This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20599.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22999.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 198100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30399.87 4199.91 4499.87 4798.04 22099.96 5499.68 4499.99 1699.90 20
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21699.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22499.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10799.84 7699.71 13898.62 15199.96 5499.30 9799.96 7099.86 32
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 16199.96 5499.29 10099.94 9499.83 40
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 24199.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14599.97 3399.30 9799.95 8399.80 47
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22499.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 8099.61 17799.54 12099.80 9299.64 17897.79 23999.95 6399.21 10799.94 9499.84 36
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11999.85 7399.69 15198.18 21299.94 7799.28 10299.95 8399.83 40
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17999.87 20399.51 6499.97 5699.86 32
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20299.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9299.69 13798.99 20399.75 11499.71 13898.79 12799.93 9498.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15599.94 7799.58 5499.98 4199.77 60
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19899.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 20199.85 24099.37 8399.93 10199.83 40
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16499.93 9499.59 5199.98 4199.76 66
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8799.81 7699.87 4199.81 8899.79 9396.78 28399.99 799.83 3299.51 29199.86 32
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17899.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18899.61 17799.92 11697.88 22799.72 22999.77 60
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
DPE-MVScopyleft99.14 18398.92 21499.82 3799.57 20199.77 5498.74 27299.60 18998.55 25999.76 10899.69 15198.23 20799.92 11696.39 33599.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6899.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25799.86 4999.68 9099.65 15499.88 4297.67 24799.87 20399.03 13399.86 15399.76 66
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17899.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7798.70 34899.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
MSP-MVS99.04 20298.79 23299.81 4099.78 10599.73 7699.35 12299.57 20698.54 26299.54 19998.99 34996.81 28299.93 9496.97 30099.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7599.82 6799.39 14699.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 10099.81 7699.82 5899.71 13299.72 13096.60 28799.98 2099.75 3999.23 33199.82 46
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
MP-MVS-pluss99.14 18398.92 21499.80 4599.83 6599.83 2998.61 28099.63 16796.84 36299.44 22499.58 22198.81 12299.91 13997.70 24999.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12699.53 23299.27 16099.42 23099.63 18998.21 20899.95 6397.83 23799.79 19899.65 112
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8799.70 13198.35 28599.51 21199.50 25199.31 6299.88 18998.18 20499.84 16299.69 83
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22899.92 11699.65 4699.98 4199.62 138
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24499.53 23298.27 29499.53 20499.73 12398.75 13499.87 20397.70 24999.83 17099.68 89
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6399.69 13799.85 5099.80 9299.81 7998.81 12299.91 13999.47 6899.88 13499.70 79
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7499.82 6799.46 13399.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6899.67 14497.72 32699.35 24699.25 31299.23 7399.92 11697.21 29099.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++99.38 11799.25 13699.77 5799.03 35199.77 5499.74 2499.61 17799.18 17699.76 10899.61 20599.00 10299.92 11697.72 24499.60 26999.62 138
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16899.54 22399.13 19099.82 8199.63 18998.91 11499.92 11697.85 23399.70 23499.58 164
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14599.56 21198.19 29999.14 28799.29 30498.84 12199.92 11697.53 26599.80 19399.64 122
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18899.31 29599.16 18499.62 16899.61 20598.35 19299.91 13997.88 22799.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13399.59 19598.41 27499.32 25499.36 28898.73 13899.93 9497.29 27899.74 21899.67 95
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18499.72 12397.99 30999.42 23099.60 21398.81 12299.93 9496.91 30399.74 21899.66 104
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11899.79 8699.83 5699.88 6199.85 5698.42 18399.90 15799.60 5099.73 22399.49 210
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22799.86 22299.42 7799.96 7099.80 47
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13399.59 19598.36 28099.36 24599.37 28498.80 12699.91 13997.43 27099.75 21199.68 89
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13399.59 19598.36 28099.35 24699.38 28298.61 15399.93 9497.43 27099.75 21199.67 95
MP-MVScopyleft99.06 19698.83 22799.76 6499.76 11799.71 8399.32 12899.50 24598.35 28598.97 30299.48 25898.37 19099.92 11695.95 35599.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13699.63 16799.61 11099.71 13299.56 23398.76 13299.96 5499.14 12599.92 10599.68 89
mPP-MVS99.19 16899.00 19699.76 6499.76 11799.68 9799.38 11499.54 22398.34 28999.01 30099.50 25198.53 16899.93 9497.18 29299.78 20399.66 104
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32799.65 10099.89 5399.90 2996.20 30399.94 7799.42 7799.92 10599.67 95
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17399.60 18998.55 25999.57 18599.67 16699.03 10199.94 7797.01 29799.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8699.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
GST-MVS99.16 17998.96 20899.75 7499.73 13799.73 7699.20 16899.55 21798.22 29699.32 25499.35 29398.65 14999.91 13996.86 30699.74 21899.62 138
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11899.61 17799.29 15698.76 32999.47 26298.47 17599.88 18997.62 25799.73 22399.67 95
X-MVStestdata96.09 35794.87 36999.75 7499.71 14399.71 8399.37 11899.61 17799.29 15698.76 32961.30 41598.47 17599.88 18997.62 25799.73 22399.67 95
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11499.62 17098.38 27899.06 29899.27 30798.79 12799.94 7797.51 26699.82 17999.66 104
MSC_two_6792asdad99.74 7999.03 35199.53 14199.23 31399.92 11697.77 23899.69 23899.78 56
No_MVS99.74 7999.03 35199.53 14199.23 31399.92 11697.77 23899.69 23899.78 56
SR-MVS99.19 16899.00 19699.74 7999.51 22899.72 8199.18 17399.60 18998.85 22499.47 21899.58 22198.38 18999.92 11696.92 30299.54 28599.57 169
HPM-MVS++copyleft98.96 22198.70 23899.74 7999.52 22699.71 8398.86 25299.19 32298.47 27098.59 34399.06 33898.08 21899.91 13996.94 30199.60 26999.60 152
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14899.61 17799.19 17599.57 18599.64 17898.76 13299.90 15797.29 27899.62 25999.56 171
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18499.73 11497.56 33199.64 15599.69 15199.37 5699.89 17596.66 31899.87 14599.69 83
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 33199.64 15599.69 15199.37 5699.89 17596.66 31899.87 14599.69 83
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14399.61 17799.87 4199.74 12299.76 11198.69 14199.87 20398.20 20099.80 19399.75 69
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9299.65 15998.07 30599.52 20699.69 15198.57 15999.92 11697.18 29299.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 15099.62 17099.16 18499.52 20699.64 17898.41 18499.91 13997.27 28199.61 26699.54 182
SMA-MVScopyleft99.19 16899.00 19699.73 8899.46 25499.73 7699.13 19499.52 23797.40 34299.57 18599.64 17898.93 11199.83 27097.61 25999.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13699.62 16899.83 6697.21 26899.90 15798.96 14299.90 11599.53 187
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13699.62 16899.83 6697.21 26899.90 15798.96 14299.90 11599.53 187
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10699.90 15799.24 10499.97 5699.53 187
HyFIR lowres test98.91 22798.64 24099.73 8899.85 5899.47 14798.07 33799.83 6298.64 25099.89 5399.60 21392.57 342100.00 199.33 9199.97 5699.72 73
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 10099.89 4099.43 14199.88 6199.80 8399.26 7099.90 15798.81 15699.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 10099.89 4099.43 14199.88 6199.80 8399.26 7099.90 15798.81 15699.88 13499.32 259
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 24199.61 17799.43 14199.67 14899.28 30597.85 23599.95 6399.17 11699.81 18899.65 112
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19499.65 15998.99 20399.64 15599.72 13099.39 5099.86 22298.23 19799.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8299.79 8698.77 23799.80 9299.85 5699.64 2899.85 24098.70 16899.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9799.70 13199.81 6199.69 13999.58 22197.66 25199.86 22299.17 11699.44 30199.67 95
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25799.53 23299.38 14799.67 14899.36 28897.67 24799.95 6399.17 11699.81 18899.63 127
APD-MVScopyleft98.87 23498.59 24599.71 9999.50 23499.62 11799.01 22999.57 20696.80 36499.54 19999.63 18998.29 19999.91 13995.24 37199.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12899.77 9599.53 12299.77 10699.76 11199.26 7099.78 30897.77 23899.88 13499.60 152
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11499.78 9299.53 12299.67 14899.78 10199.19 7799.86 22297.32 27699.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v398.87 23498.60 24399.69 10499.93 2599.46 15199.74 2494.97 40099.78 6899.88 6199.88 4293.66 33299.97 3399.61 4999.95 8399.64 122
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14399.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 24099.60 18999.43 14199.70 13699.36 28897.70 24399.88 18999.20 11099.87 14599.59 159
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24599.46 13399.88 6199.36 28897.54 25499.87 20398.97 14099.87 14599.63 127
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12399.97 1898.93 21399.91 4499.79 9398.68 14299.93 9496.80 31099.56 27699.30 265
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19499.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss99.05 19998.84 22599.67 10999.66 16999.29 19498.52 29999.82 6797.65 32999.43 22899.16 32596.42 29499.91 13999.07 13199.84 16299.80 47
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38699.47 25398.72 24299.66 15299.70 14599.29 6499.63 37398.07 21299.81 18899.62 138
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15799.71 12699.27 16099.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP97.51 1499.05 19998.84 22599.67 10999.78 10599.55 13898.88 25099.66 14997.11 35799.47 21899.60 21399.07 9499.89 17596.18 34499.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6399.50 24599.44 13699.12 29099.78 10198.77 13199.94 7797.87 23099.72 22999.62 138
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11699.92 4199.87 4798.75 13499.86 22299.90 2599.99 1699.73 71
WR-MVS99.11 19098.93 21099.66 11699.30 30199.42 16598.42 30899.37 28299.04 20099.57 18599.20 32396.89 28099.86 22298.66 17299.87 14599.70 79
XVG-OURS-SEG-HR99.16 17998.99 20299.66 11699.84 6199.64 11098.25 32099.73 11498.39 27799.63 15999.43 27099.70 2499.90 15797.34 27598.64 36799.44 228
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10699.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
EPP-MVSNet99.17 17799.00 19699.66 11699.80 8699.43 16299.70 3599.24 31299.48 12699.56 19299.77 10894.89 31699.93 9498.72 16799.89 12499.63 127
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27799.47 13099.76 10899.78 10198.13 21499.86 22298.70 16899.68 24399.49 210
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14799.84 25599.88 2999.99 1699.71 76
MCST-MVS99.02 20598.81 22999.65 12199.58 19199.49 14598.58 28799.07 33198.40 27699.04 29999.25 31298.51 17399.80 30297.31 27799.51 29199.65 112
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35999.74 11098.36 28099.66 15299.68 16299.71 2299.90 15796.84 30999.88 13499.43 234
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26999.88 4498.66 24899.96 2399.79 9397.45 25799.93 9499.34 8899.99 1699.78 56
QAPM98.40 28397.99 29799.65 12199.39 27199.47 14799.67 4999.52 23791.70 39798.78 32899.80 8398.55 16299.95 6394.71 37999.75 21199.53 187
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 21199.23 16899.35 24699.80 8399.17 7999.95 6398.21 19999.84 16299.59 159
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 22099.87 4699.71 8099.47 21899.79 9398.24 20399.98 2099.38 8099.96 7099.83 40
EGC-MVSNET89.05 37485.52 37799.64 12899.89 3999.78 4999.56 8299.52 23724.19 40849.96 40999.83 6699.15 8199.92 11697.71 24699.85 15799.21 280
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
lessismore_v099.64 12899.86 5499.38 17590.66 40999.89 5399.83 6694.56 32299.97 3399.56 5799.92 10599.57 169
114514_t98.49 27398.11 29199.64 12899.73 13799.58 13299.24 15799.76 10089.94 40099.42 23099.56 23397.76 24299.86 22297.74 24399.82 17999.47 218
CPTT-MVS98.74 24598.44 26099.64 12899.61 18099.38 17599.18 17399.55 21796.49 36699.27 26699.37 28497.11 27499.92 11695.74 36299.67 24999.62 138
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10699.82 6798.33 29099.50 21399.78 10197.90 23099.65 37096.78 31199.83 17099.44 228
Anonymous20240521198.75 24498.46 25899.63 13599.34 29099.66 10199.47 10097.65 38299.28 15999.56 19299.50 25193.15 33699.84 25598.62 17399.58 27499.40 239
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 15099.35 28698.77 23799.57 18599.70 14599.27 6999.88 18997.71 24699.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28799.48 25098.50 26699.52 20699.63 18999.14 8499.76 31897.89 22699.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19899.83 6298.63 25199.63 15999.72 13098.68 14299.75 32296.38 33699.83 17099.51 200
TestCases99.63 13599.78 10599.64 11099.83 6298.63 25199.63 15999.72 13098.68 14299.75 32296.38 33699.83 17099.51 200
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11299.59 19599.24 16699.86 7199.70 14598.55 16299.82 27999.79 3799.95 8399.60 152
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25799.72 12398.36 28099.60 17799.71 13898.92 11299.91 13997.08 29599.84 16299.40 239
Test_1112_low_res98.95 22498.73 23499.63 13599.68 16399.15 22298.09 33499.80 8097.14 35599.46 22299.40 27696.11 30499.89 17599.01 13599.84 16299.84 36
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10499.57 20699.66 9899.78 10199.83 6697.85 23599.86 22299.44 7199.96 7099.61 148
SF-MVS99.10 19398.93 21099.62 14499.58 19199.51 14399.13 19499.65 15997.97 31199.42 23099.61 20598.86 11999.87 20396.45 33399.68 24399.49 210
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 15099.76 10099.32 15499.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
F-COLMAP98.74 24598.45 25999.62 14499.57 20199.47 14798.84 25599.65 15996.31 37098.93 30699.19 32497.68 24699.87 20396.52 32699.37 31199.53 187
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12899.74 11099.18 17699.69 13999.75 11698.41 18499.84 25597.85 23399.70 23499.10 306
CDPH-MVS98.56 26398.20 28399.61 14799.50 23499.46 15198.32 31499.41 26795.22 38399.21 27799.10 33598.34 19499.82 27995.09 37599.66 25299.56 171
LS3D99.24 14999.11 15899.61 14798.38 39499.79 4699.57 8099.68 14099.61 11099.15 28599.71 13898.70 14099.91 13997.54 26399.68 24399.13 303
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7599.78 9299.71 8099.90 4999.69 15198.85 12099.90 15797.25 28799.78 20399.15 295
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10899.85 5498.79 23399.41 23699.60 21398.92 11299.92 11698.02 21399.92 10599.43 234
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 22095.32 39999.99 299.68 14299.57 22998.30 19899.97 3399.94 1699.98 4199.88 25
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20599.61 17799.20 17499.84 7699.73 12398.67 14599.84 25599.86 3199.98 4199.64 122
UnsupCasMVSNet_eth98.83 23798.57 24999.59 15299.68 16399.45 15698.99 23799.67 14499.48 12699.55 19799.36 28894.92 31599.86 22298.95 14696.57 40099.45 223
PHI-MVS99.11 19098.95 20999.59 15299.13 33199.59 12899.17 17899.65 15997.88 31999.25 26899.46 26598.97 10899.80 30297.26 28399.82 17999.37 246
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 335
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20299.62 17099.18 17699.89 5399.72 13098.66 14799.87 20399.88 2999.97 5699.66 104
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18899.58 20499.25 16499.81 8899.62 19698.24 20399.84 25599.83 3299.97 5699.64 122
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22799.89 4099.60 11699.82 8199.62 19698.81 12299.89 17599.43 7299.86 15399.47 218
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24499.86 4998.85 22499.81 8899.73 12398.40 18899.92 11698.36 18599.83 17099.17 291
NCCC98.82 23898.57 24999.58 15699.21 31899.31 19198.61 28099.25 30998.65 24998.43 35399.26 31097.86 23399.81 29496.55 32499.27 32699.61 148
train_agg98.35 28897.95 30199.57 16299.35 28199.35 18598.11 33299.41 26794.90 38797.92 37298.99 34998.02 22299.85 24095.38 36999.44 30199.50 205
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 22099.60 18999.18 17699.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33499.90 3898.95 20999.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12699.31 29599.67 9499.47 21899.57 22996.48 29199.84 25599.15 11999.30 32099.47 218
CNVR-MVS98.99 21698.80 23199.56 16599.25 31199.43 16298.54 29699.27 30398.58 25798.80 32499.43 27098.53 16899.70 33797.22 28999.59 27399.54 182
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23799.40 27499.08 19599.58 18299.64 17898.90 11799.83 27097.44 26999.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21797.79 38199.99 299.48 21699.59 21896.29 30199.95 6399.94 1699.98 4199.88 25
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21799.61 17799.15 18899.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
HQP_MVS98.90 22998.68 23999.55 16899.58 19199.24 20798.80 26599.54 22398.94 21099.14 28799.25 31297.24 26699.82 27995.84 35999.78 20399.60 152
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10499.57 20699.44 13699.70 13699.74 11997.21 26899.87 20399.03 13399.94 9499.44 228
IS-MVSNet99.03 20398.85 22399.55 16899.80 8699.25 20399.73 2799.15 32699.37 14899.61 17499.71 13894.73 32099.81 29497.70 24999.88 13499.58 164
test1299.54 17399.29 30399.33 18899.16 32598.43 35397.54 25499.82 27999.47 29899.48 214
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27599.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7799.97 1899.95 2099.96 2399.76 11198.44 18099.99 799.34 8899.96 7099.78 56
Effi-MVS+-dtu99.07 19598.92 21499.52 17698.89 36499.78 4999.15 18699.66 14999.34 15198.92 30999.24 31797.69 24599.98 2098.11 21099.28 32398.81 352
新几何199.52 17699.50 23499.22 21199.26 30695.66 37998.60 34299.28 30597.67 24799.89 17595.95 35599.32 31899.45 223
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26299.66 14999.42 14599.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23299.65 15999.15 18899.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24399.54 22399.46 13399.61 17499.70 14596.31 29999.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6399.76 10099.85 5099.82 8199.88 4296.39 29799.97 3399.59 5199.98 4199.55 174
Patchmtry98.78 24198.54 25399.49 18198.89 36499.19 21899.32 12899.67 14499.65 10099.72 12799.79 9391.87 35099.95 6398.00 21799.97 5699.33 256
UGNet99.38 11799.34 11199.49 18198.90 36198.90 24999.70 3599.35 28699.86 4598.57 34699.81 7998.50 17499.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11499.71 33498.41 18299.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 33099.53 23299.36 15099.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft97.35 1698.36 28597.99 29799.48 18599.32 29699.24 20798.50 30199.51 24195.19 38598.58 34498.96 35696.95 27999.83 27095.63 36399.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14599.74 11099.23 16899.72 12799.53 24497.63 25399.88 18999.11 12799.84 16299.48 214
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26498.87 22199.57 18599.82 7398.06 21999.87 20398.69 17099.73 22399.15 295
Fast-Effi-MVS+99.02 20598.87 22199.46 18999.38 27499.50 14499.04 22099.79 8697.17 35398.62 34098.74 37199.34 6099.95 6398.32 18999.41 30698.92 341
test_prior99.46 18999.35 28199.22 21199.39 27799.69 34399.48 214
TAPA-MVS97.92 1398.03 30597.55 32199.46 18999.47 25099.44 15898.50 30199.62 17086.79 40199.07 29799.26 31098.26 20299.62 37497.28 28099.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28899.30 13699.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12399.79 8698.41 27498.84 31998.89 36398.75 13499.84 25598.15 20899.51 29198.89 345
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14599.68 14099.54 12099.40 24199.56 23399.07 9499.82 27996.01 34999.96 7099.11 304
h-mvs3398.61 25598.34 27199.44 19599.60 18298.67 26699.27 14899.44 26199.68 9099.32 25499.49 25592.50 345100.00 199.24 10496.51 40199.65 112
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9298.32 37099.80 6499.56 19299.69 15196.99 27899.85 24098.99 13699.73 22399.50 205
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26998.94 24699.91 3397.97 31199.79 9799.73 12399.05 9899.97 3399.15 11999.99 1699.68 89
OMC-MVS98.90 22998.72 23599.44 19599.39 27199.42 16598.58 28799.64 16597.31 34799.44 22499.62 19698.59 15699.69 34396.17 34599.79 19899.22 278
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21799.82 6799.50 12498.97 30299.05 33998.98 10699.98 2098.20 20099.24 32998.62 361
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21399.55 21798.63 25199.31 25899.68 16298.19 21099.78 30898.18 20499.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29399.73 11498.82 22899.72 12799.62 19696.56 28899.82 27999.32 9399.95 8399.56 171
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27299.24 15799.46 25699.68 9099.80 9299.66 17198.99 10499.89 17599.19 11199.90 11599.72 73
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26999.24 15799.46 25699.67 9499.79 9799.65 17698.97 10899.89 17599.15 11999.89 12499.71 76
testdata99.42 20199.51 22898.93 24699.30 29896.20 37198.87 31699.40 27698.33 19699.89 17596.29 33999.28 32399.44 228
VDDNet98.97 21798.82 22899.42 20199.71 14398.81 25599.62 6398.68 34999.81 6199.38 24399.80 8394.25 32499.85 24098.79 15899.32 31899.59 159
FMVSNet597.80 31297.25 32899.42 20198.83 36898.97 24099.38 11499.80 8098.87 22199.25 26899.69 15180.60 39999.91 13998.96 14299.90 11599.38 243
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35799.73 11498.68 24699.31 25899.48 25899.09 8999.66 36497.70 24999.77 20799.29 268
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27498.99 23799.96 2399.03 20199.95 3199.12 33198.75 13499.84 25599.82 3599.82 17999.77 60
CMPMVSbinary77.52 2398.50 27198.19 28699.41 20898.33 39699.56 13599.01 22999.59 19595.44 38099.57 18599.80 8395.64 30999.46 39696.47 33199.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27397.90 35899.59 19599.27 16099.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
UnsupCasMVSNet_bld98.55 26498.27 27899.40 21099.56 21299.37 17897.97 35099.68 14097.49 33899.08 29499.35 29395.41 31499.82 27997.70 24998.19 38299.01 332
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35599.71 12698.76 24099.08 29499.47 26299.17 7999.54 38697.85 23399.76 20999.54 182
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 21099.59 19599.17 18199.81 8899.61 20598.41 18499.69 34399.32 9399.94 9499.53 187
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 29199.81 7699.61 11099.48 21699.41 27298.47 17599.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP-MVS98.36 28598.02 29699.39 21399.31 29798.94 24397.98 34799.37 28297.45 33998.15 36298.83 36696.67 28599.70 33794.73 37799.67 24999.53 187
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32699.29 29998.18 30099.63 15999.62 19699.18 7899.68 35598.20 20099.74 21899.30 265
AdaColmapbinary98.60 25798.35 27099.38 21699.12 33399.22 21198.67 27799.42 26697.84 32398.81 32299.27 30797.32 26499.81 29495.14 37399.53 28799.10 306
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25899.33 25199.53 24498.88 11899.68 35596.01 34999.65 25499.02 331
test_f99.75 3299.88 699.37 21999.96 798.21 30099.51 91100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
原ACMM199.37 21999.47 25098.87 25399.27 30396.74 36598.26 35799.32 29797.93 22999.82 27995.96 35499.38 30999.43 234
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25599.89 4098.38 27899.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
MSDG99.08 19498.98 20599.37 21999.60 18299.13 22397.54 37299.74 11098.84 22799.53 20499.55 24099.10 8799.79 30597.07 29699.86 15399.18 289
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30399.52 87100.00 199.86 45100.00 199.88 4298.99 10499.96 5499.97 499.96 7099.95 11
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34399.25 30998.78 23599.58 18299.44 26998.24 20399.76 31898.74 16599.93 10199.22 278
N_pmnet98.73 24798.53 25499.35 22599.72 14098.67 26698.34 31294.65 40198.35 28599.79 9799.68 16298.03 22199.93 9498.28 19399.92 10599.44 228
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31399.48 97100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
Effi-MVS+99.06 19698.97 20699.34 22699.31 29798.98 23898.31 31599.91 3398.81 23098.79 32698.94 35899.14 8499.84 25598.79 15898.74 36199.20 284
Vis-MVSNet (Re-imp)98.77 24298.58 24899.34 22699.78 10598.88 25199.61 6899.56 21199.11 19499.24 27199.56 23393.00 34099.78 30897.43 27099.89 12499.35 252
Patchmatch-RL test98.60 25798.36 26899.33 22999.77 11399.07 23398.27 31799.87 4698.91 21699.74 12299.72 13090.57 36799.79 30598.55 17699.85 15799.11 304
PAPM_NR98.36 28598.04 29499.33 22999.48 24498.93 24698.79 26899.28 30297.54 33498.56 34798.57 37797.12 27399.69 34394.09 38698.90 35299.38 243
PCF-MVS96.03 1896.73 34295.86 35399.33 22999.44 25999.16 22096.87 39599.44 26186.58 40298.95 30499.40 27694.38 32399.88 18987.93 40199.80 19398.95 337
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS98.76 24398.57 24999.33 22999.57 20198.97 24097.53 37499.55 21796.41 36799.27 26699.13 32799.07 9499.78 30896.73 31499.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS98.28 29197.94 30599.32 23399.36 27999.11 22597.31 38498.78 34596.88 36098.84 31999.11 33497.77 24099.61 37894.03 38899.36 31299.23 276
jason99.16 17999.11 15899.32 23399.75 12898.44 28598.26 31999.39 27798.70 24599.74 12299.30 30198.54 16499.97 3398.48 17999.82 17999.55 174
jason: jason.
FMVSNet398.80 24098.63 24299.32 23399.13 33198.72 26399.10 20599.48 25099.23 16899.62 16899.64 17892.57 34299.86 22298.96 14299.90 11599.39 241
dmvs_re98.69 25198.48 25699.31 23699.55 21399.42 16599.54 8598.38 36799.32 15498.72 33298.71 37296.76 28499.21 39996.01 34999.35 31499.31 263
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28899.77 1599.80 8099.73 7499.63 15999.30 30198.02 22299.98 2099.43 7299.69 23899.55 174
DP-MVS Recon98.50 27198.23 27999.31 23699.49 23999.46 15198.56 29299.63 16794.86 38998.85 31899.37 28497.81 23799.59 38096.08 34699.44 30198.88 346
PatchMatch-RL98.68 25298.47 25799.30 23999.44 25999.28 19698.14 32899.54 22397.12 35699.11 29199.25 31297.80 23899.70 33796.51 32799.30 32098.93 339
OPU-MVS99.29 24099.12 33399.44 15899.20 16899.40 27699.00 10298.84 40496.54 32599.60 26999.58 164
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26299.41 26798.55 25999.68 14299.69 15198.13 21499.87 20398.82 15499.98 4199.24 273
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32399.49 96100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
CANet99.11 19099.05 17999.28 24298.83 36898.56 27898.71 27699.41 26799.25 16499.23 27299.22 31997.66 25199.94 7799.19 11199.97 5699.33 256
CNLPA98.57 26298.34 27199.28 24299.18 32599.10 23098.34 31299.41 26798.48 26998.52 34898.98 35297.05 27699.78 30895.59 36499.50 29498.96 335
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32699.34 123100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
sss98.90 22998.77 23399.27 24599.48 24498.44 28598.72 27499.32 29197.94 31599.37 24499.35 29396.31 29999.91 13998.85 15099.63 25899.47 218
LF4IMVS99.01 21198.92 21499.27 24599.71 14399.28 19698.59 28599.77 9598.32 29199.39 24299.41 27298.62 15199.84 25596.62 32399.84 16298.69 359
LFMVS98.46 27698.19 28699.26 24899.24 31398.52 28199.62 6396.94 39199.87 4199.31 25899.58 22191.04 35899.81 29498.68 17199.42 30599.45 223
WTY-MVS98.59 26098.37 26799.26 24899.43 26398.40 28898.74 27299.13 32998.10 30299.21 27799.24 31794.82 31799.90 15797.86 23198.77 35799.49 210
OpenMVScopyleft98.12 1098.23 29697.89 31099.26 24899.19 32399.26 20099.65 5899.69 13791.33 39898.14 36699.77 10898.28 20099.96 5495.41 36899.55 28098.58 365
alignmvs98.28 29197.96 30099.25 25199.12 33398.93 24699.03 22498.42 36499.64 10298.72 33297.85 39490.86 36399.62 37498.88 14999.13 33399.19 287
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 31098.85 25499.76 10099.62 10799.83 8099.64 17898.54 16499.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS98.96 22198.87 22199.24 25399.57 20198.40 28898.12 33099.18 32398.28 29399.63 15999.13 32798.02 22299.97 3398.22 19899.69 23899.35 252
MVSTER98.47 27598.22 28199.24 25399.06 34798.35 29499.08 21399.46 25699.27 16099.75 11499.66 17188.61 37899.85 24099.14 12599.92 10599.52 198
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 31099.26 15099.46 25699.62 10799.75 11499.67 16698.54 16499.85 24099.15 11999.92 10599.68 89
BH-RMVSNet98.41 28198.14 28999.21 25599.21 31898.47 28298.60 28298.26 37198.35 28598.93 30699.31 29997.20 27199.66 36494.32 38299.10 33699.51 200
ambc99.20 25799.35 28198.53 27999.17 17899.46 25699.67 14899.80 8398.46 17899.70 33797.92 22399.70 23499.38 243
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 12199.49 24999.17 18199.21 27799.67 16698.78 12999.66 36499.09 12999.66 25299.10 306
MAR-MVS98.24 29597.92 30799.19 25898.78 37699.65 10799.17 17899.14 32795.36 38198.04 36998.81 36897.47 25699.72 33095.47 36799.06 33798.21 385
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
iter_conf05_1198.54 26598.33 27399.18 26099.07 34599.20 21697.94 35297.59 38399.17 18199.30 26398.92 36294.79 31899.86 22298.29 19099.89 12498.47 374
EPNet98.13 30097.77 31599.18 26094.57 41197.99 31699.24 15797.96 37699.74 7397.29 38699.62 19693.13 33799.97 3398.59 17499.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
bld_raw_dy_0_6498.97 21798.90 21899.17 26299.07 34599.24 20799.24 15799.93 2999.23 16899.87 6999.03 34595.48 31299.81 29498.29 19099.99 1698.47 374
hse-mvs298.52 26898.30 27699.16 26399.29 30398.60 27698.77 27099.02 33599.68 9099.32 25499.04 34192.50 34599.85 24099.24 10497.87 39299.03 326
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19899.79 8699.48 12698.93 30698.55 37999.40 4999.93 9498.51 17899.52 29098.28 381
Syy-MVS98.17 29997.85 31199.15 26598.50 39198.79 25898.60 28299.21 31997.89 31796.76 39396.37 41295.47 31399.57 38299.10 12898.73 36399.09 310
FE-MVS97.85 31097.42 32399.15 26599.44 25998.75 26199.77 1598.20 37395.85 37599.33 25199.80 8388.86 37799.88 18996.40 33499.12 33498.81 352
CL-MVSNet_self_test98.71 24998.56 25299.15 26599.22 31698.66 26997.14 38999.51 24198.09 30499.54 19999.27 30796.87 28199.74 32598.43 18198.96 34599.03 326
iter_conf0598.46 27698.23 27999.15 26599.04 35097.99 31699.10 20599.61 17799.79 6699.76 10899.58 22187.88 38099.92 11699.31 9699.97 5699.53 187
AUN-MVS97.82 31197.38 32499.14 26999.27 30898.53 27998.72 27499.02 33598.10 30297.18 38999.03 34589.26 37699.85 24097.94 22297.91 39099.03 326
test_yl98.25 29397.95 30199.13 27099.17 32698.47 28299.00 23298.67 35198.97 20599.22 27599.02 34791.31 35499.69 34397.26 28398.93 34699.24 273
DCV-MVSNet98.25 29397.95 30199.13 27099.17 32698.47 28299.00 23298.67 35198.97 20599.22 27599.02 34791.31 35499.69 34397.26 28398.93 34699.24 273
MIMVSNet98.43 27998.20 28399.11 27299.53 22198.38 29299.58 7798.61 35498.96 20799.33 25199.76 11190.92 36099.81 29497.38 27399.76 20999.15 295
PMMVS98.49 27398.29 27799.11 27298.96 35898.42 28797.54 37299.32 29197.53 33598.47 35198.15 38997.88 23299.82 27997.46 26899.24 32999.09 310
FA-MVS(test-final)98.52 26898.32 27499.10 27499.48 24498.67 26699.77 1598.60 35697.35 34599.63 15999.80 8393.07 33899.84 25597.92 22399.30 32098.78 355
sasdasda99.02 20599.00 19699.09 27599.10 34098.70 26499.61 6899.66 14999.63 10498.64 33897.65 39799.04 9999.54 38698.79 15898.92 34899.04 324
CANet_DTU98.91 22798.85 22399.09 27598.79 37498.13 30598.18 32399.31 29599.48 12698.86 31799.51 24896.56 28899.95 6399.05 13299.95 8399.19 287
MS-PatchMatch99.00 21398.97 20699.09 27599.11 33898.19 30198.76 27199.33 28998.49 26899.44 22499.58 22198.21 20899.69 34398.20 20099.62 25999.39 241
canonicalmvs99.02 20599.00 19699.09 27599.10 34098.70 26499.61 6899.66 14999.63 10498.64 33897.65 39799.04 9999.54 38698.79 15898.92 34899.04 324
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31698.58 28799.82 6797.62 33099.34 24999.71 13898.52 17199.77 31697.98 21899.97 5699.52 198
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 28099.80 8697.83 32798.89 24999.72 12399.29 15699.63 15999.70 14596.47 29299.89 17598.17 20699.82 17999.50 205
TinyColmap98.97 21798.93 21099.07 28099.46 25498.19 30197.75 36399.75 10598.79 23399.54 19999.70 14598.97 10899.62 37496.63 32299.83 17099.41 238
MGCFI-Net99.02 20599.01 19299.06 28299.11 33898.60 27699.63 6099.67 14499.63 10498.58 34497.65 39799.07 9499.57 38298.85 15098.92 34899.03 326
USDC98.96 22198.93 21099.05 28399.54 21597.99 31697.07 39299.80 8098.21 29799.75 11499.77 10898.43 18199.64 37297.90 22599.88 13499.51 200
PAPR97.56 32397.07 33199.04 28498.80 37298.11 30897.63 36899.25 30994.56 39298.02 37098.25 38797.43 25899.68 35590.90 39798.74 36199.33 256
PVSNet_Blended98.70 25098.59 24599.02 28599.54 21597.99 31697.58 37199.82 6795.70 37899.34 24998.98 35298.52 17199.77 31697.98 21899.83 17099.30 265
testing396.48 34795.63 35899.01 28699.23 31597.81 32898.90 24899.10 33098.72 24297.84 37897.92 39372.44 41199.85 24097.21 29099.33 31699.35 252
MVS95.72 36794.63 37298.99 28798.56 38897.98 32299.30 13698.86 34072.71 40697.30 38599.08 33698.34 19499.74 32589.21 39898.33 37599.26 270
HY-MVS98.23 998.21 29897.95 30198.99 28799.03 35198.24 29699.61 6898.72 34796.81 36398.73 33199.51 24894.06 32599.86 22296.91 30398.20 38098.86 348
test_fmvs199.48 8799.65 5098.97 28999.54 21597.16 34999.11 20299.98 1199.78 6899.96 2399.81 7998.72 13999.97 3399.95 1299.97 5699.79 54
WB-MVSnew98.34 29098.14 28998.96 29098.14 40397.90 32598.27 31797.26 39098.63 25198.80 32498.00 39297.77 24099.90 15797.37 27498.98 34499.09 310
baseline197.73 31597.33 32598.96 29099.30 30197.73 33299.40 11098.42 36499.33 15399.46 22299.21 32191.18 35699.82 27998.35 18691.26 40699.32 259
DSMNet-mixed99.48 8799.65 5098.95 29299.71 14397.27 34699.50 9299.82 6799.59 11899.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
thisisatest053097.45 32596.95 33598.94 29399.68 16397.73 33299.09 21094.19 40498.61 25599.56 19299.30 30184.30 39599.93 9498.27 19499.54 28599.16 293
mvs_anonymous99.28 13999.39 10198.94 29399.19 32397.81 32899.02 22799.55 21799.78 6899.85 7399.80 8398.24 20399.86 22299.57 5699.50 29499.15 295
MG-MVS98.52 26898.39 26598.94 29399.15 32897.39 34498.18 32399.21 31998.89 22099.23 27299.63 18997.37 26299.74 32594.22 38499.61 26699.69 83
GA-MVS97.99 30897.68 31898.93 29699.52 22698.04 31497.19 38899.05 33498.32 29198.81 32298.97 35489.89 37499.41 39798.33 18899.05 33999.34 255
cl____98.54 26598.41 26398.92 29799.03 35197.80 33097.46 37899.59 19598.90 21799.60 17799.46 26593.85 32899.78 30897.97 22099.89 12499.17 291
DIV-MVS_self_test98.54 26598.42 26298.92 29799.03 35197.80 33097.46 37899.59 19598.90 21799.60 17799.46 26593.87 32799.78 30897.97 22099.89 12499.18 289
ET-MVSNet_ETH3D96.78 34096.07 34998.91 29999.26 31097.92 32497.70 36696.05 39697.96 31492.37 40798.43 38387.06 38399.90 15798.27 19497.56 39598.91 342
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
xiu_mvs_v1_base99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
MSLP-MVS++99.05 19999.09 16798.91 29999.21 31898.36 29398.82 26199.47 25398.85 22498.90 31299.56 23398.78 12999.09 40198.57 17599.68 24399.26 270
pmmvs398.08 30397.80 31298.91 29999.41 26997.69 33497.87 35999.66 14995.87 37499.50 21399.51 24890.35 36999.97 3398.55 17699.47 29899.08 316
tttt051797.62 32097.20 32998.90 30599.76 11797.40 34399.48 9794.36 40299.06 19999.70 13699.49 25584.55 39499.94 7798.73 16699.65 25499.36 249
ETVMVS96.14 35695.22 36698.89 30698.80 37298.01 31598.66 27898.35 36998.71 24497.18 38996.31 41474.23 41099.75 32296.64 32198.13 38798.90 343
OpenMVS_ROBcopyleft97.31 1797.36 32996.84 33998.89 30699.29 30399.45 15698.87 25199.48 25086.54 40399.44 22499.74 11997.34 26399.86 22291.61 39499.28 32397.37 398
MDA-MVSNet_test_wron98.95 22498.99 20298.85 30899.64 17397.16 34998.23 32199.33 28998.93 21399.56 19299.66 17197.39 26199.83 27098.29 19099.88 13499.55 174
PMVScopyleft92.94 2198.82 23898.81 22998.85 30899.84 6197.99 31699.20 16899.47 25399.71 8099.42 23099.82 7398.09 21699.47 39493.88 39099.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
YYNet198.95 22498.99 20298.84 31099.64 17397.14 35198.22 32299.32 29198.92 21599.59 18099.66 17197.40 25999.83 27098.27 19499.90 11599.55 174
new_pmnet98.88 23398.89 21998.84 31099.70 15197.62 33598.15 32699.50 24597.98 31099.62 16899.54 24298.15 21399.94 7797.55 26299.84 16298.95 337
CR-MVSNet98.35 28898.20 28398.83 31299.05 34898.12 30699.30 13699.67 14497.39 34399.16 28399.79 9391.87 35099.91 13998.78 16298.77 35798.44 376
PatchT98.45 27898.32 27498.83 31298.94 35998.29 29599.24 15798.82 34399.84 5399.08 29499.76 11191.37 35399.94 7798.82 15499.00 34398.26 382
RPMNet98.60 25798.53 25498.83 31299.05 34898.12 30699.30 13699.62 17099.86 4599.16 28399.74 11992.53 34499.92 11698.75 16498.77 35798.44 376
miper_lstm_enhance98.65 25498.60 24398.82 31599.20 32197.33 34597.78 36299.66 14999.01 20299.59 18099.50 25194.62 32199.85 24098.12 20999.90 11599.26 270
FPMVS96.32 35195.50 35998.79 31699.60 18298.17 30498.46 30798.80 34497.16 35496.28 39899.63 18982.19 39699.09 40188.45 40098.89 35399.10 306
xiu_mvs_v2_base99.02 20599.11 15898.77 31799.37 27698.09 31098.13 32999.51 24199.47 13099.42 23098.54 38099.38 5499.97 3398.83 15299.33 31698.24 383
PS-MVSNAJ99.00 21399.08 16998.76 31899.37 27698.10 30998.00 34599.51 24199.47 13099.41 23698.50 38299.28 6699.97 3398.83 15299.34 31598.20 387
test0.0.03 197.37 32896.91 33898.74 31997.72 40497.57 33697.60 37097.36 38998.00 30799.21 27798.02 39090.04 37299.79 30598.37 18495.89 40498.86 348
c3_l98.72 24898.71 23698.72 32099.12 33397.22 34897.68 36799.56 21198.90 21799.54 19999.48 25896.37 29899.73 32897.88 22799.88 13499.21 280
EU-MVSNet99.39 11599.62 5598.72 32099.88 4496.44 36399.56 8299.85 5499.90 2999.90 4999.85 5698.09 21699.83 27099.58 5499.95 8399.90 20
new-patchmatchnet99.35 12599.57 7198.71 32299.82 7296.62 36198.55 29399.75 10599.50 12499.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
thisisatest051596.98 33696.42 34398.66 32399.42 26897.47 33997.27 38594.30 40397.24 34999.15 28598.86 36585.01 39299.87 20397.10 29499.39 30898.63 360
testing22295.60 37094.59 37398.61 32498.66 38697.45 34198.54 29697.90 37998.53 26396.54 39796.47 41170.62 41399.81 29495.91 35798.15 38498.56 367
eth_miper_zixun_eth98.68 25298.71 23698.60 32599.10 34096.84 35897.52 37699.54 22398.94 21099.58 18299.48 25896.25 30299.76 31898.01 21699.93 10199.21 280
dmvs_testset97.27 33096.83 34098.59 32699.46 25497.55 33799.25 15696.84 39298.78 23597.24 38797.67 39697.11 27498.97 40386.59 40798.54 37199.27 269
miper_ehance_all_eth98.59 26098.59 24598.59 32698.98 35797.07 35297.49 37799.52 23798.50 26699.52 20699.37 28496.41 29699.71 33497.86 23199.62 25999.00 333
BH-untuned98.22 29798.09 29298.58 32899.38 27497.24 34798.55 29398.98 33897.81 32499.20 28298.76 37097.01 27799.65 37094.83 37698.33 37598.86 348
IterMVS-SCA-FT99.00 21399.16 14598.51 32999.75 12895.90 37398.07 33799.84 6099.84 5399.89 5399.73 12396.01 30699.99 799.33 91100.00 199.63 127
JIA-IIPM98.06 30497.92 30798.50 33098.59 38797.02 35398.80 26598.51 35999.88 4097.89 37499.87 4791.89 34999.90 15798.16 20797.68 39498.59 363
Patchmatch-test98.10 30297.98 29998.48 33199.27 30896.48 36299.40 11099.07 33198.81 23099.23 27299.57 22990.11 37199.87 20396.69 31599.64 25699.09 310
baseline296.83 33996.28 34598.46 33299.09 34396.91 35698.83 25793.87 40697.23 35096.23 40198.36 38488.12 37999.90 15796.68 31698.14 38598.57 366
IterMVS98.97 21799.16 14598.42 33399.74 13495.64 37698.06 33999.83 6299.83 5699.85 7399.74 11996.10 30599.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.56 32397.28 32698.40 33498.37 39596.75 35997.24 38799.37 28297.31 34799.41 23699.22 31987.30 38199.37 39897.70 24999.62 25999.08 316
CHOSEN 280x42098.41 28198.41 26398.40 33499.34 29095.89 37496.94 39499.44 26198.80 23299.25 26899.52 24693.51 33499.98 2098.94 14799.98 4199.32 259
API-MVS98.38 28498.39 26598.35 33698.83 36899.26 20099.14 18899.18 32398.59 25698.66 33798.78 36998.61 15399.57 38294.14 38599.56 27696.21 402
PVSNet97.47 1598.42 28098.44 26098.35 33699.46 25496.26 36796.70 39799.34 28897.68 32899.00 30199.13 32797.40 25999.72 33097.59 26199.68 24399.08 316
myMVS_eth3d95.63 36894.73 37098.34 33898.50 39196.36 36598.60 28299.21 31997.89 31796.76 39396.37 41272.10 41299.57 38294.38 38198.73 36399.09 310
miper_enhance_ethall98.03 30597.94 30598.32 33998.27 39796.43 36496.95 39399.41 26796.37 36999.43 22898.96 35694.74 31999.69 34397.71 24699.62 25998.83 351
TR-MVS97.44 32697.15 33098.32 33998.53 38997.46 34098.47 30397.91 37896.85 36198.21 36198.51 38196.42 29499.51 39292.16 39397.29 39697.98 391
PAPM95.61 36994.71 37198.31 34199.12 33396.63 36096.66 39898.46 36290.77 39996.25 39998.68 37493.01 33999.69 34381.60 40897.86 39398.62 361
MVEpermissive92.54 2296.66 34496.11 34898.31 34199.68 16397.55 33797.94 35295.60 39899.37 14890.68 40898.70 37396.56 28898.61 40686.94 40699.55 28098.77 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131498.00 30797.90 30998.27 34398.90 36197.45 34199.30 13699.06 33394.98 38697.21 38899.12 33198.43 18199.67 36095.58 36598.56 37097.71 394
ppachtmachnet_test98.89 23299.12 15598.20 34499.66 16995.24 38297.63 36899.68 14099.08 19599.78 10199.62 19698.65 14999.88 18998.02 21399.96 7099.48 214
SD-MVS99.01 21199.30 12398.15 34599.50 23499.40 17198.94 24699.61 17799.22 17399.75 11499.82 7399.54 4195.51 40997.48 26799.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
our_test_398.85 23699.09 16798.13 34699.66 16994.90 38697.72 36499.58 20499.07 19799.64 15599.62 19698.19 21099.93 9498.41 18299.95 8399.55 174
ADS-MVSNet297.78 31397.66 32098.12 34799.14 32995.36 37999.22 16598.75 34696.97 35898.25 35899.64 17890.90 36199.94 7796.51 32799.56 27699.08 316
testing9196.00 36095.32 36498.02 34898.76 37995.39 37898.38 31098.65 35398.82 22896.84 39296.71 40975.06 40899.71 33496.46 33298.23 37998.98 334
DeepMVS_CXcopyleft97.98 34999.69 15596.95 35499.26 30675.51 40595.74 40398.28 38696.47 29299.62 37491.23 39697.89 39197.38 397
testing1196.05 35995.41 36197.97 35098.78 37695.27 38198.59 28598.23 37298.86 22396.56 39696.91 40775.20 40799.69 34397.26 28398.29 37798.93 339
gg-mvs-nofinetune95.87 36395.17 36897.97 35098.19 39996.95 35499.69 4289.23 41299.89 3596.24 40099.94 1681.19 39799.51 39293.99 38998.20 38097.44 396
thres600view796.60 34596.16 34797.93 35299.63 17596.09 37199.18 17397.57 38498.77 23798.72 33297.32 40287.04 38499.72 33088.57 39998.62 36897.98 391
thres40096.40 34895.89 35197.92 35399.58 19196.11 36999.00 23297.54 38798.43 27198.52 34896.98 40586.85 38699.67 36087.62 40298.51 37297.98 391
testing9995.86 36495.19 36797.87 35498.76 37995.03 38398.62 27998.44 36398.68 24696.67 39596.66 41074.31 40999.69 34396.51 32798.03 38998.90 343
ADS-MVSNet97.72 31897.67 31997.86 35599.14 32994.65 38799.22 16598.86 34096.97 35898.25 35899.64 17890.90 36199.84 25596.51 32799.56 27699.08 316
IB-MVS95.41 2095.30 37194.46 37597.84 35698.76 37995.33 38097.33 38396.07 39596.02 37395.37 40597.41 40176.17 40699.96 5497.54 26395.44 40598.22 384
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet98.61 25598.88 22097.80 35799.58 19193.60 39499.26 15099.64 16599.66 9899.72 12799.67 16693.26 33599.93 9499.30 9799.81 18899.87 30
BH-w/o97.20 33197.01 33397.76 35899.08 34495.69 37598.03 34298.52 35895.76 37797.96 37198.02 39095.62 31099.47 39492.82 39297.25 39798.12 389
tpm97.15 33296.95 33597.75 35998.91 36094.24 38999.32 12897.96 37697.71 32798.29 35699.32 29786.72 38999.92 11698.10 21196.24 40399.09 310
test-LLR97.15 33296.95 33597.74 36098.18 40095.02 38497.38 38096.10 39398.00 30797.81 37998.58 37590.04 37299.91 13997.69 25598.78 35598.31 379
test-mter96.23 35495.73 35697.74 36098.18 40095.02 38497.38 38096.10 39397.90 31697.81 37998.58 37579.12 40499.91 13997.69 25598.78 35598.31 379
tfpn200view996.30 35295.89 35197.53 36299.58 19196.11 36999.00 23297.54 38798.43 27198.52 34896.98 40586.85 38699.67 36087.62 40298.51 37296.81 400
UWE-MVS96.21 35595.78 35597.49 36398.53 38993.83 39398.04 34093.94 40598.96 20798.46 35298.17 38879.86 40099.87 20396.99 29899.06 33798.78 355
cascas96.99 33596.82 34197.48 36497.57 40795.64 37696.43 39999.56 21191.75 39697.13 39197.61 40095.58 31198.63 40596.68 31699.11 33598.18 388
thres100view90096.39 34996.03 35097.47 36599.63 17595.93 37299.18 17397.57 38498.75 24198.70 33597.31 40387.04 38499.67 36087.62 40298.51 37296.81 400
PVSNet_095.53 1995.85 36595.31 36597.47 36598.78 37693.48 39595.72 40099.40 27496.18 37297.37 38497.73 39595.73 30899.58 38195.49 36681.40 40799.36 249
TESTMET0.1,196.24 35395.84 35497.41 36798.24 39893.84 39297.38 38095.84 39798.43 27197.81 37998.56 37879.77 40199.89 17597.77 23898.77 35798.52 368
GG-mvs-BLEND97.36 36897.59 40596.87 35799.70 3588.49 41394.64 40697.26 40480.66 39899.12 40091.50 39596.50 40296.08 404
SCA98.11 30198.36 26897.36 36899.20 32192.99 39698.17 32598.49 36198.24 29599.10 29399.57 22996.01 30699.94 7796.86 30699.62 25999.14 300
thres20096.09 35795.68 35797.33 37099.48 24496.22 36898.53 29897.57 38498.06 30698.37 35596.73 40886.84 38899.61 37886.99 40598.57 36996.16 403
KD-MVS_2432*160095.89 36195.41 36197.31 37194.96 40993.89 39097.09 39099.22 31697.23 35098.88 31399.04 34179.23 40299.54 38696.24 34296.81 39898.50 372
miper_refine_blended95.89 36195.41 36197.31 37194.96 40993.89 39097.09 39099.22 31697.23 35098.88 31399.04 34179.23 40299.54 38696.24 34296.81 39898.50 372
PatchmatchNetpermissive97.65 31997.80 31297.18 37398.82 37192.49 39899.17 17898.39 36698.12 30198.79 32699.58 22190.71 36599.89 17597.23 28899.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.53 34696.32 34497.17 37498.18 40092.97 39799.39 11289.95 41198.21 29798.61 34199.59 21886.69 39099.72 33096.99 29899.23 33198.81 352
EPNet_dtu97.62 32097.79 31497.11 37596.67 40892.31 39998.51 30098.04 37499.24 16695.77 40299.47 26293.78 33099.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft97.73 31598.04 29496.78 37699.59 18690.81 40899.72 3090.43 41099.89 3599.86 7199.86 5493.60 33399.89 17599.46 6999.99 1699.65 112
tmp_tt95.75 36695.42 36096.76 37789.90 41394.42 38898.86 25297.87 38078.01 40499.30 26399.69 15197.70 24395.89 40899.29 10098.14 38599.95 11
MVS-HIRNet97.86 30998.22 28196.76 37799.28 30691.53 40498.38 31092.60 40799.13 19099.31 25899.96 1297.18 27299.68 35598.34 18799.83 17099.07 321
tpm296.35 35096.22 34696.73 37998.88 36691.75 40299.21 16798.51 35993.27 39497.89 37499.21 32184.83 39399.70 33796.04 34898.18 38398.75 358
tpmrst97.73 31598.07 29396.73 37998.71 38392.00 40099.10 20598.86 34098.52 26498.92 30999.54 24291.90 34899.82 27998.02 21399.03 34198.37 378
tpmvs97.39 32797.69 31796.52 38198.41 39391.76 40199.30 13698.94 33997.74 32597.85 37799.55 24092.40 34799.73 32896.25 34198.73 36398.06 390
test111197.74 31498.16 28896.49 38299.60 18289.86 41299.71 3491.21 40899.89 3599.88 6199.87 4793.73 33199.90 15799.56 5799.99 1699.70 79
CostFormer96.71 34396.79 34296.46 38398.90 36190.71 40999.41 10998.68 34994.69 39198.14 36699.34 29686.32 39199.80 30297.60 26098.07 38898.88 346
E-PMN97.14 33497.43 32296.27 38498.79 37491.62 40395.54 40199.01 33799.44 13698.88 31399.12 33192.78 34199.68 35594.30 38399.03 34197.50 395
dp96.86 33897.07 33196.24 38598.68 38590.30 41199.19 17298.38 36797.35 34598.23 36099.59 21887.23 38299.82 27996.27 34098.73 36398.59 363
tpm cat196.78 34096.98 33496.16 38698.85 36790.59 41099.08 21399.32 29192.37 39597.73 38399.46 26591.15 35799.69 34396.07 34798.80 35498.21 385
EMVS96.96 33797.28 32695.99 38798.76 37991.03 40695.26 40298.61 35499.34 15198.92 30998.88 36493.79 32999.66 36492.87 39199.05 33997.30 399
test250694.73 37294.59 37395.15 38899.59 18685.90 41499.75 2274.01 41499.89 3599.71 13299.86 5479.00 40599.90 15799.52 6399.99 1699.65 112
wuyk23d97.58 32299.13 15192.93 38999.69 15599.49 14599.52 8799.77 9597.97 31199.96 2399.79 9399.84 1299.94 7795.85 35899.82 17979.36 405
test_method91.72 37392.32 37689.91 39093.49 41270.18 41590.28 40399.56 21161.71 40795.39 40499.52 24693.90 32699.94 7798.76 16398.27 37899.62 138
test12329.31 37533.05 38018.08 39125.93 41512.24 41697.53 37410.93 41611.78 40924.21 41050.08 41921.04 4148.60 41023.51 40932.43 40933.39 406
testmvs28.94 37633.33 37815.79 39226.03 4149.81 41796.77 39615.67 41511.55 41023.87 41150.74 41819.03 4158.53 41123.21 41033.07 40829.03 407
test_blank8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.88 37733.17 3790.00 3930.00 4160.00 4180.00 40499.62 1700.00 4110.00 41299.13 32799.82 130.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas16.61 37822.14 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 199.28 660.00 4120.00 4110.00 4100.00 408
sosnet-low-res8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
sosnet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
Regformer8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.26 38711.02 3900.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.16 3250.00 4160.00 4120.00 4110.00 4100.00 408
uanet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS96.36 36595.20 372
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
PC_three_145297.56 33199.68 14299.41 27299.09 8997.09 40796.66 31899.60 26999.62 138
test_one_060199.63 17599.76 6199.55 21799.23 16899.31 25899.61 20598.59 156
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.43 26399.61 12399.43 26496.38 36899.11 29199.07 33797.86 23399.92 11694.04 38799.49 296
RE-MVS-def99.13 15199.54 21599.74 7399.26 15099.62 17099.16 18499.52 20699.64 17898.57 15997.27 28199.61 26699.54 182
IU-MVS99.69 15599.77 5499.22 31697.50 33799.69 13997.75 24299.70 23499.77 60
test_241102_TWO99.54 22399.13 19099.76 10899.63 18998.32 19799.92 11697.85 23399.69 23899.75 69
test_241102_ONE99.69 15599.82 3599.54 22399.12 19399.82 8199.49 25598.91 11499.52 391
9.1498.64 24099.45 25898.81 26299.60 18997.52 33699.28 26599.56 23398.53 16899.83 27095.36 37099.64 256
save fliter99.53 22199.25 20398.29 31699.38 28199.07 197
test_0728_THIRD99.18 17699.62 16899.61 20598.58 15899.91 13997.72 24499.80 19399.77 60
test072699.69 15599.80 4499.24 15799.57 20699.16 18499.73 12699.65 17698.35 192
GSMVS99.14 300
test_part299.62 17999.67 9999.55 197
sam_mvs190.81 36499.14 300
sam_mvs90.52 368
MTGPAbinary99.53 232
test_post199.14 18851.63 41789.54 37599.82 27996.86 306
test_post52.41 41690.25 37099.86 222
patchmatchnet-post99.62 19690.58 36699.94 77
MTMP99.09 21098.59 357
gm-plane-assit97.59 40589.02 41393.47 39398.30 38599.84 25596.38 336
test9_res95.10 37499.44 30199.50 205
TEST999.35 28199.35 18598.11 33299.41 26794.83 39097.92 37298.99 34998.02 22299.85 240
test_899.34 29099.31 19198.08 33699.40 27494.90 38797.87 37698.97 35498.02 22299.84 255
agg_prior294.58 38099.46 30099.50 205
agg_prior99.35 28199.36 18299.39 27797.76 38299.85 240
test_prior499.19 21898.00 345
test_prior297.95 35197.87 32098.05 36899.05 33997.90 23095.99 35299.49 296
旧先验297.94 35295.33 38298.94 30599.88 18996.75 312
新几何298.04 340
旧先验199.49 23999.29 19499.26 30699.39 28097.67 24799.36 31299.46 222
无先验98.01 34399.23 31395.83 37699.85 24095.79 36199.44 228
原ACMM297.92 355
test22299.51 22899.08 23297.83 36199.29 29995.21 38498.68 33699.31 29997.28 26599.38 30999.43 234
testdata299.89 17595.99 352
segment_acmp98.37 190
testdata197.72 36497.86 322
plane_prior799.58 19199.38 175
plane_prior699.47 25099.26 20097.24 266
plane_prior599.54 22399.82 27995.84 35999.78 20399.60 152
plane_prior499.25 312
plane_prior399.31 19198.36 28099.14 287
plane_prior298.80 26598.94 210
plane_prior199.51 228
plane_prior99.24 20798.42 30897.87 32099.71 232
n20.00 417
nn0.00 417
door-mid99.83 62
test1199.29 299
door99.77 95
HQP5-MVS98.94 243
HQP-NCC99.31 29797.98 34797.45 33998.15 362
ACMP_Plane99.31 29797.98 34797.45 33998.15 362
BP-MVS94.73 377
HQP4-MVS98.15 36299.70 33799.53 187
HQP3-MVS99.37 28299.67 249
HQP2-MVS96.67 285
NP-MVS99.40 27099.13 22398.83 366
MDTV_nov1_ep13_2view91.44 40599.14 18897.37 34499.21 27791.78 35296.75 31299.03 326
MDTV_nov1_ep1397.73 31698.70 38490.83 40799.15 18698.02 37598.51 26598.82 32199.61 20590.98 35999.66 36496.89 30598.92 348
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 184