This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR98.72 2598.62 2399.01 7499.36 9897.18 10699.93 7699.90 196.81 5198.67 11199.77 6193.92 9299.89 9699.27 5399.94 5599.96 64
MVS_111021_LR98.42 4498.38 3498.53 11199.39 9695.79 15799.87 10499.86 296.70 5498.78 10499.79 5592.03 14799.90 9199.17 5799.86 7399.88 85
CHOSEN 1792x268896.81 12696.53 12597.64 16398.91 13093.07 23999.65 17899.80 395.64 8395.39 20598.86 17984.35 24699.90 9196.98 15899.16 12799.95 71
HyFIR lowres test96.66 13796.43 12897.36 18299.05 11293.91 22099.70 17199.80 390.54 26196.26 18798.08 22892.15 14498.23 24696.84 16495.46 21699.93 76
test250697.53 8997.19 9598.58 10498.66 14696.90 11898.81 29099.77 594.93 9997.95 14098.96 16392.51 13499.20 17494.93 18898.15 15699.64 121
MM98.83 2198.53 2799.76 1099.59 8299.33 899.99 499.76 698.39 499.39 7499.80 5190.49 17699.96 6299.89 1799.43 11499.98 48
thres100view90096.74 13295.92 15099.18 5298.90 13198.77 4299.74 15699.71 792.59 19795.84 19798.86 17989.25 19399.50 15593.84 21494.57 22999.27 188
tfpn200view996.79 12795.99 14099.19 5198.94 12198.82 3799.78 14299.71 792.86 18096.02 19298.87 17789.33 19199.50 15593.84 21494.57 22999.27 188
thres600view796.69 13595.87 15399.14 6198.90 13198.78 4199.74 15699.71 792.59 19795.84 19798.86 17989.25 19399.50 15593.44 22694.50 23299.16 195
thres40096.78 12995.99 14099.16 5798.94 12198.82 3799.78 14299.71 792.86 18096.02 19298.87 17789.33 19199.50 15593.84 21494.57 22999.16 195
thres20096.96 11996.21 13599.22 4898.97 11998.84 3699.85 11899.71 793.17 17196.26 18798.88 17489.87 18499.51 15394.26 20794.91 22699.31 182
PVSNet91.05 1397.13 10996.69 11998.45 11699.52 8995.81 15699.95 5399.65 1294.73 10799.04 9299.21 14184.48 24499.95 7094.92 18998.74 14299.58 139
PVSNet_088.03 1991.80 26690.27 28096.38 21298.27 17690.46 30199.94 6999.61 1393.99 14486.26 33597.39 24971.13 34799.89 9698.77 8667.05 39098.79 218
WTY-MVS98.10 6297.60 7799.60 2298.92 12699.28 1799.89 9899.52 1495.58 8598.24 13399.39 12593.33 10799.74 13497.98 12795.58 21599.78 100
HY-MVS92.50 797.79 7997.17 9799.63 1798.98 11899.32 997.49 34499.52 1495.69 8298.32 12897.41 24793.32 10899.77 12898.08 12195.75 21299.81 94
EPNet98.49 3798.40 3298.77 8999.62 8196.80 12299.90 9099.51 1697.60 2299.20 8599.36 12893.71 10099.91 8997.99 12598.71 14399.61 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PGM-MVS98.34 4898.13 5198.99 7599.92 3197.00 11399.75 15399.50 1793.90 15099.37 7599.76 6393.24 113100.00 197.75 14199.96 4699.98 48
ACMMPcopyleft97.74 8297.44 8498.66 9699.92 3196.13 14899.18 24899.45 1894.84 10496.41 18499.71 8391.40 15499.99 3697.99 12598.03 16399.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MG-MVS98.91 1998.65 2199.68 1699.94 1399.07 2499.64 18299.44 1997.33 3199.00 9499.72 8194.03 9099.98 4498.73 89100.00 1100.00 1
EPMVS96.53 14196.01 13998.09 13698.43 16596.12 15096.36 36599.43 2093.53 15997.64 15095.04 33194.41 7098.38 23091.13 25598.11 15999.75 103
CHOSEN 280x42099.01 1499.03 1098.95 8099.38 9798.87 3398.46 31299.42 2197.03 4299.02 9399.09 14799.35 198.21 24799.73 3299.78 8399.77 101
D2MVS92.76 24492.59 23993.27 31095.13 30889.54 31899.69 17299.38 2292.26 21187.59 31494.61 34685.05 23997.79 26891.59 25088.01 28392.47 360
sss97.57 8897.03 10299.18 5298.37 16798.04 7299.73 16199.38 2293.46 16198.76 10799.06 15091.21 15699.89 9696.33 16797.01 18599.62 127
PAPM98.60 3098.42 3199.14 6196.05 28198.96 2699.90 9099.35 2496.68 5598.35 12799.66 9696.45 2898.51 21499.45 4599.89 6799.96 64
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 6993.24 11399.99 3699.94 1199.41 11699.95 71
UGNet95.33 17894.57 18797.62 16698.55 15694.85 19398.67 30399.32 2695.75 8196.80 17396.27 28572.18 34099.96 6294.58 20199.05 13398.04 238
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_yl97.83 7197.37 8799.21 4999.18 10497.98 7599.64 18299.27 2791.43 23797.88 14498.99 15795.84 3799.84 11698.82 8295.32 22199.79 97
DCV-MVSNet97.83 7197.37 8799.21 4999.18 10497.98 7599.64 18299.27 2791.43 23797.88 14498.99 15795.84 3799.84 11698.82 8295.32 22199.79 97
VNet97.21 10696.57 12499.13 6598.97 11997.82 8199.03 26799.21 2994.31 12799.18 8898.88 17486.26 22899.89 9698.93 7494.32 23399.69 112
testing393.92 21394.23 19492.99 31897.54 22590.23 30599.99 499.16 3090.57 26091.33 25298.63 19792.99 11992.52 38682.46 34495.39 21996.22 263
PVSNet_BlendedMVS96.05 15795.82 15496.72 20199.59 8296.99 11499.95 5399.10 3194.06 14098.27 13095.80 29689.00 19899.95 7099.12 5887.53 29093.24 347
PVSNet_Blended97.94 6597.64 7598.83 8699.59 8296.99 114100.00 199.10 3195.38 9098.27 13099.08 14889.00 19899.95 7099.12 5899.25 12399.57 142
UniMVSNet_NR-MVSNet92.95 24092.11 24695.49 22994.61 31895.28 18199.83 13099.08 3391.49 23289.21 28896.86 26787.14 21696.73 32193.20 22877.52 36094.46 273
CSCG97.10 11097.04 10197.27 18699.89 4591.92 26899.90 9099.07 3488.67 29895.26 20899.82 4693.17 11699.98 4498.15 11699.47 10999.90 83
PatchMatch-RL96.04 15895.40 16397.95 14299.59 8295.22 18599.52 20399.07 3493.96 14696.49 18098.35 21782.28 25799.82 12090.15 27799.22 12698.81 217
VPA-MVSNet92.70 24691.55 25896.16 21695.09 30996.20 14498.88 28199.00 3691.02 25191.82 24795.29 32576.05 31997.96 26195.62 18081.19 33294.30 286
SDMVSNet94.80 18893.96 20197.33 18498.92 12695.42 17599.59 18998.99 3792.41 20692.55 24097.85 23875.81 32098.93 18897.90 13191.62 25497.64 246
CVMVSNet94.68 19594.94 18093.89 29496.80 26486.92 34599.06 26098.98 3894.45 11694.23 22199.02 15285.60 23195.31 36090.91 26295.39 21999.43 167
UniMVSNet (Re)93.07 23892.13 24595.88 22194.84 31396.24 14399.88 10198.98 3892.49 20489.25 28595.40 31587.09 21797.14 29593.13 23278.16 35594.26 288
fmvsm_s_conf0.5_n97.80 7797.85 6997.67 16199.06 11194.41 20499.98 1598.97 4097.34 2999.63 4499.69 8787.27 21499.97 5499.62 3799.06 13298.62 226
h-mvs3394.92 18694.36 19096.59 20598.85 13591.29 28498.93 27698.94 4195.90 7698.77 10598.42 21590.89 16899.77 12897.80 13470.76 37998.72 223
tfpnnormal89.29 31787.61 32394.34 27794.35 32294.13 21498.95 27498.94 4183.94 35484.47 34695.51 31074.84 32997.39 28077.05 37280.41 34291.48 370
MVS96.60 13895.56 16199.72 1396.85 26199.22 2098.31 32198.94 4191.57 23090.90 25699.61 10386.66 22399.96 6297.36 14799.88 7199.99 23
WR-MVS_H91.30 27390.35 27794.15 28094.17 32592.62 25499.17 24998.94 4188.87 29486.48 33194.46 35184.36 24596.61 32688.19 29678.51 35393.21 348
FIs94.10 21193.43 21596.11 21794.70 31696.82 12099.58 19198.93 4592.54 20089.34 28397.31 25087.62 21097.10 29994.22 20986.58 29494.40 279
fmvsm_s_conf0.5_n_a97.73 8497.72 7297.77 15598.63 15094.26 21099.96 3598.92 4697.18 3999.75 2999.69 8787.00 21999.97 5499.46 4498.89 13699.08 203
test_fmvsm_n_192098.44 4198.61 2497.92 14599.27 10295.18 187100.00 198.90 4798.05 1299.80 1799.73 7892.64 12999.99 3699.58 3899.51 10798.59 227
EPNet_dtu95.71 16795.39 16496.66 20398.92 12693.41 23499.57 19598.90 4796.19 7397.52 15298.56 20492.65 12897.36 28177.89 36798.33 15099.20 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-298.24 5799.12 595.59 22899.67 7886.91 34699.95 5398.89 4997.60 2299.90 399.76 6396.54 2799.98 4499.94 1199.82 7999.88 85
FC-MVSNet-test93.81 21793.15 22495.80 22594.30 32396.20 14499.42 21998.89 4992.33 21089.03 29397.27 25287.39 21396.83 31793.20 22886.48 29594.36 281
baseline296.71 13496.49 12697.37 18095.63 30395.96 15399.74 15698.88 5192.94 17791.61 24898.97 16197.72 598.62 20994.83 19398.08 16297.53 251
API-MVS97.86 6997.66 7498.47 11499.52 8995.41 17699.47 21298.87 5291.68 22898.84 10099.85 3092.34 14099.99 3698.44 10399.96 46100.00 1
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 10697.81 8299.98 1598.86 5398.25 599.90 399.76 6394.21 8599.97 5499.87 1999.52 10499.98 48
131496.84 12595.96 14699.48 3496.74 26898.52 5898.31 32198.86 5395.82 7889.91 26798.98 15987.49 21199.96 6297.80 13499.73 8699.96 64
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 35100.00 199.51 40100.00 1100.00 1
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10397.91 7999.98 1598.85 5698.25 599.92 299.75 6994.72 6499.97 5499.87 1999.64 9199.95 71
sd_testset93.55 22692.83 22995.74 22698.92 12690.89 29298.24 32698.85 5692.41 20692.55 24097.85 23871.07 34898.68 20693.93 21191.62 25497.64 246
AdaColmapbinary97.23 10596.80 11398.51 11299.99 195.60 16999.09 25398.84 5893.32 16696.74 17499.72 8186.04 229100.00 198.01 12399.43 11499.94 75
test_fmvsmconf_n98.43 4398.32 4098.78 8798.12 18996.41 13299.99 498.83 5998.22 799.67 3999.64 9991.11 16199.94 7899.67 3699.62 9499.98 48
IB-MVS92.85 694.99 18593.94 20298.16 13097.72 21595.69 16599.99 498.81 6094.28 13092.70 23896.90 26495.08 5199.17 17796.07 17173.88 37499.60 132
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator91.47 1296.28 15495.34 16699.08 6896.82 26397.47 9899.45 21798.81 6095.52 8889.39 28199.00 15681.97 25999.95 7097.27 14999.83 7599.84 90
PHI-MVS98.41 4598.21 4599.03 7199.86 5397.10 11199.98 1598.80 6290.78 25899.62 4799.78 5995.30 47100.00 199.80 2599.93 6199.99 23
MAR-MVS97.43 9297.19 9598.15 13399.47 9394.79 19799.05 26498.76 6392.65 19398.66 11299.82 4688.52 20399.98 4498.12 11799.63 9399.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DU-MVS92.46 25291.45 26195.49 22994.05 32695.28 18199.81 13598.74 6492.25 21289.21 28896.64 27581.66 26296.73 32193.20 22877.52 36094.46 273
tt080591.28 27590.18 28394.60 26196.26 27687.55 33998.39 31998.72 6589.00 28789.22 28798.47 21262.98 37698.96 18690.57 26888.00 28497.28 252
无先验99.49 20998.71 6693.46 161100.00 194.36 20499.99 23
NR-MVSNet91.56 27190.22 28195.60 22794.05 32695.76 15998.25 32598.70 6791.16 24680.78 36496.64 27583.23 25496.57 32791.41 25177.73 35994.46 273
FE-MVS95.70 16995.01 17897.79 15298.21 18094.57 19995.03 37998.69 6888.90 29397.50 15496.19 28792.60 13199.49 16089.99 27997.94 16599.31 182
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 899.93 199.98 296.82 21100.00 199.75 28100.00 199.99 23
WR-MVS92.31 25591.25 26395.48 23294.45 32095.29 18099.60 18898.68 7090.10 27088.07 30996.89 26580.68 27596.80 31993.14 23179.67 34894.36 281
ab-mvs94.69 19393.42 21698.51 11298.07 19096.26 13996.49 36398.68 7090.31 26894.54 21397.00 26276.30 31599.71 13895.98 17393.38 24799.56 143
QAPM95.40 17694.17 19699.10 6796.92 25597.71 8499.40 22098.68 7089.31 28188.94 29498.89 17382.48 25699.96 6293.12 23399.83 7599.62 127
Anonymous2024052992.10 25990.65 27196.47 20698.82 13690.61 29798.72 29798.67 7375.54 38793.90 22598.58 20266.23 36599.90 9194.70 19890.67 25698.90 213
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
TranMVSNet+NR-MVSNet91.68 27090.61 27394.87 25093.69 33393.98 21899.69 17298.65 7491.03 25088.44 30296.83 27180.05 28396.18 34290.26 27676.89 36894.45 278
fmvsm_s_conf0.1_n97.30 10197.21 9497.60 16797.38 23494.40 20699.90 9098.64 7696.47 6199.51 6299.65 9884.99 24099.93 8599.22 5599.09 13198.46 228
旧先验199.76 6697.52 9398.64 7699.85 3095.63 4099.94 5599.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 399.13 8999.92 1396.38 29100.00 199.74 30100.00 1100.00 1
PVSNet_Blended_VisFu97.27 10396.81 11298.66 9698.81 13796.67 12499.92 7998.64 7694.51 11596.38 18598.49 20889.05 19799.88 10297.10 15498.34 14999.43 167
新几何199.42 3799.75 6998.27 6498.63 8092.69 19099.55 5599.82 4694.40 71100.00 191.21 25399.94 5599.99 23
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8198.02 1399.90 399.95 397.33 15100.00 199.54 39100.00 1100.00 1
testing22297.08 11596.75 11598.06 13898.56 15396.82 12099.85 11898.61 8292.53 20198.84 10098.84 18393.36 10598.30 23895.84 17694.30 23499.05 205
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9999.95 5398.61 8294.77 10599.31 7899.85 3094.22 83100.00 198.70 9099.98 3299.98 48
UWE-MVS96.79 12796.72 11797.00 19198.51 16093.70 22599.71 16798.60 8492.96 17697.09 16398.34 21996.67 2698.85 19192.11 24396.50 19398.44 229
ACMMPR98.50 3698.32 4099.05 6999.96 897.18 10699.95 5398.60 8494.77 10599.31 7899.84 4193.73 99100.00 198.70 9099.98 3299.98 48
VPNet91.81 26390.46 27495.85 22394.74 31595.54 17198.98 27098.59 8692.14 21390.77 25897.44 24668.73 35597.54 27794.89 19277.89 35794.46 273
test0.0.03 193.86 21493.61 20794.64 25995.02 31292.18 26299.93 7698.58 8794.07 13887.96 31098.50 20793.90 9494.96 36481.33 35193.17 24896.78 255
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13499.24 13992.58 13299.94 7898.63 9799.94 5599.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETVMVS97.03 11696.64 12098.20 12998.67 14597.12 11099.89 9898.57 8991.10 24898.17 13598.59 19993.86 9698.19 24895.64 17995.24 22399.28 187
CP-MVSNet91.23 27790.22 28194.26 27893.96 32892.39 25899.09 25398.57 8988.95 29186.42 33296.57 27879.19 29096.37 33490.29 27578.95 35094.02 311
OpenMVScopyleft90.15 1594.77 19193.59 21098.33 12396.07 28097.48 9799.56 19798.57 8990.46 26286.51 32998.95 16878.57 29799.94 7893.86 21399.74 8597.57 250
hse-mvs294.38 20494.08 19895.31 23898.27 17690.02 31099.29 23998.56 9295.90 7698.77 10598.00 23190.89 16898.26 24597.80 13469.20 38597.64 246
AUN-MVS93.28 23192.60 23595.34 23698.29 17390.09 30999.31 23498.56 9291.80 22696.35 18698.00 23189.38 19098.28 24192.46 23869.22 38497.64 246
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 46100.00 199.31 5199.99 2199.87 87
testdata98.42 11999.47 9395.33 17998.56 9293.78 15399.79 2599.85 3093.64 10299.94 7894.97 18799.94 55100.00 1
EPP-MVSNet96.69 13596.60 12296.96 19397.74 21093.05 24199.37 22798.56 9288.75 29695.83 19999.01 15496.01 3198.56 21196.92 16297.20 17999.25 190
DeepPCF-MVS95.94 297.71 8598.98 1293.92 29199.63 8081.76 37499.96 3598.56 9299.47 199.19 8799.99 194.16 87100.00 199.92 1399.93 61100.00 1
region2R98.54 3398.37 3699.05 6999.96 897.18 10699.96 3598.55 9894.87 10399.45 6599.85 3094.07 89100.00 198.67 92100.00 199.98 48
test22299.55 8797.41 10199.34 23098.55 9891.86 22299.27 8299.83 4393.84 9799.95 5099.99 23
tpmvs94.28 20993.57 21196.40 21098.55 15691.50 28295.70 37898.55 9887.47 31492.15 24394.26 35391.42 15398.95 18788.15 29795.85 20898.76 219
thisisatest053097.10 11096.72 11798.22 12897.60 22396.70 12399.92 7998.54 10191.11 24797.07 16598.97 16197.47 1099.03 18393.73 22296.09 20098.92 210
tttt051796.85 12496.49 12697.92 14597.48 23095.89 15599.85 11898.54 10190.72 25996.63 17698.93 17297.47 1099.02 18493.03 23495.76 21198.85 214
thisisatest051597.41 9797.02 10398.59 10397.71 21797.52 9399.97 2898.54 10191.83 22397.45 15599.04 15197.50 799.10 18194.75 19696.37 19799.16 195
kuosan93.17 23492.60 23594.86 25398.40 16689.54 31898.44 31498.53 10484.46 35288.49 30097.92 23590.57 17397.05 30283.10 34093.49 24497.99 239
ZD-MVS99.92 3198.57 5698.52 10592.34 20999.31 7899.83 4395.06 5299.80 12199.70 3499.97 42
GG-mvs-BLEND98.54 10998.21 18098.01 7393.87 38498.52 10597.92 14197.92 23599.02 297.94 26498.17 11499.58 10199.67 115
PS-CasMVS90.63 29089.51 29793.99 28993.83 33091.70 27798.98 27098.52 10588.48 30286.15 33696.53 28075.46 32296.31 33888.83 28878.86 35293.95 319
dongtai91.55 27291.13 26592.82 32198.16 18586.35 34799.47 21298.51 10883.24 36085.07 34497.56 24390.33 17894.94 36576.09 37591.73 25297.18 253
dmvs_re93.20 23393.15 22493.34 30796.54 27283.81 36198.71 29898.51 10891.39 24192.37 24298.56 20478.66 29697.83 26793.89 21289.74 25798.38 231
CANet98.27 5297.82 7099.63 1799.72 7599.10 2399.98 1598.51 10897.00 4398.52 11799.71 8387.80 20799.95 7099.75 2899.38 11799.83 91
gg-mvs-nofinetune93.51 22791.86 25398.47 11497.72 21597.96 7792.62 38898.51 10874.70 39097.33 15869.59 40398.91 397.79 26897.77 13999.56 10299.67 115
EI-MVSNet-Vis-set98.27 5298.11 5398.75 9099.83 5796.59 12899.40 22098.51 10895.29 9398.51 11899.76 6393.60 10399.71 13898.53 10099.52 10499.95 71
原ACMM198.96 7999.73 7396.99 11498.51 10894.06 14099.62 4799.85 3094.97 5899.96 6295.11 18499.95 5099.92 81
fmvsm_s_conf0.1_n_a97.09 11296.90 10697.63 16595.65 30194.21 21299.83 13098.50 11496.27 7099.65 4199.64 9984.72 24199.93 8599.04 6498.84 13998.74 221
EI-MVSNet-UG-set98.14 6097.99 5898.60 10199.80 6196.27 13899.36 22998.50 11495.21 9598.30 12999.75 6993.29 11099.73 13798.37 10799.30 12199.81 94
LS3D95.84 16395.11 17498.02 14099.85 5495.10 18998.74 29598.50 11487.22 31993.66 22699.86 2687.45 21299.95 7090.94 26199.81 8299.02 207
PEN-MVS90.19 30289.06 30593.57 30393.06 34590.90 29199.06 26098.47 11788.11 30785.91 33896.30 28476.67 30995.94 35287.07 31176.91 36793.89 324
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24398.47 11798.14 1099.08 9099.91 1493.09 117100.00 199.04 6499.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft95.54 397.93 6697.89 6898.05 13999.82 5894.77 19899.92 7998.46 11993.93 14897.20 16199.27 13495.44 4599.97 5497.41 14699.51 10799.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing1197.48 9197.27 9198.10 13598.36 16896.02 15199.92 7998.45 12093.45 16398.15 13698.70 18995.48 4499.22 17097.85 13395.05 22599.07 204
test_fmvsmvis_n_192097.67 8697.59 7997.91 14797.02 25095.34 17899.95 5398.45 12097.87 1597.02 16699.59 10489.64 18699.98 4499.41 4899.34 12098.42 230
test111195.57 17294.98 17997.37 18098.56 15393.37 23698.86 28598.45 12094.95 9896.63 17698.95 16875.21 32799.11 17995.02 18698.14 15899.64 121
ECVR-MVScopyleft95.66 17095.05 17697.51 17298.66 14693.71 22498.85 28798.45 12094.93 9996.86 17098.96 16375.22 32699.20 17495.34 18198.15 15699.64 121
UA-Net96.54 14095.96 14698.27 12698.23 17895.71 16298.00 33798.45 12093.72 15698.41 12399.27 13488.71 20299.66 14691.19 25497.69 16799.44 166
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8999.94 6998.44 12594.31 12798.50 11999.82 4693.06 11899.99 3698.30 11199.99 2199.93 76
DPM-MVS98.83 2198.46 3099.97 199.33 9999.92 199.96 3598.44 12597.96 1499.55 5599.94 497.18 19100.00 193.81 21799.94 5599.98 48
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12597.48 2799.64 4399.94 496.68 2499.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs97.81 7697.33 8999.25 4698.77 14098.66 5199.99 498.44 12594.40 12398.41 12399.47 11493.65 10199.42 16498.57 9894.26 23599.67 115
test1198.44 125
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14297.71 8499.98 1598.44 12596.85 4699.80 1799.91 1497.57 699.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
MDTV_nov1_ep1395.69 15797.90 19994.15 21395.98 37498.44 12593.12 17397.98 13995.74 29895.10 5098.58 21090.02 27896.92 187
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7998.44 12592.06 21798.40 12599.84 4195.68 39100.00 198.19 11399.71 8799.97 58
testing9997.17 10796.91 10597.95 14298.35 17095.70 16399.91 8498.43 13392.94 17797.36 15798.72 18794.83 6099.21 17197.00 15694.64 22798.95 209
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13396.48 5999.80 1799.93 1197.44 12100.00 199.92 1399.98 32100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13397.27 3499.80 1799.94 496.71 22100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 13397.27 3499.80 1799.94 497.18 19100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13397.26 3699.80 1799.88 2196.71 22100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 133100.00 199.99 5100.00 1100.00 1
TEST999.92 3198.92 2999.96 3598.43 13393.90 15099.71 3599.86 2695.88 3699.85 108
train_agg98.88 2098.65 2199.59 2399.92 3198.92 2999.96 3598.43 13394.35 12499.71 3599.86 2695.94 3399.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3299.96 3598.43 13394.35 12499.69 3799.85 3095.94 3399.85 108
agg_prior99.93 2498.77 4298.43 13399.63 4499.85 108
PAPM_NR98.12 6197.93 6598.70 9399.94 1396.13 14899.82 13398.43 13394.56 11397.52 15299.70 8594.40 7199.98 4497.00 15699.98 3299.99 23
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13395.35 9198.03 13899.75 6994.03 9099.98 4498.11 11899.83 7599.99 23
testing9197.16 10896.90 10697.97 14198.35 17095.67 16699.91 8498.42 14592.91 17997.33 15898.72 18794.81 6199.21 17196.98 15894.63 22899.03 206
test072699.93 2499.29 1599.96 3598.42 14597.28 3299.86 799.94 497.22 17
MSP-MVS99.09 999.12 598.98 7799.93 2497.24 10399.95 5398.42 14597.50 2699.52 6099.88 2197.43 1499.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 2698.55 2599.15 5999.94 1397.50 9599.94 6998.42 14596.22 7199.41 7099.78 5994.34 7699.96 6298.92 7599.95 5099.99 23
X-MVStestdata93.83 21592.06 24899.15 5999.94 1397.50 9599.94 6998.42 14596.22 7199.41 7041.37 41294.34 7699.96 6298.92 7599.95 5099.99 23
MSC_two_6792asdad99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 15096.63 5699.75 2999.93 1197.49 8
IU-MVS99.93 2499.31 1098.41 15097.71 1999.84 12100.00 1100.00 1100.00 1
save fliter99.82 5898.79 4099.96 3598.40 15497.66 21
test1299.43 3599.74 7098.56 5798.40 15499.65 4194.76 6299.75 13299.98 3299.99 23
PatchmatchNetpermissive95.94 16095.45 16297.39 17997.83 20494.41 20496.05 37298.40 15492.86 18097.09 16395.28 32694.21 8598.07 25589.26 28598.11 15999.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GST-MVS98.27 5297.97 6099.17 5599.92 3197.57 9199.93 7698.39 15794.04 14298.80 10399.74 7692.98 120100.00 198.16 11599.76 8499.93 76
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15797.20 3899.46 6499.85 3095.53 4399.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5897.97 6099.03 7199.94 1397.17 10999.95 5398.39 15794.70 10998.26 13299.81 5091.84 151100.00 198.85 8199.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.45 4098.32 4098.87 8499.96 896.62 12699.97 2898.39 15794.43 11998.90 9899.87 2494.30 79100.00 199.04 6499.99 2199.99 23
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11598.38 16193.19 17099.77 2799.94 495.54 41100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14598.38 16196.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS98.39 4798.20 4698.97 7899.97 396.92 11799.95 5398.38 16195.04 9798.61 11599.80 5193.39 104100.00 198.64 95100.00 199.98 48
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7998.62 5599.85 11898.37 16494.68 11099.53 5899.83 4392.87 123100.00 198.66 9499.84 7499.99 23
FOURS199.92 3197.66 8899.95 5398.36 16595.58 8599.52 60
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10498.36 16594.08 13799.74 3199.73 7894.08 8899.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Syy-MVS90.00 30690.63 27288.11 36297.68 21874.66 38999.71 16798.35 16790.79 25692.10 24498.67 19179.10 29293.09 38263.35 39695.95 20596.59 258
myMVS_eth3d94.46 20294.76 18493.55 30497.68 21890.97 28799.71 16798.35 16790.79 25692.10 24498.67 19192.46 13793.09 38287.13 31095.95 20596.59 258
SR-MVS98.46 3998.30 4398.93 8299.88 4997.04 11299.84 12398.35 16794.92 10199.32 7799.80 5193.35 10699.78 12599.30 5299.95 5099.96 64
CPTT-MVS97.64 8797.32 9098.58 10499.97 395.77 15899.96 3598.35 16789.90 27598.36 12699.79 5591.18 16099.99 3698.37 10799.99 2199.99 23
SD-MVS98.92 1898.70 2099.56 2599.70 7798.73 4699.94 6998.34 17196.38 6599.81 1599.76 6394.59 6799.98 4499.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1498.38 3499.87 5199.91 8498.33 17293.22 16999.78 2699.89 1994.57 6899.85 10899.84 2299.97 42
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10498.33 17293.97 14599.76 2899.87 2494.99 5799.75 13298.55 99100.00 199.98 48
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17497.28 3299.83 1399.91 1497.22 17100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SCA94.69 19393.81 20697.33 18497.10 24694.44 20198.86 28598.32 17493.30 16796.17 19095.59 30576.48 31397.95 26291.06 25797.43 17299.59 133
SR-MVS-dyc-post98.31 4998.17 4898.71 9299.79 6296.37 13699.76 15098.31 17694.43 11999.40 7299.75 6993.28 11199.78 12598.90 7899.92 6499.97 58
RE-MVS-def98.13 5199.79 6296.37 13699.76 15098.31 17694.43 11999.40 7299.75 6992.95 12198.90 7899.92 6499.97 58
RPMNet89.76 31087.28 32597.19 18796.29 27492.66 25192.01 39198.31 17670.19 39696.94 16785.87 39587.25 21599.78 12562.69 39795.96 20399.13 199
APD-MVS_3200maxsize98.25 5698.08 5598.78 8799.81 6096.60 12799.82 13398.30 17993.95 14799.37 7599.77 6192.84 12499.76 13198.95 7299.92 6499.97 58
TESTMET0.1,196.74 13296.26 13298.16 13097.36 23696.48 12999.96 3598.29 18091.93 22095.77 20098.07 22995.54 4198.29 23990.55 26998.89 13699.70 110
MTGPAbinary98.28 181
MTAPA98.29 5197.96 6399.30 4499.85 5497.93 7899.39 22498.28 18195.76 8097.18 16299.88 2192.74 127100.00 198.67 9299.88 7199.99 23
114514_t97.41 9796.83 11199.14 6199.51 9197.83 8099.89 9898.27 18388.48 30299.06 9199.66 9690.30 17999.64 14896.32 16899.97 4299.96 64
Anonymous2023121189.86 30888.44 31594.13 28298.93 12390.68 29598.54 30998.26 18476.28 38386.73 32595.54 30770.60 34997.56 27690.82 26480.27 34594.15 301
Vis-MVSNetpermissive95.72 16595.15 17397.45 17497.62 22294.28 20999.28 24098.24 18594.27 13296.84 17198.94 17079.39 28798.76 19793.25 22798.49 14699.30 184
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+91.53 1196.31 15195.24 16999.52 2896.88 26098.64 5499.72 16498.24 18595.27 9488.42 30698.98 15982.76 25599.94 7897.10 15499.83 7599.96 64
DTE-MVSNet89.40 31588.24 31892.88 32092.66 35389.95 31299.10 25298.22 18787.29 31785.12 34396.22 28676.27 31695.30 36183.56 33875.74 37193.41 341
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9098.21 18893.53 15999.81 1599.89 1994.70 6699.86 10799.84 2299.93 6199.96 64
VDDNet93.12 23691.91 25196.76 19996.67 27192.65 25398.69 30198.21 18882.81 36497.75 14999.28 13161.57 38099.48 16198.09 12094.09 23798.15 235
test-LLR96.47 14296.04 13897.78 15397.02 25095.44 17399.96 3598.21 18894.07 13895.55 20296.38 28193.90 9498.27 24390.42 27298.83 14099.64 121
test-mter96.39 14795.93 14997.78 15397.02 25095.44 17399.96 3598.21 18891.81 22595.55 20296.38 28195.17 4898.27 24390.42 27298.83 14099.64 121
MP-MVS-pluss98.07 6397.64 7599.38 4299.74 7098.41 6399.74 15698.18 19293.35 16496.45 18199.85 3092.64 12999.97 5498.91 7799.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FA-MVS(test-final)95.86 16195.09 17598.15 13397.74 21095.62 16896.31 36798.17 19391.42 23996.26 18796.13 29090.56 17499.47 16292.18 24297.07 18199.35 177
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20198.17 19397.34 2999.85 999.85 3091.20 15799.89 9699.41 4899.67 8998.69 224
HPM-MVScopyleft97.96 6497.72 7298.68 9499.84 5696.39 13599.90 9098.17 19392.61 19598.62 11499.57 10791.87 15099.67 14598.87 8099.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpmrst96.27 15595.98 14297.13 18897.96 19693.15 23896.34 36698.17 19392.07 21598.71 11095.12 32993.91 9398.73 20094.91 19196.62 19099.50 158
WB-MVSnew92.90 24192.77 23293.26 31196.95 25493.63 22799.71 16798.16 19791.49 23294.28 21998.14 22681.33 26796.48 33079.47 35995.46 21689.68 383
ADS-MVSNet94.79 18994.02 19997.11 19097.87 20193.79 22194.24 38098.16 19790.07 27196.43 18294.48 34990.29 18098.19 24887.44 30497.23 17799.36 174
HPM-MVS_fast97.80 7797.50 8098.68 9499.79 6296.42 13199.88 10198.16 19791.75 22798.94 9699.54 11091.82 15299.65 14797.62 14499.99 2199.99 23
Vis-MVSNet (Re-imp)96.32 15095.98 14297.35 18397.93 19894.82 19599.47 21298.15 20091.83 22395.09 20999.11 14691.37 15597.47 27993.47 22597.43 17299.74 104
CNLPA97.76 8197.38 8698.92 8399.53 8896.84 11999.87 10498.14 20193.78 15396.55 17999.69 8792.28 14199.98 4497.13 15299.44 11399.93 76
JIA-IIPM91.76 26990.70 27094.94 24896.11 27987.51 34093.16 38798.13 20275.79 38697.58 15177.68 40092.84 12497.97 25988.47 29496.54 19199.33 180
cl2293.77 21993.25 22395.33 23799.49 9294.43 20299.61 18798.09 20390.38 26389.16 29195.61 30390.56 17497.34 28391.93 24584.45 31094.21 293
cdsmvs_eth3d_5k23.43 37931.24 3820.00 3960.00 4190.00 4210.00 40798.09 2030.00 4140.00 41599.67 9483.37 2520.00 4150.00 4140.00 4130.00 411
xiu_mvs_v2_base98.23 5897.97 6099.02 7398.69 14398.66 5199.52 20398.08 20597.05 4199.86 799.86 2690.65 17199.71 13899.39 5098.63 14498.69 224
tpm cat193.51 22792.52 24196.47 20697.77 20891.47 28396.13 37098.06 20680.98 37292.91 23593.78 35789.66 18598.87 18987.03 31396.39 19699.09 201
DeepC-MVS94.51 496.92 12396.40 12998.45 11699.16 10795.90 15499.66 17798.06 20696.37 6894.37 21799.49 11383.29 25399.90 9197.63 14399.61 9899.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.1_n97.74 8297.44 8498.64 9895.76 29296.20 14499.94 6998.05 20898.17 998.89 9999.42 11887.65 20999.90 9199.50 4199.60 10099.82 92
EU-MVSNet90.14 30490.34 27889.54 35092.55 35481.06 37898.69 30198.04 20991.41 24086.59 32896.84 27080.83 27393.31 38186.20 31981.91 32794.26 288
TAPA-MVS92.12 894.42 20393.60 20996.90 19599.33 9991.78 27299.78 14298.00 21089.89 27694.52 21499.47 11491.97 14899.18 17669.90 38599.52 10499.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.78 16494.86 18198.54 10998.47 16498.07 7099.06 26097.99 21192.68 19194.13 22298.62 19893.28 11198.69 20593.79 21985.76 29898.84 215
UnsupCasMVSNet_eth85.52 33583.99 33790.10 34689.36 38383.51 36396.65 36197.99 21189.14 28275.89 38493.83 35663.25 37593.92 37481.92 34967.90 38992.88 353
LFMVS94.75 19293.56 21298.30 12599.03 11395.70 16398.74 29597.98 21387.81 31298.47 12099.39 12567.43 36199.53 15098.01 12395.20 22499.67 115
dp95.05 18394.43 18996.91 19497.99 19492.73 24996.29 36897.98 21389.70 27895.93 19594.67 34493.83 9898.45 21986.91 31796.53 19299.54 148
PMMVS96.76 13096.76 11496.76 19998.28 17592.10 26399.91 8497.98 21394.12 13599.53 5899.39 12586.93 22098.73 20096.95 16197.73 16699.45 164
F-COLMAP96.93 12296.95 10496.87 19699.71 7691.74 27399.85 11897.95 21693.11 17495.72 20199.16 14592.35 13999.94 7895.32 18299.35 11998.92 210
OMC-MVS97.28 10297.23 9397.41 17799.76 6693.36 23799.65 17897.95 21696.03 7597.41 15699.70 8589.61 18799.51 15396.73 16598.25 15599.38 171
mvsany_test197.82 7497.90 6797.55 16898.77 14093.04 24299.80 13997.93 21896.95 4599.61 5399.68 9390.92 16599.83 11899.18 5698.29 15499.80 96
Anonymous20240521193.10 23791.99 24996.40 21099.10 10989.65 31698.88 28197.93 21883.71 35794.00 22398.75 18668.79 35399.88 10295.08 18591.71 25399.68 113
tpm295.47 17495.18 17296.35 21396.91 25691.70 27796.96 35797.93 21888.04 30998.44 12195.40 31593.32 10897.97 25994.00 21095.61 21499.38 171
TSAR-MVS + GP.98.60 3098.51 2898.86 8599.73 7396.63 12599.97 2897.92 22198.07 1198.76 10799.55 10895.00 5699.94 7899.91 1697.68 16899.99 23
CDS-MVSNet96.34 14996.07 13797.13 18897.37 23594.96 19199.53 20297.91 22291.55 23195.37 20698.32 22095.05 5397.13 29693.80 21895.75 21299.30 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP3-MVS97.89 22389.60 258
HQP-MVS94.61 19794.50 18894.92 24995.78 28891.85 26999.87 10497.89 22396.82 4893.37 22898.65 19480.65 27698.39 22697.92 12989.60 25894.53 268
HQP_MVS94.49 20194.36 19094.87 25095.71 29891.74 27399.84 12397.87 22596.38 6593.01 23298.59 19980.47 28098.37 23297.79 13789.55 26194.52 270
plane_prior597.87 22598.37 23297.79 13789.55 26194.52 270
xiu_mvs_v1_base_debu97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
xiu_mvs_v1_base97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
xiu_mvs_v1_base_debi97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
CostFormer96.10 15695.88 15296.78 19897.03 24992.55 25597.08 35497.83 23090.04 27398.72 10994.89 33895.01 5598.29 23996.54 16695.77 21099.50 158
TAMVS95.85 16295.58 16096.65 20497.07 24793.50 23199.17 24997.82 23191.39 24195.02 21098.01 23092.20 14297.30 28693.75 22195.83 20999.14 198
balanced_conf0398.27 5297.99 5899.11 6698.64 14998.43 6299.47 21297.79 23294.56 11399.74 3198.35 21794.33 7899.25 16799.12 5899.96 4699.64 121
VDD-MVS93.77 21992.94 22796.27 21498.55 15690.22 30698.77 29497.79 23290.85 25496.82 17299.42 11861.18 38299.77 12898.95 7294.13 23698.82 216
cascas94.64 19693.61 20797.74 15997.82 20596.26 13999.96 3597.78 23485.76 33794.00 22397.54 24476.95 30799.21 17197.23 15095.43 21897.76 245
MVSMamba_PlusPlus97.83 7197.45 8298.99 7598.60 15198.15 6599.58 19197.74 23590.34 26699.26 8398.32 22094.29 8099.23 16899.03 6799.89 6799.58 139
bld_raw_conf0397.82 7497.45 8298.94 8198.51 16098.15 6599.58 19197.74 23594.01 14399.26 8398.38 21690.66 17099.09 18298.99 7199.89 6799.58 139
CLD-MVS94.06 21293.90 20394.55 26596.02 28290.69 29499.98 1597.72 23796.62 5891.05 25598.85 18277.21 30298.47 21598.11 11889.51 26394.48 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MS-PatchMatch90.65 28890.30 27991.71 33394.22 32485.50 35398.24 32697.70 23888.67 29886.42 33296.37 28367.82 35998.03 25783.62 33799.62 9491.60 368
mvsmamba96.94 12096.73 11697.55 16897.99 19494.37 20799.62 18597.70 23893.13 17298.42 12297.92 23588.02 20698.75 19998.78 8599.01 13499.52 153
XXY-MVS91.82 26290.46 27495.88 22193.91 32995.40 17798.87 28497.69 24088.63 30087.87 31197.08 25774.38 33397.89 26591.66 24984.07 31494.35 284
EI-MVSNet93.73 22193.40 21994.74 25596.80 26492.69 25099.06 26097.67 24188.96 29091.39 25099.02 15288.75 20197.30 28691.07 25687.85 28594.22 291
MVSTER95.53 17395.22 17096.45 20898.56 15397.72 8399.91 8497.67 24192.38 20891.39 25097.14 25497.24 1697.30 28694.80 19487.85 28594.34 285
mamv495.24 17996.90 10690.25 34498.65 14872.11 39198.28 32397.64 24389.99 27495.93 19598.25 22394.74 6399.11 17999.01 7099.64 9199.53 152
ETV-MVS97.92 6797.80 7198.25 12798.14 18796.48 12999.98 1597.63 24495.61 8499.29 8199.46 11692.55 13398.82 19299.02 6998.54 14599.46 162
CANet_DTU96.76 13096.15 13698.60 10198.78 13997.53 9299.84 12397.63 24497.25 3799.20 8599.64 9981.36 26699.98 4492.77 23798.89 13698.28 233
LPG-MVS_test92.96 23992.71 23393.71 29895.43 30588.67 32799.75 15397.62 24692.81 18390.05 26298.49 20875.24 32498.40 22495.84 17689.12 26594.07 308
LGP-MVS_train93.71 29895.43 30588.67 32797.62 24692.81 18390.05 26298.49 20875.24 32498.40 22495.84 17689.12 26594.07 308
FMVSNet392.69 24791.58 25695.99 21998.29 17397.42 10099.26 24297.62 24689.80 27789.68 27395.32 32181.62 26496.27 33987.01 31485.65 29994.29 287
ET-MVSNet_ETH3D94.37 20593.28 22297.64 16398.30 17297.99 7499.99 497.61 24994.35 12471.57 39099.45 11796.23 3095.34 35996.91 16385.14 30599.59 133
EIA-MVS97.53 8997.46 8197.76 15798.04 19294.84 19499.98 1597.61 24994.41 12297.90 14299.59 10492.40 13898.87 18998.04 12299.13 12999.59 133
OPM-MVS93.21 23292.80 23094.44 27293.12 34390.85 29399.77 14597.61 24996.19 7391.56 24998.65 19475.16 32898.47 21593.78 22089.39 26493.99 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
IS-MVSNet96.29 15395.90 15197.45 17498.13 18894.80 19699.08 25597.61 24992.02 21995.54 20498.96 16390.64 17298.08 25393.73 22297.41 17599.47 161
CMPMVSbinary61.59 2184.75 34185.14 33683.57 37090.32 37862.54 39896.98 35697.59 25374.33 39169.95 39296.66 27364.17 37298.32 23687.88 30188.41 27989.84 382
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D90.06 30588.58 31394.49 26994.67 31788.09 33697.81 34297.57 25483.91 35688.44 30297.41 24757.44 38697.62 27591.41 25188.59 27697.77 244
lupinMVS97.85 7097.60 7798.62 9997.28 24397.70 8699.99 497.55 25595.50 8999.43 6899.67 9490.92 16598.71 20398.40 10499.62 9499.45 164
XVG-OURS94.82 18794.74 18595.06 24498.00 19389.19 32099.08 25597.55 25594.10 13694.71 21299.62 10280.51 27899.74 13496.04 17293.06 25196.25 260
XVG-OURS-SEG-HR94.79 18994.70 18695.08 24398.05 19189.19 32099.08 25597.54 25793.66 15794.87 21199.58 10678.78 29499.79 12397.31 14893.40 24696.25 260
PatchT90.38 29588.75 31195.25 24095.99 28390.16 30791.22 39597.54 25776.80 38297.26 16086.01 39491.88 14996.07 34866.16 39395.91 20799.51 156
BH-RMVSNet95.18 18094.31 19397.80 15098.17 18495.23 18499.76 15097.53 25992.52 20294.27 22099.25 13876.84 30898.80 19390.89 26399.54 10399.35 177
ACMP92.05 992.74 24592.42 24393.73 29695.91 28688.72 32699.81 13597.53 25994.13 13487.00 32398.23 22474.07 33498.47 21596.22 17088.86 27093.99 316
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM91.95 1092.88 24292.52 24193.98 29095.75 29489.08 32399.77 14597.52 26193.00 17589.95 26697.99 23376.17 31798.46 21893.63 22488.87 26994.39 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TR-MVS94.54 19893.56 21297.49 17397.96 19694.34 20898.71 29897.51 26290.30 26994.51 21598.69 19075.56 32198.77 19692.82 23695.99 20299.35 177
BH-w/o95.71 16795.38 16596.68 20298.49 16392.28 25999.84 12397.50 26392.12 21492.06 24698.79 18484.69 24298.67 20795.29 18399.66 9099.09 201
mvs_anonymous95.65 17195.03 17797.53 17098.19 18295.74 16099.33 23197.49 26490.87 25390.47 26097.10 25688.23 20497.16 29395.92 17497.66 16999.68 113
DP-MVS94.54 19893.42 21697.91 14799.46 9594.04 21598.93 27697.48 26581.15 37190.04 26499.55 10887.02 21899.95 7088.97 28798.11 15999.73 105
iter_conf0597.35 10096.89 10998.73 9198.60 15197.59 8998.26 32497.46 26690.34 26695.94 19498.32 22094.29 8099.23 16899.03 6799.82 7999.36 174
ACMH89.72 1790.64 28989.63 29293.66 30295.64 30288.64 32998.55 30797.45 26789.03 28581.62 35997.61 24269.75 35198.41 22289.37 28387.62 28993.92 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE91.22 27890.75 26992.63 32493.73 33285.61 35198.52 31197.44 26892.77 18689.90 26896.85 26866.64 36498.39 22692.29 24088.61 27493.89 324
mvs_tets91.81 26391.08 26694.00 28891.63 36790.58 29898.67 30397.43 26992.43 20587.37 32097.05 26071.76 34197.32 28594.75 19688.68 27394.11 306
LTVRE_ROB88.28 1890.29 29989.05 30694.02 28695.08 31090.15 30897.19 35097.43 26984.91 34983.99 34897.06 25974.00 33598.28 24184.08 33287.71 28793.62 338
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
jajsoiax91.92 26191.18 26494.15 28091.35 37090.95 29099.00 26997.42 27192.61 19587.38 31997.08 25772.46 33997.36 28194.53 20288.77 27194.13 305
K. test v388.05 32487.24 32690.47 34291.82 36582.23 37098.96 27397.42 27189.05 28476.93 38095.60 30468.49 35695.42 35785.87 32481.01 33893.75 332
FMVSNet291.02 28089.56 29495.41 23497.53 22695.74 16098.98 27097.41 27387.05 32088.43 30495.00 33471.34 34496.24 34185.12 32785.21 30494.25 290
jason97.24 10496.86 11098.38 12295.73 29597.32 10299.97 2897.40 27495.34 9298.60 11699.54 11087.70 20898.56 21197.94 12899.47 10999.25 190
jason: jason.
PS-MVSNAJss93.64 22493.31 22194.61 26092.11 36092.19 26199.12 25197.38 27592.51 20388.45 30196.99 26391.20 15797.29 28994.36 20487.71 28794.36 281
MSDG94.37 20593.36 22097.40 17898.88 13393.95 21999.37 22797.38 27585.75 33990.80 25799.17 14484.11 24899.88 10286.35 31898.43 14898.36 232
sasdasda97.09 11296.32 13099.39 4098.93 12398.95 2799.72 16497.35 27794.45 11697.88 14499.42 11886.71 22199.52 15198.48 10193.97 23999.72 107
CL-MVSNet_self_test84.50 34383.15 34688.53 35986.00 39081.79 37398.82 28997.35 27785.12 34583.62 35190.91 37776.66 31091.40 39069.53 38660.36 39992.40 361
canonicalmvs97.09 11296.32 13099.39 4098.93 12398.95 2799.72 16497.35 27794.45 11697.88 14499.42 11886.71 22199.52 15198.48 10193.97 23999.72 107
UnsupCasMVSNet_bld79.97 35977.03 36488.78 35685.62 39181.98 37193.66 38597.35 27775.51 38870.79 39183.05 39748.70 39594.91 36678.31 36660.29 40089.46 387
MVS-HIRNet86.22 33283.19 34595.31 23896.71 27090.29 30492.12 39097.33 28162.85 39786.82 32470.37 40269.37 35297.49 27875.12 37797.99 16498.15 235
BH-untuned95.18 18094.83 18296.22 21598.36 16891.22 28599.80 13997.32 28290.91 25291.08 25398.67 19183.51 25098.54 21394.23 20899.61 9898.92 210
PCF-MVS94.20 595.18 18094.10 19798.43 11898.55 15695.99 15297.91 33997.31 28390.35 26589.48 28099.22 14085.19 23799.89 9690.40 27498.47 14799.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MGCFI-Net97.00 11796.22 13499.34 4398.86 13498.80 3999.67 17697.30 28494.31 12797.77 14899.41 12286.36 22799.50 15598.38 10593.90 24199.72 107
test_fmvsmconf0.01_n96.39 14795.74 15598.32 12491.47 36995.56 17099.84 12397.30 28497.74 1897.89 14399.35 12979.62 28599.85 10899.25 5499.24 12499.55 144
test_vis1_n_192095.44 17595.31 16795.82 22498.50 16288.74 32599.98 1597.30 28497.84 1699.85 999.19 14266.82 36399.97 5498.82 8299.46 11198.76 219
miper_enhance_ethall94.36 20793.98 20095.49 22998.68 14495.24 18399.73 16197.29 28793.28 16889.86 26995.97 29494.37 7597.05 30292.20 24184.45 31094.19 294
casdiffmvs_mvgpermissive96.43 14495.94 14897.89 14997.44 23195.47 17299.86 11597.29 28793.35 16496.03 19199.19 14285.39 23598.72 20297.89 13297.04 18399.49 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer96.94 12096.60 12297.95 14297.28 24397.70 8699.55 19997.27 28991.17 24499.43 6899.54 11090.92 16596.89 31394.67 19999.62 9499.25 190
test_djsdf92.83 24392.29 24494.47 27091.90 36392.46 25699.55 19997.27 28991.17 24489.96 26596.07 29381.10 26996.89 31394.67 19988.91 26794.05 310
test_cas_vis1_n_192096.59 13996.23 13397.65 16298.22 17994.23 21199.99 497.25 29197.77 1799.58 5499.08 14877.10 30399.97 5497.64 14299.45 11298.74 221
GA-MVS93.83 21592.84 22896.80 19795.73 29593.57 22899.88 10197.24 29292.57 19992.92 23496.66 27378.73 29597.67 27387.75 30294.06 23899.17 194
Effi-MVS+96.30 15295.69 15798.16 13097.85 20396.26 13997.41 34697.21 29390.37 26498.65 11398.58 20286.61 22498.70 20497.11 15397.37 17699.52 153
Patchmatch-test92.65 24991.50 25996.10 21896.85 26190.49 30091.50 39397.19 29482.76 36590.23 26195.59 30595.02 5498.00 25877.41 36996.98 18699.82 92
diffmvspermissive97.00 11796.64 12098.09 13697.64 22196.17 14799.81 13597.19 29494.67 11198.95 9599.28 13186.43 22598.76 19798.37 10797.42 17499.33 180
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+89.98 1690.35 29689.54 29592.78 32395.99 28386.12 34998.81 29097.18 29689.38 28083.14 35297.76 24168.42 35798.43 22089.11 28686.05 29793.78 331
anonymousdsp91.79 26890.92 26894.41 27590.76 37592.93 24498.93 27697.17 29789.08 28387.46 31895.30 32278.43 30096.92 31292.38 23988.73 27293.39 343
baseline96.43 14495.98 14297.76 15797.34 23795.17 18899.51 20597.17 29793.92 14996.90 16999.28 13185.37 23698.64 20897.50 14596.86 18999.46 162
nrg03093.51 22792.53 24096.45 20894.36 32197.20 10599.81 13597.16 29991.60 22989.86 26997.46 24586.37 22697.68 27295.88 17580.31 34494.46 273
CS-MVS-test97.88 6897.94 6497.70 16099.28 10195.20 18699.98 1597.15 30095.53 8799.62 4799.79 5592.08 14698.38 23098.75 8899.28 12299.52 153
MVS_Test96.46 14395.74 15598.61 10098.18 18397.23 10499.31 23497.15 30091.07 24998.84 10097.05 26088.17 20598.97 18594.39 20397.50 17199.61 130
MIMVSNet90.30 29888.67 31295.17 24296.45 27391.64 27992.39 38997.15 30085.99 33490.50 25993.19 36466.95 36294.86 36782.01 34893.43 24599.01 208
KD-MVS_2432*160088.00 32586.10 32993.70 30096.91 25694.04 21597.17 35197.12 30384.93 34781.96 35692.41 36892.48 13594.51 37079.23 36052.68 40292.56 357
miper_refine_blended88.00 32586.10 32993.70 30096.91 25694.04 21597.17 35197.12 30384.93 34781.96 35692.41 36892.48 13594.51 37079.23 36052.68 40292.56 357
CS-MVS97.79 7997.91 6697.43 17699.10 10994.42 20399.99 497.10 30595.07 9699.68 3899.75 6992.95 12198.34 23498.38 10599.14 12899.54 148
v7n89.65 31288.29 31793.72 29792.22 35890.56 29999.07 25997.10 30585.42 34486.73 32594.72 34080.06 28297.13 29681.14 35278.12 35693.49 340
casdiffmvspermissive96.42 14695.97 14597.77 15597.30 24194.98 19099.84 12397.09 30793.75 15596.58 17899.26 13785.07 23898.78 19597.77 13997.04 18399.54 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Fast-Effi-MVS+95.02 18494.19 19597.52 17197.88 20094.55 20099.97 2897.08 30888.85 29594.47 21697.96 23484.59 24398.41 22289.84 28197.10 18099.59 133
miper_ehance_all_eth93.16 23592.60 23594.82 25497.57 22493.56 22999.50 20797.07 30988.75 29688.85 29595.52 30990.97 16496.74 32090.77 26584.45 31094.17 295
Effi-MVS+-dtu94.53 20095.30 16892.22 32797.77 20882.54 36799.59 18997.06 31094.92 10195.29 20795.37 31985.81 23097.89 26594.80 19497.07 18196.23 262
EC-MVSNet97.38 9997.24 9297.80 15097.41 23295.64 16799.99 497.06 31094.59 11299.63 4499.32 13089.20 19698.14 25098.76 8799.23 12599.62 127
IterMVS90.91 28290.17 28493.12 31496.78 26790.42 30398.89 27997.05 31289.03 28586.49 33095.42 31476.59 31195.02 36287.22 30984.09 31393.93 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119290.62 29189.25 30194.72 25793.13 34193.07 23999.50 20797.02 31386.33 33189.56 27995.01 33279.22 28997.09 30182.34 34681.16 33394.01 313
v2v48291.30 27390.07 28795.01 24593.13 34193.79 22199.77 14597.02 31388.05 30889.25 28595.37 31980.73 27497.15 29487.28 30880.04 34794.09 307
V4291.28 27590.12 28694.74 25593.42 33893.46 23299.68 17497.02 31387.36 31689.85 27195.05 33081.31 26897.34 28387.34 30780.07 34693.40 342
IterMVS-SCA-FT90.85 28590.16 28592.93 31996.72 26989.96 31198.89 27996.99 31688.95 29186.63 32795.67 30176.48 31395.00 36387.04 31284.04 31693.84 328
v14419290.79 28689.52 29694.59 26293.11 34492.77 24599.56 19796.99 31686.38 33089.82 27294.95 33780.50 27997.10 29983.98 33480.41 34293.90 323
v192192090.46 29389.12 30394.50 26892.96 34892.46 25699.49 20996.98 31886.10 33389.61 27895.30 32278.55 29897.03 30782.17 34780.89 34094.01 313
v114491.09 27989.83 28894.87 25093.25 34093.69 22699.62 18596.98 31886.83 32689.64 27794.99 33580.94 27197.05 30285.08 32881.16 33393.87 326
eth_miper_zixun_eth92.41 25391.93 25093.84 29597.28 24390.68 29598.83 28896.97 32088.57 30189.19 29095.73 30089.24 19596.69 32389.97 28081.55 32994.15 301
dcpmvs_297.42 9698.09 5495.42 23399.58 8687.24 34299.23 24496.95 32194.28 13098.93 9799.73 7894.39 7499.16 17899.89 1799.82 7999.86 89
GBi-Net90.88 28389.82 28994.08 28397.53 22691.97 26498.43 31596.95 32187.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
test190.88 28389.82 28994.08 28397.53 22691.97 26498.43 31596.95 32187.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
FMVSNet188.50 32186.64 32794.08 28395.62 30491.97 26498.43 31596.95 32183.00 36286.08 33794.72 34059.09 38496.11 34481.82 35084.07 31494.17 295
v890.54 29289.17 30294.66 25893.43 33793.40 23599.20 24696.94 32585.76 33787.56 31594.51 34781.96 26097.19 29284.94 32978.25 35493.38 344
c3_l92.53 25091.87 25294.52 26697.40 23392.99 24399.40 22096.93 32687.86 31088.69 29895.44 31389.95 18396.44 33290.45 27180.69 34194.14 304
v124090.20 30188.79 31094.44 27293.05 34692.27 26099.38 22596.92 32785.89 33589.36 28294.87 33977.89 30197.03 30780.66 35481.08 33694.01 313
tpm93.70 22393.41 21894.58 26395.36 30787.41 34197.01 35596.90 32890.85 25496.72 17594.14 35490.40 17796.84 31690.75 26688.54 27799.51 156
v14890.70 28789.63 29293.92 29192.97 34790.97 28799.75 15396.89 32987.51 31388.27 30795.01 33281.67 26197.04 30587.40 30677.17 36593.75 332
IterMVS-LS92.69 24792.11 24694.43 27496.80 26492.74 24799.45 21796.89 32988.98 28889.65 27695.38 31888.77 20096.34 33690.98 26082.04 32694.22 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1090.25 30088.82 30994.57 26493.53 33593.43 23399.08 25596.87 33185.00 34687.34 32194.51 34780.93 27297.02 30982.85 34279.23 34993.26 346
ADS-MVSNet293.80 21893.88 20493.55 30497.87 20185.94 35094.24 38096.84 33290.07 27196.43 18294.48 34990.29 18095.37 35887.44 30497.23 17799.36 174
Fast-Effi-MVS+-dtu93.72 22293.86 20593.29 30997.06 24886.16 34899.80 13996.83 33392.66 19292.58 23997.83 24081.39 26597.67 27389.75 28296.87 18896.05 265
pmmvs492.10 25991.07 26795.18 24192.82 35194.96 19199.48 21196.83 33387.45 31588.66 29996.56 27983.78 24996.83 31789.29 28484.77 30893.75 332
AllTest92.48 25191.64 25495.00 24699.01 11488.43 33198.94 27596.82 33586.50 32888.71 29698.47 21274.73 33099.88 10285.39 32596.18 19896.71 256
TestCases95.00 24699.01 11488.43 33196.82 33586.50 32888.71 29698.47 21274.73 33099.88 10285.39 32596.18 19896.71 256
miper_lstm_enhance91.81 26391.39 26293.06 31797.34 23789.18 32299.38 22596.79 33786.70 32787.47 31795.22 32790.00 18295.86 35388.26 29581.37 33194.15 301
cl____92.31 25591.58 25694.52 26697.33 23992.77 24599.57 19596.78 33886.97 32487.56 31595.51 31089.43 18996.62 32588.60 29082.44 32394.16 300
DIV-MVS_self_test92.32 25491.60 25594.47 27097.31 24092.74 24799.58 19196.75 33986.99 32387.64 31395.54 30789.55 18896.50 32988.58 29182.44 32394.17 295
ppachtmachnet_test89.58 31388.35 31693.25 31292.40 35690.44 30299.33 23196.73 34085.49 34285.90 33995.77 29781.09 27096.00 35176.00 37682.49 32293.30 345
GeoE94.36 20793.48 21496.99 19297.29 24293.54 23099.96 3596.72 34188.35 30593.43 22798.94 17082.05 25898.05 25688.12 29996.48 19599.37 173
COLMAP_ROBcopyleft90.47 1492.18 25891.49 26094.25 27999.00 11688.04 33798.42 31896.70 34282.30 36788.43 30499.01 15476.97 30699.85 10886.11 32196.50 19394.86 267
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
1112_ss96.01 15995.20 17198.42 11997.80 20696.41 13299.65 17896.66 34392.71 18892.88 23699.40 12392.16 14399.30 16591.92 24693.66 24299.55 144
test_fmvs195.35 17795.68 15994.36 27698.99 11784.98 35699.96 3596.65 34497.60 2299.73 3398.96 16371.58 34399.93 8598.31 11099.37 11898.17 234
Test_1112_low_res95.72 16594.83 18298.42 11997.79 20796.41 13299.65 17896.65 34492.70 18992.86 23796.13 29092.15 14499.30 16591.88 24793.64 24399.55 144
RPSCF91.80 26692.79 23188.83 35598.15 18669.87 39398.11 33396.60 34683.93 35594.33 21899.27 13479.60 28699.46 16391.99 24493.16 24997.18 253
test_fmvs1_n94.25 21094.36 19093.92 29197.68 21883.70 36299.90 9096.57 34797.40 2899.67 3998.88 17461.82 37999.92 8898.23 11299.13 12998.14 237
YYNet185.50 33783.33 34392.00 32990.89 37488.38 33499.22 24596.55 34879.60 37857.26 40192.72 36579.09 29393.78 37777.25 37077.37 36393.84 328
MDA-MVSNet_test_wron85.51 33683.32 34492.10 32890.96 37388.58 33099.20 24696.52 34979.70 37757.12 40292.69 36679.11 29193.86 37677.10 37177.46 36293.86 327
MTMP99.87 10496.49 350
pm-mvs189.36 31687.81 32294.01 28793.40 33991.93 26798.62 30696.48 35186.25 33283.86 34996.14 28973.68 33697.04 30586.16 32075.73 37293.04 351
KD-MVS_self_test83.59 34982.06 34988.20 36186.93 38880.70 38097.21 34996.38 35282.87 36382.49 35488.97 38367.63 36092.32 38773.75 37962.30 39891.58 369
test_vis1_n93.61 22593.03 22695.35 23595.86 28786.94 34499.87 10496.36 35396.85 4699.54 5798.79 18452.41 39299.83 11898.64 9598.97 13599.29 186
our_test_390.39 29489.48 29993.12 31492.40 35689.57 31799.33 23196.35 35487.84 31185.30 34194.99 33584.14 24796.09 34780.38 35584.56 30993.71 337
CR-MVSNet93.45 23092.62 23495.94 22096.29 27492.66 25192.01 39196.23 35592.62 19496.94 16793.31 36291.04 16296.03 34979.23 36095.96 20399.13 199
Patchmtry89.70 31188.49 31493.33 30896.24 27789.94 31491.37 39496.23 35578.22 38087.69 31293.31 36291.04 16296.03 34980.18 35882.10 32594.02 311
MVP-Stereo90.93 28190.45 27692.37 32691.25 37288.76 32498.05 33696.17 35787.27 31884.04 34795.30 32278.46 29997.27 29183.78 33699.70 8891.09 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs685.69 33383.84 34091.26 33690.00 38184.41 35997.82 34196.15 35875.86 38581.29 36195.39 31761.21 38196.87 31583.52 33973.29 37592.50 359
EG-PatchMatch MVS85.35 33883.81 34189.99 34890.39 37781.89 37298.21 33096.09 35981.78 36974.73 38693.72 35851.56 39497.12 29879.16 36388.61 27490.96 373
DeepMVS_CXcopyleft82.92 37295.98 28558.66 40396.01 36092.72 18778.34 37495.51 31058.29 38598.08 25382.57 34385.29 30292.03 365
test20.0384.72 34283.99 33786.91 36488.19 38780.62 38198.88 28195.94 36188.36 30478.87 37094.62 34568.75 35489.11 39566.52 39275.82 37091.00 372
MDA-MVSNet-bldmvs84.09 34581.52 35291.81 33291.32 37188.00 33898.67 30395.92 36280.22 37555.60 40393.32 36168.29 35893.60 37973.76 37876.61 36993.82 330
lessismore_v090.53 34090.58 37680.90 37995.80 36377.01 37995.84 29566.15 36696.95 31083.03 34175.05 37393.74 335
Anonymous2024052185.15 33983.81 34189.16 35388.32 38582.69 36598.80 29295.74 36479.72 37681.53 36090.99 37565.38 36994.16 37272.69 38081.11 33590.63 376
ITE_SJBPF92.38 32595.69 30085.14 35495.71 36592.81 18389.33 28498.11 22770.23 35098.42 22185.91 32388.16 28293.59 339
FMVSNet588.32 32287.47 32490.88 33796.90 25988.39 33397.28 34895.68 36682.60 36684.67 34592.40 37079.83 28491.16 39176.39 37481.51 33093.09 349
testgi89.01 31988.04 32091.90 33193.49 33684.89 35799.73 16195.66 36793.89 15285.14 34298.17 22559.68 38394.66 36977.73 36888.88 26896.16 264
new_pmnet84.49 34482.92 34789.21 35290.03 38082.60 36696.89 35995.62 36880.59 37375.77 38589.17 38265.04 37194.79 36872.12 38281.02 33790.23 378
pmmvs590.17 30389.09 30493.40 30692.10 36189.77 31599.74 15695.58 36985.88 33687.24 32295.74 29873.41 33796.48 33088.54 29283.56 31793.95 319
USDC90.00 30688.96 30793.10 31694.81 31488.16 33598.71 29895.54 37093.66 15783.75 35097.20 25365.58 36798.31 23783.96 33587.49 29192.85 354
test_method80.79 35479.70 35884.08 36992.83 35067.06 39599.51 20595.42 37154.34 40181.07 36393.53 35944.48 39792.22 38878.90 36477.23 36492.94 352
MIMVSNet182.58 35080.51 35688.78 35686.68 38984.20 36096.65 36195.41 37278.75 37978.59 37392.44 36751.88 39389.76 39465.26 39578.95 35092.38 362
OurMVSNet-221017-089.81 30989.48 29990.83 33991.64 36681.21 37698.17 33195.38 37391.48 23485.65 34097.31 25072.66 33897.29 28988.15 29784.83 30793.97 318
Anonymous2023120686.32 33185.42 33489.02 35489.11 38480.53 38299.05 26495.28 37485.43 34382.82 35393.92 35574.40 33293.44 38066.99 39081.83 32893.08 350
new-patchmatchnet81.19 35279.34 35986.76 36582.86 39680.36 38397.92 33895.27 37582.09 36872.02 38986.87 39162.81 37790.74 39371.10 38363.08 39689.19 389
OpenMVS_ROBcopyleft79.82 2083.77 34881.68 35190.03 34788.30 38682.82 36498.46 31295.22 37673.92 39276.00 38391.29 37455.00 38896.94 31168.40 38888.51 27890.34 377
test_040285.58 33483.94 33990.50 34193.81 33185.04 35598.55 30795.20 37776.01 38479.72 36995.13 32864.15 37396.26 34066.04 39486.88 29390.21 379
SixPastTwentyTwo88.73 32088.01 32190.88 33791.85 36482.24 36998.22 32995.18 37888.97 28982.26 35596.89 26571.75 34296.67 32484.00 33382.98 31893.72 336
Gipumacopyleft66.95 37065.00 37072.79 38291.52 36867.96 39466.16 40595.15 37947.89 40358.54 40067.99 40529.74 40287.54 39950.20 40477.83 35862.87 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LF4IMVS89.25 31888.85 30890.45 34392.81 35281.19 37798.12 33294.79 38091.44 23686.29 33497.11 25565.30 37098.11 25288.53 29385.25 30392.07 363
FPMVS68.72 36568.72 36668.71 38765.95 41044.27 41695.97 37594.74 38151.13 40253.26 40490.50 37925.11 40783.00 40360.80 39880.97 33978.87 400
pmmvs-eth3d84.03 34681.97 35090.20 34584.15 39387.09 34398.10 33494.73 38283.05 36174.10 38887.77 38965.56 36894.01 37381.08 35369.24 38389.49 386
test_fmvs289.47 31489.70 29188.77 35894.54 31975.74 38699.83 13094.70 38394.71 10891.08 25396.82 27254.46 38997.78 27092.87 23588.27 28092.80 355
TDRefinement84.76 34082.56 34891.38 33574.58 40684.80 35897.36 34794.56 38484.73 35080.21 36696.12 29263.56 37498.39 22687.92 30063.97 39590.95 374
ambc83.23 37177.17 40462.61 39787.38 40094.55 38576.72 38186.65 39230.16 40196.36 33584.85 33069.86 38090.73 375
WB-MVS76.28 36177.28 36373.29 38181.18 39854.68 40697.87 34094.19 38681.30 37069.43 39390.70 37877.02 30582.06 40435.71 40968.11 38883.13 395
TinyColmap87.87 32786.51 32891.94 33095.05 31185.57 35297.65 34394.08 38784.40 35381.82 35896.85 26862.14 37898.33 23580.25 35786.37 29691.91 367
SSC-MVS75.42 36276.40 36572.49 38580.68 40053.62 40797.42 34594.06 38880.42 37468.75 39490.14 38076.54 31281.66 40533.25 41066.34 39282.19 396
TransMVSNet (Re)87.25 32885.28 33593.16 31393.56 33491.03 28698.54 30994.05 38983.69 35881.09 36296.16 28875.32 32396.40 33376.69 37368.41 38692.06 364
Baseline_NR-MVSNet90.33 29789.51 29792.81 32292.84 34989.95 31299.77 14593.94 39084.69 35189.04 29295.66 30281.66 26296.52 32890.99 25976.98 36691.97 366
EGC-MVSNET69.38 36363.76 37386.26 36690.32 37881.66 37596.24 36993.85 3910.99 4133.22 41492.33 37152.44 39192.92 38459.53 40084.90 30684.21 394
LCM-MVSNet67.77 36864.73 37176.87 37862.95 41256.25 40589.37 39993.74 39244.53 40461.99 39680.74 39820.42 41186.53 40169.37 38759.50 40187.84 390
APD_test181.15 35380.92 35481.86 37392.45 35559.76 40296.04 37393.61 39373.29 39377.06 37896.64 27544.28 39896.16 34372.35 38182.52 32189.67 384
test_fmvs379.99 35880.17 35779.45 37584.02 39462.83 39699.05 26493.49 39488.29 30680.06 36886.65 39228.09 40488.00 39688.63 28973.27 37687.54 392
test_f78.40 36077.59 36280.81 37480.82 39962.48 39996.96 35793.08 39583.44 35974.57 38784.57 39627.95 40592.63 38584.15 33172.79 37787.32 393
Patchmatch-RL test86.90 32985.98 33389.67 34984.45 39275.59 38789.71 39892.43 39686.89 32577.83 37790.94 37694.22 8393.63 37887.75 30269.61 38199.79 97
mvsany_test382.12 35181.14 35385.06 36881.87 39770.41 39297.09 35392.14 39791.27 24377.84 37688.73 38439.31 39995.49 35590.75 26671.24 37889.29 388
pmmvs380.27 35677.77 36187.76 36380.32 40182.43 36898.23 32891.97 39872.74 39478.75 37187.97 38857.30 38790.99 39270.31 38462.37 39789.87 381
LCM-MVSNet-Re92.31 25592.60 23591.43 33497.53 22679.27 38499.02 26891.83 39992.07 21580.31 36594.38 35283.50 25195.48 35697.22 15197.58 17099.54 148
PM-MVS80.47 35578.88 36085.26 36783.79 39572.22 39095.89 37691.08 40085.71 34076.56 38288.30 38536.64 40093.90 37582.39 34569.57 38289.66 385
door90.31 401
dmvs_testset83.79 34786.07 33176.94 37792.14 35948.60 41296.75 36090.27 40289.48 27978.65 37298.55 20679.25 28886.65 40066.85 39182.69 32095.57 266
DSMNet-mixed88.28 32388.24 31888.42 36089.64 38275.38 38898.06 33589.86 40385.59 34188.20 30892.14 37276.15 31891.95 38978.46 36596.05 20197.92 240
door-mid89.69 404
PMVScopyleft49.05 2353.75 37351.34 37760.97 39040.80 41634.68 41774.82 40489.62 40537.55 40628.67 41272.12 4017.09 41681.63 40643.17 40768.21 38766.59 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt65.23 37162.94 37472.13 38644.90 41550.03 41181.05 40289.42 40638.45 40548.51 40799.90 1854.09 39078.70 40791.84 24818.26 40987.64 391
PMMVS267.15 36964.15 37276.14 37970.56 40962.07 40093.89 38387.52 40758.09 39860.02 39778.32 39922.38 40884.54 40259.56 39947.03 40481.80 397
testf168.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
APD_test268.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
test_vis1_rt86.87 33086.05 33289.34 35196.12 27878.07 38599.87 10483.54 41092.03 21878.21 37589.51 38145.80 39699.91 8996.25 16993.11 25090.03 380
ANet_high56.10 37252.24 37567.66 38849.27 41456.82 40483.94 40182.02 41170.47 39533.28 41164.54 40617.23 41369.16 40945.59 40623.85 40877.02 401
MVEpermissive53.74 2251.54 37547.86 37962.60 38959.56 41350.93 40879.41 40377.69 41235.69 40836.27 41061.76 4095.79 41869.63 40837.97 40836.61 40567.24 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 37452.18 37652.67 39171.51 40745.40 41393.62 38676.60 41336.01 40743.50 40864.13 40727.11 40667.31 41031.06 41126.06 40645.30 409
EMVS51.44 37651.22 37852.11 39270.71 40844.97 41594.04 38275.66 41435.34 40942.40 40961.56 41028.93 40365.87 41127.64 41224.73 40745.49 408
test_vis3_rt68.82 36466.69 36975.21 38076.24 40560.41 40196.44 36468.71 41575.13 38950.54 40669.52 40416.42 41496.32 33780.27 35666.92 39168.89 402
N_pmnet80.06 35780.78 35577.89 37691.94 36245.28 41498.80 29256.82 41678.10 38180.08 36793.33 36077.03 30495.76 35468.14 38982.81 31992.64 356
testmvs40.60 37744.45 38029.05 39419.49 41814.11 42099.68 17418.47 41720.74 41064.59 39598.48 21110.95 41517.09 41456.66 40311.01 41055.94 407
test12337.68 37839.14 38133.31 39319.94 41724.83 41998.36 3209.75 41815.53 41151.31 40587.14 39019.62 41217.74 41347.10 4053.47 41257.36 406
wuyk23d20.37 38020.84 38318.99 39565.34 41127.73 41850.43 4067.67 4199.50 4128.01 4136.34 4136.13 41726.24 41223.40 41310.69 4112.99 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.02 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.60 38210.13 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41591.20 1570.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
n20.00 420
nn0.00 420
ab-mvs-re8.28 38111.04 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.40 1230.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.97 28786.10 322
PC_three_145296.96 4499.80 1799.79 5597.49 8100.00 199.99 599.98 32100.00 1
eth-test20.00 419
eth-test0.00 419
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 12100.00 1100.00 199.98 32100.00 1
test_0728_THIRD96.48 5999.83 1399.91 1497.87 4100.00 199.92 13100.00 1100.00 1
GSMVS99.59 133
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6499.59 133
sam_mvs94.25 82
test_post195.78 37759.23 41193.20 11597.74 27191.06 257
test_post63.35 40894.43 6998.13 251
patchmatchnet-post91.70 37395.12 4997.95 262
gm-plane-assit96.97 25393.76 22391.47 23598.96 16398.79 19494.92 189
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 7199.94 69
test_prior299.95 5395.78 7999.73 3399.76 6396.00 3299.78 27100.00 1
旧先验299.46 21694.21 13399.85 999.95 7096.96 160
新几何299.40 220
原ACMM299.90 90
testdata299.99 3690.54 270
segment_acmp96.68 24
testdata199.28 24096.35 69
plane_prior795.71 29891.59 281
plane_prior695.76 29291.72 27680.47 280
plane_prior498.59 199
plane_prior391.64 27996.63 5693.01 232
plane_prior299.84 12396.38 65
plane_prior195.73 295
plane_prior91.74 27399.86 11596.76 5289.59 260
HQP5-MVS91.85 269
HQP-NCC95.78 28899.87 10496.82 4893.37 228
ACMP_Plane95.78 28899.87 10496.82 4893.37 228
BP-MVS97.92 129
HQP4-MVS93.37 22898.39 22694.53 268
HQP2-MVS80.65 276
NP-MVS95.77 29191.79 27198.65 194
MDTV_nov1_ep13_2view96.26 13996.11 37191.89 22198.06 13794.40 7194.30 20699.67 115
ACMMP++_ref87.04 292
ACMMP++88.23 281
Test By Simon92.82 126