| LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 10 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 2 | 100.00 1 | 99.81 11 | 100.00 1 | 99.85 19 |
|
| UA-Net | | | 99.47 13 | 99.40 20 | 99.70 2 | 99.49 116 | 99.29 19 | 99.80 3 | 99.72 32 | 99.82 3 | 99.04 143 | 99.81 5 | 98.05 89 | 99.96 12 | 98.85 70 | 99.99 5 | 99.86 18 |
|
| UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 19 | 99.34 15 | 99.69 4 | 99.58 54 | 99.90 2 | 99.86 18 | 99.78 8 | 99.58 6 | 99.95 23 | 99.00 62 | 99.95 32 | 99.78 33 |
|
| DTE-MVSNet | | | 99.43 18 | 99.35 23 | 99.66 4 | 99.71 48 | 99.30 17 | 99.31 27 | 99.51 84 | 99.64 15 | 99.56 53 | 99.46 66 | 98.23 71 | 99.97 4 | 98.78 73 | 99.93 44 | 99.72 46 |
|
| WR-MVS_H | | | 99.33 26 | 99.22 40 | 99.65 5 | 99.71 48 | 99.24 25 | 99.32 23 | 99.55 72 | 99.46 35 | 99.50 67 | 99.34 88 | 97.30 144 | 99.93 41 | 98.90 67 | 99.93 44 | 99.77 35 |
|
| anonymousdsp | | | 99.51 11 | 99.47 16 | 99.62 6 | 99.88 9 | 99.08 63 | 99.34 20 | 99.69 36 | 98.93 97 | 99.65 45 | 99.72 16 | 98.93 26 | 99.95 23 | 99.11 53 | 100.00 1 | 99.82 25 |
|
| PS-CasMVS | | | 99.40 21 | 99.33 26 | 99.62 6 | 99.71 48 | 99.10 60 | 99.29 33 | 99.53 80 | 99.53 29 | 99.46 71 | 99.41 77 | 98.23 71 | 99.95 23 | 98.89 69 | 99.95 32 | 99.81 28 |
|
| PEN-MVS | | | 99.41 20 | 99.34 25 | 99.62 6 | 99.73 39 | 99.14 52 | 99.29 33 | 99.54 77 | 99.62 20 | 99.56 53 | 99.42 74 | 98.16 82 | 99.96 12 | 98.78 73 | 99.93 44 | 99.77 35 |
|
| MSP-MVS | | | 98.40 151 | 98.00 185 | 99.61 9 | 99.57 82 | 99.25 24 | 98.57 105 | 99.35 141 | 97.55 196 | 99.31 105 | 97.71 318 | 94.61 259 | 99.88 84 | 96.14 251 | 99.19 276 | 99.70 52 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MTAPA | | | 98.88 78 | 98.64 102 | 99.61 9 | 99.67 63 | 99.36 11 | 98.43 127 | 99.20 198 | 98.83 106 | 98.89 170 | 98.90 189 | 96.98 165 | 99.92 51 | 97.16 166 | 99.70 159 | 99.56 98 |
|
| test_0728_SECOND | | | | | 99.60 11 | 99.50 109 | 99.23 26 | 98.02 170 | 99.32 154 | | | | | 99.88 84 | 96.99 181 | 99.63 184 | 99.68 55 |
|
| MP-MVS-pluss | | | 98.57 128 | 98.23 161 | 99.60 11 | 99.69 57 | 99.35 12 | 97.16 265 | 99.38 128 | 94.87 314 | 98.97 154 | 98.99 166 | 98.01 91 | 99.88 84 | 97.29 159 | 99.70 159 | 99.58 87 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 11 | 99.90 4 | 99.27 22 | 99.53 7 | 99.76 28 | 99.64 15 | 99.84 20 | 99.83 3 | 99.50 8 | 99.87 101 | 99.36 38 | 99.92 55 | 99.64 64 |
|
| APDe-MVS |  | | 98.99 63 | 98.79 81 | 99.60 11 | 99.21 174 | 99.15 47 | 98.87 79 | 99.48 95 | 97.57 192 | 99.35 94 | 99.24 106 | 97.83 102 | 99.89 75 | 97.88 131 | 99.70 159 | 99.75 43 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| HPM-MVS |  | | 98.79 89 | 98.53 117 | 99.59 15 | 99.65 66 | 99.29 19 | 99.16 51 | 99.43 117 | 96.74 257 | 98.61 210 | 98.38 271 | 98.62 46 | 99.87 101 | 96.47 231 | 99.67 173 | 99.59 81 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| SR-MVS-dyc-post | | | 98.81 87 | 98.55 114 | 99.57 16 | 99.20 178 | 99.38 8 | 98.48 122 | 99.30 167 | 98.64 111 | 98.95 157 | 98.96 175 | 97.49 136 | 99.86 110 | 96.56 223 | 99.39 243 | 99.45 151 |
|
| SR-MVS | | | 98.71 100 | 98.43 134 | 99.57 16 | 99.18 188 | 99.35 12 | 98.36 134 | 99.29 175 | 98.29 136 | 98.88 174 | 98.85 202 | 97.53 129 | 99.87 101 | 96.14 251 | 99.31 255 | 99.48 138 |
|
| DPE-MVS |  | | 98.59 127 | 98.26 158 | 99.57 16 | 99.27 162 | 99.15 47 | 97.01 270 | 99.39 126 | 97.67 182 | 99.44 75 | 98.99 166 | 97.53 129 | 99.89 75 | 95.40 281 | 99.68 167 | 99.66 59 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| ACMMP_NAP | | | 98.75 96 | 98.48 126 | 99.57 16 | 99.58 78 | 99.29 19 | 97.82 197 | 99.25 187 | 96.94 248 | 98.78 189 | 99.12 133 | 98.02 90 | 99.84 139 | 97.13 171 | 99.67 173 | 99.59 81 |
|
| HPM-MVS_fast | | | 99.01 61 | 98.82 78 | 99.57 16 | 99.71 48 | 99.35 12 | 99.00 69 | 99.50 86 | 97.33 218 | 98.94 164 | 98.86 199 | 98.75 36 | 99.82 166 | 97.53 149 | 99.71 154 | 99.56 98 |
|
| CP-MVSNet | | | 99.21 39 | 99.09 55 | 99.56 21 | 99.65 66 | 98.96 70 | 99.13 55 | 99.34 147 | 99.42 41 | 99.33 97 | 99.26 101 | 97.01 163 | 99.94 36 | 98.74 77 | 99.93 44 | 99.79 30 |
|
| LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 21 | 99.85 17 | 99.11 59 | 99.90 1 | 99.78 26 | 99.63 17 | 99.78 26 | 99.67 25 | 99.48 9 | 99.81 179 | 99.30 43 | 99.97 20 | 99.77 35 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| RRT_MVS | | | 99.09 54 | 98.94 67 | 99.55 23 | 99.87 12 | 98.82 78 | 99.48 9 | 98.16 317 | 99.49 31 | 99.59 52 | 99.65 30 | 94.79 256 | 99.95 23 | 99.45 35 | 99.96 25 | 99.88 14 |
|
| PGM-MVS | | | 98.66 116 | 98.37 144 | 99.55 23 | 99.53 102 | 99.18 38 | 98.23 143 | 99.49 93 | 97.01 245 | 98.69 199 | 98.88 196 | 98.00 92 | 99.89 75 | 95.87 263 | 99.59 198 | 99.58 87 |
|
| MIMVSNet1 | | | 99.38 23 | 99.32 28 | 99.55 23 | 99.86 15 | 99.19 37 | 99.41 13 | 99.59 52 | 99.59 23 | 99.71 33 | 99.57 42 | 97.12 155 | 99.90 65 | 99.21 49 | 99.87 78 | 99.54 109 |
|
| TDRefinement | | | 99.42 19 | 99.38 21 | 99.55 23 | 99.76 32 | 99.33 16 | 99.68 5 | 99.71 33 | 99.38 44 | 99.53 60 | 99.61 37 | 98.64 43 | 99.80 186 | 98.24 107 | 99.84 86 | 99.52 119 |
|
| ZNCC-MVS | | | 98.68 112 | 98.40 138 | 99.54 27 | 99.57 82 | 99.21 28 | 98.46 124 | 99.29 175 | 97.28 224 | 98.11 255 | 98.39 269 | 98.00 92 | 99.87 101 | 96.86 197 | 99.64 181 | 99.55 105 |
|
| nrg030 | | | 99.40 21 | 99.35 23 | 99.54 27 | 99.58 78 | 99.13 55 | 98.98 72 | 99.48 95 | 99.68 11 | 99.46 71 | 99.26 101 | 98.62 46 | 99.73 239 | 99.17 52 | 99.92 55 | 99.76 39 |
|
| region2R | | | 98.69 107 | 98.40 138 | 99.54 27 | 99.53 102 | 99.17 39 | 98.52 111 | 99.31 159 | 97.46 207 | 98.44 231 | 98.51 256 | 97.83 102 | 99.88 84 | 96.46 232 | 99.58 203 | 99.58 87 |
|
| ACMMPR | | | 98.70 104 | 98.42 136 | 99.54 27 | 99.52 104 | 99.14 52 | 98.52 111 | 99.31 159 | 97.47 202 | 98.56 219 | 98.54 252 | 97.75 109 | 99.88 84 | 96.57 219 | 99.59 198 | 99.58 87 |
|
| MP-MVS |  | | 98.46 145 | 98.09 176 | 99.54 27 | 99.57 82 | 99.22 27 | 98.50 118 | 99.19 202 | 97.61 189 | 97.58 290 | 98.66 235 | 97.40 140 | 99.88 84 | 94.72 295 | 99.60 194 | 99.54 109 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| mPP-MVS | | | 98.64 119 | 98.34 148 | 99.54 27 | 99.54 99 | 99.17 39 | 98.63 98 | 99.24 192 | 97.47 202 | 98.09 257 | 98.68 230 | 97.62 120 | 99.89 75 | 96.22 245 | 99.62 187 | 99.57 92 |
|
| SteuartSystems-ACMMP | | | 98.79 89 | 98.54 116 | 99.54 27 | 99.73 39 | 99.16 43 | 98.23 143 | 99.31 159 | 97.92 165 | 98.90 168 | 98.90 189 | 98.00 92 | 99.88 84 | 96.15 250 | 99.72 149 | 99.58 87 |
| Skip Steuart: Steuart Systems R&D Blog. |
| XVS | | | 98.72 99 | 98.45 131 | 99.53 34 | 99.46 126 | 99.21 28 | 98.65 96 | 99.34 147 | 98.62 115 | 97.54 294 | 98.63 242 | 97.50 133 | 99.83 156 | 96.79 200 | 99.53 219 | 99.56 98 |
|
| X-MVStestdata | | | 94.32 330 | 92.59 348 | 99.53 34 | 99.46 126 | 99.21 28 | 98.65 96 | 99.34 147 | 98.62 115 | 97.54 294 | 45.85 397 | 97.50 133 | 99.83 156 | 96.79 200 | 99.53 219 | 99.56 98 |
|
| APD-MVS_3200maxsize | | | 98.84 83 | 98.61 109 | 99.53 34 | 99.19 181 | 99.27 22 | 98.49 119 | 99.33 152 | 98.64 111 | 99.03 146 | 98.98 170 | 97.89 99 | 99.85 122 | 96.54 227 | 99.42 240 | 99.46 147 |
|
| test_djsdf | | | 99.52 10 | 99.51 11 | 99.53 34 | 99.86 15 | 98.74 82 | 99.39 17 | 99.56 68 | 99.11 72 | 99.70 35 | 99.73 15 | 99.00 22 | 99.97 4 | 99.26 44 | 99.98 12 | 99.89 11 |
|
| OurMVSNet-221017-0 | | | 99.37 24 | 99.31 30 | 99.53 34 | 99.91 3 | 98.98 65 | 99.63 6 | 99.58 54 | 99.44 38 | 99.78 26 | 99.76 10 | 96.39 195 | 99.92 51 | 99.44 36 | 99.92 55 | 99.68 55 |
|
| DVP-MVS |  | | 98.77 94 | 98.52 118 | 99.52 39 | 99.50 109 | 99.21 28 | 98.02 170 | 98.84 271 | 97.97 160 | 99.08 134 | 99.02 153 | 97.61 121 | 99.88 84 | 96.99 181 | 99.63 184 | 99.48 138 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| GST-MVS | | | 98.61 124 | 98.30 153 | 99.52 39 | 99.51 106 | 99.20 34 | 98.26 141 | 99.25 187 | 97.44 210 | 98.67 201 | 98.39 269 | 97.68 112 | 99.85 122 | 96.00 255 | 99.51 224 | 99.52 119 |
|
| CP-MVS | | | 98.70 104 | 98.42 136 | 99.52 39 | 99.36 148 | 99.12 57 | 98.72 90 | 99.36 136 | 97.54 197 | 98.30 241 | 98.40 268 | 97.86 101 | 99.89 75 | 96.53 228 | 99.72 149 | 99.56 98 |
|
| ACMMP |  | | 98.75 96 | 98.50 121 | 99.52 39 | 99.56 90 | 99.16 43 | 98.87 79 | 99.37 132 | 97.16 238 | 98.82 186 | 99.01 162 | 97.71 111 | 99.87 101 | 96.29 242 | 99.69 162 | 99.54 109 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| testf1 | | | 99.25 33 | 99.16 45 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 92 | 99.69 36 | 98.90 99 | 99.43 76 | 99.35 84 | 98.86 28 | 99.67 266 | 97.81 134 | 99.81 100 | 99.24 224 |
|
| APD_test2 | | | 99.25 33 | 99.16 45 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 92 | 99.69 36 | 98.90 99 | 99.43 76 | 99.35 84 | 98.86 28 | 99.67 266 | 97.81 134 | 99.81 100 | 99.24 224 |
|
| DVP-MVS++ | | | 98.90 76 | 98.70 93 | 99.51 43 | 98.43 318 | 99.15 47 | 99.43 11 | 99.32 154 | 98.17 149 | 99.26 112 | 99.02 153 | 98.18 78 | 99.88 84 | 97.07 175 | 99.45 236 | 99.49 128 |
|
| SMA-MVS |  | | 98.40 151 | 98.03 183 | 99.51 43 | 99.16 191 | 99.21 28 | 98.05 165 | 99.22 195 | 94.16 330 | 98.98 150 | 99.10 137 | 97.52 131 | 99.79 199 | 96.45 233 | 99.64 181 | 99.53 116 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HFP-MVS | | | 98.71 100 | 98.44 133 | 99.51 43 | 99.49 116 | 99.16 43 | 98.52 111 | 99.31 159 | 97.47 202 | 98.58 216 | 98.50 260 | 97.97 96 | 99.85 122 | 96.57 219 | 99.59 198 | 99.53 116 |
|
| SED-MVS | | | 98.91 74 | 98.72 88 | 99.49 48 | 99.49 116 | 99.17 39 | 98.10 158 | 99.31 159 | 98.03 157 | 99.66 42 | 99.02 153 | 98.36 63 | 99.88 84 | 96.91 187 | 99.62 187 | 99.41 165 |
|
| mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 48 | 99.88 9 | 98.61 92 | 99.34 20 | 99.71 33 | 99.27 58 | 99.90 12 | 99.74 13 | 99.68 4 | 99.97 4 | 99.55 29 | 99.99 5 | 99.88 14 |
|
| mvsmamba | | | 99.24 37 | 99.15 50 | 99.49 48 | 99.83 20 | 98.85 74 | 99.41 13 | 99.55 72 | 99.54 27 | 99.40 83 | 99.52 57 | 95.86 222 | 99.91 60 | 99.32 40 | 99.95 32 | 99.70 52 |
|
| jajsoiax | | | 99.58 6 | 99.61 8 | 99.48 51 | 99.87 12 | 98.61 92 | 99.28 37 | 99.66 44 | 99.09 82 | 99.89 15 | 99.68 20 | 99.53 7 | 99.97 4 | 99.50 32 | 99.99 5 | 99.87 16 |
|
| HPM-MVS++ |  | | 98.10 181 | 97.64 214 | 99.48 51 | 99.09 205 | 99.13 55 | 97.52 236 | 98.75 286 | 97.46 207 | 96.90 326 | 97.83 313 | 96.01 211 | 99.84 139 | 95.82 267 | 99.35 249 | 99.46 147 |
|
| ACMM | | 96.08 12 | 98.91 74 | 98.73 86 | 99.48 51 | 99.55 94 | 99.14 52 | 98.07 162 | 99.37 132 | 97.62 186 | 99.04 143 | 98.96 175 | 98.84 30 | 99.79 199 | 97.43 153 | 99.65 179 | 99.49 128 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| LPG-MVS_test | | | 98.71 100 | 98.46 130 | 99.47 54 | 99.57 82 | 98.97 66 | 98.23 143 | 99.48 95 | 96.60 262 | 99.10 132 | 99.06 141 | 98.71 39 | 99.83 156 | 95.58 277 | 99.78 120 | 99.62 68 |
|
| LGP-MVS_train | | | | | 99.47 54 | 99.57 82 | 98.97 66 | | 99.48 95 | 96.60 262 | 99.10 132 | 99.06 141 | 98.71 39 | 99.83 156 | 95.58 277 | 99.78 120 | 99.62 68 |
|
| TranMVSNet+NR-MVSNet | | | 99.17 42 | 99.07 58 | 99.46 56 | 99.37 147 | 98.87 73 | 98.39 131 | 99.42 120 | 99.42 41 | 99.36 92 | 99.06 141 | 98.38 62 | 99.95 23 | 98.34 103 | 99.90 70 | 99.57 92 |
|
| KD-MVS_self_test | | | 99.25 33 | 99.18 42 | 99.44 57 | 99.63 75 | 99.06 64 | 98.69 94 | 99.54 77 | 99.31 53 | 99.62 51 | 99.53 54 | 97.36 142 | 99.86 110 | 99.24 48 | 99.71 154 | 99.39 177 |
|
| APD-MVS |  | | 98.10 181 | 97.67 209 | 99.42 58 | 99.11 200 | 98.93 71 | 97.76 207 | 99.28 178 | 94.97 311 | 98.72 198 | 98.77 216 | 97.04 159 | 99.85 122 | 93.79 324 | 99.54 215 | 99.49 128 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| RPSCF | | | 98.62 123 | 98.36 145 | 99.42 58 | 99.65 66 | 99.42 7 | 98.55 107 | 99.57 61 | 97.72 180 | 98.90 168 | 99.26 101 | 96.12 206 | 99.52 322 | 95.72 270 | 99.71 154 | 99.32 205 |
|
| v7n | | | 99.53 9 | 99.57 9 | 99.41 60 | 99.88 9 | 98.54 100 | 99.45 10 | 99.61 50 | 99.66 13 | 99.68 39 | 99.66 27 | 98.44 59 | 99.95 23 | 99.73 19 | 99.96 25 | 99.75 43 |
|
| COLMAP_ROB |  | 96.50 10 | 98.99 63 | 98.85 76 | 99.41 60 | 99.58 78 | 99.10 60 | 98.74 86 | 99.56 68 | 99.09 82 | 99.33 97 | 99.19 114 | 98.40 61 | 99.72 246 | 95.98 257 | 99.76 135 | 99.42 162 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| UniMVSNet_NR-MVSNet | | | 98.86 82 | 98.68 96 | 99.40 62 | 99.17 189 | 98.74 82 | 97.68 215 | 99.40 123 | 99.14 71 | 99.06 136 | 98.59 248 | 96.71 183 | 99.93 41 | 98.57 90 | 99.77 124 | 99.53 116 |
|
| DU-MVS | | | 98.82 85 | 98.63 103 | 99.39 63 | 99.16 191 | 98.74 82 | 97.54 234 | 99.25 187 | 98.84 105 | 99.06 136 | 98.76 218 | 96.76 179 | 99.93 41 | 98.57 90 | 99.77 124 | 99.50 124 |
|
| test_fmvsmconf0.01_n | | | 99.57 7 | 99.63 7 | 99.36 64 | 99.87 12 | 98.13 132 | 98.08 160 | 99.95 1 | 99.45 36 | 99.98 2 | 99.75 11 | 99.80 1 | 99.97 4 | 99.82 8 | 99.99 5 | 99.99 1 |
|
| TransMVSNet (Re) | | | 99.44 15 | 99.47 16 | 99.36 64 | 99.80 23 | 98.58 95 | 99.27 39 | 99.57 61 | 99.39 43 | 99.75 30 | 99.62 34 | 99.17 18 | 99.83 156 | 99.06 57 | 99.62 187 | 99.66 59 |
|
| NR-MVSNet | | | 98.95 70 | 98.82 78 | 99.36 64 | 99.16 191 | 98.72 87 | 99.22 42 | 99.20 198 | 99.10 79 | 99.72 31 | 98.76 218 | 96.38 197 | 99.86 110 | 98.00 123 | 99.82 96 | 99.50 124 |
|
| Baseline_NR-MVSNet | | | 98.98 66 | 98.86 75 | 99.36 64 | 99.82 22 | 98.55 97 | 97.47 242 | 99.57 61 | 99.37 45 | 99.21 120 | 99.61 37 | 96.76 179 | 99.83 156 | 98.06 118 | 99.83 93 | 99.71 47 |
|
| ACMP | | 95.32 15 | 98.41 149 | 98.09 176 | 99.36 64 | 99.51 106 | 98.79 80 | 97.68 215 | 99.38 128 | 95.76 291 | 98.81 188 | 98.82 208 | 98.36 63 | 99.82 166 | 94.75 292 | 99.77 124 | 99.48 138 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| LS3D | | | 98.63 121 | 98.38 143 | 99.36 64 | 97.25 374 | 99.38 8 | 99.12 57 | 99.32 154 | 99.21 63 | 98.44 231 | 98.88 196 | 97.31 143 | 99.80 186 | 96.58 217 | 99.34 251 | 98.92 278 |
|
| Effi-MVS+-dtu | | | 98.26 169 | 97.90 194 | 99.35 70 | 98.02 343 | 99.49 5 | 98.02 170 | 99.16 213 | 98.29 136 | 97.64 285 | 97.99 302 | 96.44 194 | 99.95 23 | 96.66 214 | 98.93 307 | 98.60 320 |
|
| PS-MVSNAJss | | | 99.46 14 | 99.49 12 | 99.35 70 | 99.90 4 | 98.15 129 | 99.20 45 | 99.65 45 | 99.48 32 | 99.92 8 | 99.71 17 | 98.07 86 | 99.96 12 | 99.53 30 | 100.00 1 | 99.93 8 |
|
| UniMVSNet (Re) | | | 98.87 79 | 98.71 90 | 99.35 70 | 99.24 167 | 98.73 85 | 97.73 211 | 99.38 128 | 98.93 97 | 99.12 128 | 98.73 221 | 96.77 177 | 99.86 110 | 98.63 87 | 99.80 110 | 99.46 147 |
|
| test_fmvsmconf0.1_n | | | 99.49 12 | 99.54 10 | 99.34 73 | 99.78 26 | 98.11 133 | 97.77 204 | 99.90 9 | 99.33 50 | 99.97 3 | 99.66 27 | 99.71 3 | 99.96 12 | 99.79 13 | 99.99 5 | 99.96 5 |
|
| APD_test1 | | | 98.83 84 | 98.66 99 | 99.34 73 | 99.78 26 | 99.47 6 | 98.42 129 | 99.45 107 | 98.28 138 | 98.98 150 | 99.19 114 | 97.76 108 | 99.58 305 | 96.57 219 | 99.55 213 | 98.97 269 |
|
| EGC-MVSNET | | | 85.24 362 | 80.54 365 | 99.34 73 | 99.77 29 | 99.20 34 | 99.08 59 | 99.29 175 | 12.08 399 | 20.84 400 | 99.42 74 | 97.55 126 | 99.85 122 | 97.08 174 | 99.72 149 | 98.96 271 |
|
| FC-MVSNet-test | | | 99.27 30 | 99.25 38 | 99.34 73 | 99.77 29 | 98.37 111 | 99.30 32 | 99.57 61 | 99.61 22 | 99.40 83 | 99.50 59 | 97.12 155 | 99.85 122 | 99.02 61 | 99.94 40 | 99.80 29 |
|
| PHI-MVS | | | 98.29 166 | 97.95 188 | 99.34 73 | 98.44 317 | 99.16 43 | 98.12 155 | 99.38 128 | 96.01 284 | 98.06 259 | 98.43 266 | 97.80 106 | 99.67 266 | 95.69 272 | 99.58 203 | 99.20 231 |
|
| pm-mvs1 | | | 99.44 15 | 99.48 14 | 99.33 78 | 99.80 23 | 98.63 89 | 99.29 33 | 99.63 46 | 99.30 55 | 99.65 45 | 99.60 39 | 99.16 20 | 99.82 166 | 99.07 56 | 99.83 93 | 99.56 98 |
|
| ACMH+ | | 96.62 9 | 99.08 57 | 99.00 62 | 99.33 78 | 99.71 48 | 98.83 76 | 98.60 102 | 99.58 54 | 99.11 72 | 99.53 60 | 99.18 117 | 98.81 32 | 99.67 266 | 96.71 211 | 99.77 124 | 99.50 124 |
|
| MSC_two_6792asdad | | | | | 99.32 80 | 98.43 318 | 98.37 111 | | 98.86 267 | | | | | 99.89 75 | 97.14 169 | 99.60 194 | 99.71 47 |
|
| No_MVS | | | | | 99.32 80 | 98.43 318 | 98.37 111 | | 98.86 267 | | | | | 99.89 75 | 97.14 169 | 99.60 194 | 99.71 47 |
|
| SF-MVS | | | 98.53 137 | 98.27 157 | 99.32 80 | 99.31 155 | 98.75 81 | 98.19 147 | 99.41 121 | 96.77 256 | 98.83 183 | 98.90 189 | 97.80 106 | 99.82 166 | 95.68 273 | 99.52 222 | 99.38 184 |
|
| test_fmvsmconf_n | | | 99.44 15 | 99.48 14 | 99.31 83 | 99.64 71 | 98.10 135 | 97.68 215 | 99.84 18 | 99.29 56 | 99.92 8 | 99.57 42 | 99.60 5 | 99.96 12 | 99.74 18 | 99.98 12 | 99.89 11 |
|
| bld_raw_dy_0_64 | | | 99.07 58 | 99.00 62 | 99.29 84 | 99.85 17 | 98.18 126 | 99.11 58 | 99.40 123 | 99.33 50 | 99.38 87 | 99.44 71 | 95.21 239 | 99.97 4 | 99.31 41 | 99.98 12 | 99.73 45 |
|
| FIs | | | 99.14 46 | 99.09 55 | 99.29 84 | 99.70 55 | 98.28 117 | 99.13 55 | 99.52 83 | 99.48 32 | 99.24 117 | 99.41 77 | 96.79 176 | 99.82 166 | 98.69 82 | 99.88 75 | 99.76 39 |
|
| VPA-MVSNet | | | 99.30 28 | 99.30 32 | 99.28 86 | 99.49 116 | 98.36 114 | 99.00 69 | 99.45 107 | 99.63 17 | 99.52 62 | 99.44 71 | 98.25 69 | 99.88 84 | 99.09 55 | 99.84 86 | 99.62 68 |
|
| DP-MVS | | | 98.93 72 | 98.81 80 | 99.28 86 | 99.21 174 | 98.45 106 | 98.46 124 | 99.33 152 | 99.63 17 | 99.48 68 | 99.15 127 | 97.23 150 | 99.75 229 | 97.17 165 | 99.66 178 | 99.63 67 |
|
| ANet_high | | | 99.57 7 | 99.67 5 | 99.28 86 | 99.89 6 | 98.09 136 | 99.14 54 | 99.93 4 | 99.82 3 | 99.93 6 | 99.81 5 | 99.17 18 | 99.94 36 | 99.31 41 | 100.00 1 | 99.82 25 |
|
| CPTT-MVS | | | 97.84 207 | 97.36 231 | 99.27 89 | 99.31 155 | 98.46 105 | 98.29 138 | 99.27 181 | 94.90 313 | 97.83 274 | 98.37 272 | 94.90 247 | 99.84 139 | 93.85 323 | 99.54 215 | 99.51 121 |
|
| Vis-MVSNet |  | | 99.34 25 | 99.36 22 | 99.27 89 | 99.73 39 | 98.26 118 | 99.17 50 | 99.78 26 | 99.11 72 | 99.27 108 | 99.48 64 | 98.82 31 | 99.95 23 | 98.94 65 | 99.93 44 | 99.59 81 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| CS-MVS-test | | | 99.13 49 | 99.09 55 | 99.26 91 | 99.13 198 | 98.97 66 | 99.31 27 | 99.88 11 | 99.44 38 | 98.16 249 | 98.51 256 | 98.64 43 | 99.93 41 | 98.91 66 | 99.85 82 | 98.88 285 |
|
| Anonymous20231211 | | | 99.27 30 | 99.27 35 | 99.26 91 | 99.29 159 | 98.18 126 | 99.49 8 | 99.51 84 | 99.70 8 | 99.80 24 | 99.68 20 | 96.84 170 | 99.83 156 | 99.21 49 | 99.91 63 | 99.77 35 |
|
| ACMH | | 96.65 7 | 99.25 33 | 99.24 39 | 99.26 91 | 99.72 45 | 98.38 109 | 99.07 62 | 99.55 72 | 98.30 133 | 99.65 45 | 99.45 70 | 99.22 15 | 99.76 222 | 98.44 98 | 99.77 124 | 99.64 64 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GeoE | | | 99.05 59 | 98.99 65 | 99.25 94 | 99.44 130 | 98.35 115 | 98.73 89 | 99.56 68 | 98.42 126 | 98.91 167 | 98.81 210 | 98.94 25 | 99.91 60 | 98.35 102 | 99.73 142 | 99.49 128 |
|
| OPM-MVS | | | 98.56 129 | 98.32 152 | 99.25 94 | 99.41 138 | 98.73 85 | 97.13 267 | 99.18 206 | 97.10 241 | 98.75 195 | 98.92 185 | 98.18 78 | 99.65 282 | 96.68 213 | 99.56 210 | 99.37 186 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| CS-MVS | | | 99.13 49 | 99.10 54 | 99.24 96 | 99.06 213 | 99.15 47 | 99.36 19 | 99.88 11 | 99.36 48 | 98.21 246 | 98.46 264 | 98.68 42 | 99.93 41 | 99.03 60 | 99.85 82 | 98.64 317 |
|
| 3Dnovator+ | | 97.89 3 | 98.69 107 | 98.51 119 | 99.24 96 | 98.81 261 | 98.40 107 | 99.02 66 | 99.19 202 | 98.99 91 | 98.07 258 | 99.28 97 | 97.11 157 | 99.84 139 | 96.84 198 | 99.32 253 | 99.47 145 |
|
| DeepPCF-MVS | | 96.93 5 | 98.32 160 | 98.01 184 | 99.23 98 | 98.39 323 | 98.97 66 | 95.03 354 | 99.18 206 | 96.88 251 | 99.33 97 | 98.78 214 | 98.16 82 | 99.28 363 | 96.74 206 | 99.62 187 | 99.44 155 |
|
| XVG-ACMP-BASELINE | | | 98.56 129 | 98.34 148 | 99.22 99 | 99.54 99 | 98.59 94 | 97.71 212 | 99.46 104 | 97.25 227 | 98.98 150 | 98.99 166 | 97.54 127 | 99.84 139 | 95.88 260 | 99.74 139 | 99.23 226 |
|
| EC-MVSNet | | | 99.09 54 | 99.05 59 | 99.20 100 | 99.28 160 | 98.93 71 | 99.24 41 | 99.84 18 | 99.08 84 | 98.12 254 | 98.37 272 | 98.72 38 | 99.90 65 | 99.05 58 | 99.77 124 | 98.77 302 |
|
| CSCG | | | 98.68 112 | 98.50 121 | 99.20 100 | 99.45 129 | 98.63 89 | 98.56 106 | 99.57 61 | 97.87 169 | 98.85 179 | 98.04 300 | 97.66 114 | 99.84 139 | 96.72 209 | 99.81 100 | 99.13 246 |
|
| sd_testset | | | 99.28 29 | 99.31 30 | 99.19 102 | 99.68 59 | 98.06 145 | 99.41 13 | 99.30 167 | 99.69 9 | 99.63 48 | 99.68 20 | 99.25 14 | 99.96 12 | 97.25 162 | 99.92 55 | 99.57 92 |
|
| GBi-Net | | | 98.65 117 | 98.47 128 | 99.17 103 | 98.90 241 | 98.24 120 | 99.20 45 | 99.44 111 | 98.59 117 | 98.95 157 | 99.55 48 | 94.14 270 | 99.86 110 | 97.77 137 | 99.69 162 | 99.41 165 |
|
| test1 | | | 98.65 117 | 98.47 128 | 99.17 103 | 98.90 241 | 98.24 120 | 99.20 45 | 99.44 111 | 98.59 117 | 98.95 157 | 99.55 48 | 94.14 270 | 99.86 110 | 97.77 137 | 99.69 162 | 99.41 165 |
|
| FMVSNet1 | | | 99.17 42 | 99.17 43 | 99.17 103 | 99.55 94 | 98.24 120 | 99.20 45 | 99.44 111 | 99.21 63 | 99.43 76 | 99.55 48 | 97.82 105 | 99.86 110 | 98.42 100 | 99.89 74 | 99.41 165 |
|
| AllTest | | | 98.44 147 | 98.20 163 | 99.16 106 | 99.50 109 | 98.55 97 | 98.25 142 | 99.58 54 | 96.80 253 | 98.88 174 | 99.06 141 | 97.65 115 | 99.57 307 | 94.45 302 | 99.61 192 | 99.37 186 |
|
| TestCases | | | | | 99.16 106 | 99.50 109 | 98.55 97 | | 99.58 54 | 96.80 253 | 98.88 174 | 99.06 141 | 97.65 115 | 99.57 307 | 94.45 302 | 99.61 192 | 99.37 186 |
|
| SixPastTwentyTwo | | | 98.75 96 | 98.62 105 | 99.16 106 | 99.83 20 | 97.96 156 | 99.28 37 | 98.20 314 | 99.37 45 | 99.70 35 | 99.65 30 | 92.65 297 | 99.93 41 | 99.04 59 | 99.84 86 | 99.60 75 |
|
| XVG-OURS-SEG-HR | | | 98.49 142 | 98.28 155 | 99.14 109 | 99.49 116 | 98.83 76 | 96.54 294 | 99.48 95 | 97.32 220 | 99.11 129 | 98.61 246 | 99.33 13 | 99.30 359 | 96.23 244 | 98.38 331 | 99.28 216 |
|
| F-COLMAP | | | 97.30 242 | 96.68 269 | 99.14 109 | 99.19 181 | 98.39 108 | 97.27 257 | 99.30 167 | 92.93 348 | 96.62 338 | 98.00 301 | 95.73 225 | 99.68 263 | 92.62 347 | 98.46 330 | 99.35 196 |
|
| Anonymous20240529 | | | 98.93 72 | 98.87 72 | 99.12 111 | 99.19 181 | 98.22 125 | 99.01 67 | 98.99 247 | 99.25 59 | 99.54 56 | 99.37 80 | 97.04 159 | 99.80 186 | 97.89 128 | 99.52 222 | 99.35 196 |
|
| PM-MVS | | | 98.82 85 | 98.72 88 | 99.12 111 | 99.64 71 | 98.54 100 | 97.98 177 | 99.68 41 | 97.62 186 | 99.34 96 | 99.18 117 | 97.54 127 | 99.77 216 | 97.79 136 | 99.74 139 | 99.04 257 |
|
| LCM-MVSNet-Re | | | 98.64 119 | 98.48 126 | 99.11 113 | 98.85 252 | 98.51 102 | 98.49 119 | 99.83 20 | 98.37 127 | 99.69 37 | 99.46 66 | 98.21 76 | 99.92 51 | 94.13 314 | 99.30 258 | 98.91 281 |
|
| XVG-OURS | | | 98.53 137 | 98.34 148 | 99.11 113 | 99.50 109 | 98.82 78 | 95.97 320 | 99.50 86 | 97.30 222 | 99.05 141 | 98.98 170 | 99.35 12 | 99.32 356 | 95.72 270 | 99.68 167 | 99.18 238 |
|
| h-mvs33 | | | 97.77 210 | 97.33 234 | 99.10 115 | 99.21 174 | 97.84 165 | 98.35 135 | 98.57 298 | 99.11 72 | 98.58 216 | 99.02 153 | 88.65 329 | 99.96 12 | 98.11 114 | 96.34 376 | 99.49 128 |
|
| MCST-MVS | | | 98.00 190 | 97.63 215 | 99.10 115 | 99.24 167 | 98.17 128 | 96.89 279 | 98.73 289 | 95.66 292 | 97.92 266 | 97.70 320 | 97.17 153 | 99.66 277 | 96.18 249 | 99.23 269 | 99.47 145 |
|
| XXY-MVS | | | 99.14 46 | 99.15 50 | 99.10 115 | 99.76 32 | 97.74 176 | 98.85 82 | 99.62 47 | 98.48 125 | 99.37 90 | 99.49 63 | 98.75 36 | 99.86 110 | 98.20 110 | 99.80 110 | 99.71 47 |
|
| DeepC-MVS | | 97.60 4 | 98.97 67 | 98.93 68 | 99.10 115 | 99.35 152 | 97.98 152 | 98.01 173 | 99.46 104 | 97.56 194 | 99.54 56 | 99.50 59 | 98.97 23 | 99.84 139 | 98.06 118 | 99.92 55 | 99.49 128 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| Anonymous202405211 | | | 97.90 195 | 97.50 222 | 99.08 119 | 98.90 241 | 98.25 119 | 98.53 110 | 96.16 361 | 98.87 101 | 99.11 129 | 98.86 199 | 90.40 316 | 99.78 210 | 97.36 156 | 99.31 255 | 99.19 236 |
|
| IS-MVSNet | | | 98.19 176 | 97.90 194 | 99.08 119 | 99.57 82 | 97.97 153 | 99.31 27 | 98.32 309 | 99.01 90 | 98.98 150 | 99.03 152 | 91.59 307 | 99.79 199 | 95.49 279 | 99.80 110 | 99.48 138 |
|
| test_vis3_rt | | | 99.14 46 | 99.17 43 | 99.07 121 | 99.78 26 | 98.38 109 | 98.92 76 | 99.94 2 | 97.80 174 | 99.91 11 | 99.67 25 | 97.15 154 | 98.91 381 | 99.76 16 | 99.56 210 | 99.92 9 |
|
| train_agg | | | 97.10 257 | 96.45 282 | 99.07 121 | 98.71 275 | 98.08 140 | 95.96 322 | 99.03 238 | 91.64 360 | 95.85 356 | 97.53 328 | 96.47 192 | 99.76 222 | 93.67 325 | 99.16 279 | 99.36 192 |
|
| VDD-MVS | | | 98.56 129 | 98.39 141 | 99.07 121 | 99.13 198 | 98.07 142 | 98.59 103 | 97.01 345 | 99.59 23 | 99.11 129 | 99.27 99 | 94.82 251 | 99.79 199 | 98.34 103 | 99.63 184 | 99.34 198 |
|
| CDPH-MVS | | | 97.26 245 | 96.66 272 | 99.07 121 | 99.00 222 | 98.15 129 | 96.03 318 | 99.01 244 | 91.21 368 | 97.79 277 | 97.85 312 | 96.89 168 | 99.69 254 | 92.75 344 | 99.38 246 | 99.39 177 |
|
| CNVR-MVS | | | 98.17 179 | 97.87 197 | 99.07 121 | 98.67 287 | 98.24 120 | 97.01 270 | 98.93 251 | 97.25 227 | 97.62 286 | 98.34 276 | 97.27 147 | 99.57 307 | 96.42 234 | 99.33 252 | 99.39 177 |
|
| EPP-MVSNet | | | 98.30 163 | 98.04 182 | 99.07 121 | 99.56 90 | 97.83 166 | 99.29 33 | 98.07 321 | 99.03 88 | 98.59 214 | 99.13 131 | 92.16 302 | 99.90 65 | 96.87 195 | 99.68 167 | 99.49 128 |
|
| TSAR-MVS + MP. | | | 98.63 121 | 98.49 125 | 99.06 127 | 99.64 71 | 97.90 160 | 98.51 116 | 98.94 249 | 96.96 246 | 99.24 117 | 98.89 195 | 97.83 102 | 99.81 179 | 96.88 194 | 99.49 232 | 99.48 138 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| NCCC | | | 97.86 201 | 97.47 226 | 99.05 128 | 98.61 295 | 98.07 142 | 96.98 272 | 98.90 257 | 97.63 185 | 97.04 317 | 97.93 308 | 95.99 215 | 99.66 277 | 95.31 282 | 98.82 313 | 99.43 159 |
|
| 3Dnovator | | 98.27 2 | 98.81 87 | 98.73 86 | 99.05 128 | 98.76 266 | 97.81 171 | 99.25 40 | 99.30 167 | 98.57 120 | 98.55 221 | 99.33 90 | 97.95 97 | 99.90 65 | 97.16 166 | 99.67 173 | 99.44 155 |
|
| OMC-MVS | | | 97.88 199 | 97.49 223 | 99.04 130 | 98.89 246 | 98.63 89 | 96.94 274 | 99.25 187 | 95.02 309 | 98.53 224 | 98.51 256 | 97.27 147 | 99.47 334 | 93.50 331 | 99.51 224 | 99.01 261 |
|
| WR-MVS | | | 98.40 151 | 98.19 165 | 99.03 131 | 99.00 222 | 97.65 182 | 96.85 280 | 98.94 249 | 98.57 120 | 98.89 170 | 98.50 260 | 95.60 228 | 99.85 122 | 97.54 148 | 99.85 82 | 99.59 81 |
|
| K. test v3 | | | 98.00 190 | 97.66 212 | 99.03 131 | 99.79 25 | 97.56 186 | 99.19 49 | 92.47 385 | 99.62 20 | 99.52 62 | 99.66 27 | 89.61 320 | 99.96 12 | 99.25 46 | 99.81 100 | 99.56 98 |
|
| fmvsm_l_conf0.5_n | | | 99.21 39 | 99.28 34 | 99.02 133 | 99.64 71 | 97.28 201 | 97.82 197 | 99.76 28 | 98.73 107 | 99.82 21 | 99.09 140 | 98.81 32 | 99.95 23 | 99.86 4 | 99.96 25 | 99.83 22 |
|
| VDDNet | | | 98.21 174 | 97.95 188 | 99.01 134 | 99.58 78 | 97.74 176 | 99.01 67 | 97.29 340 | 99.67 12 | 98.97 154 | 99.50 59 | 90.45 315 | 99.80 186 | 97.88 131 | 99.20 273 | 99.48 138 |
|
| VPNet | | | 98.87 79 | 98.83 77 | 99.01 134 | 99.70 55 | 97.62 185 | 98.43 127 | 99.35 141 | 99.47 34 | 99.28 106 | 99.05 148 | 96.72 182 | 99.82 166 | 98.09 116 | 99.36 247 | 99.59 81 |
|
| test_fmvsm_n_1920 | | | 99.33 26 | 99.45 18 | 98.99 136 | 99.57 82 | 97.73 178 | 97.93 181 | 99.83 20 | 99.22 61 | 99.93 6 | 99.30 95 | 99.42 10 | 99.96 12 | 99.85 5 | 99.99 5 | 99.29 214 |
|
| casdiffmvs_mvg |  | | 99.12 51 | 99.16 45 | 98.99 136 | 99.43 135 | 97.73 178 | 98.00 174 | 99.62 47 | 99.22 61 | 99.55 55 | 99.22 110 | 98.93 26 | 99.75 229 | 98.66 84 | 99.81 100 | 99.50 124 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| N_pmnet | | | 97.63 220 | 97.17 240 | 98.99 136 | 99.27 162 | 97.86 163 | 95.98 319 | 93.41 382 | 95.25 305 | 99.47 70 | 98.90 189 | 95.63 227 | 99.85 122 | 96.91 187 | 99.73 142 | 99.27 217 |
|
| lessismore_v0 | | | | | 98.97 139 | 99.73 39 | 97.53 188 | | 86.71 398 | | 99.37 90 | 99.52 57 | 89.93 318 | 99.92 51 | 98.99 63 | 99.72 149 | 99.44 155 |
|
| SDMVSNet | | | 99.23 38 | 99.32 28 | 98.96 140 | 99.68 59 | 97.35 197 | 98.84 84 | 99.48 95 | 99.69 9 | 99.63 48 | 99.68 20 | 99.03 21 | 99.96 12 | 97.97 125 | 99.92 55 | 99.57 92 |
|
| HyFIR lowres test | | | 97.19 252 | 96.60 277 | 98.96 140 | 99.62 77 | 97.28 201 | 95.17 350 | 99.50 86 | 94.21 329 | 99.01 147 | 98.32 279 | 86.61 338 | 99.99 2 | 97.10 173 | 99.84 86 | 99.60 75 |
|
| test_prior | | | | | 98.95 142 | 98.69 284 | 97.95 157 | | 99.03 238 | | | | | 99.59 301 | | | 99.30 212 |
|
| fmvsm_l_conf0.5_n_a | | | 99.19 41 | 99.27 35 | 98.94 143 | 99.65 66 | 97.05 215 | 97.80 200 | 99.76 28 | 98.70 110 | 99.78 26 | 99.11 134 | 98.79 34 | 99.95 23 | 99.85 5 | 99.96 25 | 99.83 22 |
|
| EG-PatchMatch MVS | | | 98.99 63 | 99.01 61 | 98.94 143 | 99.50 109 | 97.47 190 | 98.04 167 | 99.59 52 | 98.15 153 | 99.40 83 | 99.36 83 | 98.58 51 | 99.76 222 | 98.78 73 | 99.68 167 | 99.59 81 |
|
| test12 | | | | | 98.93 145 | 98.58 302 | 97.83 166 | | 98.66 292 | | 96.53 341 | | 95.51 232 | 99.69 254 | | 99.13 284 | 99.27 217 |
|
| HQP_MVS | | | 97.99 193 | 97.67 209 | 98.93 145 | 99.19 181 | 97.65 182 | 97.77 204 | 99.27 181 | 98.20 146 | 97.79 277 | 97.98 303 | 94.90 247 | 99.70 250 | 94.42 304 | 99.51 224 | 99.45 151 |
|
| test_0402 | | | 98.76 95 | 98.71 90 | 98.93 145 | 99.56 90 | 98.14 131 | 98.45 126 | 99.34 147 | 99.28 57 | 98.95 157 | 98.91 186 | 98.34 67 | 99.79 199 | 95.63 274 | 99.91 63 | 98.86 287 |
|
| MM | | | | | 98.91 148 | | 96.97 219 | 97.89 188 | 94.44 374 | 99.54 27 | 98.95 157 | 99.14 130 | 93.50 282 | 99.92 51 | 99.80 12 | 99.96 25 | 99.85 19 |
|
| tfpnnormal | | | 98.90 76 | 98.90 71 | 98.91 148 | 99.67 63 | 97.82 169 | 99.00 69 | 99.44 111 | 99.45 36 | 99.51 66 | 99.24 106 | 98.20 77 | 99.86 110 | 95.92 259 | 99.69 162 | 99.04 257 |
|
| æ–°å‡ ä½•1 | | | | | 98.91 148 | 98.94 231 | 97.76 174 | | 98.76 283 | 87.58 385 | 96.75 334 | 98.10 294 | 94.80 254 | 99.78 210 | 92.73 345 | 99.00 299 | 99.20 231 |
|
| tt0805 | | | 98.69 107 | 98.62 105 | 98.90 151 | 99.75 36 | 99.30 17 | 99.15 53 | 96.97 347 | 98.86 102 | 98.87 178 | 97.62 325 | 98.63 45 | 98.96 378 | 99.41 37 | 98.29 334 | 98.45 327 |
|
| ITE_SJBPF | | | | | 98.87 152 | 99.22 172 | 98.48 104 | | 99.35 141 | 97.50 199 | 98.28 243 | 98.60 247 | 97.64 118 | 99.35 352 | 93.86 322 | 99.27 262 | 98.79 300 |
|
| pmmvs-eth3d | | | 98.47 144 | 98.34 148 | 98.86 153 | 99.30 158 | 97.76 174 | 97.16 265 | 99.28 178 | 95.54 296 | 99.42 79 | 99.19 114 | 97.27 147 | 99.63 288 | 97.89 128 | 99.97 20 | 99.20 231 |
|
| PLC |  | 94.65 16 | 96.51 285 | 95.73 296 | 98.85 154 | 98.75 268 | 97.91 159 | 96.42 301 | 99.06 230 | 90.94 371 | 95.59 359 | 97.38 338 | 94.41 263 | 99.59 301 | 90.93 368 | 98.04 351 | 99.05 253 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CMPMVS |  | 75.91 23 | 96.29 293 | 95.44 307 | 98.84 155 | 96.25 391 | 98.69 88 | 97.02 269 | 99.12 221 | 88.90 381 | 97.83 274 | 98.86 199 | 89.51 321 | 98.90 382 | 91.92 352 | 99.51 224 | 98.92 278 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| MVS_111021_LR | | | 98.30 163 | 98.12 174 | 98.83 156 | 99.16 191 | 98.03 147 | 96.09 317 | 99.30 167 | 97.58 191 | 98.10 256 | 98.24 283 | 98.25 69 | 99.34 353 | 96.69 212 | 99.65 179 | 99.12 247 |
|
| OPU-MVS | | | | | 98.82 157 | 98.59 300 | 98.30 116 | 98.10 158 | | | | 98.52 255 | 98.18 78 | 98.75 385 | 94.62 296 | 99.48 233 | 99.41 165 |
|
| QAPM | | | 97.31 241 | 96.81 262 | 98.82 157 | 98.80 264 | 97.49 189 | 99.06 63 | 99.19 202 | 90.22 374 | 97.69 283 | 99.16 123 | 96.91 167 | 99.90 65 | 90.89 370 | 99.41 241 | 99.07 251 |
|
| Fast-Effi-MVS+-dtu | | | 98.27 167 | 98.09 176 | 98.81 159 | 98.43 318 | 98.11 133 | 97.61 226 | 99.50 86 | 98.64 111 | 97.39 306 | 97.52 330 | 98.12 85 | 99.95 23 | 96.90 192 | 98.71 319 | 98.38 332 |
|
| casdiffmvs |  | | 98.95 70 | 99.00 62 | 98.81 159 | 99.38 141 | 97.33 198 | 97.82 197 | 99.57 61 | 99.17 70 | 99.35 94 | 99.17 121 | 98.35 66 | 99.69 254 | 98.46 97 | 99.73 142 | 99.41 165 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n_a | | | 99.17 42 | 99.30 32 | 98.80 161 | 99.75 36 | 96.59 233 | 97.97 180 | 99.86 13 | 98.22 141 | 99.88 17 | 99.71 17 | 98.59 49 | 99.84 139 | 99.73 19 | 99.98 12 | 99.98 2 |
|
| EIA-MVS | | | 98.00 190 | 97.74 204 | 98.80 161 | 98.72 272 | 98.09 136 | 98.05 165 | 99.60 51 | 97.39 213 | 96.63 337 | 95.55 372 | 97.68 112 | 99.80 186 | 96.73 208 | 99.27 262 | 98.52 323 |
|
| TAMVS | | | 98.24 172 | 98.05 181 | 98.80 161 | 99.07 209 | 97.18 210 | 97.88 189 | 98.81 276 | 96.66 261 | 99.17 127 | 99.21 111 | 94.81 253 | 99.77 216 | 96.96 185 | 99.88 75 | 99.44 155 |
|
| VNet | | | 98.42 148 | 98.30 153 | 98.79 164 | 98.79 265 | 97.29 200 | 98.23 143 | 98.66 292 | 99.31 53 | 98.85 179 | 98.80 211 | 94.80 254 | 99.78 210 | 98.13 113 | 99.13 284 | 99.31 209 |
|
| UGNet | | | 98.53 137 | 98.45 131 | 98.79 164 | 97.94 346 | 96.96 221 | 99.08 59 | 98.54 299 | 99.10 79 | 96.82 331 | 99.47 65 | 96.55 189 | 99.84 139 | 98.56 93 | 99.94 40 | 99.55 105 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| MAR-MVS | | | 96.47 289 | 95.70 297 | 98.79 164 | 97.92 347 | 99.12 57 | 98.28 139 | 98.60 297 | 92.16 358 | 95.54 365 | 96.17 362 | 94.77 257 | 99.52 322 | 89.62 375 | 98.23 335 | 97.72 362 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| fmvsm_s_conf0.5_n_a | | | 99.10 53 | 99.20 41 | 98.78 167 | 99.55 94 | 96.59 233 | 97.79 201 | 99.82 22 | 98.21 142 | 99.81 23 | 99.53 54 | 98.46 58 | 99.84 139 | 99.70 22 | 99.97 20 | 99.90 10 |
|
| alignmvs | | | 97.35 238 | 96.88 255 | 98.78 167 | 98.54 307 | 98.09 136 | 97.71 212 | 97.69 330 | 99.20 65 | 97.59 289 | 95.90 367 | 88.12 334 | 99.55 313 | 98.18 111 | 98.96 304 | 98.70 311 |
|
| test20.03 | | | 98.78 91 | 98.77 83 | 98.78 167 | 99.46 126 | 97.20 208 | 97.78 202 | 99.24 192 | 99.04 87 | 99.41 80 | 98.90 189 | 97.65 115 | 99.76 222 | 97.70 142 | 99.79 115 | 99.39 177 |
|
| TSAR-MVS + GP. | | | 98.18 177 | 97.98 186 | 98.77 170 | 98.71 275 | 97.88 161 | 96.32 306 | 98.66 292 | 96.33 271 | 99.23 119 | 98.51 256 | 97.48 137 | 99.40 344 | 97.16 166 | 99.46 234 | 99.02 260 |
|
| MVS_0304 | | | 98.10 181 | 97.88 196 | 98.76 171 | 98.82 258 | 96.50 235 | 97.90 186 | 91.35 391 | 99.56 26 | 98.32 240 | 99.13 131 | 96.06 208 | 99.93 41 | 99.84 7 | 99.97 20 | 99.85 19 |
|
| V42 | | | 98.78 91 | 98.78 82 | 98.76 171 | 99.44 130 | 97.04 216 | 98.27 140 | 99.19 202 | 97.87 169 | 99.25 116 | 99.16 123 | 96.84 170 | 99.78 210 | 99.21 49 | 99.84 86 | 99.46 147 |
|
| baseline | | | 98.96 69 | 99.02 60 | 98.76 171 | 99.38 141 | 97.26 203 | 98.49 119 | 99.50 86 | 98.86 102 | 99.19 122 | 99.06 141 | 98.23 71 | 99.69 254 | 98.71 80 | 99.76 135 | 99.33 203 |
|
| UnsupCasMVSNet_eth | | | 97.89 197 | 97.60 217 | 98.75 174 | 99.31 155 | 97.17 211 | 97.62 224 | 99.35 141 | 98.72 109 | 98.76 194 | 98.68 230 | 92.57 298 | 99.74 234 | 97.76 141 | 95.60 384 | 99.34 198 |
|
| FMVSNet2 | | | 98.49 142 | 98.40 138 | 98.75 174 | 98.90 241 | 97.14 214 | 98.61 101 | 99.13 220 | 98.59 117 | 99.19 122 | 99.28 97 | 94.14 270 | 99.82 166 | 97.97 125 | 99.80 110 | 99.29 214 |
|
| MVS_111021_HR | | | 98.25 171 | 98.08 179 | 98.75 174 | 99.09 205 | 97.46 191 | 95.97 320 | 99.27 181 | 97.60 190 | 97.99 264 | 98.25 282 | 98.15 84 | 99.38 348 | 96.87 195 | 99.57 207 | 99.42 162 |
|
| DeepC-MVS_fast | | 96.85 6 | 98.30 163 | 98.15 171 | 98.75 174 | 98.61 295 | 97.23 204 | 97.76 207 | 99.09 227 | 97.31 221 | 98.75 195 | 98.66 235 | 97.56 125 | 99.64 285 | 96.10 254 | 99.55 213 | 99.39 177 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| mvsany_test3 | | | 98.87 79 | 98.92 69 | 98.74 178 | 99.38 141 | 96.94 223 | 98.58 104 | 99.10 225 | 96.49 266 | 99.96 4 | 99.81 5 | 98.18 78 | 99.45 337 | 98.97 64 | 99.79 115 | 99.83 22 |
|
| 114514_t | | | 96.50 287 | 95.77 294 | 98.69 179 | 99.48 123 | 97.43 194 | 97.84 196 | 99.55 72 | 81.42 393 | 96.51 343 | 98.58 249 | 95.53 230 | 99.67 266 | 93.41 333 | 99.58 203 | 98.98 266 |
|
| CDS-MVSNet | | | 97.69 215 | 97.35 232 | 98.69 179 | 98.73 270 | 97.02 218 | 96.92 278 | 98.75 286 | 95.89 288 | 98.59 214 | 98.67 232 | 92.08 304 | 99.74 234 | 96.72 209 | 99.81 100 | 99.32 205 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TAPA-MVS | | 96.21 11 | 96.63 281 | 95.95 292 | 98.65 181 | 98.93 233 | 98.09 136 | 96.93 276 | 99.28 178 | 83.58 391 | 98.13 253 | 97.78 314 | 96.13 205 | 99.40 344 | 93.52 329 | 99.29 260 | 98.45 327 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| fmvsm_s_conf0.1_n | | | 99.16 45 | 99.33 26 | 98.64 182 | 99.71 48 | 96.10 244 | 97.87 192 | 99.85 15 | 98.56 122 | 99.90 12 | 99.68 20 | 98.69 41 | 99.85 122 | 99.72 21 | 99.98 12 | 99.97 3 |
|
| hse-mvs2 | | | 97.46 230 | 97.07 245 | 98.64 182 | 98.73 270 | 97.33 198 | 97.45 243 | 97.64 333 | 99.11 72 | 98.58 216 | 97.98 303 | 88.65 329 | 99.79 199 | 98.11 114 | 97.39 360 | 98.81 294 |
|
| LFMVS | | | 97.20 251 | 96.72 266 | 98.64 182 | 98.72 272 | 96.95 222 | 98.93 75 | 94.14 380 | 99.74 6 | 98.78 189 | 99.01 162 | 84.45 356 | 99.73 239 | 97.44 152 | 99.27 262 | 99.25 221 |
|
| Gipuma |  | | 99.03 60 | 99.16 45 | 98.64 182 | 99.94 2 | 98.51 102 | 99.32 23 | 99.75 31 | 99.58 25 | 98.60 212 | 99.62 34 | 98.22 74 | 99.51 326 | 97.70 142 | 99.73 142 | 97.89 351 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| EI-MVSNet-Vis-set | | | 98.68 112 | 98.70 93 | 98.63 186 | 99.09 205 | 96.40 237 | 97.23 258 | 98.86 267 | 99.20 65 | 99.18 126 | 98.97 172 | 97.29 146 | 99.85 122 | 98.72 79 | 99.78 120 | 99.64 64 |
|
| SSC-MVS | | | 98.71 100 | 98.74 84 | 98.62 187 | 99.72 45 | 96.08 249 | 98.74 86 | 98.64 295 | 99.74 6 | 99.67 41 | 99.24 106 | 94.57 260 | 99.95 23 | 99.11 53 | 99.24 267 | 99.82 25 |
|
| Effi-MVS+ | | | 98.02 188 | 97.82 200 | 98.62 187 | 98.53 309 | 97.19 209 | 97.33 250 | 99.68 41 | 97.30 222 | 96.68 335 | 97.46 334 | 98.56 52 | 99.80 186 | 96.63 215 | 98.20 337 | 98.86 287 |
|
| EI-MVSNet-UG-set | | | 98.69 107 | 98.71 90 | 98.62 187 | 99.10 202 | 96.37 238 | 97.23 258 | 98.87 262 | 99.20 65 | 99.19 122 | 98.99 166 | 97.30 144 | 99.85 122 | 98.77 76 | 99.79 115 | 99.65 63 |
|
| fmvsm_s_conf0.5_n | | | 99.09 54 | 99.26 37 | 98.61 190 | 99.55 94 | 96.09 247 | 97.74 209 | 99.81 23 | 98.55 123 | 99.85 19 | 99.55 48 | 98.60 48 | 99.84 139 | 99.69 24 | 99.98 12 | 99.89 11 |
|
| PatchMatch-RL | | | 97.24 248 | 96.78 263 | 98.61 190 | 99.03 220 | 97.83 166 | 96.36 304 | 99.06 230 | 93.49 342 | 97.36 308 | 97.78 314 | 95.75 224 | 99.49 328 | 93.44 332 | 98.77 314 | 98.52 323 |
|
| AUN-MVS | | | 96.24 296 | 95.45 306 | 98.60 192 | 98.70 279 | 97.22 206 | 97.38 246 | 97.65 331 | 95.95 286 | 95.53 366 | 97.96 307 | 82.11 371 | 99.79 199 | 96.31 240 | 97.44 358 | 98.80 299 |
|
| ab-mvs | | | 98.41 149 | 98.36 145 | 98.59 193 | 99.19 181 | 97.23 204 | 99.32 23 | 98.81 276 | 97.66 183 | 98.62 208 | 99.40 79 | 96.82 173 | 99.80 186 | 95.88 260 | 99.51 224 | 98.75 305 |
|
| canonicalmvs | | | 98.34 158 | 98.26 158 | 98.58 194 | 98.46 315 | 97.82 169 | 98.96 73 | 99.46 104 | 99.19 69 | 97.46 301 | 95.46 376 | 98.59 49 | 99.46 336 | 98.08 117 | 98.71 319 | 98.46 325 |
|
| 1112_ss | | | 97.29 244 | 96.86 256 | 98.58 194 | 99.34 154 | 96.32 240 | 96.75 286 | 99.58 54 | 93.14 345 | 96.89 327 | 97.48 332 | 92.11 303 | 99.86 110 | 96.91 187 | 99.54 215 | 99.57 92 |
|
| Fast-Effi-MVS+ | | | 97.67 217 | 97.38 229 | 98.57 196 | 98.71 275 | 97.43 194 | 97.23 258 | 99.45 107 | 94.82 315 | 96.13 350 | 96.51 354 | 98.52 54 | 99.91 60 | 96.19 247 | 98.83 311 | 98.37 334 |
|
| MVP-Stereo | | | 98.08 185 | 97.92 192 | 98.57 196 | 98.96 229 | 96.79 227 | 97.90 186 | 99.18 206 | 96.41 269 | 98.46 229 | 98.95 179 | 95.93 219 | 99.60 297 | 96.51 229 | 98.98 302 | 99.31 209 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| v8 | | | 99.01 61 | 99.16 45 | 98.57 196 | 99.47 125 | 96.31 241 | 98.90 77 | 99.47 102 | 99.03 88 | 99.52 62 | 99.57 42 | 96.93 166 | 99.81 179 | 99.60 25 | 99.98 12 | 99.60 75 |
|
| DP-MVS Recon | | | 97.33 240 | 96.92 252 | 98.57 196 | 99.09 205 | 97.99 149 | 96.79 282 | 99.35 141 | 93.18 344 | 97.71 281 | 98.07 298 | 95.00 246 | 99.31 357 | 93.97 317 | 99.13 284 | 98.42 331 |
|
| ETV-MVS | | | 98.03 187 | 97.86 198 | 98.56 200 | 98.69 284 | 98.07 142 | 97.51 238 | 99.50 86 | 98.10 154 | 97.50 298 | 95.51 373 | 98.41 60 | 99.88 84 | 96.27 243 | 99.24 267 | 97.71 363 |
|
| v10 | | | 98.97 67 | 99.11 52 | 98.55 201 | 99.44 130 | 96.21 243 | 98.90 77 | 99.55 72 | 98.73 107 | 99.48 68 | 99.60 39 | 96.63 186 | 99.83 156 | 99.70 22 | 99.99 5 | 99.61 74 |
|
| HQP-MVS | | | 97.00 267 | 96.49 281 | 98.55 201 | 98.67 287 | 96.79 227 | 96.29 307 | 99.04 236 | 96.05 281 | 95.55 362 | 96.84 349 | 93.84 276 | 99.54 316 | 92.82 341 | 99.26 265 | 99.32 205 |
|
| CNLPA | | | 97.17 254 | 96.71 267 | 98.55 201 | 98.56 305 | 98.05 146 | 96.33 305 | 98.93 251 | 96.91 250 | 97.06 316 | 97.39 337 | 94.38 265 | 99.45 337 | 91.66 355 | 99.18 278 | 98.14 341 |
|
| test_fmvsmvis_n_1920 | | | 99.26 32 | 99.49 12 | 98.54 204 | 99.66 65 | 96.97 219 | 98.00 174 | 99.85 15 | 99.24 60 | 99.92 8 | 99.50 59 | 99.39 11 | 99.95 23 | 99.89 3 | 99.98 12 | 98.71 308 |
|
| CHOSEN 1792x2688 | | | 97.49 228 | 97.14 244 | 98.54 204 | 99.68 59 | 96.09 247 | 96.50 296 | 99.62 47 | 91.58 362 | 98.84 182 | 98.97 172 | 92.36 299 | 99.88 84 | 96.76 204 | 99.95 32 | 99.67 58 |
|
| LF4IMVS | | | 97.90 195 | 97.69 208 | 98.52 206 | 99.17 189 | 97.66 181 | 97.19 264 | 99.47 102 | 96.31 273 | 97.85 273 | 98.20 287 | 96.71 183 | 99.52 322 | 94.62 296 | 99.72 149 | 98.38 332 |
|
| DPM-MVS | | | 96.32 292 | 95.59 302 | 98.51 207 | 98.76 266 | 97.21 207 | 94.54 370 | 98.26 311 | 91.94 359 | 96.37 347 | 97.25 342 | 93.06 289 | 99.43 340 | 91.42 361 | 98.74 315 | 98.89 282 |
|
| pmmvs4 | | | 97.58 224 | 97.28 235 | 98.51 207 | 98.84 253 | 96.93 224 | 95.40 345 | 98.52 301 | 93.60 339 | 98.61 210 | 98.65 237 | 95.10 243 | 99.60 297 | 96.97 184 | 99.79 115 | 98.99 265 |
|
| Patchmtry | | | 97.35 238 | 96.97 249 | 98.50 209 | 97.31 373 | 96.47 236 | 98.18 148 | 98.92 254 | 98.95 96 | 98.78 189 | 99.37 80 | 85.44 350 | 99.85 122 | 95.96 258 | 99.83 93 | 99.17 242 |
|
| DELS-MVS | | | 98.27 167 | 98.20 163 | 98.48 210 | 98.86 249 | 96.70 231 | 95.60 337 | 99.20 198 | 97.73 178 | 98.45 230 | 98.71 224 | 97.50 133 | 99.82 166 | 98.21 109 | 99.59 198 | 98.93 277 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CLD-MVS | | | 97.49 228 | 97.16 241 | 98.48 210 | 99.07 209 | 97.03 217 | 94.71 361 | 99.21 196 | 94.46 322 | 98.06 259 | 97.16 344 | 97.57 124 | 99.48 331 | 94.46 301 | 99.78 120 | 98.95 272 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| AdaColmap |  | | 97.14 256 | 96.71 267 | 98.46 212 | 98.34 325 | 97.80 172 | 96.95 273 | 98.93 251 | 95.58 295 | 96.92 321 | 97.66 321 | 95.87 221 | 99.53 318 | 90.97 367 | 99.14 282 | 98.04 346 |
|
| iter_conf_final | | | 97.10 257 | 96.65 274 | 98.45 213 | 98.53 309 | 96.08 249 | 98.30 137 | 99.11 223 | 98.10 154 | 98.85 179 | 98.95 179 | 79.38 380 | 99.87 101 | 98.68 83 | 99.91 63 | 99.40 174 |
|
| v144192 | | | 98.54 135 | 98.57 113 | 98.45 213 | 99.21 174 | 95.98 251 | 97.63 223 | 99.36 136 | 97.15 240 | 99.32 103 | 99.18 117 | 95.84 223 | 99.84 139 | 99.50 32 | 99.91 63 | 99.54 109 |
|
| UnsupCasMVSNet_bld | | | 97.30 242 | 96.92 252 | 98.45 213 | 99.28 160 | 96.78 230 | 96.20 312 | 99.27 181 | 95.42 300 | 98.28 243 | 98.30 280 | 93.16 285 | 99.71 247 | 94.99 287 | 97.37 361 | 98.87 286 |
|
| WB-MVS | | | 98.52 140 | 98.55 114 | 98.43 216 | 99.65 66 | 95.59 260 | 98.52 111 | 98.77 282 | 99.65 14 | 99.52 62 | 99.00 165 | 94.34 266 | 99.93 41 | 98.65 85 | 98.83 311 | 99.76 39 |
|
| PCF-MVS | | 92.86 18 | 94.36 329 | 93.00 346 | 98.42 217 | 98.70 279 | 97.56 186 | 93.16 386 | 99.11 223 | 79.59 394 | 97.55 293 | 97.43 335 | 92.19 301 | 99.73 239 | 79.85 395 | 99.45 236 | 97.97 350 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| v1192 | | | 98.60 125 | 98.66 99 | 98.41 218 | 99.27 162 | 95.88 254 | 97.52 236 | 99.36 136 | 97.41 211 | 99.33 97 | 99.20 113 | 96.37 198 | 99.82 166 | 99.57 27 | 99.92 55 | 99.55 105 |
|
| v1144 | | | 98.60 125 | 98.66 99 | 98.41 218 | 99.36 148 | 95.90 253 | 97.58 230 | 99.34 147 | 97.51 198 | 99.27 108 | 99.15 127 | 96.34 200 | 99.80 186 | 99.47 34 | 99.93 44 | 99.51 121 |
|
| FMVSNet5 | | | 96.01 300 | 95.20 316 | 98.41 218 | 97.53 365 | 96.10 244 | 98.74 86 | 99.50 86 | 97.22 236 | 98.03 263 | 99.04 150 | 69.80 394 | 99.88 84 | 97.27 160 | 99.71 154 | 99.25 221 |
|
| v1921920 | | | 98.54 135 | 98.60 110 | 98.38 221 | 99.20 178 | 95.76 259 | 97.56 232 | 99.36 136 | 97.23 233 | 99.38 87 | 99.17 121 | 96.02 210 | 99.84 139 | 99.57 27 | 99.90 70 | 99.54 109 |
|
| v2v482 | | | 98.56 129 | 98.62 105 | 98.37 222 | 99.42 136 | 95.81 257 | 97.58 230 | 99.16 213 | 97.90 167 | 99.28 106 | 99.01 162 | 95.98 216 | 99.79 199 | 99.33 39 | 99.90 70 | 99.51 121 |
|
| 原ACMM1 | | | | | 98.35 223 | 98.90 241 | 96.25 242 | | 98.83 275 | 92.48 354 | 96.07 353 | 98.10 294 | 95.39 236 | 99.71 247 | 92.61 348 | 98.99 300 | 99.08 249 |
|
| Vis-MVSNet (Re-imp) | | | 97.46 230 | 97.16 241 | 98.34 224 | 99.55 94 | 96.10 244 | 98.94 74 | 98.44 304 | 98.32 132 | 98.16 249 | 98.62 244 | 88.76 325 | 99.73 239 | 93.88 321 | 99.79 115 | 99.18 238 |
|
| v1240 | | | 98.55 133 | 98.62 105 | 98.32 225 | 99.22 172 | 95.58 262 | 97.51 238 | 99.45 107 | 97.16 238 | 99.45 74 | 99.24 106 | 96.12 206 | 99.85 122 | 99.60 25 | 99.88 75 | 99.55 105 |
|
| OpenMVS |  | 96.65 7 | 97.09 259 | 96.68 269 | 98.32 225 | 98.32 326 | 97.16 212 | 98.86 81 | 99.37 132 | 89.48 378 | 96.29 349 | 99.15 127 | 96.56 188 | 99.90 65 | 92.90 338 | 99.20 273 | 97.89 351 |
|
| Test_1112_low_res | | | 96.99 268 | 96.55 279 | 98.31 227 | 99.35 152 | 95.47 267 | 95.84 331 | 99.53 80 | 91.51 364 | 96.80 332 | 98.48 263 | 91.36 309 | 99.83 156 | 96.58 217 | 99.53 219 | 99.62 68 |
|
| PAPM_NR | | | 96.82 275 | 96.32 285 | 98.30 228 | 99.07 209 | 96.69 232 | 97.48 240 | 98.76 283 | 95.81 290 | 96.61 339 | 96.47 357 | 94.12 273 | 99.17 370 | 90.82 371 | 97.78 353 | 99.06 252 |
|
| FMVSNet3 | | | 97.50 226 | 97.24 237 | 98.29 229 | 98.08 341 | 95.83 256 | 97.86 194 | 98.91 256 | 97.89 168 | 98.95 157 | 98.95 179 | 87.06 335 | 99.81 179 | 97.77 137 | 99.69 162 | 99.23 226 |
|
| MSDG | | | 97.71 214 | 97.52 221 | 98.28 230 | 98.91 240 | 96.82 226 | 94.42 371 | 99.37 132 | 97.65 184 | 98.37 239 | 98.29 281 | 97.40 140 | 99.33 355 | 94.09 315 | 99.22 270 | 98.68 315 |
|
| test_fmvs3 | | | 99.12 51 | 99.41 19 | 98.25 231 | 99.76 32 | 95.07 282 | 99.05 65 | 99.94 2 | 97.78 176 | 99.82 21 | 99.84 2 | 98.56 52 | 99.71 247 | 99.96 1 | 99.96 25 | 99.97 3 |
|
| EPNet | | | 96.14 297 | 95.44 307 | 98.25 231 | 90.76 401 | 95.50 266 | 97.92 183 | 94.65 372 | 98.97 93 | 92.98 388 | 98.85 202 | 89.12 324 | 99.87 101 | 95.99 256 | 99.68 167 | 99.39 177 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| ambc | | | | | 98.24 233 | 98.82 258 | 95.97 252 | 98.62 100 | 99.00 246 | | 99.27 108 | 99.21 111 | 96.99 164 | 99.50 327 | 96.55 226 | 99.50 231 | 99.26 220 |
|
| PVSNet_Blended_VisFu | | | 98.17 179 | 98.15 171 | 98.22 234 | 99.73 39 | 95.15 278 | 97.36 248 | 99.68 41 | 94.45 324 | 98.99 149 | 99.27 99 | 96.87 169 | 99.94 36 | 97.13 171 | 99.91 63 | 99.57 92 |
|
| Anonymous20231206 | | | 98.21 174 | 98.21 162 | 98.20 235 | 99.51 106 | 95.43 269 | 98.13 153 | 99.32 154 | 96.16 278 | 98.93 165 | 98.82 208 | 96.00 212 | 99.83 156 | 97.32 158 | 99.73 142 | 99.36 192 |
|
| CANet | | | 97.87 200 | 97.76 202 | 98.19 236 | 97.75 354 | 95.51 265 | 96.76 285 | 99.05 233 | 97.74 177 | 96.93 320 | 98.21 286 | 95.59 229 | 99.89 75 | 97.86 133 | 99.93 44 | 99.19 236 |
|
| patch_mono-2 | | | 98.51 141 | 98.63 103 | 98.17 237 | 99.38 141 | 94.78 287 | 97.36 248 | 99.69 36 | 98.16 152 | 98.49 227 | 99.29 96 | 97.06 158 | 99.97 4 | 98.29 106 | 99.91 63 | 99.76 39 |
|
| diffmvs |  | | 98.22 173 | 98.24 160 | 98.17 237 | 99.00 222 | 95.44 268 | 96.38 303 | 99.58 54 | 97.79 175 | 98.53 224 | 98.50 260 | 96.76 179 | 99.74 234 | 97.95 127 | 99.64 181 | 99.34 198 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Anonymous20240521 | | | 98.69 107 | 98.87 72 | 98.16 239 | 99.77 29 | 95.11 281 | 99.08 59 | 99.44 111 | 99.34 49 | 99.33 97 | 99.55 48 | 94.10 274 | 99.94 36 | 99.25 46 | 99.96 25 | 99.42 162 |
|
| testgi | | | 98.32 160 | 98.39 141 | 98.13 240 | 99.57 82 | 95.54 263 | 97.78 202 | 99.49 93 | 97.37 215 | 99.19 122 | 97.65 322 | 98.96 24 | 99.49 328 | 96.50 230 | 98.99 300 | 99.34 198 |
|
| testdata | | | | | 98.09 241 | 98.93 233 | 95.40 270 | | 98.80 278 | 90.08 376 | 97.45 302 | 98.37 272 | 95.26 238 | 99.70 250 | 93.58 328 | 98.95 305 | 99.17 242 |
|
| IterMVS-LS | | | 98.55 133 | 98.70 93 | 98.09 241 | 99.48 123 | 94.73 290 | 97.22 261 | 99.39 126 | 98.97 93 | 99.38 87 | 99.31 94 | 96.00 212 | 99.93 41 | 98.58 88 | 99.97 20 | 99.60 75 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PMMVS | | | 96.51 285 | 95.98 291 | 98.09 241 | 97.53 365 | 95.84 255 | 94.92 357 | 98.84 271 | 91.58 362 | 96.05 354 | 95.58 371 | 95.68 226 | 99.66 277 | 95.59 276 | 98.09 345 | 98.76 304 |
|
| CL-MVSNet_self_test | | | 97.44 233 | 97.22 238 | 98.08 244 | 98.57 304 | 95.78 258 | 94.30 374 | 98.79 279 | 96.58 264 | 98.60 212 | 98.19 288 | 94.74 258 | 99.64 285 | 96.41 235 | 98.84 310 | 98.82 290 |
|
| pmmvs5 | | | 97.64 219 | 97.49 223 | 98.08 244 | 99.14 196 | 95.12 280 | 96.70 289 | 99.05 233 | 93.77 337 | 98.62 208 | 98.83 205 | 93.23 283 | 99.75 229 | 98.33 105 | 99.76 135 | 99.36 192 |
|
| MDA-MVSNet-bldmvs | | | 97.94 194 | 97.91 193 | 98.06 246 | 99.44 130 | 94.96 284 | 96.63 292 | 99.15 218 | 98.35 128 | 98.83 183 | 99.11 134 | 94.31 267 | 99.85 122 | 96.60 216 | 98.72 317 | 99.37 186 |
|
| sss | | | 97.21 250 | 96.93 250 | 98.06 246 | 98.83 255 | 95.22 276 | 96.75 286 | 98.48 303 | 94.49 320 | 97.27 309 | 97.90 309 | 92.77 295 | 99.80 186 | 96.57 219 | 99.32 253 | 99.16 245 |
|
| test_f | | | 98.67 115 | 98.87 72 | 98.05 248 | 99.72 45 | 95.59 260 | 98.51 116 | 99.81 23 | 96.30 275 | 99.78 26 | 99.82 4 | 96.14 204 | 98.63 386 | 99.82 8 | 99.93 44 | 99.95 6 |
|
| EI-MVSNet | | | 98.40 151 | 98.51 119 | 98.04 249 | 99.10 202 | 94.73 290 | 97.20 262 | 98.87 262 | 98.97 93 | 99.06 136 | 99.02 153 | 96.00 212 | 99.80 186 | 98.58 88 | 99.82 96 | 99.60 75 |
|
| PMMVS2 | | | 98.07 186 | 98.08 179 | 98.04 249 | 99.41 138 | 94.59 296 | 94.59 368 | 99.40 123 | 97.50 199 | 98.82 186 | 98.83 205 | 96.83 172 | 99.84 139 | 97.50 151 | 99.81 100 | 99.71 47 |
|
| v148 | | | 98.45 146 | 98.60 110 | 98.00 251 | 99.44 130 | 94.98 283 | 97.44 244 | 99.06 230 | 98.30 133 | 99.32 103 | 98.97 172 | 96.65 185 | 99.62 290 | 98.37 101 | 99.85 82 | 99.39 177 |
|
| Patchmatch-RL test | | | 97.26 245 | 97.02 248 | 97.99 252 | 99.52 104 | 95.53 264 | 96.13 316 | 99.71 33 | 97.47 202 | 99.27 108 | 99.16 123 | 84.30 359 | 99.62 290 | 97.89 128 | 99.77 124 | 98.81 294 |
|
| iter_conf05 | | | 96.54 284 | 96.07 290 | 97.92 253 | 97.90 349 | 94.50 297 | 97.87 192 | 99.14 219 | 97.73 178 | 98.89 170 | 98.95 179 | 75.75 390 | 99.87 101 | 98.50 95 | 99.92 55 | 99.40 174 |
|
| test_yl | | | 96.69 277 | 96.29 286 | 97.90 254 | 98.28 328 | 95.24 274 | 97.29 254 | 97.36 336 | 98.21 142 | 98.17 247 | 97.86 310 | 86.27 340 | 99.55 313 | 94.87 290 | 98.32 332 | 98.89 282 |
|
| DCV-MVSNet | | | 96.69 277 | 96.29 286 | 97.90 254 | 98.28 328 | 95.24 274 | 97.29 254 | 97.36 336 | 98.21 142 | 98.17 247 | 97.86 310 | 86.27 340 | 99.55 313 | 94.87 290 | 98.32 332 | 98.89 282 |
|
| test_fmvs2 | | | 98.70 104 | 98.97 66 | 97.89 256 | 99.54 99 | 94.05 309 | 98.55 107 | 99.92 6 | 96.78 255 | 99.72 31 | 99.78 8 | 96.60 187 | 99.67 266 | 99.91 2 | 99.90 70 | 99.94 7 |
|
| WTY-MVS | | | 96.67 279 | 96.27 288 | 97.87 257 | 98.81 261 | 94.61 295 | 96.77 284 | 97.92 325 | 94.94 312 | 97.12 312 | 97.74 317 | 91.11 311 | 99.82 166 | 93.89 320 | 98.15 342 | 99.18 238 |
|
| CANet_DTU | | | 97.26 245 | 97.06 246 | 97.84 258 | 97.57 362 | 94.65 294 | 96.19 313 | 98.79 279 | 97.23 233 | 95.14 371 | 98.24 283 | 93.22 284 | 99.84 139 | 97.34 157 | 99.84 86 | 99.04 257 |
|
| test_vis1_rt | | | 97.75 211 | 97.72 207 | 97.83 259 | 98.81 261 | 96.35 239 | 97.30 253 | 99.69 36 | 94.61 318 | 97.87 270 | 98.05 299 | 96.26 202 | 98.32 389 | 98.74 77 | 98.18 338 | 98.82 290 |
|
| D2MVS | | | 97.84 207 | 97.84 199 | 97.83 259 | 99.14 196 | 94.74 289 | 96.94 274 | 98.88 260 | 95.84 289 | 98.89 170 | 98.96 175 | 94.40 264 | 99.69 254 | 97.55 146 | 99.95 32 | 99.05 253 |
|
| OpenMVS_ROB |  | 95.38 14 | 95.84 306 | 95.18 317 | 97.81 261 | 98.41 322 | 97.15 213 | 97.37 247 | 98.62 296 | 83.86 390 | 98.65 204 | 98.37 272 | 94.29 268 | 99.68 263 | 88.41 378 | 98.62 326 | 96.60 381 |
|
| MVSTER | | | 96.86 272 | 96.55 279 | 97.79 262 | 97.91 348 | 94.21 305 | 97.56 232 | 98.87 262 | 97.49 201 | 99.06 136 | 99.05 148 | 80.72 372 | 99.80 186 | 98.44 98 | 99.82 96 | 99.37 186 |
|
| dcpmvs_2 | | | 98.78 91 | 99.11 52 | 97.78 263 | 99.56 90 | 93.67 327 | 99.06 63 | 99.86 13 | 99.50 30 | 99.66 42 | 99.26 101 | 97.21 152 | 99.99 2 | 98.00 123 | 99.91 63 | 99.68 55 |
|
| mvsany_test1 | | | 97.60 221 | 97.54 219 | 97.77 264 | 97.72 355 | 95.35 271 | 95.36 346 | 97.13 343 | 94.13 331 | 99.71 33 | 99.33 90 | 97.93 98 | 99.30 359 | 97.60 145 | 98.94 306 | 98.67 316 |
|
| FE-MVS | | | 95.66 310 | 94.95 322 | 97.77 264 | 98.53 309 | 95.28 273 | 99.40 16 | 96.09 363 | 93.11 346 | 97.96 265 | 99.26 101 | 79.10 382 | 99.77 216 | 92.40 350 | 98.71 319 | 98.27 336 |
|
| MVSFormer | | | 98.26 169 | 98.43 134 | 97.77 264 | 98.88 247 | 93.89 321 | 99.39 17 | 99.56 68 | 99.11 72 | 98.16 249 | 98.13 290 | 93.81 278 | 99.97 4 | 99.26 44 | 99.57 207 | 99.43 159 |
|
| jason | | | 97.45 232 | 97.35 232 | 97.76 267 | 99.24 167 | 93.93 317 | 95.86 328 | 98.42 305 | 94.24 328 | 98.50 226 | 98.13 290 | 94.82 251 | 99.91 60 | 97.22 163 | 99.73 142 | 99.43 159 |
| jason: jason. |
| testing3 | | | 93.51 344 | 92.09 352 | 97.75 268 | 98.60 297 | 94.40 300 | 97.32 251 | 95.26 370 | 97.56 194 | 96.79 333 | 95.50 374 | 53.57 404 | 99.77 216 | 95.26 283 | 98.97 303 | 99.08 249 |
|
| PAPR | | | 95.29 317 | 94.47 326 | 97.75 268 | 97.50 369 | 95.14 279 | 94.89 358 | 98.71 290 | 91.39 366 | 95.35 369 | 95.48 375 | 94.57 260 | 99.14 373 | 84.95 386 | 97.37 361 | 98.97 269 |
|
| dmvs_re | | | 95.98 302 | 95.39 310 | 97.74 270 | 98.86 249 | 97.45 192 | 98.37 133 | 95.69 368 | 97.95 162 | 96.56 340 | 95.95 365 | 90.70 313 | 97.68 392 | 88.32 379 | 96.13 380 | 98.11 342 |
|
| thisisatest0530 | | | 95.27 318 | 94.45 327 | 97.74 270 | 99.19 181 | 94.37 301 | 97.86 194 | 90.20 394 | 97.17 237 | 98.22 245 | 97.65 322 | 73.53 393 | 99.90 65 | 96.90 192 | 99.35 249 | 98.95 272 |
|
| test_vis1_n | | | 98.31 162 | 98.50 121 | 97.73 272 | 99.76 32 | 94.17 307 | 98.68 95 | 99.91 7 | 96.31 273 | 99.79 25 | 99.57 42 | 92.85 294 | 99.42 342 | 99.79 13 | 99.84 86 | 99.60 75 |
|
| MIMVSNet | | | 96.62 282 | 96.25 289 | 97.71 273 | 99.04 217 | 94.66 293 | 99.16 51 | 96.92 351 | 97.23 233 | 97.87 270 | 99.10 137 | 86.11 344 | 99.65 282 | 91.65 356 | 99.21 272 | 98.82 290 |
|
| MVS_Test | | | 98.18 177 | 98.36 145 | 97.67 274 | 98.48 313 | 94.73 290 | 98.18 148 | 99.02 241 | 97.69 181 | 98.04 262 | 99.11 134 | 97.22 151 | 99.56 310 | 98.57 90 | 98.90 309 | 98.71 308 |
|
| new_pmnet | | | 96.99 268 | 96.76 264 | 97.67 274 | 98.72 272 | 94.89 285 | 95.95 324 | 98.20 314 | 92.62 353 | 98.55 221 | 98.54 252 | 94.88 250 | 99.52 322 | 93.96 318 | 99.44 239 | 98.59 322 |
|
| lupinMVS | | | 97.06 261 | 96.86 256 | 97.65 276 | 98.88 247 | 93.89 321 | 95.48 342 | 97.97 323 | 93.53 340 | 98.16 249 | 97.58 326 | 93.81 278 | 99.91 60 | 96.77 203 | 99.57 207 | 99.17 242 |
|
| PMVS |  | 91.26 20 | 97.86 201 | 97.94 190 | 97.65 276 | 99.71 48 | 97.94 158 | 98.52 111 | 98.68 291 | 98.99 91 | 97.52 296 | 99.35 84 | 97.41 139 | 98.18 390 | 91.59 358 | 99.67 173 | 96.82 378 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tttt0517 | | | 95.64 311 | 94.98 320 | 97.64 278 | 99.36 148 | 93.81 323 | 98.72 90 | 90.47 393 | 98.08 156 | 98.67 201 | 98.34 276 | 73.88 392 | 99.92 51 | 97.77 137 | 99.51 224 | 99.20 231 |
|
| MSLP-MVS++ | | | 98.02 188 | 98.14 173 | 97.64 278 | 98.58 302 | 95.19 277 | 97.48 240 | 99.23 194 | 97.47 202 | 97.90 268 | 98.62 244 | 97.04 159 | 98.81 384 | 97.55 146 | 99.41 241 | 98.94 276 |
|
| PVSNet_BlendedMVS | | | 97.55 225 | 97.53 220 | 97.60 280 | 98.92 237 | 93.77 325 | 96.64 291 | 99.43 117 | 94.49 320 | 97.62 286 | 99.18 117 | 96.82 173 | 99.67 266 | 94.73 293 | 99.93 44 | 99.36 192 |
|
| TinyColmap | | | 97.89 197 | 97.98 186 | 97.60 280 | 98.86 249 | 94.35 302 | 96.21 311 | 99.44 111 | 97.45 209 | 99.06 136 | 98.88 196 | 97.99 95 | 99.28 363 | 94.38 308 | 99.58 203 | 99.18 238 |
|
| cl____ | | | 97.02 264 | 96.83 259 | 97.58 282 | 97.82 352 | 94.04 311 | 94.66 364 | 99.16 213 | 97.04 243 | 98.63 206 | 98.71 224 | 88.68 328 | 99.69 254 | 97.00 179 | 99.81 100 | 99.00 264 |
|
| DIV-MVS_self_test | | | 97.02 264 | 96.84 258 | 97.58 282 | 97.82 352 | 94.03 312 | 94.66 364 | 99.16 213 | 97.04 243 | 98.63 206 | 98.71 224 | 88.69 326 | 99.69 254 | 97.00 179 | 99.81 100 | 99.01 261 |
|
| ET-MVSNet_ETH3D | | | 94.30 332 | 93.21 342 | 97.58 282 | 98.14 337 | 94.47 299 | 94.78 360 | 93.24 384 | 94.72 316 | 89.56 394 | 95.87 368 | 78.57 385 | 99.81 179 | 96.91 187 | 97.11 368 | 98.46 325 |
|
| BH-RMVSNet | | | 96.83 273 | 96.58 278 | 97.58 282 | 98.47 314 | 94.05 309 | 96.67 290 | 97.36 336 | 96.70 260 | 97.87 270 | 97.98 303 | 95.14 242 | 99.44 339 | 90.47 372 | 98.58 328 | 99.25 221 |
|
| HY-MVS | | 95.94 13 | 95.90 304 | 95.35 312 | 97.55 286 | 97.95 345 | 94.79 286 | 98.81 85 | 96.94 350 | 92.28 357 | 95.17 370 | 98.57 250 | 89.90 319 | 99.75 229 | 91.20 365 | 97.33 365 | 98.10 343 |
|
| SD-MVS | | | 98.40 151 | 98.68 96 | 97.54 287 | 98.96 229 | 97.99 149 | 97.88 189 | 99.36 136 | 98.20 146 | 99.63 48 | 99.04 150 | 98.76 35 | 95.33 398 | 96.56 223 | 99.74 139 | 99.31 209 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| PatchT | | | 96.65 280 | 96.35 283 | 97.54 287 | 97.40 370 | 95.32 272 | 97.98 177 | 96.64 355 | 99.33 50 | 96.89 327 | 99.42 74 | 84.32 358 | 99.81 179 | 97.69 144 | 97.49 356 | 97.48 369 |
|
| test_fmvs1_n | | | 98.09 184 | 98.28 155 | 97.52 289 | 99.68 59 | 93.47 330 | 98.63 98 | 99.93 4 | 95.41 303 | 99.68 39 | 99.64 32 | 91.88 306 | 99.48 331 | 99.82 8 | 99.87 78 | 99.62 68 |
|
| baseline1 | | | 95.96 303 | 95.44 307 | 97.52 289 | 98.51 312 | 93.99 315 | 98.39 131 | 96.09 363 | 98.21 142 | 98.40 238 | 97.76 316 | 86.88 336 | 99.63 288 | 95.42 280 | 89.27 396 | 98.95 272 |
|
| FA-MVS(test-final) | | | 96.99 268 | 96.82 260 | 97.50 291 | 98.70 279 | 94.78 287 | 99.34 20 | 96.99 346 | 95.07 308 | 98.48 228 | 99.33 90 | 88.41 332 | 99.65 282 | 96.13 253 | 98.92 308 | 98.07 345 |
|
| Syy-MVS | | | 96.04 299 | 95.56 303 | 97.49 292 | 97.10 377 | 94.48 298 | 96.18 314 | 96.58 356 | 95.65 293 | 94.77 374 | 92.29 394 | 91.27 310 | 99.36 349 | 98.17 112 | 98.05 349 | 98.63 318 |
|
| GA-MVS | | | 95.86 305 | 95.32 313 | 97.49 292 | 98.60 297 | 94.15 308 | 93.83 381 | 97.93 324 | 95.49 298 | 96.68 335 | 97.42 336 | 83.21 364 | 99.30 359 | 96.22 245 | 98.55 329 | 99.01 261 |
|
| PVSNet_Blended | | | 96.88 271 | 96.68 269 | 97.47 294 | 98.92 237 | 93.77 325 | 94.71 361 | 99.43 117 | 90.98 370 | 97.62 286 | 97.36 340 | 96.82 173 | 99.67 266 | 94.73 293 | 99.56 210 | 98.98 266 |
|
| MS-PatchMatch | | | 97.68 216 | 97.75 203 | 97.45 295 | 98.23 333 | 93.78 324 | 97.29 254 | 98.84 271 | 96.10 280 | 98.64 205 | 98.65 237 | 96.04 209 | 99.36 349 | 96.84 198 | 99.14 282 | 99.20 231 |
|
| USDC | | | 97.41 235 | 97.40 227 | 97.44 296 | 98.94 231 | 93.67 327 | 95.17 350 | 99.53 80 | 94.03 334 | 98.97 154 | 99.10 137 | 95.29 237 | 99.34 353 | 95.84 266 | 99.73 142 | 99.30 212 |
|
| API-MVS | | | 97.04 263 | 96.91 254 | 97.42 297 | 97.88 350 | 98.23 124 | 98.18 148 | 98.50 302 | 97.57 192 | 97.39 306 | 96.75 351 | 96.77 177 | 99.15 372 | 90.16 373 | 99.02 297 | 94.88 392 |
|
| MDA-MVSNet_test_wron | | | 97.60 221 | 97.66 212 | 97.41 298 | 99.04 217 | 93.09 333 | 95.27 347 | 98.42 305 | 97.26 226 | 98.88 174 | 98.95 179 | 95.43 235 | 99.73 239 | 97.02 178 | 98.72 317 | 99.41 165 |
|
| YYNet1 | | | 97.60 221 | 97.67 209 | 97.39 299 | 99.04 217 | 93.04 337 | 95.27 347 | 98.38 308 | 97.25 227 | 98.92 166 | 98.95 179 | 95.48 234 | 99.73 239 | 96.99 181 | 98.74 315 | 99.41 165 |
|
| c3_l | | | 97.36 237 | 97.37 230 | 97.31 300 | 98.09 340 | 93.25 332 | 95.01 355 | 99.16 213 | 97.05 242 | 98.77 192 | 98.72 223 | 92.88 292 | 99.64 285 | 96.93 186 | 99.76 135 | 99.05 253 |
|
| RPMNet | | | 97.02 264 | 96.93 250 | 97.30 301 | 97.71 357 | 94.22 303 | 98.11 156 | 99.30 167 | 99.37 45 | 96.91 323 | 99.34 88 | 86.72 337 | 99.87 101 | 97.53 149 | 97.36 363 | 97.81 356 |
|
| CR-MVSNet | | | 96.28 294 | 95.95 292 | 97.28 302 | 97.71 357 | 94.22 303 | 98.11 156 | 98.92 254 | 92.31 356 | 96.91 323 | 99.37 80 | 85.44 350 | 99.81 179 | 97.39 155 | 97.36 363 | 97.81 356 |
|
| test_cas_vis1_n_1920 | | | 98.33 159 | 98.68 96 | 97.27 303 | 99.69 57 | 92.29 350 | 98.03 168 | 99.85 15 | 97.62 186 | 99.96 4 | 99.62 34 | 93.98 275 | 99.74 234 | 99.52 31 | 99.86 81 | 99.79 30 |
|
| MG-MVS | | | 96.77 276 | 96.61 275 | 97.26 304 | 98.31 327 | 93.06 334 | 95.93 325 | 98.12 320 | 96.45 268 | 97.92 266 | 98.73 221 | 93.77 280 | 99.39 346 | 91.19 366 | 99.04 293 | 99.33 203 |
|
| miper_lstm_enhance | | | 97.18 253 | 97.16 241 | 97.25 305 | 98.16 336 | 92.85 339 | 95.15 352 | 99.31 159 | 97.25 227 | 98.74 197 | 98.78 214 | 90.07 317 | 99.78 210 | 97.19 164 | 99.80 110 | 99.11 248 |
|
| new-patchmatchnet | | | 98.35 157 | 98.74 84 | 97.18 306 | 99.24 167 | 92.23 352 | 96.42 301 | 99.48 95 | 98.30 133 | 99.69 37 | 99.53 54 | 97.44 138 | 99.82 166 | 98.84 71 | 99.77 124 | 99.49 128 |
|
| eth_miper_zixun_eth | | | 97.23 249 | 97.25 236 | 97.17 307 | 98.00 344 | 92.77 341 | 94.71 361 | 99.18 206 | 97.27 225 | 98.56 219 | 98.74 220 | 91.89 305 | 99.69 254 | 97.06 177 | 99.81 100 | 99.05 253 |
|
| Patchmatch-test | | | 96.55 283 | 96.34 284 | 97.17 307 | 98.35 324 | 93.06 334 | 98.40 130 | 97.79 326 | 97.33 218 | 98.41 234 | 98.67 232 | 83.68 363 | 99.69 254 | 95.16 285 | 99.31 255 | 98.77 302 |
|
| miper_ehance_all_eth | | | 97.06 261 | 97.03 247 | 97.16 309 | 97.83 351 | 93.06 334 | 94.66 364 | 99.09 227 | 95.99 285 | 98.69 199 | 98.45 265 | 92.73 296 | 99.61 296 | 96.79 200 | 99.03 294 | 98.82 290 |
|
| BH-untuned | | | 96.83 273 | 96.75 265 | 97.08 310 | 98.74 269 | 93.33 331 | 96.71 288 | 98.26 311 | 96.72 258 | 98.44 231 | 97.37 339 | 95.20 240 | 99.47 334 | 91.89 353 | 97.43 359 | 98.44 329 |
|
| FPMVS | | | 93.44 346 | 92.23 350 | 97.08 310 | 99.25 166 | 97.86 163 | 95.61 336 | 97.16 342 | 92.90 349 | 93.76 387 | 98.65 237 | 75.94 389 | 95.66 396 | 79.30 396 | 97.49 356 | 97.73 361 |
|
| test_fmvs1 | | | 97.72 213 | 97.94 190 | 97.07 312 | 98.66 292 | 92.39 347 | 97.68 215 | 99.81 23 | 95.20 307 | 99.54 56 | 99.44 71 | 91.56 308 | 99.41 343 | 99.78 15 | 99.77 124 | 99.40 174 |
|
| JIA-IIPM | | | 95.52 314 | 95.03 319 | 97.00 313 | 96.85 382 | 94.03 312 | 96.93 276 | 95.82 366 | 99.20 65 | 94.63 377 | 99.71 17 | 83.09 365 | 99.60 297 | 94.42 304 | 94.64 388 | 97.36 372 |
|
| test0.0.03 1 | | | 94.51 327 | 93.69 336 | 96.99 314 | 96.05 392 | 93.61 329 | 94.97 356 | 93.49 381 | 96.17 276 | 97.57 292 | 94.88 384 | 82.30 369 | 99.01 377 | 93.60 327 | 94.17 391 | 98.37 334 |
|
| cl22 | | | 95.79 307 | 95.39 310 | 96.98 315 | 96.77 384 | 92.79 340 | 94.40 372 | 98.53 300 | 94.59 319 | 97.89 269 | 98.17 289 | 82.82 368 | 99.24 365 | 96.37 236 | 99.03 294 | 98.92 278 |
|
| thisisatest0515 | | | 94.12 336 | 93.16 343 | 96.97 316 | 98.60 297 | 92.90 338 | 93.77 382 | 90.61 392 | 94.10 332 | 96.91 323 | 95.87 368 | 74.99 391 | 99.80 186 | 94.52 299 | 99.12 287 | 98.20 338 |
|
| pmmvs3 | | | 95.03 322 | 94.40 328 | 96.93 317 | 97.70 359 | 92.53 344 | 95.08 353 | 97.71 329 | 88.57 382 | 97.71 281 | 98.08 297 | 79.39 379 | 99.82 166 | 96.19 247 | 99.11 288 | 98.43 330 |
|
| xiu_mvs_v1_base_debu | | | 97.86 201 | 98.17 167 | 96.92 318 | 98.98 226 | 93.91 318 | 96.45 298 | 99.17 210 | 97.85 171 | 98.41 234 | 97.14 346 | 98.47 55 | 99.92 51 | 98.02 120 | 99.05 290 | 96.92 375 |
|
| xiu_mvs_v1_base | | | 97.86 201 | 98.17 167 | 96.92 318 | 98.98 226 | 93.91 318 | 96.45 298 | 99.17 210 | 97.85 171 | 98.41 234 | 97.14 346 | 98.47 55 | 99.92 51 | 98.02 120 | 99.05 290 | 96.92 375 |
|
| xiu_mvs_v1_base_debi | | | 97.86 201 | 98.17 167 | 96.92 318 | 98.98 226 | 93.91 318 | 96.45 298 | 99.17 210 | 97.85 171 | 98.41 234 | 97.14 346 | 98.47 55 | 99.92 51 | 98.02 120 | 99.05 290 | 96.92 375 |
|
| IterMVS-SCA-FT | | | 97.85 206 | 98.18 166 | 96.87 321 | 99.27 162 | 91.16 367 | 95.53 339 | 99.25 187 | 99.10 79 | 99.41 80 | 99.35 84 | 93.10 287 | 99.96 12 | 98.65 85 | 99.94 40 | 99.49 128 |
|
| mvs_anonymous | | | 97.83 209 | 98.16 170 | 96.87 321 | 98.18 335 | 91.89 354 | 97.31 252 | 98.90 257 | 97.37 215 | 98.83 183 | 99.46 66 | 96.28 201 | 99.79 199 | 98.90 67 | 98.16 341 | 98.95 272 |
|
| DSMNet-mixed | | | 97.42 234 | 97.60 217 | 96.87 321 | 99.15 195 | 91.46 358 | 98.54 109 | 99.12 221 | 92.87 350 | 97.58 290 | 99.63 33 | 96.21 203 | 99.90 65 | 95.74 269 | 99.54 215 | 99.27 217 |
|
| TR-MVS | | | 95.55 313 | 95.12 318 | 96.86 324 | 97.54 364 | 93.94 316 | 96.49 297 | 96.53 358 | 94.36 327 | 97.03 318 | 96.61 353 | 94.26 269 | 99.16 371 | 86.91 383 | 96.31 377 | 97.47 370 |
|
| test_vis1_n_1920 | | | 98.40 151 | 98.92 69 | 96.81 325 | 99.74 38 | 90.76 371 | 98.15 152 | 99.91 7 | 98.33 130 | 99.89 15 | 99.55 48 | 95.07 244 | 99.88 84 | 99.76 16 | 99.93 44 | 99.79 30 |
|
| miper_enhance_ethall | | | 96.01 300 | 95.74 295 | 96.81 325 | 96.41 389 | 92.27 351 | 93.69 383 | 98.89 259 | 91.14 369 | 98.30 241 | 97.35 341 | 90.58 314 | 99.58 305 | 96.31 240 | 99.03 294 | 98.60 320 |
|
| ppachtmachnet_test | | | 97.50 226 | 97.74 204 | 96.78 327 | 98.70 279 | 91.23 366 | 94.55 369 | 99.05 233 | 96.36 270 | 99.21 120 | 98.79 213 | 96.39 195 | 99.78 210 | 96.74 206 | 99.82 96 | 99.34 198 |
|
| ADS-MVSNet2 | | | 95.43 316 | 94.98 320 | 96.76 328 | 98.14 337 | 91.74 355 | 97.92 183 | 97.76 327 | 90.23 372 | 96.51 343 | 98.91 186 | 85.61 347 | 99.85 122 | 92.88 339 | 96.90 369 | 98.69 312 |
|
| IterMVS | | | 97.73 212 | 98.11 175 | 96.57 329 | 99.24 167 | 90.28 372 | 95.52 341 | 99.21 196 | 98.86 102 | 99.33 97 | 99.33 90 | 93.11 286 | 99.94 36 | 98.49 96 | 99.94 40 | 99.48 138 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PAPM | | | 91.88 360 | 90.34 363 | 96.51 330 | 98.06 342 | 92.56 343 | 92.44 389 | 97.17 341 | 86.35 386 | 90.38 393 | 96.01 363 | 86.61 338 | 99.21 368 | 70.65 399 | 95.43 385 | 97.75 360 |
|
| MVS | | | 93.19 348 | 92.09 352 | 96.50 331 | 96.91 380 | 94.03 312 | 98.07 162 | 98.06 322 | 68.01 395 | 94.56 378 | 96.48 356 | 95.96 218 | 99.30 359 | 83.84 388 | 96.89 371 | 96.17 384 |
|
| baseline2 | | | 93.73 341 | 92.83 347 | 96.42 332 | 97.70 359 | 91.28 364 | 96.84 281 | 89.77 395 | 93.96 336 | 92.44 389 | 95.93 366 | 79.14 381 | 99.77 216 | 92.94 337 | 96.76 373 | 98.21 337 |
|
| our_test_3 | | | 97.39 236 | 97.73 206 | 96.34 333 | 98.70 279 | 89.78 374 | 94.61 367 | 98.97 248 | 96.50 265 | 99.04 143 | 98.85 202 | 95.98 216 | 99.84 139 | 97.26 161 | 99.67 173 | 99.41 165 |
|
| myMVS_eth3d | | | 91.92 359 | 90.45 362 | 96.30 334 | 97.10 377 | 90.90 369 | 96.18 314 | 96.58 356 | 95.65 293 | 94.77 374 | 92.29 394 | 53.88 403 | 99.36 349 | 89.59 376 | 98.05 349 | 98.63 318 |
|
| thres600view7 | | | 94.45 328 | 93.83 334 | 96.29 335 | 99.06 213 | 91.53 357 | 97.99 176 | 94.24 378 | 98.34 129 | 97.44 303 | 95.01 380 | 79.84 375 | 99.67 266 | 84.33 387 | 98.23 335 | 97.66 364 |
|
| IB-MVS | | 91.63 19 | 92.24 357 | 90.90 361 | 96.27 336 | 97.22 375 | 91.24 365 | 94.36 373 | 93.33 383 | 92.37 355 | 92.24 390 | 94.58 387 | 66.20 401 | 99.89 75 | 93.16 336 | 94.63 389 | 97.66 364 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thres400 | | | 94.14 335 | 93.44 339 | 96.24 337 | 98.93 233 | 91.44 359 | 97.60 227 | 94.29 376 | 97.94 163 | 97.10 313 | 94.31 388 | 79.67 377 | 99.62 290 | 83.05 389 | 98.08 346 | 97.66 364 |
|
| ADS-MVSNet | | | 95.24 319 | 94.93 323 | 96.18 338 | 98.14 337 | 90.10 373 | 97.92 183 | 97.32 339 | 90.23 372 | 96.51 343 | 98.91 186 | 85.61 347 | 99.74 234 | 92.88 339 | 96.90 369 | 98.69 312 |
|
| xiu_mvs_v2_base | | | 97.16 255 | 97.49 223 | 96.17 339 | 98.54 307 | 92.46 345 | 95.45 343 | 98.84 271 | 97.25 227 | 97.48 300 | 96.49 355 | 98.31 68 | 99.90 65 | 96.34 239 | 98.68 322 | 96.15 386 |
|
| 1314 | | | 95.74 308 | 95.60 301 | 96.17 339 | 97.53 365 | 92.75 342 | 98.07 162 | 98.31 310 | 91.22 367 | 94.25 379 | 96.68 352 | 95.53 230 | 99.03 374 | 91.64 357 | 97.18 366 | 96.74 379 |
|
| PS-MVSNAJ | | | 97.08 260 | 97.39 228 | 96.16 341 | 98.56 305 | 92.46 345 | 95.24 349 | 98.85 270 | 97.25 227 | 97.49 299 | 95.99 364 | 98.07 86 | 99.90 65 | 96.37 236 | 98.67 323 | 96.12 387 |
|
| cascas | | | 94.79 325 | 94.33 331 | 96.15 342 | 96.02 394 | 92.36 349 | 92.34 390 | 99.26 186 | 85.34 389 | 95.08 372 | 94.96 383 | 92.96 291 | 98.53 387 | 94.41 307 | 98.59 327 | 97.56 368 |
|
| BH-w/o | | | 95.13 320 | 94.89 324 | 95.86 343 | 98.20 334 | 91.31 362 | 95.65 335 | 97.37 335 | 93.64 338 | 96.52 342 | 95.70 370 | 93.04 290 | 99.02 375 | 88.10 380 | 95.82 383 | 97.24 373 |
|
| ECVR-MVS |  | | 96.42 290 | 96.61 275 | 95.85 344 | 99.38 141 | 88.18 381 | 99.22 42 | 86.00 399 | 99.08 84 | 99.36 92 | 99.57 42 | 88.47 331 | 99.82 166 | 98.52 94 | 99.95 32 | 99.54 109 |
|
| gg-mvs-nofinetune | | | 92.37 355 | 91.20 360 | 95.85 344 | 95.80 395 | 92.38 348 | 99.31 27 | 81.84 402 | 99.75 5 | 91.83 391 | 99.74 13 | 68.29 395 | 99.02 375 | 87.15 382 | 97.12 367 | 96.16 385 |
|
| tfpn200view9 | | | 94.03 337 | 93.44 339 | 95.78 346 | 98.93 233 | 91.44 359 | 97.60 227 | 94.29 376 | 97.94 163 | 97.10 313 | 94.31 388 | 79.67 377 | 99.62 290 | 83.05 389 | 98.08 346 | 96.29 382 |
|
| thres100view900 | | | 94.19 333 | 93.67 337 | 95.75 347 | 99.06 213 | 91.35 361 | 98.03 168 | 94.24 378 | 98.33 130 | 97.40 305 | 94.98 382 | 79.84 375 | 99.62 290 | 83.05 389 | 98.08 346 | 96.29 382 |
|
| SCA | | | 96.41 291 | 96.66 272 | 95.67 348 | 98.24 331 | 88.35 379 | 95.85 330 | 96.88 352 | 96.11 279 | 97.67 284 | 98.67 232 | 93.10 287 | 99.85 122 | 94.16 310 | 99.22 270 | 98.81 294 |
|
| tpm | | | 94.67 326 | 94.34 330 | 95.66 349 | 97.68 361 | 88.42 378 | 97.88 189 | 94.90 371 | 94.46 322 | 96.03 355 | 98.56 251 | 78.66 383 | 99.79 199 | 95.88 260 | 95.01 387 | 98.78 301 |
|
| CHOSEN 280x420 | | | 95.51 315 | 95.47 304 | 95.65 350 | 98.25 330 | 88.27 380 | 93.25 385 | 98.88 260 | 93.53 340 | 94.65 376 | 97.15 345 | 86.17 342 | 99.93 41 | 97.41 154 | 99.93 44 | 98.73 307 |
|
| PVSNet | | 93.40 17 | 95.67 309 | 95.70 297 | 95.57 351 | 98.83 255 | 88.57 377 | 92.50 388 | 97.72 328 | 92.69 352 | 96.49 346 | 96.44 358 | 93.72 281 | 99.43 340 | 93.61 326 | 99.28 261 | 98.71 308 |
|
| test1111 | | | 96.49 288 | 96.82 260 | 95.52 352 | 99.42 136 | 87.08 385 | 99.22 42 | 87.14 397 | 99.11 72 | 99.46 71 | 99.58 41 | 88.69 326 | 99.86 110 | 98.80 72 | 99.95 32 | 99.62 68 |
|
| KD-MVS_2432*1600 | | | 92.87 351 | 91.99 354 | 95.51 353 | 91.37 399 | 89.27 375 | 94.07 376 | 98.14 318 | 95.42 300 | 97.25 310 | 96.44 358 | 67.86 396 | 99.24 365 | 91.28 363 | 96.08 381 | 98.02 347 |
|
| miper_refine_blended | | | 92.87 351 | 91.99 354 | 95.51 353 | 91.37 399 | 89.27 375 | 94.07 376 | 98.14 318 | 95.42 300 | 97.25 310 | 96.44 358 | 67.86 396 | 99.24 365 | 91.28 363 | 96.08 381 | 98.02 347 |
|
| thres200 | | | 93.72 342 | 93.14 344 | 95.46 355 | 98.66 292 | 91.29 363 | 96.61 293 | 94.63 373 | 97.39 213 | 96.83 330 | 93.71 390 | 79.88 374 | 99.56 310 | 82.40 392 | 98.13 343 | 95.54 391 |
|
| EPNet_dtu | | | 94.93 324 | 94.78 325 | 95.38 356 | 93.58 398 | 87.68 383 | 96.78 283 | 95.69 368 | 97.35 217 | 89.14 395 | 98.09 296 | 88.15 333 | 99.49 328 | 94.95 289 | 99.30 258 | 98.98 266 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PatchmatchNet |  | | 95.58 312 | 95.67 299 | 95.30 357 | 97.34 372 | 87.32 384 | 97.65 221 | 96.65 354 | 95.30 304 | 97.07 315 | 98.69 228 | 84.77 353 | 99.75 229 | 94.97 288 | 98.64 324 | 98.83 289 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| dmvs_testset | | | 92.94 350 | 92.21 351 | 95.13 358 | 98.59 300 | 90.99 368 | 97.65 221 | 92.09 388 | 96.95 247 | 94.00 384 | 93.55 391 | 92.34 300 | 96.97 395 | 72.20 398 | 92.52 393 | 97.43 371 |
|
| EU-MVSNet | | | 97.66 218 | 98.50 121 | 95.13 358 | 99.63 75 | 85.84 388 | 98.35 135 | 98.21 313 | 98.23 140 | 99.54 56 | 99.46 66 | 95.02 245 | 99.68 263 | 98.24 107 | 99.87 78 | 99.87 16 |
|
| EPMVS | | | 93.72 342 | 93.27 341 | 95.09 360 | 96.04 393 | 87.76 382 | 98.13 153 | 85.01 400 | 94.69 317 | 96.92 321 | 98.64 240 | 78.47 387 | 99.31 357 | 95.04 286 | 96.46 375 | 98.20 338 |
|
| GG-mvs-BLEND | | | | | 94.76 361 | 94.54 397 | 92.13 353 | 99.31 27 | 80.47 403 | | 88.73 396 | 91.01 396 | 67.59 398 | 98.16 391 | 82.30 393 | 94.53 390 | 93.98 393 |
|
| tpm2 | | | 93.09 349 | 92.58 349 | 94.62 362 | 97.56 363 | 86.53 386 | 97.66 219 | 95.79 367 | 86.15 387 | 94.07 383 | 98.23 285 | 75.95 388 | 99.53 318 | 90.91 369 | 96.86 372 | 97.81 356 |
|
| CostFormer | | | 93.97 338 | 93.78 335 | 94.51 363 | 97.53 365 | 85.83 389 | 97.98 177 | 95.96 365 | 89.29 380 | 94.99 373 | 98.63 242 | 78.63 384 | 99.62 290 | 94.54 298 | 96.50 374 | 98.09 344 |
|
| tpmvs | | | 95.02 323 | 95.25 314 | 94.33 364 | 96.39 390 | 85.87 387 | 98.08 160 | 96.83 353 | 95.46 299 | 95.51 367 | 98.69 228 | 85.91 345 | 99.53 318 | 94.16 310 | 96.23 378 | 97.58 367 |
|
| MVE |  | 83.40 22 | 92.50 353 | 91.92 356 | 94.25 365 | 98.83 255 | 91.64 356 | 92.71 387 | 83.52 401 | 95.92 287 | 86.46 398 | 95.46 376 | 95.20 240 | 95.40 397 | 80.51 394 | 98.64 324 | 95.73 390 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test-LLR | | | 93.90 339 | 93.85 333 | 94.04 366 | 96.53 386 | 84.62 393 | 94.05 378 | 92.39 386 | 96.17 276 | 94.12 381 | 95.07 378 | 82.30 369 | 99.67 266 | 95.87 263 | 98.18 338 | 97.82 354 |
|
| test-mter | | | 92.33 356 | 91.76 359 | 94.04 366 | 96.53 386 | 84.62 393 | 94.05 378 | 92.39 386 | 94.00 335 | 94.12 381 | 95.07 378 | 65.63 402 | 99.67 266 | 95.87 263 | 98.18 338 | 97.82 354 |
|
| tpmrst | | | 95.07 321 | 95.46 305 | 93.91 368 | 97.11 376 | 84.36 395 | 97.62 224 | 96.96 348 | 94.98 310 | 96.35 348 | 98.80 211 | 85.46 349 | 99.59 301 | 95.60 275 | 96.23 378 | 97.79 359 |
|
| test2506 | | | 92.39 354 | 91.89 357 | 93.89 369 | 99.38 141 | 82.28 399 | 99.32 23 | 66.03 405 | 99.08 84 | 98.77 192 | 99.57 42 | 66.26 400 | 99.84 139 | 98.71 80 | 99.95 32 | 99.54 109 |
|
| tpm cat1 | | | 93.29 347 | 93.13 345 | 93.75 370 | 97.39 371 | 84.74 392 | 97.39 245 | 97.65 331 | 83.39 392 | 94.16 380 | 98.41 267 | 82.86 367 | 99.39 346 | 91.56 359 | 95.35 386 | 97.14 374 |
|
| PVSNet_0 | | 89.98 21 | 91.15 361 | 90.30 364 | 93.70 371 | 97.72 355 | 84.34 396 | 90.24 391 | 97.42 334 | 90.20 375 | 93.79 386 | 93.09 392 | 90.90 312 | 98.89 383 | 86.57 384 | 72.76 398 | 97.87 353 |
|
| E-PMN | | | 94.17 334 | 94.37 329 | 93.58 372 | 96.86 381 | 85.71 390 | 90.11 392 | 97.07 344 | 98.17 149 | 97.82 276 | 97.19 343 | 84.62 355 | 98.94 379 | 89.77 374 | 97.68 355 | 96.09 388 |
|
| TESTMET0.1,1 | | | 92.19 358 | 91.77 358 | 93.46 373 | 96.48 388 | 82.80 398 | 94.05 378 | 91.52 390 | 94.45 324 | 94.00 384 | 94.88 384 | 66.65 399 | 99.56 310 | 95.78 268 | 98.11 344 | 98.02 347 |
|
| DeepMVS_CX |  | | | | 93.44 374 | 98.24 331 | 94.21 305 | | 94.34 375 | 64.28 396 | 91.34 392 | 94.87 386 | 89.45 323 | 92.77 399 | 77.54 397 | 93.14 392 | 93.35 394 |
|
| CVMVSNet | | | 96.25 295 | 97.21 239 | 93.38 375 | 99.10 202 | 80.56 402 | 97.20 262 | 98.19 316 | 96.94 248 | 99.00 148 | 99.02 153 | 89.50 322 | 99.80 186 | 96.36 238 | 99.59 198 | 99.78 33 |
|
| EMVS | | | 93.83 340 | 94.02 332 | 93.23 376 | 96.83 383 | 84.96 391 | 89.77 393 | 96.32 360 | 97.92 165 | 97.43 304 | 96.36 361 | 86.17 342 | 98.93 380 | 87.68 381 | 97.73 354 | 95.81 389 |
|
| dp | | | 93.47 345 | 93.59 338 | 93.13 377 | 96.64 385 | 81.62 401 | 97.66 219 | 96.42 359 | 92.80 351 | 96.11 351 | 98.64 240 | 78.55 386 | 99.59 301 | 93.31 334 | 92.18 395 | 98.16 340 |
|
| wuyk23d | | | 96.06 298 | 97.62 216 | 91.38 378 | 98.65 294 | 98.57 96 | 98.85 82 | 96.95 349 | 96.86 252 | 99.90 12 | 99.16 123 | 99.18 17 | 98.40 388 | 89.23 377 | 99.77 124 | 77.18 396 |
|
| MVS-HIRNet | | | 94.32 330 | 95.62 300 | 90.42 379 | 98.46 315 | 75.36 403 | 96.29 307 | 89.13 396 | 95.25 305 | 95.38 368 | 99.75 11 | 92.88 292 | 99.19 369 | 94.07 316 | 99.39 243 | 96.72 380 |
|
| test_method | | | 79.78 363 | 79.50 366 | 80.62 380 | 80.21 402 | 45.76 406 | 70.82 394 | 98.41 307 | 31.08 398 | 80.89 399 | 97.71 318 | 84.85 352 | 97.37 393 | 91.51 360 | 80.03 397 | 98.75 305 |
|
| tmp_tt | | | 78.77 364 | 78.73 367 | 78.90 381 | 58.45 403 | 74.76 405 | 94.20 375 | 78.26 404 | 39.16 397 | 86.71 397 | 92.82 393 | 80.50 373 | 75.19 400 | 86.16 385 | 92.29 394 | 86.74 395 |
|
| test123 | | | 17.04 367 | 20.11 370 | 7.82 382 | 10.25 405 | 4.91 407 | 94.80 359 | 4.47 407 | 4.93 400 | 10.00 402 | 24.28 399 | 9.69 405 | 3.64 401 | 10.14 400 | 12.43 400 | 14.92 397 |
|
| testmvs | | | 17.12 366 | 20.53 369 | 6.87 383 | 12.05 404 | 4.20 408 | 93.62 384 | 6.73 406 | 4.62 401 | 10.41 401 | 24.33 398 | 8.28 406 | 3.56 402 | 9.69 401 | 15.07 399 | 12.86 398 |
|
| test_blank | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet_test | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| DCPMVS | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| cdsmvs_eth3d_5k | | | 24.66 365 | 32.88 368 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 99.10 225 | 0.00 402 | 0.00 403 | 97.58 326 | 99.21 16 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 8.17 368 | 10.90 371 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 98.07 86 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet-low-res | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uncertanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| Regformer | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| ab-mvs-re | | | 8.12 369 | 10.83 372 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 97.48 332 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| WAC-MVS | | | | | | | 90.90 369 | | | | | | | | 91.37 362 | | |
|
| FOURS1 | | | | | | 99.73 39 | 99.67 2 | 99.43 11 | 99.54 77 | 99.43 40 | 99.26 112 | | | | | | |
|
| PC_three_1452 | | | | | | | | | | 93.27 343 | 99.40 83 | 98.54 252 | 98.22 74 | 97.00 394 | 95.17 284 | 99.45 236 | 99.49 128 |
|
| test_one_0601 | | | | | | 99.39 140 | 99.20 34 | | 99.31 159 | 98.49 124 | 98.66 203 | 99.02 153 | 97.64 118 | | | | |
|
| eth-test2 | | | | | | 0.00 406 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 406 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.01 221 | 98.84 75 | | 99.07 229 | 94.10 332 | 98.05 261 | 98.12 292 | 96.36 199 | 99.86 110 | 92.70 346 | 99.19 276 | |
|
| RE-MVS-def | | | | 98.58 112 | | 99.20 178 | 99.38 8 | 98.48 122 | 99.30 167 | 98.64 111 | 98.95 157 | 98.96 175 | 97.75 109 | | 96.56 223 | 99.39 243 | 99.45 151 |
|
| IU-MVS | | | | | | 99.49 116 | 99.15 47 | | 98.87 262 | 92.97 347 | 99.41 80 | | | | 96.76 204 | 99.62 187 | 99.66 59 |
|
| test_241102_TWO | | | | | | | | | 99.30 167 | 98.03 157 | 99.26 112 | 99.02 153 | 97.51 132 | 99.88 84 | 96.91 187 | 99.60 194 | 99.66 59 |
|
| test_241102_ONE | | | | | | 99.49 116 | 99.17 39 | | 99.31 159 | 97.98 159 | 99.66 42 | 98.90 189 | 98.36 63 | 99.48 331 | | | |
|
| 9.14 | | | | 97.78 201 | | 99.07 209 | | 97.53 235 | 99.32 154 | 95.53 297 | 98.54 223 | 98.70 227 | 97.58 123 | 99.76 222 | 94.32 309 | 99.46 234 | |
|
| save fliter | | | | | | 99.11 200 | 97.97 153 | 96.53 295 | 99.02 241 | 98.24 139 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 98.17 149 | 99.08 134 | 99.02 153 | 97.89 99 | 99.88 84 | 97.07 175 | 99.71 154 | 99.70 52 |
|
| test0726 | | | | | | 99.50 109 | 99.21 28 | 98.17 151 | 99.35 141 | 97.97 160 | 99.26 112 | 99.06 141 | 97.61 121 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.81 294 |
|
| test_part2 | | | | | | 99.36 148 | 99.10 60 | | | | 99.05 141 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 84.74 354 | | | | 98.81 294 |
|
| sam_mvs | | | | | | | | | | | | | 84.29 360 | | | | |
|
| MTGPA |  | | | | | | | | 99.20 198 | | | | | | | | |
|
| test_post1 | | | | | | | | 97.59 229 | | | | 20.48 401 | 83.07 366 | 99.66 277 | 94.16 310 | | |
|
| test_post | | | | | | | | | | | | 21.25 400 | 83.86 362 | 99.70 250 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 98.77 216 | 84.37 357 | 99.85 122 | | | |
|
| MTMP | | | | | | | | 97.93 181 | 91.91 389 | | | | | | | | |
|
| gm-plane-assit | | | | | | 94.83 396 | 81.97 400 | | | 88.07 384 | | 94.99 381 | | 99.60 297 | 91.76 354 | | |
|
| test9_res | | | | | | | | | | | | | | | 93.28 335 | 99.15 281 | 99.38 184 |
|
| TEST9 | | | | | | 98.71 275 | 98.08 140 | 95.96 322 | 99.03 238 | 91.40 365 | 95.85 356 | 97.53 328 | 96.52 190 | 99.76 222 | | | |
|
| test_8 | | | | | | 98.67 287 | 98.01 148 | 95.91 327 | 99.02 241 | 91.64 360 | 95.79 358 | 97.50 331 | 96.47 192 | 99.76 222 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 92.50 349 | 99.16 279 | 99.37 186 |
|
| agg_prior | | | | | | 98.68 286 | 97.99 149 | | 99.01 244 | | 95.59 359 | | | 99.77 216 | | | |
|
| test_prior4 | | | | | | | 97.97 153 | 95.86 328 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.74 333 | | 96.48 267 | 96.11 351 | 97.63 324 | 95.92 220 | | 94.16 310 | 99.20 273 | |
|
| 旧先验2 | | | | | | | | 95.76 332 | | 88.56 383 | 97.52 296 | | | 99.66 277 | 94.48 300 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 95.93 325 | | | | | | | | | |
|
| 旧先验1 | | | | | | 98.82 258 | 97.45 192 | | 98.76 283 | | | 98.34 276 | 95.50 233 | | | 99.01 298 | 99.23 226 |
|
| æ— å…ˆéªŒ | | | | | | | | 95.74 333 | 98.74 288 | 89.38 379 | | | | 99.73 239 | 92.38 351 | | 99.22 230 |
|
| 原ACMM2 | | | | | | | | 95.53 339 | | | | | | | | | |
|
| test222 | | | | | | 98.92 237 | 96.93 224 | 95.54 338 | 98.78 281 | 85.72 388 | 96.86 329 | 98.11 293 | 94.43 262 | | | 99.10 289 | 99.23 226 |
|
| testdata2 | | | | | | | | | | | | | | 99.79 199 | 92.80 343 | | |
|
| segment_acmp | | | | | | | | | | | | | 97.02 162 | | | | |
|
| testdata1 | | | | | | | | 95.44 344 | | 96.32 272 | | | | | | | |
|
| plane_prior7 | | | | | | 99.19 181 | 97.87 162 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.99 225 | 97.70 180 | | | | | | 94.90 247 | | | | |
|
| plane_prior5 | | | | | | | | | 99.27 181 | | | | | 99.70 250 | 94.42 304 | 99.51 224 | 99.45 151 |
|
| plane_prior4 | | | | | | | | | | | | 97.98 303 | | | | | |
|
| plane_prior3 | | | | | | | 97.78 173 | | | 97.41 211 | 97.79 277 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.77 204 | | 98.20 146 | | | | | | | |
|
| plane_prior1 | | | | | | 99.05 216 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 97.65 182 | 97.07 268 | | 96.72 258 | | | | | | 99.36 247 | |
|
| n2 | | | | | | | | | 0.00 408 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 408 | | | | | | | | |
|
| door-mid | | | | | | | | | 99.57 61 | | | | | | | | |
|
| test11 | | | | | | | | | 98.87 262 | | | | | | | | |
|
| door | | | | | | | | | 99.41 121 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 96.79 227 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 98.67 287 | | 96.29 307 | | 96.05 281 | 95.55 362 | | | | | | |
|
| ACMP_Plane | | | | | | 98.67 287 | | 96.29 307 | | 96.05 281 | 95.55 362 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 92.82 341 | | |
|
| HQP4-MVS | | | | | | | | | | | 95.56 361 | | | 99.54 316 | | | 99.32 205 |
|
| HQP3-MVS | | | | | | | | | 99.04 236 | | | | | | | 99.26 265 | |
|
| HQP2-MVS | | | | | | | | | | | | | 93.84 276 | | | | |
|
| NP-MVS | | | | | | 98.84 253 | 97.39 196 | | | | | 96.84 349 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 74.92 404 | 97.69 214 | | 90.06 377 | 97.75 280 | | 85.78 346 | | 93.52 329 | | 98.69 312 |
|
| MDTV_nov1_ep13 | | | | 95.22 315 | | 97.06 379 | 83.20 397 | 97.74 209 | 96.16 361 | 94.37 326 | 96.99 319 | 98.83 205 | 83.95 361 | 99.53 318 | 93.90 319 | 97.95 352 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 124 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.68 167 | |
|
| Test By Simon | | | | | | | | | | | | | 96.52 190 | | | | |
|