This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4099.97 699.92 1699.77 799.98 799.43 38100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 47100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2599.71 999.96 3599.51 3199.97 3099.84 14
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 1999.85 2699.70 4999.92 1899.93 1399.45 2399.97 1799.36 50100.00 199.85 13
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2299.88 1899.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4399.68 3499.85 2699.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2599.86 2299.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
PS-CasMVS99.66 2699.58 3799.89 799.80 5799.85 1499.66 4299.73 8399.62 7099.84 4399.71 10098.62 12699.96 3599.30 6099.96 4299.86 11
PEN-MVS99.66 2699.59 3499.89 799.83 3899.87 1099.66 4299.73 8399.70 4999.84 4399.73 8798.56 13599.96 3599.29 6399.94 6299.83 18
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2499.94 1199.91 1999.13 5999.96 3599.83 999.99 1299.83 18
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5799.87 1099.67 3899.71 9599.72 4399.84 4399.78 6698.67 12099.97 1799.30 6099.95 4999.80 24
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3199.81 599.95 4599.54 2799.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CP-MVSNet99.54 4799.43 6299.87 1499.76 8599.82 2899.57 6599.61 14799.54 8499.80 6099.64 14197.79 21399.95 4599.21 7099.94 6299.84 14
WR-MVS_H99.61 3799.53 4999.87 1499.80 5799.83 2499.67 3899.75 7599.58 8399.85 4099.69 11398.18 18499.94 5799.28 6599.95 4999.83 18
UA-Net99.78 1399.76 1499.86 1699.72 10999.71 7099.91 399.95 599.96 299.71 10199.91 1999.15 5599.97 1799.50 33100.00 199.90 4
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2499.86 1399.72 2299.78 6099.90 799.82 5099.83 4398.45 15399.87 17499.51 3199.97 3099.86 11
APDe-MVS99.48 5499.36 7799.85 1899.55 17899.81 3199.50 7199.69 10698.99 16899.75 8199.71 10098.79 10399.93 7198.46 14399.85 12099.80 24
FIs99.65 3199.58 3799.84 1999.84 3499.85 1499.66 4299.75 7599.86 1699.74 9099.79 6098.27 17399.85 21399.37 4999.93 7099.83 18
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3399.93 1499.93 1398.54 13899.93 7199.59 2199.98 2199.76 39
test_0728_SECOND99.83 2199.70 12099.79 3899.14 16399.61 14799.92 9197.88 19099.72 19899.77 35
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2199.94 1199.95 1199.73 899.90 13299.65 1699.97 3099.69 54
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 16799.77 4398.74 23899.60 15998.55 21899.76 7599.69 11398.23 17899.92 9196.39 29499.75 17799.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
nrg03099.70 1999.66 2299.82 2399.76 8599.84 1999.61 5599.70 10099.93 499.78 6899.68 12499.10 6099.78 27899.45 3699.96 4299.83 18
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22299.86 2299.68 5499.65 12199.88 2897.67 22199.87 17499.03 9899.86 11699.76 39
MSP-MVS99.04 17398.79 20099.81 2699.78 7399.73 6399.35 9899.57 17798.54 22199.54 16598.99 31996.81 25899.93 7196.97 26199.53 26199.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 4999.91 2099.89 2599.60 1999.87 17499.59 2199.74 18599.71 48
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6799.59 6299.82 3999.39 11299.82 5099.84 4299.38 2999.91 11299.38 4799.93 7099.80 24
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3899.83 2498.61 24599.63 13796.84 32199.44 18899.58 18698.81 9699.91 11297.70 21199.82 14399.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.30 10699.14 11899.80 2999.81 5299.81 3198.73 24099.53 20399.27 12799.42 19499.63 15198.21 17999.95 4597.83 19999.79 16199.65 85
MTAPA99.35 9299.20 11099.80 2999.81 5299.81 3199.33 10199.53 20399.27 12799.42 19499.63 15198.21 17999.95 4597.83 19999.79 16199.65 85
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3899.81 3199.52 6999.70 10098.35 24399.51 17799.50 21899.31 3799.88 16198.18 16799.84 12499.69 54
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3199.77 6399.78 3699.93 1499.89 2597.94 20099.92 9199.65 1699.98 2199.62 108
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9699.81 3198.95 20899.53 20398.27 25299.53 17099.73 8798.75 11199.87 17497.70 21199.83 13499.68 60
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13299.75 5499.62 5099.69 10699.85 2199.80 6099.81 5298.81 9699.91 11299.47 3599.88 10099.70 51
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8899.69 3199.92 799.67 5899.77 7399.75 8099.61 1799.98 799.35 5199.98 2199.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE99.69 2199.66 2299.78 3799.76 8599.76 5099.60 6099.82 3999.46 10199.75 8199.56 19799.63 1499.95 4599.43 3899.88 10099.62 108
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4099.89 2699.87 3199.63 1499.87 17499.54 2799.92 7499.63 97
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5299.75 5499.61 5599.67 11497.72 28399.35 21399.25 28299.23 4799.92 9197.21 25099.82 14399.67 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++.99.38 8499.25 10499.77 4099.03 31799.77 4399.74 1699.61 14799.18 14299.76 7599.61 16999.00 7499.92 9197.72 20799.60 24299.62 108
SED-MVS99.40 7799.28 9799.77 4099.69 12399.82 2899.20 14299.54 19499.13 15499.82 5099.63 15198.91 8699.92 9197.85 19699.70 20499.58 137
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8599.73 6399.28 11999.56 18298.19 25799.14 25599.29 27398.84 9599.92 9197.53 22799.80 15699.64 92
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12399.80 3699.14 16399.31 27599.16 14899.62 13599.61 16998.35 16599.91 11297.88 19099.72 19899.61 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
region2R99.23 12099.05 14999.77 4099.76 8599.70 7799.31 10899.59 16698.41 23299.32 22099.36 25698.73 11499.93 7197.29 23999.74 18599.67 67
PGM-MVS99.20 13699.01 16199.77 4099.75 9699.71 7099.16 15999.72 9297.99 26799.42 19499.60 17898.81 9699.93 7196.91 26499.74 18599.66 77
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5299.78 6899.92 1699.37 3199.88 16198.93 11399.95 4999.60 123
DIV-MVS_2432*160099.63 3299.59 3499.76 4799.84 3499.90 599.37 9399.79 5599.83 2799.88 3299.85 3798.42 15699.90 13299.60 2099.73 19299.49 185
Anonymous2023121199.62 3599.57 4099.76 4799.61 14999.60 10999.81 999.73 8399.82 2999.90 2299.90 2197.97 19999.86 19499.42 4399.96 4299.80 24
HFP-MVS99.25 11699.08 13999.76 4799.73 10599.70 7799.31 10899.59 16698.36 23899.36 21199.37 25198.80 10099.91 11297.43 23299.75 17799.68 60
#test#99.12 15698.90 18699.76 4799.73 10599.70 7799.10 17699.59 16697.60 28899.36 21199.37 25198.80 10099.91 11296.84 27099.75 17799.68 60
ACMMPR99.23 12099.06 14599.76 4799.74 10299.69 8199.31 10899.59 16698.36 23899.35 21399.38 25098.61 12899.93 7197.43 23299.75 17799.67 67
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8599.71 7099.32 10499.50 21898.35 24398.97 27199.48 22698.37 16399.92 9195.95 31499.75 17799.63 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 15799.64 9599.30 11199.63 13799.61 7499.71 10199.56 19798.76 10999.96 3599.14 9099.92 7499.68 60
mPP-MVS99.19 13999.00 16499.76 4799.76 8599.68 8499.38 8999.54 19498.34 24799.01 26999.50 21898.53 14299.93 7197.18 25299.78 16799.66 77
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8699.70 2599.14 30699.65 6499.89 2699.90 2196.20 27599.94 5799.42 4399.92 7499.67 67
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2899.66 8899.18 14899.60 15998.55 21899.57 15199.67 13099.03 7399.94 5797.01 25999.80 15699.69 54
Skip Steuart: Steuart Systems R&D Blog.
GST-MVS99.16 14898.96 17599.75 5799.73 10599.73 6399.20 14299.55 18898.22 25499.32 22099.35 26198.65 12499.91 11296.86 26799.74 18599.62 108
test_part198.63 22798.26 25099.75 5799.40 23999.49 12899.67 3899.68 10999.86 1699.88 3299.86 3686.73 35799.93 7199.34 5299.97 3099.81 23
XVS99.27 11399.11 12899.75 5799.71 11299.71 7099.37 9399.61 14799.29 12398.76 29899.47 23198.47 14999.88 16197.62 21999.73 19299.67 67
X-MVStestdata96.09 32594.87 33599.75 5799.71 11299.71 7099.37 9399.61 14799.29 12398.76 29861.30 37598.47 14999.88 16197.62 21999.73 19299.67 67
abl_699.36 9099.23 10899.75 5799.71 11299.74 6099.33 10199.76 6899.07 16199.65 12199.63 15199.09 6299.92 9197.13 25599.76 17499.58 137
CP-MVS99.23 12099.05 14999.75 5799.66 13899.66 8899.38 8999.62 14098.38 23699.06 26799.27 27798.79 10399.94 5797.51 22899.82 14399.66 77
MSC_two_6792asdad99.74 6399.03 31799.53 12399.23 29399.92 9197.77 20199.69 20799.78 32
No_MVS99.74 6399.03 31799.53 12399.23 29399.92 9197.77 20199.69 20799.78 32
test117299.23 12099.05 14999.74 6399.52 18999.75 5499.20 14299.61 14798.97 17099.48 18199.58 18698.41 15799.91 11297.15 25499.55 25399.57 143
SR-MVS99.19 13999.00 16499.74 6399.51 19499.72 6799.18 14899.60 15998.85 18899.47 18399.58 18698.38 16299.92 9196.92 26399.54 25999.57 143
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 18999.71 7098.86 21799.19 30198.47 22898.59 31099.06 30898.08 19099.91 11296.94 26299.60 24299.60 123
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18499.75 5499.27 12299.61 14799.19 14199.57 15199.64 14198.76 10999.90 13297.29 23999.62 23299.56 146
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4599.63 9999.16 15999.73 8397.56 28999.64 12399.69 11399.37 3199.89 14796.66 28099.87 10999.69 54
LGP-MVS_train99.74 6399.82 4599.63 9999.73 8397.56 28999.64 12399.69 11399.37 3199.89 14796.66 28099.87 10999.69 54
DP-MVS99.48 5499.39 6999.74 6399.57 16799.62 10199.29 11899.61 14799.87 1499.74 9099.76 7698.69 11699.87 17498.20 16399.80 15699.75 42
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6799.68 8499.50 7199.65 12998.07 26399.52 17299.69 11398.57 13399.92 9197.18 25299.79 16199.63 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 17999.74 6099.26 12499.62 14099.16 14899.52 17299.64 14198.41 15799.91 11297.27 24299.61 23999.54 157
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22299.73 6399.13 16999.52 21197.40 30099.57 15199.64 14198.93 8399.83 24197.61 22199.79 16199.63 97
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GBi-Net99.42 7099.31 8599.73 7399.49 20699.77 4399.68 3499.70 10099.44 10499.62 13599.83 4397.21 24499.90 13298.96 10799.90 8499.53 162
test199.42 7099.31 8599.73 7399.49 20699.77 4399.68 3499.70 10099.44 10499.62 13599.83 4397.21 24499.90 13298.96 10799.90 8499.53 162
FMVSNet199.66 2699.63 2699.73 7399.78 7399.77 4399.68 3499.70 10099.67 5899.82 5099.83 4398.98 7799.90 13299.24 6799.97 3099.53 162
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3399.47 13198.07 29999.83 3498.64 20999.89 2699.60 17892.57 311100.00 199.33 5599.97 3099.72 45
testtj98.56 23798.17 26099.72 7999.45 22599.60 10998.88 21399.50 21896.88 31899.18 25099.48 22697.08 25199.92 9193.69 35199.38 28399.63 97
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 21799.56 11898.97 20699.61 14799.43 10999.67 11399.28 27597.85 20999.95 4599.17 8099.81 15199.65 85
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5799.69 8199.13 16999.65 12998.99 16899.64 12399.72 9399.39 2599.86 19498.23 16099.81 15199.60 123
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH98.42 699.59 3899.54 4599.72 7999.86 3099.62 10199.56 6799.79 5598.77 19999.80 6099.85 3799.64 1399.85 21398.70 13199.89 9299.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 6199.37 7499.71 8399.82 4599.59 11299.48 7599.70 10099.81 3099.69 10699.58 18697.66 22599.86 19499.17 8099.44 27499.67 67
DU-MVS99.33 10199.21 10999.71 8399.43 23099.56 11898.83 22299.53 20399.38 11399.67 11399.36 25697.67 22199.95 4599.17 8099.81 15199.63 97
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20199.62 10199.01 19399.57 17796.80 32399.54 16599.63 15198.29 17199.91 11295.24 33199.71 20299.61 119
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3099.76 5099.32 10499.77 6399.53 8699.77 7399.76 7699.26 4599.78 27897.77 20199.88 10099.60 123
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3899.70 7799.38 8999.78 6099.53 8699.67 11399.78 6699.19 5199.86 19497.32 23799.87 10999.55 149
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13599.74 1694.97 36699.78 3699.88 3299.88 2893.66 30399.97 1799.61 1999.95 4999.64 92
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19499.58 11598.98 20499.60 15999.43 10999.70 10399.36 25697.70 21699.88 16199.20 7399.87 10999.59 132
NR-MVSNet99.40 7799.31 8599.68 8999.43 23099.55 12199.73 1999.50 21899.46 10199.88 3299.36 25697.54 22999.87 17498.97 10599.87 10999.63 97
DROMVSNet99.69 2199.69 1899.68 8999.71 11299.91 299.76 1399.96 499.86 1699.51 17799.39 24899.57 2099.93 7199.64 1899.86 11699.20 260
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 26699.76 5099.34 9999.97 298.93 17899.91 2099.79 6098.68 11799.93 7196.80 27299.56 24999.30 241
casdiffmvs99.63 3299.61 3199.67 9299.79 6799.59 11299.13 16999.85 2699.79 3599.76 7599.72 9399.33 3699.82 25199.21 7099.94 6299.59 132
1112_ss99.05 17098.84 19399.67 9299.66 13899.29 17898.52 26099.82 3997.65 28699.43 19299.16 29696.42 26799.91 11299.07 9699.84 12499.80 24
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 28699.75 5497.25 34799.47 22998.72 20499.66 11799.70 10799.29 3999.63 34198.07 17699.81 15199.62 108
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 10999.44 14299.24 13299.71 9599.27 12799.93 1499.90 2199.70 1199.93 7198.99 10199.99 1299.64 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7399.55 12198.88 21399.66 11897.11 31599.47 18399.60 17899.07 6899.89 14796.18 30399.85 12099.58 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25199.47 13199.62 5099.50 21899.44 10499.12 25899.78 6698.77 10899.94 5797.87 19399.72 19899.62 108
v1099.69 2199.69 1899.66 9999.81 5299.39 15699.66 4299.75 7599.60 8099.92 1899.87 3198.75 11199.86 19499.90 299.99 1299.73 44
WR-MVS99.11 16098.93 17899.66 9999.30 27299.42 14998.42 27099.37 26299.04 16699.57 15199.20 29396.89 25699.86 19498.66 13599.87 10999.70 51
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3499.64 9598.25 28299.73 8398.39 23599.63 12799.43 23999.70 1199.90 13297.34 23698.64 33399.44 206
baseline99.63 3299.62 2799.66 9999.80 5799.62 10199.44 8199.80 4999.71 4499.72 9699.69 11399.15 5599.83 24199.32 5799.94 6299.53 162
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5799.43 14699.70 2599.24 29299.48 9299.56 15899.77 7394.89 28999.93 7198.72 13099.89 9299.63 97
Anonymous2024052999.42 7099.34 7999.65 10499.53 18499.60 10999.63 4999.39 25599.47 9799.76 7599.78 6698.13 18699.86 19498.70 13199.68 21299.49 185
v899.68 2499.69 1899.65 10499.80 5799.40 15499.66 4299.76 6899.64 6699.93 1499.85 3798.66 12299.84 23099.88 699.99 1299.71 48
MCST-MVS99.02 17698.81 19799.65 10499.58 15799.49 12898.58 24999.07 30998.40 23499.04 26899.25 28298.51 14799.80 27297.31 23899.51 26499.65 85
XVG-OURS99.21 13499.06 14599.65 10499.82 4599.62 10197.87 32099.74 8098.36 23899.66 11799.68 12499.71 999.90 13296.84 27099.88 10099.43 212
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2499.25 18898.78 23499.88 1898.66 20799.96 899.79 6097.45 23299.93 7199.34 5299.99 1299.78 32
QAPM98.40 25797.99 26899.65 10499.39 24199.47 13199.67 3899.52 21191.70 36098.78 29699.80 5498.55 13699.95 4594.71 33999.75 17799.53 162
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24199.42 14999.70 2599.56 18299.23 13599.35 21399.80 5499.17 5399.95 4598.21 16299.84 12499.59 132
lessismore_v099.64 11199.86 3099.38 15990.66 37399.89 2699.83 4394.56 29499.97 1799.56 2699.92 7499.57 143
114514_t98.49 24898.11 26399.64 11199.73 10599.58 11599.24 13299.76 6889.94 36399.42 19499.56 19797.76 21599.86 19497.74 20699.82 14399.47 195
CPTT-MVS98.74 21798.44 23299.64 11199.61 14999.38 15999.18 14899.55 18896.49 32699.27 23299.37 25197.11 25099.92 9195.74 32199.67 21999.62 108
RPSCF99.18 14399.02 15899.64 11199.83 3899.85 1499.44 8199.82 3998.33 24899.50 17999.78 6697.90 20399.65 33896.78 27399.83 13499.44 206
Anonymous20240521198.75 21598.46 22999.63 11599.34 26199.66 8899.47 7797.65 35199.28 12699.56 15899.50 21893.15 30699.84 23098.62 13699.58 24799.40 218
TSAR-MVS + MP.99.34 9799.24 10699.63 11599.82 4599.37 16299.26 12499.35 26698.77 19999.57 15199.70 10799.27 4499.88 16197.71 20999.75 17799.65 85
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS99.26 11599.13 12199.63 11599.70 12099.61 10798.58 24999.48 22598.50 22499.52 17299.63 15199.14 5799.76 28897.89 18999.77 17199.51 174
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 13499.07 14399.63 11599.78 7399.64 9599.12 17399.83 3498.63 21099.63 12799.72 9398.68 11799.75 29296.38 29599.83 13499.51 174
TestCases99.63 11599.78 7399.64 9599.83 3498.63 21099.63 12799.72 9398.68 11799.75 29296.38 29599.83 13499.51 174
V4299.56 4299.54 4599.63 11599.79 6799.46 13599.39 8799.59 16699.24 13399.86 3999.70 10798.55 13699.82 25199.79 1199.95 4999.60 123
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11599.82 4599.58 11598.83 22299.72 9298.36 23899.60 14399.71 10098.92 8499.91 11297.08 25799.84 12499.40 218
Test_1112_low_res98.95 19298.73 20299.63 11599.68 13299.15 20898.09 29699.80 4997.14 31399.46 18699.40 24496.11 27799.89 14799.01 10099.84 12499.84 14
TAMVS99.49 5299.45 5799.63 11599.48 21299.42 14999.45 7899.57 17799.66 6299.78 6899.83 4397.85 20999.86 19499.44 3799.96 4299.61 119
SF-MVS99.10 16498.93 17899.62 12499.58 15799.51 12699.13 16999.65 12997.97 26999.42 19499.61 16998.86 9299.87 17496.45 29299.68 21299.49 185
EG-PatchMatch MVS99.57 3999.56 4499.62 12499.77 8199.33 17299.26 12499.76 6899.32 12199.80 6099.78 6699.29 3999.87 17499.15 8499.91 8399.66 77
F-COLMAP98.74 21798.45 23099.62 12499.57 16799.47 13198.84 22099.65 12996.31 33098.93 27599.19 29597.68 22099.87 17496.52 28799.37 28799.53 162
CDPH-MVS98.56 23798.20 25599.61 12799.50 20199.46 13598.32 27699.41 24595.22 34499.21 24499.10 30598.34 16799.82 25195.09 33499.66 22399.56 146
LS3D99.24 11999.11 12899.61 12798.38 35699.79 3899.57 6599.68 10999.61 7499.15 25399.71 10098.70 11599.91 11297.54 22599.68 21299.13 278
tfpnnormal99.43 6699.38 7199.60 12999.87 2899.75 5499.59 6299.78 6099.71 4499.90 2299.69 11398.85 9499.90 13297.25 24799.78 16799.15 271
CSCG99.37 8799.29 9599.60 12999.71 11299.46 13599.43 8399.85 2698.79 19699.41 20299.60 17898.92 8499.92 9198.02 17799.92 7499.43 212
ETH3D-3000-0.198.77 21298.50 22799.59 13199.47 21799.53 12398.77 23599.60 15997.33 30499.23 23899.50 21897.91 20299.83 24195.02 33599.67 21999.41 216
v114499.54 4799.53 4999.59 13199.79 6799.28 18099.10 17699.61 14799.20 14099.84 4399.73 8798.67 12099.84 23099.86 899.98 2199.64 92
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13199.68 13299.45 14098.99 20099.67 11499.48 9299.55 16399.36 25694.92 28899.86 19498.95 11196.57 36299.45 201
PHI-MVS99.11 16098.95 17799.59 13199.13 30199.59 11299.17 15399.65 12997.88 27599.25 23499.46 23498.97 7999.80 27297.26 24499.82 14399.37 226
v14419299.55 4599.54 4599.58 13599.78 7399.20 20399.11 17599.62 14099.18 14299.89 2699.72 9398.66 12299.87 17499.88 699.97 3099.66 77
v2v48299.50 5099.47 5399.58 13599.78 7399.25 18899.14 16399.58 17599.25 13199.81 5799.62 16098.24 17599.84 23099.83 999.97 3099.64 92
test20.0399.55 4599.54 4599.58 13599.79 6799.37 16299.02 19199.89 1599.60 8099.82 5099.62 16098.81 9699.89 14799.43 3899.86 11699.47 195
PM-MVS99.36 9099.29 9599.58 13599.83 3899.66 8898.95 20899.86 2298.85 18899.81 5799.73 8798.40 16199.92 9198.36 14899.83 13499.17 267
NCCC98.82 20898.57 21999.58 13599.21 28899.31 17598.61 24599.25 28998.65 20898.43 32099.26 28097.86 20799.81 26796.55 28599.27 30099.61 119
train_agg98.35 26297.95 27299.57 14099.35 25199.35 16998.11 29499.41 24594.90 34897.92 34198.99 31998.02 19499.85 21395.38 32999.44 27499.50 180
agg_prior198.33 26497.92 27899.57 14099.35 25199.36 16597.99 30899.39 25594.85 35197.76 35098.98 32298.03 19299.85 21395.49 32599.44 27499.51 174
v119299.57 3999.57 4099.57 14099.77 8199.22 19799.04 18899.60 15999.18 14299.87 3899.72 9399.08 6699.85 21399.89 599.98 2199.66 77
PMMVS299.48 5499.45 5799.57 14099.76 8598.99 22398.09 29699.90 1498.95 17499.78 6899.58 18699.57 2099.93 7199.48 3499.95 4999.79 30
VNet99.18 14399.06 14599.56 14499.24 28499.36 16599.33 10199.31 27599.67 5899.47 18399.57 19496.48 26499.84 23099.15 8499.30 29599.47 195
CNVR-MVS98.99 18598.80 19999.56 14499.25 28299.43 14698.54 25899.27 28498.58 21598.80 29399.43 23998.53 14299.70 30597.22 24999.59 24699.54 157
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14499.28 27799.22 19798.99 20099.40 25299.08 15999.58 14899.64 14198.90 8999.83 24197.44 23199.75 17799.63 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v192192099.56 4299.57 4099.55 14799.75 9699.11 21199.05 18699.61 14799.15 15299.88 3299.71 10099.08 6699.87 17499.90 299.97 3099.66 77
HQP_MVS98.90 19798.68 20999.55 14799.58 15799.24 19398.80 23099.54 19498.94 17599.14 25599.25 28297.24 24299.82 25195.84 31799.78 16799.60 123
FMVSNet299.35 9299.28 9799.55 14799.49 20699.35 16999.45 7899.57 17799.44 10499.70 10399.74 8397.21 24499.87 17499.03 9899.94 6299.44 206
IS-MVSNet99.03 17498.85 19199.55 14799.80 5799.25 18899.73 1999.15 30599.37 11499.61 14199.71 10094.73 29299.81 26797.70 21199.88 10099.58 137
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15199.53 18499.25 18898.29 27899.76 6899.07 16199.42 19499.61 16998.86 9299.87 17496.45 29299.68 21299.49 185
test1299.54 15199.29 27499.33 17299.16 30498.43 32097.54 22999.82 25199.47 27199.48 190
CS-MVS-test99.43 6699.40 6899.53 15399.51 19499.84 1999.60 6099.94 699.52 8899.10 26198.89 33499.24 4699.90 13299.11 9299.66 22398.84 315
Regformer-299.34 9799.27 10099.53 15399.41 23699.10 21598.99 20099.53 20399.47 9799.66 11799.52 21198.80 10099.89 14798.31 15499.74 18599.60 123
Effi-MVS+-dtu99.07 16698.92 18299.52 15598.89 33099.78 4199.15 16199.66 11899.34 11798.92 27899.24 28797.69 21899.98 798.11 17399.28 29798.81 317
新几何199.52 15599.50 20199.22 19799.26 28695.66 34098.60 30999.28 27597.67 22199.89 14795.95 31499.32 29399.45 201
112198.56 23798.24 25199.52 15599.49 20699.24 19399.30 11199.22 29695.77 33798.52 31599.29 27397.39 23699.85 21395.79 31999.34 29099.46 199
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15899.04 31699.39 15698.47 26499.47 22996.70 32598.78 29699.33 26597.62 22899.86 19494.69 34099.38 28399.28 246
pmmvs-eth3d99.48 5499.47 5399.51 15899.77 8199.41 15398.81 22799.66 11899.42 11199.75 8199.66 13499.20 5099.76 28898.98 10399.99 1299.36 229
v124099.56 4299.58 3799.51 15899.80 5799.00 22299.00 19599.65 12999.15 15299.90 2299.75 8099.09 6299.88 16199.90 299.96 4299.67 67
ETH3 D test640097.76 28697.19 30199.50 16199.38 24499.26 18498.34 27399.49 22392.99 35798.54 31499.20 29395.92 28199.82 25191.14 35899.66 22399.40 218
Regformer-499.45 6399.44 5999.50 16199.52 18998.94 23099.17 15399.53 20399.64 6699.76 7599.60 17898.96 8299.90 13298.91 11499.84 12499.67 67
CDS-MVSNet99.22 12999.13 12199.50 16199.35 25199.11 21198.96 20799.54 19499.46 10199.61 14199.70 10796.31 27299.83 24199.34 5299.88 10099.55 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052199.44 6599.42 6599.49 16499.89 2198.96 22899.62 5099.76 6899.85 2199.82 5099.88 2896.39 27099.97 1799.59 2199.98 2199.55 149
Patchmtry98.78 21198.54 22399.49 16498.89 33099.19 20499.32 10499.67 11499.65 6499.72 9699.79 6091.87 32099.95 4598.00 18199.97 3099.33 235
UGNet99.38 8499.34 7999.49 16498.90 32798.90 23899.70 2599.35 26699.86 1698.57 31299.81 5298.50 14899.93 7199.38 4799.98 2199.66 77
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Gipumacopyleft99.57 3999.59 3499.49 16499.98 399.71 7099.72 2299.84 3299.81 3099.94 1199.78 6698.91 8699.71 30398.41 14599.95 4999.05 294
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS99.34 9799.30 9099.48 16899.51 19499.36 16598.12 29299.53 20399.36 11699.41 20299.61 16999.22 4899.87 17499.21 7099.68 21299.20 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft97.35 1698.36 25997.99 26899.48 16899.32 26799.24 19398.50 26299.51 21495.19 34698.58 31198.96 32796.95 25599.83 24195.63 32299.25 30199.37 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023120699.35 9299.31 8599.47 17099.74 10299.06 22199.28 11999.74 8099.23 13599.72 9699.53 20997.63 22799.88 16199.11 9299.84 12499.48 190
Regformer-199.32 10399.27 10099.47 17099.41 23698.95 22998.99 20099.48 22599.48 9299.66 11799.52 21198.78 10599.87 17498.36 14899.74 18599.60 123
ab-mvs99.33 10199.28 9799.47 17099.57 16799.39 15699.78 1099.43 24298.87 18699.57 15199.82 4998.06 19199.87 17498.69 13399.73 19299.15 271
Fast-Effi-MVS+99.02 17698.87 18999.46 17399.38 24499.50 12799.04 18899.79 5597.17 31198.62 30798.74 34499.34 3599.95 4598.32 15399.41 28098.92 307
test_prior398.62 22898.34 24399.46 17399.35 25199.22 19797.95 31399.39 25597.87 27698.05 33699.05 30997.90 20399.69 31195.99 31099.49 26899.48 190
test_prior99.46 17399.35 25199.22 19799.39 25599.69 31199.48 190
TAPA-MVS97.92 1398.03 27897.55 29299.46 17399.47 21799.44 14298.50 26299.62 14086.79 36499.07 26699.26 28098.26 17499.62 34297.28 24199.73 19299.31 240
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EIA-MVS99.12 15699.01 16199.45 17799.36 24999.62 10199.34 9999.79 5598.41 23298.84 28898.89 33498.75 11199.84 23098.15 17199.51 26498.89 309
test_040299.22 12999.14 11899.45 17799.79 6799.43 14699.28 11999.68 10999.54 8499.40 20799.56 19799.07 6899.82 25196.01 30899.96 4299.11 279
hse-mvs398.61 22998.34 24399.44 17999.60 15198.67 25099.27 12299.44 23899.68 5499.32 22099.49 22392.50 314100.00 199.24 6796.51 36399.65 85
VDD-MVS99.20 13699.11 12899.44 17999.43 23098.98 22499.50 7198.32 34299.80 3399.56 15899.69 11396.99 25499.85 21398.99 10199.73 19299.50 180
PVSNet_Blended_VisFu99.40 7799.38 7199.44 17999.90 1998.66 25298.94 21099.91 1097.97 26999.79 6599.73 8799.05 7199.97 1799.15 8499.99 1299.68 60
OMC-MVS98.90 19798.72 20399.44 17999.39 24199.42 14998.58 24999.64 13597.31 30599.44 18899.62 16098.59 13099.69 31196.17 30499.79 16199.22 255
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18399.25 28299.69 8199.05 18699.82 3999.50 9098.97 27199.05 30998.98 7799.98 798.20 16399.24 30398.62 323
MVP-Stereo99.16 14899.08 13999.43 18399.48 21299.07 21999.08 18399.55 18898.63 21099.31 22499.68 12498.19 18299.78 27898.18 16799.58 24799.45 201
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs599.19 13999.11 12899.42 18599.76 8598.88 23998.55 25599.73 8398.82 19299.72 9699.62 16096.56 26199.82 25199.32 5799.95 4999.56 146
bset_n11_16_dypcd98.69 22398.45 23099.42 18599.69 12398.52 26196.06 36196.80 35999.71 4499.73 9499.54 20695.14 28799.96 3599.39 4699.95 4999.79 30
EI-MVSNet-UG-set99.48 5499.50 5199.42 18599.57 16798.65 25599.24 13299.46 23399.68 5499.80 6099.66 13498.99 7699.89 14799.19 7599.90 8499.72 45
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18599.57 16798.66 25299.24 13299.46 23399.67 5899.79 6599.65 13998.97 7999.89 14799.15 8499.89 9299.71 48
testdata99.42 18599.51 19498.93 23499.30 27896.20 33198.87 28599.40 24498.33 16999.89 14796.29 29899.28 29799.44 206
VDDNet98.97 18698.82 19699.42 18599.71 11298.81 24299.62 5098.68 32699.81 3099.38 20999.80 5494.25 29699.85 21398.79 12299.32 29399.59 132
FMVSNet597.80 28497.25 29899.42 18598.83 33698.97 22699.38 8999.80 4998.87 18699.25 23499.69 11380.60 36999.91 11298.96 10799.90 8499.38 223
MVS_111021_LR99.13 15499.03 15799.42 18599.58 15799.32 17497.91 31999.73 8398.68 20699.31 22499.48 22699.09 6299.66 33197.70 21199.77 17199.29 244
RRT_MVS98.75 21598.54 22399.41 19398.14 36598.61 25698.98 20499.66 11899.31 12299.84 4399.75 8091.98 31799.98 799.20 7399.95 4999.62 108
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19398.33 35899.56 11899.01 19399.59 16695.44 34199.57 15199.80 5495.64 28399.46 36096.47 29199.92 7499.21 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Regformer-399.41 7499.41 6699.40 19599.52 18998.70 24899.17 15399.44 23899.62 7099.75 8199.60 17898.90 8999.85 21398.89 11599.84 12499.65 85
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19599.56 17799.37 16297.97 31299.68 10997.49 29699.08 26399.35 26195.41 28699.82 25197.70 21198.19 34699.01 301
MVS_111021_HR99.12 15699.02 15899.40 19599.50 20199.11 21197.92 31799.71 9598.76 20299.08 26399.47 23199.17 5399.54 35197.85 19699.76 17499.54 157
MVS_030498.88 20198.71 20499.39 19898.85 33498.91 23799.45 7899.30 27898.56 21697.26 35699.68 12496.18 27699.96 3599.17 8099.94 6299.29 244
v14899.40 7799.41 6699.39 19899.76 8598.94 23099.09 18099.59 16699.17 14699.81 5799.61 16998.41 15799.69 31199.32 5799.94 6299.53 162
diffmvs99.34 9799.32 8499.39 19899.67 13798.77 24598.57 25399.81 4899.61 7499.48 18199.41 24198.47 14999.86 19498.97 10599.90 8499.53 162
HQP-MVS98.36 25998.02 26799.39 19899.31 26898.94 23097.98 30999.37 26297.45 29798.15 33098.83 33896.67 25999.70 30594.73 33799.67 21999.53 162
TSAR-MVS + GP.99.12 15699.04 15599.38 20299.34 26199.16 20698.15 28899.29 28098.18 25899.63 12799.62 16099.18 5299.68 32298.20 16399.74 18599.30 241
AdaColmapbinary98.60 23198.35 24299.38 20299.12 30399.22 19798.67 24499.42 24497.84 28098.81 29199.27 27797.32 24099.81 26795.14 33299.53 26199.10 281
ITE_SJBPF99.38 20299.63 14499.44 14299.73 8398.56 21699.33 21899.53 20998.88 9199.68 32296.01 30899.65 22799.02 300
原ACMM199.37 20599.47 21798.87 24199.27 28496.74 32498.26 32599.32 26697.93 20199.82 25195.96 31399.38 28399.43 212
testgi99.29 10899.26 10299.37 20599.75 9698.81 24298.84 22099.89 1598.38 23699.75 8199.04 31299.36 3499.86 19499.08 9599.25 30199.45 201
MSDG99.08 16598.98 17299.37 20599.60 15199.13 20997.54 33399.74 8098.84 19199.53 17099.55 20499.10 6099.79 27597.07 25899.86 11699.18 265
pmmvs499.13 15499.06 14599.36 20899.57 16799.10 21598.01 30499.25 28998.78 19899.58 14899.44 23898.24 17599.76 28898.74 12899.93 7099.22 255
N_pmnet98.73 21998.53 22599.35 20999.72 10998.67 25098.34 27394.65 36798.35 24399.79 6599.68 12498.03 19299.93 7198.28 15699.92 7499.44 206
Effi-MVS+99.06 16798.97 17399.34 21099.31 26898.98 22498.31 27799.91 1098.81 19398.79 29498.94 32999.14 5799.84 23098.79 12298.74 32999.20 260
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21099.78 7398.88 23999.61 5599.56 18299.11 15899.24 23799.56 19793.00 30999.78 27897.43 23299.89 9299.35 232
Patchmatch-RL test98.60 23198.36 24099.33 21299.77 8199.07 21998.27 28099.87 2098.91 18199.74 9099.72 9390.57 33799.79 27598.55 13999.85 12099.11 279
PAPM_NR98.36 25998.04 26699.33 21299.48 21298.93 23498.79 23399.28 28397.54 29298.56 31398.57 34997.12 24999.69 31194.09 34698.90 32099.38 223
PCF-MVS96.03 1896.73 31395.86 32499.33 21299.44 22799.16 20696.87 35699.44 23886.58 36598.95 27399.40 24494.38 29599.88 16187.93 36399.80 15698.95 304
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS98.76 21498.57 21999.33 21299.57 16798.97 22697.53 33599.55 18896.41 32799.27 23299.13 29899.07 6899.78 27896.73 27699.89 9299.23 253
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS98.28 26597.94 27699.32 21699.36 24999.11 21197.31 34598.78 32396.88 31898.84 28899.11 30497.77 21499.61 34694.03 34899.36 28899.23 253
jason99.16 14899.11 12899.32 21699.75 9698.44 26698.26 28199.39 25598.70 20599.74 9099.30 27098.54 13899.97 1798.48 14299.82 14399.55 149
jason: jason.
FMVSNet398.80 21098.63 21299.32 21699.13 30198.72 24799.10 17699.48 22599.23 13599.62 13599.64 14192.57 31199.86 19498.96 10799.90 8499.39 221
MVSFormer99.41 7499.44 5999.31 21999.57 16798.40 26999.77 1199.80 4999.73 4099.63 12799.30 27098.02 19499.98 799.43 3899.69 20799.55 149
DP-MVS Recon98.50 24598.23 25299.31 21999.49 20699.46 13598.56 25499.63 13794.86 35098.85 28799.37 25197.81 21199.59 34896.08 30599.44 27498.88 310
PatchMatch-RL98.68 22498.47 22899.30 22199.44 22799.28 18098.14 29099.54 19497.12 31499.11 25999.25 28297.80 21299.70 30596.51 28899.30 29598.93 306
OPU-MVS99.29 22299.12 30399.44 14299.20 14299.40 24499.00 7498.84 36696.54 28699.60 24299.58 137
CS-MVS99.40 7799.43 6299.29 22299.44 22799.72 6799.36 9699.91 1099.71 4499.28 23098.83 33899.22 4899.86 19499.40 4599.77 17198.29 341
D2MVS99.22 12999.19 11199.29 22299.69 12398.74 24698.81 22799.41 24598.55 21899.68 10899.69 11398.13 18699.87 17498.82 12099.98 2199.24 250
CANet99.11 16099.05 14999.28 22598.83 33698.56 25898.71 24399.41 24599.25 13199.23 23899.22 28997.66 22599.94 5799.19 7599.97 3099.33 235
CNLPA98.57 23698.34 24399.28 22599.18 29599.10 21598.34 27399.41 24598.48 22798.52 31598.98 32297.05 25299.78 27895.59 32399.50 26698.96 303
sss98.90 19798.77 20199.27 22799.48 21298.44 26698.72 24199.32 27197.94 27399.37 21099.35 26196.31 27299.91 11298.85 11799.63 23199.47 195
LF4IMVS99.01 18098.92 18299.27 22799.71 11299.28 18098.59 24899.77 6398.32 24999.39 20899.41 24198.62 12699.84 23096.62 28499.84 12498.69 321
LFMVS98.46 25198.19 25899.26 22999.24 28498.52 26199.62 5096.94 35899.87 1499.31 22499.58 18691.04 32899.81 26798.68 13499.42 27999.45 201
WTY-MVS98.59 23498.37 23999.26 22999.43 23098.40 26998.74 23899.13 30898.10 26099.21 24499.24 28794.82 29099.90 13297.86 19498.77 32599.49 185
OpenMVScopyleft98.12 1098.23 27097.89 28299.26 22999.19 29399.26 18499.65 4799.69 10691.33 36198.14 33499.77 7398.28 17299.96 3595.41 32899.55 25398.58 327
alignmvs98.28 26597.96 27199.25 23299.12 30398.93 23499.03 19098.42 33899.64 6698.72 30197.85 36390.86 33399.62 34298.88 11699.13 30699.19 263
IterMVS-LS99.41 7499.47 5399.25 23299.81 5298.09 28898.85 21999.76 6899.62 7099.83 4899.64 14198.54 13899.97 1799.15 8499.99 1299.68 60
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS98.96 18998.87 18999.24 23499.57 16798.40 26998.12 29299.18 30298.28 25199.63 12799.13 29898.02 19499.97 1798.22 16199.69 20799.35 232
MVSTER98.47 25098.22 25399.24 23499.06 31398.35 27499.08 18399.46 23399.27 12799.75 8199.66 13488.61 34799.85 21399.14 9099.92 7499.52 172
mvs-test198.83 20698.70 20799.22 23698.89 33099.65 9398.88 21399.66 11899.34 11798.29 32398.94 32997.69 21899.96 3598.11 17398.54 33798.04 352
EI-MVSNet99.38 8499.44 5999.21 23799.58 15798.09 28899.26 12499.46 23399.62 7099.75 8199.67 13098.54 13899.85 21399.15 8499.92 7499.68 60
BH-RMVSNet98.41 25598.14 26299.21 23799.21 28898.47 26398.60 24798.26 34398.35 24398.93 27599.31 26897.20 24799.66 33194.32 34299.10 30899.51 174
ambc99.20 23999.35 25198.53 25999.17 15399.46 23399.67 11399.80 5498.46 15299.70 30597.92 18799.70 20499.38 223
MVS_Test99.28 10999.31 8599.19 24099.35 25198.79 24499.36 9699.49 22399.17 14699.21 24499.67 13098.78 10599.66 33199.09 9499.66 22399.10 281
MAR-MVS98.24 26997.92 27899.19 24098.78 34499.65 9399.17 15399.14 30695.36 34298.04 33898.81 34197.47 23199.72 29995.47 32799.06 30998.21 346
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet98.13 27397.77 28699.18 24294.57 37397.99 29299.24 13297.96 34699.74 3997.29 35599.62 16093.13 30799.97 1798.59 13799.83 13499.58 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
hse-mvs298.52 24398.30 24799.16 24399.29 27498.60 25798.77 23599.02 31399.68 5499.32 22099.04 31292.50 31499.85 21399.24 6797.87 35499.03 296
ETV-MVS99.18 14399.18 11299.16 24399.34 26199.28 18099.12 17399.79 5599.48 9298.93 27598.55 35199.40 2499.93 7198.51 14199.52 26398.28 342
CL-MVSNet_2432*160098.71 22198.56 22299.15 24599.22 28698.66 25297.14 35099.51 21498.09 26299.54 16599.27 27796.87 25799.74 29498.43 14498.96 31599.03 296
AUN-MVS97.82 28397.38 29499.14 24699.27 27998.53 25998.72 24199.02 31398.10 26097.18 35899.03 31689.26 34699.85 21397.94 18697.91 35299.03 296
test_yl98.25 26797.95 27299.13 24799.17 29698.47 26399.00 19598.67 32898.97 17099.22 24299.02 31791.31 32499.69 31197.26 24498.93 31699.24 250
DCV-MVSNet98.25 26797.95 27299.13 24799.17 29698.47 26399.00 19598.67 32898.97 17099.22 24299.02 31791.31 32499.69 31197.26 24498.93 31699.24 250
MIMVSNet98.43 25398.20 25599.11 24999.53 18498.38 27299.58 6498.61 33098.96 17399.33 21899.76 7690.92 33099.81 26797.38 23599.76 17499.15 271
PMMVS98.49 24898.29 24899.11 24998.96 32498.42 26897.54 33399.32 27197.53 29398.47 31998.15 36097.88 20699.82 25197.46 23099.24 30399.09 284
CANet_DTU98.91 19598.85 19199.09 25198.79 34298.13 28398.18 28599.31 27599.48 9298.86 28699.51 21596.56 26199.95 4599.05 9799.95 4999.19 263
MS-PatchMatch99.00 18298.97 17399.09 25199.11 30898.19 28098.76 23799.33 26998.49 22699.44 18899.58 18698.21 17999.69 31198.20 16399.62 23299.39 221
canonicalmvs99.02 17699.00 16499.09 25199.10 30998.70 24899.61 5599.66 11899.63 6998.64 30697.65 36599.04 7299.54 35198.79 12298.92 31899.04 295
PVSNet_BlendedMVS99.03 17499.01 16199.09 25199.54 17997.99 29298.58 24999.82 3997.62 28799.34 21699.71 10098.52 14599.77 28697.98 18299.97 3099.52 172
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25599.80 5797.83 29998.89 21299.72 9299.29 12399.63 12799.70 10796.47 26599.89 14798.17 16999.82 14399.50 180
TinyColmap98.97 18698.93 17899.07 25599.46 22298.19 28097.75 32499.75 7598.79 19699.54 16599.70 10798.97 7999.62 34296.63 28399.83 13499.41 216
USDC98.96 18998.93 17899.05 25799.54 17997.99 29297.07 35399.80 4998.21 25599.75 8199.77 7398.43 15499.64 34097.90 18899.88 10099.51 174
PAPR97.56 29497.07 30399.04 25898.80 34198.11 28697.63 32999.25 28994.56 35498.02 33998.25 35997.43 23399.68 32290.90 35998.74 32999.33 235
PVSNet_Blended98.70 22298.59 21599.02 25999.54 17997.99 29297.58 33299.82 3995.70 33999.34 21698.98 32298.52 14599.77 28697.98 18299.83 13499.30 241
MVS95.72 33394.63 33798.99 26098.56 35297.98 29799.30 11198.86 31872.71 36997.30 35499.08 30698.34 16799.74 29489.21 36098.33 34199.26 247
HY-MVS98.23 998.21 27297.95 27298.99 26099.03 31798.24 27699.61 5598.72 32596.81 32298.73 30099.51 21594.06 29799.86 19496.91 26498.20 34498.86 312
baseline197.73 28797.33 29598.96 26299.30 27297.73 30399.40 8598.42 33899.33 12099.46 18699.21 29191.18 32699.82 25198.35 15091.26 36899.32 238
DSMNet-mixed99.48 5499.65 2498.95 26399.71 11297.27 31599.50 7199.82 3999.59 8299.41 20299.85 3799.62 16100.00 199.53 2999.89 9299.59 132
thisisatest053097.45 29696.95 30798.94 26499.68 13297.73 30399.09 18094.19 37098.61 21399.56 15899.30 27084.30 36499.93 7198.27 15799.54 25999.16 269
mvs_anonymous99.28 10999.39 6998.94 26499.19 29397.81 30099.02 19199.55 18899.78 3699.85 4099.80 5498.24 17599.86 19499.57 2599.50 26699.15 271
MG-MVS98.52 24398.39 23798.94 26499.15 29897.39 31398.18 28599.21 30098.89 18599.23 23899.63 15197.37 23899.74 29494.22 34499.61 23999.69 54
GA-MVS97.99 28197.68 28998.93 26799.52 18998.04 29197.19 34999.05 31298.32 24998.81 29198.97 32589.89 34499.41 36198.33 15299.05 31099.34 234
cl-mvsnet____98.54 24198.41 23598.92 26899.03 31797.80 30197.46 33999.59 16698.90 18299.60 14399.46 23493.85 30099.78 27897.97 18499.89 9299.17 267
cl-mvsnet198.54 24198.42 23498.92 26899.03 31797.80 30197.46 33999.59 16698.90 18299.60 14399.46 23493.87 29999.78 27897.97 18499.89 9299.18 265
ET-MVSNet_ETH3D96.78 31196.07 32098.91 27099.26 28197.92 29897.70 32796.05 36397.96 27292.37 37098.43 35587.06 35199.90 13298.27 15797.56 35798.91 308
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 32999.39 2599.97 1799.18 7799.55 25398.51 331
xiu_mvs_v1_base99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 32999.39 2599.97 1799.18 7799.55 25398.51 331
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 32999.39 2599.97 1799.18 7799.55 25398.51 331
MSLP-MVS++99.05 17099.09 13798.91 27099.21 28898.36 27398.82 22699.47 22998.85 18898.90 28199.56 19798.78 10599.09 36498.57 13899.68 21299.26 247
pmmvs398.08 27697.80 28398.91 27099.41 23697.69 30597.87 32099.66 11895.87 33599.50 17999.51 21590.35 33999.97 1798.55 13999.47 27199.08 287
tttt051797.62 29197.20 30098.90 27699.76 8597.40 31299.48 7594.36 36899.06 16599.70 10399.49 22384.55 36399.94 5798.73 12999.65 22799.36 229
OpenMVS_ROBcopyleft97.31 1797.36 30096.84 31198.89 27799.29 27499.45 14098.87 21699.48 22586.54 36699.44 18899.74 8397.34 23999.86 19491.61 35599.28 29797.37 360
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27899.64 14297.16 31898.23 28399.33 26998.93 17899.56 15899.66 13497.39 23699.83 24198.29 15599.88 10099.55 149
PMVScopyleft92.94 2198.82 20898.81 19798.85 27899.84 3497.99 29299.20 14299.47 22999.71 4499.42 19499.82 4998.09 18899.47 35893.88 35099.85 12099.07 292
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
YYNet198.95 19298.99 16998.84 28099.64 14297.14 31998.22 28499.32 27198.92 18099.59 14699.66 13497.40 23499.83 24198.27 15799.90 8499.55 149
new_pmnet98.88 20198.89 18798.84 28099.70 12097.62 30698.15 28899.50 21897.98 26899.62 13599.54 20698.15 18599.94 5797.55 22499.84 12498.95 304
CR-MVSNet98.35 26298.20 25598.83 28299.05 31498.12 28499.30 11199.67 11497.39 30199.16 25199.79 6091.87 32099.91 11298.78 12598.77 32598.44 336
PatchT98.45 25298.32 24698.83 28298.94 32598.29 27599.24 13298.82 32199.84 2499.08 26399.76 7691.37 32399.94 5798.82 12099.00 31498.26 343
RPMNet98.60 23198.53 22598.83 28299.05 31498.12 28499.30 11199.62 14099.86 1699.16 25199.74 8392.53 31399.92 9198.75 12798.77 32598.44 336
miper_lstm_enhance98.65 22698.60 21398.82 28599.20 29197.33 31497.78 32399.66 11899.01 16799.59 14699.50 21894.62 29399.85 21398.12 17299.90 8499.26 247
FPMVS96.32 32195.50 32998.79 28699.60 15198.17 28298.46 26998.80 32297.16 31296.28 36199.63 15182.19 36599.09 36488.45 36298.89 32199.10 281
xiu_mvs_v2_base99.02 17699.11 12898.77 28799.37 24798.09 28898.13 29199.51 21499.47 9799.42 19498.54 35299.38 2999.97 1798.83 11899.33 29298.24 344
PS-MVSNAJ99.00 18299.08 13998.76 28899.37 24798.10 28798.00 30699.51 21499.47 9799.41 20298.50 35499.28 4199.97 1798.83 11899.34 29098.20 348
test0.0.03 197.37 29996.91 31098.74 28997.72 36697.57 30797.60 33197.36 35798.00 26599.21 24498.02 36190.04 34299.79 27598.37 14795.89 36698.86 312
cl_fuxian98.72 22098.71 20498.72 29099.12 30397.22 31797.68 32899.56 18298.90 18299.54 16599.48 22696.37 27199.73 29797.88 19099.88 10099.21 257
EU-MVSNet99.39 8299.62 2798.72 29099.88 2496.44 33199.56 6799.85 2699.90 799.90 2299.85 3798.09 18899.83 24199.58 2499.95 4999.90 4
new-patchmatchnet99.35 9299.57 4098.71 29299.82 4596.62 32998.55 25599.75 7599.50 9099.88 3299.87 3199.31 3799.88 16199.43 38100.00 199.62 108
thisisatest051596.98 30796.42 31498.66 29399.42 23597.47 30997.27 34694.30 36997.24 30799.15 25398.86 33785.01 36199.87 17497.10 25699.39 28298.63 322
eth_miper_zixun_eth98.68 22498.71 20498.60 29499.10 30996.84 32697.52 33799.54 19498.94 17599.58 14899.48 22696.25 27499.76 28898.01 18099.93 7099.21 257
miper_ehance_all_eth98.59 23498.59 21598.59 29598.98 32397.07 32097.49 33899.52 21198.50 22499.52 17299.37 25196.41 26999.71 30397.86 19499.62 23299.00 302
BH-untuned98.22 27198.09 26498.58 29699.38 24497.24 31698.55 25598.98 31697.81 28199.20 24998.76 34397.01 25399.65 33894.83 33698.33 34198.86 312
IterMVS-SCA-FT99.00 18299.16 11498.51 29799.75 9695.90 33998.07 29999.84 3299.84 2499.89 2699.73 8796.01 27999.99 599.33 55100.00 199.63 97
JIA-IIPM98.06 27797.92 27898.50 29898.59 35197.02 32198.80 23098.51 33499.88 1397.89 34399.87 3191.89 31999.90 13298.16 17097.68 35698.59 325
Patchmatch-test98.10 27597.98 27098.48 29999.27 27996.48 33099.40 8599.07 30998.81 19399.23 23899.57 19490.11 34199.87 17496.69 27799.64 22999.09 284
baseline296.83 31096.28 31698.46 30099.09 31196.91 32498.83 22293.87 37197.23 30896.23 36498.36 35688.12 34899.90 13296.68 27898.14 34898.57 328
IterMVS98.97 18699.16 11498.42 30199.74 10295.64 34298.06 30199.83 3499.83 2799.85 4099.74 8396.10 27899.99 599.27 66100.00 199.63 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet297.56 29497.28 29698.40 30298.37 35796.75 32797.24 34899.37 26297.31 30599.41 20299.22 28987.30 34999.37 36297.70 21199.62 23299.08 287
CHOSEN 280x42098.41 25598.41 23598.40 30299.34 26195.89 34096.94 35599.44 23898.80 19599.25 23499.52 21193.51 30499.98 798.94 11299.98 2199.32 238
API-MVS98.38 25898.39 23798.35 30498.83 33699.26 18499.14 16399.18 30298.59 21498.66 30598.78 34298.61 12899.57 35094.14 34599.56 24996.21 364
PVSNet97.47 1598.42 25498.44 23298.35 30499.46 22296.26 33396.70 35899.34 26897.68 28599.00 27099.13 29897.40 23499.72 29997.59 22399.68 21299.08 287
miper_enhance_ethall98.03 27897.94 27698.32 30698.27 35996.43 33296.95 35499.41 24596.37 32999.43 19298.96 32794.74 29199.69 31197.71 20999.62 23298.83 316
TR-MVS97.44 29797.15 30298.32 30698.53 35397.46 31098.47 26497.91 34896.85 32098.21 32998.51 35396.42 26799.51 35692.16 35497.29 35897.98 353
PAPM95.61 33494.71 33698.31 30899.12 30396.63 32896.66 35998.46 33790.77 36296.25 36298.68 34693.01 30899.69 31181.60 36997.86 35598.62 323
MVEpermissive92.54 2296.66 31596.11 31998.31 30899.68 13297.55 30897.94 31595.60 36599.37 11490.68 37198.70 34596.56 26198.61 36886.94 36899.55 25398.77 319
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131498.00 28097.90 28198.27 31098.90 32797.45 31199.30 11199.06 31194.98 34797.21 35799.12 30298.43 15499.67 32795.58 32498.56 33697.71 356
ppachtmachnet_test98.89 20099.12 12598.20 31199.66 13895.24 34697.63 32999.68 10999.08 15999.78 6899.62 16098.65 12499.88 16198.02 17799.96 4299.48 190
SD-MVS99.01 18099.30 9098.15 31299.50 20199.40 15498.94 21099.61 14799.22 13999.75 8199.82 4999.54 2295.51 37197.48 22999.87 10999.54 157
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
our_test_398.85 20599.09 13798.13 31399.66 13894.90 34997.72 32599.58 17599.07 16199.64 12399.62 16098.19 18299.93 7198.41 14599.95 4999.55 149
ADS-MVSNet297.78 28597.66 29198.12 31499.14 29995.36 34499.22 13998.75 32496.97 31698.25 32699.64 14190.90 33199.94 5796.51 28899.56 24999.08 287
DeepMVS_CXcopyleft97.98 31599.69 12396.95 32299.26 28675.51 36895.74 36698.28 35896.47 26599.62 34291.23 35797.89 35397.38 359
gg-mvs-nofinetune95.87 33095.17 33497.97 31698.19 36196.95 32299.69 3189.23 37599.89 1196.24 36399.94 1281.19 36699.51 35693.99 34998.20 34497.44 358
thres600view796.60 31696.16 31897.93 31799.63 14496.09 33799.18 14897.57 35298.77 19998.72 30197.32 36987.04 35299.72 29988.57 36198.62 33497.98 353
thres40096.40 31895.89 32297.92 31899.58 15796.11 33599.00 19597.54 35598.43 22998.52 31596.98 37286.85 35499.67 32787.62 36498.51 33897.98 353
ADS-MVSNet97.72 28997.67 29097.86 31999.14 29994.65 35099.22 13998.86 31896.97 31698.25 32699.64 14190.90 33199.84 23096.51 28899.56 24999.08 287
IB-MVS95.41 2095.30 33594.46 33897.84 32098.76 34695.33 34597.33 34496.07 36296.02 33395.37 36897.41 36876.17 37599.96 3597.54 22595.44 36798.22 345
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet98.61 22998.88 18897.80 32199.58 15793.60 35699.26 12499.64 13599.66 6299.72 9699.67 13093.26 30599.93 7199.30 6099.81 15199.87 9
BH-w/o97.20 30297.01 30597.76 32299.08 31295.69 34198.03 30398.52 33395.76 33897.96 34098.02 36195.62 28499.47 35892.82 35397.25 35998.12 350
tpm97.15 30396.95 30797.75 32398.91 32694.24 35299.32 10497.96 34697.71 28498.29 32399.32 26686.72 35899.92 9198.10 17596.24 36599.09 284
test-LLR97.15 30396.95 30797.74 32498.18 36295.02 34797.38 34196.10 36098.00 26597.81 34798.58 34790.04 34299.91 11297.69 21798.78 32398.31 339
test-mter96.23 32495.73 32797.74 32498.18 36295.02 34797.38 34196.10 36097.90 27497.81 34798.58 34779.12 37399.91 11297.69 21798.78 32398.31 339
RRT_test8_iter0597.35 30197.25 29897.63 32698.81 34093.13 35899.26 12499.89 1599.51 8999.83 4899.68 12479.03 37499.88 16199.53 2999.72 19899.89 8
tfpn200view996.30 32295.89 32297.53 32799.58 15796.11 33599.00 19597.54 35598.43 22998.52 31596.98 37286.85 35499.67 32787.62 36498.51 33896.81 362
cascas96.99 30696.82 31297.48 32897.57 36995.64 34296.43 36099.56 18291.75 35997.13 35997.61 36695.58 28598.63 36796.68 27899.11 30798.18 349
thres100view90096.39 31996.03 32197.47 32999.63 14495.93 33899.18 14897.57 35298.75 20398.70 30397.31 37087.04 35299.67 32787.62 36498.51 33896.81 362
PVSNet_095.53 1995.85 33195.31 33397.47 32998.78 34493.48 35795.72 36299.40 25296.18 33297.37 35397.73 36495.73 28299.58 34995.49 32581.40 36999.36 229
TESTMET0.1,196.24 32395.84 32597.41 33198.24 36093.84 35597.38 34195.84 36498.43 22997.81 34798.56 35079.77 37099.89 14797.77 20198.77 32598.52 330
GG-mvs-BLEND97.36 33297.59 36796.87 32599.70 2588.49 37694.64 36997.26 37180.66 36899.12 36391.50 35696.50 36496.08 366
SCA98.11 27498.36 24097.36 33299.20 29192.99 35998.17 28798.49 33698.24 25399.10 26199.57 19496.01 27999.94 5796.86 26799.62 23299.14 275
thres20096.09 32595.68 32897.33 33499.48 21296.22 33498.53 25997.57 35298.06 26498.37 32296.73 37486.84 35699.61 34686.99 36798.57 33596.16 365
KD-MVS_2432*160095.89 32895.41 33197.31 33594.96 37193.89 35397.09 35199.22 29697.23 30898.88 28299.04 31279.23 37199.54 35196.24 30196.81 36098.50 334
miper_refine_blended95.89 32895.41 33197.31 33594.96 37193.89 35397.09 35199.22 29697.23 30898.88 28299.04 31279.23 37199.54 35196.24 30196.81 36098.50 334
PatchmatchNetpermissive97.65 29097.80 28397.18 33798.82 33992.49 36199.17 15398.39 34098.12 25998.79 29499.58 18690.71 33599.89 14797.23 24899.41 28099.16 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.53 31796.32 31597.17 33898.18 36292.97 36099.39 8789.95 37498.21 25598.61 30899.59 18486.69 35999.72 29996.99 26099.23 30598.81 317
EPNet_dtu97.62 29197.79 28597.11 33996.67 37092.31 36298.51 26198.04 34499.24 13395.77 36599.47 23193.78 30299.66 33198.98 10399.62 23299.37 226
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tmp_tt95.75 33295.42 33096.76 34089.90 37594.42 35198.86 21797.87 34978.01 36799.30 22999.69 11397.70 21695.89 37099.29 6398.14 34899.95 1
MVS-HIRNet97.86 28298.22 25396.76 34099.28 27791.53 36898.38 27292.60 37299.13 15499.31 22499.96 1097.18 24899.68 32298.34 15199.83 13499.07 292
tpm296.35 32096.22 31796.73 34298.88 33391.75 36699.21 14198.51 33493.27 35697.89 34399.21 29184.83 36299.70 30596.04 30798.18 34798.75 320
tpmrst97.73 28798.07 26596.73 34298.71 34892.00 36399.10 17698.86 31898.52 22298.92 27899.54 20691.90 31899.82 25198.02 17799.03 31298.37 338
DWT-MVSNet_test96.03 32795.80 32696.71 34498.50 35491.93 36499.25 13197.87 34995.99 33496.81 36097.61 36681.02 36799.66 33197.20 25197.98 35198.54 329
tpmvs97.39 29897.69 28896.52 34598.41 35591.76 36599.30 11198.94 31797.74 28297.85 34699.55 20492.40 31699.73 29796.25 30098.73 33198.06 351
CostFormer96.71 31496.79 31396.46 34698.90 32790.71 37299.41 8498.68 32694.69 35398.14 33499.34 26486.32 36099.80 27297.60 22298.07 35098.88 310
E-PMN97.14 30597.43 29396.27 34798.79 34291.62 36795.54 36399.01 31599.44 10498.88 28299.12 30292.78 31099.68 32294.30 34399.03 31297.50 357
dp96.86 30997.07 30396.24 34898.68 35090.30 37499.19 14798.38 34197.35 30398.23 32899.59 18487.23 35099.82 25196.27 29998.73 33198.59 325
tpm cat196.78 31196.98 30696.16 34998.85 33490.59 37399.08 18399.32 27192.37 35897.73 35299.46 23491.15 32799.69 31196.07 30698.80 32298.21 346
EMVS96.96 30897.28 29695.99 35098.76 34691.03 37095.26 36498.61 33099.34 11798.92 27898.88 33693.79 30199.66 33192.87 35299.05 31097.30 361
wuyk23d97.58 29399.13 12192.93 35199.69 12399.49 12899.52 6999.77 6397.97 26999.96 899.79 6099.84 399.94 5795.85 31699.82 14379.36 367
test_method91.72 33692.32 33989.91 35293.49 37470.18 37690.28 36599.56 18261.71 37095.39 36799.52 21193.90 29899.94 5798.76 12698.27 34399.62 108
test12329.31 33733.05 34218.08 35325.93 37712.24 37797.53 33510.93 37811.78 37124.21 37250.08 37921.04 3768.60 37223.51 37032.43 37133.39 368
testmvs28.94 33833.33 34015.79 35426.03 3769.81 37896.77 35715.67 37711.55 37223.87 37350.74 37819.03 3778.53 37323.21 37133.07 37029.03 369
uanet_test8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.88 33933.17 3410.00 3550.00 3780.00 3790.00 36699.62 1400.00 3730.00 37499.13 29899.82 40.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas16.61 34022.14 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 199.28 410.00 3740.00 3720.00 3720.00 370
sosnet-low-res8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
sosnet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
Regformer8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.26 34711.02 3500.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.16 2960.00 3780.00 3740.00 3720.00 3720.00 370
uanet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.83 3899.89 899.74 1699.71 9599.69 5299.63 127
PC_three_145297.56 28999.68 10899.41 24199.09 6297.09 36996.66 28099.60 24299.62 108
test_one_060199.63 14499.76 5099.55 18899.23 13599.31 22499.61 16998.59 130
eth-test20.00 378
eth-test0.00 378
ZD-MVS99.43 23099.61 10799.43 24296.38 32899.11 25999.07 30797.86 20799.92 9194.04 34799.49 268
RE-MVS-def99.13 12199.54 17999.74 6099.26 12499.62 14099.16 14899.52 17299.64 14198.57 13397.27 24299.61 23999.54 157
IU-MVS99.69 12399.77 4399.22 29697.50 29599.69 10697.75 20599.70 20499.77 35
test_241102_TWO99.54 19499.13 15499.76 7599.63 15198.32 17099.92 9197.85 19699.69 20799.75 42
test_241102_ONE99.69 12399.82 2899.54 19499.12 15799.82 5099.49 22398.91 8699.52 355
9.1498.64 21099.45 22598.81 22799.60 15997.52 29499.28 23099.56 19798.53 14299.83 24195.36 33099.64 229
save fliter99.53 18499.25 18898.29 27899.38 26199.07 161
test_0728_THIRD99.18 14299.62 13599.61 16998.58 13299.91 11297.72 20799.80 15699.77 35
test072699.69 12399.80 3699.24 13299.57 17799.16 14899.73 9499.65 13998.35 165
GSMVS99.14 275
test_part299.62 14899.67 8699.55 163
sam_mvs190.81 33499.14 275
sam_mvs90.52 338
MTGPAbinary99.53 203
test_post199.14 16351.63 37789.54 34599.82 25196.86 267
test_post52.41 37690.25 34099.86 194
patchmatchnet-post99.62 16090.58 33699.94 57
MTMP99.09 18098.59 332
gm-plane-assit97.59 36789.02 37593.47 35598.30 35799.84 23096.38 295
test9_res95.10 33399.44 27499.50 180
TEST999.35 25199.35 16998.11 29499.41 24594.83 35297.92 34198.99 31998.02 19499.85 213
test_899.34 26199.31 17598.08 29899.40 25294.90 34897.87 34598.97 32598.02 19499.84 230
agg_prior294.58 34199.46 27399.50 180
agg_prior99.35 25199.36 16599.39 25597.76 35099.85 213
test_prior499.19 20498.00 306
test_prior297.95 31397.87 27698.05 33699.05 30997.90 20395.99 31099.49 268
旧先验297.94 31595.33 34398.94 27499.88 16196.75 274
新几何298.04 302
旧先验199.49 20699.29 17899.26 28699.39 24897.67 22199.36 28899.46 199
无先验98.01 30499.23 29395.83 33699.85 21395.79 31999.44 206
原ACMM297.92 317
test22299.51 19499.08 21897.83 32299.29 28095.21 34598.68 30499.31 26897.28 24199.38 28399.43 212
testdata299.89 14795.99 310
segment_acmp98.37 163
testdata197.72 32597.86 279
plane_prior799.58 15799.38 159
plane_prior699.47 21799.26 18497.24 242
plane_prior599.54 19499.82 25195.84 31799.78 16799.60 123
plane_prior499.25 282
plane_prior399.31 17598.36 23899.14 255
plane_prior298.80 23098.94 175
plane_prior199.51 194
plane_prior99.24 19398.42 27097.87 27699.71 202
n20.00 379
nn0.00 379
door-mid99.83 34
test1199.29 280
door99.77 63
HQP5-MVS98.94 230
HQP-NCC99.31 26897.98 30997.45 29798.15 330
ACMP_Plane99.31 26897.98 30997.45 29798.15 330
BP-MVS94.73 337
HQP4-MVS98.15 33099.70 30599.53 162
HQP3-MVS99.37 26299.67 219
HQP2-MVS96.67 259
NP-MVS99.40 23999.13 20998.83 338
MDTV_nov1_ep13_2view91.44 36999.14 16397.37 30299.21 24491.78 32296.75 27499.03 296
MDTV_nov1_ep1397.73 28798.70 34990.83 37199.15 16198.02 34598.51 22398.82 29099.61 16990.98 32999.66 33196.89 26698.92 318
ACMMP++_ref99.94 62
ACMMP++99.79 161
Test By Simon98.41 157