This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_cas_vis1_n_192099.16 8799.01 9999.61 8799.81 4698.86 17999.65 7699.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3199.91 3599.99 1
fmvsm_s_conf0.1_n_a99.26 7299.06 8699.85 2899.52 16999.62 6599.54 13899.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2899.98 2
test_vis1_n_192098.63 16498.40 17099.31 14999.86 2097.94 25099.67 6599.62 4199.43 799.99 299.91 2087.29 368100.00 199.92 1299.92 2899.98 2
fmvsm_s_conf0.1_n99.29 6699.10 7999.86 2199.70 10299.65 5799.53 14699.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19899.65 5799.50 16299.61 4899.45 599.87 2599.92 1597.31 12699.97 2199.95 899.99 199.97 4
test_vis1_n97.92 23497.44 26999.34 14299.53 16498.08 23899.74 4599.49 14699.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11499.97 4
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 18099.64 3699.45 599.92 1599.92 1598.62 7099.99 499.96 799.99 199.96 7
test_fmvs1_n98.41 17598.14 18699.21 16999.82 4297.71 26299.74 4599.49 14699.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8199.96 7
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14799.65 3399.10 2799.98 699.92 1597.35 12599.96 3099.94 1099.92 2899.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15599.67 2399.13 2299.98 699.92 1596.60 15299.96 3099.95 899.96 1499.95 9
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1499.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 899.94 11
MM99.40 5099.28 5699.74 6199.67 11299.31 11199.52 14798.87 34499.55 199.74 6399.80 10596.47 15799.98 1399.97 199.97 899.94 11
test_fmvsmconf0.01_n99.22 7999.03 9199.79 4998.42 36899.48 9199.55 13499.51 11799.39 1099.78 4899.93 1094.80 21799.95 5999.93 1199.95 1999.94 11
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21799.37 10399.58 10999.62 4199.41 999.87 2599.92 1598.81 44100.00 199.97 199.93 2699.94 11
MVS_030499.42 4299.32 4099.72 6599.70 10299.27 11899.52 14797.57 39099.51 299.82 3699.78 12498.09 10099.96 3099.97 199.97 899.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1999.90 17
test_fmvs198.88 13098.79 13399.16 17499.69 10797.61 26599.55 13499.49 14699.32 1499.98 699.91 2091.41 32399.96 3099.82 1699.92 2899.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5399.18 1099.96 3099.22 7399.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-299.26 7299.62 598.16 29999.81 4694.59 36299.52 14799.64 3699.33 1399.73 6599.90 2699.00 2299.99 499.69 1999.98 499.89 20
MSC_two_6792asdad99.87 1199.51 17299.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
No_MVS99.87 1199.51 17299.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
IU-MVS99.84 3299.88 899.32 27098.30 11599.84 3098.86 11399.85 7399.89 20
UA-Net99.42 4299.29 5499.80 4699.62 13899.55 7799.50 16299.70 1598.79 7099.77 5299.96 197.45 12099.96 3098.92 10199.90 4399.89 20
CHOSEN 1792x268899.19 8199.10 7999.45 12999.89 898.52 21299.39 22299.94 198.73 7699.11 22199.89 3095.50 19299.94 6999.50 3899.97 899.89 20
test_241102_TWO99.48 15999.08 3399.88 2099.81 9198.94 2999.96 3098.91 10299.84 8199.88 26
test_0728_THIRD98.99 4599.81 3899.80 10599.09 1499.96 3098.85 11599.90 4399.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11799.96 3098.93 9999.86 6699.88 26
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23399.51 11798.73 7699.88 2099.84 6498.72 6199.96 3098.16 19699.87 5899.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS99.42 4299.27 6099.88 599.89 899.80 2799.67 6599.50 13798.70 7899.77 5299.49 24898.21 9499.95 5998.46 17299.77 11199.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_299.23 7899.58 798.16 29999.83 3994.68 36099.76 3799.52 10299.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
DP-MVS99.16 8798.95 10999.78 5299.77 6299.53 8299.41 21099.50 13797.03 26599.04 23799.88 3697.39 12199.92 9598.66 14299.90 4399.87 31
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13799.60 9599.45 19999.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1999.86 33
Test_1112_low_res98.89 12998.66 14699.57 9699.69 10798.95 16699.03 31899.47 17996.98 26799.15 21599.23 31496.77 14799.89 12898.83 12198.78 20399.86 33
HyFIR lowres test99.11 10398.92 11199.65 7399.90 499.37 10399.02 32199.91 397.67 19899.59 11299.75 13995.90 17999.73 21399.53 3499.02 18699.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13699.61 9499.45 19999.01 4099.89 1999.82 7699.01 1899.92 9599.56 2999.95 1999.85 36
CVMVSNet98.57 16698.67 14398.30 28999.35 22595.59 34099.50 16299.55 7798.60 8699.39 16099.83 6894.48 24099.45 26898.75 12998.56 21499.85 36
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 19099.76 5899.75 13999.13 1299.92 9599.07 8699.92 2899.85 36
MG-MVS99.13 9399.02 9599.45 12999.57 15398.63 20099.07 30899.34 25398.99 4599.61 10699.82 7697.98 10599.87 14197.00 29099.80 10199.85 36
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18699.48 15998.05 15799.76 5899.86 4898.82 4399.93 8498.82 12599.91 3599.84 40
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 7099.67 2398.15 13499.68 7799.69 16999.06 1699.96 3098.69 13899.87 5899.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7699.66 2898.13 13899.66 8699.68 17598.96 2499.96 3098.62 14699.87 5899.84 40
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6699.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6699.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 7099.67 2398.15 13499.67 8199.69 16998.95 2799.96 3098.69 13899.87 5899.84 40
HPM-MVScopyleft99.42 4299.28 5699.83 4099.90 499.72 4299.81 2099.54 8697.59 20399.68 7799.63 19998.91 3499.94 6998.58 15599.91 3599.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11798.62 8499.79 4399.83 6899.28 499.97 2198.48 16899.90 4399.84 40
Skip Steuart: Steuart Systems R&D Blog.
1112_ss98.98 12298.77 13499.59 9199.68 11199.02 15299.25 27599.48 15997.23 24499.13 21799.58 21796.93 14399.90 11798.87 10898.78 20399.84 40
MP-MVS-pluss99.37 5599.20 7099.88 599.90 499.87 1299.30 24999.52 10297.18 24799.60 10999.79 11898.79 4799.95 5998.83 12199.91 3599.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 7099.47 17998.79 7099.68 7799.81 9198.43 8399.97 2198.88 10599.90 4399.83 49
PGM-MVS99.45 3399.31 4899.86 2199.87 1599.78 3699.58 10999.65 3397.84 17699.71 7199.80 10599.12 1399.97 2198.33 18399.87 5899.83 49
mPP-MVS99.44 3799.30 5099.86 2199.88 1199.79 3099.69 5699.48 15998.12 14199.50 13099.75 13998.78 4899.97 2198.57 15899.89 5299.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5699.52 10298.07 15299.53 12599.63 19998.93 3399.97 2198.74 13099.91 3599.83 49
mvsany_test199.50 2099.46 2099.62 8499.61 14299.09 14298.94 34199.48 15999.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 14199.82 54
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10995.40 40399.12 2599.65 9299.93 1090.73 33299.84 15799.43 4899.38 15399.82 54
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7999.67 2398.08 15199.55 12299.64 19398.91 3499.96 3098.72 13399.90 4399.82 54
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22698.91 5899.78 4899.85 5399.36 299.94 6998.84 11899.88 5599.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft99.33 6099.15 7499.87 1199.88 1199.82 2299.66 7099.46 18898.09 14799.48 13499.74 14498.29 9199.96 3097.93 21499.87 5899.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS99.43 4099.30 5099.82 4199.79 5499.74 4199.29 25499.40 22398.79 7099.52 12799.62 20498.91 3499.90 11798.64 14499.75 11699.82 54
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13299.59 7099.36 23399.46 18899.07 3599.79 4399.82 7698.85 3999.92 9598.68 14099.87 5899.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.59 899.50 1399.88 599.51 17299.88 899.87 899.51 11798.99 4599.88 2099.81 9199.27 599.96 3098.85 11599.80 10199.81 61
PC_three_145298.18 13299.84 3099.70 15999.31 398.52 37198.30 18799.80 10199.81 61
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 24299.10 2799.81 3899.80 10598.94 2999.96 3098.93 9999.86 6699.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS99.40 5099.24 6599.85 2899.86 2099.79 3099.60 9599.67 2397.97 16399.63 9999.68 17598.52 7799.95 5998.38 17799.86 6699.81 61
SMA-MVScopyleft99.44 3799.30 5099.85 2899.73 8899.83 1699.56 12299.47 17997.45 22299.78 4899.82 7699.18 1099.91 10698.79 12699.89 5299.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS99.11 10398.90 11499.74 6199.80 5299.46 9599.59 10199.49 14697.03 26599.63 9999.69 16997.27 12999.96 3097.82 22599.84 8199.81 61
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 14199.63 9999.84 6498.73 6099.96 3098.55 16499.83 9099.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS98.18 398.81 14599.37 3097.12 34699.60 14791.75 38698.61 37199.44 20799.35 1299.83 3599.85 5398.70 6399.81 18299.02 9099.91 3599.81 61
3Dnovator+97.12 1399.18 8398.97 10599.82 4199.17 27699.68 4899.81 2099.51 11799.20 1898.72 28099.89 3095.68 18799.97 2198.86 11399.86 6699.81 61
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9585.06 41699.13 2299.77 5299.93 1087.82 36699.85 15099.38 5199.38 15399.80 70
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10194.98 40499.13 2299.66 8699.93 1090.67 33399.84 15799.40 4999.38 15399.80 70
APD-MVScopyleft99.27 7099.08 8499.84 3999.75 7399.79 3099.50 16299.50 13797.16 24999.77 5299.82 7698.78 4899.94 6997.56 25399.86 6699.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC99.34 5999.19 7199.79 4999.61 14299.65 5799.30 24999.48 15998.86 6099.21 20299.63 19998.72 6199.90 11798.25 18899.63 13799.80 70
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15999.08 3399.91 1699.81 9199.20 799.96 3098.91 10299.85 7399.79 74
OPU-MVS99.64 7899.56 15799.72 4299.60 9599.70 15999.27 599.42 27898.24 18999.80 10199.79 74
SR-MVS99.43 4099.29 5499.86 2199.75 7399.83 1699.59 10199.62 4198.21 12799.73 6599.79 11898.68 6499.96 3098.44 17499.77 11199.79 74
HPM-MVS++copyleft99.39 5399.23 6799.87 1199.75 7399.84 1599.43 20099.51 11798.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10199.79 74
PVSNet_Blended_VisFu99.36 5699.28 5699.61 8799.86 2099.07 14799.47 18699.93 297.66 19999.71 7199.86 4897.73 11299.96 3099.47 4599.82 9499.79 74
3Dnovator97.25 999.24 7799.05 8799.81 4499.12 28499.66 5399.84 1299.74 1099.09 3298.92 25499.90 2695.94 17699.98 1398.95 9699.92 2899.79 74
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8399.54 8698.36 10999.79 4399.82 7698.86 3899.95 5998.62 14699.81 9799.78 80
CDPH-MVS99.13 9398.91 11399.80 4699.75 7399.71 4499.15 29299.41 21796.60 29699.60 10999.55 22798.83 4299.90 11797.48 26099.83 9099.78 80
SR-MVS-dyc-post99.45 3399.31 4899.85 2899.76 6599.82 2299.63 8399.52 10298.38 10599.76 5899.82 7698.53 7699.95 5998.61 14999.81 9799.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8399.52 10298.38 10599.76 5899.82 7698.75 5598.61 14999.81 9799.77 82
SD-MVS99.41 4799.52 1199.05 18699.74 8099.68 4899.46 18999.52 10299.11 2699.88 2099.91 2099.43 197.70 38898.72 13399.93 2699.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS99.42 4299.30 5099.78 5299.62 13899.71 4499.26 27399.52 10298.82 6599.39 16099.71 15598.96 2499.85 15098.59 15499.80 10199.77 82
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9299.47 9398.95 33999.85 698.82 6599.54 12399.73 15098.51 7899.74 20798.91 10299.88 5599.77 82
QAPM98.67 16098.30 17799.80 4699.20 26299.67 5199.77 3499.72 1194.74 36098.73 27999.90 2695.78 18399.98 1396.96 29499.88 5599.76 87
GeoE98.85 14198.62 15399.53 10999.61 14299.08 14599.80 2599.51 11797.10 25799.31 17699.78 12495.23 20499.77 19898.21 19099.03 18499.75 88
test9_res97.49 25999.72 12299.75 88
train_agg99.02 11698.77 13499.77 5599.67 11299.65 5799.05 31399.41 21796.28 31698.95 25099.49 24898.76 5299.91 10697.63 24499.72 12299.75 88
agg_prior297.21 27799.73 12199.75 88
SF-MVS99.38 5499.24 6599.79 4999.79 5499.68 4899.57 11699.54 8697.82 18199.71 7199.80 10598.95 2799.93 8498.19 19299.84 8199.74 92
test_prior99.68 6899.67 11299.48 9199.56 6999.83 17099.74 92
test1299.75 5899.64 12999.61 6799.29 28399.21 20298.38 8799.89 12899.74 11999.74 92
114514_t98.93 12698.67 14399.72 6599.85 2699.53 8299.62 8899.59 5792.65 38199.71 7199.78 12498.06 10299.90 11798.84 11899.91 3599.74 92
Vis-MVSNetpermissive99.12 9998.97 10599.56 9899.78 5699.10 14199.68 6299.66 2898.49 9699.86 2899.87 4494.77 22299.84 15799.19 7599.41 15299.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验199.74 8099.59 7099.54 8699.69 16998.47 8099.68 13099.73 97
casdiffmvs_mvgpermissive99.15 8999.02 9599.55 10099.66 12199.09 14299.64 7999.56 6998.26 11999.45 13999.87 4496.03 17199.81 18299.54 3299.15 17299.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet98.86 13498.71 13999.30 15497.20 38898.18 23299.62 8898.91 33799.28 1698.63 29899.81 9195.96 17399.99 499.24 7299.72 12299.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.05 11298.87 12099.57 9699.73 8899.32 10799.75 4199.20 29998.02 16199.56 11899.86 4896.54 15599.67 23798.09 19999.13 17499.73 97
F-COLMAP99.19 8199.04 8999.64 7899.78 5699.27 11899.42 20799.54 8697.29 23899.41 15299.59 21398.42 8599.93 8498.19 19299.69 12799.73 97
DeepC-MVS98.35 299.30 6499.19 7199.64 7899.82 4299.23 12499.62 8899.55 7798.94 5499.63 9999.95 395.82 18299.94 6999.37 5399.97 899.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SDMVSNet99.11 10398.90 11499.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9699.88 3694.56 23599.93 8499.67 2198.26 23099.72 103
sd_testset98.75 15398.57 16099.29 15799.81 4698.26 22999.56 12299.62 4198.78 7399.64 9699.88 3692.02 30799.88 13499.54 3298.26 23099.72 103
新几何199.75 5899.75 7399.59 7099.54 8696.76 28199.29 18299.64 19398.43 8399.94 6996.92 29999.66 13299.72 103
无先验98.99 32999.51 11796.89 27599.93 8497.53 25699.72 103
test22299.75 7399.49 8998.91 34599.49 14696.42 31099.34 17399.65 18798.28 9299.69 12799.72 103
testdata99.54 10199.75 7398.95 16699.51 11797.07 25999.43 14599.70 15998.87 3799.94 6997.76 23299.64 13599.72 103
VNet99.11 10398.90 11499.73 6499.52 16999.56 7599.41 21099.39 22699.01 4099.74 6399.78 12495.56 19099.92 9599.52 3698.18 23799.72 103
WTY-MVS99.06 11198.88 11999.61 8799.62 13899.16 13199.37 22999.56 6998.04 15899.53 12599.62 20496.84 14499.94 6998.85 11598.49 21999.72 103
CSCG99.32 6299.32 4099.32 14899.85 2698.29 22799.71 5299.66 2898.11 14399.41 15299.80 10598.37 8899.96 3098.99 9299.96 1499.72 103
原ACMM199.65 7399.73 8899.33 10699.47 17997.46 21999.12 21999.66 18698.67 6699.91 10697.70 24199.69 12799.71 112
Anonymous20240521198.30 18597.98 20699.26 16399.57 15398.16 23399.41 21098.55 37196.03 33799.19 20899.74 14491.87 31099.92 9599.16 7998.29 22999.70 113
casdiffmvspermissive99.13 9398.98 10499.56 9899.65 12799.16 13199.56 12299.50 13798.33 11399.41 15299.86 4895.92 17799.83 17099.45 4799.16 16999.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LFMVS97.90 23797.35 28199.54 10199.52 16999.01 15499.39 22298.24 37897.10 25799.65 9299.79 11884.79 38099.91 10699.28 6698.38 22199.69 115
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26493.04 36999.65 13499.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR99.04 11398.84 12799.66 6999.74 8099.44 9799.39 22299.38 23497.70 19499.28 18399.28 30698.34 8999.85 15096.96 29499.45 14999.69 115
EPP-MVSNet99.13 9398.99 10199.53 10999.65 12799.06 14899.81 2099.33 26097.43 22599.60 10999.88 3697.14 13199.84 15799.13 8098.94 18999.69 115
sss99.17 8599.05 8799.53 10999.62 13898.97 15999.36 23399.62 4197.83 17799.67 8199.65 18797.37 12499.95 5999.19 7599.19 16899.68 119
PHI-MVS99.30 6499.17 7399.70 6799.56 15799.52 8599.58 10999.80 897.12 25399.62 10399.73 15098.58 7299.90 11798.61 14999.91 3599.68 119
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23794.34 36797.81 39699.70 1597.12 25397.46 35098.75 36089.71 34399.79 19197.69 24281.69 39999.68 119
diffmvspermissive99.14 9199.02 9599.51 11799.61 14298.96 16399.28 25999.49 14698.46 9899.72 7099.71 15596.50 15699.88 13499.31 6299.11 17599.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8999.02 9599.53 10999.66 12199.14 13799.72 5099.48 15998.35 11099.42 14899.84 6496.07 16999.79 19199.51 3799.14 17399.67 122
TAMVS99.12 9999.08 8499.24 16699.46 19298.55 20699.51 15599.46 18898.09 14799.45 13999.82 7698.34 8999.51 26398.70 13598.93 19099.67 122
Anonymous2024052998.09 20497.68 24099.34 14299.66 12198.44 22199.40 21899.43 21393.67 37099.22 19999.89 3090.23 33999.93 8499.26 7098.33 22499.66 125
CHOSEN 280x42099.12 9999.13 7699.08 18199.66 12197.89 25198.43 38199.71 1398.88 5999.62 10399.76 13696.63 15199.70 22999.46 4699.99 199.66 125
CDS-MVSNet99.09 10899.03 9199.25 16499.42 20198.73 19299.45 19099.46 18898.11 14399.46 13899.77 13298.01 10499.37 28498.70 13598.92 19299.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR98.63 16498.34 17399.51 11799.40 21199.03 15198.80 35599.36 24396.33 31399.00 24499.12 32898.46 8199.84 15795.23 34399.37 16099.66 125
h-mvs3397.70 27197.28 29298.97 19699.70 10297.27 27399.36 23399.45 19998.94 5499.66 8699.64 19394.93 20999.99 499.48 4384.36 39599.65 129
CANet99.25 7699.14 7599.59 9199.41 20699.16 13199.35 23899.57 6498.82 6599.51 12999.61 20896.46 15899.95 5999.59 2599.98 499.65 129
TSAR-MVS + GP.99.36 5699.36 3299.36 14199.67 11298.61 20399.07 30899.33 26099.00 4399.82 3699.81 9199.06 1699.84 15799.09 8499.42 15199.65 129
MVSFormer99.17 8599.12 7799.29 15799.51 17298.94 16999.88 399.46 18897.55 20999.80 4199.65 18797.39 12199.28 30299.03 8899.85 7399.65 129
jason99.13 9399.03 9199.45 12999.46 19298.87 17699.12 29899.26 28898.03 16099.79 4399.65 18797.02 13999.85 15099.02 9099.90 4399.65 129
jason: jason.
PLCcopyleft97.94 499.02 11698.85 12599.53 10999.66 12199.01 15499.24 27799.52 10296.85 27799.27 18899.48 25398.25 9399.91 10697.76 23299.62 13899.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.07 1597.74 26497.34 28498.94 20099.70 10297.53 26699.25 27599.51 11791.90 38399.30 17999.63 19998.78 4899.64 24888.09 39299.87 5899.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re98.08 20698.16 18397.85 31999.55 16194.67 36199.70 5398.92 33398.15 13499.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23892.25 38499.59 10198.26 37697.43 22596.20 37199.13 32596.27 16598.73 36798.17 19598.99 18799.64 136
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20698.83 18499.30 24998.77 35497.70 19498.94 25299.65 18792.91 28299.74 20796.52 31399.55 14499.64 136
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34199.85 698.82 6599.65 9299.74 14498.51 7899.80 18898.83 12199.89 5299.64 136
MVS97.28 30396.55 31599.48 12398.78 33798.95 16699.27 26499.39 22683.53 39998.08 33299.54 23296.97 14199.87 14194.23 35699.16 16999.63 140
MSLP-MVS++99.46 3199.47 1799.44 13399.60 14799.16 13199.41 21099.71 1398.98 4899.45 13999.78 12499.19 999.54 26299.28 6699.84 8199.63 140
GA-MVS97.85 24397.47 26199.00 19299.38 21797.99 24398.57 37499.15 30597.04 26498.90 25799.30 30289.83 34299.38 28196.70 30798.33 22499.62 142
Vis-MVSNet (Re-imp)98.87 13198.72 13799.31 14999.71 9798.88 17599.80 2599.44 20797.91 16899.36 16799.78 12495.49 19399.43 27797.91 21599.11 17599.62 142
DPM-MVS98.95 12598.71 13999.66 6999.63 13299.55 7798.64 37099.10 31097.93 16699.42 14899.55 22798.67 6699.80 18895.80 32899.68 13099.61 144
baseline198.31 18397.95 21099.38 14099.50 18198.74 19199.59 10198.93 33098.41 10399.14 21699.60 21194.59 23399.79 19198.48 16893.29 36699.61 144
VDD-MVS97.73 26597.35 28198.88 21599.47 19197.12 28199.34 24198.85 34698.19 12999.67 8199.85 5382.98 38799.92 9599.49 4298.32 22899.60 146
DELS-MVS99.48 2699.42 2299.65 7399.72 9299.40 10299.05 31399.66 2899.14 2199.57 11799.80 10598.46 8199.94 6999.57 2899.84 8199.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended99.08 10998.97 10599.42 13499.76 6598.79 18898.78 35799.91 396.74 28299.67 8199.49 24897.53 11899.88 13498.98 9399.85 7399.60 146
OMC-MVS99.08 10999.04 8999.20 17099.67 11298.22 23199.28 25999.52 10298.07 15299.66 8699.81 9197.79 11099.78 19697.79 22799.81 9799.60 146
test_yl98.86 13498.63 14899.54 10199.49 18399.18 12899.50 16299.07 31698.22 12599.61 10699.51 24295.37 19699.84 15798.60 15298.33 22499.59 150
DCV-MVSNet98.86 13498.63 14899.54 10199.49 18399.18 12899.50 16299.07 31698.22 12599.61 10699.51 24295.37 19699.84 15798.60 15298.33 22499.59 150
AllTest98.87 13198.72 13799.31 14999.86 2098.48 21899.56 12299.61 4897.85 17499.36 16799.85 5395.95 17499.85 15096.66 31099.83 9099.59 150
TestCases99.31 14999.86 2098.48 21899.61 4897.85 17499.36 16799.85 5395.95 17499.85 15096.66 31099.83 9099.59 150
dongtai93.26 35592.93 35994.25 36799.39 21485.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25499.58 154
testing397.28 30396.76 31298.82 22899.37 22198.07 23999.45 19099.36 24397.56 20897.89 34198.95 34583.70 38598.82 36296.03 32298.56 21499.58 154
lupinMVS99.13 9399.01 9999.46 12899.51 17298.94 16999.05 31399.16 30497.86 17199.80 4199.56 22497.39 12199.86 14498.94 9799.85 7399.58 154
tttt051798.42 17398.14 18699.28 16199.66 12198.38 22599.74 4596.85 39497.68 19699.79 4399.74 14491.39 32499.89 12898.83 12199.56 14299.57 157
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5099.44 20796.61 29499.66 8699.89 3095.92 17799.82 17797.46 26399.10 17899.57 157
dmvs_testset95.02 34296.12 32491.72 37799.10 28980.43 40599.58 10997.87 38597.47 21895.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 159
bld_raw_dy_0_6499.22 7999.09 8299.60 9099.74 8099.31 11199.42 20799.55 7796.02 33999.59 11299.94 698.03 10399.92 9599.58 2799.98 499.56 159
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11696.63 39896.13 33198.87 26398.61 36594.59 23397.70 38895.08 34598.86 19699.55 161
AdaColmapbinary99.01 12098.80 13099.66 6999.56 15799.54 7999.18 28799.70 1598.18 13299.35 17099.63 19996.32 16399.90 11797.48 26099.77 11199.55 161
alignmvs98.81 14598.56 16299.58 9499.43 19999.42 9999.51 15598.96 32898.61 8599.35 17098.92 35094.78 21999.77 19899.35 5498.11 24299.54 163
EC-MVSNet99.44 3799.39 2799.58 9499.56 15799.49 8999.88 399.58 6198.38 10599.73 6599.69 16998.20 9599.70 22999.64 2499.82 9499.54 163
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27895.32 34999.27 26498.92 33397.37 23199.37 16499.58 21794.90 21299.70 22997.43 26699.21 16699.54 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet96.02 1798.85 14198.84 12798.89 21399.73 8897.28 27298.32 38799.60 5497.86 17199.50 13099.57 22196.75 14899.86 14498.56 16199.70 12699.54 163
MSDG98.98 12298.80 13099.53 10999.76 6599.19 12698.75 36099.55 7797.25 24199.47 13699.77 13297.82 10999.87 14196.93 29799.90 4399.54 163
iter_conf05_1199.40 5099.32 4099.63 8399.53 16499.47 9399.75 4199.52 10298.11 14399.87 2599.85 5397.72 11399.89 12899.56 2999.97 899.53 168
UGNet98.87 13198.69 14199.40 13699.22 25998.72 19399.44 19699.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5999.94 2599.53 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GSMVS99.52 170
sam_mvs194.86 21499.52 170
SCA98.19 19398.16 18398.27 29499.30 23895.55 34199.07 30898.97 32697.57 20699.43 14599.57 22192.72 28799.74 20797.58 24899.20 16799.52 170
Patchmatch-test97.93 23197.65 24398.77 23699.18 26897.07 28699.03 31899.14 30796.16 32798.74 27899.57 22194.56 23599.72 21793.36 36599.11 17599.52 170
PMMVS98.80 14898.62 15399.34 14299.27 24798.70 19498.76 35999.31 27497.34 23399.21 20299.07 33097.20 13099.82 17798.56 16198.87 19599.52 170
LS3D99.27 7099.12 7799.74 6199.18 26899.75 3999.56 12299.57 6498.45 9999.49 13399.85 5397.77 11199.94 6998.33 18399.84 8199.52 170
Effi-MVS+98.81 14598.59 15999.48 12399.46 19299.12 14098.08 39499.50 13797.50 21799.38 16299.41 27096.37 16299.81 18299.11 8298.54 21699.51 176
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 176
mvs_anonymous99.03 11598.99 10199.16 17499.38 21798.52 21299.51 15599.38 23497.79 18299.38 16299.81 9197.30 12799.45 26899.35 5498.99 18799.51 176
UniMVSNet_ETH3D97.32 30296.81 31098.87 21999.40 21197.46 26899.51 15599.53 9795.86 34198.54 30799.77 13282.44 39099.66 24098.68 14097.52 27199.50 179
mamv499.33 6099.23 6799.62 8499.39 21499.50 8799.50 16299.50 13798.13 13899.76 5899.81 9197.69 11599.88 13499.35 5499.95 1999.49 180
ab-mvs98.86 13498.63 14899.54 10199.64 12999.19 12699.44 19699.54 8697.77 18599.30 17999.81 9194.20 24999.93 8499.17 7898.82 20099.49 180
thisisatest053098.35 18198.03 20199.31 14999.63 13298.56 20599.54 13896.75 39697.53 21399.73 6599.65 18791.25 32799.89 12898.62 14699.56 14299.48 182
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11499.89 299.58 6198.56 8999.73 6599.69 16998.55 7599.82 17799.69 1999.85 7399.48 182
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23095.19 35299.23 27899.08 31396.24 32099.10 22499.67 18194.11 25398.93 35896.81 30299.05 18299.48 182
ADS-MVSNet98.20 19298.08 19598.56 25699.33 23096.48 32099.23 27899.15 30596.24 32099.10 22499.67 18194.11 25399.71 22396.81 30299.05 18299.48 182
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 20098.54 37296.44 30899.12 21999.34 29291.83 31299.60 25697.75 23496.46 30599.48 182
CNLPA99.14 9198.99 10199.59 9199.58 15199.41 10199.16 28999.44 20798.45 9999.19 20899.49 24898.08 10199.89 12897.73 23699.75 11699.48 182
MVSMamba_pp99.36 5699.28 5699.62 8499.38 21799.50 8799.50 16299.49 14698.55 9199.77 5299.82 7697.62 11799.88 13499.39 5099.96 1499.47 188
MGCFI-Net99.01 12098.85 12599.50 12299.42 20199.26 12099.82 1699.48 15998.60 8699.28 18398.81 35597.04 13899.76 20299.29 6597.87 25199.47 188
sasdasda99.02 11698.86 12399.51 11799.42 20199.32 10799.80 2599.48 15998.63 8299.31 17698.81 35597.09 13499.75 20599.27 6897.90 24899.47 188
canonicalmvs99.02 11698.86 12399.51 11799.42 20199.32 10799.80 2599.48 15998.63 8299.31 17698.81 35597.09 13499.75 20599.27 6897.90 24899.47 188
MIMVSNet97.73 26597.45 26498.57 25399.45 19797.50 26799.02 32198.98 32596.11 33299.41 15299.14 32490.28 33598.74 36695.74 32998.93 19099.47 188
MVS_Test99.10 10798.97 10599.48 12399.49 18399.14 13799.67 6599.34 25397.31 23699.58 11499.76 13697.65 11699.82 17798.87 10899.07 18199.46 193
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27899.58 11495.19 20597.82 22599.46 193
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23893.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7399.46 193
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25499.39 22697.06 26197.41 35198.15 37893.92 26198.68 36891.71 37898.34 22299.45 196
myMVS_eth3d96.89 31496.37 31998.43 27699.00 30897.16 27999.29 25499.39 22697.06 26197.41 35198.15 37883.46 38698.68 36895.27 34298.34 22299.45 196
DP-MVS Recon99.12 9998.95 10999.65 7399.74 8099.70 4699.27 26499.57 6496.40 31299.42 14899.68 17598.75 5599.80 18897.98 21199.72 12299.44 198
PatchMatch-RL98.84 14498.62 15399.52 11599.71 9799.28 11699.06 31199.77 997.74 18999.50 13099.53 23695.41 19499.84 15797.17 28499.64 13599.44 198
VDDNet97.55 28597.02 30499.16 17499.49 18398.12 23799.38 22799.30 27995.35 34699.68 7799.90 2682.62 38999.93 8499.31 6298.13 24199.42 200
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14299.09 14298.04 39599.25 29091.24 38698.51 30899.70 15994.55 23799.91 10692.76 37499.85 7399.42 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18699.53 16498.82 18598.84 35197.51 39197.63 20184.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 202
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 9999.90 199.55 7798.56 8999.78 4899.70 15998.65 6899.79 19199.65 2399.78 10899.41 202
HY-MVS97.30 798.85 14198.64 14799.47 12699.42 20199.08 14599.62 8899.36 24397.39 23099.28 18399.68 17596.44 16099.92 9598.37 17998.22 23299.40 204
testing9197.44 29797.02 30498.71 24199.18 26896.89 30499.19 28599.04 31997.78 18498.31 31998.29 37585.41 37699.85 15098.01 20997.95 24699.39 205
ETVMVS97.50 29096.90 30899.29 15799.23 25598.78 19099.32 24498.90 33997.52 21598.56 30598.09 38384.72 38199.69 23497.86 22097.88 25099.39 205
tt080597.97 22897.77 22998.57 25399.59 14996.61 31699.45 19099.08 31398.21 12798.88 26099.80 10588.66 35499.70 22998.58 15597.72 25799.39 205
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17299.28 11699.52 14799.47 17996.11 33299.01 24099.34 29296.20 16799.84 15797.88 21798.82 20099.39 205
testing1197.50 29097.10 30198.71 24199.20 26296.91 30299.29 25498.82 34997.89 16998.21 32798.40 37085.63 37499.83 17098.45 17398.04 24499.37 209
CANet_DTU98.97 12498.87 12099.25 16499.33 23098.42 22499.08 30799.30 27999.16 1999.43 14599.75 13995.27 20099.97 2198.56 16199.95 1999.36 210
testing9997.36 30096.94 30798.63 24699.18 26896.70 31099.30 24998.93 33097.71 19198.23 32498.26 37684.92 37999.84 15798.04 20897.85 25399.35 211
EIA-MVS99.18 8399.09 8299.45 12999.49 18399.18 12899.67 6599.53 9797.66 19999.40 15799.44 26298.10 9999.81 18298.94 9799.62 13899.35 211
EPMVS97.82 25197.65 24398.35 28398.88 32395.98 33399.49 17694.71 40697.57 20699.26 19299.48 25392.46 30199.71 22397.87 21999.08 18099.35 211
CostFormer97.72 26797.73 23697.71 32999.15 28294.02 36999.54 13899.02 32194.67 36199.04 23799.35 28892.35 30499.77 19898.50 16797.94 24799.34 214
BH-untuned98.42 17398.36 17198.59 24999.49 18396.70 31099.27 26499.13 30897.24 24398.80 27299.38 27995.75 18499.74 20797.07 28899.16 16999.33 215
FE-MVS98.48 16898.17 18299.40 13699.54 16398.96 16399.68 6298.81 35195.54 34499.62 10399.70 15993.82 26499.93 8497.35 27199.46 14899.32 216
PAPM97.59 28397.09 30299.07 18399.06 30098.26 22998.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24889.87 38598.92 19299.31 217
tpm297.44 29797.34 28497.74 32899.15 28294.36 36699.45 19098.94 32993.45 37598.90 25799.44 26291.35 32599.59 25797.31 27298.07 24399.29 218
UWE-MVS97.58 28497.29 29198.48 26499.09 29296.25 32899.01 32696.61 39997.86 17199.19 20899.01 33888.72 35199.90 11797.38 26998.69 20699.28 219
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16199.05 15099.80 2599.01 32296.59 29899.58 11499.59 21395.39 19599.90 11797.78 22899.49 14799.28 219
JIA-IIPM97.50 29097.02 30498.93 20298.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22397.58 24897.98 24599.28 219
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 222
dp97.75 26297.80 22397.59 33499.10 28993.71 37399.32 24498.88 34296.48 30599.08 22899.55 22792.67 29299.82 17796.52 31398.58 21199.24 223
thisisatest051598.14 19997.79 22499.19 17199.50 18198.50 21598.61 37196.82 39596.95 27199.54 12399.43 26491.66 31999.86 14498.08 20399.51 14699.22 224
TESTMET0.1,197.55 28597.27 29598.40 27998.93 31996.53 31898.67 36697.61 38996.96 26998.64 29799.28 30688.63 35699.45 26897.30 27399.38 15399.21 225
testing22297.16 30896.50 31699.16 17499.16 27898.47 22099.27 26498.66 36797.71 19198.23 32498.15 37882.28 39299.84 15797.36 27097.66 26099.18 226
CR-MVSNet98.17 19697.93 21398.87 21999.18 26898.49 21699.22 28299.33 26096.96 26999.56 11899.38 27994.33 24599.00 34694.83 34998.58 21199.14 227
RPMNet96.72 31895.90 33099.19 17199.18 26898.49 21699.22 28299.52 10288.72 39599.56 11897.38 38994.08 25599.95 5986.87 39798.58 21199.14 227
testgi97.65 27997.50 25898.13 30399.36 22496.45 32199.42 20799.48 15997.76 18697.87 34299.45 26191.09 32898.81 36394.53 35198.52 21799.13 229
test-LLR98.06 20897.90 21598.55 25898.79 33497.10 28298.67 36697.75 38697.34 23398.61 30198.85 35294.45 24299.45 26897.25 27599.38 15399.10 230
test-mter97.49 29597.13 30098.55 25898.79 33497.10 28298.67 36697.75 38696.65 28998.61 30198.85 35288.23 36099.45 26897.25 27599.38 15399.10 230
IB-MVS95.67 1896.22 32695.44 33998.57 25399.21 26096.70 31098.65 36997.74 38896.71 28497.27 35698.54 36686.03 37199.92 9598.47 17186.30 39399.10 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MAR-MVS98.86 13498.63 14899.54 10199.37 22199.66 5399.45 19099.54 8696.61 29499.01 24099.40 27397.09 13499.86 14497.68 24399.53 14599.10 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst98.33 18298.48 16697.90 31799.16 27894.78 35899.31 24799.11 30997.27 23999.45 13999.59 21395.33 19899.84 15798.48 16898.61 20899.09 234
hse-mvs297.50 29097.14 29898.59 24999.49 18397.05 28899.28 25999.22 29598.94 5499.66 8699.42 26694.93 20999.65 24599.48 4383.80 39799.08 235
xiu_mvs_v1_base_debu99.29 6699.27 6099.34 14299.63 13298.97 15999.12 29899.51 11798.86 6099.84 3099.47 25698.18 9699.99 499.50 3899.31 16199.08 235
xiu_mvs_v1_base99.29 6699.27 6099.34 14299.63 13298.97 15999.12 29899.51 11798.86 6099.84 3099.47 25698.18 9699.99 499.50 3899.31 16199.08 235
xiu_mvs_v1_base_debi99.29 6699.27 6099.34 14299.63 13298.97 15999.12 29899.51 11798.86 6099.84 3099.47 25698.18 9699.99 499.50 3899.31 16199.08 235
COLMAP_ROBcopyleft97.56 698.86 13498.75 13699.17 17399.88 1198.53 20899.34 24199.59 5797.55 20998.70 28799.89 3095.83 18199.90 11798.10 19899.90 4399.08 235
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS96.88 31596.31 32198.59 24999.48 19097.04 29199.27 26499.22 29597.44 22498.51 30899.41 27091.97 30899.66 24097.71 23983.83 39699.07 240
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30499.53 8299.82 1699.72 1194.56 36398.08 33299.88 3694.73 22599.98 1397.47 26299.76 11499.06 241
ETV-MVS99.26 7299.21 6999.40 13699.46 19299.30 11499.56 12299.52 10298.52 9499.44 14499.27 30998.41 8699.86 14499.10 8399.59 14099.04 242
PatchT97.03 31396.44 31898.79 23498.99 31198.34 22699.16 28999.07 31692.13 38299.52 12797.31 39294.54 23898.98 34888.54 39098.73 20599.03 243
BH-w/o98.00 22397.89 21998.32 28799.35 22596.20 33099.01 32698.90 33996.42 31098.38 31599.00 33995.26 20299.72 21796.06 32198.61 20899.03 243
Fast-Effi-MVS+-dtu98.77 15198.83 12998.60 24899.41 20696.99 29599.52 14799.49 14698.11 14399.24 19499.34 29296.96 14299.79 19197.95 21399.45 14999.02 245
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21399.71 9797.74 25799.12 29899.54 8698.44 10299.42 14899.71 15594.20 24999.92 9598.54 16598.90 19499.00 246
XVG-OURS98.73 15698.68 14298.88 21599.70 10297.73 25898.92 34399.55 7798.52 9499.45 13999.84 6495.27 20099.91 10698.08 20398.84 19899.00 246
tpm cat197.39 29997.36 27997.50 33799.17 27693.73 37299.43 20099.31 27491.27 38598.71 28199.08 32994.31 24799.77 19896.41 31798.50 21899.00 246
xiu_mvs_v2_base99.26 7299.25 6499.29 15799.53 16498.91 17399.02 32199.45 19998.80 6999.71 7199.26 31198.94 2999.98 1399.34 5999.23 16598.98 249
PS-MVSNAJ99.32 6299.32 4099.30 15499.57 15398.94 16998.97 33599.46 18898.92 5799.71 7199.24 31399.01 1899.98 1399.35 5499.66 13298.97 250
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24799.20 29996.10 33698.76 27799.42 26694.94 20899.81 18296.97 29398.45 22098.97 250
thres600view797.86 24297.51 25798.92 20499.72 9297.95 24899.59 10198.74 35897.94 16599.27 18898.62 36391.75 31399.86 14493.73 36198.19 23698.96 252
thres40097.77 25797.38 27798.92 20499.69 10797.96 24699.50 16298.73 36397.83 17799.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.96 252
TR-MVS97.76 25897.41 27598.82 22899.06 30097.87 25298.87 34998.56 37096.63 29398.68 28999.22 31592.49 29799.65 24595.40 33997.79 25598.95 254
test0.0.03 197.71 27097.42 27498.56 25698.41 36997.82 25598.78 35798.63 36897.34 23398.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 255
baseline297.87 24097.55 25198.82 22899.18 26898.02 24199.41 21096.58 40096.97 26896.51 36899.17 32093.43 27099.57 25897.71 23999.03 18498.86 256
cascas97.69 27297.43 27398.48 26498.60 36097.30 27198.18 39299.39 22692.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20898.86 256
131498.68 15998.54 16399.11 18098.89 32298.65 19899.27 26499.49 14696.89 27597.99 33799.56 22497.72 11399.83 17097.74 23599.27 16498.84 258
PS-MVSNAJss98.92 12798.92 11198.90 21098.78 33798.53 20899.78 3299.54 8698.07 15299.00 24499.76 13699.01 1899.37 28499.13 8097.23 29198.81 259
FC-MVSNet-test98.75 15398.62 15399.15 17899.08 29599.45 9699.86 1199.60 5498.23 12498.70 28799.82 7696.80 14599.22 31399.07 8696.38 30798.79 260
nrg03098.64 16398.42 16899.28 16199.05 30399.69 4799.81 2099.46 18898.04 15899.01 24099.82 7696.69 15099.38 28199.34 5994.59 34898.78 261
FIs98.78 14998.63 14899.23 16899.18 26899.54 7999.83 1599.59 5798.28 11698.79 27499.81 9196.75 14899.37 28499.08 8596.38 30798.78 261
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7099.66 2898.09 14798.35 31799.82 7695.25 20398.01 38197.41 26795.30 33498.78 261
jajsoiax98.43 17298.28 17898.88 21598.60 36098.43 22299.82 1699.53 9798.19 12998.63 29899.80 10593.22 27599.44 27399.22 7397.50 27498.77 264
mvs_tets98.40 17898.23 18098.91 20898.67 35398.51 21499.66 7099.53 9798.19 12998.65 29699.81 9192.75 28499.44 27399.31 6297.48 27898.77 264
Anonymous2023121197.88 23897.54 25498.90 21099.71 9798.53 20899.48 18099.57 6494.16 36698.81 27099.68 17593.23 27399.42 27898.84 11894.42 35198.76 266
XXY-MVS98.38 17998.09 19499.24 16699.26 24999.32 10799.56 12299.55 7797.45 22298.71 28199.83 6893.23 27399.63 25398.88 10596.32 30998.76 266
v7n97.87 24097.52 25598.92 20498.76 34398.58 20499.84 1299.46 18896.20 32398.91 25599.70 15994.89 21399.44 27396.03 32293.89 36098.75 268
PS-CasMVS97.93 23197.59 25098.95 19998.99 31199.06 14899.68 6299.52 10297.13 25198.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 268
test_djsdf98.67 16098.57 16098.98 19498.70 35098.91 17399.88 399.46 18897.55 20999.22 19999.88 3695.73 18599.28 30299.03 8897.62 26398.75 268
Effi-MVS+-dtu98.78 14998.89 11898.47 26999.33 23096.91 30299.57 11699.30 27998.47 9799.41 15298.99 34096.78 14699.74 20798.73 13299.38 15398.74 271
CP-MVSNet98.09 20497.78 22799.01 19098.97 31699.24 12399.67 6599.46 18897.25 24198.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 271
mvsmamba98.92 12798.87 12099.08 18199.07 29699.16 13199.88 399.51 11798.15 13499.40 15799.89 3097.12 13299.33 29499.38 5197.40 28598.73 273
VPA-MVSNet98.29 18697.95 21099.30 15499.16 27899.54 7999.50 16299.58 6198.27 11899.35 17099.37 28292.53 29699.65 24599.35 5494.46 34998.72 274
PEN-MVS97.76 25897.44 26998.72 23998.77 34298.54 20799.78 3299.51 11797.06 26198.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 274
VPNet97.84 24697.44 26999.01 19099.21 26098.94 16999.48 18099.57 6498.38 10599.28 18399.73 15088.89 35099.39 28099.19 7593.27 36798.71 276
EI-MVSNet98.67 16098.67 14398.68 24499.35 22597.97 24499.50 16299.38 23496.93 27499.20 20599.83 6897.87 10799.36 28898.38 17797.56 26898.71 276
WR-MVS98.06 20897.73 23699.06 18498.86 32999.25 12299.19 28599.35 24997.30 23798.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 276
IterMVS-LS98.46 17098.42 16898.58 25299.59 14998.00 24299.37 22999.43 21396.94 27399.07 22999.59 21397.87 10799.03 34198.32 18595.62 32798.71 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419297.92 23497.60 24998.87 21998.83 33298.65 19899.55 13499.34 25396.20 32399.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 280
v124097.69 27297.32 28798.79 23498.85 33098.43 22299.48 18099.36 24396.11 33299.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 280
DTE-MVSNet97.51 28997.19 29798.46 27098.63 35698.13 23699.84 1299.48 15996.68 28697.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 280
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23798.78 33798.62 20199.65 7699.49 14697.76 18698.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 280
v192192097.80 25597.45 26498.84 22698.80 33398.53 20899.52 14799.34 25396.15 32999.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 284
v119297.81 25397.44 26998.91 20898.88 32398.68 19599.51 15599.34 25396.18 32599.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 284
v2v48298.06 20897.77 22998.92 20498.90 32198.82 18599.57 11699.36 24396.65 28999.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 284
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19798.92 32098.98 15699.48 18099.53 9797.76 18698.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 284
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18298.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 284
gg-mvs-nofinetune96.17 32995.32 34098.73 23898.79 33498.14 23599.38 22794.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 17998.68 289
v114497.98 22597.69 23998.85 22598.87 32698.66 19799.54 13899.35 24996.27 31899.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 289
DU-MVS98.08 20697.79 22498.96 19798.87 32698.98 15699.41 21099.45 19997.87 17098.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 289
NR-MVSNet97.97 22897.61 24899.02 18998.87 32699.26 12099.47 18699.42 21597.63 20197.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 289
LPG-MVS_test98.22 18998.13 18898.49 26299.33 23097.05 28899.58 10999.55 7797.46 21999.24 19499.83 6892.58 29499.72 21798.09 19997.51 27298.68 289
LGP-MVS_train98.49 26299.33 23097.05 28899.55 7797.46 21999.24 19499.83 6892.58 29499.72 21798.09 19997.51 27298.68 289
LTVRE_ROB97.16 1298.02 21897.90 21598.40 27999.23 25596.80 30899.70 5399.60 5497.12 25398.18 32999.70 15991.73 31599.72 21798.39 17697.45 27998.68 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15396.36 32499.02 32199.49 14697.18 24798.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 296
pm-mvs197.68 27497.28 29298.88 21599.06 30098.62 20199.50 16299.45 19996.32 31497.87 34299.79 11892.47 29899.35 29197.54 25593.54 36498.67 296
v1097.85 24397.52 25598.86 22298.99 31198.67 19699.75 4199.41 21795.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 296
HQP_MVS98.27 18898.22 18198.44 27499.29 24296.97 29799.39 22299.47 17998.97 5199.11 22199.61 20892.71 28999.69 23497.78 22897.63 26198.67 296
plane_prior599.47 17999.69 23497.78 22897.63 26198.67 296
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25097.90 34099.93 1090.45 33499.18 32197.00 29096.43 30698.67 296
IterMVS97.83 24897.77 22998.02 30899.58 15196.27 32799.02 32199.48 15997.22 24598.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH97.28 898.10 20397.99 20598.44 27499.41 20696.96 30099.60 9599.56 6998.09 14798.15 33099.91 2090.87 33199.70 22998.88 10597.45 27998.67 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v897.95 23097.63 24798.93 20298.95 31898.81 18799.80 2599.41 21796.03 33799.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 304
UniMVSNet (Re)98.29 18698.00 20499.13 17999.00 30899.36 10599.49 17699.51 11797.95 16498.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 304
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22999.47 17993.46 37497.41 35199.78 12487.06 36999.33 29496.92 29992.70 37498.65 306
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20396.16 37299.80 10588.71 35299.04 33996.69 30896.55 30498.65 306
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28098.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 308
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28299.10 30699.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 308
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27899.11 30499.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 308
Baseline_NR-MVSNet97.76 25897.45 26498.68 24499.09 29298.29 22799.41 21098.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 308
HQP4-MVS98.66 29099.64 24898.64 308
HQP-MVS98.02 21897.90 21598.37 28299.19 26596.83 30598.98 33299.39 22698.24 12198.66 29099.40 27392.47 29899.64 24897.19 28197.58 26698.64 308
ACMM97.58 598.37 18098.34 17398.48 26499.41 20697.10 28299.56 12299.45 19998.53 9399.04 23799.85 5393.00 27899.71 22398.74 13097.45 27998.64 308
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33098.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 315
v14897.79 25697.55 25198.50 26198.74 34497.72 25999.54 13899.33 26096.26 31998.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 315
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27399.15 29299.33 26093.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 317
TransMVSNet (Re)97.15 30996.58 31498.86 22299.12 28498.85 18099.49 17698.91 33795.48 34597.16 36099.80 10593.38 27199.11 33294.16 35891.73 37798.62 317
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4488.69 35399.32 29795.89 32594.93 34398.62 317
MVSTER98.49 16798.32 17599.00 19299.35 22599.02 15299.54 13899.38 23497.41 22899.20 20599.73 15093.86 26399.36 28898.87 10897.56 26898.62 317
GBi-Net97.68 27497.48 25998.29 29099.51 17297.26 27599.43 20099.48 15996.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
test197.68 27497.48 25998.29 29099.51 17297.26 27599.43 20099.48 15996.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
FMVSNet196.84 31696.36 32098.29 29099.32 23697.26 27599.43 20099.48 15995.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 317
ACMP97.20 1198.06 20897.94 21298.45 27199.37 22197.01 29399.44 19699.49 14697.54 21298.45 31299.79 11891.95 30999.72 21797.91 21597.49 27798.62 317
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19296.68 31399.56 12299.54 8698.41 10397.79 34699.87 4490.18 34099.66 24098.05 20797.18 29498.62 317
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18896.11 33298.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 326
OPM-MVS98.19 19398.10 19198.45 27198.88 32397.07 28699.28 25999.38 23498.57 8899.22 19999.81 9192.12 30599.66 24098.08 20397.54 27098.61 326
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS_H98.13 20097.87 22098.90 21099.02 30698.84 18199.70 5399.59 5797.27 23998.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 326
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14799.50 13793.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 329
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 330
FMVSNet297.72 26797.36 27998.80 23399.51 17298.84 18199.45 19099.42 21596.49 30298.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 331
anonymousdsp98.44 17198.28 17898.94 20098.50 36598.96 16399.77 3499.50 13797.07 25998.87 26399.77 13294.76 22399.28 30298.66 14297.60 26498.57 332
iter_conf0598.76 15298.90 11498.33 28499.07 29696.97 29799.50 16299.31 27498.13 13899.48 13499.80 10597.89 10699.46 26699.25 7197.68 25998.56 333
FMVSNet398.03 21697.76 23398.84 22699.39 21498.98 15699.40 21899.38 23496.67 28799.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 333
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28696.33 32599.41 21099.52 10298.06 15699.05 23699.50 24589.64 34599.73 21397.73 23697.38 28798.53 335
Patchmtry97.75 26297.40 27698.81 23199.10 28998.87 17699.11 30499.33 26094.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 22997.43 26998.88 34799.36 24396.48 30598.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
USDC97.34 30197.20 29697.75 32799.07 29695.20 35198.51 37899.04 31997.99 16298.31 31999.86 4889.02 34899.55 26195.67 33397.36 28898.49 338
c3_l98.12 20298.04 20098.38 28199.30 23897.69 26398.81 35499.33 26096.67 28798.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
CLD-MVS98.16 19798.10 19198.33 28499.29 24296.82 30798.75 36099.44 20797.83 17799.13 21799.55 22792.92 28099.67 23798.32 18597.69 25898.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.05 21397.96 20898.33 28499.26 24997.38 27098.56 37699.31 27496.65 28998.88 26099.52 23996.58 15399.12 33197.39 26895.53 33098.47 341
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8399.08 31396.17 32697.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
FMVSNet596.43 32496.19 32397.15 34399.11 28695.89 33599.32 24499.52 10294.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
cl____98.01 22197.84 22298.55 25899.25 25397.97 24498.71 36499.34 25396.47 30798.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
DIV-MVS_self_test98.01 22197.85 22198.48 26499.24 25497.95 24898.71 36499.35 24996.50 30198.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
pmmvs498.13 20097.90 21598.81 23198.61 35998.87 17698.99 32999.21 29896.44 30899.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
cl2297.85 24397.64 24698.48 26499.09 29297.87 25298.60 37399.33 26097.11 25698.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
V4298.06 20897.79 22498.86 22298.98 31498.84 18199.69 5699.34 25396.53 30099.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
PVSNet_BlendedMVS98.86 13498.80 13099.03 18899.76 6598.79 18899.28 25999.91 397.42 22799.67 8199.37 28297.53 11899.88 13498.98 9397.29 28998.42 347
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11797.13 25196.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
TinyColmap97.12 31096.89 30997.83 32299.07 29695.52 34498.57 37498.74 35897.58 20597.81 34599.79 11888.16 36199.56 25995.10 34497.21 29298.39 351
miper_ehance_all_eth98.18 19598.10 19198.41 27799.23 25597.72 25998.72 36399.31 27496.60 29698.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
thres100view90097.76 25897.45 26498.69 24399.72 9297.86 25499.59 10198.74 35897.93 16699.26 19298.62 36391.75 31399.83 17093.22 36698.18 23798.37 353
tfpn200view997.72 26797.38 27798.72 23999.69 10797.96 24699.50 16298.73 36397.83 17799.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.37 353
test_fmvs297.25 30597.30 28997.09 34799.43 19993.31 37899.73 4898.87 34498.83 6499.28 18399.80 10584.45 38299.66 24097.88 21797.45 27998.30 355
miper_enhance_ethall98.16 19798.08 19598.41 27798.96 31797.72 25998.45 38099.32 27096.95 27198.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
tfpnnormal97.84 24697.47 26198.98 19499.20 26299.22 12599.64 7999.61 4896.32 31498.27 32399.70 15993.35 27299.44 27395.69 33195.40 33298.27 357
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15599.38 23496.55 29996.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
ITE_SJBPF98.08 30499.29 24296.37 32398.92 33398.34 11198.83 26899.75 13991.09 32899.62 25495.82 32697.40 28598.25 359
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12299.44 20795.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32794.08 38599.22 31582.72 38899.47 26595.67 33397.50 27498.17 362
D2MVS98.41 17598.50 16598.15 30299.26 24996.62 31599.40 21899.61 4897.71 19198.98 24699.36 28596.04 17099.67 23798.70 13597.41 28498.15 363
APD_test195.87 33396.49 31794.00 36899.53 16484.01 39799.54 13899.32 27095.91 34097.99 33799.85 5385.49 37599.88 13491.96 37798.84 19898.12 364
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 18098.75 35596.74 28296.68 36799.88 3688.65 35599.71 22398.37 17982.74 39898.09 365
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
API-MVS99.04 11399.03 9199.06 18499.40 21199.31 11199.55 13499.56 6998.54 9299.33 17499.39 27798.76 5299.78 19696.98 29299.78 10898.07 366
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
thres20097.61 28297.28 29298.62 24799.64 12998.03 24099.26 27398.74 35897.68 19699.09 22798.32 37491.66 31999.81 18292.88 37198.22 23298.03 369
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
DeepMVS_CXcopyleft93.34 37199.29 24282.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21393.57 36397.77 25698.01 370
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23495.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
GG-mvs-BLEND98.45 27198.55 36398.16 23399.43 20093.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23297.98 374
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25498.82 34998.07 15298.66 29099.64 19389.97 34199.61 25597.01 28996.68 29997.94 376
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19699.26 28893.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27497.93 377
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24597.23 35799.36 28595.28 19999.46 26695.51 33599.78 10897.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27097.41 22898.13 33199.30 30288.99 34999.56 25995.68 33299.80 10197.90 379
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 7998.25 37798.28 11694.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
test_vis1_rt95.81 33595.65 33596.32 36199.67 11291.35 38899.49 17696.74 39798.25 12095.24 37798.10 38274.96 39799.90 11799.53 3498.85 19797.70 382
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 15991.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22998.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23297.42 387
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5698.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 28995.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25196.76 390
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4899.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 15989.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26499.13 29598.33 37597.36 23299.07 22998.94 34695.64 18999.15 32392.95 37098.68 20796.12 397
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5385.77 37296.15 39997.86 22043.89 40995.39 399
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 19979.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1170.00 4140.00 41599.56 22496.58 1530.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 27995.47 336
FOURS199.91 199.93 199.87 899.56 6999.10 2799.81 38
test_one_060199.81 4699.88 899.49 14698.97 5199.65 9299.81 9199.09 14
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.71 9799.79 3099.61 4896.84 27899.56 11899.54 23298.58 7299.96 3096.93 29799.75 116
test_241102_ONE99.84 3299.90 299.48 15999.07 3599.91 1699.74 14499.20 799.76 202
9.1499.10 7999.72 9299.40 21899.51 11797.53 21399.64 9699.78 12498.84 4199.91 10697.63 24499.82 94
save fliter99.76 6599.59 7099.14 29499.40 22399.00 43
test072699.85 2699.89 499.62 8899.50 13799.10 2799.86 2899.82 7698.94 29
test_part299.81 4699.83 1699.77 52
sam_mvs94.72 226
MTGPAbinary99.47 179
test_post199.23 27865.14 41194.18 25299.71 22397.58 248
test_post65.99 41094.65 23299.73 213
patchmatchnet-post98.70 36194.79 21899.74 207
MTMP99.54 13898.88 342
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24897.56 253
TEST999.67 11299.65 5799.05 31399.41 21796.22 32298.95 25099.49 24898.77 5199.91 106
test_899.67 11299.61 6799.03 31899.41 21796.28 31698.93 25399.48 25398.76 5299.91 106
agg_prior99.67 11299.62 6599.40 22398.87 26399.91 106
test_prior499.56 7598.99 329
test_prior298.96 33698.34 11199.01 24099.52 23998.68 6497.96 21299.74 119
旧先验298.96 33696.70 28599.47 13699.94 6998.19 192
新几何299.01 326
原ACMM298.95 339
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata198.85 35098.32 114
plane_prior799.29 24297.03 292
plane_prior699.27 24796.98 29692.71 289
plane_prior499.61 208
plane_prior397.00 29498.69 7999.11 221
plane_prior299.39 22298.97 51
plane_prior199.26 249
plane_prior96.97 29799.21 28498.45 9997.60 264
n20.00 420
nn0.00 420
door-mid98.05 382
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
HQP-NCC99.19 26598.98 33298.24 12198.66 290
ACMP_Plane99.19 26598.98 33298.24 12198.66 290
BP-MVS97.19 281
HQP3-MVS99.39 22697.58 266
HQP2-MVS92.47 298
NP-MVS99.23 25596.92 30199.40 273
MDTV_nov1_ep1398.32 17599.11 28694.44 36499.27 26498.74 35897.51 21699.40 15799.62 20494.78 21999.76 20297.59 24798.81 202
ACMMP++_ref97.19 293
ACMMP++97.43 283
Test By Simon98.75 55