This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR98.72 2898.62 2499.01 8199.36 11197.18 11299.93 6799.90 196.81 3598.67 10499.77 7193.92 9699.89 8499.27 5099.94 6199.96 74
MVS_111021_LR98.42 4998.38 4098.53 11599.39 10995.79 16199.87 9399.86 296.70 3898.78 9799.79 6492.03 14699.90 8099.17 5199.86 8399.88 96
CHOSEN 1792x268896.81 11796.53 11697.64 15398.91 13593.07 22899.65 16299.80 395.64 7195.39 18698.86 17484.35 23299.90 8096.98 14199.16 12499.95 82
HyFIR lowres test96.66 12796.43 11997.36 16799.05 12193.91 20999.70 15399.80 390.54 23996.26 17298.08 20592.15 14498.23 22496.84 14695.46 20299.93 85
test250697.53 9097.19 9498.58 10898.66 14996.90 12398.81 26999.77 594.93 8997.95 13198.96 15992.51 13599.20 16094.93 16798.15 14699.64 127
thres100view90096.74 12295.92 13899.18 5798.90 13698.77 4099.74 14399.71 692.59 18395.84 17898.86 17489.25 18599.50 15093.84 19694.57 20999.27 183
tfpn200view996.79 11895.99 12899.19 5698.94 12998.82 3599.78 12999.71 692.86 16596.02 17598.87 17289.33 18399.50 15093.84 19694.57 20999.27 183
thres600view796.69 12595.87 14199.14 6698.90 13698.78 3999.74 14399.71 692.59 18395.84 17898.86 17489.25 18599.50 15093.44 20994.50 21299.16 190
thres40096.78 11995.99 12899.16 6298.94 12998.82 3599.78 12999.71 692.86 16596.02 17598.87 17289.33 18399.50 15093.84 19694.57 20999.16 190
thres20096.96 11196.21 12399.22 5398.97 12798.84 3499.85 10799.71 693.17 16096.26 17298.88 17089.87 17799.51 14894.26 19094.91 20899.31 180
PVSNet91.05 1397.13 10696.69 11198.45 12099.52 10295.81 16099.95 4399.65 1194.73 9899.04 8699.21 14084.48 23099.95 6594.92 16898.74 13399.58 144
PVSNet_088.03 1991.80 24490.27 25696.38 19998.27 16790.46 28699.94 6199.61 1293.99 13286.26 31197.39 22271.13 32499.89 8498.77 7767.05 35898.79 208
MVS_030489.28 29288.31 29192.21 30597.05 23186.53 32697.76 31699.57 1385.58 31493.86 20692.71 33851.04 36696.30 31584.49 30692.72 22793.79 306
WTY-MVS98.10 6997.60 8099.60 2098.92 13399.28 1699.89 8799.52 1495.58 7398.24 12599.39 12493.33 11099.74 13097.98 11495.58 20199.78 108
HY-MVS92.50 797.79 8297.17 9799.63 1598.98 12699.32 897.49 31899.52 1495.69 7098.32 12097.41 22093.32 11199.77 12098.08 10895.75 19899.81 103
EPNet98.49 4498.40 3798.77 9399.62 9596.80 12699.90 7999.51 1697.60 1299.20 7899.36 12793.71 10399.91 7997.99 11298.71 13499.61 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PGM-MVS98.34 5598.13 5798.99 8299.92 3697.00 11899.75 14099.50 1793.90 13899.37 6899.76 7593.24 117100.00 197.75 12599.96 5299.98 55
ACMMPcopyleft97.74 8497.44 8598.66 10099.92 3696.13 15199.18 22699.45 1894.84 9596.41 16999.71 9191.40 15399.99 4097.99 11298.03 15499.87 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MG-MVS98.91 1898.65 2299.68 1499.94 1499.07 2299.64 16699.44 1997.33 1899.00 9099.72 8994.03 9499.98 4698.73 79100.00 1100.00 1
EPMVS96.53 13096.01 12798.09 13698.43 15996.12 15396.36 33499.43 2093.53 15097.64 13895.04 30394.41 7498.38 20991.13 23598.11 14999.75 111
CHOSEN 280x42099.01 1399.03 1098.95 8699.38 11098.87 3198.46 29099.42 2197.03 2899.02 8799.09 14499.35 198.21 22599.73 3299.78 9399.77 109
D2MVS92.76 22192.59 21593.27 29095.13 28389.54 30299.69 15499.38 2292.26 19687.59 28994.61 31885.05 22797.79 24491.59 23088.01 25492.47 335
sss97.57 8997.03 10299.18 5798.37 16098.04 7699.73 14899.38 2293.46 15298.76 10099.06 14691.21 15699.89 8496.33 14997.01 17499.62 132
PAPM98.60 3498.42 3399.14 6696.05 25998.96 2499.90 7999.35 2496.68 3998.35 11999.66 10296.45 2998.51 19399.45 4299.89 7899.96 74
UGNet95.33 16294.57 17097.62 15598.55 15394.85 18998.67 28199.32 2595.75 6996.80 15796.27 25972.18 31899.96 5894.58 18299.05 12898.04 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_yl97.83 7897.37 8799.21 5499.18 11497.98 7999.64 16699.27 2691.43 22297.88 13498.99 15395.84 3999.84 10898.82 7295.32 20599.79 105
DCV-MVSNet97.83 7897.37 8799.21 5499.18 11497.98 7999.64 16699.27 2691.43 22297.88 13498.99 15395.84 3999.84 10898.82 7295.32 20599.79 105
VNet97.21 10596.57 11599.13 7198.97 12797.82 8599.03 24499.21 2894.31 11899.18 8298.88 17086.26 21599.89 8498.93 6494.32 21399.69 118
PVSNet_BlendedMVS96.05 14495.82 14296.72 18699.59 9696.99 11999.95 4399.10 2994.06 12998.27 12295.80 26889.00 19099.95 6599.12 5287.53 26093.24 323
PVSNet_Blended97.94 7397.64 7798.83 9199.59 9696.99 119100.00 199.10 2995.38 7798.27 12299.08 14589.00 19099.95 6599.12 5299.25 12199.57 145
UniMVSNet_NR-MVSNet92.95 21892.11 22395.49 21594.61 29395.28 17899.83 11799.08 3191.49 21889.21 26396.86 24087.14 20696.73 29893.20 21177.52 33294.46 244
CSCG97.10 10797.04 10197.27 17099.89 5091.92 25699.90 7999.07 3288.67 27095.26 18999.82 5593.17 11999.98 4698.15 10399.47 11499.90 93
PatchMatch-RL96.04 14595.40 14997.95 14099.59 9695.22 18299.52 18399.07 3293.96 13496.49 16598.35 20082.28 24399.82 11090.15 25699.22 12398.81 207
VPA-MVSNet92.70 22391.55 23596.16 20395.09 28496.20 14898.88 25999.00 3491.02 23291.82 22395.29 29776.05 29897.96 23895.62 15981.19 30394.30 259
CVMVSNet94.68 17894.94 16393.89 27696.80 24586.92 32499.06 23898.98 3594.45 10894.23 20199.02 14885.60 21995.31 33590.91 24395.39 20499.43 167
UniMVSNet (Re)93.07 21592.13 22295.88 20994.84 28896.24 14799.88 9098.98 3592.49 19189.25 26195.40 28787.09 20797.14 27393.13 21578.16 32794.26 262
h-mvs3394.92 17094.36 17396.59 19198.85 14091.29 27298.93 25498.94 3795.90 6098.77 9898.42 19990.89 16699.77 12097.80 11870.76 34898.72 210
tfpnnormal89.29 29187.61 29894.34 25994.35 29694.13 20398.95 25298.94 3783.94 32684.47 32195.51 28274.84 30797.39 25777.05 34380.41 31391.48 345
MVS96.60 12895.56 14799.72 1296.85 24299.22 1998.31 29798.94 3791.57 21690.90 23199.61 10686.66 21199.96 5897.36 13199.88 8099.99 24
WR-MVS_H91.30 25090.35 25394.15 26394.17 29992.62 24299.17 22798.94 3788.87 26686.48 30694.46 32384.36 23196.61 30488.19 27378.51 32593.21 324
FIs94.10 19393.43 19696.11 20494.70 29196.82 12599.58 17398.93 4192.54 18789.34 25997.31 22387.62 20197.10 27794.22 19286.58 26594.40 251
EPNet_dtu95.71 15395.39 15096.66 18898.92 13393.41 22399.57 17598.90 4296.19 5597.52 14098.56 19192.65 13197.36 25877.89 33898.33 14199.20 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-298.24 6499.12 595.59 21499.67 9286.91 32599.95 4398.89 4397.60 1299.90 299.76 7596.54 2799.98 4699.94 1299.82 9199.88 96
FC-MVSNet-test93.81 19893.15 20595.80 21294.30 29796.20 14899.42 19898.89 4392.33 19589.03 26897.27 22587.39 20496.83 29493.20 21186.48 26694.36 254
baseline296.71 12496.49 11797.37 16595.63 27895.96 15799.74 14398.88 4592.94 16491.61 22498.97 15797.72 598.62 18894.83 17298.08 15397.53 228
API-MVS97.86 7697.66 7698.47 11899.52 10295.41 17499.47 19298.87 4691.68 21398.84 9499.85 3592.34 14099.99 4098.44 9299.96 52100.00 1
131496.84 11695.96 13599.48 3696.74 24998.52 5998.31 29798.86 4795.82 6289.91 24398.98 15587.49 20299.96 5897.80 11899.73 9699.96 74
MSLP-MVS++99.13 899.01 1199.49 3499.94 1498.46 6399.98 1098.86 4797.10 2699.80 1799.94 495.92 37100.00 199.51 39100.00 1100.00 1
AdaColmapbinary97.23 10496.80 10898.51 11699.99 195.60 17099.09 23198.84 4993.32 15596.74 15899.72 8986.04 216100.00 198.01 11099.43 11799.94 84
IB-MVS92.85 694.99 16993.94 18398.16 13297.72 20395.69 16899.99 498.81 5094.28 12092.70 21996.90 23795.08 5499.17 16396.07 15273.88 34699.60 137
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator91.47 1296.28 14195.34 15299.08 7496.82 24497.47 10299.45 19598.81 5095.52 7589.39 25799.00 15281.97 24599.95 6597.27 13399.83 8599.84 100
PHI-MVS98.41 5098.21 5199.03 7899.86 5997.10 11699.98 1098.80 5290.78 23799.62 4499.78 6995.30 50100.00 199.80 2399.93 6799.99 24
MAR-MVS97.43 9397.19 9498.15 13599.47 10694.79 19399.05 24298.76 5392.65 17998.66 10599.82 5588.52 19699.98 4698.12 10499.63 10299.67 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DU-MVS92.46 22991.45 23895.49 21594.05 30095.28 17899.81 12098.74 5492.25 19789.21 26396.64 24981.66 24996.73 29893.20 21177.52 33294.46 244
无先验99.49 18998.71 5593.46 152100.00 194.36 18699.99 24
NR-MVSNet91.56 24990.22 25795.60 21394.05 30095.76 16398.25 30098.70 5691.16 22880.78 33996.64 24983.23 24096.57 30591.41 23177.73 33194.46 244
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5798.20 399.93 199.98 296.82 22100.00 199.75 27100.00 199.99 24
WR-MVS92.31 23291.25 24095.48 21894.45 29495.29 17799.60 17198.68 5890.10 24688.07 28496.89 23880.68 26196.80 29693.14 21479.67 31994.36 254
ab-mvs94.69 17693.42 19798.51 11698.07 17896.26 14396.49 33398.68 5890.31 24494.54 19497.00 23576.30 29499.71 13495.98 15493.38 22399.56 146
QAPM95.40 16194.17 17799.10 7296.92 23697.71 8799.40 19998.68 5889.31 25588.94 26998.89 16882.48 24299.96 5893.12 21699.83 8599.62 132
Anonymous2024052992.10 23790.65 24896.47 19298.82 14190.61 28298.72 27698.67 6175.54 35593.90 20598.58 18966.23 34099.90 8094.70 17990.67 22998.90 203
test_prior398.99 1498.84 1699.43 3899.94 1498.49 6199.95 4398.65 6295.78 6499.73 3099.76 7596.00 3399.80 11199.78 25100.00 199.99 24
test_prior99.43 3899.94 1498.49 6198.65 6299.80 11199.99 24
TranMVSNet+NR-MVSNet91.68 24890.61 24994.87 23593.69 30793.98 20799.69 15498.65 6291.03 23188.44 27696.83 24480.05 26996.18 31990.26 25576.89 34094.45 249
旧先验199.76 7997.52 9698.64 6599.85 3595.63 4399.94 6199.99 24
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6598.47 299.13 8399.92 1396.38 30100.00 199.74 29100.00 1100.00 1
PVSNet_Blended_VisFu97.27 10296.81 10798.66 10098.81 14296.67 12899.92 7198.64 6594.51 10796.38 17098.49 19389.05 18999.88 9097.10 13898.34 14099.43 167
新几何199.42 4199.75 8198.27 6998.63 6892.69 17699.55 4999.82 5594.40 75100.00 191.21 23399.94 6199.99 24
112198.03 7197.57 8299.40 4499.74 8298.21 7098.31 29798.62 6992.78 17199.53 5199.83 5195.08 54100.00 194.36 18699.92 7199.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6998.02 699.90 299.95 397.33 16100.00 199.54 38100.00 1100.00 1
HFP-MVS98.56 3898.37 4299.14 6699.96 897.43 10499.95 4398.61 7194.77 9699.31 7199.85 3594.22 87100.00 198.70 8099.98 3599.98 55
#test#98.59 3698.41 3599.14 6699.96 897.43 10499.95 4398.61 7195.00 8799.31 7199.85 3594.22 87100.00 198.78 7699.98 3599.98 55
ACMMPR98.50 4398.32 4699.05 7699.96 897.18 11299.95 4398.60 7394.77 9699.31 7199.84 4893.73 102100.00 198.70 8099.98 3599.98 55
VPNet91.81 24190.46 25095.85 21194.74 29095.54 17198.98 24898.59 7492.14 19990.77 23397.44 21968.73 33197.54 25294.89 17177.89 32994.46 244
test0.0.03 193.86 19593.61 18894.64 24395.02 28792.18 25099.93 6798.58 7594.07 12787.96 28598.50 19293.90 9894.96 33981.33 32493.17 22496.78 230
DELS-MVS98.54 4098.22 5099.50 3299.15 11798.65 52100.00 198.58 7597.70 998.21 12699.24 13892.58 13399.94 7398.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CP-MVSNet91.23 25390.22 25794.26 26093.96 30292.39 24699.09 23198.57 7788.95 26486.42 30796.57 25179.19 27496.37 31190.29 25478.95 32294.02 286
OpenMVScopyleft90.15 1594.77 17493.59 19198.33 12796.07 25897.48 10199.56 17798.57 7790.46 24086.51 30498.95 16378.57 27999.94 7393.86 19599.74 9597.57 227
hse-mvs294.38 18794.08 18095.31 22298.27 16790.02 29499.29 21898.56 7995.90 6098.77 9898.00 20890.89 16698.26 22397.80 11869.20 35497.64 225
AUN-MVS93.28 21092.60 21295.34 22098.29 16390.09 29399.31 21398.56 7991.80 21196.35 17198.00 20889.38 18298.28 21992.46 22069.22 35397.64 225
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4799.02 2399.95 4398.56 7997.56 1499.44 5999.85 3595.38 49100.00 199.31 4899.99 2299.87 98
testdata98.42 12399.47 10695.33 17698.56 7993.78 14399.79 2499.85 3593.64 10599.94 7394.97 16699.94 61100.00 1
EPP-MVSNet96.69 12596.60 11396.96 17897.74 19993.05 23099.37 20698.56 7988.75 26895.83 18099.01 15096.01 3298.56 19096.92 14497.20 17099.25 185
DeepPCF-MVS95.94 297.71 8698.98 1293.92 27499.63 9481.76 35199.96 2598.56 7999.47 199.19 8199.99 194.16 91100.00 199.92 1399.93 67100.00 1
testtj98.89 1998.69 2099.52 2999.94 1498.56 5799.90 7998.55 8595.14 8399.72 3399.84 4895.46 47100.00 199.65 3799.99 2299.99 24
region2R98.54 4098.37 4299.05 7699.96 897.18 11299.96 2598.55 8594.87 9499.45 5899.85 3594.07 93100.00 198.67 82100.00 199.98 55
test22299.55 10097.41 10799.34 20998.55 8591.86 20799.27 7699.83 5193.84 10099.95 5599.99 24
tpmvs94.28 19293.57 19296.40 19798.55 15391.50 27095.70 34598.55 8587.47 28592.15 22194.26 32591.42 15298.95 17088.15 27495.85 19498.76 209
thisisatest053097.10 10796.72 11098.22 13197.60 20896.70 12799.92 7198.54 8991.11 22997.07 15098.97 15797.47 1199.03 16693.73 20496.09 18898.92 200
tttt051796.85 11596.49 11797.92 14297.48 21495.89 15999.85 10798.54 8990.72 23896.63 16098.93 16797.47 1199.02 16793.03 21795.76 19798.85 204
thisisatest051597.41 9797.02 10398.59 10797.71 20597.52 9699.97 1898.54 8991.83 20897.45 14299.04 14797.50 899.10 16594.75 17696.37 18599.16 190
ZD-MVS99.92 3698.57 5598.52 9292.34 19499.31 7199.83 5195.06 5699.80 11199.70 3599.97 48
GG-mvs-BLEND98.54 11398.21 17198.01 7793.87 35098.52 9297.92 13297.92 21299.02 297.94 24198.17 10199.58 10899.67 121
Regformer-398.58 3798.41 3599.10 7299.84 6597.57 9399.66 15998.52 9295.79 6399.01 8899.77 7194.40 7599.75 12698.82 7299.83 8599.98 55
Regformer-498.56 3898.39 3999.08 7499.84 6597.52 9699.66 15998.52 9295.76 6699.01 8899.77 7194.33 8399.75 12698.80 7599.83 8599.98 55
Regformer-198.79 2598.60 2599.36 4899.85 6098.34 6699.87 9398.52 9296.05 5799.41 6299.79 6494.93 6499.76 12399.07 5499.90 7699.99 24
Regformer-298.78 2698.59 2699.36 4899.85 6098.32 6799.87 9398.52 9296.04 5899.41 6299.79 6494.92 6599.76 12399.05 5599.90 7699.98 55
PS-CasMVS90.63 26689.51 27193.99 27293.83 30491.70 26598.98 24898.52 9288.48 27486.15 31296.53 25375.46 30096.31 31488.83 26678.86 32493.95 294
CANet98.27 6097.82 7399.63 1599.72 8899.10 2199.98 1098.51 9997.00 2998.52 11099.71 9187.80 19999.95 6599.75 2799.38 11899.83 101
gg-mvs-nofinetune93.51 20691.86 23098.47 11897.72 20397.96 8192.62 35498.51 9974.70 35797.33 14469.59 36898.91 397.79 24497.77 12399.56 10999.67 121
EI-MVSNet-Vis-set98.27 6098.11 5998.75 9599.83 6896.59 13299.40 19998.51 9995.29 8098.51 11199.76 7593.60 10699.71 13498.53 9099.52 11199.95 82
原ACMM198.96 8599.73 8696.99 11998.51 9994.06 12999.62 4499.85 3594.97 6399.96 5895.11 16399.95 5599.92 91
EI-MVSNet-UG-set98.14 6797.99 6598.60 10599.80 7496.27 14299.36 20898.50 10395.21 8298.30 12199.75 8193.29 11399.73 13398.37 9499.30 12099.81 103
LS3D95.84 14995.11 15998.02 13999.85 6095.10 18498.74 27498.50 10387.22 29093.66 20799.86 3187.45 20399.95 6590.94 24299.81 9299.02 198
PEN-MVS90.19 27889.06 27993.57 28593.06 31990.90 27799.06 23898.47 10588.11 27885.91 31496.30 25876.67 28995.94 32887.07 28776.91 33993.89 299
DeepC-MVS_fast96.59 198.81 2398.54 2899.62 1899.90 4798.85 3399.24 22298.47 10598.14 499.08 8499.91 1593.09 120100.00 199.04 5999.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640098.81 2398.54 2899.59 2199.93 2798.93 2699.93 6798.46 10794.56 10599.84 999.92 1394.32 8499.86 9599.96 999.98 35100.00 1
PLCcopyleft95.54 397.93 7497.89 7298.05 13899.82 7094.77 19499.92 7198.46 10793.93 13697.20 14699.27 13295.44 4899.97 5697.41 13099.51 11399.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111195.57 15794.98 16297.37 16598.56 15193.37 22598.86 26398.45 10994.95 8896.63 16098.95 16375.21 30599.11 16495.02 16598.14 14899.64 127
ECVR-MVScopyleft95.66 15595.05 16097.51 15898.66 14993.71 21398.85 26698.45 10994.93 8996.86 15498.96 15975.22 30499.20 16095.34 16098.15 14699.64 127
UA-Net96.54 12995.96 13598.27 12998.23 17095.71 16698.00 31198.45 10993.72 14698.41 11599.27 13288.71 19499.66 14291.19 23497.69 15799.44 166
ZNCC-MVS98.31 5798.03 6299.17 6099.88 5497.59 9299.94 6198.44 11294.31 11898.50 11299.82 5593.06 12299.99 4098.30 9999.99 2299.93 85
DPM-MVS98.83 2298.46 3299.97 199.33 11299.92 199.96 2598.44 11297.96 799.55 4999.94 497.18 20100.00 193.81 19999.94 6199.98 55
DPE-MVScopyleft99.26 699.10 899.74 1099.89 5099.24 1899.87 9398.44 11297.48 1699.64 4099.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs97.81 8097.33 9099.25 5298.77 14598.66 5099.99 498.44 11294.40 11498.41 11599.47 11693.65 10499.42 15698.57 8894.26 21499.67 121
test1198.44 112
SteuartSystems-ACMMP99.02 1298.97 1399.18 5798.72 14697.71 8799.98 1098.44 11296.85 3199.80 1799.91 1597.57 699.85 9999.44 4399.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
MDTV_nov1_ep1395.69 14497.90 18694.15 20295.98 34198.44 11293.12 16197.98 13095.74 27095.10 5398.58 18990.02 25796.92 176
DP-MVS Recon98.41 5098.02 6399.56 2499.97 398.70 4799.92 7198.44 11292.06 20398.40 11799.84 4895.68 42100.00 198.19 10099.71 9899.97 67
DVP-MVS++99.26 699.09 999.77 899.91 4499.31 999.95 4398.43 12096.48 4399.80 1799.93 1197.44 13100.00 199.92 1399.98 35100.00 1
SED-MVS99.28 599.11 799.77 899.93 2799.30 1199.96 2598.43 12097.27 2199.80 1799.94 496.71 23100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 12097.27 2199.80 1799.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 12097.26 2399.80 1799.88 2496.71 23100.00 1
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 120100.00 199.99 5100.00 1100.00 1
TEST999.92 3698.92 2799.96 2598.43 12093.90 13899.71 3499.86 3195.88 3899.85 99
train_agg98.88 2098.65 2299.59 2199.92 3698.92 2799.96 2598.43 12094.35 11599.71 3499.86 3195.94 3599.85 9999.69 3699.98 3599.99 24
test_899.92 3698.88 3099.96 2598.43 12094.35 11599.69 3699.85 3595.94 3599.85 99
agg_prior198.88 2098.66 2199.54 2699.93 2798.77 4099.96 2598.43 12094.63 10399.63 4199.85 3595.79 4199.85 9999.72 3399.99 2299.99 24
agg_prior99.93 2798.77 4098.43 12099.63 4199.85 99
PAPM_NR98.12 6897.93 7098.70 9799.94 1496.13 15199.82 11898.43 12094.56 10597.52 14099.70 9394.40 7599.98 4697.00 14099.98 3599.99 24
PAPR98.52 4298.16 5599.58 2399.97 398.77 4099.95 4398.43 12095.35 7898.03 12999.75 8194.03 9499.98 4698.11 10599.83 8599.99 24
test072699.93 2799.29 1499.96 2598.42 13297.28 1999.86 599.94 497.22 18
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13297.50 1599.52 5499.88 2497.43 1599.71 13499.50 4099.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 2998.55 2799.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6299.78 6994.34 8099.96 5898.92 6599.95 5599.99 24
X-MVStestdata93.83 19692.06 22599.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6241.37 37694.34 8099.96 5898.92 6599.95 5599.99 24
MSC_two_6792asdad99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1499.30 1198.41 13696.63 4099.75 2899.93 1197.49 9
IU-MVS99.93 2799.31 998.41 13697.71 899.84 9100.00 1100.00 1100.00 1
save fliter99.82 7098.79 3799.96 2598.40 14097.66 10
test1299.43 3899.74 8298.56 5798.40 14099.65 3994.76 6799.75 12699.98 3599.99 24
PatchmatchNetpermissive95.94 14795.45 14897.39 16497.83 19294.41 19996.05 34098.40 14092.86 16597.09 14995.28 29894.21 9098.07 23289.26 26398.11 14999.70 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GST-MVS98.27 6097.97 6699.17 6099.92 3697.57 9399.93 6798.39 14394.04 13198.80 9699.74 8692.98 123100.00 198.16 10299.76 9499.93 85
APDe-MVS99.06 1198.91 1499.51 3199.94 1498.76 4499.91 7598.39 14397.20 2599.46 5799.85 3595.53 4699.79 11499.86 17100.00 199.99 24
MP-MVScopyleft98.23 6597.97 6699.03 7899.94 1497.17 11599.95 4398.39 14394.70 9998.26 12499.81 5991.84 150100.00 198.85 7199.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.45 4798.32 4698.87 8999.96 896.62 13099.97 1898.39 14394.43 11098.90 9399.87 2894.30 85100.00 199.04 5999.99 2299.99 24
SMA-MVScopyleft98.76 2798.48 3199.62 1899.87 5798.87 3199.86 10498.38 14793.19 15999.77 2699.94 495.54 44100.00 199.74 2999.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.98.93 1698.77 1899.41 4299.74 8298.67 4899.77 13298.38 14796.73 3799.88 499.74 8694.89 6699.59 14599.80 2399.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS98.39 5398.20 5298.97 8499.97 396.92 12299.95 4398.38 14795.04 8698.61 10899.80 6093.39 108100.00 198.64 86100.00 199.98 55
ETH3D-3000-0.198.68 3098.42 3399.47 3799.83 6898.57 5599.90 7998.37 15093.81 14199.81 1399.90 1994.34 8099.86 9599.84 1899.98 3599.97 67
ACMMP_NAP98.49 4498.14 5699.54 2699.66 9398.62 5499.85 10798.37 15094.68 10099.53 5199.83 5192.87 125100.00 198.66 8599.84 8499.99 24
FOURS199.92 3697.66 9199.95 4398.36 15295.58 7399.52 54
test117298.38 5498.25 4998.77 9399.88 5496.56 13399.80 12598.36 15294.68 10099.20 7899.80 6093.28 11499.78 11699.34 4799.92 7199.98 55
APD-MVScopyleft98.62 3398.35 4599.41 4299.90 4798.51 6099.87 9398.36 15294.08 12699.74 2999.73 8894.08 9299.74 13099.42 4499.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS98.46 4698.30 4898.93 8799.88 5497.04 11799.84 11198.35 15594.92 9199.32 7099.80 6093.35 10999.78 11699.30 4999.95 5599.96 74
CPTT-MVS97.64 8897.32 9198.58 10899.97 395.77 16299.96 2598.35 15589.90 25098.36 11899.79 6491.18 16099.99 4098.37 9499.99 2299.99 24
SD-MVS98.92 1798.70 1999.56 2499.70 9098.73 4599.94 6198.34 15796.38 4899.81 1399.76 7594.59 7199.98 4699.84 1899.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1498.38 4099.87 5799.91 7598.33 15893.22 15899.78 2599.89 2194.57 7299.85 9999.84 1899.97 48
CDPH-MVS98.65 3298.36 4499.49 3499.94 1498.73 4599.87 9398.33 15893.97 13399.76 2799.87 2894.99 6299.75 12698.55 89100.00 199.98 55
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 16097.28 1999.83 1199.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SCA94.69 17693.81 18797.33 16997.10 22894.44 19798.86 26398.32 16093.30 15696.17 17495.59 27776.48 29297.95 23991.06 23797.43 16299.59 138
SR-MVS-dyc-post98.31 5798.17 5498.71 9699.79 7596.37 14099.76 13798.31 16294.43 11099.40 6699.75 8193.28 11499.78 11698.90 6899.92 7199.97 67
RE-MVS-def98.13 5799.79 7596.37 14099.76 13798.31 16294.43 11099.40 6699.75 8192.95 12498.90 6899.92 7199.97 67
RPMNet89.76 28587.28 30097.19 17196.29 25492.66 23992.01 35798.31 16270.19 36296.94 15185.87 36187.25 20599.78 11662.69 36495.96 19199.13 194
APD-MVS_3200maxsize98.25 6398.08 6098.78 9299.81 7396.60 13199.82 11898.30 16593.95 13599.37 6899.77 7192.84 12699.76 12398.95 6299.92 7199.97 67
TESTMET0.1,196.74 12296.26 12298.16 13297.36 21896.48 13499.96 2598.29 16691.93 20595.77 18198.07 20695.54 4498.29 21790.55 24898.89 12999.70 116
zzz-MVS98.33 5698.00 6499.30 5099.85 6097.93 8299.80 12598.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8299.88 8099.99 24
MTGPAbinary98.28 167
MTAPA98.29 5997.96 6999.30 5099.85 6097.93 8299.39 20398.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8299.88 8099.99 24
114514_t97.41 9796.83 10699.14 6699.51 10497.83 8499.89 8798.27 17088.48 27499.06 8599.66 10290.30 17299.64 14496.32 15099.97 4899.96 74
test_part192.15 23690.72 24696.44 19698.87 13997.46 10398.99 24798.26 17185.89 30686.34 30996.34 25781.71 24797.48 25491.06 23778.99 32194.37 253
Anonymous2023121189.86 28388.44 28994.13 26598.93 13190.68 28098.54 28798.26 17176.28 35186.73 30095.54 27970.60 32597.56 25190.82 24580.27 31694.15 276
ETH3D cwj APD-0.1698.40 5298.07 6199.40 4499.59 9698.41 6499.86 10498.24 17392.18 19899.73 3099.87 2893.47 10799.85 9999.74 2999.95 5599.93 85
Vis-MVSNetpermissive95.72 15195.15 15897.45 16097.62 20794.28 20199.28 21998.24 17394.27 12196.84 15598.94 16579.39 27298.76 17993.25 21098.49 13799.30 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+91.53 1196.31 13895.24 15499.52 2996.88 24198.64 5399.72 15198.24 17395.27 8188.42 28098.98 15582.76 24199.94 7397.10 13899.83 8599.96 74
DTE-MVSNet89.40 28988.24 29392.88 29892.66 32789.95 29699.10 23098.22 17687.29 28885.12 31996.22 26076.27 29595.30 33683.56 31375.74 34393.41 317
SF-MVS98.67 3198.40 3799.50 3299.77 7898.67 4899.90 7998.21 17793.53 15099.81 1399.89 2194.70 6999.86 9599.84 1899.93 6799.96 74
VDDNet93.12 21391.91 22896.76 18496.67 25292.65 24198.69 27998.21 17782.81 33497.75 13799.28 12961.57 35399.48 15498.09 10794.09 21698.15 216
test-LLR96.47 13196.04 12697.78 14697.02 23395.44 17299.96 2598.21 17794.07 12795.55 18396.38 25493.90 9898.27 22190.42 25198.83 13199.64 127
test-mter96.39 13595.93 13797.78 14697.02 23395.44 17299.96 2598.21 17791.81 21095.55 18396.38 25495.17 5198.27 22190.42 25198.83 13199.64 127
DWT-MVSNet_test97.31 10097.19 9497.66 15298.24 16994.67 19598.86 26398.20 18193.60 14998.09 12798.89 16897.51 798.78 17694.04 19397.28 16799.55 147
MP-MVS-pluss98.07 7097.64 7799.38 4799.74 8298.41 6499.74 14398.18 18293.35 15496.45 16699.85 3592.64 13299.97 5698.91 6799.89 7899.77 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PS-MVSNAJ98.44 4898.20 5299.16 6298.80 14398.92 2799.54 18198.17 18397.34 1799.85 799.85 3591.20 15799.89 8499.41 4599.67 10098.69 211
HPM-MVScopyleft97.96 7297.72 7598.68 9899.84 6596.39 13999.90 7998.17 18392.61 18198.62 10799.57 10991.87 14999.67 14198.87 7099.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpmrst96.27 14295.98 13097.13 17497.96 18393.15 22796.34 33598.17 18392.07 20198.71 10395.12 30193.91 9798.73 18194.91 17096.62 17999.50 159
ADS-MVSNet94.79 17294.02 18197.11 17697.87 18993.79 21094.24 34698.16 18690.07 24796.43 16794.48 32190.29 17398.19 22687.44 28197.23 16899.36 174
HPM-MVS_fast97.80 8197.50 8398.68 9899.79 7596.42 13699.88 9098.16 18691.75 21298.94 9299.54 11291.82 15199.65 14397.62 12799.99 2299.99 24
Vis-MVSNet (Re-imp)96.32 13795.98 13097.35 16897.93 18594.82 19199.47 19298.15 18891.83 20895.09 19099.11 14391.37 15497.47 25593.47 20897.43 16299.74 112
abl_697.67 8797.34 8998.66 10099.68 9196.11 15499.68 15698.14 18993.80 14299.27 7699.70 9388.65 19599.98 4697.46 12999.72 9799.89 94
CNLPA97.76 8397.38 8698.92 8899.53 10196.84 12499.87 9398.14 18993.78 14396.55 16499.69 9692.28 14199.98 4697.13 13699.44 11699.93 85
JIA-IIPM91.76 24790.70 24794.94 23396.11 25787.51 32193.16 35398.13 19175.79 35497.58 13977.68 36592.84 12697.97 23688.47 27196.54 18099.33 178
cl2293.77 20093.25 20495.33 22199.49 10594.43 19899.61 17098.09 19290.38 24189.16 26695.61 27590.56 17097.34 26091.93 22584.45 28194.21 267
cdsmvs_eth3d_5k23.43 34331.24 3460.00 3600.00 3830.00 3840.00 37198.09 1920.00 3780.00 37999.67 10083.37 2380.00 3790.00 3770.00 3770.00 375
xiu_mvs_v2_base98.23 6597.97 6699.02 8098.69 14798.66 5099.52 18398.08 19497.05 2799.86 599.86 3190.65 16899.71 13499.39 4698.63 13598.69 211
tpm cat193.51 20692.52 21796.47 19297.77 19691.47 27196.13 33898.06 19580.98 34192.91 21693.78 32989.66 17898.87 17187.03 28996.39 18499.09 196
DeepC-MVS94.51 496.92 11496.40 12098.45 12099.16 11695.90 15899.66 15998.06 19596.37 5194.37 19899.49 11583.29 23999.90 8097.63 12699.61 10699.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EU-MVSNet90.14 28090.34 25489.54 32792.55 32881.06 35598.69 27998.04 19791.41 22486.59 30396.84 24380.83 25993.31 35586.20 29581.91 29894.26 262
TAPA-MVS92.12 894.42 18693.60 19096.90 18099.33 11291.78 26099.78 12998.00 19889.89 25194.52 19599.47 11691.97 14799.18 16269.90 35499.52 11199.73 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.78 15094.86 16498.54 11398.47 15898.07 7499.06 23897.99 19992.68 17794.13 20298.62 18693.28 11498.69 18593.79 20185.76 26998.84 205
UnsupCasMVSNet_eth85.52 30983.99 31090.10 32389.36 35583.51 34096.65 33197.99 19989.14 25675.89 35493.83 32863.25 35093.92 34881.92 32267.90 35792.88 329
LFMVS94.75 17593.56 19398.30 12899.03 12295.70 16798.74 27497.98 20187.81 28398.47 11399.39 12467.43 33799.53 14698.01 11095.20 20799.67 121
dp95.05 16794.43 17296.91 17997.99 18292.73 23796.29 33697.98 20189.70 25395.93 17794.67 31693.83 10198.45 19886.91 29396.53 18199.54 151
PMMVS96.76 12096.76 10996.76 18498.28 16592.10 25199.91 7597.98 20194.12 12499.53 5199.39 12486.93 20998.73 18196.95 14397.73 15699.45 164
F-COLMAP96.93 11396.95 10496.87 18199.71 8991.74 26199.85 10797.95 20493.11 16295.72 18299.16 14292.35 13999.94 7395.32 16199.35 11998.92 200
OMC-MVS97.28 10197.23 9397.41 16299.76 7993.36 22699.65 16297.95 20496.03 5997.41 14399.70 9389.61 17999.51 14896.73 14798.25 14599.38 171
Anonymous20240521193.10 21491.99 22696.40 19799.10 11889.65 30098.88 25997.93 20683.71 32994.00 20398.75 17968.79 32999.88 9095.08 16491.71 22899.68 119
tpm295.47 16095.18 15796.35 20096.91 23791.70 26596.96 32997.93 20688.04 28098.44 11495.40 28793.32 11197.97 23694.00 19495.61 20099.38 171
TSAR-MVS + GP.98.60 3498.51 3098.86 9099.73 8696.63 12999.97 1897.92 20898.07 598.76 10099.55 11095.00 6199.94 7399.91 1697.68 15899.99 24
CDS-MVSNet96.34 13696.07 12597.13 17497.37 21794.96 18799.53 18297.91 20991.55 21795.37 18798.32 20195.05 5797.13 27493.80 20095.75 19899.30 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP3-MVS97.89 21089.60 230
HQP-MVS94.61 18094.50 17194.92 23495.78 26591.85 25799.87 9397.89 21096.82 3293.37 20998.65 18380.65 26298.39 20597.92 11689.60 23094.53 239
HQP_MVS94.49 18594.36 17394.87 23595.71 27491.74 26199.84 11197.87 21296.38 4893.01 21398.59 18780.47 26698.37 21097.79 12189.55 23394.52 241
plane_prior597.87 21298.37 21097.79 12189.55 23394.52 241
xiu_mvs_v1_base_debu97.43 9397.06 9898.55 11097.74 19998.14 7199.31 21397.86 21496.43 4599.62 4499.69 9685.56 22099.68 13899.05 5598.31 14297.83 220
xiu_mvs_v1_base97.43 9397.06 9898.55 11097.74 19998.14 7199.31 21397.86 21496.43 4599.62 4499.69 9685.56 22099.68 13899.05 5598.31 14297.83 220
xiu_mvs_v1_base_debi97.43 9397.06 9898.55 11097.74 19998.14 7199.31 21397.86 21496.43 4599.62 4499.69 9685.56 22099.68 13899.05 5598.31 14297.83 220
CostFormer96.10 14395.88 14096.78 18397.03 23292.55 24397.08 32697.83 21790.04 24998.72 10294.89 31095.01 6098.29 21796.54 14895.77 19699.50 159
TAMVS95.85 14895.58 14696.65 18997.07 22993.50 22099.17 22797.82 21891.39 22595.02 19198.01 20792.20 14297.30 26393.75 20395.83 19599.14 193
VDD-MVS93.77 20092.94 20696.27 20198.55 15390.22 29098.77 27397.79 21990.85 23596.82 15699.42 12061.18 35599.77 12098.95 6294.13 21598.82 206
cascas94.64 17993.61 18897.74 15197.82 19396.26 14399.96 2597.78 22085.76 30994.00 20397.54 21776.95 28799.21 15997.23 13495.43 20397.76 224
CLD-MVS94.06 19493.90 18494.55 24896.02 26090.69 27999.98 1097.72 22196.62 4291.05 23098.85 17777.21 28498.47 19498.11 10589.51 23594.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MS-PatchMatch90.65 26490.30 25591.71 31194.22 29885.50 33298.24 30197.70 22288.67 27086.42 30796.37 25667.82 33598.03 23483.62 31299.62 10391.60 343
XXY-MVS91.82 24090.46 25095.88 20993.91 30395.40 17598.87 26297.69 22388.63 27287.87 28697.08 23074.38 31197.89 24291.66 22984.07 28694.35 257
EI-MVSNet93.73 20293.40 20094.74 23996.80 24592.69 23899.06 23897.67 22488.96 26391.39 22699.02 14888.75 19397.30 26391.07 23687.85 25594.22 265
MVSTER95.53 15895.22 15596.45 19498.56 15197.72 8699.91 7597.67 22492.38 19391.39 22697.14 22797.24 1797.30 26394.80 17387.85 25594.34 258
ETV-MVS97.92 7597.80 7498.25 13098.14 17696.48 13499.98 1097.63 22695.61 7299.29 7599.46 11892.55 13498.82 17399.02 6198.54 13699.46 162
CANet_DTU96.76 12096.15 12498.60 10598.78 14497.53 9599.84 11197.63 22697.25 2499.20 7899.64 10481.36 25399.98 4692.77 21998.89 12998.28 214
LPG-MVS_test92.96 21792.71 21093.71 28095.43 28088.67 30999.75 14097.62 22892.81 16890.05 23898.49 19375.24 30298.40 20395.84 15789.12 23794.07 283
LGP-MVS_train93.71 28095.43 28088.67 30997.62 22892.81 16890.05 23898.49 19375.24 30298.40 20395.84 15789.12 23794.07 283
FMVSNet392.69 22491.58 23395.99 20698.29 16397.42 10699.26 22197.62 22889.80 25289.68 24995.32 29381.62 25196.27 31687.01 29085.65 27094.29 260
ET-MVSNet_ETH3D94.37 18893.28 20397.64 15398.30 16297.99 7899.99 497.61 23194.35 11571.57 35999.45 11996.23 3195.34 33496.91 14585.14 27699.59 138
EIA-MVS97.53 9097.46 8497.76 14998.04 18094.84 19099.98 1097.61 23194.41 11397.90 13399.59 10792.40 13898.87 17198.04 10999.13 12599.59 138
OPM-MVS93.21 21192.80 20894.44 25593.12 31790.85 27899.77 13297.61 23196.19 5591.56 22598.65 18375.16 30698.47 19493.78 20289.39 23693.99 291
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
IS-MVSNet96.29 14095.90 13997.45 16098.13 17794.80 19299.08 23397.61 23192.02 20495.54 18598.96 15990.64 16998.08 23093.73 20497.41 16599.47 161
CMPMVSbinary61.59 2184.75 31585.14 30983.57 34390.32 34962.54 36996.98 32897.59 23574.33 35869.95 36196.66 24764.17 34798.32 21387.88 27888.41 25189.84 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D90.06 28188.58 28794.49 25294.67 29288.09 31897.81 31597.57 23683.91 32888.44 27697.41 22057.44 35997.62 25091.41 23188.59 24897.77 223
lupinMVS97.85 7797.60 8098.62 10397.28 22597.70 8999.99 497.55 23795.50 7699.43 6099.67 10090.92 16498.71 18398.40 9399.62 10399.45 164
XVG-OURS94.82 17194.74 16895.06 22998.00 18189.19 30399.08 23397.55 23794.10 12594.71 19399.62 10580.51 26499.74 13096.04 15393.06 22696.25 233
XVG-OURS-SEG-HR94.79 17294.70 16995.08 22898.05 17989.19 30399.08 23397.54 23993.66 14794.87 19299.58 10878.78 27799.79 11497.31 13293.40 22296.25 233
PatchT90.38 27188.75 28595.25 22595.99 26190.16 29191.22 36197.54 23976.80 35097.26 14586.01 36091.88 14896.07 32466.16 36195.91 19399.51 157
BH-RMVSNet95.18 16494.31 17597.80 14498.17 17495.23 18199.76 13797.53 24192.52 18894.27 20099.25 13676.84 28898.80 17490.89 24499.54 11099.35 176
ACMP92.05 992.74 22292.42 21993.73 27895.91 26488.72 30899.81 12097.53 24194.13 12387.00 29898.23 20274.07 31298.47 19496.22 15188.86 24293.99 291
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
xxxxxxxxxxxxxcwj98.98 1598.79 1799.54 2699.82 7098.79 3799.96 2597.52 24397.66 1099.81 1399.89 2194.70 6999.86 9599.84 1899.93 6799.96 74
ACMM91.95 1092.88 21992.52 21793.98 27395.75 27089.08 30699.77 13297.52 24393.00 16389.95 24297.99 21076.17 29698.46 19793.63 20788.87 24194.39 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TR-MVS94.54 18293.56 19397.49 15997.96 18394.34 20098.71 27797.51 24590.30 24594.51 19698.69 18175.56 29998.77 17892.82 21895.99 19099.35 176
BH-w/o95.71 15395.38 15196.68 18798.49 15792.28 24799.84 11197.50 24692.12 20092.06 22298.79 17884.69 22898.67 18695.29 16299.66 10199.09 196
mvs_anonymous95.65 15695.03 16197.53 15698.19 17295.74 16499.33 21097.49 24790.87 23490.47 23697.10 22988.23 19797.16 27195.92 15597.66 15999.68 119
DP-MVS94.54 18293.42 19797.91 14399.46 10894.04 20498.93 25497.48 24881.15 34090.04 24099.55 11087.02 20899.95 6588.97 26598.11 14999.73 113
RRT_test8_iter0594.58 18194.11 17895.98 20797.88 18796.11 15499.89 8797.45 24991.66 21488.28 28196.71 24596.53 2897.40 25694.73 17883.85 28994.45 249
ACMH89.72 1790.64 26589.63 26693.66 28495.64 27788.64 31198.55 28597.45 24989.03 25981.62 33497.61 21669.75 32798.41 20189.37 26187.62 25993.92 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE91.22 25490.75 24592.63 30193.73 30685.61 33098.52 28997.44 25192.77 17289.90 24496.85 24166.64 33998.39 20592.29 22288.61 24693.89 299
mvs_tets91.81 24191.08 24294.00 27191.63 33990.58 28398.67 28197.43 25292.43 19287.37 29597.05 23371.76 31997.32 26294.75 17688.68 24594.11 281
LTVRE_ROB88.28 1890.29 27589.05 28094.02 26995.08 28590.15 29297.19 32397.43 25284.91 32283.99 32397.06 23274.00 31398.28 21984.08 30787.71 25793.62 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
jajsoiax91.92 23991.18 24194.15 26391.35 34190.95 27699.00 24697.42 25492.61 18187.38 29497.08 23072.46 31797.36 25894.53 18388.77 24394.13 280
K. test v388.05 29987.24 30190.47 32091.82 33782.23 34798.96 25197.42 25489.05 25876.93 35095.60 27668.49 33295.42 33285.87 29981.01 30993.75 308
RRT_MVS95.23 16394.77 16796.61 19098.28 16598.32 6799.81 12097.41 25692.59 18391.28 22897.76 21495.02 5897.23 26993.65 20687.14 26294.28 261
FMVSNet291.02 25689.56 26895.41 21997.53 21095.74 16498.98 24897.41 25687.05 29188.43 27895.00 30671.34 32196.24 31885.12 30285.21 27594.25 264
jason97.24 10396.86 10598.38 12695.73 27197.32 10899.97 1897.40 25895.34 7998.60 10999.54 11287.70 20098.56 19097.94 11599.47 11499.25 185
jason: jason.
PS-MVSNAJss93.64 20593.31 20294.61 24492.11 33292.19 24999.12 22997.38 25992.51 18988.45 27596.99 23691.20 15797.29 26694.36 18687.71 25794.36 254
MSDG94.37 18893.36 20197.40 16398.88 13893.95 20899.37 20697.38 25985.75 31190.80 23299.17 14184.11 23499.88 9086.35 29498.43 13998.36 213
CL-MVSNet_self_test84.50 31783.15 31988.53 33486.00 36281.79 35098.82 26897.35 26185.12 31883.62 32690.91 35076.66 29091.40 36069.53 35560.36 36392.40 336
canonicalmvs97.09 10996.32 12199.39 4698.93 13198.95 2599.72 15197.35 26194.45 10897.88 13499.42 12086.71 21099.52 14798.48 9193.97 21899.72 115
UnsupCasMVSNet_bld79.97 32977.03 33288.78 33285.62 36381.98 34893.66 35197.35 26175.51 35670.79 36083.05 36248.70 36794.91 34078.31 33760.29 36489.46 359
MVS-HIRNet86.22 30683.19 31895.31 22296.71 25190.29 28992.12 35697.33 26462.85 36386.82 29970.37 36769.37 32897.49 25375.12 34797.99 15598.15 216
BH-untuned95.18 16494.83 16596.22 20298.36 16191.22 27399.80 12597.32 26590.91 23391.08 22998.67 18283.51 23698.54 19294.23 19199.61 10698.92 200
PCF-MVS94.20 595.18 16494.10 17998.43 12298.55 15395.99 15697.91 31397.31 26690.35 24389.48 25699.22 13985.19 22599.89 8490.40 25398.47 13899.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_enhance_ethall94.36 19093.98 18295.49 21598.68 14895.24 18099.73 14897.29 26793.28 15789.86 24595.97 26694.37 7997.05 28092.20 22384.45 28194.19 268
bset_n11_16_dypcd93.05 21692.30 22095.31 22290.23 35195.05 18599.44 19797.28 26892.51 18990.65 23496.68 24685.30 22496.71 30094.49 18484.14 28494.16 274
MVSFormer96.94 11296.60 11397.95 14097.28 22597.70 8999.55 17997.27 26991.17 22699.43 6099.54 11290.92 16496.89 29094.67 18099.62 10399.25 185
test_djsdf92.83 22092.29 22194.47 25391.90 33592.46 24499.55 17997.27 26991.17 22689.96 24196.07 26581.10 25596.89 29094.67 18088.91 23994.05 285
GA-MVS93.83 19692.84 20796.80 18295.73 27193.57 21799.88 9097.24 27192.57 18692.92 21596.66 24778.73 27897.67 24887.75 27994.06 21799.17 189
Effi-MVS+96.30 13995.69 14498.16 13297.85 19196.26 14397.41 31997.21 27290.37 24298.65 10698.58 18986.61 21298.70 18497.11 13797.37 16699.52 156
Patchmatch-test92.65 22691.50 23696.10 20596.85 24290.49 28591.50 35997.19 27382.76 33590.23 23795.59 27795.02 5898.00 23577.41 34096.98 17599.82 102
diffmvs97.00 11096.64 11298.09 13697.64 20696.17 15099.81 12097.19 27394.67 10298.95 9199.28 12986.43 21398.76 17998.37 9497.42 16499.33 178
ACMH+89.98 1690.35 27289.54 26992.78 30095.99 26186.12 32898.81 26997.18 27589.38 25483.14 32797.76 21468.42 33398.43 19989.11 26486.05 26893.78 307
anonymousdsp91.79 24690.92 24494.41 25890.76 34692.93 23298.93 25497.17 27689.08 25787.46 29395.30 29478.43 28296.92 28992.38 22188.73 24493.39 319
baseline96.43 13395.98 13097.76 14997.34 21995.17 18399.51 18597.17 27693.92 13796.90 15399.28 12985.37 22398.64 18797.50 12896.86 17899.46 162
nrg03093.51 20692.53 21696.45 19494.36 29597.20 11199.81 12097.16 27891.60 21589.86 24597.46 21886.37 21497.68 24795.88 15680.31 31594.46 244
MVS_Test96.46 13295.74 14398.61 10498.18 17397.23 11099.31 21397.15 27991.07 23098.84 9497.05 23388.17 19898.97 16994.39 18597.50 16199.61 135
MIMVSNet90.30 27488.67 28695.17 22796.45 25391.64 26792.39 35597.15 27985.99 30590.50 23593.19 33666.95 33894.86 34182.01 32193.43 22199.01 199
CS-MVS97.73 8597.92 7197.18 17299.09 11993.69 21499.99 497.14 28195.06 8599.67 3799.75 8193.09 12098.31 21498.32 9799.12 12699.54 151
KD-MVS_2432*160088.00 30086.10 30493.70 28296.91 23794.04 20497.17 32497.12 28284.93 32081.96 33192.41 34192.48 13694.51 34479.23 33152.68 36692.56 332
miper_refine_blended88.00 30086.10 30493.70 28296.91 23794.04 20497.17 32497.12 28284.93 32081.96 33192.41 34192.48 13694.51 34479.23 33152.68 36692.56 332
v7n89.65 28788.29 29293.72 27992.22 33190.56 28499.07 23797.10 28485.42 31786.73 30094.72 31280.06 26897.13 27481.14 32578.12 32893.49 316
casdiffmvs96.42 13495.97 13397.77 14897.30 22394.98 18699.84 11197.09 28593.75 14596.58 16299.26 13585.07 22698.78 17697.77 12397.04 17399.54 151
Fast-Effi-MVS+95.02 16894.19 17697.52 15797.88 18794.55 19699.97 1897.08 28688.85 26794.47 19797.96 21184.59 22998.41 20189.84 25997.10 17199.59 138
miper_ehance_all_eth93.16 21292.60 21294.82 23897.57 20993.56 21899.50 18797.07 28788.75 26888.85 27095.52 28190.97 16396.74 29790.77 24684.45 28194.17 269
Effi-MVS+-dtu94.53 18495.30 15392.22 30497.77 19682.54 34499.59 17297.06 28894.92 9195.29 18895.37 29185.81 21797.89 24294.80 17397.07 17296.23 235
mvs-test195.53 15895.97 13394.20 26297.77 19685.44 33399.95 4397.06 28894.92 9196.58 16298.72 18085.81 21798.98 16894.80 17398.11 14998.18 215
DROMVSNet97.38 9997.24 9297.80 14497.41 21595.64 16999.99 497.06 28894.59 10499.63 4199.32 12889.20 18898.14 22798.76 7899.23 12299.62 132
IterMVS90.91 25890.17 25993.12 29396.78 24890.42 28898.89 25797.05 29189.03 25986.49 30595.42 28676.59 29195.02 33787.22 28684.09 28593.93 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CS-MVS-test97.53 9097.64 7797.18 17299.09 11993.69 214100.00 197.04 29295.07 8499.67 3799.25 13691.22 15598.31 21498.32 9799.12 12699.54 151
v119290.62 26789.25 27594.72 24193.13 31593.07 22899.50 18797.02 29386.33 30289.56 25595.01 30479.22 27397.09 27982.34 31981.16 30494.01 288
v2v48291.30 25090.07 26295.01 23093.13 31593.79 21099.77 13297.02 29388.05 27989.25 26195.37 29180.73 26097.15 27287.28 28580.04 31894.09 282
V4291.28 25290.12 26194.74 23993.42 31293.46 22199.68 15697.02 29387.36 28789.85 24795.05 30281.31 25497.34 26087.34 28480.07 31793.40 318
IterMVS-SCA-FT90.85 26190.16 26092.93 29796.72 25089.96 29598.89 25796.99 29688.95 26486.63 30295.67 27376.48 29295.00 33887.04 28884.04 28893.84 303
v14419290.79 26289.52 27094.59 24593.11 31892.77 23399.56 17796.99 29686.38 30189.82 24894.95 30980.50 26597.10 27783.98 30980.41 31393.90 298
v192192090.46 26989.12 27794.50 25192.96 32292.46 24499.49 18996.98 29886.10 30489.61 25495.30 29478.55 28097.03 28482.17 32080.89 31194.01 288
v114491.09 25589.83 26394.87 23593.25 31493.69 21499.62 16996.98 29886.83 29789.64 25394.99 30780.94 25797.05 28085.08 30381.16 30493.87 301
eth_miper_zixun_eth92.41 23091.93 22793.84 27797.28 22590.68 28098.83 26796.97 30088.57 27389.19 26595.73 27289.24 18796.69 30189.97 25881.55 30094.15 276
GBi-Net90.88 25989.82 26494.08 26697.53 21091.97 25298.43 29296.95 30187.05 29189.68 24994.72 31271.34 32196.11 32087.01 29085.65 27094.17 269
test190.88 25989.82 26494.08 26697.53 21091.97 25298.43 29296.95 30187.05 29189.68 24994.72 31271.34 32196.11 32087.01 29085.65 27094.17 269
FMVSNet188.50 29686.64 30294.08 26695.62 27991.97 25298.43 29296.95 30183.00 33286.08 31394.72 31259.09 35796.11 32081.82 32384.07 28694.17 269
v890.54 26889.17 27694.66 24293.43 31193.40 22499.20 22496.94 30485.76 30987.56 29094.51 31981.96 24697.19 27084.94 30478.25 32693.38 320
c3_l92.53 22791.87 22994.52 24997.40 21692.99 23199.40 19996.93 30587.86 28188.69 27395.44 28589.95 17696.44 30990.45 25080.69 31294.14 279
v124090.20 27788.79 28494.44 25593.05 32092.27 24899.38 20496.92 30685.89 30689.36 25894.87 31177.89 28397.03 28480.66 32781.08 30794.01 288
tpm93.70 20493.41 19994.58 24695.36 28287.41 32297.01 32796.90 30790.85 23596.72 15994.14 32690.40 17196.84 29390.75 24788.54 24999.51 157
v14890.70 26389.63 26693.92 27492.97 32190.97 27599.75 14096.89 30887.51 28488.27 28295.01 30481.67 24897.04 28287.40 28377.17 33793.75 308
IterMVS-LS92.69 22492.11 22394.43 25796.80 24592.74 23599.45 19596.89 30888.98 26189.65 25295.38 29088.77 19296.34 31390.98 24182.04 29794.22 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1090.25 27688.82 28394.57 24793.53 30993.43 22299.08 23396.87 31085.00 31987.34 29694.51 31980.93 25897.02 28682.85 31679.23 32093.26 322
ADS-MVSNet293.80 19993.88 18593.55 28697.87 18985.94 32994.24 34696.84 31190.07 24796.43 16794.48 32190.29 17395.37 33387.44 28197.23 16899.36 174
Fast-Effi-MVS+-dtu93.72 20393.86 18693.29 28997.06 23086.16 32799.80 12596.83 31292.66 17892.58 22097.83 21381.39 25297.67 24889.75 26096.87 17796.05 237
pmmvs492.10 23791.07 24395.18 22692.82 32594.96 18799.48 19196.83 31287.45 28688.66 27496.56 25283.78 23596.83 29489.29 26284.77 27993.75 308
AllTest92.48 22891.64 23195.00 23199.01 12388.43 31398.94 25396.82 31486.50 29988.71 27198.47 19774.73 30899.88 9085.39 30096.18 18696.71 231
TestCases95.00 23199.01 12388.43 31396.82 31486.50 29988.71 27198.47 19774.73 30899.88 9085.39 30096.18 18696.71 231
miper_lstm_enhance91.81 24191.39 23993.06 29697.34 21989.18 30599.38 20496.79 31686.70 29887.47 29295.22 29990.00 17595.86 32988.26 27281.37 30294.15 276
cl____92.31 23291.58 23394.52 24997.33 22192.77 23399.57 17596.78 31786.97 29587.56 29095.51 28289.43 18196.62 30388.60 26782.44 29494.16 274
DIV-MVS_self_test92.32 23191.60 23294.47 25397.31 22292.74 23599.58 17396.75 31886.99 29487.64 28895.54 27989.55 18096.50 30788.58 26882.44 29494.17 269
ppachtmachnet_test89.58 28888.35 29093.25 29192.40 32990.44 28799.33 21096.73 31985.49 31585.90 31595.77 26981.09 25696.00 32776.00 34682.49 29393.30 321
GeoE94.36 19093.48 19596.99 17797.29 22493.54 21999.96 2596.72 32088.35 27793.43 20898.94 16582.05 24498.05 23388.12 27696.48 18399.37 173
COLMAP_ROBcopyleft90.47 1492.18 23591.49 23794.25 26199.00 12588.04 31998.42 29596.70 32182.30 33788.43 27899.01 15076.97 28699.85 9986.11 29796.50 18294.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
1112_ss96.01 14695.20 15698.42 12397.80 19496.41 13799.65 16296.66 32292.71 17492.88 21799.40 12292.16 14399.30 15791.92 22693.66 21999.55 147
Test_1112_low_res95.72 15194.83 16598.42 12397.79 19596.41 13799.65 16296.65 32392.70 17592.86 21896.13 26392.15 14499.30 15791.88 22793.64 22099.55 147
RPSCF91.80 24492.79 20988.83 33198.15 17569.87 36598.11 30796.60 32483.93 32794.33 19999.27 13279.60 27199.46 15591.99 22493.16 22597.18 229
YYNet185.50 31183.33 31692.00 30790.89 34588.38 31699.22 22396.55 32579.60 34657.26 36692.72 33779.09 27693.78 35177.25 34177.37 33593.84 303
MDA-MVSNet_test_wron85.51 31083.32 31792.10 30690.96 34488.58 31299.20 22496.52 32679.70 34557.12 36792.69 33979.11 27593.86 35077.10 34277.46 33493.86 302
MTMP99.87 9396.49 327
pm-mvs189.36 29087.81 29794.01 27093.40 31391.93 25598.62 28496.48 32886.25 30383.86 32496.14 26273.68 31497.04 28286.16 29675.73 34493.04 327
KD-MVS_self_test83.59 32282.06 32288.20 33686.93 36080.70 35797.21 32296.38 32982.87 33382.49 32988.97 35367.63 33692.32 35773.75 34962.30 36291.58 344
our_test_390.39 27089.48 27393.12 29392.40 32989.57 30199.33 21096.35 33087.84 28285.30 31794.99 30784.14 23396.09 32380.38 32884.56 28093.71 313
CR-MVSNet93.45 20992.62 21195.94 20896.29 25492.66 23992.01 35796.23 33192.62 18096.94 15193.31 33491.04 16196.03 32579.23 33195.96 19199.13 194
Patchmtry89.70 28688.49 28893.33 28896.24 25689.94 29891.37 36096.23 33178.22 34887.69 28793.31 33491.04 16196.03 32580.18 33082.10 29694.02 286
MVP-Stereo90.93 25790.45 25292.37 30391.25 34388.76 30798.05 31096.17 33387.27 28984.04 32295.30 29478.46 28197.27 26883.78 31199.70 9991.09 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs685.69 30783.84 31391.26 31490.00 35384.41 33897.82 31496.15 33475.86 35381.29 33695.39 28961.21 35496.87 29283.52 31473.29 34792.50 334
EG-PatchMatch MVS85.35 31283.81 31489.99 32590.39 34881.89 34998.21 30496.09 33581.78 33974.73 35693.72 33051.56 36597.12 27679.16 33488.61 24690.96 348
DeepMVS_CXcopyleft82.92 34595.98 26358.66 37196.01 33692.72 17378.34 34795.51 28258.29 35898.08 23082.57 31785.29 27392.03 340
test20.0384.72 31683.99 31086.91 33888.19 35980.62 35898.88 25995.94 33788.36 27678.87 34494.62 31768.75 33089.11 36566.52 36075.82 34291.00 347
MDA-MVSNet-bldmvs84.09 31981.52 32591.81 31091.32 34288.00 32098.67 28195.92 33880.22 34355.60 36893.32 33368.29 33493.60 35373.76 34876.61 34193.82 305
lessismore_v090.53 31890.58 34780.90 35695.80 33977.01 34995.84 26766.15 34196.95 28783.03 31575.05 34593.74 311
Anonymous2024052185.15 31383.81 31489.16 32988.32 35782.69 34298.80 27195.74 34079.72 34481.53 33590.99 34865.38 34494.16 34672.69 35081.11 30690.63 351
ITE_SJBPF92.38 30295.69 27685.14 33495.71 34192.81 16889.33 26098.11 20470.23 32698.42 20085.91 29888.16 25393.59 315
FMVSNet588.32 29787.47 29990.88 31596.90 24088.39 31597.28 32195.68 34282.60 33684.67 32092.40 34379.83 27091.16 36176.39 34581.51 30193.09 325
testgi89.01 29488.04 29591.90 30993.49 31084.89 33699.73 14895.66 34393.89 14085.14 31898.17 20359.68 35694.66 34377.73 33988.88 24096.16 236
new_pmnet84.49 31882.92 32089.21 32890.03 35282.60 34396.89 33095.62 34480.59 34275.77 35589.17 35265.04 34694.79 34272.12 35181.02 30890.23 353
pmmvs590.17 27989.09 27893.40 28792.10 33389.77 29999.74 14395.58 34585.88 30887.24 29795.74 27073.41 31596.48 30888.54 26983.56 29093.95 294
USDC90.00 28288.96 28193.10 29594.81 28988.16 31798.71 27795.54 34693.66 14783.75 32597.20 22665.58 34298.31 21483.96 31087.49 26192.85 330
test_method80.79 32579.70 32884.08 34292.83 32467.06 36799.51 18595.42 34754.34 36581.07 33893.53 33144.48 36892.22 35878.90 33577.23 33692.94 328
MIMVSNet182.58 32380.51 32788.78 33286.68 36184.20 33996.65 33195.41 34878.75 34778.59 34692.44 34051.88 36489.76 36465.26 36378.95 32292.38 337
OurMVSNet-221017-089.81 28489.48 27390.83 31791.64 33881.21 35398.17 30595.38 34991.48 21985.65 31697.31 22372.66 31697.29 26688.15 27484.83 27893.97 293
Anonymous2023120686.32 30585.42 30789.02 33089.11 35680.53 35999.05 24295.28 35085.43 31682.82 32893.92 32774.40 31093.44 35466.99 35981.83 29993.08 326
new-patchmatchnet81.19 32479.34 32986.76 33982.86 36780.36 36097.92 31295.27 35182.09 33872.02 35886.87 35862.81 35190.74 36371.10 35263.08 36089.19 360
OpenMVS_ROBcopyleft79.82 2083.77 32181.68 32490.03 32488.30 35882.82 34198.46 29095.22 35273.92 35976.00 35391.29 34755.00 36196.94 28868.40 35788.51 25090.34 352
test_040285.58 30883.94 31290.50 31993.81 30585.04 33598.55 28595.20 35376.01 35279.72 34395.13 30064.15 34896.26 31766.04 36286.88 26490.21 354
SixPastTwentyTwo88.73 29588.01 29690.88 31591.85 33682.24 34698.22 30395.18 35488.97 26282.26 33096.89 23871.75 32096.67 30284.00 30882.98 29193.72 312
Gipumacopyleft66.95 33465.00 33472.79 34991.52 34067.96 36666.16 36995.15 35547.89 36758.54 36567.99 36929.74 37187.54 36650.20 36977.83 33062.87 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LF4IMVS89.25 29388.85 28290.45 32192.81 32681.19 35498.12 30694.79 35691.44 22186.29 31097.11 22865.30 34598.11 22988.53 27085.25 27492.07 338
FPMVS68.72 33168.72 33368.71 35165.95 37444.27 37995.97 34294.74 35751.13 36653.26 36990.50 35125.11 37483.00 36960.80 36580.97 31078.87 365
pmmvs-eth3d84.03 32081.97 32390.20 32284.15 36587.09 32398.10 30894.73 35883.05 33174.10 35787.77 35665.56 34394.01 34781.08 32669.24 35289.49 358
TDRefinement84.76 31482.56 32191.38 31374.58 37084.80 33797.36 32094.56 35984.73 32380.21 34196.12 26463.56 34998.39 20587.92 27763.97 35990.95 349
ambc83.23 34477.17 36962.61 36887.38 36494.55 36076.72 35186.65 35930.16 37096.36 31284.85 30569.86 34990.73 350
TinyColmap87.87 30286.51 30391.94 30895.05 28685.57 33197.65 31794.08 36184.40 32581.82 33396.85 24162.14 35298.33 21280.25 32986.37 26791.91 342
TransMVSNet (Re)87.25 30385.28 30893.16 29293.56 30891.03 27498.54 28794.05 36283.69 33081.09 33796.16 26175.32 30196.40 31076.69 34468.41 35592.06 339
Baseline_NR-MVSNet90.33 27389.51 27192.81 29992.84 32389.95 29699.77 13293.94 36384.69 32489.04 26795.66 27481.66 24996.52 30690.99 24076.98 33891.97 341
EGC-MVSNET69.38 33063.76 33786.26 34090.32 34981.66 35296.24 33793.85 3640.99 3773.22 37892.33 34452.44 36392.92 35659.53 36784.90 27784.21 363
LCM-MVSNet67.77 33264.73 33576.87 34762.95 37656.25 37389.37 36393.74 36544.53 36861.99 36380.74 36320.42 37686.53 36769.37 35659.50 36587.84 361
Patchmatch-RL test86.90 30485.98 30689.67 32684.45 36475.59 36289.71 36292.43 36686.89 29677.83 34890.94 34994.22 8793.63 35287.75 27969.61 35099.79 105
pmmvs380.27 32777.77 33187.76 33780.32 36882.43 34598.23 30291.97 36772.74 36078.75 34587.97 35557.30 36090.99 36270.31 35362.37 36189.87 355
LCM-MVSNet-Re92.31 23292.60 21291.43 31297.53 21079.27 36199.02 24591.83 36892.07 20180.31 34094.38 32483.50 23795.48 33197.22 13597.58 16099.54 151
PM-MVS80.47 32678.88 33085.26 34183.79 36672.22 36495.89 34391.08 36985.71 31276.56 35288.30 35436.64 36993.90 34982.39 31869.57 35189.66 357
door90.31 370
DSMNet-mixed88.28 29888.24 29388.42 33589.64 35475.38 36398.06 30989.86 37185.59 31388.20 28392.14 34576.15 29791.95 35978.46 33696.05 18997.92 219
door-mid89.69 372
PMVScopyleft49.05 2353.75 33751.34 34160.97 35440.80 38034.68 38074.82 36889.62 37337.55 37028.67 37672.12 3667.09 38081.63 37043.17 37268.21 35666.59 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt65.23 33562.94 33872.13 35044.90 37950.03 37581.05 36689.42 37438.45 36948.51 37199.90 1954.09 36278.70 37191.84 22818.26 37387.64 362
PMMVS267.15 33364.15 33676.14 34870.56 37362.07 37093.89 34987.52 37558.09 36460.02 36478.32 36422.38 37584.54 36859.56 36647.03 36881.80 364
ANet_high56.10 33652.24 33967.66 35249.27 37856.82 37283.94 36582.02 37670.47 36133.28 37564.54 37017.23 37869.16 37345.59 37123.85 37277.02 366
MVEpermissive53.74 2251.54 33947.86 34362.60 35359.56 37750.93 37479.41 36777.69 37735.69 37236.27 37461.76 3735.79 38269.63 37237.97 37336.61 36967.24 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 33852.18 34052.67 35571.51 37145.40 37693.62 35276.60 37836.01 37143.50 37264.13 37127.11 37367.31 37431.06 37426.06 37045.30 373
EMVS51.44 34051.22 34252.11 35670.71 37244.97 37894.04 34875.66 37935.34 37342.40 37361.56 37428.93 37265.87 37527.64 37524.73 37145.49 372
N_pmnet80.06 32880.78 32677.89 34691.94 33445.28 37798.80 27156.82 38078.10 34980.08 34293.33 33277.03 28595.76 33068.14 35882.81 29292.64 331
testmvs40.60 34144.45 34429.05 35819.49 38214.11 38399.68 15618.47 38120.74 37464.59 36298.48 19610.95 37917.09 37856.66 36811.01 37455.94 371
test12337.68 34239.14 34533.31 35719.94 38124.83 38298.36 2969.75 38215.53 37551.31 37087.14 35719.62 37717.74 37747.10 3703.47 37657.36 370
wuyk23d20.37 34420.84 34718.99 35965.34 37527.73 38150.43 3707.67 3839.50 3768.01 3776.34 3776.13 38126.24 37623.40 37610.69 3752.99 374
test_blank0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.02 3780.00 3830.00 3790.00 3770.00 3770.00 375
uanet_test0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
pcd_1.5k_mvsjas7.60 34610.13 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 37991.20 1570.00 3790.00 3770.00 3770.00 375
sosnet-low-res0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
sosnet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
uncertanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
Regformer0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
n20.00 384
nn0.00 384
ab-mvs-re8.28 34511.04 3480.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 37999.40 1220.00 3830.00 3790.00 3770.00 3770.00 375
uanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
PC_three_145296.96 3099.80 1799.79 6497.49 9100.00 199.99 599.98 35100.00 1
eth-test20.00 383
eth-test0.00 383
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
test_0728_THIRD96.48 4399.83 1199.91 1597.87 4100.00 199.92 13100.00 1100.00 1
GSMVS99.59 138
test_part299.89 5099.25 1799.49 56
sam_mvs194.72 6899.59 138
sam_mvs94.25 86
test_post195.78 34459.23 37593.20 11897.74 24691.06 237
test_post63.35 37294.43 7398.13 228
patchmatchnet-post91.70 34695.12 5297.95 239
gm-plane-assit96.97 23593.76 21291.47 22098.96 15998.79 17594.92 168
test9_res99.71 3499.99 22100.00 1
agg_prior299.48 41100.00 1100.00 1
test_prior498.05 7599.94 61
test_prior299.95 4395.78 6499.73 3099.76 7596.00 3399.78 25100.00 1
旧先验299.46 19494.21 12299.85 799.95 6596.96 142
新几何299.40 199
原ACMM299.90 79
testdata299.99 4090.54 249
segment_acmp96.68 25
testdata199.28 21996.35 52
plane_prior795.71 27491.59 269
plane_prior695.76 26991.72 26480.47 266
plane_prior498.59 187
plane_prior391.64 26796.63 4093.01 213
plane_prior299.84 11196.38 48
plane_prior195.73 271
plane_prior91.74 26199.86 10496.76 3689.59 232
HQP5-MVS91.85 257
HQP-NCC95.78 26599.87 9396.82 3293.37 209
ACMP_Plane95.78 26599.87 9396.82 3293.37 209
BP-MVS97.92 116
HQP4-MVS93.37 20998.39 20594.53 239
HQP2-MVS80.65 262
NP-MVS95.77 26891.79 25998.65 183
MDTV_nov1_ep13_2view96.26 14396.11 33991.89 20698.06 12894.40 7594.30 18999.67 121
ACMMP++_ref87.04 263
ACMMP++88.23 252
Test By Simon92.82 128