This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9791.00 12099.14 8599.45 193.86 3595.15 10298.73 8788.48 6899.76 6897.23 4899.56 5599.40 89
thres100view90093.34 12792.15 13796.90 7497.62 11994.84 3599.06 9499.36 287.96 18390.47 16796.78 17183.29 15698.75 14884.11 22490.69 19997.12 195
tfpn200view993.43 12392.27 13396.90 7497.68 11794.84 3599.18 7399.36 288.45 16590.79 15996.90 16683.31 15498.75 14884.11 22490.69 19997.12 195
thres600view793.18 13292.00 14096.75 8397.62 11994.92 3199.07 9299.36 287.96 18390.47 16796.78 17183.29 15698.71 15282.93 23890.47 20396.61 204
thres40093.39 12592.27 13396.73 8597.68 11794.84 3599.18 7399.36 288.45 16590.79 15996.90 16683.31 15498.75 14884.11 22490.69 19996.61 204
thres20093.69 11592.59 12896.97 6997.76 11494.74 4099.35 6299.36 289.23 14091.21 15696.97 16383.42 15398.77 14685.08 20990.96 19797.39 189
MVS_111021_LR95.78 6795.94 5595.28 14098.19 10687.69 18998.80 12099.26 793.39 4595.04 10498.69 9384.09 14499.76 6896.96 5599.06 8198.38 161
sss94.85 8693.94 10297.58 4096.43 15894.09 5698.93 10799.16 889.50 13695.27 9997.85 12381.50 18599.65 8492.79 13394.02 15998.99 118
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9299.06 994.45 2296.42 7798.70 9288.81 6399.74 7095.35 8899.86 1099.97 7
PVSNet87.13 1293.69 11592.83 12396.28 10797.99 11190.22 13799.38 5798.93 1091.42 8793.66 12697.68 13371.29 26099.64 8687.94 18297.20 12398.98 119
PGM-MVS95.85 6495.65 6796.45 10099.50 4389.77 15298.22 18798.90 1189.19 14196.74 7098.95 7085.91 12399.92 3693.94 11299.46 6099.66 65
EPNet96.82 3496.68 3497.25 5598.65 9393.10 7599.48 3998.76 1296.54 597.84 4498.22 11787.49 8699.66 8095.35 8897.78 11399.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS95.97 5995.11 7698.54 1097.62 11996.65 699.44 4898.74 1392.25 6995.21 10098.46 11086.56 11199.46 11195.00 9692.69 17199.50 82
HY-MVS88.56 795.29 7794.23 8998.48 1197.72 11596.41 1094.03 30898.74 1392.42 6595.65 9494.76 20786.52 11299.49 10495.29 9092.97 16799.53 78
VNet95.08 8294.26 8897.55 4398.07 10993.88 5898.68 13498.73 1590.33 10997.16 5697.43 14479.19 20199.53 9796.91 5691.85 18699.24 102
test_yl95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9598.70 1686.76 21194.65 11097.74 13087.78 7999.44 11295.57 8492.61 17299.44 87
DCV-MVSNet95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9598.70 1686.76 21194.65 11097.74 13087.78 7999.44 11295.57 8492.61 17299.44 87
PVSNet_083.28 1687.31 23485.16 24893.74 18894.78 22284.59 26098.91 11098.69 1889.81 12478.59 29493.23 23761.95 30799.34 12694.75 10055.72 35097.30 191
ACMMPcopyleft94.67 9394.30 8795.79 12399.25 6488.13 18398.41 16998.67 1990.38 10791.43 15198.72 8982.22 17799.95 3093.83 11695.76 14599.29 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
D2MVS87.96 22387.39 21589.70 27291.84 27983.40 27398.31 18298.49 2088.04 18178.23 29890.26 29773.57 23796.79 23484.21 22183.53 24088.90 323
HyFIR lowres test93.68 11793.29 11394.87 14997.57 12388.04 18598.18 19198.47 2187.57 19691.24 15595.05 20385.49 12897.46 20993.22 12692.82 16899.10 111
UniMVSNet (Re)89.50 19888.32 20493.03 19892.21 27290.96 12198.90 11198.39 2289.13 14383.22 22892.03 25381.69 18396.34 26286.79 19472.53 31191.81 252
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 11394.42 4994.76 30098.36 2392.50 6095.62 9597.52 14097.92 197.38 21498.31 3398.80 9498.20 172
VPA-MVSNet89.10 20087.66 21293.45 19292.56 26791.02 11997.97 20798.32 2486.92 20786.03 20892.01 25568.84 27197.10 22290.92 14775.34 28292.23 239
CHOSEN 1792x268894.35 10193.82 10595.95 11997.40 12688.74 17498.41 16998.27 2592.18 7191.43 15196.40 18178.88 20299.81 6293.59 12097.81 11099.30 96
FIs90.70 17689.87 17593.18 19692.29 27091.12 11398.17 19398.25 2689.11 14483.44 22794.82 20682.26 17696.17 27187.76 18382.76 24692.25 237
UGNet91.91 15590.85 16195.10 14297.06 14088.69 17598.01 20598.24 2792.41 6692.39 14093.61 22860.52 31299.68 7888.14 17997.25 12296.92 202
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.22 18489.40 18292.67 21091.78 28089.86 15097.89 20998.22 2888.81 15582.96 23494.66 20881.90 18295.96 27985.89 20482.52 24992.20 241
MVS_030484.13 28182.66 28088.52 29393.07 26380.15 30795.81 29198.21 2979.27 30686.85 20386.40 33241.33 35494.69 31576.36 28586.69 21690.73 292
WR-MVS_H86.53 24785.49 24589.66 27591.04 28983.31 27597.53 22898.20 3084.95 24079.64 28190.90 27678.01 21095.33 30176.29 28672.81 30790.35 300
MVS93.92 10892.28 13298.83 495.69 18396.82 596.22 27798.17 3184.89 24184.34 22098.61 9879.32 20099.83 5793.88 11499.43 6499.86 28
PAPM96.35 4795.94 5597.58 4094.10 23495.25 2098.93 10798.17 3194.26 2393.94 12198.72 8989.68 5497.88 18196.36 6799.29 7499.62 71
baseline294.04 10593.80 10694.74 15493.07 26390.25 13598.12 19698.16 3389.86 12186.53 20696.95 16495.56 598.05 17391.44 14194.53 15495.93 215
UniMVSNet_NR-MVSNet89.60 19588.55 20192.75 20792.17 27390.07 14298.74 12698.15 3488.37 17183.21 22993.98 21882.86 16495.93 28186.95 19172.47 31292.25 237
CSCG94.87 8594.71 8095.36 13799.54 3686.49 21799.34 6498.15 3482.71 27590.15 17299.25 2589.48 5699.86 5294.97 9798.82 9399.72 54
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1993.21 7199.70 1698.13 3694.61 1997.78 4599.46 1189.85 5099.81 6297.97 3899.91 499.88 24
hse-mvs392.47 14691.95 14294.05 17897.13 13685.01 25598.36 17798.08 3793.85 3696.27 7896.73 17383.19 15999.43 11495.81 7768.09 32897.70 181
IB-MVS89.43 692.12 15190.83 16495.98 11895.40 19490.78 12499.81 598.06 3891.23 9185.63 21093.66 22790.63 3798.78 14591.22 14371.85 31898.36 164
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PHI-MVS96.65 3896.46 3897.21 5699.34 5391.77 9599.70 1698.05 3986.48 21798.05 3699.20 3189.33 5799.96 2798.38 2899.62 4799.90 20
PVSNet_BlendedMVS93.36 12693.20 11593.84 18598.77 9091.61 10199.47 4098.04 4091.44 8494.21 11692.63 24983.50 15099.87 4797.41 4583.37 24290.05 308
PVSNet_Blended95.94 6195.66 6596.75 8398.77 9091.61 10199.88 198.04 4093.64 4294.21 11697.76 12883.50 15099.87 4797.41 4597.75 11498.79 139
EPMVS92.59 14391.59 14995.59 13097.22 13290.03 14691.78 32698.04 4090.42 10691.66 14690.65 28586.49 11497.46 20981.78 24996.31 13499.28 99
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 797.99 4397.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1697.98 4497.18 295.96 8499.33 2192.62 22100.00 198.99 1399.93 199.98 6
Regformer-196.97 2896.80 3097.47 4499.46 4793.11 7498.89 11297.94 4592.89 5496.90 5999.02 5789.78 5199.53 9797.06 4999.26 7699.75 48
Regformer-296.94 3196.78 3197.42 4699.46 4792.97 8198.89 11297.93 4692.86 5696.88 6099.02 5789.74 5399.53 9797.03 5099.26 7699.75 48
131493.44 12291.98 14197.84 3095.24 19694.38 5096.22 27797.92 4790.18 11382.28 24597.71 13277.63 21299.80 6491.94 13898.67 9899.34 93
Regformer-396.50 4296.36 4196.91 7399.34 5391.72 9898.71 12797.90 4892.48 6196.00 8198.95 7088.60 6599.52 10096.44 6598.83 9199.49 83
Regformer-496.45 4596.33 4396.81 8099.34 5391.44 10598.71 12797.88 4992.43 6295.97 8398.95 7088.42 6999.51 10196.40 6698.83 9199.49 83
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 597.88 4996.54 598.84 1499.46 1192.55 2399.98 1098.25 3499.93 199.94 14
tfpnnormal83.65 28481.35 29090.56 25091.37 28688.06 18497.29 23597.87 5178.51 31276.20 30390.91 27564.78 29796.47 24961.71 34273.50 30387.13 337
3Dnovator87.35 1193.17 13391.77 14697.37 5195.41 19393.07 7698.82 11897.85 5291.53 8282.56 23997.58 13971.97 25299.82 6091.01 14699.23 7899.22 105
WR-MVS88.54 21687.22 22092.52 21191.93 27889.50 15898.56 15297.84 5386.99 20381.87 25793.81 22274.25 23495.92 28385.29 20774.43 29292.12 243
DELS-MVS97.12 2496.60 3598.68 898.03 11096.57 899.84 397.84 5396.36 895.20 10198.24 11688.17 7399.83 5796.11 7299.60 5299.64 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set95.76 6995.63 6996.17 11199.14 7190.33 13398.49 16197.82 5591.92 7494.75 10798.88 7887.06 9799.48 10995.40 8797.17 12498.70 146
无先验98.52 15497.82 5587.20 20299.90 4087.64 18599.85 29
EPNet_dtu92.28 14892.15 13792.70 20897.29 13084.84 25798.64 14097.82 5592.91 5393.02 13497.02 16185.48 13095.70 29272.25 31294.89 15297.55 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 12199.47 4097.81 5890.54 10396.88 6099.05 5487.57 8399.96 2795.65 7999.72 3099.78 38
#test#96.48 4396.34 4296.90 7499.69 990.96 12199.53 3697.81 5890.94 9696.88 6099.05 5487.57 8399.96 2795.87 7699.72 3099.78 38
EI-MVSNet-UG-set95.43 7295.29 7295.86 12199.07 7789.87 14998.43 16697.80 6091.78 7794.11 11898.77 8386.25 11999.48 10994.95 9896.45 13098.22 170
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 13299.47 4097.80 6090.54 10396.83 6899.03 5686.51 11399.95 3095.65 7999.72 3099.75 48
MAR-MVS94.43 9994.09 9495.45 13399.10 7587.47 19698.39 17597.79 6288.37 17194.02 12099.17 3778.64 20799.91 3892.48 13498.85 9098.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS97.86 797.25 1799.68 198.25 10299.10 199.76 1197.78 6396.61 498.15 3199.53 793.62 14100.00 191.79 13999.80 2399.94 14
API-MVS94.78 8794.18 9296.59 9399.21 6890.06 14598.80 12097.78 6383.59 26093.85 12399.21 3083.79 14699.97 2092.37 13599.00 8499.74 51
新几何197.40 4898.92 8492.51 9197.77 6585.52 22796.69 7299.06 5388.08 7699.89 4384.88 21399.62 4799.79 34
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4194.76 3999.19 7197.75 6695.66 1398.21 3099.29 2291.10 2899.99 597.68 4299.87 799.68 61
112195.19 8094.45 8597.42 4698.88 8692.58 8996.22 27797.75 6685.50 22996.86 6399.01 6188.59 6799.90 4087.64 18599.60 5299.79 34
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7697.74 6891.28 8998.40 2699.29 2289.95 4999.98 1098.20 3599.70 3599.94 14
GG-mvs-BLEND96.98 6896.53 15594.81 3887.20 33897.74 6893.91 12296.40 18196.56 296.94 22895.08 9398.95 8899.20 106
gg-mvs-nofinetune90.00 19087.71 21196.89 7996.15 17194.69 4385.15 34497.74 6868.32 34592.97 13560.16 35596.10 396.84 23093.89 11398.87 8999.14 109
旧先验198.97 8092.90 8397.74 6899.15 4191.05 2999.33 7099.60 73
IU-MVS99.63 2195.38 1997.73 7295.54 1599.54 199.69 499.81 1999.99 1
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2497.73 7291.05 9298.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
SED-MVS98.18 298.10 498.41 1499.63 2195.24 2199.77 897.72 7494.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
test_241102_TWO97.72 7494.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
test_241102_ONE99.63 2195.24 2197.72 7494.16 2699.30 499.49 1093.32 1599.98 10
DPE-MVScopyleft98.11 598.00 598.44 1399.50 4395.39 1899.29 6797.72 7494.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS93.56 196.55 4197.84 892.68 20998.71 9278.11 32199.70 1697.71 7898.18 197.36 5399.76 190.37 4599.94 3399.27 999.54 5799.99 1
test072699.66 1595.20 2699.77 897.70 7993.95 2999.35 399.54 393.18 18
MSP-MVS97.77 898.18 296.53 9799.54 3690.14 13899.41 5497.70 7995.46 1798.60 2199.19 3295.71 499.49 10498.15 3699.85 1199.95 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 599.66 1596.37 1199.72 1397.68 8199.98 1099.64 599.82 1599.96 8
test1197.68 81
TEST999.57 3393.17 7299.38 5797.66 8389.57 13398.39 2799.18 3590.88 3299.66 80
train_agg97.20 2297.08 1997.57 4299.57 3393.17 7299.38 5797.66 8390.18 11398.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
region2R96.30 5096.17 4796.70 8899.70 890.31 13499.46 4597.66 8390.55 10297.07 5799.07 5186.85 10199.97 2095.43 8699.74 2899.81 31
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12791.46 10499.75 1297.66 8394.14 2898.13 3299.26 2492.16 2499.66 8097.91 4099.64 4399.90 20
Skip Steuart: Steuart Systems R&D Blog.
EPP-MVSNet93.75 11493.67 10794.01 18095.86 17885.70 24298.67 13697.66 8384.46 24691.36 15397.18 15491.16 2697.79 18792.93 13093.75 16098.53 153
SMA-MVScopyleft97.24 1896.99 2398.00 2799.30 6094.20 5399.16 7697.65 8889.55 13599.22 799.52 990.34 4699.99 598.32 3299.83 1399.82 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_899.55 3593.07 7699.37 6097.64 8990.18 11398.36 2999.19 3290.94 3099.64 86
agg_prior197.12 2497.03 2197.38 5099.54 3692.66 8499.35 6297.64 8990.38 10797.98 4099.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
agg_prior99.54 3692.66 8497.64 8997.98 4099.61 89
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2794.45 4798.85 11597.64 8996.51 795.88 8799.39 1987.35 9399.99 596.61 6099.69 3799.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.34 5393.85 5999.65 2297.63 9395.69 11
原ACMM196.18 10999.03 7890.08 14197.63 9388.98 14897.00 5898.97 6388.14 7599.71 7388.23 17899.62 4798.76 143
DU-MVS88.83 20987.51 21392.79 20491.46 28490.07 14298.71 12797.62 9588.87 15483.21 22993.68 22574.63 22395.93 28186.95 19172.47 31292.36 234
ZD-MVS99.67 1393.28 7097.61 9687.78 18897.41 5199.16 3990.15 4799.56 9398.35 2999.70 35
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15799.70 1697.61 9690.07 11996.00 8199.16 3987.43 8799.92 3696.03 7499.72 3099.70 57
thisisatest053094.00 10693.52 10995.43 13495.76 18190.02 14798.99 10297.60 9886.58 21491.74 14497.36 14694.78 898.34 15786.37 19792.48 17597.94 178
tttt051793.30 12893.01 12094.17 17395.57 18686.47 21898.51 15797.60 9885.99 22290.55 16497.19 15394.80 798.31 15885.06 21091.86 18597.74 180
thisisatest051594.75 8894.19 9096.43 10196.13 17592.64 8899.47 4097.60 9887.55 19793.17 13097.59 13894.71 998.42 15688.28 17793.20 16498.24 169
testdata95.26 14198.20 10487.28 20297.60 9885.21 23298.48 2599.15 4188.15 7498.72 15190.29 15499.45 6299.78 38
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8993.55 6498.88 11497.59 10290.66 9897.98 4099.14 4386.59 109100.00 196.47 6499.46 6099.89 23
CVMVSNet90.30 18290.91 16088.46 29594.32 23073.58 33597.61 22697.59 10290.16 11688.43 18897.10 15776.83 21692.86 32982.64 24093.54 16398.93 126
XVS96.47 4496.37 4096.77 8199.62 2590.66 12999.43 5197.58 10492.41 6696.86 6398.96 6887.37 8999.87 4795.65 7999.43 6499.78 38
X-MVStestdata90.69 17788.66 19796.77 8199.62 2590.66 12999.43 5197.58 10492.41 6696.86 6329.59 36687.37 8999.87 4795.65 7999.43 6499.78 38
test22298.32 10191.21 10898.08 20197.58 10483.74 25695.87 8899.02 5786.74 10499.64 4399.81 31
test_prior397.07 2697.09 1897.01 6299.58 2991.77 9599.57 3097.57 10791.43 8598.12 3498.97 6390.43 4099.49 10498.33 3099.81 1999.79 34
test_prior97.01 6299.58 2991.77 9597.57 10799.49 10499.79 34
CP-MVSNet86.54 24685.45 24689.79 27091.02 29082.78 28497.38 23297.56 10985.37 23079.53 28493.03 24371.86 25495.25 30379.92 26073.43 30591.34 272
test1297.83 3199.33 5994.45 4797.55 11097.56 4688.60 6599.50 10399.71 3499.55 77
PAPR96.35 4795.82 5997.94 2999.63 2194.19 5499.42 5397.55 11092.43 6293.82 12599.12 4687.30 9499.91 3894.02 11199.06 8199.74 51
AdaColmapbinary93.82 11293.06 11796.10 11399.88 189.07 16398.33 17997.55 11086.81 21090.39 16998.65 9475.09 22199.98 1093.32 12597.53 11899.26 101
TESTMET0.1,193.82 11293.26 11495.49 13195.21 19890.25 13599.15 8297.54 11389.18 14291.79 14394.87 20589.13 5897.63 20086.21 19896.29 13698.60 151
hse-mvs291.67 15891.51 15192.15 21896.22 16582.61 28797.74 22097.53 11493.85 3696.27 7896.15 18683.19 15997.44 21295.81 7766.86 33396.40 211
AUN-MVS90.17 18689.50 17992.19 21696.21 16682.67 28597.76 21997.53 11488.05 18091.67 14596.15 18683.10 16197.47 20888.11 18066.91 33296.43 210
ZNCC-MVS96.09 5595.81 6196.95 7299.42 4991.19 10999.55 3397.53 11489.72 12695.86 8998.94 7586.59 10999.97 2095.13 9299.56 5599.68 61
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6994.97 3099.47 4097.52 11789.85 12298.79 1699.46 1190.41 4499.69 7598.78 1599.67 3899.70 57
CANet97.00 2796.49 3798.55 998.86 8896.10 1399.83 497.52 11795.90 997.21 5498.90 7682.66 16999.93 3598.71 1698.80 9499.63 69
APDe-MVS97.53 1197.47 1097.70 3699.58 2993.63 6299.56 3297.52 11793.59 4398.01 3999.12 4690.80 3599.55 9499.26 1099.79 2599.93 17
MDTV_nov1_ep1390.47 17196.14 17288.55 17791.34 32997.51 12089.58 13292.24 14190.50 29586.99 10097.61 20277.64 27592.34 177
QAPM91.41 16389.49 18097.17 5895.66 18593.42 6898.60 14797.51 12080.92 29981.39 26497.41 14572.89 24599.87 4782.33 24398.68 9798.21 171
PAPM_NR95.43 7295.05 7796.57 9599.42 4990.14 13898.58 15197.51 12090.65 10092.44 13998.90 7687.77 8199.90 4090.88 14899.32 7199.68 61
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 7293.49 6798.52 15497.50 12394.46 2198.99 1098.64 9591.58 2599.08 13998.49 2499.83 1399.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs95.77 6895.00 7898.06 2597.35 12895.68 1699.71 1597.50 12391.50 8396.16 8098.61 9886.28 11899.00 14196.19 7091.74 18899.51 81
9.1496.87 2699.34 5399.50 3897.49 12589.41 13898.59 2299.43 1689.78 5199.69 7598.69 1799.62 47
GST-MVS95.97 5995.66 6596.90 7499.49 4591.22 10799.45 4797.48 12689.69 12795.89 8698.72 8986.37 11799.95 3094.62 10599.22 7999.52 79
DP-MVS Recon95.85 6495.15 7597.95 2899.87 294.38 5099.60 2797.48 12686.58 21494.42 11299.13 4587.36 9299.98 1093.64 11998.33 10699.48 85
DVP-MVS98.07 698.00 598.29 1599.66 1595.20 2699.72 1397.47 12893.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 60
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CPTT-MVS94.60 9694.43 8695.09 14399.66 1586.85 21299.44 4897.47 12883.22 26594.34 11598.96 6882.50 17099.55 9494.81 9999.50 5898.88 129
SF-MVS97.22 2196.92 2498.12 2299.11 7394.88 3299.44 4897.45 13089.60 13198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
zzz-MVS96.21 5395.96 5496.96 7099.29 6191.19 10998.69 13297.45 13092.58 5794.39 11399.24 2786.43 11599.99 596.22 6899.40 6899.71 55
MTGPAbinary97.45 130
MTAPA96.09 5595.80 6296.96 7099.29 6191.19 10997.23 24097.45 13092.58 5794.39 11399.24 2786.43 11599.99 596.22 6899.40 6899.71 55
CDPH-MVS96.56 4096.18 4597.70 3699.59 2893.92 5799.13 8897.44 13489.02 14797.90 4399.22 2988.90 6299.49 10494.63 10499.79 2599.68 61
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4293.58 6399.16 7697.44 13490.08 11898.59 2299.07 5189.06 5999.42 11597.92 3999.66 3999.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10697.14 13591.10 11599.32 6697.43 13692.10 7391.53 15096.38 18483.29 15699.68 7893.42 12496.37 13298.25 168
NR-MVSNet87.74 22986.00 23792.96 20091.46 28490.68 12896.65 26397.42 13788.02 18273.42 32093.68 22577.31 21395.83 28884.26 22071.82 31992.36 234
MP-MVScopyleft96.00 5795.82 5996.54 9699.47 4690.13 14099.36 6197.41 13890.64 10195.49 9698.95 7085.51 12799.98 1096.00 7599.59 5499.52 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS95.90 6395.75 6396.38 10499.58 2989.41 16199.26 6897.41 13890.66 9894.82 10698.95 7086.15 12099.98 1095.24 9199.64 4399.74 51
OpenMVScopyleft85.28 1490.75 17588.84 19296.48 9893.58 25193.51 6698.80 12097.41 13882.59 27678.62 29297.49 14268.00 27899.82 6084.52 21898.55 10296.11 214
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9594.73 4199.13 8897.38 14188.44 16898.53 2499.39 1989.66 5599.69 7598.43 2799.61 5199.61 72
SD-MVS97.51 1297.40 1497.81 3299.01 7993.79 6199.33 6597.38 14193.73 4098.83 1599.02 5790.87 3399.88 4498.69 1799.74 2899.77 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DWT-MVSNet_test94.36 10093.95 10195.62 12796.99 14389.47 15996.62 26497.38 14190.96 9593.07 13397.27 14793.73 1398.09 16885.86 20593.65 16299.29 97
tpmvs89.16 19987.76 20993.35 19397.19 13384.75 25990.58 33697.36 14481.99 28684.56 21789.31 31383.98 14598.17 16374.85 29690.00 20597.12 195
PS-CasMVS85.81 25884.58 26089.49 28090.77 29282.11 29097.20 24297.36 14484.83 24279.12 28992.84 24667.42 28395.16 30578.39 27273.25 30691.21 277
SR-MVS96.13 5496.16 4996.07 11499.42 4989.04 16498.59 14997.33 14690.44 10596.84 6699.12 4686.75 10399.41 11797.47 4399.44 6399.76 47
PatchmatchNetpermissive92.05 15391.04 15795.06 14596.17 17089.04 16491.26 33097.26 14789.56 13490.64 16390.56 29188.35 7197.11 22079.53 26196.07 14199.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-LLR93.11 13492.68 12594.40 16594.94 21787.27 20399.15 8297.25 14890.21 11191.57 14794.04 21384.89 13697.58 20385.94 20296.13 13798.36 164
test-mter93.27 13092.89 12294.40 16594.94 21787.27 20399.15 8297.25 14888.95 15091.57 14794.04 21388.03 7797.58 20385.94 20296.13 13798.36 164
test117295.92 6296.07 5295.46 13299.42 4987.24 20798.51 15797.24 15090.29 11096.56 7699.12 4686.73 10599.36 12197.33 4799.42 6799.78 38
PEN-MVS85.21 26683.93 26889.07 28789.89 30181.31 29897.09 24597.24 15084.45 24778.66 29192.68 24868.44 27494.87 31075.98 28870.92 32391.04 281
ab-mvs91.05 16989.17 18696.69 8995.96 17691.72 9892.62 32197.23 15285.61 22689.74 17793.89 22168.55 27299.42 11591.09 14487.84 21198.92 127
APD-MVS_3200maxsize95.64 7195.65 6795.62 12799.24 6587.80 18898.42 16797.22 15388.93 15296.64 7598.98 6285.49 12899.36 12196.68 5799.27 7599.70 57
SR-MVS-dyc-post95.75 7095.86 5895.41 13599.22 6687.26 20598.40 17297.21 15489.63 12996.67 7398.97 6386.73 10599.36 12196.62 5899.31 7299.60 73
RE-MVS-def95.70 6499.22 6687.26 20598.40 17297.21 15489.63 12996.67 7398.97 6385.24 13396.62 5899.31 7299.60 73
SCA90.64 17889.25 18594.83 15194.95 21688.83 17096.26 27497.21 15490.06 12090.03 17390.62 28766.61 28896.81 23283.16 23494.36 15698.84 132
RPMNet85.07 26781.88 28494.64 15893.47 25386.24 22584.97 34697.21 15464.85 35190.76 16178.80 34980.95 19099.27 12953.76 35292.17 18298.41 158
VPNet88.30 21986.57 22893.49 19191.95 27691.35 10698.18 19197.20 15888.61 15884.52 21994.89 20462.21 30696.76 23589.34 16672.26 31592.36 234
TranMVSNet+NR-MVSNet87.75 22786.31 23292.07 22090.81 29188.56 17698.33 17997.18 15987.76 18981.87 25793.90 22072.45 24795.43 29883.13 23671.30 32292.23 239
cdsmvs_eth3d_5k22.52 33330.03 3360.00 3500.00 3710.00 3720.00 36297.17 1600.00 3670.00 36898.77 8374.35 2310.00 3680.00 3660.00 3660.00 364
tpm291.77 15691.09 15593.82 18694.83 22185.56 24592.51 32297.16 16184.00 25293.83 12490.66 28487.54 8597.17 21887.73 18491.55 19298.72 144
MP-MVS-pluss95.80 6695.30 7197.29 5298.95 8392.66 8498.59 14997.14 16288.95 15093.12 13199.25 2585.62 12499.94 3396.56 6299.48 5999.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchMatch-RL91.47 16190.54 16994.26 17098.20 10486.36 22396.94 25097.14 16287.75 19088.98 18395.75 19371.80 25599.40 11880.92 25497.39 12197.02 201
Anonymous2024052987.66 23085.58 24393.92 18297.59 12285.01 25598.13 19497.13 16466.69 34988.47 18796.01 19155.09 32999.51 10187.00 19084.12 23497.23 194
JIA-IIPM85.97 25484.85 25489.33 28293.23 26073.68 33485.05 34597.13 16469.62 34191.56 14968.03 35388.03 7796.96 22677.89 27493.12 16597.34 190
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12897.29 399.03 9797.11 16695.83 1098.97 1199.14 4382.48 17299.60 9198.60 1999.08 8098.00 176
HPM-MVS_fast94.89 8494.62 8195.70 12699.11 7388.44 18099.14 8597.11 16685.82 22495.69 9398.47 10883.46 15299.32 12793.16 12799.63 4699.35 91
DeepC-MVS91.02 494.56 9893.92 10396.46 9997.16 13490.76 12598.39 17597.11 16693.92 3188.66 18598.33 11278.14 20999.85 5495.02 9598.57 10198.78 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 13792.16 13694.65 15796.27 16387.45 19791.83 32597.10 16989.10 14594.68 10990.69 28288.22 7297.73 19689.78 15991.80 18798.77 142
HPM-MVScopyleft95.41 7495.22 7495.99 11799.29 6189.14 16299.17 7597.09 17087.28 20195.40 9798.48 10784.93 13599.38 11995.64 8399.65 4099.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm cat188.89 20587.27 21893.76 18795.79 17985.32 24990.76 33497.09 17076.14 32385.72 20988.59 31682.92 16398.04 17476.96 27991.43 19397.90 179
dp90.16 18788.83 19394.14 17496.38 16086.42 21991.57 32797.06 17284.76 24388.81 18490.19 30384.29 14297.43 21375.05 29391.35 19698.56 152
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13896.96 499.01 10097.04 17395.51 1698.86 1399.11 5082.19 17899.36 12198.59 2198.14 10798.00 176
3Dnovator+87.72 893.43 12391.84 14498.17 1895.73 18295.08 2998.92 10997.04 17391.42 8781.48 26397.60 13774.60 22599.79 6590.84 14998.97 8599.64 67
CDS-MVSNet93.47 12193.04 11994.76 15294.75 22389.45 16098.82 11897.03 17587.91 18590.97 15896.48 17989.06 5996.36 25689.50 16192.81 17098.49 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test0.0.03 188.96 20388.61 19890.03 26591.09 28884.43 26298.97 10497.02 17690.21 11180.29 27396.31 18584.89 13691.93 34372.98 30985.70 22593.73 222
114514_t94.06 10493.05 11897.06 6099.08 7692.26 9398.97 10497.01 17782.58 27792.57 13798.22 11780.68 19199.30 12889.34 16699.02 8399.63 69
CostFormer92.89 13692.48 13094.12 17594.99 21485.89 23792.89 31797.00 17886.98 20595.00 10590.78 27890.05 4897.51 20792.92 13191.73 18998.96 121
ET-MVSNet_ETH3D92.56 14491.45 15295.88 12096.39 15994.13 5599.46 4596.97 17992.18 7166.94 34298.29 11594.65 1194.28 32094.34 10983.82 23899.24 102
UA-Net93.30 12892.62 12795.34 13896.27 16388.53 17995.88 28796.97 17990.90 9795.37 9897.07 15982.38 17599.10 13883.91 22894.86 15398.38 161
abl_694.63 9594.48 8495.09 14398.61 9686.96 21098.06 20396.97 17989.31 13995.86 8998.56 10079.82 19499.64 8694.53 10798.65 9998.66 150
TAMVS92.62 14192.09 13994.20 17294.10 23487.68 19098.41 16996.97 17987.53 19889.74 17796.04 19084.77 13996.49 24888.97 17392.31 17898.42 157
Vis-MVSNetpermissive92.64 14091.85 14395.03 14795.12 20588.23 18198.48 16296.81 18391.61 8092.16 14297.22 15171.58 25898.00 17785.85 20697.81 11098.88 129
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMMVS93.62 12093.90 10492.79 20496.79 14881.40 29598.85 11596.81 18391.25 9096.82 6998.15 12177.02 21598.13 16593.15 12896.30 13598.83 135
ADS-MVSNet88.99 20287.30 21794.07 17696.21 16687.56 19487.15 33996.78 18583.01 26889.91 17587.27 32578.87 20397.01 22574.20 30092.27 17997.64 182
Vis-MVSNet (Re-imp)93.26 13193.00 12194.06 17796.14 17286.71 21598.68 13496.70 18688.30 17389.71 17997.64 13685.43 13196.39 25488.06 18196.32 13399.08 113
Anonymous2023121184.72 27082.65 28190.91 24197.71 11684.55 26197.28 23696.67 18766.88 34879.18 28890.87 27758.47 31696.60 24082.61 24174.20 29691.59 262
EIA-MVS95.11 8195.27 7394.64 15896.34 16186.51 21699.59 2896.62 18892.51 5994.08 11998.64 9586.05 12198.24 16295.07 9498.50 10399.18 107
ETV-MVS96.00 5796.00 5396.00 11696.56 15491.05 11899.63 2496.61 18993.26 4897.39 5298.30 11486.62 10898.13 16598.07 3797.57 11598.82 136
LS3D90.19 18588.72 19594.59 16098.97 8086.33 22496.90 25296.60 19074.96 32684.06 22398.74 8675.78 21899.83 5774.93 29497.57 11597.62 185
EI-MVSNet89.87 19289.38 18391.36 23394.32 23085.87 23897.61 22696.59 19185.10 23485.51 21197.10 15781.30 18996.56 24283.85 23083.03 24491.64 255
MVSTER92.71 13892.32 13193.86 18497.29 13092.95 8299.01 10096.59 19190.09 11785.51 21194.00 21794.61 1296.56 24290.77 15183.03 24492.08 245
cascas90.93 17289.33 18495.76 12495.69 18393.03 7898.99 10296.59 19180.49 30186.79 20594.45 21065.23 29698.60 15593.52 12192.18 18195.66 217
TAPA-MVS87.50 990.35 18089.05 18894.25 17198.48 10085.17 25298.42 16796.58 19482.44 28187.24 19798.53 10182.77 16698.84 14459.09 34797.88 10998.72 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS93.90 11093.62 10894.73 15598.63 9487.00 20998.04 20496.56 19592.19 7092.46 13898.73 8779.49 19999.14 13692.16 13794.34 15798.03 175
test_part188.43 21786.68 22793.67 19097.56 12492.40 9298.12 19696.55 19682.26 28380.31 27293.16 24074.59 22796.62 23985.00 21272.61 31091.99 249
PLCcopyleft91.07 394.23 10394.01 9694.87 14999.17 7087.49 19599.25 6996.55 19688.43 16991.26 15498.21 11985.92 12299.86 5289.77 16097.57 11597.24 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8691.62 10099.58 2996.54 19895.09 1896.84 6698.63 9791.16 2699.77 6799.04 1296.42 13199.81 31
cl-mvsnet289.57 19688.79 19491.91 22197.94 11287.62 19297.98 20696.51 19985.03 23782.37 24491.79 25983.65 14796.50 24685.96 20177.89 26991.61 260
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
xiu_mvs_v1_base94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
lupinMVS96.32 4995.94 5597.44 4595.05 21294.87 3399.86 296.50 20093.82 3898.04 3798.77 8385.52 12598.09 16896.98 5498.97 8599.37 90
mvs_anonymous92.50 14591.65 14895.06 14596.60 15389.64 15697.06 24696.44 20486.64 21384.14 22193.93 21982.49 17196.17 27191.47 14096.08 14099.35 91
VDDNet90.08 18988.54 20294.69 15694.41 22987.68 19098.21 18996.40 20576.21 32293.33 12997.75 12954.93 33098.77 14694.71 10390.96 19797.61 186
RRT_test8_iter0591.04 17090.40 17292.95 20196.20 16989.75 15398.97 10496.38 20688.52 16182.00 25393.51 23290.69 3696.73 23690.43 15376.91 27792.38 233
HQP3-MVS96.37 20786.29 217
PatchT85.44 26483.19 27192.22 21493.13 26283.00 27783.80 35296.37 20770.62 33690.55 16479.63 34884.81 13894.87 31058.18 34991.59 19198.79 139
HQP-MVS91.50 16091.23 15492.29 21393.95 23886.39 22199.16 7696.37 20793.92 3187.57 19296.67 17573.34 23997.77 18993.82 11786.29 21792.72 227
UnsupCasMVSNet_eth78.90 30676.67 31085.58 31482.81 34774.94 32991.98 32496.31 21084.64 24465.84 34687.71 31951.33 33992.23 33972.89 31056.50 34989.56 316
HQP_MVS91.26 16490.95 15992.16 21793.84 24586.07 23399.02 9896.30 21193.38 4686.99 19996.52 17772.92 24397.75 19493.46 12286.17 22092.67 229
plane_prior596.30 21197.75 19493.46 12286.17 22092.67 229
jason95.40 7594.86 7997.03 6192.91 26594.23 5299.70 1696.30 21193.56 4496.73 7198.52 10281.46 18797.91 17896.08 7398.47 10498.96 121
jason: jason.
CLD-MVS91.06 16890.71 16692.10 21994.05 23786.10 23199.55 3396.29 21494.16 2684.70 21697.17 15569.62 26797.82 18594.74 10186.08 22292.39 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS90.10 18888.69 19694.33 16792.44 26987.97 18799.08 9196.26 21589.65 12886.92 20193.11 24268.09 27696.96 22682.54 24290.15 20498.05 174
DTE-MVSNet84.14 28082.80 27588.14 29688.95 31479.87 31096.81 25596.24 21683.50 26177.60 30092.52 25067.89 28094.24 32172.64 31169.05 32690.32 301
RRT_MVS91.95 15491.09 15594.53 16196.71 15295.12 2898.64 14096.23 21789.04 14685.24 21395.06 20287.71 8296.43 25289.10 17282.06 25192.05 247
LFMVS92.23 15090.84 16296.42 10298.24 10391.08 11798.24 18696.22 21883.39 26394.74 10898.31 11361.12 31198.85 14394.45 10892.82 16899.32 94
baseline192.61 14291.28 15396.58 9497.05 14194.63 4497.72 22196.20 21989.82 12388.56 18696.85 16986.85 10197.82 18588.42 17580.10 25997.30 191
FMVSNet388.81 21187.08 22193.99 18196.52 15694.59 4598.08 20196.20 21985.85 22382.12 24891.60 26374.05 23595.40 30079.04 26580.24 25691.99 249
canonicalmvs95.02 8393.96 10098.20 1797.53 12595.92 1498.71 12796.19 22191.78 7795.86 8998.49 10679.53 19899.03 14096.12 7191.42 19499.66 65
MVSFormer94.71 9294.08 9596.61 9295.05 21294.87 3397.77 21796.17 22286.84 20898.04 3798.52 10285.52 12595.99 27789.83 15798.97 8598.96 121
test_djsdf88.26 22187.73 21089.84 26888.05 32482.21 28997.77 21796.17 22286.84 20882.41 24391.95 25872.07 25195.99 27789.83 15784.50 23191.32 273
MS-PatchMatch86.75 24185.92 23889.22 28391.97 27582.47 28896.91 25196.14 22483.74 25677.73 29993.53 23158.19 31797.37 21676.75 28298.35 10587.84 329
VDD-MVS91.24 16790.18 17394.45 16497.08 13985.84 24098.40 17296.10 22586.99 20393.36 12898.16 12054.27 33299.20 13096.59 6190.63 20298.31 167
PCF-MVS89.78 591.26 16489.63 17796.16 11295.44 19291.58 10395.29 29696.10 22585.07 23682.75 23597.45 14378.28 20899.78 6680.60 25795.65 14897.12 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_Test93.67 11892.67 12696.69 8996.72 15092.66 8497.22 24196.03 22787.69 19495.12 10394.03 21581.55 18498.28 16189.17 17096.46 12999.14 109
CS-MVS95.39 7695.39 7095.40 13695.54 18889.66 15599.62 2695.98 22891.72 7997.48 5098.41 11183.64 14897.46 20997.46 4498.64 10099.06 115
jajsoiax87.35 23386.51 23089.87 26687.75 32981.74 29297.03 24795.98 22888.47 16280.15 27593.80 22361.47 30896.36 25689.44 16484.47 23291.50 264
PS-MVSNAJss89.54 19789.05 18891.00 23988.77 31584.36 26397.39 23095.97 23088.47 16281.88 25693.80 22382.48 17296.50 24689.34 16683.34 24392.15 242
F-COLMAP92.07 15291.75 14793.02 19998.16 10782.89 28198.79 12495.97 23086.54 21687.92 19097.80 12678.69 20699.65 8485.97 20095.93 14396.53 209
miper_enhance_ethall90.33 18189.70 17692.22 21497.12 13788.93 16898.35 17895.96 23288.60 15983.14 23392.33 25187.38 8896.18 27086.49 19677.89 26991.55 263
TR-MVS90.77 17489.44 18194.76 15296.31 16288.02 18697.92 20895.96 23285.52 22788.22 18997.23 15066.80 28798.09 16884.58 21792.38 17698.17 173
CMPMVSbinary58.40 2180.48 29880.11 29881.59 33185.10 33959.56 35494.14 30795.95 23468.54 34460.71 35093.31 23455.35 32897.87 18283.06 23784.85 22987.33 334
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LPG-MVS_test88.86 20688.47 20390.06 26293.35 25880.95 30498.22 18795.94 23587.73 19283.17 23196.11 18866.28 29197.77 18990.19 15585.19 22691.46 266
LGP-MVS_train90.06 26293.35 25880.95 30495.94 23587.73 19283.17 23196.11 18866.28 29197.77 18990.19 15585.19 22691.46 266
OPM-MVS89.76 19389.15 18791.57 23090.53 29485.58 24498.11 19895.93 23792.88 5586.05 20796.47 18067.06 28697.87 18289.29 16986.08 22291.26 276
XVG-OURS-SEG-HR90.95 17190.66 16891.83 22395.18 20281.14 30295.92 28495.92 23888.40 17090.33 17097.85 12370.66 26399.38 11992.83 13288.83 20894.98 218
XVG-OURS90.83 17390.49 17091.86 22295.23 19781.25 29995.79 29295.92 23888.96 14990.02 17498.03 12271.60 25799.35 12591.06 14587.78 21294.98 218
tpm89.67 19488.95 19091.82 22492.54 26881.43 29492.95 31695.92 23887.81 18790.50 16689.44 31084.99 13495.65 29383.67 23182.71 24798.38 161
ACMM86.95 1388.77 21288.22 20690.43 25393.61 25081.34 29798.50 15995.92 23887.88 18683.85 22595.20 20167.20 28497.89 18086.90 19384.90 22892.06 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline93.91 10993.30 11295.72 12595.10 20990.07 14297.48 22995.91 24291.03 9393.54 12797.68 13379.58 19698.02 17594.27 11095.14 15099.08 113
mvs_tets87.09 23686.22 23389.71 27187.87 32581.39 29696.73 26195.90 24388.19 17779.99 27793.61 22859.96 31496.31 26489.40 16584.34 23391.43 268
XXY-MVS87.75 22786.02 23692.95 20190.46 29589.70 15497.71 22395.90 24384.02 25180.95 26594.05 21267.51 28297.10 22285.16 20878.41 26692.04 248
nrg03090.23 18388.87 19194.32 16891.53 28393.54 6598.79 12495.89 24588.12 17984.55 21894.61 20978.80 20596.88 22992.35 13675.21 28392.53 231
CNLPA93.64 11992.74 12496.36 10598.96 8290.01 14899.19 7195.89 24586.22 22089.40 18098.85 7980.66 19299.84 5588.57 17496.92 12599.24 102
KD-MVS_2432*160082.98 28780.52 29590.38 25594.32 23088.98 16692.87 31895.87 24780.46 30273.79 31887.49 32282.76 16793.29 32670.56 31746.53 35588.87 324
miper_refine_blended82.98 28780.52 29590.38 25594.32 23088.98 16692.87 31895.87 24780.46 30273.79 31887.49 32282.76 16793.29 32670.56 31746.53 35588.87 324
FMVSNet286.90 23884.79 25693.24 19595.11 20692.54 9097.67 22495.86 24982.94 27080.55 26991.17 27262.89 30395.29 30277.23 27679.71 26291.90 251
casdiffmvs93.98 10793.43 11095.61 12995.07 21189.86 15098.80 12095.84 25090.98 9492.74 13697.66 13579.71 19598.10 16794.72 10295.37 14998.87 131
UniMVSNet_ETH3D85.65 26383.79 26991.21 23490.41 29680.75 30695.36 29595.78 25178.76 31181.83 26094.33 21149.86 34396.66 23784.30 21983.52 24196.22 213
Effi-MVS+93.87 11193.15 11696.02 11595.79 17990.76 12596.70 26295.78 25186.98 20595.71 9297.17 15579.58 19698.01 17694.57 10696.09 13999.31 95
EU-MVSNet84.19 27984.42 26383.52 32488.64 31867.37 35096.04 28395.76 25385.29 23178.44 29593.18 23870.67 26291.48 34575.79 29075.98 27991.70 254
BH-w/o92.32 14791.79 14593.91 18396.85 14586.18 22899.11 9095.74 25488.13 17884.81 21597.00 16277.26 21497.91 17889.16 17198.03 10897.64 182
anonymousdsp86.69 24285.75 24189.53 27786.46 33582.94 27896.39 26895.71 25583.97 25379.63 28290.70 28168.85 27095.94 28086.01 19984.02 23589.72 313
Fast-Effi-MVS+91.72 15790.79 16594.49 16295.89 17787.40 19999.54 3595.70 25685.01 23989.28 18295.68 19477.75 21197.57 20683.22 23395.06 15198.51 154
IS-MVSNet93.00 13592.51 12994.49 16296.14 17287.36 20098.31 18295.70 25688.58 16090.17 17197.50 14183.02 16297.22 21787.06 18896.07 14198.90 128
diffmvs94.59 9794.19 9095.81 12295.54 18890.69 12798.70 13195.68 25891.61 8095.96 8497.81 12580.11 19398.06 17296.52 6395.76 14598.67 147
v7n84.42 27782.75 27889.43 28188.15 32281.86 29196.75 25995.67 25980.53 30078.38 29689.43 31169.89 26496.35 26173.83 30472.13 31690.07 306
ACMP87.39 1088.71 21488.24 20590.12 26193.91 24381.06 30398.50 15995.67 25989.43 13780.37 27195.55 19565.67 29397.83 18490.55 15284.51 23091.47 265
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CL-MVSNet_2432*160079.89 30278.34 30284.54 32081.56 34975.01 32896.88 25395.62 26181.10 29575.86 30885.81 33568.49 27390.26 34763.21 33856.51 34888.35 326
bset_n11_16_dypcd89.07 20187.85 20892.76 20686.16 33790.66 12997.30 23495.62 26189.78 12583.94 22493.15 24174.85 22295.89 28691.34 14278.48 26591.74 253
V4287.00 23785.68 24290.98 24089.91 29986.08 23298.32 18195.61 26383.67 25982.72 23690.67 28374.00 23696.53 24481.94 24874.28 29590.32 301
XVG-ACMP-BASELINE85.86 25684.95 25288.57 29289.90 30077.12 32494.30 30495.60 26487.40 20082.12 24892.99 24553.42 33597.66 19885.02 21183.83 23690.92 284
Anonymous20240521188.84 20787.03 22294.27 16998.14 10884.18 26598.44 16595.58 26576.79 32189.34 18196.88 16853.42 33599.54 9687.53 18787.12 21599.09 112
miper_ehance_all_eth88.94 20488.12 20791.40 23195.32 19586.93 21197.85 21395.55 26684.19 24981.97 25491.50 26584.16 14395.91 28484.69 21577.89 26991.36 271
CANet_DTU94.31 10293.35 11197.20 5797.03 14294.71 4298.62 14395.54 26795.61 1497.21 5498.47 10871.88 25399.84 5588.38 17697.46 12097.04 200
v2v48287.27 23585.76 24091.78 22989.59 30487.58 19398.56 15295.54 26784.53 24582.51 24091.78 26073.11 24296.47 24982.07 24574.14 29891.30 274
BH-untuned91.46 16290.84 16293.33 19496.51 15784.83 25898.84 11795.50 26986.44 21983.50 22696.70 17475.49 22097.77 18986.78 19597.81 11097.40 188
v14886.38 24985.06 24990.37 25789.47 30984.10 26698.52 15495.48 27083.80 25580.93 26690.22 30174.60 22596.31 26480.92 25471.55 32090.69 294
IterMVS-LS88.34 21887.44 21491.04 23894.10 23485.85 23998.10 19995.48 27085.12 23382.03 25291.21 27181.35 18895.63 29483.86 22975.73 28191.63 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5393.85 5999.65 2295.45 27295.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
v114486.83 24085.31 24791.40 23189.75 30287.21 20898.31 18295.45 27283.22 26582.70 23790.78 27873.36 23896.36 25679.49 26274.69 28990.63 296
v119286.32 25084.71 25791.17 23589.53 30786.40 22098.13 19495.44 27482.52 27982.42 24290.62 28771.58 25896.33 26377.23 27674.88 28690.79 288
v14419286.40 24884.89 25390.91 24189.48 30885.59 24398.21 18995.43 27582.45 28082.62 23890.58 29072.79 24696.36 25678.45 27174.04 29990.79 288
Effi-MVS+-dtu89.97 19190.68 16787.81 29995.15 20371.98 34197.87 21295.40 27691.92 7487.57 19291.44 26674.27 23296.84 23089.45 16293.10 16694.60 220
mvs-test191.57 15992.20 13589.70 27295.15 20374.34 33199.51 3795.40 27691.92 7491.02 15797.25 14874.27 23298.08 17189.45 16295.83 14496.67 203
cl_fuxian88.19 22287.23 21991.06 23794.97 21586.17 22997.72 22195.38 27883.43 26281.68 26191.37 26782.81 16595.72 29184.04 22773.70 30091.29 275
eth_miper_zixun_eth87.76 22687.00 22390.06 26294.67 22582.65 28697.02 24995.37 27984.19 24981.86 25991.58 26481.47 18695.90 28583.24 23273.61 30191.61 260
v886.11 25284.45 26191.10 23689.99 29886.85 21297.24 23995.36 28081.99 28679.89 27989.86 30674.53 22896.39 25478.83 26972.32 31490.05 308
v192192086.02 25384.44 26290.77 24689.32 31085.20 25098.10 19995.35 28182.19 28482.25 24690.71 28070.73 26196.30 26776.85 28174.49 29190.80 287
pmmvs487.58 23286.17 23591.80 22589.58 30588.92 16997.25 23895.28 28282.54 27880.49 27093.17 23975.62 21996.05 27682.75 23978.90 26390.42 299
GBi-Net86.67 24384.96 25091.80 22595.11 20688.81 17196.77 25695.25 28382.94 27082.12 24890.25 29862.89 30394.97 30779.04 26580.24 25691.62 257
test186.67 24384.96 25091.80 22595.11 20688.81 17196.77 25695.25 28382.94 27082.12 24890.25 29862.89 30394.97 30779.04 26580.24 25691.62 257
FMVSNet183.94 28381.32 29191.80 22591.94 27788.81 17196.77 25695.25 28377.98 31378.25 29790.25 29850.37 34294.97 30773.27 30777.81 27391.62 257
cl-mvsnet____87.82 22486.79 22690.89 24394.88 21985.43 24697.81 21495.24 28682.91 27480.71 26891.22 27081.97 18195.84 28781.34 25175.06 28491.40 270
miper_lstm_enhance86.90 23886.20 23489.00 28894.53 22781.19 30096.74 26095.24 28682.33 28280.15 27590.51 29481.99 17994.68 31680.71 25673.58 30291.12 279
UnsupCasMVSNet_bld73.85 31970.14 32284.99 31679.44 35375.73 32688.53 33795.24 28670.12 34061.94 34974.81 35041.41 35393.62 32368.65 32351.13 35485.62 343
v124085.77 26084.11 26590.73 24789.26 31185.15 25397.88 21195.23 28981.89 28982.16 24790.55 29269.60 26896.31 26475.59 29174.87 28790.72 293
cl-mvsnet187.82 22486.81 22590.87 24494.87 22085.39 24897.81 21495.22 29082.92 27380.76 26791.31 26981.99 17995.81 28981.36 25075.04 28591.42 269
v1085.73 26184.01 26790.87 24490.03 29786.73 21497.20 24295.22 29081.25 29479.85 28089.75 30773.30 24196.28 26876.87 28072.64 30989.61 315
BH-RMVSNet91.25 16689.99 17495.03 14796.75 14988.55 17798.65 13894.95 29287.74 19187.74 19197.80 12668.27 27598.14 16480.53 25897.49 11998.41 158
GeoE90.60 17989.56 17893.72 18995.10 20985.43 24699.41 5494.94 29383.96 25487.21 19896.83 17074.37 23097.05 22480.50 25993.73 16198.67 147
ACMH83.09 1784.60 27282.61 28290.57 24993.18 26182.94 27896.27 27294.92 29481.01 29772.61 32893.61 22856.54 32197.79 18774.31 29981.07 25590.99 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS85.81 25884.67 25889.22 28393.51 25283.67 27196.32 27194.80 29585.09 23578.69 29090.17 30466.57 29093.17 32879.48 26377.42 27590.81 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB81.71 1984.59 27382.72 27990.18 25992.89 26683.18 27693.15 31594.74 29678.99 30875.14 31392.69 24765.64 29497.63 20069.46 32081.82 25389.74 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs184.68 27182.78 27790.40 25489.58 30585.18 25197.31 23394.73 29781.93 28876.05 30592.01 25565.48 29596.11 27478.75 27069.14 32589.91 311
IterMVS-SCA-FT85.73 26184.64 25989.00 28893.46 25582.90 28096.27 27294.70 29885.02 23878.62 29290.35 29666.61 28893.33 32579.38 26477.36 27690.76 290
1112_ss92.71 13891.55 15096.20 10895.56 18791.12 11398.48 16294.69 29988.29 17486.89 20298.50 10487.02 9898.66 15384.75 21489.77 20698.81 137
Test_1112_low_res92.27 14990.97 15896.18 10995.53 19091.10 11598.47 16494.66 30088.28 17586.83 20493.50 23387.00 9998.65 15484.69 21589.74 20798.80 138
Fast-Effi-MVS+-dtu88.84 20788.59 20089.58 27693.44 25678.18 31998.65 13894.62 30188.46 16484.12 22295.37 20068.91 26996.52 24582.06 24691.70 19094.06 221
our_test_384.47 27682.80 27589.50 27889.01 31283.90 26997.03 24794.56 30281.33 29375.36 31290.52 29371.69 25694.54 31868.81 32276.84 27890.07 306
ppachtmachnet_test83.63 28581.57 28889.80 26989.01 31285.09 25497.13 24494.50 30378.84 30976.14 30491.00 27469.78 26594.61 31763.40 33774.36 29389.71 314
YYNet179.64 30477.04 30887.43 30387.80 32779.98 30996.23 27694.44 30473.83 33151.83 35287.53 32167.96 27992.07 34266.00 33267.75 33190.23 303
MDA-MVSNet_test_wron79.65 30377.05 30787.45 30287.79 32880.13 30896.25 27594.44 30473.87 33051.80 35387.47 32468.04 27792.12 34166.02 33167.79 33090.09 304
MIMVSNet84.48 27581.83 28592.42 21291.73 28187.36 20085.52 34294.42 30681.40 29281.91 25587.58 32051.92 33892.81 33173.84 30388.15 21097.08 199
MVP-Stereo86.61 24585.83 23988.93 29088.70 31783.85 27096.07 28294.41 30782.15 28575.64 31091.96 25767.65 28196.45 25177.20 27898.72 9686.51 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG88.29 22086.37 23194.04 17996.90 14486.15 23096.52 26694.36 30877.89 31779.22 28796.95 16469.72 26699.59 9273.20 30892.58 17496.37 212
ACMH+83.78 1584.21 27882.56 28389.15 28593.73 24979.16 31196.43 26794.28 30981.09 29674.00 31794.03 21554.58 33197.67 19776.10 28778.81 26490.63 296
Patchmatch-test86.25 25184.06 26692.82 20394.42 22882.88 28282.88 35394.23 31071.58 33479.39 28590.62 28789.00 6196.42 25363.03 33991.37 19599.16 108
CR-MVSNet88.83 20987.38 21693.16 19793.47 25386.24 22584.97 34694.20 31188.92 15390.76 16186.88 32984.43 14094.82 31270.64 31692.17 18298.41 158
Patchmtry83.61 28681.64 28689.50 27893.36 25782.84 28384.10 34994.20 31169.47 34279.57 28386.88 32984.43 14094.78 31368.48 32474.30 29490.88 285
EG-PatchMatch MVS79.92 30077.59 30486.90 30687.06 33377.90 32396.20 28094.06 31374.61 32766.53 34488.76 31540.40 35696.20 26967.02 32883.66 23986.61 338
DIV-MVS_2432*160077.47 31475.88 31382.24 32681.59 34868.93 34892.83 32094.02 31477.03 31973.14 32283.39 33955.44 32790.42 34667.95 32557.53 34787.38 332
K. test v381.04 29679.77 29984.83 31787.41 33070.23 34595.60 29493.93 31583.70 25867.51 34089.35 31255.76 32393.58 32476.67 28368.03 32990.67 295
RPSCF85.33 26585.55 24484.67 31994.63 22662.28 35293.73 31093.76 31674.38 32985.23 21497.06 16064.09 29998.31 15880.98 25286.08 22293.41 226
MVS-HIRNet79.01 30575.13 31590.66 24893.82 24781.69 29385.16 34393.75 31754.54 35374.17 31659.15 35757.46 31996.58 24163.74 33694.38 15593.72 223
pmmvs585.87 25584.40 26490.30 25888.53 31984.23 26498.60 14793.71 31881.53 29180.29 27392.02 25464.51 29895.52 29682.04 24778.34 26791.15 278
pmmvs679.90 30177.31 30687.67 30084.17 34278.13 32095.86 28993.68 31967.94 34672.67 32789.62 30950.98 34195.75 29074.80 29766.04 33489.14 321
OurMVSNet-221017-084.13 28183.59 27085.77 31387.81 32670.24 34494.89 29993.65 32086.08 22176.53 30293.28 23661.41 30996.14 27380.95 25377.69 27490.93 283
Anonymous2024052178.63 30976.90 30983.82 32282.82 34672.86 33795.72 29393.57 32173.55 33272.17 32984.79 33749.69 34492.51 33665.29 33474.50 29086.09 342
DP-MVS88.75 21386.56 22995.34 13898.92 8487.45 19797.64 22593.52 32270.55 33781.49 26297.25 14874.43 22999.88 4471.14 31594.09 15898.67 147
ITE_SJBPF87.93 29792.26 27176.44 32593.47 32387.67 19579.95 27895.49 19856.50 32297.38 21475.24 29282.33 25089.98 310
USDC84.74 26982.93 27390.16 26091.73 28183.54 27295.00 29893.30 32488.77 15673.19 32193.30 23553.62 33497.65 19975.88 28981.54 25489.30 318
ADS-MVSNet287.62 23186.88 22489.86 26796.21 16679.14 31287.15 33992.99 32583.01 26889.91 17587.27 32578.87 20392.80 33274.20 30092.27 17997.64 182
Anonymous2023120680.76 29779.42 30184.79 31884.78 34072.98 33696.53 26592.97 32679.56 30574.33 31488.83 31461.27 31092.15 34060.59 34475.92 28089.24 320
MDA-MVSNet-bldmvs77.82 31374.75 31787.03 30588.33 32078.52 31796.34 27092.85 32775.57 32448.87 35587.89 31857.32 32092.49 33760.79 34364.80 33790.08 305
test20.0378.51 31077.48 30581.62 33083.07 34571.03 34296.11 28192.83 32881.66 29069.31 33389.68 30857.53 31887.29 35358.65 34868.47 32786.53 339
COLMAP_ROBcopyleft82.69 1884.54 27482.82 27489.70 27296.72 15078.85 31395.89 28592.83 32871.55 33577.54 30195.89 19259.40 31599.14 13667.26 32788.26 20991.11 280
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SixPastTwentyTwo82.63 28981.58 28785.79 31288.12 32371.01 34395.17 29792.54 33084.33 24872.93 32692.08 25260.41 31395.61 29574.47 29874.15 29790.75 291
FMVSNet582.29 29080.54 29487.52 30193.79 24884.01 26793.73 31092.47 33176.92 32074.27 31586.15 33463.69 30289.24 34969.07 32174.79 28889.29 319
new-patchmatchnet74.80 31872.40 32181.99 32978.36 35572.20 34094.44 30292.36 33277.06 31863.47 34779.98 34751.04 34088.85 35060.53 34554.35 35184.92 347
new_pmnet76.02 31573.71 31882.95 32583.88 34372.85 33891.26 33092.26 33370.44 33862.60 34881.37 34347.64 34792.32 33861.85 34172.10 31783.68 349
AllTest84.97 26883.12 27290.52 25196.82 14678.84 31495.89 28592.17 33477.96 31575.94 30695.50 19655.48 32599.18 13171.15 31387.14 21393.55 224
TestCases90.52 25196.82 14678.84 31492.17 33477.96 31575.94 30695.50 19655.48 32599.18 13171.15 31387.14 21393.55 224
pmmvs-eth3d78.71 30876.16 31286.38 30880.25 35281.19 30094.17 30692.13 33677.97 31466.90 34382.31 34155.76 32392.56 33573.63 30662.31 34185.38 344
MIMVSNet175.92 31673.30 31983.81 32381.29 35075.57 32792.26 32392.05 33773.09 33367.48 34186.18 33340.87 35587.64 35255.78 35070.68 32488.21 327
ambc79.60 33372.76 35756.61 35676.20 35592.01 33868.25 33680.23 34623.34 36094.73 31473.78 30560.81 34287.48 331
LF4IMVS81.94 29381.17 29284.25 32187.23 33268.87 34993.35 31491.93 33983.35 26475.40 31193.00 24449.25 34696.65 23878.88 26878.11 26887.22 336
TransMVSNet (Re)81.97 29279.61 30089.08 28689.70 30384.01 26797.26 23791.85 34078.84 30973.07 32591.62 26267.17 28595.21 30467.50 32659.46 34588.02 328
Baseline_NR-MVSNet85.83 25784.82 25588.87 29188.73 31683.34 27498.63 14291.66 34180.41 30482.44 24191.35 26874.63 22395.42 29984.13 22371.39 32187.84 329
testgi82.29 29081.00 29386.17 31087.24 33174.84 33097.39 23091.62 34288.63 15775.85 30995.42 19946.07 34991.55 34466.87 33079.94 26092.12 243
TDRefinement78.01 31175.31 31486.10 31170.06 35873.84 33393.59 31391.58 34374.51 32873.08 32491.04 27349.63 34597.12 21974.88 29559.47 34487.33 334
OpenMVS_ROBcopyleft73.86 2077.99 31275.06 31686.77 30783.81 34477.94 32296.38 26991.53 34467.54 34768.38 33587.13 32843.94 35096.08 27555.03 35181.83 25286.29 341
test_040278.81 30776.33 31186.26 30991.18 28778.44 31895.88 28791.34 34568.55 34370.51 33189.91 30552.65 33794.99 30647.14 35579.78 26185.34 346
MTMP99.21 7091.09 346
DeepMVS_CXcopyleft76.08 33490.74 29351.65 36090.84 34786.47 21857.89 35187.98 31735.88 35792.60 33365.77 33365.06 33683.97 348
lessismore_v085.08 31585.59 33869.28 34790.56 34867.68 33990.21 30254.21 33395.46 29773.88 30262.64 33990.50 298
Gipumacopyleft54.77 32652.22 33062.40 34186.50 33459.37 35550.20 36090.35 34936.52 35741.20 35849.49 35918.33 36381.29 35532.10 35865.34 33546.54 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TinyColmap80.42 29977.94 30387.85 29892.09 27478.58 31693.74 30989.94 35074.99 32569.77 33291.78 26046.09 34897.58 20365.17 33577.89 26987.38 332
test_method70.10 32268.66 32574.41 33586.30 33655.84 35794.47 30189.82 35135.18 35866.15 34584.75 33830.54 35877.96 35870.40 31960.33 34389.44 317
FPMVS61.57 32360.32 32665.34 33960.14 36242.44 36391.02 33289.72 35244.15 35542.63 35780.93 34419.02 36180.59 35742.50 35672.76 30873.00 353
LCM-MVSNet60.07 32456.37 32771.18 33654.81 36448.67 36182.17 35489.48 35337.95 35649.13 35469.12 35113.75 36781.76 35459.28 34651.63 35383.10 351
pmmvs372.86 32069.76 32482.17 32773.86 35674.19 33294.20 30589.01 35464.23 35267.72 33880.91 34541.48 35288.65 35162.40 34054.02 35283.68 349
LCM-MVSNet-Re88.59 21588.61 19888.51 29495.53 19072.68 33996.85 25488.43 35588.45 16573.14 32290.63 28675.82 21794.38 31992.95 12995.71 14798.48 156
Patchmatch-RL test81.90 29480.13 29787.23 30480.71 35170.12 34684.07 35088.19 35683.16 26770.57 33082.18 34287.18 9592.59 33482.28 24462.78 33898.98 119
DSMNet-mixed81.60 29581.43 28982.10 32884.36 34160.79 35393.63 31286.74 35779.00 30779.32 28687.15 32763.87 30189.78 34866.89 32991.92 18495.73 216
PM-MVS74.88 31772.85 32080.98 33278.98 35464.75 35190.81 33385.77 35880.95 29868.23 33782.81 34029.08 35992.84 33076.54 28462.46 34085.36 345
door85.30 359
door-mid84.90 360
PMMVS258.97 32555.07 32870.69 33862.72 35955.37 35885.97 34180.52 36149.48 35445.94 35668.31 35215.73 36580.78 35649.79 35437.12 35775.91 352
ANet_high50.71 32846.17 33164.33 34044.27 36652.30 35976.13 35678.73 36264.95 35027.37 36155.23 35814.61 36667.74 36036.01 35718.23 36072.95 354
PMVScopyleft41.42 2345.67 32942.50 33255.17 34334.28 36732.37 36666.24 35878.71 36330.72 35922.04 36459.59 3564.59 36877.85 35927.49 35958.84 34655.29 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt53.66 32752.86 32956.05 34232.75 36841.97 36473.42 35776.12 36421.91 36339.68 35996.39 18342.59 35165.10 36178.00 27314.92 36261.08 355
MVEpermissive44.00 2241.70 33037.64 33553.90 34449.46 36543.37 36265.09 35966.66 36526.19 36225.77 36348.53 3603.58 37063.35 36226.15 36027.28 35854.97 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 33140.93 33341.29 34561.97 36033.83 36584.00 35165.17 36627.17 36027.56 36046.72 36117.63 36460.41 36319.32 36118.82 35929.61 359
EMVS39.96 33239.88 33440.18 34659.57 36332.12 36784.79 34864.57 36726.27 36126.14 36244.18 36418.73 36259.29 36417.03 36217.67 36129.12 360
N_pmnet70.19 32169.87 32371.12 33788.24 32130.63 36895.85 29028.70 36870.18 33968.73 33486.55 33164.04 30093.81 32253.12 35373.46 30488.94 322
wuyk23d16.71 33516.73 33916.65 34760.15 36125.22 36941.24 3615.17 3696.56 3645.48 3673.61 3673.64 36922.72 36515.20 3639.52 3631.99 363
testmvs18.81 33423.05 3376.10 3494.48 3692.29 37197.78 2163.00 3703.27 36518.60 36562.71 3541.53 3722.49 36714.26 3641.80 36413.50 362
test12316.58 33619.47 3387.91 3483.59 3705.37 37094.32 3031.39 3712.49 36613.98 36644.60 3632.91 3712.65 36611.35 3650.57 36515.70 361
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.87 3389.16 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36882.48 1720.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
n20.00 372
nn0.00 372
ab-mvs-re8.21 33710.94 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36898.50 1040.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS99.49 299.64 2098.51 299.77 899.19 3295.12 699.97 2099.90 199.92 399.99 1
test_0728_THIRD93.01 4999.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
GSMVS98.84 132
test_part299.54 3695.42 1798.13 32
sam_mvs188.39 7098.84 132
sam_mvs87.08 96
test_post190.74 33541.37 36585.38 13296.36 25683.16 234
test_post46.00 36287.37 8997.11 220
patchmatchnet-post84.86 33688.73 6496.81 232
gm-plane-assit94.69 22488.14 18288.22 17697.20 15298.29 16090.79 150
test9_res98.60 1999.87 799.90 20
agg_prior297.84 4199.87 799.91 18
test_prior492.00 9499.41 54
test_prior299.57 3091.43 8598.12 3498.97 6390.43 4098.33 3099.81 19
旧先验298.67 13685.75 22598.96 1298.97 14293.84 115
新几何298.26 185
原ACMM298.69 132
testdata299.88 4484.16 222
segment_acmp90.56 39
testdata197.89 20992.43 62
plane_prior793.84 24585.73 241
plane_prior693.92 24286.02 23572.92 243
plane_prior496.52 177
plane_prior385.91 23693.65 4186.99 199
plane_prior299.02 9893.38 46
plane_prior193.90 244
plane_prior86.07 23399.14 8593.81 3986.26 219
HQP5-MVS86.39 221
HQP-NCC93.95 23899.16 7693.92 3187.57 192
ACMP_Plane93.95 23899.16 7693.92 3187.57 192
BP-MVS93.82 117
HQP4-MVS87.57 19297.77 18992.72 227
HQP2-MVS73.34 239
NP-MVS93.94 24186.22 22796.67 175
MDTV_nov1_ep13_2view91.17 11291.38 32887.45 19993.08 13286.67 10787.02 18998.95 125
ACMMP++_ref82.64 248
ACMMP++83.83 236
Test By Simon83.62 149