.14 16199.08 122
mvs_tets87.09 24786.22 24489.71 28487.87 34181.39 31196.73 27495.90 25188.19 19179.99 29193.61 24359.96 32796.31 27689.40 17984.34 24491.43 282
XXY-MVS87.75 23886.02 24792.95 21190.46 30789.70 15897.71 23595.90 25184.02 26580.95 27994.05 22767.51 29197.10 23285.16 22278.41 28192.04 262
nrg03090.23 19088.87 19994.32 17691.53 29493.54 6998.79 13095.89 25388.12 19384.55 23094.61 22378.80 21296.88 23992.35 14775.21 29792.53 241
CNLPA93.64 12492.74 13196.36 10998.96 8890.01 15399.19 7795.89 25386.22 23489.40 19098.85 8580.66 19999.84 6088.57 18896.92 13699.24 109
KD-MVS_2432*160082.98 29880.52 30690.38 26694.32 24188.98 16892.87 33095.87 25580.46 31673.79 33287.49 33582.76 17493.29 34070.56 33146.53 37088.87 338
miper_refine_blended82.98 29880.52 30690.38 26694.32 24188.98 16892.87 33095.87 25580.46 31673.79 33287.49 33582.76 17493.29 34070.56 33146.53 37088.87 338
FMVSNet286.90 24984.79 26793.24 20595.11 21792.54 9497.67 23695.86 25782.94 28480.55 28391.17 28562.89 31695.29 31677.23 29079.71 27891.90 265
casdiffmvs93.98 11293.43 11595.61 13295.07 22289.86 15598.80 12695.84 25890.98 10492.74 14497.66 14279.71 20298.10 17694.72 11095.37 16098.87 141
UniMVSNet_ETH3D85.65 27483.79 28091.21 24390.41 30880.75 32195.36 30795.78 25978.76 32581.83 27494.33 22649.86 35696.66 24684.30 23383.52 25696.22 223
Effi-MVS+93.87 11693.15 12296.02 11995.79 19090.76 13196.70 27595.78 25986.98 21995.71 10097.17 16479.58 20398.01 18494.57 11596.09 15099.31 103
EU-MVSNet84.19 29084.42 27483.52 33788.64 33467.37 36696.04 29595.76 26185.29 24578.44 30993.18 25270.67 27191.48 35975.79 30475.98 29391.70 267
BH-w/o92.32 15491.79 15293.91 19296.85 15586.18 23799.11 9695.74 26288.13 19284.81 22697.00 17177.26 22197.91 18689.16 18598.03 11697.64 192
anonymousdsp86.69 25385.75 25289.53 29086.46 35182.94 29196.39 28095.71 26383.97 26779.63 29690.70 29468.85 27995.94 29586.01 21484.02 24789.72 327
Fast-Effi-MVS+91.72 16590.79 17394.49 16795.89 18887.40 20599.54 3995.70 26485.01 25389.28 19295.68 20377.75 21897.57 21683.22 24795.06 16298.51 164
IS-MVSNet93.00 14292.51 13694.49 16796.14 18387.36 20698.31 18895.70 26488.58 17490.17 18197.50 14883.02 16897.22 22787.06 20396.07 15298.90 138
diffmvs94.59 10394.19 9695.81 12695.54 19990.69 13398.70 13795.68 26691.61 8795.96 9197.81 13280.11 20098.06 18096.52 7195.76 15698.67 157
v7n84.42 28882.75 28989.43 29488.15 33881.86 30596.75 27295.67 26780.53 31478.38 31089.43 32469.89 27396.35 27373.83 31872.13 33190.07 320
ACMP87.39 1088.71 22388.24 21590.12 27393.91 25481.06 31898.50 16495.67 26789.43 15080.37 28595.55 20465.67 30497.83 19290.55 16384.51 24091.47 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CL-MVSNet_self_test79.89 31378.34 31384.54 33381.56 36575.01 34396.88 26695.62 26981.10 30975.86 32285.81 34868.49 28290.26 36163.21 35256.51 36388.35 340
V4287.00 24885.68 25390.98 25189.91 31386.08 24198.32 18795.61 27083.67 27382.72 25090.67 29674.00 24396.53 25581.94 26274.28 30990.32 315
XVG-ACMP-BASELINE85.86 26784.95 26388.57 30589.90 31477.12 33994.30 31695.60 27187.40 21482.12 26392.99 25853.42 34897.66 20685.02 22583.83 24990.92 298
Anonymous20240521188.84 21587.03 23294.27 17798.14 11584.18 27798.44 17095.58 27276.79 33589.34 19196.88 17753.42 34899.54 10187.53 20287.12 22599.09 121
miper_ehance_all_eth88.94 21188.12 21791.40 24095.32 20686.93 21897.85 22495.55 27384.19 26381.97 26891.50 27884.16 15095.91 29984.69 22977.89 28491.36 285
CANet_DTU94.31 10793.35 11697.20 6097.03 15294.71 4598.62 14895.54 27495.61 1497.21 6198.47 11571.88 26199.84 6088.38 19097.46 12897.04 210
v2v48287.27 24685.76 25191.78 23789.59 31987.58 19998.56 15795.54 27484.53 25982.51 25491.78 27373.11 25096.47 26182.07 25974.14 31291.30 288
BH-untuned91.46 17090.84 17093.33 20496.51 16684.83 26898.84 12395.50 27686.44 23383.50 23896.70 18375.49 22897.77 19786.78 21097.81 11897.40 198
v14886.38 26085.06 26090.37 26889.47 32584.10 27898.52 15995.48 27783.80 26980.93 28090.22 31474.60 23296.31 27680.92 26871.55 33590.69 308
IterMVS-LS88.34 22887.44 22491.04 24994.10 24585.85 24898.10 20695.48 27785.12 24782.03 26791.21 28481.35 19595.63 30883.86 24375.73 29591.63 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xxxxxxxxxxxxxcwj97.51 1397.42 1597.78 3799.34 5893.85 6399.65 2495.45 27995.69 1198.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
dcpmvs_295.67 7596.18 4994.12 18398.82 9584.22 27697.37 24595.45 27990.70 11095.77 9998.63 10390.47 4498.68 15899.20 1799.22 8399.45 92
v114486.83 25185.31 25891.40 24089.75 31787.21 21598.31 18895.45 27983.22 27982.70 25190.78 29173.36 24596.36 26879.49 27674.69 30390.63 310
v119286.32 26184.71 26891.17 24489.53 32386.40 22798.13 20095.44 28282.52 29382.42 25690.62 30071.58 26696.33 27577.23 29074.88 30090.79 302
v14419286.40 25984.89 26490.91 25289.48 32485.59 25398.21 19595.43 28382.45 29482.62 25290.58 30372.79 25496.36 26878.45 28574.04 31390.79 302
Effi-MVS+-dtu89.97 19990.68 17587.81 31295.15 21471.98 35697.87 22295.40 28491.92 8287.57 20291.44 27974.27 23996.84 24089.45 17693.10 17694.60 230
mvs-test191.57 16792.20 14289.70 28595.15 21474.34 34699.51 4195.40 28491.92 8291.02 16697.25 15774.27 23998.08 17989.45 17695.83 15596.67 213
c3_l88.19 23287.23 22991.06 24894.97 22686.17 23897.72 23395.38 28683.43 27681.68 27591.37 28082.81 17195.72 30584.04 24173.70 31491.29 289
eth_miper_zixun_eth87.76 23787.00 23390.06 27494.67 23682.65 29997.02 26295.37 28784.19 26381.86 27391.58 27781.47 19395.90 30083.24 24673.61 31591.61 274
v886.11 26384.45 27291.10 24689.99 31286.85 21997.24 25295.36 28881.99 30079.89 29389.86 31974.53 23596.39 26678.83 28372.32 32990.05 322
v192192086.02 26484.44 27390.77 25789.32 32685.20 26098.10 20695.35 28982.19 29882.25 26190.71 29370.73 27096.30 27976.85 29574.49 30590.80 301
pmmvs487.58 24386.17 24691.80 23389.58 32088.92 17297.25 25195.28 29082.54 29280.49 28493.17 25375.62 22796.05 29082.75 25378.90 27990.42 313
GBi-Net86.67 25484.96 26191.80 23395.11 21788.81 17496.77 26995.25 29182.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
test186.67 25484.96 26191.80 23395.11 21788.81 17496.77 26995.25 29182.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
FMVSNet183.94 29481.32 30291.80 23391.94 28888.81 17496.77 26995.25 29177.98 32778.25 31190.25 31150.37 35594.97 32173.27 32177.81 28891.62 271
cl____87.82 23486.79 23690.89 25494.88 23085.43 25697.81 22595.24 29482.91 28880.71 28291.22 28381.97 18895.84 30181.34 26575.06 29891.40 284
miper_lstm_enhance86.90 24986.20 24589.00 30194.53 23881.19 31596.74 27395.24 29482.33 29680.15 28990.51 30781.99 18694.68 33080.71 27073.58 31691.12 293
UnsupCasMVSNet_bld73.85 33070.14 33384.99 32979.44 36975.73 34188.53 35095.24 29470.12 35461.94 36374.81 36441.41 36693.62 33768.65 33751.13 36985.62 357
v124085.77 27184.11 27690.73 25889.26 32785.15 26397.88 22195.23 29781.89 30382.16 26290.55 30569.60 27796.31 27675.59 30574.87 30190.72 307
DIV-MVS_self_test87.82 23486.81 23590.87 25594.87 23185.39 25897.81 22595.22 29882.92 28780.76 28191.31 28281.99 18695.81 30381.36 26475.04 29991.42 283
v1085.73 27284.01 27890.87 25590.03 31186.73 22197.20 25595.22 29881.25 30879.85 29489.75 32073.30 24896.28 28076.87 29472.64 32489.61 329
BH-RMVSNet91.25 17489.99 18195.03 15096.75 15988.55 18098.65 14494.95 30087.74 20587.74 20197.80 13368.27 28498.14 17380.53 27297.49 12798.41 168
GeoE90.60 18689.56 18593.72 19995.10 22085.43 25699.41 5994.94 30183.96 26887.21 20896.83 17974.37 23797.05 23480.50 27393.73 17298.67 157
ACMH83.09 1784.60 28382.61 29390.57 26093.18 27282.94 29196.27 28494.92 30281.01 31172.61 34293.61 24356.54 33497.79 19574.31 31381.07 27190.99 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111192.12 15991.19 16394.94 15296.15 18187.36 20698.12 20294.84 30390.85 10790.97 16797.26 15665.60 30798.37 16589.74 17497.14 13599.07 124
ECVR-MVScopyleft92.29 15591.33 16095.15 14496.41 16887.84 19298.10 20694.84 30390.82 10891.42 16197.28 15465.61 30698.49 16290.33 16597.19 13299.12 118
IterMVS85.81 26984.67 26989.22 29693.51 26383.67 28496.32 28394.80 30585.09 24978.69 30490.17 31766.57 30093.17 34279.48 27777.42 29090.81 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB81.71 1984.59 28482.72 29090.18 27092.89 27783.18 28993.15 32794.74 30678.99 32275.14 32792.69 26065.64 30597.63 20969.46 33481.82 26989.74 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs184.68 28282.78 28890.40 26589.58 32085.18 26197.31 24794.73 30781.93 30276.05 31992.01 26865.48 30896.11 28878.75 28469.14 34089.91 325
IterMVS-SCA-FT85.73 27284.64 27089.00 30193.46 26682.90 29396.27 28494.70 30885.02 25278.62 30690.35 30966.61 29893.33 33979.38 27877.36 29190.76 304
1112_ss92.71 14591.55 15796.20 11295.56 19891.12 11998.48 16794.69 30988.29 18786.89 21398.50 11187.02 10398.66 15984.75 22889.77 21698.81 147
Test_1112_low_res92.27 15790.97 16696.18 11395.53 20091.10 12198.47 16994.66 31088.28 18886.83 21593.50 24787.00 10498.65 16084.69 22989.74 21798.80 148
Fast-Effi-MVS+-dtu88.84 21588.59 20889.58 28993.44 26778.18 33498.65 14494.62 31188.46 17784.12 23595.37 21168.91 27896.52 25682.06 26091.70 20094.06 231
our_test_384.47 28782.80 28689.50 29189.01 32883.90 28197.03 26094.56 31281.33 30775.36 32690.52 30671.69 26494.54 33268.81 33676.84 29290.07 320
ppachtmachnet_test83.63 29681.57 29989.80 28289.01 32885.09 26497.13 25794.50 31378.84 32376.14 31891.00 28769.78 27494.61 33163.40 35174.36 30789.71 328
YYNet179.64 31577.04 31987.43 31687.80 34379.98 32496.23 28894.44 31473.83 34551.83 36687.53 33467.96 28892.07 35666.00 34667.75 34690.23 317
MDA-MVSNet_test_wron79.65 31477.05 31887.45 31587.79 34480.13 32396.25 28794.44 31473.87 34451.80 36787.47 33768.04 28692.12 35566.02 34567.79 34590.09 318
MIMVSNet84.48 28681.83 29692.42 22091.73 29287.36 20685.52 35594.42 31681.40 30681.91 26987.58 33351.92 35192.81 34573.84 31788.15 22097.08 209
MVP-Stereo86.61 25685.83 25088.93 30388.70 33383.85 28296.07 29494.41 31782.15 29975.64 32491.96 27067.65 29096.45 26477.20 29298.72 10386.51 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG88.29 23086.37 24294.04 18896.90 15486.15 23996.52 27894.36 31877.89 33179.22 30196.95 17369.72 27599.59 9773.20 32292.58 18496.37 222
ACMH+83.78 1584.21 28982.56 29489.15 29893.73 26079.16 32696.43 27994.28 31981.09 31074.00 33194.03 23054.58 34497.67 20576.10 30178.81 28090.63 310
Patchmatch-test86.25 26284.06 27792.82 21294.42 23982.88 29582.88 36694.23 32071.58 34879.39 29990.62 30089.00 6696.42 26563.03 35391.37 20599.16 115
CR-MVSNet88.83 21787.38 22693.16 20793.47 26486.24 23384.97 35994.20 32188.92 16790.76 17186.88 34284.43 14794.82 32670.64 33092.17 19298.41 168
Patchmtry83.61 29781.64 29789.50 29193.36 26882.84 29684.10 36294.20 32169.47 35679.57 29786.88 34284.43 14794.78 32768.48 33874.30 30890.88 299
EG-PatchMatch MVS79.92 31177.59 31586.90 31987.06 34977.90 33896.20 29294.06 32374.61 34166.53 35888.76 32840.40 36996.20 28167.02 34283.66 25486.61 352
KD-MVS_self_test77.47 32575.88 32482.24 33981.59 36468.93 36492.83 33294.02 32477.03 33373.14 33683.39 35355.44 34090.42 36067.95 33957.53 36287.38 346
K. test v381.04 30779.77 31084.83 33087.41 34670.23 36195.60 30693.93 32583.70 27267.51 35489.35 32555.76 33693.58 33876.67 29768.03 34490.67 309
RPSCF85.33 27685.55 25584.67 33294.63 23762.28 36893.73 32293.76 32674.38 34385.23 22597.06 16964.09 31298.31 16780.98 26686.08 23293.41 236
MVS-HIRNet79.01 31675.13 32690.66 25993.82 25881.69 30785.16 35693.75 32754.54 36774.17 33059.15 37157.46 33296.58 25263.74 35094.38 16693.72 233
pmmvs585.87 26684.40 27590.30 26988.53 33584.23 27598.60 15293.71 32881.53 30580.29 28792.02 26764.51 31195.52 31082.04 26178.34 28291.15 292
pmmvs679.90 31277.31 31787.67 31384.17 35878.13 33595.86 30193.68 32967.94 36072.67 34189.62 32250.98 35495.75 30474.80 31166.04 34989.14 335
OurMVSNet-221017-084.13 29283.59 28185.77 32687.81 34270.24 36094.89 31193.65 33086.08 23576.53 31693.28 25061.41 32296.14 28780.95 26777.69 28990.93 297
Anonymous2024052178.63 32076.90 32083.82 33582.82 36272.86 35295.72 30593.57 33173.55 34672.17 34384.79 35049.69 35792.51 35065.29 34874.50 30486.09 356
DP-MVS88.75 22286.56 24095.34 14098.92 9087.45 20397.64 23793.52 33270.55 35181.49 27697.25 15774.43 23699.88 4971.14 32994.09 16998.67 157
ITE_SJBPF87.93 31092.26 28276.44 34093.47 33387.67 20979.95 29295.49 20756.50 33597.38 22475.24 30682.33 26689.98 324
iter_conf_final93.22 13893.04 12593.76 19697.03 15292.22 9899.05 10193.31 33492.11 8086.93 21195.42 20895.01 1096.59 25093.98 12184.48 24292.46 242
USDC84.74 28082.93 28490.16 27191.73 29283.54 28595.00 31093.30 33588.77 17073.19 33593.30 24953.62 34797.65 20875.88 30381.54 27089.30 332
ADS-MVSNet287.62 24286.88 23489.86 28096.21 17779.14 32787.15 35292.99 33683.01 28289.91 18587.27 33878.87 21092.80 34674.20 31492.27 18997.64 192
Anonymous2023120680.76 30879.42 31284.79 33184.78 35672.98 35196.53 27792.97 33779.56 31974.33 32888.83 32761.27 32392.15 35460.59 35875.92 29489.24 334
iter_conf0593.48 12693.18 12194.39 17497.15 14494.17 5899.30 7292.97 33792.38 7586.70 21795.42 20895.67 596.59 25094.67 11284.32 24592.39 243
MDA-MVSNet-bldmvs77.82 32474.75 32887.03 31888.33 33678.52 33296.34 28292.85 33975.57 33848.87 36987.89 33157.32 33392.49 35160.79 35764.80 35290.08 319
test20.0378.51 32177.48 31681.62 34383.07 36171.03 35896.11 29392.83 34081.66 30469.31 34789.68 32157.53 33187.29 36858.65 36268.47 34286.53 353
COLMAP_ROBcopyleft82.69 1884.54 28582.82 28589.70 28596.72 16078.85 32895.89 29792.83 34071.55 34977.54 31595.89 20159.40 32899.14 14167.26 34188.26 21991.11 294
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SixPastTwentyTwo82.63 30081.58 29885.79 32588.12 33971.01 35995.17 30992.54 34284.33 26272.93 34092.08 26560.41 32695.61 30974.47 31274.15 31190.75 305
FMVSNet582.29 30180.54 30587.52 31493.79 25984.01 27993.73 32292.47 34376.92 33474.27 32986.15 34763.69 31589.24 36369.07 33574.79 30289.29 333
new-patchmatchnet74.80 32972.40 33281.99 34278.36 37172.20 35594.44 31492.36 34477.06 33263.47 36179.98 36151.04 35388.85 36460.53 35954.35 36684.92 361
mvsmamba89.99 19889.42 18991.69 23890.64 30586.34 23198.40 17792.27 34591.01 10384.80 22794.93 21576.12 22496.51 25792.81 14383.84 24892.21 252
new_pmnet76.02 32673.71 32982.95 33883.88 35972.85 35391.26 34292.26 34670.44 35262.60 36281.37 35747.64 36092.32 35261.85 35572.10 33283.68 363
AllTest84.97 27983.12 28390.52 26296.82 15678.84 32995.89 29792.17 34777.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22393.55 234
TestCases90.52 26296.82 15678.84 32992.17 34777.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22393.55 234
pmmvs-eth3d78.71 31976.16 32386.38 32180.25 36881.19 31594.17 31892.13 34977.97 32866.90 35782.31 35555.76 33692.56 34973.63 32062.31 35685.38 358
MIMVSNet175.92 32773.30 33083.81 33681.29 36675.57 34292.26 33592.05 35073.09 34767.48 35586.18 34640.87 36887.64 36755.78 36470.68 33988.21 341
ambc79.60 34672.76 37356.61 37276.20 36892.01 35168.25 35080.23 36023.34 37494.73 32873.78 31960.81 35787.48 345
LF4IMVS81.94 30481.17 30384.25 33487.23 34868.87 36593.35 32691.93 35283.35 27875.40 32593.00 25749.25 35996.65 24778.88 28278.11 28387.22 350
TransMVSNet (Re)81.97 30379.61 31189.08 29989.70 31884.01 27997.26 25091.85 35378.84 32373.07 33991.62 27567.17 29595.21 31867.50 34059.46 36088.02 342
Baseline_NR-MVSNet85.83 26884.82 26688.87 30488.73 33283.34 28798.63 14791.66 35480.41 31882.44 25591.35 28174.63 23095.42 31384.13 23771.39 33687.84 343
testgi82.29 30181.00 30486.17 32387.24 34774.84 34597.39 24291.62 35588.63 17175.85 32395.42 20846.07 36291.55 35866.87 34479.94 27692.12 256
TDRefinement78.01 32275.31 32586.10 32470.06 37473.84 34893.59 32591.58 35674.51 34273.08 33891.04 28649.63 35897.12 22974.88 30959.47 35987.33 348
OpenMVS_ROBcopyleft73.86 2077.99 32375.06 32786.77 32083.81 36077.94 33796.38 28191.53 35767.54 36168.38 34987.13 34143.94 36396.08 28955.03 36581.83 26886.29 355
test_040278.81 31876.33 32286.26 32291.18 29878.44 33395.88 29991.34 35868.55 35770.51 34589.91 31852.65 35094.99 32047.14 36979.78 27785.34 360
MTMP99.21 7691.09 359
DeepMVS_CXcopyleft76.08 34890.74 30451.65 37690.84 36086.47 23257.89 36587.98 33035.88 37192.60 34765.77 34765.06 35183.97 362
lessismore_v085.08 32885.59 35469.28 36390.56 36167.68 35390.21 31554.21 34695.46 31173.88 31662.64 35490.50 312
Gipumacopyleft54.77 33852.22 34262.40 35586.50 35059.37 37150.20 37390.35 36236.52 37141.20 37249.49 37318.33 37781.29 37032.10 37365.34 35046.54 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
bld_raw_conf00588.44 22687.56 22291.09 24790.18 31084.69 27097.81 22590.17 36390.20 12682.77 24894.81 22067.23 29396.46 26391.13 15483.71 25392.11 258
TinyColmap80.42 31077.94 31487.85 31192.09 28578.58 33193.74 32189.94 36474.99 33969.77 34691.78 27346.09 36197.58 21365.17 34977.89 28487.38 346
test_method70.10 33368.66 33674.41 34986.30 35355.84 37394.47 31389.82 36535.18 37266.15 35984.75 35130.54 37277.96 37370.40 33360.33 35889.44 331
FPMVS61.57 33460.32 33765.34 35360.14 37842.44 37991.02 34489.72 36644.15 36942.63 37180.93 35819.02 37580.59 37242.50 37072.76 32373.00 367
LCM-MVSNet60.07 33656.37 33871.18 35054.81 38048.67 37782.17 36789.48 36737.95 37049.13 36869.12 36513.75 38181.76 36959.28 36051.63 36883.10 365
bld_raw_dy_0_6487.82 23486.71 23791.15 24589.54 32285.61 25297.37 24589.16 36889.26 15483.42 24094.50 22465.79 30396.18 28388.00 19683.37 25791.67 268
pmmvs372.86 33169.76 33582.17 34073.86 37274.19 34794.20 31789.01 36964.23 36667.72 35280.91 35941.48 36588.65 36562.40 35454.02 36783.68 363
LCM-MVSNet-Re88.59 22488.61 20688.51 30795.53 20072.68 35496.85 26788.43 37088.45 17873.14 33690.63 29975.82 22594.38 33392.95 13995.71 15898.48 166
Patchmatch-RL test81.90 30580.13 30887.23 31780.71 36770.12 36284.07 36388.19 37183.16 28170.57 34482.18 35687.18 9992.59 34882.28 25862.78 35398.98 128
DSMNet-mixed81.60 30681.43 30082.10 34184.36 35760.79 36993.63 32486.74 37279.00 32179.32 30087.15 34063.87 31489.78 36266.89 34391.92 19495.73 226
PM-MVS74.88 32872.85 33180.98 34578.98 37064.75 36790.81 34585.77 37380.95 31268.23 35182.81 35429.08 37392.84 34476.54 29862.46 35585.36 359
door85.30 374
door-mid84.90 375
EGC-MVSNET60.70 33555.37 33976.72 34786.35 35271.08 35789.96 34984.44 3760.38 3811.50 38284.09 35237.30 37088.10 36640.85 37173.44 31970.97 369
PMMVS258.97 33755.07 34070.69 35262.72 37555.37 37485.97 35480.52 37749.48 36845.94 37068.31 36615.73 37980.78 37149.79 36837.12 37275.91 366
ANet_high50.71 34046.17 34364.33 35444.27 38252.30 37576.13 36978.73 37864.95 36427.37 37555.23 37214.61 38067.74 37536.01 37218.23 37572.95 368
PMVScopyleft41.42 2345.67 34142.50 34455.17 35734.28 38332.37 38266.24 37178.71 37930.72 37322.04 37859.59 3704.59 38277.85 37427.49 37458.84 36155.29 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt53.66 33952.86 34156.05 35632.75 38441.97 38073.42 37076.12 38021.91 37739.68 37396.39 19242.59 36465.10 37678.00 28714.92 37761.08 370
MVEpermissive44.00 2241.70 34237.64 34753.90 35849.46 38143.37 37865.09 37266.66 38126.19 37625.77 37748.53 3743.58 38463.35 37726.15 37527.28 37354.97 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 34340.93 34541.29 35961.97 37633.83 38184.00 36465.17 38227.17 37427.56 37446.72 37517.63 37860.41 37819.32 37618.82 37429.61 374
EMVS39.96 34439.88 34640.18 36059.57 37932.12 38384.79 36164.57 38326.27 37526.14 37644.18 37818.73 37659.29 37917.03 37717.67 37629.12 375
N_pmnet70.19 33269.87 33471.12 35188.24 33730.63 38495.85 30228.70 38470.18 35368.73 34886.55 34464.04 31393.81 33653.12 36773.46 31888.94 336
wuyk23d16.71 34716.73 35116.65 36160.15 37725.22 38541.24 3745.17 3856.56 3785.48 3813.61 3813.64 38322.72 38015.20 3789.52 3781.99 378
testmvs18.81 34623.05 3496.10 3634.48 3852.29 38797.78 2283.00 3863.27 37918.60 37962.71 3681.53 3862.49 38214.26 3791.80 37913.50 377
test12316.58 34819.47 3507.91 3623.59 3865.37 38694.32 3151.39 3872.49 38013.98 38044.60 3772.91 3852.65 38111.35 3800.57 38015.70 376
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas6.87 3509.16 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38282.48 1790.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
n20.00 388
nn0.00 388
ab-mvs-re8.21 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.50 1110.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145294.60 2199.41 299.12 4895.50 799.96 3099.84 299.92 399.97 7
eth-test20.00 387
eth-test0.00 387
OPU-MVS99.49 499.64 2098.51 499.77 899.19 3495.12 899.97 2399.90 199.92 399.99 1
test_0728_THIRD93.01 5399.07 1199.46 1194.66 1499.97 2399.25 1599.82 1999.95 15
GSMVS98.84 142
test_part299.54 4095.42 1998.13 37
sam_mvs188.39 7598.84 142
sam_mvs87.08 101
test_post190.74 34741.37 37985.38 13996.36 26883.16 248
test_post46.00 37687.37 9397.11 230
patchmatchnet-post84.86 34988.73 6996.81 242
gm-plane-assit94.69 23588.14 18688.22 19097.20 16198.29 16990.79 161
test9_res98.60 2599.87 999.90 24
agg_prior297.84 4799.87 999.91 22
test_prior492.00 10099.41 59
test_prior299.57 3291.43 9398.12 3998.97 6790.43 4598.33 3699.81 23
旧先验298.67 14285.75 23998.96 1598.97 14793.84 125
新几何298.26 191
原ACMM298.69 138
testdata299.88 4984.16 236
segment_acmp90.56 43
testdata197.89 21992.43 68
plane_prior793.84 25685.73 250
plane_prior693.92 25386.02 24472.92 251
plane_prior496.52 186
plane_prior385.91 24593.65 4486.99 209
plane_prior299.02 10593.38 49
plane_prior193.90 255
plane_prior86.07 24299.14 9193.81 4186.26 229
HQP5-MVS86.39 228
HQP-NCC93.95 24999.16 8293.92 3387.57 202
ACMP_Plane93.95 24999.16 8293.92 3387.57 202
BP-MVS93.82 127
HQP4-MVS87.57 20297.77 19792.72 237
HQP2-MVS73.34 246
NP-MVS93.94 25286.22 23596.67 184
MDTV_nov1_ep13_2view91.17 11891.38 34087.45 21393.08 14186.67 11287.02 20498.95 134
ACMMP++_ref82.64 264
ACMMP++83.83 249
Test By Simon83.62 155