This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 9199.96 1198.85 6999.99 599.86 18
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7399.97 498.78 7299.93 4499.72 45
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14699.93 4098.90 6699.93 4499.77 35
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9899.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7399.95 2298.89 6899.95 3299.81 28
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8499.96 1198.78 7299.93 4499.77 35
MSP-MVS98.40 15098.00 18699.61 999.57 8199.25 2498.57 10699.35 14397.55 19699.31 10597.71 31694.61 26199.88 8396.14 25399.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12899.20 20098.83 10798.89 17098.90 18796.98 16799.92 5097.16 16699.70 15999.56 97
test_0728_SECOND99.60 1199.50 10899.23 2698.02 17199.32 15699.88 8396.99 18199.63 18499.68 54
MP-MVS-pluss98.57 12798.23 16299.60 1199.69 5699.35 1297.16 26699.38 13094.87 32398.97 15498.99 16598.01 9399.88 8397.29 15999.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 8099.48 9697.57 19299.35 9499.24 10597.83 10499.89 7497.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 12096.74 26098.61 20998.38 26998.62 4799.87 10096.47 23199.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12399.30 16998.64 11298.95 15798.96 17497.49 13899.86 10896.56 22399.39 24399.45 150
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13599.29 17798.29 13798.88 17498.85 20097.53 13199.87 10096.14 25399.31 25599.48 137
DPE-MVScopyleft98.59 12698.26 15899.57 1699.27 16199.15 4797.01 27199.39 12897.67 18299.44 7598.99 16597.53 13199.89 7495.40 28399.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19899.25 18996.94 24998.78 18899.12 13298.02 9299.84 13797.13 17199.67 17399.59 80
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21898.94 16498.86 19798.75 3699.82 16497.53 14999.71 15499.56 97
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14999.42 4199.33 9799.26 10097.01 16599.94 3598.74 7699.93 4499.79 30
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31899.49 3199.59 5299.65 3094.79 25899.95 2299.45 3599.96 2599.88 14
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14399.49 9497.01 24698.69 19898.88 19498.00 9499.89 7495.87 26599.59 19899.58 86
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15799.90 6499.21 4899.87 7799.54 108
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4499.80 18498.24 10599.84 8599.52 118
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12599.29 17797.28 22498.11 25498.39 26798.00 9499.87 10096.86 19799.64 18199.55 104
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4799.73 23899.17 5199.92 5599.76 39
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11299.31 16197.46 20798.44 23098.51 25497.83 10499.88 8396.46 23299.58 20399.58 86
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11299.31 16197.47 20298.56 21898.54 25097.75 11199.88 8396.57 21999.59 19899.58 86
MP-MVScopyleft98.46 14498.09 17799.54 2799.57 8199.22 2798.50 11999.19 20497.61 18997.58 28998.66 23397.40 14299.88 8394.72 29799.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9999.24 19497.47 20298.09 25698.68 22897.62 12299.89 7496.22 24799.62 18799.57 91
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14399.31 16197.92 16598.90 16898.90 18798.00 9499.88 8396.15 25299.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9799.34 14998.62 11697.54 29398.63 24097.50 13599.83 15496.79 20099.53 21999.56 97
X-MVStestdata94.32 33492.59 35299.53 3499.46 12599.21 2898.65 9799.34 14998.62 11697.54 29345.85 40697.50 13599.83 15496.79 20099.53 21999.56 97
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 12099.33 15498.64 11299.03 14698.98 16997.89 10199.85 12096.54 22799.42 24099.46 146
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7399.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19799.92 5099.44 3699.92 5599.68 54
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 17198.84 27297.97 16099.08 13499.02 15297.61 12399.88 8396.99 18199.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 14199.25 18997.44 21098.67 20098.39 26797.68 11499.85 12096.00 25799.51 22499.52 118
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 9199.36 13897.54 19798.30 24098.40 26697.86 10399.89 7496.53 22899.72 14999.56 97
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 8099.37 13497.16 23998.82 18599.01 16197.71 11399.87 10096.29 24299.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9399.69 3798.90 10099.43 7699.35 8398.86 2899.67 26797.81 13499.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9399.69 3798.90 10099.43 7699.35 8398.86 2899.67 26797.81 13499.81 9999.24 222
DVP-MVS++98.90 7598.70 9299.51 4398.43 31999.15 4799.43 1199.32 15698.17 15099.26 11299.02 15298.18 8099.88 8397.07 17599.45 23699.49 127
SMA-MVScopyleft98.40 15098.03 18499.51 4399.16 19099.21 2898.05 16699.22 19794.16 33998.98 15099.10 13697.52 13399.79 19796.45 23399.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11299.31 16197.47 20298.58 21598.50 25897.97 9899.85 12096.57 21999.59 19899.53 115
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15999.31 16198.03 15799.66 4299.02 15298.36 6599.88 8396.91 18799.62 18799.41 164
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22599.91 5999.32 4099.95 3299.70 51
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8399.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
HPM-MVS++copyleft98.10 18397.64 21699.48 5199.09 20499.13 5597.52 23798.75 28797.46 20796.90 32897.83 31196.01 21399.84 13795.82 26999.35 24999.46 146
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16399.37 13497.62 18699.04 14398.96 17498.84 3099.79 19797.43 15399.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14399.48 9696.60 26599.10 13299.06 14098.71 3999.83 15495.58 27999.78 11999.62 67
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26599.10 13299.06 14098.71 3999.83 15495.58 27999.78 11999.62 67
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13299.42 12399.42 4199.36 9299.06 14098.38 6499.95 2298.34 10199.90 6999.57 91
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9599.54 7899.31 5299.62 5199.53 5497.36 14499.86 10899.24 4799.71 15499.39 175
APD-MVScopyleft98.10 18397.67 21199.42 5899.11 19998.93 7197.76 20899.28 18094.97 32098.72 19798.77 21497.04 16199.85 12093.79 32699.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10899.57 6297.72 18098.90 16899.26 10096.12 20899.52 32895.72 27299.71 15499.32 203
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 6199.95 2299.73 1999.96 2599.75 43
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8799.56 6999.09 8399.33 9799.19 11398.40 6399.72 24595.98 25999.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21699.40 12699.14 7299.06 13698.59 24696.71 18599.93 4098.57 8899.77 12499.53 115
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23599.25 18998.84 10699.06 13698.76 21696.76 18199.93 4098.57 8899.77 12499.50 123
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 16199.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 20099.10 8099.72 3198.76 21696.38 19999.86 10898.00 12399.82 9599.50 123
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24399.57 6299.37 4599.21 12099.61 3796.76 18199.83 15498.06 11899.83 9299.71 46
ACMP95.32 1598.41 14898.09 17799.36 6499.51 10598.79 8097.68 21699.38 13095.76 29998.81 18798.82 20698.36 6599.82 16494.75 29499.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LS3D98.63 12098.38 14299.36 6497.25 38299.38 899.12 5799.32 15699.21 6298.44 23098.88 19497.31 14599.80 18496.58 21799.34 25198.92 276
Effi-MVS+-dtu98.26 17097.90 19699.35 7098.02 34499.49 598.02 17199.16 21598.29 13797.64 28497.99 30096.44 19699.95 2296.66 21498.93 30798.60 318
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8899.96 1199.53 30100.00 199.93 8
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21299.38 13098.93 9899.12 12898.73 21996.77 17999.86 10898.63 8599.80 10999.46 146
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20599.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 13099.45 11098.28 13998.98 15099.19 11397.76 11099.58 30996.57 21999.55 21398.97 267
EGC-MVSNET85.24 37280.54 37599.34 7399.77 2899.20 3499.08 5899.29 17712.08 40820.84 40999.42 7397.55 12899.85 12097.08 17499.72 14998.96 269
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15799.85 12099.02 6099.94 4099.80 29
PHI-MVS98.29 16797.95 19099.34 7398.44 31899.16 4398.12 15699.38 13096.01 29198.06 25898.43 26497.80 10899.67 26795.69 27499.58 20399.20 229
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10399.58 5599.11 7399.53 6099.18 11698.81 3299.67 26796.71 21199.77 12499.50 123
MSC_two_6792asdad99.32 8098.43 31998.37 11198.86 26899.89 7497.14 16999.60 19499.71 46
No_MVS99.32 8098.43 31998.37 11198.86 26899.89 7497.14 16999.60 19499.71 46
SF-MVS98.53 13698.27 15799.32 8099.31 15498.75 8198.19 14899.41 12496.77 25998.83 18298.90 18797.80 10899.82 16495.68 27599.52 22299.38 182
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21699.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17899.82 16498.69 8199.88 7499.76 39
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 11099.63 1799.52 6299.44 7198.25 7199.88 8399.09 5499.84 8599.62 67
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12599.33 15499.63 1799.48 6899.15 12697.23 15299.75 22897.17 16599.66 17899.63 66
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
CPTT-MVS97.84 20997.36 23499.27 8899.31 15498.46 10598.29 13899.27 18394.90 32297.83 27398.37 27094.90 24999.84 13793.85 32599.54 21599.51 120
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7399.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4499.93 4098.91 6599.85 8198.88 283
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17299.83 15499.21 4899.91 6399.77 35
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13499.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 9099.56 6998.42 12798.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26899.18 20897.10 24298.75 19498.92 18398.18 8099.65 28396.68 21399.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20498.99 9298.07 25799.28 9697.11 15999.84 13796.84 19899.32 25399.47 144
DeepPCF-MVS96.93 598.32 16198.01 18599.23 9798.39 32498.97 6695.03 36299.18 20896.88 25299.33 9798.78 21298.16 8499.28 37296.74 20699.62 18799.44 154
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21399.46 10697.25 22798.98 15098.99 16597.54 12999.84 13795.88 26299.74 13999.23 224
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8598.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10799.57 6297.87 16998.85 17998.04 29897.66 11699.84 13796.72 20999.81 9999.13 244
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16999.69 999.63 4899.68 2099.25 1499.96 1197.25 16299.92 5599.57 91
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11498.59 11898.95 15799.55 4894.14 27299.86 10897.77 13799.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11498.59 11898.95 15799.55 4894.14 27299.86 10897.77 13799.69 16299.41 164
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11499.21 6299.43 7699.55 4897.82 10799.86 10898.42 9899.89 7399.41 164
AllTest98.44 14698.20 16499.16 10599.50 10898.55 9798.25 14299.58 5596.80 25698.88 17499.06 14097.65 11799.57 31194.45 30499.61 19299.37 184
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25698.88 17499.06 14097.65 11799.57 31194.45 30499.61 19299.37 184
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31599.37 4599.70 3599.65 3092.65 29999.93 4099.04 5899.84 8599.60 74
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29599.48 9697.32 22099.11 12998.61 24499.33 1399.30 36896.23 24698.38 33499.28 214
F-COLMAP97.30 24596.68 27299.14 10899.19 18098.39 10897.27 25899.30 16992.93 35796.62 34198.00 29995.73 22899.68 26492.62 35298.46 33399.35 194
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24899.25 5899.54 5699.37 7997.04 16199.80 18497.89 12899.52 22299.35 194
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17899.68 4297.62 18699.34 9699.18 11697.54 12999.77 21597.79 13699.74 13999.04 255
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 12099.83 2098.37 12899.69 3799.46 6698.21 7899.92 5094.13 31699.30 25898.91 279
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32799.50 8797.30 22299.05 14198.98 16999.35 1299.32 36595.72 27299.68 16799.18 236
h-mvs3397.77 21297.33 23799.10 11499.21 17397.84 16498.35 13698.57 29999.11 7398.58 21599.02 15288.65 33399.96 1198.11 11396.34 38599.49 127
MCST-MVS98.00 19297.63 21799.10 11499.24 16698.17 12796.89 28098.73 29095.66 30097.92 26597.70 31897.17 15599.66 27896.18 25199.23 26999.47 144
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17698.85 8399.62 4898.48 12699.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17499.46 10697.56 19499.54 5699.50 5998.97 2399.84 13798.06 11899.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous20240521197.90 19797.50 22599.08 11898.90 24098.25 11998.53 11196.16 36498.87 10299.11 12998.86 19790.40 32099.78 20897.36 15699.31 25599.19 234
IS-MVSNet98.19 17897.90 19699.08 11899.57 8197.97 15299.31 2798.32 31099.01 9198.98 15099.03 15191.59 31099.79 19795.49 28199.80 10999.48 137
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7799.94 297.80 17499.91 1199.67 2597.15 15698.91 39099.76 1699.56 21099.92 9
train_agg97.10 26096.45 28499.07 12098.71 27498.08 13995.96 32999.03 23991.64 36995.85 36097.53 32696.47 19499.76 22193.67 32899.16 27999.36 190
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10497.01 34699.59 2399.11 12999.27 9894.82 25399.79 19798.34 10199.63 18499.34 196
CDPH-MVS97.26 24896.66 27599.07 12099.00 22198.15 12896.03 32599.01 24591.21 37797.79 27697.85 31096.89 17099.69 25592.75 34999.38 24699.39 175
CNVR-MVS98.17 18197.87 19999.07 12098.67 28698.24 12097.01 27198.93 25297.25 22797.62 28598.34 27497.27 14999.57 31196.42 23499.33 25299.39 175
EPP-MVSNet98.30 16498.04 18399.07 12099.56 8997.83 16599.29 3398.07 32299.03 8998.59 21399.13 13092.16 30599.90 6496.87 19599.68 16799.49 127
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11798.94 25096.96 24799.24 11798.89 19397.83 10499.81 17796.88 19499.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC97.86 20397.47 22999.05 12798.61 29598.07 14196.98 27398.90 25897.63 18597.04 31897.93 30695.99 21899.66 27895.31 28498.82 31399.43 158
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17199.25 4099.30 16998.57 12198.55 22099.33 8997.95 9999.90 6497.16 16699.67 17399.44 154
OMC-MVS97.88 20197.49 22699.04 12998.89 24598.63 8996.94 27599.25 18995.02 31898.53 22398.51 25497.27 14999.47 34293.50 33499.51 22499.01 259
WR-MVS98.40 15098.19 16699.03 13099.00 22197.65 18296.85 28198.94 25098.57 12198.89 17098.50 25895.60 23199.85 12097.54 14899.85 8199.59 80
K. test v398.00 19297.66 21499.03 13099.79 2497.56 18799.19 4992.47 39399.62 2099.52 6299.66 2789.61 32499.96 1199.25 4599.81 9999.56 97
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20297.82 19899.76 2998.73 10899.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
VDDNet98.21 17697.95 19099.01 13399.58 7797.74 17699.01 6697.29 34199.67 1298.97 15499.50 5990.45 31999.80 18497.88 13199.20 27399.48 137
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18598.43 12899.35 14399.47 3499.28 10699.05 14796.72 18499.82 16498.09 11599.36 24799.59 80
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17897.93 18299.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17898.00 17599.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
N_pmnet97.63 22297.17 24398.99 13599.27 16197.86 16295.98 32693.41 39095.25 31499.47 7098.90 18795.63 23099.85 12096.91 18799.73 14299.27 215
lessismore_v098.97 13899.73 3897.53 18986.71 40799.37 8999.52 5789.93 32299.92 5098.99 6299.72 14999.44 154
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19898.84 8599.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12599.92 5599.57 91
HyFIR lowres test97.19 25596.60 27998.96 13999.62 7697.28 20295.17 35899.50 8794.21 33899.01 14798.32 27786.61 34299.99 297.10 17399.84 8599.60 74
test_prior98.95 14198.69 28397.95 15699.03 23999.59 30399.30 210
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21697.80 20199.76 2998.70 11199.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 19198.04 16899.59 5398.15 15499.40 8399.36 8298.58 5399.76 22198.78 7299.68 16799.59 80
test1298.93 14498.58 30297.83 16598.66 29396.53 34495.51 23599.69 25599.13 28499.27 215
HQP_MVS97.99 19597.67 21198.93 14499.19 18097.65 18297.77 20599.27 18398.20 14797.79 27697.98 30194.90 24999.70 25094.42 30699.51 22499.45 150
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12799.34 14999.28 5698.95 15798.91 18498.34 6999.79 19795.63 27699.91 6398.86 285
MM98.22 17497.99 18798.91 14798.66 29196.97 22097.89 18994.44 38199.54 2798.95 15799.14 12993.50 28499.92 5099.80 1299.96 2599.85 19
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11499.45 3699.51 6699.24 10598.20 7999.86 10895.92 26199.69 16299.04 255
新几何198.91 14798.94 23097.76 17498.76 28487.58 39496.75 33798.10 29294.80 25699.78 20892.73 35099.00 29999.20 229
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34898.86 10398.87 17897.62 32398.63 4698.96 38799.41 3798.29 33898.45 327
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14397.50 19998.28 24298.60 24597.64 12099.35 36193.86 32499.27 26298.79 298
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17497.16 26699.28 18095.54 30599.42 7999.19 11397.27 14999.63 28997.89 12899.97 1999.20 229
PLCcopyleft94.65 1696.51 28895.73 29998.85 15398.75 26797.91 15896.42 30399.06 23190.94 38095.59 36397.38 33694.41 26599.59 30390.93 37598.04 35599.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CMPMVSbinary75.91 2396.29 29695.44 31198.84 15496.25 40198.69 8897.02 27099.12 22388.90 39097.83 27398.86 19789.51 32598.90 39191.92 35799.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS_111021_LR98.30 16498.12 17598.83 15599.16 19098.03 14696.09 32399.30 16997.58 19198.10 25598.24 28198.25 7199.34 36296.69 21299.65 17999.12 245
OPU-MVS98.82 15698.59 30098.30 11698.10 15998.52 25398.18 8098.75 39494.62 29899.48 23399.41 164
QAPM97.31 24496.81 26598.82 15698.80 26397.49 19099.06 6299.19 20490.22 38397.69 28299.16 12296.91 16999.90 6490.89 37799.41 24199.07 249
Fast-Effi-MVS+-dtu98.27 16898.09 17798.81 15898.43 31998.11 13297.61 22799.50 8798.64 11297.39 30797.52 32898.12 8799.95 2296.90 19298.71 31998.38 336
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19997.82 19899.57 6299.17 7199.35 9499.17 12098.35 6899.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23497.97 18199.86 1398.22 14299.88 1799.71 1798.59 5099.84 13799.73 1999.98 1299.98 2
EIA-MVS98.00 19297.74 20698.80 16098.72 27198.09 13598.05 16699.60 5297.39 21396.63 34095.55 37397.68 11499.80 18496.73 20899.27 26298.52 322
TAMVS98.24 17398.05 18298.80 16099.07 20897.18 21197.88 19098.81 27796.66 26499.17 12799.21 11094.81 25599.77 21596.96 18599.88 7499.44 154
VNet98.42 14798.30 15298.79 16398.79 26497.29 20198.23 14398.66 29399.31 5298.85 17998.80 20994.80 25699.78 20898.13 11299.13 28499.31 207
UGNet98.53 13698.45 13098.79 16397.94 34996.96 22299.08 5898.54 30099.10 8096.82 33399.47 6596.55 19199.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 29295.70 30098.79 16397.92 35099.12 5798.28 13998.60 29892.16 36795.54 36996.17 36294.77 25999.52 32889.62 38298.23 33997.72 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23497.79 20299.82 2298.21 14399.81 2399.53 5498.46 6099.84 13799.70 2299.97 1999.90 10
alignmvs97.35 24196.88 25898.78 16698.54 30798.09 13597.71 21397.69 33199.20 6497.59 28895.90 36788.12 33899.55 31798.18 10998.96 30498.70 309
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20997.78 20399.24 19499.04 8899.41 8098.90 18797.65 11799.76 22197.70 14299.79 11499.39 175
TSAR-MVS + GP.98.18 17997.98 18898.77 16998.71 27497.88 16096.32 30998.66 29396.33 27899.23 11998.51 25497.48 13999.40 35397.16 16699.46 23499.02 258
MVS_030498.10 18397.88 19898.76 17098.82 25796.50 23697.90 18791.35 39999.56 2698.32 23999.13 13096.06 21099.93 4099.84 799.97 1999.85 19
V4298.78 9098.78 8198.76 17099.44 12997.04 21798.27 14099.19 20497.87 16999.25 11699.16 12296.84 17299.78 20899.21 4899.84 8599.46 146
baseline98.96 6899.02 6098.76 17099.38 14097.26 20498.49 12099.50 8798.86 10399.19 12299.06 14098.23 7399.69 25598.71 7999.76 13599.33 201
UnsupCasMVSNet_eth97.89 19997.60 21998.75 17399.31 15497.17 21297.62 22599.35 14398.72 11098.76 19398.68 22892.57 30099.74 23397.76 14195.60 39399.34 196
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21598.61 10299.13 22298.59 11899.19 12299.28 9694.14 27299.82 16497.97 12599.80 10999.29 212
MVS_111021_HR98.25 17298.08 18098.75 17399.09 20497.46 19295.97 32799.27 18397.60 19097.99 26398.25 28098.15 8699.38 35796.87 19599.57 20799.42 161
DeepC-MVS_fast96.85 698.30 16498.15 17298.75 17398.61 29597.23 20597.76 20899.09 22897.31 22198.75 19498.66 23397.56 12799.64 28696.10 25699.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22498.58 10599.10 22696.49 27099.96 499.81 598.18 8099.45 34698.97 6399.79 11499.83 22
114514_t96.50 29095.77 29798.69 17899.48 12297.43 19597.84 19799.55 7381.42 40296.51 34698.58 24795.53 23399.67 26793.41 33699.58 20398.98 264
CDS-MVSNet97.69 21797.35 23598.69 17898.73 26997.02 21996.92 27998.75 28795.89 29698.59 21398.67 23092.08 30799.74 23396.72 20999.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAPA-MVS96.21 1196.63 28495.95 29598.65 18098.93 23298.09 13596.93 27799.28 18083.58 40098.13 25297.78 31296.13 20799.40 35393.52 33299.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24797.87 19399.85 1598.56 12399.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
hse-mvs297.46 23397.07 24898.64 18198.73 26997.33 19997.45 24497.64 33499.11 7398.58 21597.98 30188.65 33399.79 19798.11 11397.39 36898.81 292
LFMVS97.20 25496.72 26998.64 18198.72 27196.95 22398.93 7694.14 38799.74 698.78 18899.01 16184.45 36099.73 23897.44 15299.27 26299.25 219
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7699.51 33297.70 14299.73 14297.89 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23897.23 25998.86 26899.20 6499.18 12698.97 17197.29 14899.85 12098.72 7899.78 11999.64 63
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25298.74 8798.64 29699.74 699.67 4199.24 10594.57 26299.95 2299.11 5299.24 26799.82 25
Effi-MVS+98.02 19097.82 20298.62 18698.53 30997.19 21097.33 25199.68 4297.30 22296.68 33897.46 33298.56 5499.80 18496.63 21598.20 34198.86 285
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23997.23 25998.87 26399.20 6499.19 12298.99 16597.30 14699.85 12098.77 7599.79 11499.65 62
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 25097.74 21099.81 2498.55 12499.85 1999.55 4898.60 4999.84 13799.69 2499.98 1299.89 11
PatchMatch-RL97.24 25196.78 26698.61 18999.03 21997.83 16596.36 30699.06 23193.49 35197.36 30997.78 31295.75 22799.49 33693.44 33598.77 31498.52 322
AUN-MVS96.24 29995.45 31098.60 19198.70 27897.22 20797.38 24797.65 33295.95 29495.53 37097.96 30582.11 37599.79 19796.31 24097.44 36598.80 297
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20599.32 2398.81 27797.66 18398.62 20799.40 7896.82 17599.80 18495.88 26299.51 22498.75 303
sasdasda98.34 15798.26 15898.58 19398.46 31597.82 16898.96 7299.46 10699.19 6897.46 30095.46 37898.59 5099.46 34498.08 11698.71 31998.46 324
canonicalmvs98.34 15798.26 15898.58 19398.46 31597.82 16898.96 7299.46 10699.19 6897.46 30095.46 37898.59 5099.46 34498.08 11698.71 31998.46 324
1112_ss97.29 24796.86 25998.58 19399.34 15396.32 24196.75 28799.58 5593.14 35496.89 32997.48 33092.11 30699.86 10896.91 18799.54 21599.57 91
Fast-Effi-MVS+97.67 21997.38 23298.57 19698.71 27497.43 19597.23 25999.45 11094.82 32496.13 35496.51 35498.52 5699.91 5996.19 24998.83 31198.37 338
MVP-Stereo98.08 18797.92 19498.57 19698.96 22896.79 22897.90 18799.18 20896.41 27698.46 22898.95 17895.93 22299.60 29996.51 22998.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v899.01 6099.16 4598.57 19699.47 12496.31 24298.90 7899.47 10499.03 8999.52 6299.57 4296.93 16899.81 17799.60 2599.98 1299.60 74
DP-MVS Recon97.33 24396.92 25598.57 19699.09 20497.99 14896.79 28399.35 14393.18 35397.71 28098.07 29695.00 24899.31 36693.97 31999.13 28498.42 333
ETV-MVS98.03 18997.86 20098.56 20098.69 28398.07 14197.51 23999.50 8798.10 15597.50 29795.51 37498.41 6299.88 8396.27 24399.24 26797.71 372
v1098.97 6699.11 5298.55 20199.44 12996.21 24698.90 7899.55 7398.73 10899.48 6899.60 3996.63 18899.83 15499.70 2299.99 599.61 73
HQP-MVS97.00 26996.49 28398.55 20198.67 28696.79 22896.29 31199.04 23796.05 28895.55 36696.84 34893.84 27899.54 32292.82 34699.26 26599.32 203
CNLPA97.17 25796.71 27098.55 20198.56 30598.05 14596.33 30898.93 25296.91 25197.06 31797.39 33594.38 26799.45 34691.66 36199.18 27898.14 347
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6496.97 22098.00 17599.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
CHOSEN 1792x268897.49 23197.14 24798.54 20499.68 5896.09 25096.50 29899.62 4891.58 37198.84 18198.97 17192.36 30299.88 8396.76 20499.95 3299.67 57
LF4IMVS97.90 19797.69 21098.52 20699.17 18897.66 18197.19 26599.47 10496.31 28097.85 27298.20 28596.71 18599.52 32894.62 29899.72 14998.38 336
MGCFI-Net98.34 15798.28 15498.51 20798.47 31397.59 18698.96 7299.48 9699.18 7097.40 30595.50 37598.66 4399.50 33398.18 10998.71 31998.44 329
DPM-MVS96.32 29595.59 30598.51 20798.76 26597.21 20894.54 37998.26 31291.94 36896.37 35097.25 34093.06 29199.43 34991.42 36798.74 31598.89 280
pmmvs497.58 22797.28 23898.51 20798.84 25296.93 22595.40 35398.52 30293.60 34898.61 20998.65 23595.10 24599.60 29996.97 18499.79 11498.99 263
Patchmtry97.35 24196.97 25298.50 21097.31 38196.47 23798.18 14998.92 25598.95 9798.78 18899.37 7985.44 35499.85 12095.96 26099.83 9299.17 240
DELS-MVS98.27 16898.20 16498.48 21198.86 24896.70 23295.60 34499.20 20097.73 17898.45 22998.71 22297.50 13599.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS97.49 23197.16 24498.48 21199.07 20897.03 21894.71 37099.21 19894.46 33198.06 25897.16 34297.57 12699.48 33994.46 30399.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary97.14 25996.71 27098.46 21398.34 32697.80 17296.95 27498.93 25295.58 30496.92 32397.66 31995.87 22499.53 32490.97 37499.14 28298.04 352
v14419298.54 13498.57 11298.45 21499.21 17395.98 25397.63 22499.36 13897.15 24199.32 10399.18 11695.84 22699.84 13799.50 3299.91 6399.54 108
UnsupCasMVSNet_bld97.30 24596.92 25598.45 21499.28 15996.78 23196.20 31699.27 18395.42 30998.28 24298.30 27893.16 28799.71 24694.99 28997.37 36998.87 284
WB-MVS98.52 13998.55 11398.43 21699.65 6595.59 26298.52 11298.77 28399.65 1499.52 6299.00 16494.34 26899.93 4098.65 8398.83 31199.76 39
PCF-MVS92.86 1894.36 33393.00 35098.42 21798.70 27897.56 18793.16 39599.11 22579.59 40397.55 29297.43 33392.19 30499.73 23879.85 40499.45 23697.97 357
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119298.60 12498.66 9898.41 21899.27 16195.88 25697.52 23799.36 13897.41 21199.33 9799.20 11296.37 20099.82 16499.57 2799.92 5599.55 104
v114498.60 12498.66 9898.41 21899.36 14795.90 25597.58 23199.34 14997.51 19899.27 10899.15 12696.34 20299.80 18499.47 3499.93 4499.51 120
FMVSNet596.01 30395.20 32098.41 21897.53 37196.10 24798.74 8799.50 8797.22 23698.03 26299.04 14969.80 39799.88 8397.27 16099.71 15499.25 219
v192192098.54 13498.60 10998.38 22199.20 17795.76 26197.56 23399.36 13897.23 23399.38 8799.17 12096.02 21299.84 13799.57 2799.90 6999.54 108
v2v48298.56 12898.62 10498.37 22299.42 13595.81 25997.58 23199.16 21597.90 16799.28 10699.01 16195.98 21999.79 19799.33 3999.90 6999.51 120
原ACMM198.35 22398.90 24096.25 24498.83 27692.48 36396.07 35798.10 29295.39 23999.71 24692.61 35398.99 30099.08 247
Vis-MVSNet (Re-imp)97.46 23397.16 24498.34 22499.55 9396.10 24798.94 7598.44 30598.32 13398.16 24898.62 24288.76 32999.73 23893.88 32399.79 11499.18 236
v124098.55 13298.62 10498.32 22599.22 17195.58 26497.51 23999.45 11097.16 23999.45 7499.24 10596.12 20899.85 12099.60 2599.88 7499.55 104
OpenMVScopyleft96.65 797.09 26196.68 27298.32 22598.32 32797.16 21398.86 8299.37 13489.48 38796.29 35299.15 12696.56 19099.90 6492.90 34399.20 27397.89 360
Test_1112_low_res96.99 27096.55 28198.31 22799.35 15195.47 26995.84 33899.53 8191.51 37396.80 33498.48 26191.36 31399.83 15496.58 21799.53 21999.62 67
PAPM_NR96.82 27796.32 28798.30 22899.07 20896.69 23397.48 24198.76 28495.81 29896.61 34296.47 35794.12 27599.17 37990.82 37897.78 35799.06 250
FMVSNet397.50 22997.24 24098.29 22998.08 34295.83 25897.86 19598.91 25797.89 16898.95 15798.95 17887.06 33999.81 17797.77 13799.69 16299.23 224
MSDG97.71 21697.52 22398.28 23098.91 23996.82 22794.42 38099.37 13497.65 18498.37 23898.29 27997.40 14299.33 36494.09 31799.22 27098.68 313
test_fmvs399.12 5199.41 1998.25 23199.76 3195.07 28499.05 6499.94 297.78 17699.82 2199.84 298.56 5499.71 24699.96 199.96 2599.97 3
EPNet96.14 30095.44 31198.25 23190.76 41195.50 26897.92 18494.65 37998.97 9492.98 39598.85 20089.12 32899.87 10095.99 25899.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ambc98.24 23398.82 25795.97 25498.62 10199.00 24799.27 10899.21 11096.99 16699.50 33396.55 22699.50 23199.26 218
PVSNet_Blended_VisFu98.17 18198.15 17298.22 23499.73 3895.15 28097.36 24999.68 4294.45 33398.99 14999.27 9896.87 17199.94 3597.13 17199.91 6399.57 91
Anonymous2023120698.21 17698.21 16398.20 23599.51 10595.43 27198.13 15499.32 15696.16 28598.93 16598.82 20696.00 21499.83 15497.32 15899.73 14299.36 190
CANet97.87 20297.76 20498.19 23697.75 35795.51 26796.76 28699.05 23497.74 17796.93 32298.21 28495.59 23299.89 7497.86 13399.93 4499.19 234
patch_mono-298.51 14098.63 10298.17 23799.38 14094.78 28997.36 24999.69 3798.16 15398.49 22699.29 9597.06 16099.97 498.29 10499.91 6399.76 39
diffmvspermissive98.22 17498.24 16198.17 23799.00 22195.44 27096.38 30599.58 5597.79 17598.53 22398.50 25896.76 18199.74 23397.95 12799.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2024052198.69 10698.87 7198.16 23999.77 2895.11 28399.08 5899.44 11499.34 4999.33 9799.55 4894.10 27699.94 3599.25 4599.96 2599.42 161
testgi98.32 16198.39 14098.13 24099.57 8195.54 26597.78 20399.49 9497.37 21599.19 12297.65 32098.96 2499.49 33696.50 23098.99 30099.34 196
testdata98.09 24198.93 23295.40 27298.80 27990.08 38597.45 30298.37 27095.26 24199.70 25093.58 33198.95 30599.17 240
IterMVS-LS98.55 13298.70 9298.09 24199.48 12294.73 29297.22 26299.39 12898.97 9499.38 8799.31 9396.00 21499.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS96.51 28895.98 29498.09 24197.53 37195.84 25794.92 36698.84 27291.58 37196.05 35895.58 37295.68 22999.66 27895.59 27898.09 34998.76 302
CL-MVSNet_self_test97.44 23697.22 24198.08 24498.57 30495.78 26094.30 38398.79 28096.58 26798.60 21198.19 28694.74 26099.64 28696.41 23598.84 31098.82 288
pmmvs597.64 22197.49 22698.08 24499.14 19595.12 28296.70 29099.05 23493.77 34698.62 20798.83 20393.23 28599.75 22898.33 10399.76 13599.36 190
MDA-MVSNet-bldmvs97.94 19697.91 19598.06 24699.44 12994.96 28696.63 29399.15 22098.35 12998.83 18299.11 13394.31 26999.85 12096.60 21698.72 31799.37 184
sss97.21 25396.93 25398.06 24698.83 25495.22 27896.75 28798.48 30494.49 32997.27 31097.90 30792.77 29799.80 18496.57 21999.32 25399.16 243
test_f98.67 11498.87 7198.05 24899.72 4495.59 26298.51 11799.81 2496.30 28299.78 2699.82 496.14 20698.63 39599.82 899.93 4499.95 6
EI-MVSNet98.40 15098.51 11898.04 24999.10 20194.73 29297.20 26398.87 26398.97 9499.06 13699.02 15296.00 21499.80 18498.58 8699.82 9599.60 74
PMMVS298.07 18898.08 18098.04 24999.41 13794.59 29894.59 37799.40 12697.50 19998.82 18598.83 20396.83 17499.84 13797.50 15199.81 9999.71 46
v14898.45 14598.60 10998.00 25199.44 12994.98 28597.44 24599.06 23198.30 13499.32 10398.97 17196.65 18799.62 29298.37 9999.85 8199.39 175
Patchmatch-RL test97.26 24897.02 25197.99 25299.52 10395.53 26696.13 32199.71 3497.47 20299.27 10899.16 12284.30 36399.62 29297.89 12899.77 12498.81 292
iter_conf05_1196.72 27996.30 28897.97 25397.97 34696.24 24594.99 36496.19 36396.45 27496.77 33696.84 34891.46 31299.78 20896.27 24399.78 11997.90 358
bld_raw_dy_0_6497.62 22397.51 22497.96 25497.97 34696.28 24398.20 14799.82 2296.46 27399.37 8997.12 34792.42 30199.70 25096.27 24399.97 1997.90 358
iter_conf0596.54 28796.07 29397.92 25597.90 35294.50 29997.87 19399.14 22197.73 17898.89 17098.95 17875.75 39399.87 10098.50 9399.92 5599.40 173
test_yl96.69 28096.29 28997.90 25698.28 32995.24 27697.29 25597.36 33798.21 14398.17 24697.86 30886.27 34499.55 31794.87 29298.32 33598.89 280
DCV-MVSNet96.69 28096.29 28997.90 25698.28 32995.24 27697.29 25597.36 33798.21 14398.17 24697.86 30886.27 34499.55 31794.87 29298.32 33598.89 280
test_fmvs298.70 10398.97 6597.89 25899.54 9894.05 31198.55 10899.92 696.78 25899.72 3199.78 896.60 18999.67 26799.91 299.90 6999.94 7
WTY-MVS96.67 28296.27 29197.87 25998.81 26094.61 29796.77 28597.92 32694.94 32197.12 31397.74 31591.11 31599.82 16493.89 32298.15 34699.18 236
CANet_DTU97.26 24897.06 24997.84 26097.57 36694.65 29696.19 31798.79 28097.23 23395.14 37598.24 28193.22 28699.84 13797.34 15799.84 8599.04 255
test_vis1_rt97.75 21397.72 20997.83 26198.81 26096.35 24097.30 25499.69 3794.61 32797.87 26998.05 29796.26 20498.32 39898.74 7698.18 34298.82 288
D2MVS97.84 20997.84 20197.83 26199.14 19594.74 29196.94 27598.88 26195.84 29798.89 17098.96 17494.40 26699.69 25597.55 14699.95 3299.05 251
OpenMVS_ROBcopyleft95.38 1495.84 30995.18 32197.81 26398.41 32397.15 21497.37 24898.62 29783.86 39998.65 20398.37 27094.29 27099.68 26488.41 38598.62 32996.60 390
MVSTER96.86 27496.55 28197.79 26497.91 35194.21 30797.56 23398.87 26397.49 20199.06 13699.05 14780.72 37699.80 18498.44 9699.82 9599.37 184
dcpmvs_298.78 9099.11 5297.78 26599.56 8993.67 32999.06 6299.86 1399.50 3099.66 4299.26 10097.21 15499.99 298.00 12399.91 6399.68 54
mvsany_test197.60 22497.54 22197.77 26697.72 35895.35 27395.36 35497.13 34494.13 34099.71 3399.33 8997.93 10099.30 36897.60 14598.94 30698.67 314
FE-MVS95.66 31494.95 32697.77 26698.53 30995.28 27599.40 1696.09 36693.11 35597.96 26499.26 10079.10 38599.77 21592.40 35598.71 31998.27 342
MVSFormer98.26 17098.43 13397.77 26698.88 24693.89 32399.39 1799.56 6999.11 7398.16 24898.13 28893.81 28099.97 499.26 4399.57 20799.43 158
jason97.45 23597.35 23597.76 26999.24 16693.93 31995.86 33598.42 30694.24 33798.50 22598.13 28894.82 25399.91 5997.22 16399.73 14299.43 158
jason: jason.
testing393.51 34892.09 35797.75 27098.60 29794.40 30297.32 25295.26 37697.56 19496.79 33595.50 37553.57 41399.77 21595.26 28598.97 30399.08 247
PAPR95.29 32194.47 33097.75 27097.50 37695.14 28194.89 36798.71 29191.39 37595.35 37395.48 37794.57 26299.14 38284.95 39597.37 36998.97 267
dmvs_re95.98 30595.39 31497.74 27298.86 24897.45 19398.37 13495.69 37497.95 16296.56 34395.95 36590.70 31797.68 40188.32 38696.13 38998.11 348
thisisatest053095.27 32294.45 33197.74 27299.19 18094.37 30397.86 19590.20 40297.17 23898.22 24497.65 32073.53 39699.90 6496.90 19299.35 24998.95 270
test_vis1_n98.31 16398.50 12097.73 27499.76 3194.17 30998.68 9699.91 796.31 28099.79 2599.57 4292.85 29699.42 35199.79 1399.84 8599.60 74
MIMVSNet96.62 28596.25 29297.71 27599.04 21694.66 29599.16 5196.92 35297.23 23397.87 26999.10 13686.11 34899.65 28391.65 36299.21 27298.82 288
MVS_Test98.18 17998.36 14497.67 27698.48 31294.73 29298.18 14999.02 24297.69 18198.04 26199.11 13397.22 15399.56 31498.57 8898.90 30998.71 306
new_pmnet96.99 27096.76 26797.67 27698.72 27194.89 28795.95 33198.20 31592.62 36298.55 22098.54 25094.88 25299.52 32893.96 32099.44 23998.59 320
lupinMVS97.06 26396.86 25997.65 27898.88 24693.89 32395.48 34997.97 32493.53 34998.16 24897.58 32493.81 28099.91 5996.77 20399.57 20799.17 240
PMVScopyleft91.26 2097.86 20397.94 19297.65 27899.71 4797.94 15798.52 11298.68 29298.99 9297.52 29599.35 8397.41 14198.18 39991.59 36499.67 17396.82 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tttt051795.64 31594.98 32497.64 28099.36 14793.81 32598.72 9190.47 40198.08 15698.67 20098.34 27473.88 39599.92 5097.77 13799.51 22499.20 229
MSLP-MVS++98.02 19098.14 17497.64 28098.58 30295.19 27997.48 24199.23 19697.47 20297.90 26798.62 24297.04 16198.81 39397.55 14699.41 24198.94 274
PVSNet_BlendedMVS97.55 22897.53 22297.60 28298.92 23693.77 32796.64 29299.43 12094.49 32997.62 28599.18 11696.82 17599.67 26794.73 29599.93 4499.36 190
TinyColmap97.89 19997.98 18897.60 28298.86 24894.35 30496.21 31599.44 11497.45 20999.06 13698.88 19497.99 9799.28 37294.38 31099.58 20399.18 236
cl____97.02 26696.83 26297.58 28497.82 35594.04 31394.66 37399.16 21597.04 24498.63 20598.71 22288.68 33299.69 25597.00 17999.81 9999.00 262
DIV-MVS_self_test97.02 26696.84 26197.58 28497.82 35594.03 31494.66 37399.16 21597.04 24498.63 20598.71 22288.69 33099.69 25597.00 17999.81 9999.01 259
ET-MVSNet_ETH3D94.30 33693.21 34697.58 28498.14 33894.47 30194.78 36993.24 39294.72 32589.56 40395.87 36878.57 38899.81 17796.91 18797.11 37798.46 324
BH-RMVSNet96.83 27596.58 28097.58 28498.47 31394.05 31196.67 29197.36 33796.70 26397.87 26997.98 30195.14 24499.44 34890.47 37998.58 33199.25 219
HY-MVS95.94 1395.90 30795.35 31697.55 28897.95 34894.79 28898.81 8696.94 35192.28 36695.17 37498.57 24889.90 32399.75 22891.20 37197.33 37398.10 349
SD-MVS98.40 15098.68 9597.54 28998.96 22897.99 14897.88 19099.36 13898.20 14799.63 4899.04 14998.76 3595.33 40796.56 22399.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PatchT96.65 28396.35 28597.54 28997.40 37895.32 27497.98 17896.64 35799.33 5096.89 32999.42 7384.32 36299.81 17797.69 14497.49 36297.48 378
test_fmvs1_n98.09 18698.28 15497.52 29199.68 5893.47 33398.63 9999.93 495.41 31299.68 3999.64 3291.88 30999.48 33999.82 899.87 7799.62 67
baseline195.96 30695.44 31197.52 29198.51 31193.99 31798.39 13296.09 36698.21 14398.40 23797.76 31486.88 34099.63 28995.42 28289.27 40598.95 270
FA-MVS(test-final)96.99 27096.82 26397.50 29398.70 27894.78 28999.34 2096.99 34795.07 31798.48 22799.33 8988.41 33699.65 28396.13 25598.92 30898.07 351
Syy-MVS96.04 30295.56 30797.49 29497.10 38694.48 30096.18 31896.58 35895.65 30194.77 37892.29 40391.27 31499.36 35898.17 11198.05 35398.63 316
GA-MVS95.86 30895.32 31797.49 29498.60 29794.15 31093.83 39097.93 32595.49 30796.68 33897.42 33483.21 36899.30 36896.22 24798.55 33299.01 259
PVSNet_Blended96.88 27396.68 27297.47 29698.92 23693.77 32794.71 37099.43 12090.98 37997.62 28597.36 33896.82 17599.67 26794.73 29599.56 21098.98 264
MS-PatchMatch97.68 21897.75 20597.45 29798.23 33493.78 32697.29 25598.84 27296.10 28798.64 20498.65 23596.04 21199.36 35896.84 19899.14 28299.20 229
USDC97.41 23897.40 23097.44 29898.94 23093.67 32995.17 35899.53 8194.03 34398.97 15499.10 13695.29 24099.34 36295.84 26899.73 14299.30 210
API-MVS97.04 26596.91 25797.42 29997.88 35398.23 12498.18 14998.50 30397.57 19297.39 30796.75 35196.77 17999.15 38190.16 38099.02 29794.88 401
MDA-MVSNet_test_wron97.60 22497.66 21497.41 30099.04 21693.09 33695.27 35598.42 30697.26 22698.88 17498.95 17895.43 23899.73 23897.02 17898.72 31799.41 164
YYNet197.60 22497.67 21197.39 30199.04 21693.04 34095.27 35598.38 30997.25 22798.92 16698.95 17895.48 23799.73 23896.99 18198.74 31599.41 164
c3_l97.36 24097.37 23397.31 30298.09 34193.25 33595.01 36399.16 21597.05 24398.77 19198.72 22192.88 29499.64 28696.93 18699.76 13599.05 251
RPMNet97.02 26696.93 25397.30 30397.71 36094.22 30598.11 15799.30 16999.37 4596.91 32599.34 8786.72 34199.87 10097.53 14997.36 37197.81 365
CR-MVSNet96.28 29795.95 29597.28 30497.71 36094.22 30598.11 15798.92 25592.31 36596.91 32599.37 7985.44 35499.81 17797.39 15597.36 37197.81 365
test_cas_vis1_n_192098.33 16098.68 9597.27 30599.69 5692.29 35498.03 16999.85 1597.62 18699.96 499.62 3493.98 27799.74 23399.52 3199.86 8099.79 30
MG-MVS96.77 27896.61 27797.26 30698.31 32893.06 33795.93 33298.12 32196.45 27497.92 26598.73 21993.77 28299.39 35591.19 37299.04 29399.33 201
miper_lstm_enhance97.18 25697.16 24497.25 30798.16 33792.85 34295.15 36099.31 16197.25 22798.74 19698.78 21290.07 32199.78 20897.19 16499.80 10999.11 246
ETVMVS92.60 36091.08 36997.18 30897.70 36293.65 33196.54 29595.70 37296.51 26894.68 38092.39 40261.80 41099.50 33386.97 39097.41 36798.40 334
new-patchmatchnet98.35 15698.74 8397.18 30899.24 16692.23 35696.42 30399.48 9698.30 13499.69 3799.53 5497.44 14099.82 16498.84 7099.77 12499.49 127
eth_miper_zixun_eth97.23 25297.25 23997.17 31098.00 34592.77 34494.71 37099.18 20897.27 22598.56 21898.74 21891.89 30899.69 25597.06 17799.81 9999.05 251
Patchmatch-test96.55 28696.34 28697.17 31098.35 32593.06 33798.40 13197.79 32797.33 21898.41 23398.67 23083.68 36799.69 25595.16 28799.31 25598.77 300
miper_ehance_all_eth97.06 26397.03 25097.16 31297.83 35493.06 33794.66 37399.09 22895.99 29298.69 19898.45 26392.73 29899.61 29896.79 20099.03 29498.82 288
BH-untuned96.83 27596.75 26897.08 31398.74 26893.33 33496.71 28998.26 31296.72 26198.44 23097.37 33795.20 24299.47 34291.89 35897.43 36698.44 329
FPMVS93.44 35092.23 35597.08 31399.25 16597.86 16295.61 34397.16 34392.90 35893.76 39298.65 23575.94 39295.66 40579.30 40597.49 36297.73 370
test_fmvs197.72 21597.94 19297.07 31598.66 29192.39 35197.68 21699.81 2495.20 31699.54 5699.44 7191.56 31199.41 35299.78 1599.77 12499.40 173
JIA-IIPM95.52 31895.03 32397.00 31696.85 39194.03 31496.93 27795.82 37099.20 6494.63 38299.71 1783.09 36999.60 29994.42 30694.64 39797.36 381
test0.0.03 194.51 33193.69 34096.99 31796.05 40293.61 33294.97 36593.49 38996.17 28397.57 29194.88 38882.30 37399.01 38693.60 33094.17 40098.37 338
cl2295.79 31095.39 31496.98 31896.77 39392.79 34394.40 38198.53 30194.59 32897.89 26898.17 28782.82 37299.24 37496.37 23699.03 29498.92 276
thisisatest051594.12 34093.16 34796.97 31998.60 29792.90 34193.77 39190.61 40094.10 34196.91 32595.87 36874.99 39499.80 18494.52 30199.12 28798.20 344
pmmvs395.03 32694.40 33296.93 32097.70 36292.53 34895.08 36197.71 33088.57 39197.71 28098.08 29579.39 38399.82 16496.19 24999.11 28898.43 331
xiu_mvs_v1_base_debu97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
xiu_mvs_v1_base97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
xiu_mvs_v1_base_debi97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
IterMVS-SCA-FT97.85 20898.18 16796.87 32499.27 16191.16 37295.53 34699.25 18999.10 8099.41 8099.35 8393.10 28999.96 1198.65 8399.94 4099.49 127
mvs_anonymous97.83 21198.16 17196.87 32498.18 33691.89 35897.31 25398.90 25897.37 21598.83 18299.46 6696.28 20399.79 19798.90 6698.16 34598.95 270
DSMNet-mixed97.42 23797.60 21996.87 32499.15 19491.46 36298.54 11099.12 22392.87 35997.58 28999.63 3396.21 20599.90 6495.74 27199.54 21599.27 215
TR-MVS95.55 31795.12 32296.86 32797.54 36993.94 31896.49 29996.53 36094.36 33697.03 32096.61 35394.26 27199.16 38086.91 39296.31 38697.47 379
test_vis1_n_192098.40 15098.92 6896.81 32899.74 3790.76 37798.15 15399.91 798.33 13199.89 1599.55 4895.07 24699.88 8399.76 1699.93 4499.79 30
miper_enhance_ethall96.01 30395.74 29896.81 32896.41 39992.27 35593.69 39298.89 26091.14 37898.30 24097.35 33990.58 31899.58 30996.31 24099.03 29498.60 318
ppachtmachnet_test97.50 22997.74 20696.78 33098.70 27891.23 37194.55 37899.05 23496.36 27799.21 12098.79 21196.39 19799.78 20896.74 20699.82 9599.34 196
ADS-MVSNet295.43 32094.98 32496.76 33198.14 33891.74 35997.92 18497.76 32890.23 38196.51 34698.91 18485.61 35199.85 12092.88 34496.90 37898.69 310
testing22291.96 36890.37 37296.72 33297.47 37792.59 34696.11 32294.76 37896.83 25592.90 39692.87 40057.92 41199.55 31786.93 39197.52 36198.00 356
IterMVS97.73 21498.11 17696.57 33399.24 16690.28 38095.52 34899.21 19898.86 10399.33 9799.33 8993.11 28899.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PAPM91.88 37090.34 37396.51 33498.06 34392.56 34792.44 39897.17 34286.35 39590.38 40296.01 36386.61 34299.21 37770.65 40895.43 39497.75 369
MVS93.19 35392.09 35796.50 33596.91 38994.03 31498.07 16398.06 32368.01 40494.56 38396.48 35695.96 22199.30 36883.84 39796.89 38096.17 393
testing9193.32 35192.27 35496.47 33697.54 36991.25 36996.17 32096.76 35597.18 23793.65 39393.50 39765.11 40799.63 28993.04 34197.45 36498.53 321
baseline293.73 34592.83 35196.42 33797.70 36291.28 36896.84 28289.77 40393.96 34592.44 39895.93 36679.14 38499.77 21592.94 34296.76 38298.21 343
our_test_397.39 23997.73 20896.34 33898.70 27889.78 38294.61 37698.97 24996.50 26999.04 14398.85 20095.98 21999.84 13797.26 16199.67 17399.41 164
myMVS_eth3d91.92 36990.45 37196.30 33997.10 38690.90 37496.18 31896.58 35895.65 30194.77 37892.29 40353.88 41299.36 35889.59 38398.05 35398.63 316
thres600view794.45 33293.83 33896.29 34099.06 21291.53 36197.99 17794.24 38598.34 13097.44 30395.01 38479.84 37999.67 26784.33 39698.23 33997.66 373
IB-MVS91.63 1992.24 36690.90 37096.27 34197.22 38391.24 37094.36 38293.33 39192.37 36492.24 39994.58 39166.20 40599.89 7493.16 34094.63 39897.66 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1193.08 35592.02 35996.26 34297.56 36790.83 37696.32 30995.70 37296.47 27292.66 39793.73 39464.36 40899.59 30393.77 32797.57 36098.37 338
thres40094.14 33993.44 34396.24 34398.93 23291.44 36397.60 22894.29 38397.94 16397.10 31494.31 39279.67 38199.62 29283.05 39898.08 35097.66 373
testing9993.04 35691.98 36296.23 34497.53 37190.70 37896.35 30795.94 36996.87 25393.41 39493.43 39863.84 40999.59 30393.24 33997.19 37498.40 334
WB-MVSnew95.73 31295.57 30696.23 34496.70 39490.70 37896.07 32493.86 38895.60 30397.04 31895.45 38196.00 21499.55 31791.04 37398.31 33798.43 331
ADS-MVSNet95.24 32394.93 32796.18 34698.14 33890.10 38197.92 18497.32 34090.23 38196.51 34698.91 18485.61 35199.74 23392.88 34496.90 37898.69 310
xiu_mvs_v2_base97.16 25897.49 22696.17 34798.54 30792.46 34995.45 35098.84 27297.25 22797.48 29996.49 35598.31 7099.90 6496.34 23998.68 32496.15 395
131495.74 31195.60 30496.17 34797.53 37192.75 34598.07 16398.31 31191.22 37694.25 38496.68 35295.53 23399.03 38391.64 36397.18 37596.74 388
PS-MVSNAJ97.08 26297.39 23196.16 34998.56 30592.46 34995.24 35798.85 27197.25 22797.49 29895.99 36498.07 8899.90 6496.37 23698.67 32596.12 396
cascas94.79 32994.33 33596.15 35096.02 40492.36 35392.34 39999.26 18885.34 39895.08 37694.96 38792.96 29398.53 39694.41 30998.59 33097.56 377
BH-w/o95.13 32494.89 32895.86 35198.20 33591.31 36695.65 34297.37 33693.64 34796.52 34595.70 37193.04 29299.02 38488.10 38795.82 39297.24 382
ECVR-MVScopyleft96.42 29396.61 27795.85 35299.38 14088.18 38999.22 4286.00 40899.08 8599.36 9299.57 4288.47 33599.82 16498.52 9299.95 3299.54 108
gg-mvs-nofinetune92.37 36491.20 36895.85 35295.80 40592.38 35299.31 2781.84 41199.75 591.83 40099.74 1368.29 39899.02 38487.15 38997.12 37696.16 394
tfpn200view994.03 34193.44 34395.78 35498.93 23291.44 36397.60 22894.29 38397.94 16397.10 31494.31 39279.67 38199.62 29283.05 39898.08 35096.29 391
thres100view90094.19 33793.67 34195.75 35599.06 21291.35 36598.03 16994.24 38598.33 13197.40 30594.98 38679.84 37999.62 29283.05 39898.08 35096.29 391
SCA96.41 29496.66 27595.67 35698.24 33288.35 38795.85 33796.88 35396.11 28697.67 28398.67 23093.10 28999.85 12094.16 31299.22 27098.81 292
tpm94.67 33094.34 33495.66 35797.68 36588.42 38697.88 19094.90 37794.46 33196.03 35998.56 24978.66 38699.79 19795.88 26295.01 39698.78 299
CHOSEN 280x42095.51 31995.47 30895.65 35898.25 33188.27 38893.25 39498.88 26193.53 34994.65 38197.15 34386.17 34699.93 4097.41 15499.93 4498.73 305
PVSNet93.40 1795.67 31395.70 30095.57 35998.83 25488.57 38592.50 39797.72 32992.69 36196.49 34996.44 35893.72 28399.43 34993.61 32999.28 26198.71 306
test111196.49 29196.82 26395.52 36099.42 13587.08 39399.22 4287.14 40699.11 7399.46 7199.58 4188.69 33099.86 10898.80 7199.95 3299.62 67
KD-MVS_2432*160092.87 35891.99 36095.51 36191.37 40989.27 38394.07 38598.14 31995.42 30997.25 31196.44 35867.86 39999.24 37491.28 36996.08 39098.02 353
miper_refine_blended92.87 35891.99 36095.51 36191.37 40989.27 38394.07 38598.14 31995.42 30997.25 31196.44 35867.86 39999.24 37491.28 36996.08 39098.02 353
thres20093.72 34693.14 34895.46 36398.66 29191.29 36796.61 29494.63 38097.39 21396.83 33293.71 39579.88 37899.56 31482.40 40198.13 34795.54 400
EPNet_dtu94.93 32894.78 32995.38 36493.58 40887.68 39196.78 28495.69 37497.35 21789.14 40498.09 29488.15 33799.49 33694.95 29199.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive95.58 31695.67 30295.30 36597.34 38087.32 39297.65 22296.65 35695.30 31397.07 31698.69 22684.77 35799.75 22894.97 29098.64 32698.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dmvs_testset92.94 35792.21 35695.13 36698.59 30090.99 37397.65 22292.09 39696.95 24894.00 38993.55 39692.34 30396.97 40472.20 40792.52 40297.43 380
EU-MVSNet97.66 22098.50 12095.13 36699.63 7485.84 39698.35 13698.21 31498.23 14199.54 5699.46 6695.02 24799.68 26498.24 10599.87 7799.87 16
EPMVS93.72 34693.27 34595.09 36896.04 40387.76 39098.13 15485.01 40994.69 32696.92 32398.64 23878.47 39099.31 36695.04 28896.46 38498.20 344
GG-mvs-BLEND94.76 36994.54 40792.13 35799.31 2780.47 41288.73 40591.01 40567.59 40198.16 40082.30 40294.53 39993.98 402
tpm293.09 35492.58 35394.62 37097.56 36786.53 39497.66 22095.79 37186.15 39694.07 38898.23 28375.95 39199.53 32490.91 37696.86 38197.81 365
CostFormer93.97 34293.78 33994.51 37197.53 37185.83 39797.98 17895.96 36889.29 38994.99 37798.63 24078.63 38799.62 29294.54 30096.50 38398.09 350
tpmvs95.02 32795.25 31894.33 37296.39 40085.87 39598.08 16196.83 35495.46 30895.51 37198.69 22685.91 34999.53 32494.16 31296.23 38797.58 376
MVEpermissive83.40 2292.50 36191.92 36394.25 37398.83 25491.64 36092.71 39683.52 41095.92 29586.46 40795.46 37895.20 24295.40 40680.51 40398.64 32695.73 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
UWE-MVS92.38 36391.76 36694.21 37497.16 38484.65 40195.42 35288.45 40595.96 29396.17 35395.84 37066.36 40399.71 24691.87 35998.64 32698.28 341
test-LLR93.90 34393.85 33794.04 37596.53 39684.62 40294.05 38792.39 39496.17 28394.12 38695.07 38282.30 37399.67 26795.87 26598.18 34297.82 363
test-mter92.33 36591.76 36694.04 37596.53 39684.62 40294.05 38792.39 39494.00 34494.12 38695.07 38265.63 40699.67 26795.87 26598.18 34297.82 363
tpmrst95.07 32595.46 30993.91 37797.11 38584.36 40497.62 22596.96 34994.98 31996.35 35198.80 20985.46 35399.59 30395.60 27796.23 38797.79 368
test250692.39 36291.89 36493.89 37899.38 14082.28 40899.32 2366.03 41499.08 8598.77 19199.57 4266.26 40499.84 13798.71 7999.95 3299.54 108
tpm cat193.29 35293.13 34993.75 37997.39 37984.74 40097.39 24697.65 33283.39 40194.16 38598.41 26582.86 37199.39 35591.56 36595.35 39597.14 383
PVSNet_089.98 2191.15 37190.30 37493.70 38097.72 35884.34 40590.24 40097.42 33590.20 38493.79 39193.09 39990.90 31698.89 39286.57 39372.76 40797.87 362
E-PMN94.17 33894.37 33393.58 38196.86 39085.71 39890.11 40197.07 34598.17 15097.82 27597.19 34184.62 35998.94 38889.77 38197.68 35996.09 397
TESTMET0.1,192.19 36791.77 36593.46 38296.48 39882.80 40794.05 38791.52 39894.45 33394.00 38994.88 38866.65 40299.56 31495.78 27098.11 34898.02 353
DeepMVS_CXcopyleft93.44 38398.24 33294.21 30794.34 38264.28 40591.34 40194.87 39089.45 32792.77 40877.54 40693.14 40193.35 403
CVMVSNet96.25 29897.21 24293.38 38499.10 20180.56 41197.20 26398.19 31796.94 24999.00 14899.02 15289.50 32699.80 18496.36 23899.59 19899.78 33
EMVS93.83 34494.02 33693.23 38596.83 39284.96 39989.77 40296.32 36297.92 16597.43 30496.36 36186.17 34698.93 38987.68 38897.73 35895.81 398
dp93.47 34993.59 34293.13 38696.64 39581.62 41097.66 22096.42 36192.80 36096.11 35598.64 23878.55 38999.59 30393.31 33792.18 40498.16 346
wuyk23d96.06 30197.62 21891.38 38798.65 29498.57 9698.85 8396.95 35096.86 25499.90 1299.16 12299.18 1798.40 39789.23 38499.77 12477.18 405
MVS-HIRNet94.32 33495.62 30390.42 38898.46 31575.36 41296.29 31189.13 40495.25 31495.38 37299.75 1192.88 29499.19 37894.07 31899.39 24396.72 389
test_method79.78 37379.50 37680.62 38980.21 41245.76 41570.82 40398.41 30831.08 40780.89 40897.71 31684.85 35697.37 40291.51 36680.03 40698.75 303
tmp_tt78.77 37478.73 37778.90 39058.45 41374.76 41494.20 38478.26 41339.16 40686.71 40692.82 40180.50 37775.19 40986.16 39492.29 40386.74 404
test12317.04 37720.11 3807.82 39110.25 4154.91 41694.80 3684.47 4164.93 40910.00 41124.28 4089.69 4143.64 41010.14 40912.43 40914.92 406
testmvs17.12 37620.53 3796.87 39212.05 4144.20 41793.62 3936.73 4154.62 41010.41 41024.33 4078.28 4153.56 4119.69 41015.07 40812.86 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.66 37532.88 3780.00 3930.00 4160.00 4180.00 40499.10 2260.00 4110.00 41297.58 32499.21 160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.17 37810.90 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41198.07 880.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.12 37910.83 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41297.48 3300.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.90 37491.37 368
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
PC_three_145293.27 35299.40 8398.54 25098.22 7697.00 40395.17 28699.45 23699.49 127
test_one_060199.39 13999.20 3499.31 16198.49 12598.66 20299.02 15297.64 120
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.01 22098.84 7599.07 23094.10 34198.05 26098.12 29096.36 20199.86 10892.70 35199.19 276
RE-MVS-def98.58 11199.20 17799.38 898.48 12399.30 16998.64 11298.95 15798.96 17497.75 11196.56 22399.39 24399.45 150
IU-MVS99.49 11599.15 4798.87 26392.97 35699.41 8096.76 20499.62 18799.66 58
test_241102_TWO99.30 16998.03 15799.26 11299.02 15297.51 13499.88 8396.91 18799.60 19499.66 58
test_241102_ONE99.49 11599.17 3999.31 16197.98 15999.66 4298.90 18798.36 6599.48 339
9.1497.78 20399.07 20897.53 23699.32 15695.53 30698.54 22298.70 22597.58 12599.76 22194.32 31199.46 234
save fliter99.11 19997.97 15296.53 29799.02 24298.24 140
test_0728_THIRD98.17 15099.08 13499.02 15297.89 10199.88 8397.07 17599.71 15499.70 51
test072699.50 10899.21 2898.17 15299.35 14397.97 16099.26 11299.06 14097.61 123
GSMVS98.81 292
test_part299.36 14799.10 6099.05 141
sam_mvs184.74 35898.81 292
sam_mvs84.29 364
MTGPAbinary99.20 200
test_post197.59 23020.48 41083.07 37099.66 27894.16 312
test_post21.25 40983.86 36699.70 250
patchmatchnet-post98.77 21484.37 36199.85 120
MTMP97.93 18291.91 397
gm-plane-assit94.83 40681.97 40988.07 39394.99 38599.60 29991.76 360
test9_res93.28 33899.15 28199.38 182
TEST998.71 27498.08 13995.96 32999.03 23991.40 37495.85 36097.53 32696.52 19299.76 221
test_898.67 28698.01 14795.91 33499.02 24291.64 36995.79 36297.50 32996.47 19499.76 221
agg_prior292.50 35499.16 27999.37 184
agg_prior98.68 28597.99 14899.01 24595.59 36399.77 215
test_prior497.97 15295.86 335
test_prior295.74 34096.48 27196.11 35597.63 32295.92 22394.16 31299.20 273
旧先验295.76 33988.56 39297.52 29599.66 27894.48 302
新几何295.93 332
旧先验198.82 25797.45 19398.76 28498.34 27495.50 23699.01 29899.23 224
无先验95.74 34098.74 28989.38 38899.73 23892.38 35699.22 228
原ACMM295.53 346
test22298.92 23696.93 22595.54 34598.78 28285.72 39796.86 33198.11 29194.43 26499.10 28999.23 224
testdata299.79 19792.80 348
segment_acmp97.02 164
testdata195.44 35196.32 279
plane_prior799.19 18097.87 161
plane_prior698.99 22497.70 18094.90 249
plane_prior599.27 18399.70 25094.42 30699.51 22499.45 150
plane_prior497.98 301
plane_prior397.78 17397.41 21197.79 276
plane_prior297.77 20598.20 147
plane_prior199.05 215
plane_prior97.65 18297.07 26996.72 26199.36 247
n20.00 417
nn0.00 417
door-mid99.57 62
test1198.87 263
door99.41 124
HQP5-MVS96.79 228
HQP-NCC98.67 28696.29 31196.05 28895.55 366
ACMP_Plane98.67 28696.29 31196.05 28895.55 366
BP-MVS92.82 346
HQP4-MVS95.56 36599.54 32299.32 203
HQP3-MVS99.04 23799.26 265
HQP2-MVS93.84 278
NP-MVS98.84 25297.39 19796.84 348
MDTV_nov1_ep13_2view74.92 41397.69 21590.06 38697.75 27985.78 35093.52 33298.69 310
MDTV_nov1_ep1395.22 31997.06 38883.20 40697.74 21096.16 36494.37 33596.99 32198.83 20383.95 36599.53 32493.90 32197.95 356
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 192