This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 8897.89 1399.47 399.32 1899.08 1097.87 14699.67 296.47 9199.92 597.88 3099.98 299.85 3
MTAPA98.14 3697.84 5699.06 399.44 3997.90 1297.25 10798.73 13697.69 5897.90 14197.96 15995.81 11599.82 3596.13 9299.61 8499.45 73
mPP-MVS97.91 6297.53 9299.04 499.22 6597.87 1497.74 7898.78 12896.04 12697.10 18497.73 18496.53 8699.78 4695.16 15399.50 12499.46 69
MSP-MVS97.45 9996.92 12899.03 599.26 5697.70 1897.66 8298.89 9095.65 14798.51 7096.46 27192.15 21299.81 3795.14 15698.58 26299.58 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post98.14 3697.84 5699.02 698.81 11598.05 997.55 9198.86 10197.77 4998.20 10798.07 14496.60 8499.76 6095.49 12899.20 19499.26 118
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1498.85 2099.00 3999.20 2997.42 3499.59 15097.21 5699.76 4699.40 87
SR-MVS98.00 4697.66 7499.01 898.77 12197.93 1197.38 10398.83 11497.32 7698.06 12597.85 17196.65 7999.77 5595.00 16599.11 20699.32 101
MP-MVScopyleft97.64 8697.18 11299.00 999.32 5397.77 1797.49 9798.73 13696.27 11295.59 26697.75 18196.30 9899.78 4693.70 21799.48 13199.45 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Effi-MVS+-dtu96.81 13696.09 16898.99 1096.90 30398.69 496.42 15098.09 22595.86 13995.15 27595.54 30794.26 16299.81 3794.06 20298.51 26698.47 235
anonymousdsp98.72 1498.63 1998.99 1099.62 1697.29 3798.65 1999.19 2895.62 14999.35 2099.37 1697.38 3599.90 1498.59 1599.91 1699.77 11
CP-MVS97.92 5997.56 8998.99 1098.99 10297.82 1597.93 6598.96 8196.11 12196.89 20497.45 20396.85 7199.78 4695.19 14999.63 7799.38 92
PGM-MVS97.88 6697.52 9398.96 1399.20 7397.62 2197.09 11899.06 5195.45 15697.55 15697.94 16297.11 4799.78 4694.77 17599.46 13699.48 64
RPSCF97.87 6797.51 9498.95 1499.15 7998.43 697.56 9099.06 5196.19 11898.48 7598.70 7494.72 14699.24 25094.37 19099.33 17699.17 135
XVS97.96 4797.63 8098.94 1599.15 7997.66 1997.77 7398.83 11497.42 6996.32 23397.64 19096.49 8999.72 8595.66 11999.37 15999.45 73
X-MVStestdata92.86 28590.83 30998.94 1599.15 7997.66 1997.77 7398.83 11497.42 6996.32 23336.50 37596.49 8999.72 8595.66 11999.37 15999.45 73
ACMMPR97.95 5197.62 8298.94 1599.20 7397.56 2597.59 8898.83 11496.05 12497.46 16697.63 19196.77 7599.76 6095.61 12399.46 13699.49 58
testf198.57 1798.45 2698.93 1899.79 398.78 297.69 8099.42 1697.69 5898.92 4398.77 6897.80 2199.25 24796.27 8699.69 6498.76 206
APD_test298.57 1798.45 2698.93 1899.79 398.78 297.69 8099.42 1697.69 5898.92 4398.77 6897.80 2199.25 24796.27 8699.69 6498.76 206
ACMMPcopyleft98.05 4397.75 6798.93 1899.23 6297.60 2298.09 5798.96 8195.75 14597.91 14098.06 14996.89 6699.76 6095.32 14399.57 9499.43 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R97.92 5997.59 8698.92 2199.22 6597.55 2697.60 8698.84 10896.00 12997.22 17397.62 19296.87 7099.76 6095.48 13199.43 14899.46 69
HPM-MVScopyleft98.11 4097.83 5998.92 2199.42 4297.46 3198.57 2099.05 5395.43 15897.41 16897.50 20197.98 1599.79 4395.58 12699.57 9499.50 50
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HPM-MVS_fast98.32 2898.13 3498.88 2399.54 2697.48 3098.35 3599.03 6095.88 13797.88 14398.22 12898.15 1299.74 7596.50 7899.62 7899.42 84
ACMM93.33 1198.05 4397.79 6198.85 2499.15 7997.55 2696.68 14498.83 11495.21 16498.36 8998.13 13698.13 1499.62 14296.04 9699.54 10699.39 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS97.92 5997.62 8298.83 2599.32 5397.24 3997.45 9898.84 10895.76 14396.93 20197.43 20597.26 4299.79 4396.06 9399.53 11099.45 73
HFP-MVS97.94 5597.64 7898.83 2599.15 7997.50 2997.59 8898.84 10896.05 12497.49 16197.54 19797.07 5199.70 10795.61 12399.46 13699.30 106
GST-MVS97.82 7497.49 9798.81 2799.23 6297.25 3897.16 11298.79 12495.96 13197.53 15797.40 20796.93 6299.77 5595.04 16299.35 16799.42 84
HPM-MVS++copyleft96.99 12196.38 15798.81 2798.64 13597.59 2395.97 17898.20 20795.51 15495.06 27696.53 26794.10 16599.70 10794.29 19399.15 19999.13 143
APD-MVS_3200maxsize98.13 3997.90 5098.79 2998.79 11897.31 3697.55 9198.92 8797.72 5498.25 10398.13 13697.10 4899.75 6695.44 13599.24 19299.32 101
SteuartSystems-ACMMP98.02 4597.76 6698.79 2999.43 4097.21 4197.15 11398.90 8996.58 9898.08 12297.87 17097.02 5599.76 6095.25 14699.59 8999.40 87
Skip Steuart: Steuart Systems R&D Blog.
APD_test197.95 5197.68 7298.75 3199.60 1798.60 597.21 11199.08 4796.57 10198.07 12498.38 10296.22 10199.14 26394.71 17899.31 18198.52 230
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2396.23 11599.71 499.48 998.77 699.93 398.89 499.95 599.84 5
WR-MVS_H98.65 1598.62 2198.75 3199.51 3196.61 5698.55 2299.17 3099.05 1399.17 3098.79 6595.47 12699.89 1897.95 2999.91 1699.75 16
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 3995.83 14199.67 699.37 1698.25 1099.92 598.77 799.94 899.82 6
LPG-MVS_test97.94 5597.67 7398.74 3499.15 7997.02 4297.09 11899.02 6295.15 16898.34 9298.23 12597.91 1799.70 10794.41 18799.73 5399.50 50
LGP-MVS_train98.74 3499.15 7997.02 4299.02 6295.15 16898.34 9298.23 12597.91 1799.70 10794.41 18799.73 5399.50 50
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1099.02 1599.62 1099.36 1898.53 799.52 17098.58 1699.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVS-pluss97.69 8397.36 10298.70 3899.50 3496.84 4795.38 21398.99 7492.45 24898.11 11798.31 10897.25 4399.77 5596.60 7499.62 7899.48 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 6296.50 10399.32 2199.44 1397.43 3399.92 598.73 999.95 599.86 2
ACMMP_NAP97.89 6597.63 8098.67 4099.35 4996.84 4796.36 15498.79 12495.07 17297.88 14398.35 10497.24 4499.72 8596.05 9599.58 9199.45 73
MIMVSNet198.51 2298.45 2698.67 4099.72 896.71 5098.76 1298.89 9098.49 2799.38 1799.14 3995.44 12899.84 3096.47 7999.80 3999.47 67
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 2699.67 299.73 399.65 599.15 399.86 2497.22 5599.92 1399.77 11
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4399.21 7297.35 3597.96 6399.16 3198.34 3198.78 5398.52 8897.32 3799.45 19294.08 20199.67 7099.13 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-098.61 1698.61 2398.63 4499.77 596.35 6499.17 699.05 5398.05 4399.61 1199.52 793.72 17699.88 2098.72 1199.88 2599.65 25
SMA-MVScopyleft97.48 9797.11 11498.60 4598.83 11496.67 5396.74 13898.73 13691.61 26098.48 7598.36 10396.53 8699.68 11995.17 15199.54 10699.45 73
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4199.36 499.29 2399.06 4597.27 4099.93 397.71 4099.91 1699.70 21
LS3D97.77 7897.50 9698.57 4796.24 31597.58 2498.45 3198.85 10598.58 2697.51 15997.94 16295.74 11899.63 13795.19 14998.97 22098.51 231
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 1999.01 1699.63 999.66 399.27 299.68 11997.75 3899.89 2499.62 28
ACMP92.54 1397.47 9897.10 11598.55 4999.04 9996.70 5196.24 16298.89 9093.71 21197.97 13597.75 18197.44 3299.63 13793.22 22899.70 6399.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EGC-MVSNET83.08 34177.93 34498.53 5099.57 2097.55 2698.33 3898.57 1664.71 37710.38 37898.90 5995.60 12399.50 17595.69 11699.61 8498.55 228
DPE-MVScopyleft97.64 8697.35 10398.50 5198.85 11396.18 6995.21 22698.99 7495.84 14098.78 5398.08 14296.84 7299.81 3793.98 20799.57 9499.52 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-ACMP-BASELINE97.58 9197.28 10798.49 5299.16 7796.90 4696.39 15198.98 7795.05 17398.06 12598.02 15395.86 10799.56 15994.37 19099.64 7599.00 167
CPTT-MVS96.69 14596.08 16998.49 5298.89 11096.64 5597.25 10798.77 12992.89 24096.01 25097.13 22892.23 21199.67 12492.24 24099.34 17099.17 135
APDe-MVS98.14 3698.03 4398.47 5498.72 12596.04 7598.07 5899.10 4195.96 13198.59 6598.69 7596.94 6099.81 3796.64 7299.58 9199.57 37
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 3599.33 599.30 2299.00 4797.27 4099.92 597.64 4499.92 1399.75 16
mvsmamba98.16 3498.06 4098.44 5599.53 2995.87 8198.70 1398.94 8497.71 5698.85 4799.10 4191.35 22799.83 3398.47 1799.90 2299.64 27
RRT_MVS97.95 5197.79 6198.43 5799.67 1295.56 9398.86 1096.73 29097.99 4599.15 3199.35 2089.84 25099.90 1498.64 1399.90 2299.82 6
TranMVSNet+NR-MVSNet98.33 2798.30 3398.43 5799.07 9395.87 8196.73 14299.05 5398.67 2398.84 4998.45 9597.58 3099.88 2096.45 8099.86 2799.54 44
OPM-MVS97.54 9397.25 10898.41 5999.11 8896.61 5695.24 22498.46 17494.58 18998.10 11998.07 14497.09 5099.39 21395.16 15399.44 14099.21 126
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
APD-MVScopyleft97.00 12096.53 15098.41 5998.55 15096.31 6696.32 15798.77 12992.96 23997.44 16797.58 19695.84 10899.74 7591.96 24399.35 16799.19 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 3899.22 899.22 2898.96 5197.35 3699.92 597.79 3699.93 1099.79 9
UniMVSNet_NR-MVSNet97.83 7197.65 7598.37 6298.72 12595.78 8495.66 19699.02 6298.11 4098.31 9897.69 18894.65 15199.85 2797.02 6599.71 6099.48 64
DU-MVS97.79 7697.60 8598.36 6398.73 12395.78 8495.65 19898.87 9897.57 6298.31 9897.83 17294.69 14799.85 2797.02 6599.71 6099.46 69
UniMVSNet (Re)97.83 7197.65 7598.35 6498.80 11795.86 8395.92 18499.04 5997.51 6698.22 10697.81 17694.68 14999.78 4697.14 6099.75 5199.41 86
CS-MVS98.09 4198.01 4498.32 6598.45 16596.69 5298.52 2699.69 398.07 4296.07 24797.19 22696.88 6899.86 2497.50 4899.73 5398.41 238
nrg03098.54 2098.62 2198.32 6599.22 6595.66 9197.90 6799.08 4798.31 3299.02 3798.74 7197.68 2599.61 14897.77 3799.85 3099.70 21
DeepPCF-MVS94.58 596.90 12996.43 15598.31 6797.48 27097.23 4092.56 31498.60 16192.84 24198.54 6897.40 20796.64 8198.78 30194.40 18999.41 15598.93 180
CP-MVSNet98.42 2598.46 2498.30 6899.46 3795.22 11898.27 4498.84 10899.05 1399.01 3898.65 7995.37 12999.90 1497.57 4599.91 1699.77 11
XVG-OURS-SEG-HR97.38 10497.07 11898.30 6899.01 10197.41 3494.66 24999.02 6295.20 16598.15 11497.52 19998.83 498.43 33294.87 16896.41 33399.07 158
h-mvs3396.29 16295.63 18998.26 7098.50 15996.11 7396.90 12797.09 27496.58 9897.21 17598.19 13084.14 29999.78 4695.89 10796.17 33798.89 188
NR-MVSNet97.96 4797.86 5598.26 7098.73 12395.54 9598.14 5498.73 13697.79 4899.42 1597.83 17294.40 15999.78 4695.91 10699.76 4699.46 69
XVG-OURS97.12 11596.74 13798.26 7098.99 10297.45 3293.82 28499.05 5395.19 16698.32 9697.70 18695.22 13498.41 33394.27 19498.13 28098.93 180
test_0728_SECOND98.25 7399.23 6295.49 10196.74 13898.89 9099.75 6695.48 13199.52 11599.53 47
PHI-MVS96.96 12596.53 15098.25 7397.48 27096.50 5996.76 13798.85 10593.52 21496.19 24396.85 24795.94 10599.42 19893.79 21399.43 14898.83 197
MSC_two_6792asdad98.22 7597.75 24795.34 11098.16 21799.75 6695.87 10999.51 12099.57 37
No_MVS98.22 7597.75 24795.34 11098.16 21799.75 6695.87 10999.51 12099.57 37
SF-MVS97.60 8997.39 10098.22 7598.93 10795.69 8897.05 12099.10 4195.32 16197.83 14997.88 16996.44 9399.72 8594.59 18399.39 15799.25 122
PS-MVSNAJss98.53 2198.63 1998.21 7899.68 1194.82 12998.10 5699.21 2496.91 8699.75 299.45 1295.82 11199.92 598.80 699.96 499.89 1
DVP-MVScopyleft97.78 7797.65 7598.16 7999.24 6095.51 9796.74 13898.23 20295.92 13498.40 8398.28 11797.06 5299.71 10095.48 13199.52 11599.26 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DeepC-MVS95.41 497.82 7497.70 6898.16 7998.78 12095.72 8696.23 16399.02 6293.92 20698.62 6198.99 4897.69 2499.62 14296.18 9199.87 2699.15 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+96.13 397.73 8097.59 8698.15 8198.11 20495.60 9298.04 6098.70 14598.13 3996.93 20198.45 9595.30 13299.62 14295.64 12198.96 22199.24 123
CS-MVS-test97.91 6297.84 5698.14 8298.52 15496.03 7798.38 3499.67 498.11 4095.50 26896.92 24496.81 7499.87 2296.87 7099.76 4698.51 231
PM-MVS97.36 10897.10 11598.14 8298.91 10996.77 4996.20 16498.63 15993.82 20898.54 6898.33 10693.98 16899.05 27695.99 10199.45 13998.61 223
DVP-MVS++97.96 4797.90 5098.12 8497.75 24795.40 10399.03 798.89 9096.62 9398.62 6198.30 11296.97 5899.75 6695.70 11499.25 18999.21 126
NCCC96.52 15395.99 17398.10 8597.81 23195.68 8995.00 23898.20 20795.39 15995.40 27196.36 27793.81 17399.45 19293.55 22098.42 26999.17 135
SED-MVS97.94 5597.90 5098.07 8699.22 6595.35 10896.79 13598.83 11496.11 12199.08 3498.24 12397.87 1999.72 8595.44 13599.51 12099.14 141
Vis-MVSNetpermissive98.27 3098.34 3098.07 8699.33 5195.21 12098.04 6099.46 1297.32 7697.82 15099.11 4096.75 7699.86 2497.84 3399.36 16299.15 138
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AllTest97.20 11496.92 12898.06 8899.08 9196.16 7097.14 11599.16 3194.35 19497.78 15198.07 14495.84 10899.12 26691.41 25399.42 15198.91 184
TestCases98.06 8899.08 9196.16 7099.16 3194.35 19497.78 15198.07 14495.84 10899.12 26691.41 25399.42 15198.91 184
N_pmnet95.18 20894.23 24498.06 8897.85 22296.55 5892.49 31591.63 35089.34 28698.09 12097.41 20690.33 24099.06 27591.58 25299.31 18198.56 226
F-COLMAP95.30 20394.38 24198.05 9198.64 13596.04 7595.61 20198.66 15389.00 29293.22 32596.40 27592.90 19299.35 22487.45 32697.53 30898.77 205
CNVR-MVS96.92 12796.55 14798.03 9298.00 21395.54 9594.87 24298.17 21394.60 18696.38 23097.05 23495.67 12099.36 22195.12 15999.08 21099.19 131
TSAR-MVS + MP.97.42 10297.23 11098.00 9399.38 4695.00 12597.63 8598.20 20793.00 23498.16 11298.06 14995.89 10699.72 8595.67 11899.10 20899.28 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMH+93.58 1098.23 3398.31 3197.98 9499.39 4595.22 11897.55 9199.20 2698.21 3799.25 2698.51 9098.21 1199.40 20994.79 17299.72 5799.32 101
v7n98.73 1198.99 597.95 9599.64 1494.20 15398.67 1599.14 3799.08 1099.42 1599.23 2796.53 8699.91 1399.27 299.93 1099.73 18
Anonymous2023121198.55 1998.76 1397.94 9698.79 11894.37 14498.84 1199.15 3599.37 399.67 699.43 1495.61 12299.72 8598.12 2299.86 2799.73 18
bld_raw_dy_0_6497.69 8397.61 8497.91 9799.54 2694.27 15198.06 5998.60 16196.60 9598.79 5298.95 5289.62 25199.84 3098.43 1999.91 1699.62 28
OMC-MVS96.48 15596.00 17297.91 9798.30 17596.01 7894.86 24398.60 16191.88 25797.18 17897.21 22596.11 10299.04 27790.49 28399.34 17098.69 215
GeoE97.75 7997.70 6897.89 9998.88 11194.53 13797.10 11798.98 7795.75 14597.62 15497.59 19497.61 2999.77 5596.34 8499.44 14099.36 98
train_agg95.46 19794.66 22397.88 10097.84 22795.23 11593.62 29098.39 18587.04 31293.78 30695.99 29294.58 15399.52 17091.76 25098.90 22898.89 188
pm-mvs198.47 2398.67 1797.86 10199.52 3094.58 13698.28 4299.00 7197.57 6299.27 2499.22 2898.32 999.50 17597.09 6299.75 5199.50 50
ITE_SJBPF97.85 10298.64 13596.66 5498.51 17195.63 14897.22 17397.30 22095.52 12498.55 32590.97 26398.90 22898.34 249
CDPH-MVS95.45 19894.65 22497.84 10398.28 17894.96 12693.73 28898.33 19385.03 33595.44 26996.60 26395.31 13199.44 19590.01 28999.13 20299.11 151
DP-MVS97.87 6797.89 5397.81 10498.62 14194.82 12997.13 11698.79 12498.98 1798.74 5798.49 9195.80 11699.49 17995.04 16299.44 14099.11 151
hse-mvs295.77 18295.09 20197.79 10597.84 22795.51 9795.66 19695.43 31596.58 9897.21 17596.16 28484.14 29999.54 16595.89 10796.92 32098.32 250
DROMVSNet97.90 6497.94 4997.79 10598.66 13495.14 12198.31 3999.66 697.57 6295.95 25197.01 23896.99 5799.82 3597.66 4399.64 7598.39 241
MAR-MVS94.21 25193.03 27097.76 10796.94 30197.44 3396.97 12597.15 27187.89 30792.00 34492.73 34992.14 21399.12 26683.92 34997.51 30996.73 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS93.95 26292.69 28197.74 10897.80 23595.38 10595.57 20395.46 31491.26 26692.64 33796.10 29074.67 34599.55 16293.72 21696.97 31998.30 254
VDD-MVS97.37 10697.25 10897.74 10898.69 13294.50 14097.04 12195.61 31098.59 2598.51 7098.72 7292.54 20499.58 15296.02 9899.49 12799.12 148
Anonymous2024052997.96 4798.04 4297.71 11098.69 13294.28 15097.86 6998.31 19798.79 2199.23 2798.86 6395.76 11799.61 14895.49 12899.36 16299.23 124
VPA-MVSNet98.27 3098.46 2497.70 11199.06 9493.80 16597.76 7599.00 7198.40 2999.07 3698.98 4996.89 6699.75 6697.19 5999.79 4099.55 43
IS-MVSNet96.93 12696.68 14097.70 11199.25 5994.00 15998.57 2096.74 28898.36 3098.14 11597.98 15888.23 26999.71 10093.10 23199.72 5799.38 92
CSCG97.40 10397.30 10597.69 11398.95 10494.83 12897.28 10698.99 7496.35 11198.13 11695.95 29695.99 10499.66 13094.36 19299.73 5398.59 224
HQP_MVS96.66 14796.33 16097.68 11498.70 13094.29 14796.50 14898.75 13396.36 10996.16 24496.77 25491.91 22299.46 18892.59 23699.20 19499.28 113
EPP-MVSNet96.84 13196.58 14497.65 11599.18 7693.78 16798.68 1496.34 29397.91 4797.30 17098.06 14988.46 26699.85 2793.85 21199.40 15699.32 101
OPU-MVS97.64 11698.01 20995.27 11396.79 13597.35 21696.97 5898.51 32891.21 25999.25 18999.14 141
MVS_111021_LR96.82 13596.55 14797.62 11798.27 18095.34 11093.81 28698.33 19394.59 18896.56 22296.63 26296.61 8298.73 30694.80 17199.34 17098.78 202
UGNet96.81 13696.56 14697.58 11896.64 30593.84 16497.75 7697.12 27396.47 10693.62 31398.88 6193.22 18599.53 16795.61 12399.69 6499.36 98
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test98.16 3498.37 2997.56 11999.49 3593.10 18698.35 3599.21 2498.43 2898.89 4598.83 6494.30 16199.81 3797.87 3199.91 1699.77 11
MCST-MVS96.24 16495.80 18397.56 11998.75 12294.13 15594.66 24998.17 21390.17 27996.21 24196.10 29095.14 13699.43 19794.13 20098.85 23599.13 143
GBi-Net96.99 12196.80 13497.56 11997.96 21593.67 16998.23 4698.66 15395.59 15197.99 13199.19 3089.51 25799.73 8094.60 18099.44 14099.30 106
test196.99 12196.80 13497.56 11997.96 21593.67 16998.23 4698.66 15395.59 15197.99 13199.19 3089.51 25799.73 8094.60 18099.44 14099.30 106
FMVSNet197.95 5198.08 3797.56 11999.14 8693.67 16998.23 4698.66 15397.41 7299.00 3999.19 3095.47 12699.73 8095.83 11199.76 4699.30 106
TransMVSNet (Re)98.38 2698.67 1797.51 12499.51 3193.39 18098.20 5198.87 9898.23 3699.48 1299.27 2598.47 899.55 16296.52 7799.53 11099.60 30
PLCcopyleft91.02 1694.05 25892.90 27397.51 12498.00 21395.12 12394.25 26198.25 20086.17 32191.48 34795.25 31291.01 23099.19 25585.02 34496.69 32898.22 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH93.61 998.44 2498.76 1397.51 12499.43 4093.54 17598.23 4699.05 5397.40 7399.37 1899.08 4498.79 599.47 18597.74 3999.71 6099.50 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
alignmvs96.01 17495.52 19297.50 12797.77 24494.71 13196.07 17096.84 28297.48 6796.78 21194.28 33285.50 29199.40 20996.22 8898.73 24998.40 239
Baseline_NR-MVSNet97.72 8197.79 6197.50 12799.56 2193.29 18195.44 20698.86 10198.20 3898.37 8699.24 2694.69 14799.55 16295.98 10299.79 4099.65 25
3Dnovator96.53 297.61 8897.64 7897.50 12797.74 25093.65 17398.49 2898.88 9696.86 8897.11 18398.55 8695.82 11199.73 8095.94 10499.42 15199.13 143
TSAR-MVS + GP.96.47 15696.12 16697.49 13097.74 25095.23 11594.15 26896.90 28193.26 22298.04 12896.70 25894.41 15898.89 29294.77 17599.14 20098.37 243
FIs97.93 5898.07 3897.48 13199.38 4692.95 18998.03 6299.11 4098.04 4498.62 6198.66 7793.75 17599.78 4697.23 5499.84 3199.73 18
test_040297.84 7097.97 4697.47 13299.19 7594.07 15696.71 14398.73 13698.66 2498.56 6798.41 9896.84 7299.69 11494.82 17099.81 3698.64 218
test_prior97.46 13397.79 24094.26 15298.42 18199.34 22698.79 201
test1297.46 13397.61 26194.07 15697.78 24593.57 31693.31 18399.42 19898.78 24298.89 188
DeepC-MVS_fast94.34 796.74 13996.51 15297.44 13597.69 25394.15 15496.02 17498.43 17893.17 22997.30 17097.38 21395.48 12599.28 24193.74 21499.34 17098.88 192
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous20240521196.34 16195.98 17497.43 13698.25 18293.85 16396.74 13894.41 32497.72 5498.37 8698.03 15287.15 28199.53 16794.06 20299.07 21298.92 183
pmmvs-eth3d96.49 15496.18 16597.42 13798.25 18294.29 14794.77 24698.07 23089.81 28397.97 13598.33 10693.11 18699.08 27395.46 13499.84 3198.89 188
VDDNet96.98 12496.84 13197.41 13899.40 4493.26 18297.94 6495.31 31699.26 798.39 8599.18 3387.85 27699.62 14295.13 15899.09 20999.35 100
EG-PatchMatch MVS97.69 8397.79 6197.40 13999.06 9493.52 17695.96 18098.97 8094.55 19098.82 5098.76 7097.31 3899.29 23997.20 5899.44 14099.38 92
Fast-Effi-MVS+-dtu96.44 15796.12 16697.39 14097.18 29294.39 14295.46 20598.73 13696.03 12894.72 28494.92 32096.28 10099.69 11493.81 21297.98 28598.09 268
LF4IMVS96.07 17095.63 18997.36 14198.19 18895.55 9495.44 20698.82 12292.29 25195.70 26496.55 26592.63 20098.69 31191.75 25199.33 17697.85 291
Gipumacopyleft98.07 4298.31 3197.36 14199.76 796.28 6898.51 2799.10 4198.76 2296.79 20799.34 2296.61 8298.82 29796.38 8299.50 12496.98 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re97.33 10997.33 10497.32 14398.13 20393.79 16696.99 12499.65 796.74 9199.47 1398.93 5496.91 6599.84 3090.11 28799.06 21598.32 250
canonicalmvs97.23 11397.21 11197.30 14497.65 25894.39 14297.84 7099.05 5397.42 6996.68 21493.85 33597.63 2899.33 22896.29 8598.47 26798.18 266
MVS_111021_HR96.73 14196.54 14997.27 14598.35 17393.66 17293.42 29698.36 18994.74 18196.58 22096.76 25696.54 8598.99 28394.87 16899.27 18799.15 138
SixPastTwentyTwo97.49 9697.57 8897.26 14699.56 2192.33 19998.28 4296.97 27998.30 3499.45 1499.35 2088.43 26799.89 1898.01 2799.76 4699.54 44
KD-MVS_self_test97.86 6998.07 3897.25 14799.22 6592.81 19197.55 9198.94 8497.10 8298.85 4798.88 6195.03 13999.67 12497.39 5299.65 7399.26 118
新几何197.25 14798.29 17694.70 13397.73 24777.98 36594.83 28396.67 26092.08 21699.45 19288.17 31698.65 25697.61 301
test_vis3_rt97.04 11896.98 12297.23 14998.44 16695.88 8096.82 13199.67 490.30 27699.27 2499.33 2394.04 16696.03 36897.14 6097.83 29199.78 10
WR-MVS96.90 12996.81 13397.16 15098.56 14992.20 20494.33 25798.12 22297.34 7598.20 10797.33 21892.81 19399.75 6694.79 17299.81 3699.54 44
TAMVS95.49 19394.94 20797.16 15098.31 17493.41 17995.07 23396.82 28491.09 26897.51 15997.82 17589.96 24799.42 19888.42 31299.44 14098.64 218
CDS-MVSNet94.88 22194.12 24997.14 15297.64 25993.57 17493.96 28097.06 27690.05 28096.30 23696.55 26586.10 28799.47 18590.10 28899.31 18198.40 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tt080597.44 10097.56 8997.11 15399.55 2396.36 6398.66 1895.66 30698.31 3297.09 18995.45 31097.17 4698.50 32998.67 1297.45 31396.48 338
EI-MVSNet-Vis-set97.32 11097.39 10097.11 15397.36 28092.08 21095.34 21797.65 25497.74 5298.29 10198.11 14095.05 13799.68 11997.50 4899.50 12499.56 41
EI-MVSNet-UG-set97.32 11097.40 9997.09 15597.34 28392.01 21295.33 21897.65 25497.74 5298.30 10098.14 13495.04 13899.69 11497.55 4699.52 11599.58 32
XXY-MVS97.54 9397.70 6897.07 15699.46 3792.21 20297.22 11099.00 7194.93 17898.58 6698.92 5597.31 3899.41 20794.44 18599.43 14899.59 31
mvsany_test396.21 16595.93 17897.05 15797.40 27894.33 14695.76 19094.20 32689.10 28999.36 1999.60 693.97 16997.85 35095.40 14298.63 25798.99 170
lessismore_v097.05 15799.36 4892.12 20684.07 37398.77 5598.98 4985.36 29299.74 7597.34 5399.37 15999.30 106
TAPA-MVS93.32 1294.93 21894.23 24497.04 15998.18 19194.51 13895.22 22598.73 13681.22 35496.25 23995.95 29693.80 17498.98 28589.89 29198.87 23297.62 300
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EPNet93.72 26592.62 28497.03 16087.61 38092.25 20096.27 15891.28 35196.74 9187.65 36697.39 21185.00 29499.64 13592.14 24199.48 13199.20 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL94.61 23693.81 25797.02 16198.19 18895.72 8693.66 28997.23 26788.17 30394.94 28195.62 30591.43 22598.57 32287.36 32797.68 30196.76 331
casdiffmvs_mvgpermissive97.83 7198.11 3597.00 16298.57 14792.10 20995.97 17899.18 2997.67 6199.00 3998.48 9497.64 2799.50 17596.96 6799.54 10699.40 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v396.44 15796.28 16196.95 16399.41 4391.53 22097.65 8390.31 36098.89 1998.93 4299.36 1884.57 29899.92 597.81 3499.56 9799.39 90
tfpnnormal97.72 8197.97 4696.94 16499.26 5692.23 20197.83 7198.45 17598.25 3599.13 3398.66 7796.65 7999.69 11493.92 20999.62 7898.91 184
MVP-Stereo95.69 18495.28 19496.92 16598.15 19893.03 18795.64 20098.20 20790.39 27596.63 21997.73 18491.63 22499.10 27191.84 24897.31 31798.63 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP-MVS95.17 21094.58 23296.92 16597.85 22292.47 19794.26 25898.43 17893.18 22692.86 33195.08 31490.33 24099.23 25290.51 28198.74 24699.05 162
HyFIR lowres test93.72 26592.65 28296.91 16798.93 10791.81 21791.23 33898.52 16982.69 34796.46 22796.52 26980.38 31999.90 1490.36 28598.79 24199.03 163
VNet96.84 13196.83 13296.88 16898.06 20592.02 21196.35 15597.57 26097.70 5797.88 14397.80 17792.40 20999.54 16594.73 17798.96 22199.08 156
FMVSNet296.72 14296.67 14196.87 16997.96 21591.88 21497.15 11398.06 23195.59 15198.50 7298.62 8089.51 25799.65 13294.99 16699.60 8799.07 158
EIA-MVS96.04 17295.77 18596.85 17097.80 23592.98 18896.12 16899.16 3194.65 18493.77 30891.69 36095.68 11999.67 12494.18 19798.85 23597.91 288
test_fmvs397.38 10497.56 8996.84 17198.63 13992.81 19197.60 8699.61 990.87 27098.76 5699.66 394.03 16797.90 34999.24 399.68 6899.81 8
MVS_030495.50 19295.05 20596.84 17196.28 31493.12 18597.00 12396.16 29595.03 17489.22 36197.70 18690.16 24699.48 18294.51 18499.34 17097.93 287
ETV-MVS96.13 16995.90 17996.82 17397.76 24593.89 16195.40 21198.95 8395.87 13895.58 26791.00 36696.36 9799.72 8593.36 22298.83 23896.85 325
DP-MVS Recon95.55 19195.13 19996.80 17498.51 15693.99 16094.60 25198.69 14690.20 27895.78 26096.21 28392.73 19698.98 28590.58 27998.86 23497.42 309
QAPM95.88 17895.57 19196.80 17497.90 22091.84 21698.18 5398.73 13688.41 29896.42 22898.13 13694.73 14599.75 6688.72 30798.94 22498.81 199
CMPMVSbinary73.10 2392.74 28791.39 29896.77 17693.57 36694.67 13494.21 26597.67 25080.36 35893.61 31496.60 26382.85 30797.35 35684.86 34598.78 24298.29 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Fast-Effi-MVS+95.49 19395.07 20296.75 17797.67 25792.82 19094.22 26498.60 16191.61 26093.42 32292.90 34596.73 7799.70 10792.60 23597.89 29097.74 296
CNLPA95.04 21494.47 23796.75 17797.81 23195.25 11494.12 27297.89 23794.41 19294.57 28795.69 30190.30 24398.35 33986.72 33198.76 24496.64 333
Effi-MVS+96.19 16696.01 17196.71 17997.43 27692.19 20596.12 16899.10 4195.45 15693.33 32494.71 32397.23 4599.56 15993.21 22997.54 30798.37 243
pmmvs494.82 22394.19 24796.70 18097.42 27792.75 19492.09 32496.76 28686.80 31795.73 26397.22 22489.28 26098.89 29293.28 22699.14 20098.46 237
CLD-MVS95.47 19695.07 20296.69 18198.27 18092.53 19691.36 33298.67 15191.22 26795.78 26094.12 33395.65 12198.98 28590.81 26899.72 5798.57 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
V4297.04 11897.16 11396.68 18298.59 14591.05 22696.33 15698.36 18994.60 18697.99 13198.30 11293.32 18299.62 14297.40 5199.53 11099.38 92
LFMVS95.32 20294.88 21396.62 18398.03 20691.47 22297.65 8390.72 35799.11 997.89 14298.31 10879.20 32299.48 18293.91 21099.12 20598.93 180
ab-mvs96.59 14996.59 14396.60 18498.64 13592.21 20298.35 3597.67 25094.45 19196.99 19698.79 6594.96 14399.49 17990.39 28499.07 21298.08 269
VPNet97.26 11297.49 9796.59 18599.47 3690.58 23696.27 15898.53 16897.77 4998.46 7898.41 9894.59 15299.68 11994.61 17999.29 18499.52 48
原ACMM196.58 18698.16 19692.12 20698.15 21985.90 32593.49 31896.43 27292.47 20899.38 21687.66 32198.62 25898.23 261
AdaColmapbinary95.11 21194.62 22896.58 18697.33 28594.45 14194.92 24098.08 22693.15 23093.98 30495.53 30894.34 16099.10 27185.69 33698.61 25996.20 342
PCF-MVS89.43 1892.12 29890.64 31296.57 18897.80 23593.48 17789.88 35798.45 17574.46 37096.04 24995.68 30290.71 23599.31 23273.73 36999.01 21996.91 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ambc96.56 18998.23 18591.68 21997.88 6898.13 22198.42 8198.56 8594.22 16399.04 27794.05 20499.35 16798.95 174
casdiffmvspermissive97.50 9597.81 6096.56 18998.51 15691.04 22795.83 18899.09 4697.23 7998.33 9598.30 11297.03 5499.37 21996.58 7699.38 15899.28 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet593.39 27692.35 28696.50 19195.83 33290.81 23397.31 10498.27 19892.74 24296.27 23798.28 11762.23 37499.67 12490.86 26699.36 16299.03 163
CANet95.86 17995.65 18896.49 19296.41 31190.82 23194.36 25698.41 18294.94 17692.62 33996.73 25792.68 19799.71 10095.12 15999.60 8798.94 176
test20.0396.58 15196.61 14296.48 19398.49 16091.72 21895.68 19597.69 24996.81 8998.27 10297.92 16594.18 16498.71 30990.78 27099.66 7299.00 167
UnsupCasMVSNet_eth95.91 17795.73 18696.44 19498.48 16291.52 22195.31 22098.45 17595.76 14397.48 16397.54 19789.53 25698.69 31194.43 18694.61 35499.13 143
iter_conf_final94.54 24093.91 25696.43 19597.23 29090.41 24096.81 13298.10 22393.87 20796.80 20697.89 16768.02 36799.72 8596.73 7199.77 4599.18 134
baseline97.44 10097.78 6596.43 19598.52 15490.75 23496.84 12999.03 6096.51 10297.86 14798.02 15396.67 7899.36 22197.09 6299.47 13399.19 131
DPM-MVS93.68 26792.77 28096.42 19797.91 21992.54 19591.17 33997.47 26384.99 33793.08 32894.74 32289.90 24899.00 28187.54 32498.09 28297.72 297
PVSNet_Blended_VisFu95.95 17695.80 18396.42 19799.28 5590.62 23595.31 22099.08 4788.40 29996.97 19998.17 13392.11 21499.78 4693.64 21899.21 19398.86 195
ANet_high98.31 2998.94 696.41 19999.33 5189.64 24897.92 6699.56 1199.27 699.66 899.50 897.67 2699.83 3397.55 4699.98 299.77 11
SD-MVS97.37 10697.70 6896.35 20098.14 20095.13 12296.54 14798.92 8795.94 13399.19 2998.08 14297.74 2395.06 36995.24 14799.54 10698.87 194
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Patchmtry95.03 21694.59 23196.33 20194.83 34990.82 23196.38 15397.20 26896.59 9797.49 16198.57 8377.67 32999.38 21692.95 23499.62 7898.80 200
OpenMVScopyleft94.22 895.48 19595.20 19696.32 20297.16 29391.96 21397.74 7898.84 10887.26 30994.36 29398.01 15593.95 17099.67 12490.70 27698.75 24597.35 312
v1097.55 9297.97 4696.31 20398.60 14389.64 24897.44 9999.02 6296.60 9598.72 5999.16 3693.48 18099.72 8598.76 899.92 1399.58 32
PMMVS92.39 29191.08 30396.30 20493.12 36892.81 19190.58 34895.96 30179.17 36291.85 34692.27 35390.29 24498.66 31689.85 29296.68 32997.43 308
v897.60 8998.06 4096.23 20598.71 12889.44 25297.43 10198.82 12297.29 7898.74 5799.10 4193.86 17199.68 11998.61 1499.94 899.56 41
1112_ss94.12 25493.42 26396.23 20598.59 14590.85 23094.24 26298.85 10585.49 32892.97 32994.94 31886.01 28899.64 13591.78 24997.92 28798.20 264
FMVSNet395.26 20594.94 20796.22 20796.53 30890.06 24195.99 17697.66 25294.11 20197.99 13197.91 16680.22 32099.63 13794.60 18099.44 14098.96 173
114514_t93.96 26093.22 26796.19 20899.06 9490.97 22995.99 17698.94 8473.88 37193.43 32196.93 24292.38 21099.37 21989.09 30299.28 18598.25 260
CHOSEN 1792x268894.10 25593.41 26496.18 20999.16 7790.04 24292.15 32198.68 14879.90 35996.22 24097.83 17287.92 27599.42 19889.18 30199.65 7399.08 156
test_fmvs296.38 16096.45 15496.16 21097.85 22291.30 22396.81 13299.45 1389.24 28898.49 7399.38 1588.68 26497.62 35498.83 599.32 17899.57 37
v119296.83 13497.06 11996.15 21198.28 17889.29 25495.36 21498.77 12993.73 21098.11 11798.34 10593.02 19199.67 12498.35 2099.58 9199.50 50
v114496.84 13197.08 11796.13 21298.42 16889.28 25595.41 21098.67 15194.21 19797.97 13598.31 10893.06 18799.65 13298.06 2699.62 7899.45 73
UnsupCasMVSNet_bld94.72 22994.26 24396.08 21398.62 14190.54 23993.38 29898.05 23290.30 27697.02 19496.80 25389.54 25499.16 26188.44 31196.18 33698.56 226
v14419296.69 14596.90 13096.03 21498.25 18288.92 26095.49 20498.77 12993.05 23298.09 12098.29 11692.51 20799.70 10798.11 2399.56 9799.47 67
v192192096.72 14296.96 12595.99 21598.21 18688.79 26595.42 20898.79 12493.22 22498.19 11198.26 12292.68 19799.70 10798.34 2199.55 10399.49 58
DELS-MVS96.17 16796.23 16295.99 21597.55 26690.04 24292.38 31998.52 16994.13 19996.55 22497.06 23394.99 14199.58 15295.62 12299.28 18598.37 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU94.65 23494.21 24695.96 21795.90 32989.68 24793.92 28197.83 24393.19 22590.12 35695.64 30488.52 26599.57 15893.27 22799.47 13398.62 221
PAPM_NR94.61 23694.17 24895.96 21798.36 17291.23 22495.93 18397.95 23392.98 23593.42 32294.43 33090.53 23698.38 33687.60 32296.29 33598.27 258
v2v48296.78 13897.06 11995.95 21998.57 14788.77 26695.36 21498.26 19995.18 16797.85 14898.23 12592.58 20199.63 13797.80 3599.69 6499.45 73
PMVScopyleft89.60 1796.71 14496.97 12395.95 21999.51 3197.81 1697.42 10297.49 26197.93 4695.95 25198.58 8296.88 6896.91 36289.59 29599.36 16293.12 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSDG95.33 20195.13 19995.94 22197.40 27891.85 21591.02 34398.37 18895.30 16296.31 23595.99 29294.51 15698.38 33689.59 29597.65 30497.60 302
v124096.74 13997.02 12195.91 22298.18 19188.52 26895.39 21298.88 9693.15 23098.46 7898.40 10192.80 19499.71 10098.45 1899.49 12799.49 58
Anonymous2023120695.27 20495.06 20495.88 22398.72 12589.37 25395.70 19297.85 23988.00 30596.98 19897.62 19291.95 21999.34 22689.21 30099.53 11098.94 176
Vis-MVSNet (Re-imp)95.11 21194.85 21495.87 22499.12 8789.17 25697.54 9694.92 31996.50 10396.58 22097.27 22183.64 30399.48 18288.42 31299.67 7098.97 172
CL-MVSNet_self_test95.04 21494.79 22095.82 22597.51 26889.79 24691.14 34096.82 28493.05 23296.72 21296.40 27590.82 23399.16 26191.95 24498.66 25498.50 233
IterMVS-LS96.92 12797.29 10695.79 22698.51 15688.13 27995.10 22998.66 15396.99 8398.46 7898.68 7692.55 20299.74 7596.91 6899.79 4099.50 50
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052197.07 11797.51 9495.76 22799.35 4988.18 27697.78 7298.40 18497.11 8198.34 9299.04 4689.58 25399.79 4398.09 2499.93 1099.30 106
EI-MVSNet96.63 14896.93 12695.74 22897.26 28888.13 27995.29 22297.65 25496.99 8397.94 13898.19 13092.55 20299.58 15296.91 6899.56 9799.50 50
MDA-MVSNet-bldmvs95.69 18495.67 18795.74 22898.48 16288.76 26792.84 30697.25 26696.00 12997.59 15597.95 16191.38 22699.46 18893.16 23096.35 33498.99 170
sss94.22 24993.72 25895.74 22897.71 25289.95 24493.84 28396.98 27888.38 30093.75 30995.74 30087.94 27198.89 29291.02 26298.10 28198.37 243
testdata95.70 23198.16 19690.58 23697.72 24880.38 35795.62 26597.02 23692.06 21798.98 28589.06 30498.52 26497.54 304
test_f95.82 18195.88 18195.66 23297.61 26193.21 18495.61 20198.17 21386.98 31498.42 8199.47 1090.46 23894.74 37197.71 4098.45 26899.03 163
test_yl94.40 24494.00 25295.59 23396.95 29989.52 25094.75 24795.55 31296.18 11996.79 20796.14 28781.09 31599.18 25690.75 27197.77 29298.07 271
DCV-MVSNet94.40 24494.00 25295.59 23396.95 29989.52 25094.75 24795.55 31296.18 11996.79 20796.14 28781.09 31599.18 25690.75 27197.77 29298.07 271
tttt051793.31 27892.56 28595.57 23598.71 12887.86 28597.44 9987.17 36995.79 14297.47 16596.84 24864.12 37199.81 3796.20 8999.32 17899.02 166
MSLP-MVS++96.42 15996.71 13895.57 23597.82 23090.56 23895.71 19198.84 10894.72 18296.71 21397.39 21194.91 14498.10 34795.28 14499.02 21798.05 278
thisisatest053092.71 28891.76 29595.56 23798.42 16888.23 27496.03 17387.35 36894.04 20396.56 22295.47 30964.03 37299.77 5594.78 17499.11 20698.68 217
patch_mono-296.59 14996.93 12695.55 23898.88 11187.12 30294.47 25499.30 1994.12 20096.65 21898.41 9894.98 14299.87 2295.81 11399.78 4399.66 23
Test_1112_low_res93.53 27392.86 27495.54 23998.60 14388.86 26392.75 30998.69 14682.66 34892.65 33696.92 24484.75 29699.56 15990.94 26497.76 29498.19 265
pmmvs594.63 23594.34 24295.50 24097.63 26088.34 27294.02 27497.13 27287.15 31195.22 27497.15 22787.50 27799.27 24493.99 20699.26 18898.88 192
MVSFormer96.14 16896.36 15895.49 24197.68 25487.81 28898.67 1599.02 6296.50 10394.48 29196.15 28586.90 28299.92 598.73 999.13 20298.74 208
ET-MVSNet_ETH3D91.12 30889.67 32095.47 24296.41 31189.15 25891.54 33090.23 36189.07 29086.78 37092.84 34669.39 36599.44 19594.16 19896.61 33097.82 293
iter_conf0593.65 26993.05 26895.46 24396.13 32587.45 29595.95 18298.22 20392.66 24497.04 19297.89 16763.52 37399.72 8596.19 9099.82 3599.21 126
diffmvspermissive96.04 17296.23 16295.46 24397.35 28188.03 28293.42 29699.08 4794.09 20296.66 21696.93 24293.85 17299.29 23996.01 10098.67 25299.06 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14896.58 15196.97 12395.42 24598.63 13987.57 29295.09 23097.90 23695.91 13698.24 10497.96 15993.42 18199.39 21396.04 9699.52 11599.29 112
OpenMVS_ROBcopyleft91.80 1493.64 27093.05 26895.42 24597.31 28791.21 22595.08 23296.68 29181.56 35196.88 20596.41 27390.44 23999.25 24785.39 34097.67 30295.80 346
jason94.39 24694.04 25195.41 24798.29 17687.85 28792.74 31196.75 28785.38 33295.29 27296.15 28588.21 27099.65 13294.24 19599.34 17098.74 208
jason: jason.
API-MVS95.09 21395.01 20695.31 24896.61 30694.02 15896.83 13097.18 27095.60 15095.79 25894.33 33194.54 15598.37 33885.70 33598.52 26493.52 362
PVSNet_BlendedMVS95.02 21794.93 20995.27 24997.79 24087.40 29794.14 27098.68 14888.94 29394.51 28998.01 15593.04 18899.30 23589.77 29399.49 12799.11 151
lupinMVS93.77 26393.28 26595.24 25097.68 25487.81 28892.12 32296.05 29784.52 34194.48 29195.06 31686.90 28299.63 13793.62 21999.13 20298.27 258
D2MVS95.18 20895.17 19895.21 25197.76 24587.76 29094.15 26897.94 23489.77 28496.99 19697.68 18987.45 27899.14 26395.03 16499.81 3698.74 208
Patchmatch-RL test94.66 23394.49 23595.19 25298.54 15288.91 26192.57 31398.74 13591.46 26398.32 9697.75 18177.31 33498.81 29996.06 9399.61 8497.85 291
WTY-MVS93.55 27293.00 27295.19 25297.81 23187.86 28593.89 28296.00 29989.02 29194.07 30095.44 31186.27 28699.33 22887.69 32096.82 32498.39 241
test_vis1_rt94.03 25993.65 25995.17 25495.76 33593.42 17893.97 27998.33 19384.68 33993.17 32695.89 29892.53 20694.79 37093.50 22194.97 35097.31 313
FE-MVS92.95 28492.22 28895.11 25597.21 29188.33 27398.54 2393.66 33189.91 28296.21 24198.14 13470.33 36399.50 17587.79 31898.24 27697.51 305
JIA-IIPM91.79 30290.69 31195.11 25593.80 36390.98 22894.16 26791.78 34996.38 10790.30 35599.30 2472.02 35798.90 29188.28 31490.17 36695.45 352
MIMVSNet93.42 27592.86 27495.10 25798.17 19488.19 27598.13 5593.69 32892.07 25295.04 27998.21 12980.95 31799.03 28081.42 35798.06 28398.07 271
PAPR92.22 29591.27 30195.07 25895.73 33788.81 26491.97 32597.87 23885.80 32690.91 34992.73 34991.16 22898.33 34079.48 36095.76 34398.08 269
MVSTER94.21 25193.93 25595.05 25995.83 33286.46 31095.18 22797.65 25492.41 24997.94 13898.00 15772.39 35699.58 15296.36 8399.56 9799.12 148
test_vis1_n95.67 18695.89 18095.03 26098.18 19189.89 24596.94 12699.28 2188.25 30298.20 10798.92 5586.69 28597.19 35797.70 4298.82 23998.00 283
cl____94.73 22594.64 22595.01 26195.85 33187.00 30491.33 33498.08 22693.34 21997.10 18497.33 21884.01 30299.30 23595.14 15699.56 9798.71 214
DIV-MVS_self_test94.73 22594.64 22595.01 26195.86 33087.00 30491.33 33498.08 22693.34 21997.10 18497.34 21784.02 30199.31 23295.15 15599.55 10398.72 211
test_fmvs1_n95.21 20695.28 19494.99 26398.15 19889.13 25996.81 13299.43 1586.97 31597.21 17598.92 5583.00 30697.13 35898.09 2498.94 22498.72 211
FA-MVS(test-final)94.91 21994.89 21294.99 26397.51 26888.11 28198.27 4495.20 31792.40 25096.68 21498.60 8183.44 30499.28 24193.34 22398.53 26397.59 303
TinyColmap96.00 17596.34 15994.96 26597.90 22087.91 28494.13 27198.49 17294.41 19298.16 11297.76 17896.29 9998.68 31490.52 28099.42 15198.30 254
PVSNet_Blended93.96 26093.65 25994.91 26697.79 24087.40 29791.43 33198.68 14884.50 34294.51 28994.48 32993.04 18899.30 23589.77 29398.61 25998.02 281
BH-RMVSNet94.56 23894.44 24094.91 26697.57 26387.44 29693.78 28796.26 29493.69 21296.41 22996.50 27092.10 21599.00 28185.96 33397.71 29898.31 252
RPMNet94.68 23294.60 22994.90 26895.44 34288.15 27796.18 16598.86 10197.43 6894.10 29898.49 9179.40 32199.76 6095.69 11695.81 33996.81 329
HY-MVS91.43 1592.58 28991.81 29494.90 26896.49 30988.87 26297.31 10494.62 32185.92 32490.50 35396.84 24885.05 29399.40 20983.77 35295.78 34296.43 339
GA-MVS92.83 28692.15 29094.87 27096.97 29887.27 30090.03 35296.12 29691.83 25894.05 30194.57 32476.01 34198.97 28992.46 23997.34 31698.36 248
miper_lstm_enhance94.81 22494.80 21994.85 27196.16 32186.45 31191.14 34098.20 20793.49 21597.03 19397.37 21584.97 29599.26 24595.28 14499.56 9798.83 197
IterMVS-SCA-FT95.86 17996.19 16494.85 27197.68 25485.53 32092.42 31797.63 25896.99 8398.36 8998.54 8787.94 27199.75 6697.07 6499.08 21099.27 117
c3_l95.20 20795.32 19394.83 27396.19 31986.43 31291.83 32798.35 19293.47 21697.36 16997.26 22288.69 26399.28 24195.41 14199.36 16298.78 202
testgi96.07 17096.50 15394.80 27499.26 5687.69 29195.96 18098.58 16595.08 17198.02 13096.25 28197.92 1697.60 35588.68 30998.74 24699.11 151
mvsany_test193.47 27493.03 27094.79 27594.05 36192.12 20690.82 34590.01 36385.02 33697.26 17298.28 11793.57 17897.03 35992.51 23895.75 34495.23 354
CR-MVSNet93.29 27992.79 27794.78 27695.44 34288.15 27796.18 16597.20 26884.94 33894.10 29898.57 8377.67 32999.39 21395.17 15195.81 33996.81 329
eth_miper_zixun_eth94.89 22094.93 20994.75 27795.99 32786.12 31591.35 33398.49 17293.40 21797.12 18297.25 22386.87 28499.35 22495.08 16198.82 23998.78 202
MVS_Test96.27 16396.79 13694.73 27896.94 30186.63 30996.18 16598.33 19394.94 17696.07 24798.28 11795.25 13399.26 24597.21 5697.90 28998.30 254
miper_ehance_all_eth94.69 23094.70 22294.64 27995.77 33486.22 31491.32 33698.24 20191.67 25997.05 19196.65 26188.39 26899.22 25494.88 16798.34 27198.49 234
Patchmatch-test93.60 27193.25 26694.63 28096.14 32487.47 29496.04 17294.50 32393.57 21396.47 22696.97 23976.50 33798.61 31990.67 27798.41 27097.81 295
baseline193.14 28292.64 28394.62 28197.34 28387.20 30196.67 14593.02 33794.71 18396.51 22595.83 29981.64 31098.60 32190.00 29088.06 36998.07 271
xiu_mvs_v1_base_debu95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
xiu_mvs_v1_base95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
xiu_mvs_v1_base_debi95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
MS-PatchMatch94.83 22294.91 21194.57 28596.81 30487.10 30394.23 26397.34 26588.74 29697.14 18097.11 23091.94 22098.23 34392.99 23297.92 28798.37 243
USDC94.56 23894.57 23494.55 28697.78 24386.43 31292.75 30998.65 15885.96 32396.91 20397.93 16490.82 23398.74 30590.71 27599.59 8998.47 235
BH-untuned94.69 23094.75 22194.52 28797.95 21887.53 29394.07 27397.01 27793.99 20497.10 18495.65 30392.65 19998.95 29087.60 32296.74 32797.09 315
dcpmvs_297.12 11597.99 4594.51 28899.11 8884.00 34197.75 7699.65 797.38 7499.14 3298.42 9795.16 13599.96 295.52 12799.78 4399.58 32
cl2293.25 28092.84 27694.46 28994.30 35586.00 31691.09 34296.64 29290.74 27195.79 25896.31 27978.24 32698.77 30294.15 19998.34 27198.62 221
MDA-MVSNet_test_wron94.73 22594.83 21794.42 29097.48 27085.15 32790.28 35195.87 30392.52 24597.48 16397.76 17891.92 22199.17 26093.32 22496.80 32698.94 176
YYNet194.73 22594.84 21594.41 29197.47 27485.09 32990.29 35095.85 30492.52 24597.53 15797.76 17891.97 21899.18 25693.31 22596.86 32398.95 174
ADS-MVSNet291.47 30690.51 31494.36 29295.51 34085.63 31895.05 23595.70 30583.46 34592.69 33496.84 24879.15 32399.41 20785.66 33790.52 36498.04 279
new_pmnet92.34 29391.69 29694.32 29396.23 31789.16 25792.27 32092.88 33984.39 34495.29 27296.35 27885.66 29096.74 36684.53 34797.56 30697.05 316
MG-MVS94.08 25794.00 25294.32 29397.09 29585.89 31793.19 30395.96 30192.52 24594.93 28297.51 20089.54 25498.77 30287.52 32597.71 29898.31 252
PatchT93.75 26493.57 26194.29 29595.05 34787.32 29996.05 17192.98 33897.54 6594.25 29498.72 7275.79 34299.24 25095.92 10595.81 33996.32 340
test_fmvs194.51 24294.60 22994.26 29695.91 32887.92 28395.35 21699.02 6286.56 31996.79 20798.52 8882.64 30897.00 36197.87 3198.71 25097.88 289
miper_enhance_ethall93.14 28292.78 27994.20 29793.65 36485.29 32489.97 35397.85 23985.05 33496.15 24694.56 32585.74 28999.14 26393.74 21498.34 27198.17 267
IterMVS95.42 19995.83 18294.20 29797.52 26783.78 34392.41 31897.47 26395.49 15598.06 12598.49 9187.94 27199.58 15296.02 9899.02 21799.23 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thisisatest051590.43 31489.18 32694.17 29997.07 29685.44 32189.75 35887.58 36788.28 30193.69 31291.72 35965.27 37099.58 15290.59 27898.67 25297.50 307
ECVR-MVScopyleft94.37 24794.48 23694.05 30098.95 10483.10 34598.31 3982.48 37596.20 11698.23 10599.16 3681.18 31499.66 13095.95 10399.83 3399.38 92
test_vis1_n_192095.77 18296.41 15693.85 30198.55 15084.86 33295.91 18599.71 292.72 24397.67 15398.90 5987.44 27998.73 30697.96 2898.85 23597.96 284
thres600view792.03 29991.43 29793.82 30298.19 18884.61 33596.27 15890.39 35896.81 8996.37 23193.11 33873.44 35499.49 17980.32 35997.95 28697.36 310
FPMVS89.92 32188.63 32993.82 30298.37 17196.94 4591.58 32993.34 33588.00 30590.32 35497.10 23170.87 36191.13 37471.91 37296.16 33893.39 364
test111194.53 24194.81 21893.72 30499.06 9481.94 35398.31 3983.87 37496.37 10898.49 7399.17 3581.49 31199.73 8096.64 7299.86 2799.49 58
thres40091.68 30491.00 30493.71 30598.02 20784.35 33895.70 19290.79 35596.26 11395.90 25692.13 35573.62 35199.42 19878.85 36397.74 29597.36 310
IB-MVS85.98 2088.63 33086.95 33993.68 30695.12 34684.82 33490.85 34490.17 36287.55 30888.48 36491.34 36358.01 37599.59 15087.24 32893.80 35896.63 335
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EU-MVSNet94.25 24894.47 23793.60 30798.14 20082.60 34897.24 10992.72 34285.08 33398.48 7598.94 5382.59 30998.76 30497.47 5099.53 11099.44 82
TR-MVS92.54 29092.20 28993.57 30896.49 30986.66 30893.51 29494.73 32089.96 28194.95 28093.87 33490.24 24598.61 31981.18 35894.88 35195.45 352
cascas91.89 30191.35 29993.51 30994.27 35685.60 31988.86 36298.61 16079.32 36192.16 34391.44 36289.22 26198.12 34690.80 26997.47 31296.82 328
ppachtmachnet_test94.49 24394.84 21593.46 31096.16 32182.10 35090.59 34797.48 26290.53 27497.01 19597.59 19491.01 23099.36 22193.97 20899.18 19898.94 176
pmmvs390.00 31888.90 32893.32 31194.20 35985.34 32291.25 33792.56 34478.59 36393.82 30595.17 31367.36 36998.69 31189.08 30398.03 28495.92 343
EPNet_dtu91.39 30790.75 31093.31 31290.48 37782.61 34794.80 24492.88 33993.39 21881.74 37494.90 32181.36 31399.11 26988.28 31498.87 23298.21 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres100view90091.76 30391.26 30293.26 31398.21 18684.50 33696.39 15190.39 35896.87 8796.33 23293.08 34273.44 35499.42 19878.85 36397.74 29595.85 344
baseline289.65 32488.44 33193.25 31495.62 33882.71 34693.82 28485.94 37188.89 29487.35 36892.54 35171.23 35999.33 22886.01 33294.60 35597.72 297
DSMNet-mixed92.19 29691.83 29393.25 31496.18 32083.68 34496.27 15893.68 33076.97 36892.54 34099.18 3389.20 26298.55 32583.88 35098.60 26197.51 305
tfpn200view991.55 30591.00 30493.21 31698.02 20784.35 33895.70 19290.79 35596.26 11395.90 25692.13 35573.62 35199.42 19878.85 36397.74 29595.85 344
mvs_anonymous95.36 20096.07 17093.21 31696.29 31381.56 35494.60 25197.66 25293.30 22196.95 20098.91 5893.03 19099.38 21696.60 7497.30 31898.69 215
our_test_394.20 25394.58 23293.07 31896.16 32181.20 35690.42 34996.84 28290.72 27297.14 18097.13 22890.47 23799.11 26994.04 20598.25 27598.91 184
ADS-MVSNet90.95 31290.26 31693.04 31995.51 34082.37 34995.05 23593.41 33483.46 34592.69 33496.84 24879.15 32398.70 31085.66 33790.52 36498.04 279
PAPM87.64 33785.84 34293.04 31996.54 30784.99 33088.42 36395.57 31179.52 36083.82 37193.05 34480.57 31898.41 33362.29 37592.79 36095.71 347
PS-MVSNAJ94.10 25594.47 23793.00 32197.35 28184.88 33191.86 32697.84 24191.96 25594.17 29692.50 35295.82 11199.71 10091.27 25697.48 31094.40 359
xiu_mvs_v2_base94.22 24994.63 22792.99 32297.32 28684.84 33392.12 32297.84 24191.96 25594.17 29693.43 33696.07 10399.71 10091.27 25697.48 31094.42 358
SCA93.38 27793.52 26292.96 32396.24 31581.40 35593.24 30194.00 32791.58 26294.57 28796.97 23987.94 27199.42 19889.47 29797.66 30398.06 275
new-patchmatchnet95.67 18696.58 14492.94 32497.48 27080.21 35992.96 30598.19 21294.83 17998.82 5098.79 6593.31 18399.51 17495.83 11199.04 21699.12 148
test0.0.03 190.11 31689.21 32392.83 32593.89 36286.87 30791.74 32888.74 36692.02 25394.71 28591.14 36573.92 34894.48 37283.75 35392.94 35997.16 314
thres20091.00 31190.42 31592.77 32697.47 27483.98 34294.01 27591.18 35395.12 17095.44 26991.21 36473.93 34799.31 23277.76 36697.63 30595.01 355
BH-w/o92.14 29791.94 29192.73 32797.13 29485.30 32392.46 31695.64 30789.33 28794.21 29592.74 34889.60 25298.24 34281.68 35694.66 35394.66 357
131492.38 29292.30 28792.64 32895.42 34485.15 32795.86 18696.97 27985.40 33190.62 35093.06 34391.12 22997.80 35286.74 33095.49 34794.97 356
KD-MVS_2432*160088.93 32887.74 33392.49 32988.04 37881.99 35189.63 35995.62 30891.35 26495.06 27693.11 33856.58 37798.63 31785.19 34195.07 34896.85 325
miper_refine_blended88.93 32887.74 33392.49 32988.04 37881.99 35189.63 35995.62 30891.35 26495.06 27693.11 33856.58 37798.63 31785.19 34195.07 34896.85 325
MVS90.02 31789.20 32492.47 33194.71 35086.90 30695.86 18696.74 28864.72 37390.62 35092.77 34792.54 20498.39 33579.30 36195.56 34692.12 366
PMMVS293.66 26894.07 25092.45 33297.57 26380.67 35886.46 36596.00 29993.99 20497.10 18497.38 21389.90 24897.82 35188.76 30699.47 13398.86 195
CHOSEN 280x42089.98 31989.19 32592.37 33395.60 33981.13 35786.22 36697.09 27481.44 35387.44 36793.15 33773.99 34699.47 18588.69 30899.07 21296.52 337
PatchmatchNetpermissive91.98 30091.87 29292.30 33494.60 35279.71 36095.12 22893.59 33389.52 28593.61 31497.02 23677.94 32799.18 25690.84 26794.57 35698.01 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
gg-mvs-nofinetune88.28 33386.96 33892.23 33592.84 37184.44 33798.19 5274.60 37899.08 1087.01 36999.47 1056.93 37698.23 34378.91 36295.61 34594.01 360
test250689.86 32289.16 32791.97 33698.95 10476.83 36898.54 2361.07 38296.20 11697.07 19099.16 3655.19 38199.69 11496.43 8199.83 3399.38 92
tpm91.08 31090.85 30891.75 33795.33 34578.09 36295.03 23791.27 35288.75 29593.53 31797.40 20771.24 35899.30 23591.25 25893.87 35797.87 290
PVSNet86.72 1991.10 30990.97 30691.49 33897.56 26578.04 36387.17 36494.60 32284.65 34092.34 34192.20 35487.37 28098.47 33085.17 34397.69 30097.96 284
EPMVS89.26 32688.55 33091.39 33992.36 37379.11 36195.65 19879.86 37688.60 29793.12 32796.53 26770.73 36298.10 34790.75 27189.32 36896.98 318
CostFormer89.75 32389.25 32191.26 34094.69 35178.00 36495.32 21991.98 34781.50 35290.55 35296.96 24171.06 36098.89 29288.59 31092.63 36196.87 323
CVMVSNet92.33 29492.79 27790.95 34197.26 28875.84 37195.29 22292.33 34581.86 34996.27 23798.19 13081.44 31298.46 33194.23 19698.29 27498.55 228
tpm288.47 33187.69 33590.79 34294.98 34877.34 36695.09 23091.83 34877.51 36789.40 35996.41 27367.83 36898.73 30683.58 35492.60 36296.29 341
GG-mvs-BLEND90.60 34391.00 37584.21 34098.23 4672.63 38182.76 37284.11 37356.14 37996.79 36472.20 37192.09 36390.78 370
tpmvs90.79 31390.87 30790.57 34492.75 37276.30 36995.79 18993.64 33291.04 26991.91 34596.26 28077.19 33598.86 29689.38 29989.85 36796.56 336
test-LLR89.97 32089.90 31890.16 34594.24 35774.98 37289.89 35489.06 36492.02 25389.97 35790.77 36773.92 34898.57 32291.88 24697.36 31496.92 320
test-mter87.92 33687.17 33790.16 34594.24 35774.98 37289.89 35489.06 36486.44 32089.97 35790.77 36754.96 38298.57 32291.88 24697.36 31496.92 320
tpm cat188.01 33587.33 33690.05 34794.48 35376.28 37094.47 25494.35 32573.84 37289.26 36095.61 30673.64 35098.30 34184.13 34886.20 37195.57 351
tpmrst90.31 31590.61 31389.41 34894.06 36072.37 37795.06 23493.69 32888.01 30492.32 34296.86 24677.45 33198.82 29791.04 26187.01 37097.04 317
TESTMET0.1,187.20 33886.57 34089.07 34993.62 36572.84 37689.89 35487.01 37085.46 33089.12 36290.20 36956.00 38097.72 35390.91 26596.92 32096.64 333
E-PMN89.52 32589.78 31988.73 35093.14 36777.61 36583.26 36992.02 34694.82 18093.71 31093.11 33875.31 34396.81 36385.81 33496.81 32591.77 368
EMVS89.06 32789.22 32288.61 35193.00 36977.34 36682.91 37090.92 35494.64 18592.63 33891.81 35876.30 33997.02 36083.83 35196.90 32291.48 369
PVSNet_081.89 2184.49 34083.21 34388.34 35295.76 33574.97 37483.49 36892.70 34378.47 36487.94 36586.90 37283.38 30596.63 36773.44 37066.86 37693.40 363
MVEpermissive73.61 2286.48 33985.92 34188.18 35396.23 31785.28 32581.78 37175.79 37786.01 32282.53 37391.88 35792.74 19587.47 37671.42 37394.86 35291.78 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp88.08 33488.05 33288.16 35492.85 37068.81 37994.17 26692.88 33985.47 32991.38 34896.14 28768.87 36698.81 29986.88 32983.80 37396.87 323
wuyk23d93.25 28095.20 19687.40 35596.07 32695.38 10597.04 12194.97 31895.33 16099.70 598.11 14098.14 1391.94 37377.76 36699.68 6874.89 373
MVS-HIRNet88.40 33290.20 31782.99 35697.01 29760.04 38093.11 30485.61 37284.45 34388.72 36399.09 4384.72 29798.23 34382.52 35596.59 33190.69 371
DeepMVS_CXcopyleft77.17 35790.94 37685.28 32574.08 38052.51 37480.87 37588.03 37175.25 34470.63 37759.23 37684.94 37275.62 372
test_method66.88 34266.13 34569.11 35862.68 38125.73 38349.76 37296.04 29814.32 37664.27 37791.69 36073.45 35388.05 37576.06 36866.94 37593.54 361
tmp_tt57.23 34362.50 34641.44 35934.77 38249.21 38283.93 36760.22 38315.31 37571.11 37679.37 37470.09 36444.86 37864.76 37482.93 37430.25 374
test12312.59 34515.49 3483.87 3606.07 3832.55 38490.75 3462.59 3852.52 3785.20 38013.02 3774.96 3831.85 3805.20 3779.09 3777.23 375
testmvs12.33 34615.23 3493.64 3615.77 3842.23 38588.99 3613.62 3842.30 3795.29 37913.09 3764.52 3841.95 3795.16 3788.32 3786.75 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.22 34432.30 3470.00 3620.00 3850.00 3860.00 37398.10 2230.00 3800.00 38195.06 31697.54 310.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.98 34710.65 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38095.82 1110.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.91 34810.55 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38194.94 3180.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.59 1898.20 799.03 799.25 2298.96 1898.87 46
PC_three_145287.24 31098.37 8697.44 20497.00 5696.78 36592.01 24299.25 18999.21 126
test_one_060199.05 9895.50 10098.87 9897.21 8098.03 12998.30 11296.93 62
eth-test20.00 385
eth-test0.00 385
ZD-MVS98.43 16795.94 7998.56 16790.72 27296.66 21697.07 23295.02 14099.74 7591.08 26098.93 226
RE-MVS-def97.88 5498.81 11598.05 997.55 9198.86 10197.77 4998.20 10798.07 14496.94 6095.49 12899.20 19499.26 118
IU-MVS99.22 6595.40 10398.14 22085.77 32798.36 8995.23 14899.51 12099.49 58
test_241102_TWO98.83 11496.11 12198.62 6198.24 12396.92 6499.72 8595.44 13599.49 12799.49 58
test_241102_ONE99.22 6595.35 10898.83 11496.04 12699.08 3498.13 13697.87 1999.33 228
9.1496.69 13998.53 15396.02 17498.98 7793.23 22397.18 17897.46 20296.47 9199.62 14292.99 23299.32 178
save fliter98.48 16294.71 13194.53 25398.41 18295.02 175
test_0728_THIRD96.62 9398.40 8398.28 11797.10 4899.71 10095.70 11499.62 7899.58 32
test072699.24 6095.51 9796.89 12898.89 9095.92 13498.64 6098.31 10897.06 52
GSMVS98.06 275
test_part299.03 10096.07 7498.08 122
sam_mvs177.80 32898.06 275
sam_mvs77.38 332
MTGPAbinary98.73 136
test_post194.98 23910.37 37976.21 34099.04 27789.47 297
test_post10.87 37876.83 33699.07 274
patchmatchnet-post96.84 24877.36 33399.42 198
MTMP96.55 14674.60 378
gm-plane-assit91.79 37471.40 37881.67 35090.11 37098.99 28384.86 345
test9_res91.29 25598.89 23199.00 167
TEST997.84 22795.23 11593.62 29098.39 18586.81 31693.78 30695.99 29294.68 14999.52 170
test_897.81 23195.07 12493.54 29398.38 18787.04 31293.71 31095.96 29594.58 15399.52 170
agg_prior290.34 28698.90 22899.10 155
agg_prior97.80 23594.96 12698.36 18993.49 31899.53 167
test_prior495.38 10593.61 292
test_prior293.33 30094.21 19794.02 30296.25 28193.64 17791.90 24598.96 221
旧先验293.35 29977.95 36695.77 26298.67 31590.74 274
新几何293.43 295
旧先验197.80 23593.87 16297.75 24697.04 23593.57 17898.68 25198.72 211
无先验93.20 30297.91 23580.78 35599.40 20987.71 31997.94 286
原ACMM292.82 307
test22298.17 19493.24 18392.74 31197.61 25975.17 36994.65 28696.69 25990.96 23298.66 25497.66 299
testdata299.46 18887.84 317
segment_acmp95.34 130
testdata192.77 30893.78 209
plane_prior798.70 13094.67 134
plane_prior698.38 17094.37 14491.91 222
plane_prior598.75 13399.46 18892.59 23699.20 19499.28 113
plane_prior496.77 254
plane_prior394.51 13895.29 16396.16 244
plane_prior296.50 14896.36 109
plane_prior198.49 160
plane_prior94.29 14795.42 20894.31 19698.93 226
n20.00 386
nn0.00 386
door-mid98.17 213
test1198.08 226
door97.81 244
HQP5-MVS92.47 197
HQP-NCC97.85 22294.26 25893.18 22692.86 331
ACMP_Plane97.85 22294.26 25893.18 22692.86 331
BP-MVS90.51 281
HQP4-MVS92.87 33099.23 25299.06 160
HQP3-MVS98.43 17898.74 246
HQP2-MVS90.33 240
NP-MVS98.14 20093.72 16895.08 314
MDTV_nov1_ep13_2view57.28 38194.89 24180.59 35694.02 30278.66 32585.50 33997.82 293
MDTV_nov1_ep1391.28 30094.31 35473.51 37594.80 24493.16 33686.75 31893.45 32097.40 20776.37 33898.55 32588.85 30596.43 332
ACMMP++_ref99.52 115
ACMMP++99.55 103
Test By Simon94.51 156