This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
test_djsdf99.84 899.81 999.91 299.94 1099.84 1899.77 1199.80 4999.73 4099.97 699.92 1699.77 799.98 799.43 38100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 45100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2599.71 999.96 3599.51 3199.97 3099.84 14
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 899.73 1699.85 2699.70 4999.92 1899.93 1399.45 2399.97 1799.36 50100.00 199.85 13
mvs_tets99.90 299.90 299.90 499.96 499.79 3699.72 1999.88 1899.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4299.68 3199.85 2699.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 3999.70 2299.86 2299.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
PS-CasMVS99.66 2599.58 3799.89 799.80 5699.85 1399.66 4099.73 8399.62 6999.84 4399.71 10098.62 12499.96 3599.30 6099.96 4299.86 11
PEN-MVS99.66 2599.59 3499.89 799.83 3899.87 999.66 4099.73 8399.70 4999.84 4399.73 8798.56 13299.96 3599.29 6399.94 6299.83 18
v7n99.82 1099.80 1099.88 1199.96 499.84 1899.82 899.82 3999.84 2399.94 1199.91 1999.13 5899.96 3599.83 999.99 1299.83 18
DTE-MVSNet99.68 2399.61 3199.88 1199.80 5699.87 999.67 3699.71 9599.72 4399.84 4399.78 6698.67 11899.97 1799.30 6099.95 4999.80 24
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 699.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CP-MVSNet99.54 4799.43 6299.87 1499.76 8499.82 2699.57 6299.61 14699.54 8399.80 6099.64 14197.79 21099.95 4599.21 7099.94 6299.84 14
WR-MVS_H99.61 3699.53 4999.87 1499.80 5699.83 2299.67 3699.75 7599.58 8299.85 4099.69 11398.18 18199.94 5799.28 6599.95 4999.83 18
UA-Net99.78 1399.76 1499.86 1699.72 10899.71 6799.91 399.95 499.96 299.71 10099.91 1999.15 5499.97 1799.50 33100.00 199.90 4
FC-MVSNet-test99.70 1999.65 2399.86 1699.88 2499.86 1299.72 1999.78 6099.90 799.82 5099.83 4398.45 15099.87 17099.51 3199.97 3099.86 11
APDe-MVS99.48 5499.36 7699.85 1899.55 17699.81 2999.50 6899.69 10598.99 16599.75 8099.71 10098.79 10199.93 7198.46 14399.85 11999.80 24
FIs99.65 3099.58 3799.84 1999.84 3499.85 1399.66 4099.75 7599.86 1699.74 8999.79 6098.27 17099.85 21099.37 4999.93 7099.83 18
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2299.83 699.85 2699.80 3299.93 1499.93 1398.54 13599.93 7199.59 2099.98 2199.76 37
test_0728_SECOND99.83 2199.70 11899.79 3699.14 16199.61 14699.92 9097.88 19099.72 19899.77 33
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 999.85 2099.94 1199.95 1199.73 899.90 12999.65 1699.97 3099.69 52
DPE-MVScopyleft99.14 15198.92 18199.82 2399.57 16599.77 4298.74 23699.60 15798.55 21599.76 7599.69 11398.23 17599.92 9096.39 29099.75 17799.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1899.61 5399.70 9999.93 499.78 6899.68 12499.10 5999.78 27599.45 3699.96 4299.83 18
Baseline_NR-MVSNet99.49 5299.37 7399.82 2399.91 1599.84 1898.83 22099.86 2299.68 5399.65 11999.88 2897.67 21899.87 17099.03 9899.86 11699.76 37
MSP-MVS99.04 17298.79 19999.81 2699.78 7299.73 6099.35 9599.57 17598.54 21899.54 16298.99 31696.81 25599.93 7196.97 25899.53 25799.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1399.75 1499.86 2299.70 4999.91 2099.89 2599.60 1999.87 17099.59 2099.74 18599.71 46
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6499.59 5999.82 3999.39 11199.82 5099.84 4299.38 2999.91 10899.38 4799.93 7099.80 24
MP-MVS-pluss99.14 15198.92 18199.80 2999.83 3899.83 2298.61 24399.63 13696.84 31799.44 18499.58 18498.81 9499.91 10897.70 20899.82 14299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.30 10499.14 11799.80 2999.81 5199.81 2998.73 23899.53 20099.27 12699.42 19099.63 15198.21 17699.95 4597.83 19999.79 16199.65 83
MTAPA99.35 9099.20 10999.80 2999.81 5199.81 2999.33 9999.53 20099.27 12699.42 19099.63 15198.21 17699.95 4597.83 19999.79 16199.65 83
HPM-MVS_fast99.43 6699.30 8999.80 2999.83 3899.81 2999.52 6699.70 9998.35 24099.51 17499.50 21699.31 3799.88 15798.18 16799.84 12399.69 52
MIMVSNet199.66 2599.62 2699.80 2999.94 1099.87 999.69 2899.77 6399.78 3599.93 1499.89 2597.94 19799.92 9099.65 1699.98 2199.62 106
ACMMP_NAP99.28 10799.11 12799.79 3499.75 9599.81 2998.95 20699.53 20098.27 24999.53 16799.73 8798.75 10999.87 17097.70 20899.83 13399.68 58
VPA-MVSNet99.66 2599.62 2699.79 3499.68 13099.75 5199.62 4899.69 10599.85 2099.80 6099.81 5298.81 9499.91 10899.47 3599.88 10099.70 49
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8599.69 2899.92 699.67 5799.77 7399.75 8099.61 1799.98 799.35 5199.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE99.69 2199.66 2199.78 3799.76 8499.76 4899.60 5899.82 3999.46 10099.75 8099.56 19599.63 1499.95 4599.43 3899.88 10099.62 106
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2299.76 1399.87 2099.73 4099.89 2699.87 3199.63 1499.87 17099.54 2699.92 7499.63 95
HPM-MVScopyleft99.25 11499.07 14299.78 3799.81 5199.75 5199.61 5399.67 11397.72 28099.35 21099.25 27999.23 4699.92 9097.21 24799.82 14299.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SED-MVS99.40 7699.28 9699.77 4099.69 12199.82 2699.20 14099.54 19199.13 15199.82 5099.63 15198.91 8399.92 9097.85 19699.70 20499.58 133
ZNCC-MVS99.22 12799.04 15499.77 4099.76 8499.73 6099.28 11799.56 18098.19 25499.14 25199.29 26998.84 9299.92 9097.53 22499.80 15699.64 90
DVP-MVS99.32 10199.17 11299.77 4099.69 12199.80 3499.14 16199.31 27299.16 14599.62 13299.61 16998.35 16299.91 10897.88 19099.72 19899.61 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
region2R99.23 11899.05 14899.77 4099.76 8499.70 7499.31 10699.59 16498.41 22999.32 21799.36 25298.73 11299.93 7197.29 23699.74 18599.67 65
PGM-MVS99.20 13499.01 16099.77 4099.75 9599.71 6799.16 15799.72 9297.99 26499.42 19099.60 17698.81 9499.93 7196.91 26199.74 18599.66 75
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1399.86 599.92 699.69 5299.78 6899.92 1699.37 3199.88 15798.93 11399.95 4999.60 119
DIV-MVS_2432*160099.63 3199.59 3499.76 4699.84 3499.90 499.37 9099.79 5599.83 2699.88 3299.85 3798.42 15399.90 12999.60 1999.73 19299.49 181
Anonymous2023121199.62 3499.57 4099.76 4699.61 14799.60 10699.81 999.73 8399.82 2899.90 2299.90 2197.97 19699.86 19199.42 4399.96 4299.80 24
HFP-MVS99.25 11499.08 13899.76 4699.73 10499.70 7499.31 10699.59 16498.36 23599.36 20899.37 24798.80 9899.91 10897.43 22999.75 17799.68 58
#test#99.12 15598.90 18599.76 4699.73 10499.70 7499.10 17499.59 16497.60 28599.36 20899.37 24798.80 9899.91 10896.84 26799.75 17799.68 58
ACMMPR99.23 11899.06 14499.76 4699.74 10199.69 7899.31 10699.59 16498.36 23599.35 21099.38 24698.61 12699.93 7197.43 22999.75 17799.67 65
MP-MVScopyleft99.06 16698.83 19499.76 4699.76 8499.71 6799.32 10299.50 21598.35 24098.97 26799.48 22498.37 16099.92 9095.95 31099.75 17799.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4699.58 15599.64 9299.30 10999.63 13699.61 7399.71 10099.56 19598.76 10799.96 3599.14 9099.92 7499.68 58
mPP-MVS99.19 13899.00 16399.76 4699.76 8499.68 8199.38 8699.54 19198.34 24499.01 26499.50 21698.53 13999.93 7197.18 24999.78 16799.66 75
SixPastTwentyTwo99.42 6999.30 8999.76 4699.92 1499.67 8399.70 2299.14 30199.65 6399.89 2699.90 2196.20 27299.94 5799.42 4399.92 7499.67 65
SteuartSystems-ACMMP99.30 10499.14 11799.76 4699.87 2899.66 8599.18 14699.60 15798.55 21599.57 14899.67 13099.03 7199.94 5797.01 25699.80 15699.69 52
Skip Steuart: Steuart Systems R&D Blog.
GST-MVS99.16 14798.96 17499.75 5699.73 10499.73 6099.20 14099.55 18698.22 25199.32 21799.35 25798.65 12299.91 10896.86 26499.74 18599.62 106
test_part198.63 22698.26 24999.75 5699.40 23699.49 12399.67 3699.68 10899.86 1699.88 3299.86 3686.73 35499.93 7199.34 5299.97 3099.81 23
XVS99.27 11199.11 12799.75 5699.71 11199.71 6799.37 9099.61 14699.29 12298.76 29499.47 22998.47 14699.88 15797.62 21699.73 19299.67 65
X-MVStestdata96.09 32494.87 33499.75 5699.71 11199.71 6799.37 9099.61 14699.29 12298.76 29461.30 37298.47 14699.88 15797.62 21699.73 19299.67 65
abl_699.36 8899.23 10699.75 5699.71 11199.74 5799.33 9999.76 6899.07 15899.65 11999.63 15199.09 6199.92 9097.13 25299.76 17499.58 133
CP-MVS99.23 11899.05 14899.75 5699.66 13699.66 8599.38 8699.62 13998.38 23399.06 26299.27 27398.79 10199.94 5797.51 22599.82 14299.66 75
test117299.23 11899.05 14899.74 6299.52 18799.75 5199.20 14099.61 14698.97 16799.48 17799.58 18498.41 15499.91 10897.15 25199.55 24899.57 139
SR-MVS99.19 13899.00 16399.74 6299.51 19299.72 6499.18 14699.60 15798.85 18599.47 17999.58 18498.38 15999.92 9096.92 26099.54 25599.57 139
HPM-MVS++copyleft98.96 18898.70 20699.74 6299.52 18799.71 6798.86 21599.19 29698.47 22598.59 30699.06 30598.08 18799.91 10896.94 25999.60 23999.60 119
APD-MVS_3200maxsize99.31 10399.16 11399.74 6299.53 18299.75 5199.27 12099.61 14699.19 13999.57 14899.64 14198.76 10799.90 12997.29 23699.62 22999.56 142
LPG-MVS_test99.22 12799.05 14899.74 6299.82 4499.63 9699.16 15799.73 8397.56 28699.64 12199.69 11399.37 3199.89 14396.66 27799.87 10999.69 52
LGP-MVS_train99.74 6299.82 4499.63 9699.73 8397.56 28699.64 12199.69 11399.37 3199.89 14396.66 27799.87 10999.69 52
DP-MVS99.48 5499.39 6899.74 6299.57 16599.62 9899.29 11699.61 14699.87 1499.74 8999.76 7698.69 11499.87 17098.20 16399.80 15699.75 40
ACMMPcopyleft99.25 11499.08 13899.74 6299.79 6699.68 8199.50 6899.65 12898.07 26099.52 16999.69 11398.57 13099.92 9097.18 24999.79 16199.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 11199.11 12799.73 7099.54 17799.74 5799.26 12299.62 13999.16 14599.52 16999.64 14198.41 15499.91 10897.27 23999.61 23699.54 153
SMA-MVScopyleft99.19 13899.00 16399.73 7099.46 21999.73 6099.13 16799.52 20897.40 29699.57 14899.64 14198.93 8099.83 23897.61 21899.79 16199.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GBi-Net99.42 6999.31 8499.73 7099.49 20399.77 4299.68 3199.70 9999.44 10399.62 13299.83 4397.21 24199.90 12998.96 10799.90 8499.53 158
test199.42 6999.31 8499.73 7099.49 20399.77 4299.68 3199.70 9999.44 10399.62 13299.83 4397.21 24199.90 12998.96 10799.90 8499.53 158
FMVSNet199.66 2599.63 2599.73 7099.78 7299.77 4299.68 3199.70 9999.67 5799.82 5099.83 4398.98 7499.90 12999.24 6799.97 3099.53 158
HyFIR lowres test98.91 19498.64 20999.73 7099.85 3399.47 12698.07 29799.83 3498.64 20699.89 2699.60 17692.57 308100.00 199.33 5599.97 3099.72 43
testtj98.56 23698.17 25999.72 7699.45 22299.60 10698.88 21199.50 21596.88 31499.18 24699.48 22497.08 24899.92 9093.69 34799.38 27999.63 95
UniMVSNet_NR-MVSNet99.37 8599.25 10399.72 7699.47 21499.56 11598.97 20499.61 14699.43 10899.67 11199.28 27197.85 20699.95 4599.17 8099.81 15199.65 83
ACMM98.09 1199.46 6199.38 7099.72 7699.80 5699.69 7899.13 16799.65 12898.99 16599.64 12199.72 9399.39 2599.86 19198.23 16099.81 15199.60 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH98.42 699.59 3899.54 4599.72 7699.86 3099.62 9899.56 6499.79 5598.77 19699.80 6099.85 3799.64 1399.85 21098.70 13199.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 6199.37 7399.71 8099.82 4499.59 10999.48 7299.70 9999.81 2999.69 10599.58 18497.66 22299.86 19199.17 8099.44 27099.67 65
DU-MVS99.33 9999.21 10899.71 8099.43 22799.56 11598.83 22099.53 20099.38 11299.67 11199.36 25297.67 21899.95 4599.17 8099.81 15199.63 95
APD-MVScopyleft98.87 20298.59 21499.71 8099.50 19899.62 9899.01 19199.57 17596.80 31999.54 16299.63 15198.29 16899.91 10895.24 32799.71 20299.61 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH+98.40 899.50 5099.43 6299.71 8099.86 3099.76 4899.32 10299.77 6399.53 8599.77 7399.76 7699.26 4599.78 27597.77 20199.88 10099.60 119
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7399.70 8499.83 3899.70 7499.38 8699.78 6099.53 8599.67 11199.78 6699.19 5099.86 19197.32 23499.87 10999.55 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v398.87 20298.60 21299.69 8599.93 1399.46 13099.74 1594.97 36199.78 3599.88 3299.88 2893.66 30099.97 1799.61 1899.95 4999.64 90
UniMVSNet (Re)99.37 8599.26 10199.68 8699.51 19299.58 11298.98 20299.60 15799.43 10899.70 10299.36 25297.70 21399.88 15799.20 7399.87 10999.59 128
NR-MVSNet99.40 7699.31 8499.68 8699.43 22799.55 11899.73 1699.50 21599.46 10099.88 3299.36 25297.54 22699.87 17098.97 10599.87 10999.63 95
LCM-MVSNet-Re99.28 10799.15 11699.67 8899.33 26399.76 4899.34 9799.97 298.93 17599.91 2099.79 6098.68 11599.93 7196.80 26999.56 24499.30 237
casdiffmvs99.63 3199.61 3199.67 8899.79 6699.59 10999.13 16799.85 2699.79 3499.76 7599.72 9399.33 3699.82 24899.21 7099.94 6299.59 128
1112_ss99.05 16998.84 19299.67 8899.66 13699.29 17398.52 25899.82 3997.65 28399.43 18899.16 29396.42 26499.91 10899.07 9699.84 12399.80 24
DeepPCF-MVS98.42 699.18 14299.02 15799.67 8899.22 28499.75 5197.25 34599.47 22698.72 20199.66 11599.70 10799.29 3999.63 33898.07 17699.81 15199.62 106
DeepC-MVS98.90 499.62 3499.61 3199.67 8899.72 10899.44 13799.24 13099.71 9599.27 12699.93 1499.90 2199.70 1199.93 7198.99 10199.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP97.51 1499.05 16998.84 19299.67 8899.78 7299.55 11898.88 21199.66 11797.11 31199.47 17999.60 17699.07 6699.89 14396.18 29999.85 11999.58 133
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+98.92 399.35 9099.24 10499.67 8899.35 24899.47 12699.62 4899.50 21599.44 10399.12 25499.78 6698.77 10699.94 5797.87 19399.72 19899.62 106
v1099.69 2199.69 1899.66 9599.81 5199.39 15199.66 4099.75 7599.60 7999.92 1899.87 3198.75 10999.86 19199.90 299.99 1299.73 42
WR-MVS99.11 15998.93 17799.66 9599.30 26999.42 14498.42 26899.37 25999.04 16399.57 14899.20 29096.89 25399.86 19198.66 13599.87 10999.70 49
XVG-OURS-SEG-HR99.16 14798.99 16899.66 9599.84 3499.64 9298.25 28099.73 8398.39 23299.63 12599.43 23799.70 1199.90 12997.34 23398.64 32999.44 202
baseline99.63 3199.62 2699.66 9599.80 5699.62 9899.44 7899.80 4999.71 4499.72 9599.69 11399.15 5499.83 23899.32 5799.94 6299.53 158
EPP-MVSNet99.17 14699.00 16399.66 9599.80 5699.43 14199.70 2299.24 28999.48 9099.56 15599.77 7394.89 28699.93 7198.72 13099.89 9299.63 95
Anonymous2024052999.42 6999.34 7899.65 10099.53 18299.60 10699.63 4799.39 25299.47 9599.76 7599.78 6698.13 18399.86 19198.70 13199.68 21099.49 181
v899.68 2399.69 1899.65 10099.80 5699.40 14999.66 4099.76 6899.64 6599.93 1499.85 3798.66 12099.84 22799.88 699.99 1299.71 46
MCST-MVS99.02 17598.81 19699.65 10099.58 15599.49 12398.58 24799.07 30498.40 23199.04 26399.25 27998.51 14499.80 26997.31 23599.51 26099.65 83
XVG-OURS99.21 13299.06 14499.65 10099.82 4499.62 9897.87 31899.74 8098.36 23599.66 11599.68 12499.71 999.90 12996.84 26799.88 10099.43 208
CHOSEN 1792x268899.39 8199.30 8999.65 10099.88 2499.25 18398.78 23299.88 1898.66 20499.96 899.79 6097.45 22999.93 7199.34 5299.99 1299.78 32
QAPM98.40 25697.99 26799.65 10099.39 23899.47 12699.67 3699.52 20891.70 35698.78 29299.80 5498.55 13399.95 4594.71 33599.75 17799.53 158
3Dnovator99.15 299.43 6699.36 7699.65 10099.39 23899.42 14499.70 2299.56 18099.23 13499.35 21099.80 5499.17 5299.95 4598.21 16299.84 12399.59 128
lessismore_v099.64 10799.86 3099.38 15490.66 36899.89 2699.83 4394.56 29199.97 1799.56 2599.92 7499.57 139
114514_t98.49 24798.11 26299.64 10799.73 10499.58 11299.24 13099.76 6889.94 35999.42 19099.56 19597.76 21299.86 19197.74 20499.82 14299.47 191
CPTT-MVS98.74 21698.44 23199.64 10799.61 14799.38 15499.18 14699.55 18696.49 32299.27 22899.37 24797.11 24799.92 9095.74 31799.67 21799.62 106
RPSCF99.18 14299.02 15799.64 10799.83 3899.85 1399.44 7899.82 3998.33 24599.50 17599.78 6697.90 20099.65 33596.78 27099.83 13399.44 202
Anonymous20240521198.75 21498.46 22899.63 11199.34 25899.66 8599.47 7497.65 34699.28 12599.56 15599.50 21693.15 30399.84 22798.62 13699.58 24299.40 214
TSAR-MVS + MP.99.34 9599.24 10499.63 11199.82 4499.37 15799.26 12299.35 26398.77 19699.57 14899.70 10799.27 4499.88 15797.71 20699.75 17799.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS99.26 11399.13 12099.63 11199.70 11899.61 10498.58 24799.48 22298.50 22199.52 16999.63 15199.14 5699.76 28597.89 18999.77 17199.51 170
AllTest99.21 13299.07 14299.63 11199.78 7299.64 9299.12 17199.83 3498.63 20799.63 12599.72 9398.68 11599.75 28996.38 29199.83 13399.51 170
TestCases99.63 11199.78 7299.64 9299.83 3498.63 20799.63 12599.72 9398.68 11599.75 28996.38 29199.83 13399.51 170
V4299.56 4299.54 4599.63 11199.79 6699.46 13099.39 8499.59 16499.24 13299.86 3999.70 10798.55 13399.82 24899.79 1199.95 4999.60 119
XVG-ACMP-BASELINE99.23 11899.10 13599.63 11199.82 4499.58 11298.83 22099.72 9298.36 23599.60 14099.71 10098.92 8199.91 10897.08 25499.84 12399.40 214
Test_1112_low_res98.95 19198.73 20199.63 11199.68 13099.15 20398.09 29499.80 4997.14 30999.46 18299.40 24196.11 27499.89 14399.01 10099.84 12399.84 14
TAMVS99.49 5299.45 5799.63 11199.48 20999.42 14499.45 7599.57 17599.66 6199.78 6899.83 4397.85 20699.86 19199.44 3799.96 4299.61 115
SF-MVS99.10 16398.93 17799.62 12099.58 15599.51 12199.13 16799.65 12897.97 26699.42 19099.61 16998.86 8999.87 17096.45 28899.68 21099.49 181
EG-PatchMatch MVS99.57 3999.56 4499.62 12099.77 8099.33 16799.26 12299.76 6899.32 12099.80 6099.78 6699.29 3999.87 17099.15 8499.91 8399.66 75
F-COLMAP98.74 21698.45 22999.62 12099.57 16599.47 12698.84 21899.65 12896.31 32698.93 27199.19 29297.68 21799.87 17096.52 28399.37 28399.53 158
CDPH-MVS98.56 23698.20 25499.61 12399.50 19899.46 13098.32 27499.41 24295.22 34099.21 24099.10 30298.34 16499.82 24895.09 33099.66 22199.56 142
LS3D99.24 11799.11 12799.61 12398.38 35199.79 3699.57 6299.68 10899.61 7399.15 24999.71 10098.70 11399.91 10897.54 22299.68 21099.13 273
tfpnnormal99.43 6699.38 7099.60 12599.87 2899.75 5199.59 5999.78 6099.71 4499.90 2299.69 11398.85 9199.90 12997.25 24499.78 16799.15 266
CSCG99.37 8599.29 9499.60 12599.71 11199.46 13099.43 8099.85 2698.79 19399.41 19899.60 17698.92 8199.92 9098.02 17799.92 7499.43 208
ETH3D-3000-0.198.77 21198.50 22699.59 12799.47 21499.53 12098.77 23399.60 15797.33 30099.23 23499.50 21697.91 19999.83 23895.02 33199.67 21799.41 212
v114499.54 4799.53 4999.59 12799.79 6699.28 17599.10 17499.61 14699.20 13899.84 4399.73 8798.67 11899.84 22799.86 899.98 2199.64 90
UnsupCasMVSNet_eth98.83 20598.57 21899.59 12799.68 13099.45 13598.99 19899.67 11399.48 9099.55 16099.36 25294.92 28599.86 19198.95 11196.57 35899.45 197
DROMVSNet99.61 3699.62 2699.59 12799.63 14299.89 799.68 3199.95 499.77 3899.40 20399.27 27399.48 2299.91 10899.54 2699.82 14298.98 298
PHI-MVS99.11 15998.95 17699.59 12799.13 29999.59 10999.17 15199.65 12897.88 27299.25 23099.46 23298.97 7699.80 26997.26 24199.82 14299.37 222
v14419299.55 4599.54 4599.58 13299.78 7299.20 19899.11 17399.62 13999.18 14099.89 2699.72 9398.66 12099.87 17099.88 699.97 3099.66 75
v2v48299.50 5099.47 5399.58 13299.78 7299.25 18399.14 16199.58 17399.25 13099.81 5799.62 16098.24 17299.84 22799.83 999.97 3099.64 90
test20.0399.55 4599.54 4599.58 13299.79 6699.37 15799.02 18999.89 1599.60 7999.82 5099.62 16098.81 9499.89 14399.43 3899.86 11699.47 191
PM-MVS99.36 8899.29 9499.58 13299.83 3899.66 8598.95 20699.86 2298.85 18599.81 5799.73 8798.40 15899.92 9098.36 14899.83 13399.17 262
NCCC98.82 20798.57 21899.58 13299.21 28699.31 17098.61 24399.25 28698.65 20598.43 31699.26 27797.86 20499.81 26496.55 28199.27 29699.61 115
train_agg98.35 26197.95 27199.57 13799.35 24899.35 16498.11 29299.41 24294.90 34497.92 33798.99 31698.02 19199.85 21095.38 32599.44 27099.50 176
agg_prior198.33 26397.92 27799.57 13799.35 24899.36 16097.99 30699.39 25294.85 34797.76 34698.98 31998.03 18999.85 21095.49 32199.44 27099.51 170
v119299.57 3999.57 4099.57 13799.77 8099.22 19299.04 18699.60 15799.18 14099.87 3899.72 9399.08 6499.85 21099.89 599.98 2199.66 75
PMMVS299.48 5499.45 5799.57 13799.76 8498.99 21898.09 29499.90 1398.95 17199.78 6899.58 18499.57 2099.93 7199.48 3499.95 4999.79 30
VNet99.18 14299.06 14499.56 14199.24 28299.36 16099.33 9999.31 27299.67 5799.47 17999.57 19296.48 26199.84 22799.15 8499.30 29199.47 191
CNVR-MVS98.99 18498.80 19899.56 14199.25 28099.43 14198.54 25699.27 28198.58 21298.80 28999.43 23798.53 13999.70 30297.22 24699.59 24199.54 153
DeepC-MVS_fast98.47 599.23 11899.12 12499.56 14199.28 27599.22 19298.99 19899.40 24999.08 15699.58 14599.64 14198.90 8699.83 23897.44 22899.75 17799.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v192192099.56 4299.57 4099.55 14499.75 9599.11 20699.05 18499.61 14699.15 14999.88 3299.71 10099.08 6499.87 17099.90 299.97 3099.66 75
HQP_MVS98.90 19698.68 20899.55 14499.58 15599.24 18898.80 22899.54 19198.94 17299.14 25199.25 27997.24 23999.82 24895.84 31399.78 16799.60 119
FMVSNet299.35 9099.28 9699.55 14499.49 20399.35 16499.45 7599.57 17599.44 10399.70 10299.74 8397.21 24199.87 17099.03 9899.94 6299.44 202
IS-MVSNet99.03 17398.85 19099.55 14499.80 5699.25 18399.73 1699.15 30099.37 11399.61 13899.71 10094.73 28999.81 26497.70 20899.88 10099.58 133
xxxxxxxxxxxxxcwj99.11 15998.96 17499.54 14899.53 18299.25 18398.29 27699.76 6899.07 15899.42 19099.61 16998.86 8999.87 17096.45 28899.68 21099.49 181
test1299.54 14899.29 27299.33 16799.16 29998.43 31697.54 22699.82 24899.47 26799.48 186
Regformer-299.34 9599.27 9999.53 15099.41 23399.10 21098.99 19899.53 20099.47 9599.66 11599.52 20998.80 9899.89 14398.31 15499.74 18599.60 119
Effi-MVS+-dtu99.07 16598.92 18199.52 15198.89 32599.78 3999.15 15999.66 11799.34 11698.92 27499.24 28497.69 21599.98 798.11 17399.28 29398.81 312
新几何199.52 15199.50 19899.22 19299.26 28395.66 33698.60 30599.28 27197.67 21899.89 14395.95 31099.32 28999.45 197
112198.56 23698.24 25099.52 15199.49 20399.24 18899.30 10999.22 29195.77 33398.52 31199.29 26997.39 23399.85 21095.79 31599.34 28699.46 195
ETH3D cwj APD-0.1698.50 24498.16 26099.51 15499.04 31499.39 15198.47 26299.47 22696.70 32198.78 29299.33 26197.62 22599.86 19194.69 33699.38 27999.28 242
pmmvs-eth3d99.48 5499.47 5399.51 15499.77 8099.41 14898.81 22599.66 11799.42 11099.75 8099.66 13499.20 4999.76 28598.98 10399.99 1299.36 225
v124099.56 4299.58 3799.51 15499.80 5699.00 21799.00 19399.65 12899.15 14999.90 2299.75 8099.09 6199.88 15799.90 299.96 4299.67 65
ETH3 D test640097.76 28597.19 30099.50 15799.38 24199.26 17998.34 27199.49 22092.99 35398.54 31099.20 29095.92 27899.82 24891.14 35499.66 22199.40 214
Regformer-499.45 6399.44 5999.50 15799.52 18798.94 22599.17 15199.53 20099.64 6599.76 7599.60 17698.96 7999.90 12998.91 11499.84 12399.67 65
CDS-MVSNet99.22 12799.13 12099.50 15799.35 24899.11 20698.96 20599.54 19199.46 10099.61 13899.70 10796.31 26999.83 23899.34 5299.88 10099.55 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052199.44 6599.42 6599.49 16099.89 2198.96 22399.62 4899.76 6899.85 2099.82 5099.88 2896.39 26799.97 1799.59 2099.98 2199.55 145
Patchmtry98.78 21098.54 22299.49 16098.89 32599.19 19999.32 10299.67 11399.65 6399.72 9599.79 6091.87 31799.95 4598.00 18199.97 3099.33 231
UGNet99.38 8399.34 7899.49 16098.90 32298.90 23399.70 2299.35 26399.86 1698.57 30899.81 5298.50 14599.93 7199.38 4799.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Gipumacopyleft99.57 3999.59 3499.49 16099.98 399.71 6799.72 1999.84 3299.81 2999.94 1199.78 6698.91 8399.71 30098.41 14599.95 4999.05 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS99.34 9599.30 8999.48 16499.51 19299.36 16098.12 29099.53 20099.36 11599.41 19899.61 16999.22 4799.87 17099.21 7099.68 21099.20 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft97.35 1698.36 25897.99 26799.48 16499.32 26499.24 18898.50 26099.51 21195.19 34298.58 30798.96 32496.95 25299.83 23895.63 31899.25 29799.37 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023120699.35 9099.31 8499.47 16699.74 10199.06 21699.28 11799.74 8099.23 13499.72 9599.53 20797.63 22499.88 15799.11 9299.84 12399.48 186
Regformer-199.32 10199.27 9999.47 16699.41 23398.95 22498.99 19899.48 22299.48 9099.66 11599.52 20998.78 10399.87 17098.36 14899.74 18599.60 119
ab-mvs99.33 9999.28 9699.47 16699.57 16599.39 15199.78 1099.43 23998.87 18399.57 14899.82 4998.06 18899.87 17098.69 13399.73 19299.15 266
Fast-Effi-MVS+99.02 17598.87 18899.46 16999.38 24199.50 12299.04 18699.79 5597.17 30798.62 30398.74 34099.34 3599.95 4598.32 15399.41 27698.92 303
test_prior398.62 22798.34 24299.46 16999.35 24899.22 19297.95 31199.39 25297.87 27398.05 33299.05 30697.90 20099.69 30895.99 30699.49 26499.48 186
test_prior99.46 16999.35 24899.22 19299.39 25299.69 30899.48 186
TAPA-MVS97.92 1398.03 27797.55 29199.46 16999.47 21499.44 13798.50 26099.62 13986.79 36099.07 26199.26 27798.26 17199.62 33997.28 23899.73 19299.31 236
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EIA-MVS99.12 15599.01 16099.45 17399.36 24699.62 9899.34 9799.79 5598.41 22998.84 28498.89 33198.75 10999.84 22798.15 17199.51 26098.89 305
test_040299.22 12799.14 11799.45 17399.79 6699.43 14199.28 11799.68 10899.54 8399.40 20399.56 19599.07 6699.82 24896.01 30499.96 4299.11 274
hse-mvs398.61 22898.34 24299.44 17599.60 14998.67 24599.27 12099.44 23599.68 5399.32 21799.49 22192.50 311100.00 199.24 6796.51 35999.65 83
VDD-MVS99.20 13499.11 12799.44 17599.43 22798.98 21999.50 6898.32 33799.80 3299.56 15599.69 11396.99 25199.85 21098.99 10199.73 19299.50 176
PVSNet_Blended_VisFu99.40 7699.38 7099.44 17599.90 1998.66 24798.94 20899.91 997.97 26699.79 6599.73 8799.05 6999.97 1799.15 8499.99 1299.68 58
OMC-MVS98.90 19698.72 20299.44 17599.39 23899.42 14498.58 24799.64 13497.31 30199.44 18499.62 16098.59 12899.69 30896.17 30099.79 16199.22 251
Fast-Effi-MVS+-dtu99.20 13499.12 12499.43 17999.25 28099.69 7899.05 18499.82 3999.50 8898.97 26799.05 30698.98 7499.98 798.20 16399.24 29998.62 318
MVP-Stereo99.16 14799.08 13899.43 17999.48 20999.07 21499.08 18199.55 18698.63 20799.31 22199.68 12498.19 17999.78 27598.18 16799.58 24299.45 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs599.19 13899.11 12799.42 18199.76 8498.88 23498.55 25399.73 8398.82 18999.72 9599.62 16096.56 25899.82 24899.32 5799.95 4999.56 142
bset_n11_16_dypcd98.69 22298.45 22999.42 18199.69 12198.52 25696.06 35996.80 35499.71 4499.73 9399.54 20495.14 28499.96 3599.39 4699.95 4999.79 30
EI-MVSNet-UG-set99.48 5499.50 5199.42 18199.57 16598.65 25099.24 13099.46 23099.68 5399.80 6099.66 13498.99 7399.89 14399.19 7599.90 8499.72 43
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18199.57 16598.66 24799.24 13099.46 23099.67 5799.79 6599.65 13998.97 7699.89 14399.15 8499.89 9299.71 46
testdata99.42 18199.51 19298.93 22999.30 27596.20 32798.87 28199.40 24198.33 16699.89 14396.29 29499.28 29399.44 202
VDDNet98.97 18598.82 19599.42 18199.71 11198.81 23799.62 4898.68 32199.81 2999.38 20699.80 5494.25 29399.85 21098.79 12299.32 28999.59 128
FMVSNet597.80 28397.25 29799.42 18198.83 33198.97 22199.38 8699.80 4998.87 18399.25 23099.69 11380.60 36699.91 10898.96 10799.90 8499.38 219
MVS_111021_LR99.13 15399.03 15699.42 18199.58 15599.32 16997.91 31799.73 8398.68 20399.31 22199.48 22499.09 6199.66 32897.70 20899.77 17199.29 240
RRT_MVS98.75 21498.54 22299.41 18998.14 36098.61 25198.98 20299.66 11799.31 12199.84 4399.75 8091.98 31499.98 799.20 7399.95 4999.62 106
CMPMVSbinary77.52 2398.50 24498.19 25799.41 18998.33 35399.56 11599.01 19199.59 16495.44 33799.57 14899.80 5495.64 28099.46 35796.47 28799.92 7499.21 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Regformer-399.41 7399.41 6699.40 19199.52 18798.70 24399.17 15199.44 23599.62 6999.75 8099.60 17698.90 8699.85 21098.89 11599.84 12399.65 83
UnsupCasMVSNet_bld98.55 23998.27 24899.40 19199.56 17599.37 15797.97 31099.68 10897.49 29299.08 25899.35 25795.41 28399.82 24897.70 20898.19 34299.01 296
MVS_111021_HR99.12 15599.02 15799.40 19199.50 19899.11 20697.92 31599.71 9598.76 19999.08 25899.47 22999.17 5299.54 34897.85 19699.76 17499.54 153
MVS_030498.88 20098.71 20399.39 19498.85 32998.91 23299.45 7599.30 27598.56 21397.26 35299.68 12496.18 27399.96 3599.17 8099.94 6299.29 240
v14899.40 7699.41 6699.39 19499.76 8498.94 22599.09 17899.59 16499.17 14399.81 5799.61 16998.41 15499.69 30899.32 5799.94 6299.53 158
diffmvs99.34 9599.32 8399.39 19499.67 13598.77 24098.57 25199.81 4899.61 7399.48 17799.41 23998.47 14699.86 19198.97 10599.90 8499.53 158
HQP-MVS98.36 25898.02 26699.39 19499.31 26598.94 22597.98 30799.37 25997.45 29398.15 32698.83 33496.67 25699.70 30294.73 33399.67 21799.53 158
TSAR-MVS + GP.99.12 15599.04 15499.38 19899.34 25899.16 20198.15 28699.29 27798.18 25599.63 12599.62 16099.18 5199.68 31998.20 16399.74 18599.30 237
AdaColmapbinary98.60 23098.35 24199.38 19899.12 30199.22 19298.67 24299.42 24197.84 27798.81 28799.27 27397.32 23799.81 26495.14 32899.53 25799.10 276
ITE_SJBPF99.38 19899.63 14299.44 13799.73 8398.56 21399.33 21599.53 20798.88 8899.68 31996.01 30499.65 22499.02 295
原ACMM199.37 20199.47 21498.87 23699.27 28196.74 32098.26 32199.32 26297.93 19899.82 24895.96 30999.38 27999.43 208
testgi99.29 10699.26 10199.37 20199.75 9598.81 23798.84 21899.89 1598.38 23399.75 8099.04 30999.36 3499.86 19199.08 9599.25 29799.45 197
MSDG99.08 16498.98 17199.37 20199.60 14999.13 20497.54 33199.74 8098.84 18899.53 16799.55 20299.10 5999.79 27297.07 25599.86 11699.18 260
pmmvs499.13 15399.06 14499.36 20499.57 16599.10 21098.01 30299.25 28698.78 19599.58 14599.44 23698.24 17299.76 28598.74 12899.93 7099.22 251
N_pmnet98.73 21898.53 22499.35 20599.72 10898.67 24598.34 27194.65 36298.35 24099.79 6599.68 12498.03 18999.93 7198.28 15699.92 7499.44 202
Effi-MVS+99.06 16698.97 17299.34 20699.31 26598.98 21998.31 27599.91 998.81 19098.79 29098.94 32699.14 5699.84 22798.79 12298.74 32599.20 256
Vis-MVSNet (Re-imp)98.77 21198.58 21799.34 20699.78 7298.88 23499.61 5399.56 18099.11 15599.24 23399.56 19593.00 30699.78 27597.43 22999.89 9299.35 228
Patchmatch-RL test98.60 23098.36 23999.33 20899.77 8099.07 21498.27 27899.87 2098.91 17899.74 8999.72 9390.57 33499.79 27298.55 13999.85 11999.11 274
PAPM_NR98.36 25898.04 26599.33 20899.48 20998.93 22998.79 23199.28 28097.54 28898.56 30998.57 34597.12 24699.69 30894.09 34298.90 31699.38 219
PCF-MVS96.03 1896.73 31295.86 32399.33 20899.44 22499.16 20196.87 35499.44 23586.58 36198.95 26999.40 24194.38 29299.88 15787.93 35999.80 15698.95 300
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS98.76 21398.57 21899.33 20899.57 16598.97 22197.53 33399.55 18696.41 32399.27 22899.13 29599.07 6699.78 27596.73 27399.89 9299.23 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS98.28 26497.94 27599.32 21299.36 24699.11 20697.31 34398.78 31896.88 31498.84 28499.11 30197.77 21199.61 34394.03 34499.36 28499.23 249
jason99.16 14799.11 12799.32 21299.75 9598.44 26198.26 27999.39 25298.70 20299.74 8999.30 26698.54 13599.97 1798.48 14299.82 14299.55 145
jason: jason.
FMVSNet398.80 20998.63 21199.32 21299.13 29998.72 24299.10 17499.48 22299.23 13499.62 13299.64 14192.57 30899.86 19198.96 10799.90 8499.39 217
MVSFormer99.41 7399.44 5999.31 21599.57 16598.40 26499.77 1199.80 4999.73 4099.63 12599.30 26698.02 19199.98 799.43 3899.69 20799.55 145
DP-MVS Recon98.50 24498.23 25199.31 21599.49 20399.46 13098.56 25299.63 13694.86 34698.85 28399.37 24797.81 20899.59 34596.08 30199.44 27098.88 306
PatchMatch-RL98.68 22398.47 22799.30 21799.44 22499.28 17598.14 28899.54 19197.12 31099.11 25599.25 27997.80 20999.70 30296.51 28499.30 29198.93 302
OPU-MVS99.29 21899.12 30199.44 13799.20 14099.40 24199.00 7298.84 36396.54 28299.60 23999.58 133
CS-MVS99.40 7699.43 6299.29 21899.44 22499.72 6499.36 9399.91 999.71 4499.28 22698.83 33499.22 4799.86 19199.40 4599.77 17198.29 336
D2MVS99.22 12799.19 11099.29 21899.69 12198.74 24198.81 22599.41 24298.55 21599.68 10799.69 11398.13 18399.87 17098.82 12099.98 2199.24 246
CANet99.11 15999.05 14899.28 22198.83 33198.56 25398.71 24199.41 24299.25 13099.23 23499.22 28697.66 22299.94 5799.19 7599.97 3099.33 231
CNLPA98.57 23598.34 24299.28 22199.18 29399.10 21098.34 27199.41 24298.48 22498.52 31198.98 31997.05 24999.78 27595.59 31999.50 26298.96 299
sss98.90 19698.77 20099.27 22399.48 20998.44 26198.72 23999.32 26897.94 27099.37 20799.35 25796.31 26999.91 10898.85 11799.63 22899.47 191
LF4IMVS99.01 17998.92 18199.27 22399.71 11199.28 17598.59 24699.77 6398.32 24699.39 20599.41 23998.62 12499.84 22796.62 28099.84 12398.69 316
LFMVS98.46 25098.19 25799.26 22599.24 28298.52 25699.62 4896.94 35399.87 1499.31 22199.58 18491.04 32599.81 26498.68 13499.42 27599.45 197
WTY-MVS98.59 23398.37 23899.26 22599.43 22798.40 26498.74 23699.13 30398.10 25799.21 24099.24 28494.82 28799.90 12997.86 19498.77 32199.49 181
OpenMVScopyleft98.12 1098.23 26997.89 28199.26 22599.19 29199.26 17999.65 4599.69 10591.33 35798.14 33099.77 7398.28 16999.96 3595.41 32499.55 24898.58 322
alignmvs98.28 26497.96 27099.25 22899.12 30198.93 22999.03 18898.42 33399.64 6598.72 29797.85 36090.86 33099.62 33998.88 11699.13 30299.19 258
IterMVS-LS99.41 7399.47 5399.25 22899.81 5198.09 28398.85 21799.76 6899.62 6999.83 4899.64 14198.54 13599.97 1799.15 8499.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS98.96 18898.87 18899.24 23099.57 16598.40 26498.12 29099.18 29798.28 24899.63 12599.13 29598.02 19199.97 1798.22 16199.69 20799.35 228
MVSTER98.47 24998.22 25299.24 23099.06 31198.35 26999.08 18199.46 23099.27 12699.75 8099.66 13488.61 34499.85 21099.14 9099.92 7499.52 168
mvs-test198.83 20598.70 20699.22 23298.89 32599.65 9098.88 21199.66 11799.34 11698.29 31998.94 32697.69 21599.96 3598.11 17398.54 33398.04 347
EI-MVSNet99.38 8399.44 5999.21 23399.58 15598.09 28399.26 12299.46 23099.62 6999.75 8099.67 13098.54 13599.85 21099.15 8499.92 7499.68 58
BH-RMVSNet98.41 25498.14 26199.21 23399.21 28698.47 25898.60 24598.26 33898.35 24098.93 27199.31 26497.20 24499.66 32894.32 33899.10 30499.51 170
ambc99.20 23599.35 24898.53 25499.17 15199.46 23099.67 11199.80 5498.46 14999.70 30297.92 18799.70 20499.38 219
MVS_Test99.28 10799.31 8499.19 23699.35 24898.79 23999.36 9399.49 22099.17 14399.21 24099.67 13098.78 10399.66 32899.09 9499.66 22199.10 276
MAR-MVS98.24 26897.92 27799.19 23698.78 33999.65 9099.17 15199.14 30195.36 33898.04 33498.81 33797.47 22899.72 29695.47 32399.06 30598.21 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet98.13 27297.77 28599.18 23894.57 36897.99 28799.24 13097.96 34199.74 3997.29 35199.62 16093.13 30499.97 1798.59 13799.83 13399.58 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
hse-mvs298.52 24298.30 24699.16 23999.29 27298.60 25298.77 23399.02 30899.68 5399.32 21799.04 30992.50 31199.85 21099.24 6797.87 35099.03 291
ETV-MVS99.18 14299.18 11199.16 23999.34 25899.28 17599.12 17199.79 5599.48 9098.93 27198.55 34799.40 2499.93 7198.51 14199.52 25998.28 337
CL-MVSNet_2432*160098.71 22098.56 22199.15 24199.22 28498.66 24797.14 34899.51 21198.09 25999.54 16299.27 27396.87 25499.74 29198.43 14498.96 31199.03 291
AUN-MVS97.82 28297.38 29399.14 24299.27 27798.53 25498.72 23999.02 30898.10 25797.18 35499.03 31389.26 34399.85 21097.94 18697.91 34899.03 291
test_yl98.25 26697.95 27199.13 24399.17 29498.47 25899.00 19398.67 32398.97 16799.22 23899.02 31491.31 32199.69 30897.26 24198.93 31299.24 246
DCV-MVSNet98.25 26697.95 27199.13 24399.17 29498.47 25899.00 19398.67 32398.97 16799.22 23899.02 31491.31 32199.69 30897.26 24198.93 31299.24 246
CS-MVS-test99.20 13499.22 10799.12 24599.30 26999.78 3999.35 9599.90 1399.47 9598.98 26698.52 34998.83 9399.87 17099.10 9399.55 24897.72 351
MIMVSNet98.43 25298.20 25499.11 24699.53 18298.38 26799.58 6198.61 32598.96 17099.33 21599.76 7690.92 32799.81 26497.38 23299.76 17499.15 266
PMMVS98.49 24798.29 24799.11 24698.96 31998.42 26397.54 33199.32 26897.53 28998.47 31598.15 35797.88 20399.82 24897.46 22799.24 29999.09 279
CANet_DTU98.91 19498.85 19099.09 24898.79 33798.13 27898.18 28399.31 27299.48 9098.86 28299.51 21396.56 25899.95 4599.05 9799.95 4999.19 258
MS-PatchMatch99.00 18198.97 17299.09 24899.11 30698.19 27598.76 23599.33 26698.49 22399.44 18499.58 18498.21 17699.69 30898.20 16399.62 22999.39 217
canonicalmvs99.02 17599.00 16399.09 24899.10 30798.70 24399.61 5399.66 11799.63 6898.64 30297.65 36299.04 7099.54 34898.79 12298.92 31499.04 290
PVSNet_BlendedMVS99.03 17399.01 16099.09 24899.54 17797.99 28798.58 24799.82 3997.62 28499.34 21399.71 10098.52 14299.77 28397.98 18299.97 3099.52 168
MDA-MVSNet-bldmvs99.06 16699.05 14899.07 25299.80 5697.83 29498.89 21099.72 9299.29 12299.63 12599.70 10796.47 26299.89 14398.17 16999.82 14299.50 176
TinyColmap98.97 18598.93 17799.07 25299.46 21998.19 27597.75 32299.75 7598.79 19399.54 16299.70 10798.97 7699.62 33996.63 27999.83 13399.41 212
USDC98.96 18898.93 17799.05 25499.54 17797.99 28797.07 35199.80 4998.21 25299.75 8099.77 7398.43 15199.64 33797.90 18899.88 10099.51 170
PAPR97.56 29397.07 30299.04 25598.80 33698.11 28197.63 32799.25 28694.56 35098.02 33598.25 35697.43 23099.68 31990.90 35598.74 32599.33 231
PVSNet_Blended98.70 22198.59 21499.02 25699.54 17797.99 28797.58 33099.82 3995.70 33599.34 21398.98 31998.52 14299.77 28397.98 18299.83 13399.30 237
MVS95.72 33294.63 33698.99 25798.56 34797.98 29299.30 10998.86 31372.71 36597.30 35099.08 30398.34 16499.74 29189.21 35698.33 33799.26 243
HY-MVS98.23 998.21 27197.95 27198.99 25799.03 31598.24 27199.61 5398.72 32096.81 31898.73 29699.51 21394.06 29499.86 19196.91 26198.20 34098.86 308
baseline197.73 28697.33 29498.96 25999.30 26997.73 29899.40 8298.42 33399.33 11999.46 18299.21 28891.18 32399.82 24898.35 15091.26 36499.32 234
DSMNet-mixed99.48 5499.65 2398.95 26099.71 11197.27 31099.50 6899.82 3999.59 8199.41 19899.85 3799.62 16100.00 199.53 2999.89 9299.59 128
thisisatest053097.45 29596.95 30698.94 26199.68 13097.73 29899.09 17894.19 36598.61 21099.56 15599.30 26684.30 36199.93 7198.27 15799.54 25599.16 264
mvs_anonymous99.28 10799.39 6898.94 26199.19 29197.81 29599.02 18999.55 18699.78 3599.85 4099.80 5498.24 17299.86 19199.57 2499.50 26299.15 266
MG-MVS98.52 24298.39 23698.94 26199.15 29697.39 30898.18 28399.21 29598.89 18299.23 23499.63 15197.37 23599.74 29194.22 34099.61 23699.69 52
GA-MVS97.99 28097.68 28898.93 26499.52 18798.04 28697.19 34799.05 30798.32 24698.81 28798.97 32289.89 34199.41 35898.33 15299.05 30699.34 230
cl-mvsnet____98.54 24098.41 23498.92 26599.03 31597.80 29697.46 33799.59 16498.90 17999.60 14099.46 23293.85 29799.78 27597.97 18499.89 9299.17 262
cl-mvsnet198.54 24098.42 23398.92 26599.03 31597.80 29697.46 33799.59 16498.90 17999.60 14099.46 23293.87 29699.78 27597.97 18499.89 9299.18 260
ET-MVSNet_ETH3D96.78 31096.07 31998.91 26799.26 27997.92 29397.70 32596.05 35897.96 26992.37 36698.43 35287.06 34899.90 12998.27 15797.56 35398.91 304
xiu_mvs_v1_base_debu99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
xiu_mvs_v1_base99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
xiu_mvs_v1_base_debi99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
MSLP-MVS++99.05 16999.09 13698.91 26799.21 28698.36 26898.82 22499.47 22698.85 18598.90 27799.56 19598.78 10399.09 36198.57 13899.68 21099.26 243
pmmvs398.08 27597.80 28298.91 26799.41 23397.69 30097.87 31899.66 11795.87 33199.50 17599.51 21390.35 33699.97 1798.55 13999.47 26799.08 282
tttt051797.62 29097.20 29998.90 27399.76 8497.40 30799.48 7294.36 36399.06 16299.70 10299.49 22184.55 36099.94 5798.73 12999.65 22499.36 225
OpenMVS_ROBcopyleft97.31 1797.36 29996.84 31098.89 27499.29 27299.45 13598.87 21499.48 22286.54 36299.44 18499.74 8397.34 23699.86 19191.61 35199.28 29397.37 356
MDA-MVSNet_test_wron98.95 19198.99 16898.85 27599.64 14097.16 31398.23 28199.33 26698.93 17599.56 15599.66 13497.39 23399.83 23898.29 15599.88 10099.55 145
PMVScopyleft92.94 2198.82 20798.81 19698.85 27599.84 3497.99 28799.20 14099.47 22699.71 4499.42 19099.82 4998.09 18599.47 35593.88 34699.85 11999.07 287
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
YYNet198.95 19198.99 16898.84 27799.64 14097.14 31498.22 28299.32 26898.92 17799.59 14399.66 13497.40 23199.83 23898.27 15799.90 8499.55 145
new_pmnet98.88 20098.89 18698.84 27799.70 11897.62 30198.15 28699.50 21597.98 26599.62 13299.54 20498.15 18299.94 5797.55 22199.84 12398.95 300
CR-MVSNet98.35 26198.20 25498.83 27999.05 31298.12 27999.30 10999.67 11397.39 29799.16 24799.79 6091.87 31799.91 10898.78 12598.77 32198.44 331
PatchT98.45 25198.32 24598.83 27998.94 32098.29 27099.24 13098.82 31699.84 2399.08 25899.76 7691.37 32099.94 5798.82 12099.00 31098.26 338
RPMNet98.60 23098.53 22498.83 27999.05 31298.12 27999.30 10999.62 13999.86 1699.16 24799.74 8392.53 31099.92 9098.75 12798.77 32198.44 331
miper_lstm_enhance98.65 22598.60 21298.82 28299.20 28997.33 30997.78 32199.66 11799.01 16499.59 14399.50 21694.62 29099.85 21098.12 17299.90 8499.26 243
FPMVS96.32 32095.50 32898.79 28399.60 14998.17 27798.46 26798.80 31797.16 30896.28 35799.63 15182.19 36299.09 36188.45 35898.89 31799.10 276
xiu_mvs_v2_base99.02 17599.11 12798.77 28499.37 24498.09 28398.13 28999.51 21199.47 9599.42 19098.54 34899.38 2999.97 1798.83 11899.33 28898.24 339
PS-MVSNAJ99.00 18199.08 13898.76 28599.37 24498.10 28298.00 30499.51 21199.47 9599.41 19898.50 35199.28 4199.97 1798.83 11899.34 28698.20 343
test0.0.03 197.37 29896.91 30998.74 28697.72 36197.57 30297.60 32997.36 35298.00 26299.21 24098.02 35890.04 33999.79 27298.37 14795.89 36298.86 308
cl_fuxian98.72 21998.71 20398.72 28799.12 30197.22 31297.68 32699.56 18098.90 17999.54 16299.48 22496.37 26899.73 29497.88 19099.88 10099.21 253
EU-MVSNet99.39 8199.62 2698.72 28799.88 2496.44 32699.56 6499.85 2699.90 799.90 2299.85 3798.09 18599.83 23899.58 2399.95 4999.90 4
new-patchmatchnet99.35 9099.57 4098.71 28999.82 4496.62 32498.55 25399.75 7599.50 8899.88 3299.87 3199.31 3799.88 15799.43 38100.00 199.62 106
thisisatest051596.98 30696.42 31398.66 29099.42 23297.47 30497.27 34494.30 36497.24 30399.15 24998.86 33385.01 35899.87 17097.10 25399.39 27898.63 317
eth_miper_zixun_eth98.68 22398.71 20398.60 29199.10 30796.84 32197.52 33599.54 19198.94 17299.58 14599.48 22496.25 27199.76 28598.01 18099.93 7099.21 253
miper_ehance_all_eth98.59 23398.59 21498.59 29298.98 31897.07 31597.49 33699.52 20898.50 22199.52 16999.37 24796.41 26699.71 30097.86 19499.62 22999.00 297
BH-untuned98.22 27098.09 26398.58 29399.38 24197.24 31198.55 25398.98 31197.81 27899.20 24598.76 33997.01 25099.65 33594.83 33298.33 33798.86 308
IterMVS-SCA-FT99.00 18199.16 11398.51 29499.75 9595.90 33498.07 29799.84 3299.84 2399.89 2699.73 8796.01 27699.99 599.33 55100.00 199.63 95
JIA-IIPM98.06 27697.92 27798.50 29598.59 34697.02 31698.80 22898.51 32999.88 1397.89 33999.87 3191.89 31699.90 12998.16 17097.68 35298.59 320
Patchmatch-test98.10 27497.98 26998.48 29699.27 27796.48 32599.40 8299.07 30498.81 19099.23 23499.57 19290.11 33899.87 17096.69 27499.64 22699.09 279
baseline296.83 30996.28 31598.46 29799.09 30996.91 31998.83 22093.87 36697.23 30496.23 36098.36 35388.12 34599.90 12996.68 27598.14 34498.57 323
IterMVS98.97 18599.16 11398.42 29899.74 10195.64 33798.06 29999.83 3499.83 2699.85 4099.74 8396.10 27599.99 599.27 66100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet297.56 29397.28 29598.40 29998.37 35296.75 32297.24 34699.37 25997.31 30199.41 19899.22 28687.30 34699.37 35997.70 20899.62 22999.08 282
CHOSEN 280x42098.41 25498.41 23498.40 29999.34 25895.89 33596.94 35399.44 23598.80 19299.25 23099.52 20993.51 30199.98 798.94 11299.98 2199.32 234
API-MVS98.38 25798.39 23698.35 30198.83 33199.26 17999.14 16199.18 29798.59 21198.66 30198.78 33898.61 12699.57 34794.14 34199.56 24496.21 360
PVSNet97.47 1598.42 25398.44 23198.35 30199.46 21996.26 32896.70 35699.34 26597.68 28299.00 26599.13 29597.40 23199.72 29697.59 22099.68 21099.08 282
miper_enhance_ethall98.03 27797.94 27598.32 30398.27 35496.43 32796.95 35299.41 24296.37 32599.43 18898.96 32494.74 28899.69 30897.71 20699.62 22998.83 311
TR-MVS97.44 29697.15 30198.32 30398.53 34897.46 30598.47 26297.91 34396.85 31698.21 32598.51 35096.42 26499.51 35392.16 35097.29 35497.98 348
PAPM95.61 33394.71 33598.31 30599.12 30196.63 32396.66 35798.46 33290.77 35896.25 35898.68 34293.01 30599.69 30881.60 36597.86 35198.62 318
MVEpermissive92.54 2296.66 31496.11 31898.31 30599.68 13097.55 30397.94 31395.60 36099.37 11390.68 36798.70 34196.56 25898.61 36586.94 36499.55 24898.77 314
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131498.00 27997.90 28098.27 30798.90 32297.45 30699.30 10999.06 30694.98 34397.21 35399.12 29998.43 15199.67 32495.58 32098.56 33297.71 352
ppachtmachnet_test98.89 19999.12 12498.20 30899.66 13695.24 34197.63 32799.68 10899.08 15699.78 6899.62 16098.65 12299.88 15798.02 17799.96 4299.48 186
SD-MVS99.01 17999.30 8998.15 30999.50 19899.40 14998.94 20899.61 14699.22 13799.75 8099.82 4999.54 2195.51 36797.48 22699.87 10999.54 153
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
our_test_398.85 20499.09 13698.13 31099.66 13694.90 34497.72 32399.58 17399.07 15899.64 12199.62 16098.19 17999.93 7198.41 14599.95 4999.55 145
ADS-MVSNet297.78 28497.66 29098.12 31199.14 29795.36 33999.22 13798.75 31996.97 31298.25 32299.64 14190.90 32899.94 5796.51 28499.56 24499.08 282
DeepMVS_CXcopyleft97.98 31299.69 12196.95 31799.26 28375.51 36495.74 36298.28 35596.47 26299.62 33991.23 35397.89 34997.38 355
gg-mvs-nofinetune95.87 32995.17 33397.97 31398.19 35696.95 31799.69 2889.23 37099.89 1196.24 35999.94 1281.19 36399.51 35393.99 34598.20 34097.44 354
thres600view796.60 31596.16 31797.93 31499.63 14296.09 33299.18 14697.57 34798.77 19698.72 29797.32 36687.04 34999.72 29688.57 35798.62 33097.98 348
thres40096.40 31795.89 32197.92 31599.58 15596.11 33099.00 19397.54 35098.43 22698.52 31196.98 36986.85 35199.67 32487.62 36098.51 33497.98 348
ADS-MVSNet97.72 28897.67 28997.86 31699.14 29794.65 34599.22 13798.86 31396.97 31298.25 32299.64 14190.90 32899.84 22796.51 28499.56 24499.08 282
IB-MVS95.41 2095.30 33494.46 33797.84 31798.76 34195.33 34097.33 34296.07 35796.02 32995.37 36497.41 36576.17 37299.96 3597.54 22295.44 36398.22 340
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet98.61 22898.88 18797.80 31899.58 15593.60 35199.26 12299.64 13499.66 6199.72 9599.67 13093.26 30299.93 7199.30 6099.81 15199.87 9
BH-w/o97.20 30197.01 30497.76 31999.08 31095.69 33698.03 30198.52 32895.76 33497.96 33698.02 35895.62 28199.47 35592.82 34997.25 35598.12 345
tpm97.15 30296.95 30697.75 32098.91 32194.24 34799.32 10297.96 34197.71 28198.29 31999.32 26286.72 35599.92 9098.10 17596.24 36199.09 279
test-LLR97.15 30296.95 30697.74 32198.18 35795.02 34297.38 33996.10 35598.00 26297.81 34398.58 34390.04 33999.91 10897.69 21498.78 31998.31 334
test-mter96.23 32395.73 32697.74 32198.18 35795.02 34297.38 33996.10 35597.90 27197.81 34398.58 34379.12 37099.91 10897.69 21498.78 31998.31 334
RRT_test8_iter0597.35 30097.25 29797.63 32398.81 33593.13 35399.26 12299.89 1599.51 8799.83 4899.68 12479.03 37199.88 15799.53 2999.72 19899.89 8
tfpn200view996.30 32195.89 32197.53 32499.58 15596.11 33099.00 19397.54 35098.43 22698.52 31196.98 36986.85 35199.67 32487.62 36098.51 33496.81 358
cascas96.99 30596.82 31197.48 32597.57 36495.64 33796.43 35899.56 18091.75 35597.13 35597.61 36395.58 28298.63 36496.68 27599.11 30398.18 344
thres100view90096.39 31896.03 32097.47 32699.63 14295.93 33399.18 14697.57 34798.75 20098.70 29997.31 36787.04 34999.67 32487.62 36098.51 33496.81 358
PVSNet_095.53 1995.85 33095.31 33297.47 32698.78 33993.48 35295.72 36099.40 24996.18 32897.37 34997.73 36195.73 27999.58 34695.49 32181.40 36599.36 225
TESTMET0.1,196.24 32295.84 32497.41 32898.24 35593.84 35097.38 33995.84 35998.43 22697.81 34398.56 34679.77 36799.89 14397.77 20198.77 32198.52 325
GG-mvs-BLEND97.36 32997.59 36296.87 32099.70 2288.49 37194.64 36597.26 36880.66 36599.12 36091.50 35296.50 36096.08 362
SCA98.11 27398.36 23997.36 32999.20 28992.99 35498.17 28598.49 33198.24 25099.10 25799.57 19296.01 27699.94 5796.86 26499.62 22999.14 270
thres20096.09 32495.68 32797.33 33199.48 20996.22 32998.53 25797.57 34798.06 26198.37 31896.73 37186.84 35399.61 34386.99 36398.57 33196.16 361
KD-MVS_2432*160095.89 32795.41 33097.31 33294.96 36693.89 34897.09 34999.22 29197.23 30498.88 27899.04 30979.23 36899.54 34896.24 29796.81 35698.50 329
miper_refine_blended95.89 32795.41 33097.31 33294.96 36693.89 34897.09 34999.22 29197.23 30498.88 27899.04 30979.23 36899.54 34896.24 29796.81 35698.50 329
PatchmatchNetpermissive97.65 28997.80 28297.18 33498.82 33492.49 35699.17 15198.39 33598.12 25698.79 29099.58 18490.71 33299.89 14397.23 24599.41 27699.16 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.53 31696.32 31497.17 33598.18 35792.97 35599.39 8489.95 36998.21 25298.61 30499.59 18286.69 35699.72 29696.99 25799.23 30198.81 312
EPNet_dtu97.62 29097.79 28497.11 33696.67 36592.31 35798.51 25998.04 33999.24 13295.77 36199.47 22993.78 29999.66 32898.98 10399.62 22999.37 222
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tmp_tt95.75 33195.42 32996.76 33789.90 37094.42 34698.86 21597.87 34478.01 36399.30 22599.69 11397.70 21395.89 36699.29 6398.14 34499.95 1
MVS-HIRNet97.86 28198.22 25296.76 33799.28 27591.53 36398.38 27092.60 36799.13 15199.31 22199.96 1097.18 24599.68 31998.34 15199.83 13399.07 287
tpm296.35 31996.22 31696.73 33998.88 32891.75 36199.21 13998.51 32993.27 35297.89 33999.21 28884.83 35999.70 30296.04 30398.18 34398.75 315
tpmrst97.73 28698.07 26496.73 33998.71 34392.00 35899.10 17498.86 31398.52 21998.92 27499.54 20491.90 31599.82 24898.02 17799.03 30898.37 333
DWT-MVSNet_test96.03 32695.80 32596.71 34198.50 34991.93 35999.25 12997.87 34495.99 33096.81 35697.61 36381.02 36499.66 32897.20 24897.98 34798.54 324
tpmvs97.39 29797.69 28796.52 34298.41 35091.76 36099.30 10998.94 31297.74 27997.85 34299.55 20292.40 31399.73 29496.25 29698.73 32798.06 346
CostFormer96.71 31396.79 31296.46 34398.90 32290.71 36799.41 8198.68 32194.69 34998.14 33099.34 26086.32 35799.80 26997.60 21998.07 34698.88 306
E-PMN97.14 30497.43 29296.27 34498.79 33791.62 36295.54 36199.01 31099.44 10398.88 27899.12 29992.78 30799.68 31994.30 33999.03 30897.50 353
dp96.86 30897.07 30296.24 34598.68 34590.30 36999.19 14598.38 33697.35 29998.23 32499.59 18287.23 34799.82 24896.27 29598.73 32798.59 320
tpm cat196.78 31096.98 30596.16 34698.85 32990.59 36899.08 18199.32 26892.37 35497.73 34899.46 23291.15 32499.69 30896.07 30298.80 31898.21 341
EMVS96.96 30797.28 29595.99 34798.76 34191.03 36595.26 36298.61 32599.34 11698.92 27498.88 33293.79 29899.66 32892.87 34899.05 30697.30 357
wuyk23d97.58 29299.13 12092.93 34899.69 12199.49 12399.52 6699.77 6397.97 26699.96 899.79 6099.84 399.94 5795.85 31299.82 14279.36 363
test_method91.72 33592.32 33889.91 34993.49 36970.18 37190.28 36399.56 18061.71 36695.39 36399.52 20993.90 29599.94 5798.76 12698.27 33999.62 106
test12329.31 33633.05 34118.08 35025.93 37212.24 37297.53 33310.93 37311.78 36724.21 36850.08 37621.04 3738.60 36823.51 36632.43 36733.39 364
testmvs28.94 33733.33 33915.79 35126.03 3719.81 37396.77 35515.67 37211.55 36823.87 36950.74 37519.03 3748.53 36923.21 36733.07 36629.03 365
uanet_test8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.88 33833.17 3400.00 3520.00 3730.00 3740.00 36499.62 1390.00 3690.00 37099.13 29599.82 40.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas16.61 33922.14 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 199.28 410.00 3700.00 3680.00 3680.00 366
sosnet-low-res8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
sosnet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
Regformer8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.26 34611.02 3490.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.16 2930.00 3750.00 3700.00 3680.00 3680.00 366
uanet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
ZD-MVS99.43 22799.61 10499.43 23996.38 32499.11 25599.07 30497.86 20499.92 9094.04 34399.49 264
RE-MVS-def99.13 12099.54 17799.74 5799.26 12299.62 13999.16 14599.52 16999.64 14198.57 13097.27 23999.61 23699.54 153
IU-MVS99.69 12199.77 4299.22 29197.50 29199.69 10597.75 20399.70 20499.77 33
test_241102_TWO99.54 19199.13 15199.76 7599.63 15198.32 16799.92 9097.85 19699.69 20799.75 40
test_241102_ONE99.69 12199.82 2699.54 19199.12 15499.82 5099.49 22198.91 8399.52 352
9.1498.64 20999.45 22298.81 22599.60 15797.52 29099.28 22699.56 19598.53 13999.83 23895.36 32699.64 226
save fliter99.53 18299.25 18398.29 27699.38 25899.07 158
test_0728_THIRD99.18 14099.62 13299.61 16998.58 12999.91 10897.72 20599.80 15699.77 33
test072699.69 12199.80 3499.24 13099.57 17599.16 14599.73 9399.65 13998.35 162
GSMVS99.14 270
test_part299.62 14699.67 8399.55 160
sam_mvs190.81 33199.14 270
sam_mvs90.52 335
MTGPAbinary99.53 200
test_post199.14 16151.63 37489.54 34299.82 24896.86 264
test_post52.41 37390.25 33799.86 191
patchmatchnet-post99.62 16090.58 33399.94 57
MTMP99.09 17898.59 327
gm-plane-assit97.59 36289.02 37093.47 35198.30 35499.84 22796.38 291
test9_res95.10 32999.44 27099.50 176
TEST999.35 24899.35 16498.11 29299.41 24294.83 34897.92 33798.99 31698.02 19199.85 210
test_899.34 25899.31 17098.08 29699.40 24994.90 34497.87 34198.97 32298.02 19199.84 227
agg_prior294.58 33799.46 26999.50 176
agg_prior99.35 24899.36 16099.39 25297.76 34699.85 210
test_prior499.19 19998.00 304
test_prior297.95 31197.87 27398.05 33299.05 30697.90 20095.99 30699.49 264
旧先验297.94 31395.33 33998.94 27099.88 15796.75 271
新几何298.04 300
旧先验199.49 20399.29 17399.26 28399.39 24597.67 21899.36 28499.46 195
无先验98.01 30299.23 29095.83 33299.85 21095.79 31599.44 202
原ACMM297.92 315
test22299.51 19299.08 21397.83 32099.29 27795.21 34198.68 30099.31 26497.28 23899.38 27999.43 208
testdata299.89 14395.99 306
segment_acmp98.37 160
testdata197.72 32397.86 276
plane_prior799.58 15599.38 154
plane_prior699.47 21499.26 17997.24 239
plane_prior599.54 19199.82 24895.84 31399.78 16799.60 119
plane_prior499.25 279
plane_prior399.31 17098.36 23599.14 251
plane_prior298.80 22898.94 172
plane_prior199.51 192
plane_prior99.24 18898.42 26897.87 27399.71 202
n20.00 374
nn0.00 374
door-mid99.83 34
test1199.29 277
door99.77 63
HQP5-MVS98.94 225
HQP-NCC99.31 26597.98 30797.45 29398.15 326
ACMP_Plane99.31 26597.98 30797.45 29398.15 326
BP-MVS94.73 333
HQP4-MVS98.15 32699.70 30299.53 158
HQP3-MVS99.37 25999.67 217
HQP2-MVS96.67 256
NP-MVS99.40 23699.13 20498.83 334
MDTV_nov1_ep13_2view91.44 36499.14 16197.37 29899.21 24091.78 31996.75 27199.03 291
MDTV_nov1_ep1397.73 28698.70 34490.83 36699.15 15998.02 34098.51 22098.82 28699.61 16990.98 32699.66 32896.89 26398.92 314
ACMMP++_ref99.94 62
ACMMP++99.79 161
Test By Simon98.41 154