This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1999.88 599.85 3299.18 1099.96 1999.22 4299.92 1199.90 1
MSC_two_6792asdad99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
No_MVS99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
IU-MVS99.84 3399.88 899.32 25898.30 9599.84 1498.86 8699.85 5899.89 2
UA-Net99.42 4099.29 4799.80 4399.62 13199.55 8099.50 13399.70 1598.79 5599.77 3699.96 197.45 12199.96 1998.92 7399.90 2399.89 2
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18999.94 198.73 5999.11 20099.89 1395.50 18799.94 5799.50 1099.97 399.89 2
test_241102_TWO99.48 14599.08 1599.88 599.81 6598.94 3499.96 1998.91 7499.84 6599.88 7
test_0728_THIRD98.99 2999.81 2499.80 8199.09 1499.96 1998.85 8899.90 2399.88 7
test_0728_SECOND99.91 299.84 3399.89 499.57 9899.51 10499.96 1998.93 7199.86 5199.88 7
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 20199.51 10498.73 5999.88 599.84 4198.72 6399.96 1998.16 17599.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 6199.77 3699.49 23098.21 9999.95 4698.46 14999.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17799.50 12497.03 23599.04 21699.88 1897.39 12299.92 8398.66 11999.90 2399.87 12
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 2299.90 399.83 4598.98 2699.93 7299.59 299.95 699.86 13
Test_1112_low_res98.89 11898.66 13499.57 9299.69 10198.95 15999.03 28299.47 16396.98 23799.15 19499.23 29896.77 14599.89 11798.83 9498.78 19199.86 13
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28599.91 397.67 17099.59 9499.75 11695.90 17499.73 19299.53 699.02 17599.86 13
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 2299.89 499.82 5299.01 1999.92 8399.56 599.95 699.85 16
CVMVSNet98.57 15398.67 13198.30 26899.35 20495.59 31899.50 13399.55 6798.60 6799.39 13999.83 4594.48 23099.45 24498.75 10498.56 20099.85 16
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16399.76 4199.75 11699.13 1299.92 8399.07 5899.92 1199.85 16
MG-MVS99.13 8299.02 8599.45 12099.57 14598.63 19199.07 27199.34 24198.99 2999.61 8799.82 5297.98 11099.87 12597.00 26699.80 8799.85 16
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15499.48 14598.05 13199.76 4199.86 2698.82 4799.93 7298.82 9899.91 1699.84 20
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 11299.68 5899.69 14699.06 1699.96 1998.69 11499.87 4099.84 20
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11499.66 6999.68 15398.96 2899.96 1998.62 12399.87 4099.84 20
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11499.67 2297.83 14999.68 5899.69 14699.06 1699.96 1998.39 15399.87 4099.84 20
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9299.49 13299.02 1999.88 599.80 8199.00 2599.94 5799.45 1999.92 1199.84 20
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14499.74 12298.81 4899.94 5798.79 10099.86 5199.84 20
X-MVStestdata96.55 29695.45 31199.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14464.01 37598.81 4899.94 5798.79 10099.86 5199.84 20
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 11299.67 6499.69 14698.95 3199.96 1998.69 11499.87 4099.84 20
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17599.68 5899.63 17998.91 3999.94 5798.58 13299.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8499.51 10498.62 6599.79 2999.83 4599.28 499.97 1198.48 14599.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
1112_ss98.98 11298.77 12199.59 8799.68 10599.02 14699.25 23999.48 14597.23 21599.13 19699.58 19896.93 14099.90 10998.87 8198.78 19199.84 20
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21799.52 9197.18 21899.60 9199.79 9398.79 5099.95 4698.83 9499.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 20199.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9299.44 19499.01 2299.87 1199.80 8198.97 2799.91 9499.44 2199.92 1199.83 31
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9299.65 3297.84 14899.71 5199.80 8199.12 1399.97 1198.33 16199.87 4099.83 31
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11699.50 11299.75 11698.78 5199.97 1198.57 13499.89 3399.83 31
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12699.53 10699.63 17998.93 3899.97 1198.74 10599.91 1699.83 31
test111198.04 19998.11 17497.83 30099.74 7293.82 34799.58 9295.40 36999.12 999.65 7599.93 490.73 31499.84 14099.43 2299.38 14299.82 38
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12599.55 10399.64 17398.91 3999.96 1998.72 10999.90 2399.82 38
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4499.78 3499.85 3299.36 299.94 5798.84 9199.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 12199.48 11699.74 12298.29 9699.96 1997.93 19399.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 22199.40 21298.79 5599.52 10999.62 18598.91 3999.90 10998.64 12199.75 10299.82 38
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12599.59 7399.36 20199.46 17399.07 1799.79 2999.82 5298.85 4499.92 8398.68 11699.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.59 399.50 899.88 699.51 15799.88 899.87 599.51 10498.99 2999.88 599.81 6599.27 599.96 1998.85 8899.80 8799.81 44
PC_three_145298.18 11099.84 1499.70 13899.31 398.52 34298.30 16599.80 8799.81 44
testtj99.12 8898.87 10799.86 2199.72 8599.79 3399.44 16299.51 10497.29 20899.59 9499.74 12298.15 10599.96 1996.74 28199.69 11599.81 44
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9899.37 23199.10 1199.81 2499.80 8198.94 3499.96 1998.93 7199.86 5199.81 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13799.63 8099.68 15398.52 7799.95 4698.38 15599.86 5199.81 44
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 8099.83 1799.56 10599.47 16397.45 19299.78 3499.82 5299.18 1099.91 9498.79 10099.89 3399.81 44
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8499.49 13297.03 23599.63 8099.69 14697.27 12999.96 1997.82 20299.84 6599.81 44
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11699.63 8099.84 4198.73 6299.96 1998.55 14099.83 7499.81 44
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32499.60 13991.75 36198.61 33599.44 19499.35 199.83 1999.85 3298.70 6599.81 16299.02 6299.91 1699.81 44
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25499.68 5499.81 1599.51 10499.20 498.72 26199.89 1395.68 18299.97 1198.86 8699.86 5199.81 44
test250696.81 29296.65 29097.29 32099.74 7292.21 36099.60 7785.06 37999.13 799.77 3699.93 487.82 34999.85 13499.38 2499.38 14299.80 54
ECVR-MVScopyleft98.04 19998.05 18398.00 28999.74 7294.37 34299.59 8494.98 37099.13 799.66 6999.93 490.67 31599.84 14099.40 2399.38 14299.80 54
Regformer-199.53 1299.47 1099.72 6499.71 9199.44 9999.49 14399.46 17398.95 3899.83 1999.76 11199.01 1999.93 7299.17 4899.87 4099.80 54
Regformer-299.54 1099.47 1099.75 5499.71 9199.52 8899.49 14399.49 13298.94 3999.83 1999.76 11199.01 1999.94 5799.15 5199.87 4099.80 54
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13399.50 12497.16 22099.77 3699.82 5298.78 5199.94 5797.56 22999.86 5199.80 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC99.34 5399.19 6499.79 4699.61 13599.65 6299.30 21799.48 14598.86 4699.21 18299.63 17998.72 6399.90 10998.25 16699.63 12899.80 54
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9699.74 4599.79 9398.53 7599.95 4698.55 14099.78 9499.79 60
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1599.91 199.81 6599.20 799.96 1998.91 7499.85 5899.79 60
OPU-MVS99.64 8099.56 14999.72 4799.60 7799.70 13899.27 599.42 25498.24 16799.80 8799.79 60
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8499.62 3398.21 10699.73 4799.79 9398.68 6699.96 1998.44 15199.77 9799.79 60
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16899.51 10498.68 6399.27 16699.53 21798.64 7199.96 1998.44 15199.80 8799.79 60
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11499.82 2299.81 6598.60 7299.96 1998.46 14999.88 3699.79 60
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15499.93 297.66 17199.71 5199.86 2697.73 11699.96 1999.47 1799.82 8099.79 60
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 26199.66 5999.84 999.74 1099.09 1498.92 23599.90 1095.94 17199.98 698.95 6899.92 1199.79 60
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8899.79 2999.82 5298.86 4399.95 4698.62 12399.81 8399.78 68
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25799.41 20696.60 26699.60 9199.55 20898.83 4699.90 10997.48 23699.83 7499.78 68
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.53 7599.95 4698.61 12699.81 8399.77 70
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.75 5998.61 12699.81 8399.77 70
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15799.52 9199.11 1099.88 599.91 899.43 197.70 35798.72 10999.93 1099.77 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS99.42 4099.30 4399.78 4899.62 13199.71 4999.26 23799.52 9198.82 5099.39 13999.71 13498.96 2899.85 13498.59 13199.80 8799.77 70
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8599.47 9598.95 30499.85 698.82 5099.54 10499.73 12998.51 7899.74 18598.91 7499.88 3699.77 70
QAPM98.67 14798.30 16499.80 4399.20 24399.67 5799.77 2799.72 1194.74 32898.73 26099.90 1095.78 17899.98 696.96 27099.88 3699.76 75
GeoE98.85 13098.62 14199.53 10299.61 13599.08 14099.80 1999.51 10497.10 22899.31 15699.78 10095.23 19999.77 17798.21 16899.03 17399.75 76
test9_res97.49 23599.72 10999.75 76
train_agg99.02 10798.77 12199.77 5099.67 10699.65 6299.05 27699.41 20696.28 28798.95 23099.49 23098.76 5699.91 9497.63 22099.72 10999.75 76
agg_prior199.01 11098.76 12399.76 5399.67 10699.62 6698.99 29299.40 21296.26 29098.87 24399.49 23098.77 5499.91 9497.69 21799.72 10999.75 76
agg_prior297.21 25299.73 10899.75 76
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25999.53 8599.00 2699.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9899.54 7497.82 15499.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
test_prior399.21 7099.05 7799.68 6899.67 10699.48 9398.96 30099.56 5798.34 9099.01 21999.52 22098.68 6699.83 15197.96 19099.74 10599.74 81
test_prior99.68 6899.67 10699.48 9399.56 5799.83 15199.74 81
test1299.75 5499.64 12299.61 6899.29 27099.21 18298.38 8999.89 11799.74 10599.74 81
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34799.71 5199.78 10098.06 10899.90 10998.84 9199.91 1699.74 81
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7399.86 1299.87 2394.77 21699.84 14099.19 4599.41 14199.74 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验199.74 7299.59 7399.54 7499.69 14698.47 8199.68 12099.73 88
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22899.48 14596.82 25199.25 17399.65 16698.38 8999.93 7297.53 23299.67 12299.73 88
EPNet98.86 12298.71 12799.30 14397.20 35798.18 22299.62 7098.91 31799.28 298.63 27999.81 6595.96 16899.99 199.24 4199.72 10999.73 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.05 10398.87 10799.57 9299.73 8099.32 10899.75 3199.20 28498.02 13599.56 9999.86 2696.54 15299.67 21498.09 17999.13 16399.73 88
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17599.54 7497.29 20899.41 13299.59 19598.42 8799.93 7298.19 17099.69 11599.73 88
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3999.63 8099.95 295.82 17799.94 5799.37 2699.97 399.73 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何199.75 5499.75 6499.59 7399.54 7496.76 25299.29 16199.64 17398.43 8499.94 5796.92 27599.66 12399.72 94
无先验98.99 29299.51 10496.89 24599.93 7297.53 23299.72 94
test22299.75 6499.49 9198.91 30999.49 13296.42 28199.34 15399.65 16698.28 9799.69 11599.72 94
testdata99.54 9699.75 6498.95 15999.51 10497.07 23099.43 12599.70 13898.87 4299.94 5797.76 20799.64 12699.72 94
VNet99.11 9398.90 10399.73 6199.52 15599.56 7899.41 17799.39 21699.01 2299.74 4599.78 10095.56 18599.92 8399.52 798.18 21899.72 94
WTY-MVS99.06 10198.88 10699.61 8599.62 13199.16 12899.37 19799.56 5798.04 13299.53 10699.62 18596.84 14199.94 5798.85 8898.49 20499.72 94
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11899.41 13299.80 8198.37 9199.96 1998.99 6499.96 599.72 94
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 8099.69 5299.38 19499.51 10497.45 19299.61 8799.75 11698.51 7899.91 9497.45 24199.83 7499.71 101
原ACMM199.65 7599.73 8099.33 10799.47 16397.46 18999.12 19899.66 16598.67 6999.91 9497.70 21699.69 11599.71 101
ETH3 D test640098.70 14398.35 15999.73 6199.69 10199.60 7099.16 25399.45 18595.42 31699.27 16699.60 19297.39 12299.91 9495.36 31499.83 7499.70 103
Anonymous20240521198.30 17097.98 19099.26 15199.57 14598.16 22399.41 17798.55 34396.03 31099.19 18899.74 12291.87 29399.92 8399.16 5098.29 21299.70 103
casdiffmvs99.13 8298.98 9399.56 9499.65 12099.16 12899.56 10599.50 12498.33 9399.41 13299.86 2695.92 17299.83 15199.45 1999.16 15999.70 103
LFMVS97.90 22097.35 26599.54 9699.52 15599.01 14899.39 18998.24 34797.10 22899.65 7599.79 9384.79 35799.91 9499.28 3798.38 20699.69 106
EPNet_dtu98.03 20197.96 19398.23 27498.27 34095.54 32199.23 24298.75 32899.02 1997.82 32199.71 13496.11 16499.48 24093.04 34199.65 12599.69 106
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18999.38 22297.70 16599.28 16399.28 29098.34 9399.85 13496.96 27099.45 13899.69 106
EPP-MVSNet99.13 8298.99 9099.53 10299.65 12099.06 14399.81 1599.33 24897.43 19699.60 9199.88 1897.14 13199.84 14099.13 5298.94 17999.69 106
sss99.17 7699.05 7799.53 10299.62 13198.97 15399.36 20199.62 3397.83 14999.67 6499.65 16697.37 12699.95 4699.19 4599.19 15899.68 110
PHI-MVS99.30 5899.17 6699.70 6799.56 14999.52 8899.58 9299.80 897.12 22499.62 8499.73 12998.58 7399.90 10998.61 12699.91 1699.68 110
PVSNet_094.43 1996.09 30795.47 31097.94 29299.31 21794.34 34497.81 36099.70 1597.12 22497.46 32798.75 33689.71 32699.79 17097.69 21781.69 36299.68 110
diffmvs99.14 8099.02 8599.51 11099.61 13598.96 15799.28 22399.49 13298.46 7699.72 5099.71 13496.50 15399.88 12299.31 3499.11 16499.67 113
baseline99.15 7999.02 8599.53 10299.66 11599.14 13399.72 3599.48 14598.35 8999.42 12899.84 4196.07 16599.79 17099.51 999.14 16299.67 113
TAMVS99.12 8899.08 7599.24 15499.46 17898.55 19799.51 12799.46 17398.09 12199.45 12099.82 5298.34 9399.51 23998.70 11198.93 18099.67 113
Anonymous2024052998.09 19097.68 22499.34 13399.66 11598.44 21199.40 18599.43 20293.67 33899.22 17999.89 1390.23 32199.93 7299.26 4098.33 20799.66 116
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11597.89 23898.43 34599.71 1398.88 4599.62 8499.76 11196.63 14999.70 20899.46 1899.99 199.66 116
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18798.73 18399.45 15899.46 17398.11 11899.46 11999.77 10798.01 10999.37 26198.70 11198.92 18299.66 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR98.63 15198.34 16099.51 11099.40 19599.03 14598.80 31999.36 23296.33 28499.00 22499.12 31298.46 8299.84 14095.23 31699.37 14999.66 116
h-mvs3397.70 25697.28 27498.97 18199.70 9897.27 25899.36 20199.45 18598.94 3999.66 6999.64 17394.93 20499.99 199.48 1584.36 35899.65 120
CANet99.25 6899.14 6899.59 8799.41 19099.16 12899.35 20799.57 5198.82 5099.51 11199.61 18996.46 15499.95 4699.59 299.98 299.65 120
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10698.61 19499.07 27199.33 24899.00 2699.82 2299.81 6599.06 1699.84 14099.09 5699.42 14099.65 120
MVSFormer99.17 7699.12 7099.29 14699.51 15798.94 16299.88 199.46 17397.55 18099.80 2799.65 16697.39 12299.28 28099.03 6099.85 5899.65 120
jason99.13 8299.03 8299.45 12099.46 17898.87 16999.12 26199.26 27498.03 13499.79 2999.65 16697.02 13699.85 13499.02 6299.90 2399.65 120
jason: jason.
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11599.01 14899.24 24199.52 9196.85 24799.27 16699.48 23698.25 9899.91 9497.76 20799.62 12999.65 120
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.07 1597.74 24897.34 26898.94 18599.70 9897.53 25199.25 23999.51 10491.90 34999.30 15899.63 17998.78 5199.64 22488.09 36199.87 4099.65 120
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15799.60 7099.23 24299.44 19497.04 23399.39 13999.67 15998.30 9599.92 8397.27 24899.69 11599.64 127
LCM-MVSNet-Re97.83 23198.15 17096.87 33099.30 21892.25 35999.59 8498.26 34697.43 19696.20 34599.13 30996.27 16198.73 34098.17 17498.99 17799.64 127
BH-RMVSNet98.41 16198.08 17999.40 12899.41 19098.83 17699.30 21798.77 32797.70 16598.94 23299.65 16692.91 26699.74 18596.52 28999.55 13599.64 127
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30699.85 698.82 5099.65 7599.74 12298.51 7899.80 16798.83 9499.89 3399.64 127
MVS97.28 28396.55 29299.48 11498.78 31098.95 15999.27 22899.39 21683.53 36298.08 31199.54 21396.97 13899.87 12594.23 32899.16 15999.63 131
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13999.16 12899.41 17799.71 1398.98 3299.45 12099.78 10099.19 999.54 23899.28 3799.84 6599.63 131
GA-MVS97.85 22697.47 24599.00 17799.38 19997.99 23198.57 33899.15 29097.04 23398.90 23899.30 28689.83 32499.38 25896.70 28498.33 20799.62 133
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 9198.88 16899.80 1999.44 19497.91 14299.36 14799.78 10095.49 18899.43 25397.91 19499.11 16499.62 133
DPM-MVS98.95 11598.71 12799.66 7199.63 12599.55 8098.64 33499.10 29597.93 14099.42 12899.55 20898.67 6999.80 16795.80 30399.68 12099.61 135
baseline198.31 16897.95 19599.38 13199.50 16798.74 18299.59 8498.93 31298.41 8199.14 19599.60 19294.59 22599.79 17098.48 14593.29 33599.61 135
VDD-MVS97.73 24997.35 26598.88 20199.47 17797.12 26499.34 21098.85 32398.19 10799.67 6499.85 3282.98 36099.92 8399.49 1498.32 21199.60 137
DELS-MVS99.48 2099.42 1499.65 7599.72 8599.40 10499.05 27699.66 2799.14 699.57 9899.80 8198.46 8299.94 5799.57 499.84 6599.60 137
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 32199.91 396.74 25399.67 6499.49 23097.53 11999.88 12298.98 6599.85 5899.60 137
OMC-MVS99.08 9999.04 8099.20 15799.67 10698.22 22199.28 22399.52 9198.07 12699.66 6999.81 6597.79 11499.78 17597.79 20499.81 8399.60 137
test_yl98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 30098.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 30098.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10599.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
lupinMVS99.13 8299.01 8999.46 11999.51 15798.94 16299.05 27699.16 28997.86 14499.80 2799.56 20597.39 12299.86 12898.94 6999.85 5899.58 145
tttt051798.42 15998.14 17199.28 14999.66 11598.38 21599.74 3496.85 36297.68 16799.79 2999.74 12291.39 30699.89 11798.83 9499.56 13399.57 146
RPSCF98.22 17498.62 14196.99 32599.82 3891.58 36299.72 3599.44 19496.61 26499.66 6999.89 1395.92 17299.82 15897.46 23999.10 16799.57 146
DSMNet-mixed97.25 28497.35 26596.95 32897.84 34793.61 35399.57 9896.63 36596.13 30498.87 24398.61 34194.59 22597.70 35795.08 31898.86 18699.55 148
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14999.54 8299.18 25199.70 1598.18 11099.35 15099.63 17996.32 15999.90 10997.48 23699.77 9799.55 148
alignmvs98.81 13498.56 14999.58 9099.43 18699.42 10199.51 12798.96 31098.61 6699.35 15098.92 32994.78 21399.77 17799.35 2798.11 22499.54 150
DROMVSNet99.44 3199.39 1899.58 9099.56 14999.49 9199.88 199.58 4998.38 8499.73 4799.69 14698.20 10099.70 20899.64 199.82 8099.54 150
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25695.32 32799.27 22898.92 31497.37 20299.37 14499.58 19894.90 20799.70 20897.43 24399.21 15699.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 8097.28 25798.32 35199.60 4097.86 14499.50 11299.57 20296.75 14699.86 12898.56 13799.70 11499.54 150
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32499.55 6797.25 21299.47 11799.77 10797.82 11399.87 12596.93 27399.90 2399.54 150
UGNet98.87 11998.69 12999.40 12899.22 23998.72 18499.44 16299.68 1999.24 399.18 19199.42 25192.74 27099.96 1999.34 3199.94 999.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GSMVS99.52 156
sam_mvs194.86 20999.52 156
SCA98.19 17898.16 16998.27 27399.30 21895.55 31999.07 27198.97 30897.57 17899.43 12599.57 20292.72 27199.74 18597.58 22499.20 15799.52 156
Patchmatch-test97.93 21597.65 22798.77 22199.18 24897.07 26999.03 28299.14 29296.16 30098.74 25999.57 20294.56 22799.72 19693.36 33799.11 16499.52 156
PMMVS98.80 13798.62 14199.34 13399.27 22798.70 18598.76 32399.31 26197.34 20399.21 18299.07 31497.20 13099.82 15898.56 13798.87 18599.52 156
LS3D99.27 6499.12 7099.74 5999.18 24899.75 4399.56 10599.57 5198.45 7799.49 11599.85 3297.77 11599.94 5798.33 16199.84 6599.52 156
Effi-MVS+98.81 13498.59 14799.48 11499.46 17899.12 13798.08 35799.50 12497.50 18899.38 14299.41 25596.37 15899.81 16299.11 5498.54 20199.51 162
Patchmatch-RL test95.84 30995.81 30795.95 33895.61 36390.57 36398.24 35398.39 34595.10 32295.20 35198.67 33894.78 21397.77 35596.28 29590.02 35099.51 162
mvs_anonymous99.03 10698.99 9099.16 16199.38 19998.52 20399.51 12799.38 22297.79 15599.38 14299.81 6597.30 12799.45 24499.35 2798.99 17799.51 162
UniMVSNet_ETH3D97.32 28296.81 28898.87 20599.40 19597.46 25399.51 12799.53 8595.86 31298.54 28799.77 10782.44 36399.66 21798.68 11697.52 24399.50 165
ab-mvs98.86 12298.63 13699.54 9699.64 12299.19 12399.44 16299.54 7497.77 15799.30 15899.81 6594.20 23899.93 7299.17 4898.82 18899.49 166
thisisatest053098.35 16698.03 18599.31 13999.63 12598.56 19699.54 11796.75 36497.53 18599.73 4799.65 16691.25 30999.89 11798.62 12399.56 13399.48 167
ADS-MVSNet298.02 20398.07 18297.87 29799.33 20995.19 33099.23 24299.08 29896.24 29299.10 20399.67 15994.11 24298.93 33496.81 27899.05 17199.48 167
ADS-MVSNet98.20 17798.08 17998.56 23899.33 20996.48 29899.23 24299.15 29096.24 29299.10 20399.67 15994.11 24299.71 20296.81 27899.05 17199.48 167
tpm97.67 26297.55 23598.03 28499.02 28095.01 33399.43 16898.54 34496.44 27999.12 19899.34 27691.83 29599.60 23297.75 20996.46 27699.48 167
CNLPA99.14 8098.99 9099.59 8799.58 14399.41 10299.16 25399.44 19498.45 7799.19 18899.49 23098.08 10799.89 11797.73 21199.75 10299.48 167
canonicalmvs99.02 10798.86 11199.51 11099.42 18799.32 10899.80 1999.48 14598.63 6499.31 15698.81 33297.09 13399.75 18499.27 3997.90 22899.47 172
MIMVSNet97.73 24997.45 24898.57 23699.45 18497.50 25299.02 28598.98 30796.11 30599.41 13299.14 30890.28 31798.74 33995.74 30498.93 18099.47 172
MVS_Test99.10 9698.97 9499.48 11499.49 16999.14 13399.67 4899.34 24197.31 20699.58 9699.76 11197.65 11899.82 15898.87 8199.07 17099.46 174
MDTV_nov1_ep13_2view95.18 33199.35 20796.84 24899.58 9695.19 20097.82 20299.46 174
MVS-HIRNet95.75 31095.16 31497.51 31499.30 21893.69 35198.88 31195.78 36785.09 36198.78 25692.65 36591.29 30899.37 26194.85 32199.85 5899.46 174
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22899.57 5196.40 28399.42 12899.68 15398.75 5999.80 16797.98 18999.72 10999.44 177
PatchMatch-RL98.84 13398.62 14199.52 10899.71 9199.28 11499.06 27499.77 997.74 16299.50 11299.53 21795.41 18999.84 14097.17 25999.64 12699.44 177
VDDNet97.55 26897.02 28599.16 16199.49 16998.12 22799.38 19499.30 26595.35 31799.68 5899.90 1082.62 36299.93 7299.31 3498.13 22399.42 179
PCF-MVS97.08 1497.66 26397.06 28499.47 11799.61 13599.09 13998.04 35899.25 27691.24 35298.51 28899.70 13894.55 22899.91 9492.76 34599.85 5899.42 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.49 29895.64 30999.05 17099.53 15398.82 17798.84 31597.51 35997.63 17384.77 36399.21 30292.09 29098.91 33598.98 6592.21 34599.41 181
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18799.08 14099.62 7099.36 23297.39 20199.28 16399.68 15396.44 15699.92 8398.37 15798.22 21399.40 182
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15799.28 11499.52 12399.47 16396.11 30599.01 21999.34 27696.20 16399.84 14097.88 19698.82 18899.39 183
CANet_DTU98.97 11498.87 10799.25 15299.33 20998.42 21499.08 27099.30 26599.16 599.43 12599.75 11695.27 19599.97 1198.56 13799.95 699.36 184
EIA-MVS99.18 7499.09 7499.45 12099.49 16999.18 12599.67 4899.53 8597.66 17199.40 13799.44 24598.10 10699.81 16298.94 6999.62 12999.35 185
EPMVS97.82 23497.65 22798.35 26398.88 29595.98 31199.49 14394.71 37297.57 17899.26 17199.48 23692.46 28599.71 20297.87 19799.08 16999.35 185
CS-MVS-test99.30 5899.25 5799.45 12099.46 17899.23 12099.80 1999.57 5198.28 9699.53 10699.44 24598.16 10499.79 17099.38 2499.61 13199.34 187
CostFormer97.72 25197.73 22097.71 30799.15 25994.02 34699.54 11799.02 30494.67 32999.04 21699.35 27392.35 28899.77 17798.50 14497.94 22799.34 187
BH-untuned98.42 15998.36 15798.59 23299.49 16996.70 29099.27 22899.13 29397.24 21498.80 25399.38 26495.75 17999.74 18597.07 26499.16 15999.33 189
PAPM97.59 26797.09 28399.07 16799.06 27398.26 22098.30 35299.10 29594.88 32598.08 31199.34 27696.27 16199.64 22489.87 35498.92 18299.31 190
tpm297.44 27997.34 26897.74 30699.15 25994.36 34399.45 15898.94 31193.45 34398.90 23899.44 24591.35 30799.59 23397.31 24698.07 22599.29 191
JIA-IIPM97.50 27497.02 28598.93 18798.73 31697.80 24399.30 21798.97 30891.73 35098.91 23694.86 36395.10 20199.71 20297.58 22497.98 22699.28 192
dp97.75 24597.80 20897.59 31199.10 26693.71 35099.32 21398.88 32196.48 27699.08 20999.55 20892.67 27699.82 15896.52 28998.58 19799.24 193
thisisatest051598.14 18597.79 20999.19 15899.50 16798.50 20698.61 33596.82 36396.95 24199.54 10499.43 24891.66 30299.86 12898.08 18399.51 13799.22 194
TESTMET0.1,197.55 26897.27 27798.40 25998.93 29196.53 29698.67 33097.61 35896.96 23998.64 27899.28 29088.63 33899.45 24497.30 24799.38 14299.21 195
DWT-MVSNet_test97.53 27097.40 25997.93 29399.03 27994.86 33799.57 9898.63 34096.59 26898.36 29998.79 33389.32 33099.74 18598.14 17798.16 22299.20 196
CR-MVSNet98.17 18197.93 19898.87 20599.18 24898.49 20799.22 24799.33 24896.96 23999.56 9999.38 26494.33 23499.00 32294.83 32298.58 19799.14 197
RPMNet96.72 29495.90 30499.19 15899.18 24898.49 20799.22 24799.52 9188.72 35899.56 9997.38 35594.08 24499.95 4686.87 36598.58 19799.14 197
testgi97.65 26497.50 24298.13 28099.36 20396.45 29999.42 17599.48 14597.76 15897.87 31999.45 24491.09 31098.81 33894.53 32498.52 20299.13 199
test-LLR98.06 19397.90 20098.55 24098.79 30797.10 26598.67 33097.75 35597.34 20398.61 28298.85 33094.45 23199.45 24497.25 25099.38 14299.10 200
test-mter97.49 27797.13 28298.55 24098.79 30797.10 26598.67 33097.75 35596.65 26098.61 28298.85 33088.23 34299.45 24497.25 25099.38 14299.10 200
IB-MVS95.67 1896.22 30295.44 31298.57 23699.21 24196.70 29098.65 33397.74 35796.71 25597.27 33198.54 34286.03 35399.92 8398.47 14886.30 35699.10 200
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MAR-MVS98.86 12298.63 13699.54 9699.37 20199.66 5999.45 15899.54 7496.61 26499.01 21999.40 25997.09 13399.86 12897.68 21999.53 13699.10 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst98.33 16798.48 15297.90 29699.16 25694.78 33899.31 21599.11 29497.27 21099.45 12099.59 19595.33 19399.84 14098.48 14598.61 19499.09 204
hse-mvs297.50 27497.14 28198.59 23299.49 16997.05 27199.28 22399.22 28098.94 3999.66 6999.42 25194.93 20499.65 22199.48 1583.80 36099.08 205
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 21099.59 4397.55 18098.70 26899.89 1395.83 17699.90 10998.10 17899.90 2399.08 205
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS96.88 29096.31 29698.59 23299.48 17697.04 27499.27 22899.22 28097.44 19598.51 28899.41 25591.97 29199.66 21797.71 21483.83 35999.07 210
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27799.53 8599.82 1399.72 1194.56 33198.08 31199.88 1894.73 21999.98 697.47 23899.76 10099.06 211
CS-MVS99.34 5399.31 3999.43 12699.44 18599.47 9599.68 4599.56 5798.41 8199.62 8499.41 25598.35 9299.76 18199.52 799.76 10099.05 212
ETV-MVS99.26 6699.21 6299.40 12899.46 17899.30 11299.56 10599.52 9198.52 7199.44 12499.27 29398.41 8899.86 12899.10 5599.59 13299.04 213
PatchT97.03 28996.44 29498.79 21998.99 28398.34 21699.16 25399.07 30092.13 34899.52 10997.31 35894.54 22998.98 32488.54 35998.73 19399.03 214
BH-w/o98.00 20897.89 20498.32 26699.35 20496.20 30799.01 29098.90 31996.42 28198.38 29799.00 32295.26 19799.72 19696.06 29798.61 19499.03 214
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 19096.99 27899.52 12399.49 13298.11 11899.24 17499.34 27696.96 13999.79 17097.95 19299.45 13899.02 216
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 9197.74 24599.12 26199.54 7498.44 8099.42 12899.71 13494.20 23899.92 8398.54 14298.90 18499.00 217
XVG-OURS98.73 14298.68 13098.88 20199.70 9897.73 24698.92 30799.55 6798.52 7199.45 12099.84 4195.27 19599.91 9498.08 18398.84 18799.00 217
tpm cat197.39 28097.36 26397.50 31599.17 25493.73 34999.43 16899.31 26191.27 35198.71 26299.08 31394.31 23699.77 17796.41 29398.50 20399.00 217
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15398.91 16699.02 28599.45 18598.80 5499.71 5199.26 29598.94 3499.98 699.34 3199.23 15598.98 220
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14598.94 16298.97 29999.46 17398.92 4399.71 5199.24 29799.01 1999.98 699.35 2799.66 12398.97 221
tpmvs97.98 21098.02 18797.84 29999.04 27794.73 33999.31 21599.20 28496.10 30998.76 25899.42 25194.94 20399.81 16296.97 26998.45 20598.97 221
mvs-test198.86 12298.84 11398.89 19899.33 20997.77 24499.44 16299.30 26598.47 7499.10 20399.43 24896.78 14399.95 4698.73 10799.02 17598.96 223
thres600view797.86 22597.51 24198.92 18999.72 8597.95 23699.59 8498.74 33197.94 13999.27 16698.62 33991.75 29699.86 12893.73 33398.19 21798.96 223
thres40097.77 24097.38 26198.92 18999.69 10197.96 23499.50 13398.73 33697.83 14999.17 19298.45 34491.67 30099.83 15193.22 33898.18 21898.96 223
TR-MVS97.76 24197.41 25898.82 21499.06 27397.87 23998.87 31398.56 34296.63 26398.68 27099.22 29992.49 28199.65 22195.40 31297.79 23098.95 226
test0.0.03 197.71 25597.42 25798.56 23898.41 33997.82 24298.78 32198.63 34097.34 20398.05 31598.98 32694.45 23198.98 32495.04 31997.15 26598.89 227
baseline297.87 22397.55 23598.82 21499.18 24898.02 22999.41 17796.58 36696.97 23896.51 34299.17 30493.43 25599.57 23497.71 21499.03 17398.86 228
cascas97.69 25797.43 25698.48 24698.60 33197.30 25698.18 35699.39 21692.96 34698.41 29598.78 33593.77 25299.27 28398.16 17598.61 19498.86 228
131498.68 14698.54 15099.11 16598.89 29498.65 18999.27 22899.49 13296.89 24597.99 31699.56 20597.72 11799.83 15197.74 21099.27 15398.84 230
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 31098.53 19999.78 2599.54 7498.07 12699.00 22499.76 11199.01 1999.37 26199.13 5297.23 26098.81 231
RRT_test8_iter0597.72 25197.60 23298.08 28199.23 23596.08 31099.63 6499.49 13297.54 18398.94 23299.81 6587.99 34599.35 26999.21 4496.51 27598.81 231
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 27099.45 9899.86 899.60 4098.23 10398.70 26899.82 5296.80 14299.22 29099.07 5896.38 27898.79 233
test_part197.75 24597.24 27899.29 14699.59 14199.63 6599.65 5999.49 13296.17 29898.44 29399.69 14689.80 32599.47 24198.68 11693.66 33198.78 234
nrg03098.64 15098.42 15599.28 14999.05 27699.69 5299.81 1599.46 17398.04 13299.01 21999.82 5296.69 14899.38 25899.34 3194.59 31898.78 234
FIs98.78 13898.63 13699.23 15699.18 24899.54 8299.83 1299.59 4398.28 9698.79 25599.81 6596.75 14699.37 26199.08 5796.38 27898.78 234
EU-MVSNet97.98 21098.03 18597.81 30398.72 31896.65 29399.66 5299.66 2798.09 12198.35 30099.82 5295.25 19898.01 35097.41 24495.30 30598.78 234
jajsoiax98.43 15898.28 16598.88 20198.60 33198.43 21299.82 1399.53 8598.19 10798.63 27999.80 8193.22 26099.44 24999.22 4297.50 24698.77 238
mvs_tets98.40 16398.23 16798.91 19398.67 32498.51 20599.66 5299.53 8598.19 10798.65 27799.81 6592.75 26899.44 24999.31 3497.48 25098.77 238
Anonymous2023121197.88 22197.54 23898.90 19599.71 9198.53 19999.48 14999.57 5194.16 33498.81 25199.68 15393.23 25899.42 25498.84 9194.42 32198.76 240
XXY-MVS98.38 16498.09 17899.24 15499.26 22999.32 10899.56 10599.55 6797.45 19298.71 26299.83 4593.23 25899.63 22998.88 7796.32 28098.76 240
v7n97.87 22397.52 23998.92 18998.76 31498.58 19599.84 999.46 17396.20 29598.91 23699.70 13894.89 20899.44 24996.03 29893.89 32998.75 242
bset_n11_16_dypcd98.16 18297.97 19198.73 22398.26 34198.28 21997.99 35998.01 35297.68 16799.10 20399.63 17995.68 18299.15 30098.78 10396.55 27398.75 242
PS-CasMVS97.93 21597.59 23498.95 18498.99 28399.06 14399.68 4599.52 9197.13 22298.31 30299.68 15392.44 28699.05 31498.51 14394.08 32798.75 242
test_djsdf98.67 14798.57 14898.98 17998.70 32198.91 16699.88 199.46 17397.55 18099.22 17999.88 1895.73 18099.28 28099.03 6097.62 23598.75 242
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20996.91 28499.57 9899.30 26598.47 7499.41 13298.99 32396.78 14399.74 18598.73 10799.38 14298.74 246
CP-MVSNet98.09 19097.78 21299.01 17598.97 28899.24 11999.67 4899.46 17397.25 21298.48 29199.64 17393.79 25199.06 31398.63 12294.10 32698.74 246
VPA-MVSNet98.29 17197.95 19599.30 14399.16 25699.54 8299.50 13399.58 4998.27 9999.35 15099.37 26792.53 28099.65 22199.35 2794.46 31998.72 248
PEN-MVS97.76 24197.44 25398.72 22598.77 31398.54 19899.78 2599.51 10497.06 23298.29 30499.64 17392.63 27798.89 33798.09 17993.16 33798.72 248
VPNet97.84 22997.44 25399.01 17599.21 24198.94 16299.48 14999.57 5198.38 8499.28 16399.73 12988.89 33499.39 25699.19 4593.27 33698.71 250
EI-MVSNet98.67 14798.67 13198.68 22899.35 20497.97 23299.50 13399.38 22296.93 24499.20 18599.83 4597.87 11199.36 26598.38 15597.56 24098.71 250
WR-MVS98.06 19397.73 22099.06 16898.86 30299.25 11899.19 25099.35 23797.30 20798.66 27199.43 24893.94 24799.21 29598.58 13294.28 32398.71 250
IterMVS-LS98.46 15698.42 15598.58 23599.59 14198.00 23099.37 19799.43 20296.94 24399.07 21099.59 19597.87 11199.03 31798.32 16395.62 29898.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419297.92 21897.60 23298.87 20598.83 30598.65 18999.55 11499.34 24196.20 29599.32 15599.40 25994.36 23399.26 28496.37 29495.03 31198.70 254
v124097.69 25797.32 27198.79 21998.85 30398.43 21299.48 14999.36 23296.11 30599.27 16699.36 27093.76 25399.24 28694.46 32595.23 30698.70 254
DTE-MVSNet97.51 27397.19 28098.46 25198.63 32798.13 22699.84 999.48 14596.68 25797.97 31799.67 15992.92 26498.56 34196.88 27792.60 34498.70 254
TranMVSNet+NR-MVSNet97.93 21597.66 22698.76 22298.78 31098.62 19299.65 5999.49 13297.76 15898.49 29099.60 19294.23 23798.97 33198.00 18892.90 33998.70 254
v192192097.80 23897.45 24898.84 21298.80 30698.53 19999.52 12399.34 24196.15 30299.24 17499.47 23993.98 24699.29 27995.40 31295.13 30998.69 258
v119297.81 23697.44 25398.91 19398.88 29598.68 18699.51 12799.34 24196.18 29799.20 18599.34 27694.03 24599.36 26595.32 31595.18 30798.69 258
v2v48298.06 19397.77 21498.92 18998.90 29398.82 17799.57 9899.36 23296.65 26099.19 18899.35 27394.20 23899.25 28597.72 21394.97 31298.69 258
UniMVSNet_NR-MVSNet98.22 17497.97 19198.96 18298.92 29298.98 15099.48 14999.53 8597.76 15898.71 26299.46 24396.43 15799.22 29098.57 13492.87 34198.69 258
OurMVSNet-221017-097.88 22197.77 21498.19 27698.71 32096.53 29699.88 199.00 30597.79 15598.78 25699.94 391.68 29999.35 26997.21 25296.99 26798.69 258
gg-mvs-nofinetune96.17 30595.32 31398.73 22398.79 30798.14 22599.38 19494.09 37391.07 35498.07 31491.04 36889.62 32999.35 26996.75 28099.09 16898.68 263
v114497.98 21097.69 22398.85 21198.87 29998.66 18899.54 11799.35 23796.27 28999.23 17899.35 27394.67 22299.23 28796.73 28295.16 30898.68 263
DU-MVS98.08 19297.79 20998.96 18298.87 29998.98 15099.41 17799.45 18597.87 14398.71 26299.50 22794.82 21099.22 29098.57 13492.87 34198.68 263
NR-MVSNet97.97 21397.61 23199.02 17498.87 29999.26 11799.47 15499.42 20497.63 17397.08 33799.50 22795.07 20299.13 30497.86 19893.59 33298.68 263
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20997.05 27199.58 9299.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24498.68 263
LGP-MVS_train98.49 24499.33 20997.05 27199.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24498.68 263
LTVRE_ROB97.16 1298.02 20397.90 20098.40 25999.23 23596.80 28899.70 3899.60 4097.12 22498.18 30899.70 13891.73 29899.72 19698.39 15397.45 25198.68 263
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT97.82 23497.75 21898.06 28399.57 14596.36 30299.02 28599.49 13297.18 21898.71 26299.72 13392.72 27199.14 30197.44 24295.86 29298.67 270
pm-mvs197.68 25997.28 27498.88 20199.06 27398.62 19299.50 13399.45 18596.32 28597.87 31999.79 9392.47 28299.35 26997.54 23193.54 33398.67 270
v1097.85 22697.52 23998.86 20898.99 28398.67 18799.75 3199.41 20695.70 31398.98 22699.41 25594.75 21899.23 28796.01 29994.63 31798.67 270
HQP_MVS98.27 17398.22 16898.44 25599.29 22296.97 28099.39 18999.47 16398.97 3599.11 20099.61 18992.71 27399.69 21297.78 20597.63 23398.67 270
plane_prior599.47 16399.69 21297.78 20597.63 23398.67 270
SixPastTwentyTwo97.50 27497.33 27098.03 28498.65 32596.23 30699.77 2798.68 33997.14 22197.90 31899.93 490.45 31699.18 29897.00 26696.43 27798.67 270
IterMVS97.83 23197.77 21498.02 28699.58 14396.27 30599.02 28599.48 14597.22 21698.71 26299.70 13892.75 26899.13 30497.46 23996.00 28698.67 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH97.28 898.10 18997.99 18998.44 25599.41 19096.96 28299.60 7799.56 5798.09 12198.15 30999.91 890.87 31399.70 20898.88 7797.45 25198.67 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v897.95 21497.63 23098.93 18798.95 29098.81 17999.80 1999.41 20696.03 31099.10 20399.42 25194.92 20699.30 27896.94 27294.08 32798.66 278
UniMVSNet (Re)98.29 17198.00 18899.13 16499.00 28299.36 10699.49 14399.51 10497.95 13898.97 22899.13 30996.30 16099.38 25898.36 15993.34 33498.66 278
pmmvs696.53 29796.09 30097.82 30298.69 32295.47 32399.37 19799.47 16393.46 34297.41 32899.78 10087.06 35199.33 27396.92 27592.70 34398.65 280
K. test v397.10 28896.79 28998.01 28798.72 31896.33 30399.87 597.05 36197.59 17596.16 34699.80 8188.71 33599.04 31596.69 28596.55 27398.65 280
our_test_397.65 26497.68 22497.55 31398.62 32894.97 33498.84 31599.30 26596.83 25098.19 30799.34 27697.01 13799.02 31995.00 32096.01 28598.64 282
RRT_MVS98.60 15298.44 15399.05 17098.88 29599.14 13399.49 14399.38 22297.76 15899.29 16199.86 2695.38 19099.36 26598.81 9997.16 26498.64 282
YYNet195.36 31494.51 32097.92 29497.89 34697.10 26599.10 26999.23 27993.26 34480.77 36799.04 31892.81 26798.02 34994.30 32694.18 32598.64 282
MDA-MVSNet_test_wron95.45 31294.60 31898.01 28798.16 34397.21 26399.11 26799.24 27893.49 34180.73 36898.98 32693.02 26198.18 34594.22 32994.45 32098.64 282
Baseline_NR-MVSNet97.76 24197.45 24898.68 22899.09 26898.29 21799.41 17798.85 32395.65 31498.63 27999.67 15994.82 21099.10 31198.07 18692.89 34098.64 282
HQP4-MVS98.66 27199.64 22498.64 282
HQP-MVS98.02 20397.90 20098.37 26299.19 24596.83 28598.98 29699.39 21698.24 10098.66 27199.40 25992.47 28299.64 22497.19 25697.58 23898.64 282
ACMM97.58 598.37 16598.34 16098.48 24699.41 19097.10 26599.56 10599.45 18598.53 7099.04 21699.85 3293.00 26299.71 20298.74 10597.45 25198.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.52 27197.30 27398.16 27898.57 33396.73 28999.27 22898.90 31996.14 30398.37 29899.53 21791.54 30599.14 30197.51 23495.87 29198.63 290
v14897.79 23997.55 23598.50 24398.74 31597.72 24799.54 11799.33 24896.26 29098.90 23899.51 22494.68 22199.14 30197.83 20193.15 33898.63 290
MDA-MVSNet-bldmvs94.96 31793.98 32397.92 29498.24 34297.27 25899.15 25799.33 24893.80 33780.09 36999.03 31988.31 34197.86 35493.49 33694.36 32298.62 292
TransMVSNet (Re)97.15 28696.58 29198.86 20899.12 26198.85 17299.49 14398.91 31795.48 31597.16 33599.80 8193.38 25699.11 30994.16 33091.73 34698.62 292
lessismore_v097.79 30498.69 32295.44 32594.75 37195.71 35099.87 2388.69 33699.32 27595.89 30094.93 31498.62 292
MVSTER98.49 15498.32 16299.00 17799.35 20499.02 14699.54 11799.38 22297.41 19999.20 18599.73 12993.86 25099.36 26598.87 8197.56 24098.62 292
GBi-Net97.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32497.10 26196.65 26998.62 292
test197.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32497.10 26196.65 26998.62 292
FMVSNet196.84 29196.36 29598.29 26999.32 21697.26 26099.43 16899.48 14595.11 32098.55 28699.32 28383.95 35998.98 32495.81 30296.26 28198.62 292
ACMP97.20 1198.06 19397.94 19798.45 25299.37 20197.01 27699.44 16299.49 13297.54 18398.45 29299.79 9391.95 29299.72 19697.91 19497.49 24998.62 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+97.24 1097.92 21897.78 21298.32 26699.46 17896.68 29299.56 10599.54 7498.41 8197.79 32399.87 2390.18 32299.66 21798.05 18797.18 26398.62 292
ppachtmachnet_test97.49 27797.45 24897.61 31098.62 32895.24 32898.80 31999.46 17396.11 30598.22 30699.62 18596.45 15598.97 33193.77 33295.97 29098.61 301
OPM-MVS98.19 17898.10 17598.45 25298.88 29597.07 26999.28 22399.38 22298.57 6899.22 17999.81 6592.12 28999.66 21798.08 18397.54 24298.61 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS_H98.13 18697.87 20598.90 19599.02 28098.84 17399.70 3899.59 4397.27 21098.40 29699.19 30395.53 18699.23 28798.34 16093.78 33098.61 301
MIMVSNet195.51 31195.04 31596.92 32997.38 35295.60 31799.52 12399.50 12493.65 33996.97 34099.17 30485.28 35696.56 36588.36 36095.55 30098.60 304
N_pmnet94.95 31895.83 30692.31 34498.47 33779.33 37199.12 26192.81 37793.87 33697.68 32499.13 30993.87 24999.01 32191.38 34996.19 28298.59 305
FMVSNet297.72 25197.36 26398.80 21899.51 15798.84 17399.45 15899.42 20496.49 27298.86 24899.29 28890.26 31898.98 32496.44 29196.56 27298.58 306
anonymousdsp98.44 15798.28 16598.94 18598.50 33698.96 15799.77 2799.50 12497.07 23098.87 24399.77 10794.76 21799.28 28098.66 11997.60 23698.57 307
FMVSNet398.03 20197.76 21798.84 21299.39 19898.98 15099.40 18599.38 22296.67 25899.07 21099.28 29092.93 26398.98 32497.10 26196.65 26998.56 308
XVG-ACMP-BASELINE97.83 23197.71 22298.20 27599.11 26396.33 30399.41 17799.52 9198.06 13099.05 21599.50 22789.64 32899.73 19297.73 21197.38 25798.53 309
Patchmtry97.75 24597.40 25998.81 21699.10 26698.87 16999.11 26799.33 24894.83 32698.81 25199.38 26494.33 23499.02 31996.10 29695.57 29998.53 309
miper_lstm_enhance98.00 20897.91 19998.28 27299.34 20897.43 25498.88 31199.36 23296.48 27698.80 25399.55 20895.98 16798.91 33597.27 24895.50 30298.51 311
USDC97.34 28197.20 27997.75 30599.07 27195.20 32998.51 34299.04 30397.99 13698.31 30299.86 2689.02 33299.55 23795.67 30797.36 25898.49 312
c3_l98.12 18898.04 18498.38 26199.30 21897.69 25098.81 31899.33 24896.67 25898.83 24999.34 27697.11 13298.99 32397.58 22495.34 30498.48 313
CLD-MVS98.16 18298.10 17598.33 26499.29 22296.82 28798.75 32499.44 19497.83 14999.13 19699.55 20892.92 26499.67 21498.32 16397.69 23298.48 313
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.05 19897.96 19398.33 26499.26 22997.38 25598.56 34099.31 26196.65 26098.88 24199.52 22096.58 15099.12 30897.39 24595.53 30198.47 315
MVS_030496.79 29396.52 29397.59 31199.22 23994.92 33699.04 28199.59 4396.49 27298.43 29498.99 32380.48 36699.39 25697.15 26099.27 15398.47 315
Anonymous2023120696.22 30296.03 30196.79 33297.31 35594.14 34599.63 6499.08 29896.17 29897.04 33899.06 31693.94 24797.76 35686.96 36495.06 31098.47 315
FMVSNet596.43 30096.19 29897.15 32199.11 26395.89 31399.32 21399.52 9194.47 33398.34 30199.07 31487.54 35097.07 36192.61 34695.72 29698.47 315
cl____98.01 20697.84 20798.55 24099.25 23397.97 23298.71 32899.34 24196.47 27898.59 28599.54 21395.65 18499.21 29597.21 25295.77 29398.46 319
DIV-MVS_self_test98.01 20697.85 20698.48 24699.24 23497.95 23698.71 32899.35 23796.50 27198.60 28499.54 21395.72 18199.03 31797.21 25295.77 29398.46 319
pmmvs498.13 18697.90 20098.81 21698.61 33098.87 16998.99 29299.21 28396.44 27999.06 21499.58 19895.90 17499.11 30997.18 25896.11 28498.46 319
cl2297.85 22697.64 22998.48 24699.09 26897.87 23998.60 33799.33 24897.11 22798.87 24399.22 29992.38 28799.17 29998.21 16895.99 28798.42 322
V4298.06 19397.79 20998.86 20898.98 28698.84 17399.69 4099.34 24196.53 27099.30 15899.37 26794.67 22299.32 27597.57 22894.66 31698.42 322
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 22399.91 397.42 19899.67 6499.37 26797.53 11999.88 12298.98 6597.29 25998.42 322
UnsupCasMVSNet_eth96.44 29996.12 29997.40 31798.65 32595.65 31699.36 20199.51 10497.13 22296.04 34898.99 32388.40 34098.17 34696.71 28390.27 34998.40 325
TinyColmap97.12 28796.89 28797.83 30099.07 27195.52 32298.57 33898.74 33197.58 17797.81 32299.79 9388.16 34399.56 23595.10 31797.21 26198.39 326
miper_ehance_all_eth98.18 18098.10 17598.41 25799.23 23597.72 24798.72 32799.31 26196.60 26698.88 24199.29 28897.29 12899.13 30497.60 22295.99 28798.38 327
thres100view90097.76 24197.45 24898.69 22799.72 8597.86 24199.59 8498.74 33197.93 14099.26 17198.62 33991.75 29699.83 15193.22 33898.18 21898.37 328
tfpn200view997.72 25197.38 26198.72 22599.69 10197.96 23499.50 13398.73 33697.83 14999.17 19298.45 34491.67 30099.83 15193.22 33898.18 21898.37 328
miper_enhance_ethall98.16 18298.08 17998.41 25798.96 28997.72 24798.45 34499.32 25896.95 24198.97 22899.17 30497.06 13599.22 29097.86 19895.99 28798.29 330
tfpnnormal97.84 22997.47 24598.98 17999.20 24399.22 12299.64 6299.61 3596.32 28598.27 30599.70 13893.35 25799.44 24995.69 30595.40 30398.27 331
test20.0396.12 30695.96 30396.63 33397.44 35195.45 32499.51 12799.38 22296.55 26996.16 34699.25 29693.76 25396.17 36687.35 36394.22 32498.27 331
test_method91.10 32891.36 33190.31 34895.85 36273.72 37694.89 36599.25 27668.39 36895.82 34999.02 32180.50 36598.95 33393.64 33494.89 31598.25 333
ITE_SJBPF98.08 28199.29 22296.37 30198.92 31498.34 9098.83 24999.75 11691.09 31099.62 23095.82 30197.40 25698.25 333
KD-MVS_self_test95.00 31694.34 32196.96 32797.07 36095.39 32699.56 10599.44 19495.11 32097.13 33697.32 35791.86 29497.27 36090.35 35381.23 36398.23 335
EG-PatchMatch MVS95.97 30895.69 30896.81 33197.78 34892.79 35799.16 25398.93 31296.16 30094.08 35599.22 29982.72 36199.47 24195.67 30797.50 24698.17 336
D2MVS98.41 16198.50 15198.15 27999.26 22996.62 29499.40 18599.61 3597.71 16498.98 22699.36 27096.04 16699.67 21498.70 11197.41 25598.15 337
TDRefinement95.42 31394.57 31997.97 29189.83 37296.11 30999.48 14998.75 32896.74 25396.68 34199.88 1888.65 33799.71 20298.37 15782.74 36198.09 338
Anonymous2024052196.20 30495.89 30597.13 32397.72 34994.96 33599.79 2499.29 27093.01 34597.20 33499.03 31989.69 32798.36 34491.16 35096.13 28398.07 339
API-MVS99.04 10499.03 8299.06 16899.40 19599.31 11199.55 11499.56 5798.54 6999.33 15499.39 26398.76 5699.78 17596.98 26899.78 9498.07 339
new_pmnet96.38 30196.03 30197.41 31698.13 34495.16 33299.05 27699.20 28493.94 33597.39 32998.79 33391.61 30499.04 31590.43 35295.77 29398.05 341
thres20097.61 26697.28 27498.62 23099.64 12298.03 22899.26 23798.74 33197.68 16799.09 20898.32 34891.66 30299.81 16292.88 34298.22 21398.03 342
KD-MVS_2432*160094.62 31993.72 32597.31 31897.19 35895.82 31498.34 34899.20 28495.00 32397.57 32598.35 34687.95 34698.10 34792.87 34377.00 36698.01 343
miper_refine_blended94.62 31993.72 32597.31 31897.19 35895.82 31498.34 34899.20 28495.00 32397.57 32598.35 34687.95 34698.10 34792.87 34377.00 36698.01 343
DeepMVS_CXcopyleft93.34 34299.29 22282.27 36899.22 28085.15 36096.33 34499.05 31790.97 31299.73 19293.57 33597.77 23198.01 343
CL-MVSNet_self_test94.49 32193.97 32496.08 33796.16 36193.67 35298.33 35099.38 22295.13 31897.33 33098.15 35092.69 27596.57 36488.67 35879.87 36497.99 346
GG-mvs-BLEND98.45 25298.55 33498.16 22399.43 16893.68 37497.23 33298.46 34389.30 33199.22 29095.43 31198.22 21397.98 347
pmmvs394.09 32593.25 32896.60 33494.76 36794.49 34098.92 30798.18 35089.66 35596.48 34398.06 35186.28 35297.33 35989.68 35587.20 35597.97 348
LF4IMVS97.52 27197.46 24797.70 30898.98 28695.55 31999.29 22198.82 32698.07 12698.66 27199.64 17389.97 32399.61 23197.01 26596.68 26897.94 349
test_040296.64 29596.24 29797.85 29898.85 30396.43 30099.44 16299.26 27493.52 34096.98 33999.52 22088.52 33999.20 29792.58 34797.50 24697.93 350
MVP-Stereo97.81 23697.75 21897.99 29097.53 35096.60 29598.96 30098.85 32397.22 21697.23 33299.36 27095.28 19499.46 24395.51 30999.78 9497.92 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch97.24 28597.32 27196.99 32598.45 33893.51 35498.82 31799.32 25897.41 19998.13 31099.30 28688.99 33399.56 23595.68 30699.80 8797.90 352
ambc93.06 34392.68 36882.36 36798.47 34398.73 33695.09 35297.41 35455.55 37299.10 31196.42 29291.32 34797.71 353
new-patchmatchnet94.48 32294.08 32295.67 33995.08 36692.41 35899.18 25199.28 27294.55 33293.49 35797.37 35687.86 34897.01 36291.57 34888.36 35397.61 354
pmmvs-eth3d95.34 31594.73 31797.15 32195.53 36595.94 31299.35 20799.10 29595.13 31893.55 35697.54 35388.15 34497.91 35294.58 32389.69 35297.61 354
UnsupCasMVSNet_bld93.53 32692.51 32996.58 33597.38 35293.82 34798.24 35399.48 14591.10 35393.10 35896.66 35974.89 36798.37 34394.03 33187.71 35497.56 356
PM-MVS92.96 32792.23 33095.14 34095.61 36389.98 36599.37 19798.21 34894.80 32795.04 35397.69 35265.06 36997.90 35394.30 32689.98 35197.54 357
EGC-MVSNET82.80 33377.86 33997.62 30997.91 34596.12 30899.33 21299.28 2728.40 37625.05 37799.27 29384.11 35899.33 27389.20 35698.22 21397.42 358
LCM-MVSNet86.80 33185.22 33591.53 34687.81 37380.96 36998.23 35598.99 30671.05 36690.13 36296.51 36048.45 37596.88 36390.51 35185.30 35796.76 359
OpenMVS_ROBcopyleft92.34 2094.38 32393.70 32796.41 33697.38 35293.17 35599.06 27498.75 32886.58 35994.84 35498.26 34981.53 36499.32 27589.01 35797.87 22996.76 359
CMPMVSbinary69.68 2394.13 32494.90 31691.84 34597.24 35680.01 37098.52 34199.48 14589.01 35691.99 36099.67 15985.67 35599.13 30495.44 31097.03 26696.39 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS286.87 33085.37 33491.35 34790.21 37183.80 36698.89 31097.45 36083.13 36391.67 36195.03 36148.49 37494.70 36885.86 36677.62 36595.54 362
tmp_tt82.80 33381.52 33686.66 34966.61 37968.44 37792.79 36897.92 35368.96 36780.04 37099.85 3285.77 35496.15 36797.86 19843.89 37295.39 363
FPMVS84.93 33285.65 33382.75 35386.77 37463.39 37898.35 34798.92 31474.11 36583.39 36598.98 32650.85 37392.40 37084.54 36794.97 31292.46 364
Gipumacopyleft90.99 32990.15 33293.51 34198.73 31690.12 36493.98 36699.45 18579.32 36492.28 35994.91 36269.61 36897.98 35187.42 36295.67 29792.45 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high77.30 33774.86 34184.62 35175.88 37777.61 37297.63 36293.15 37688.81 35764.27 37289.29 36936.51 37683.93 37475.89 36952.31 37192.33 366
MVEpermissive76.82 2176.91 33874.31 34284.70 35085.38 37676.05 37596.88 36493.17 37567.39 36971.28 37189.01 37021.66 38187.69 37171.74 37072.29 36890.35 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 33974.97 34079.01 35570.98 37855.18 37993.37 36798.21 34865.08 37261.78 37393.83 36421.74 38092.53 36978.59 36891.12 34889.34 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS80.02 33679.22 33882.43 35491.19 36976.40 37397.55 36392.49 37866.36 37183.01 36691.27 36764.63 37085.79 37365.82 37260.65 37085.08 369
E-PMN80.61 33579.88 33782.81 35290.75 37076.38 37497.69 36195.76 36866.44 37083.52 36492.25 36662.54 37187.16 37268.53 37161.40 36984.89 370
test12339.01 34242.50 34428.53 35739.17 38020.91 38198.75 32419.17 38219.83 37538.57 37466.67 37233.16 37715.42 37637.50 37529.66 37449.26 371
testmvs39.17 34143.78 34325.37 35836.04 38116.84 38298.36 34626.56 38020.06 37438.51 37567.32 37129.64 37815.30 37737.59 37439.90 37343.98 372
wuyk23d40.18 34041.29 34536.84 35686.18 37549.12 38079.73 36922.81 38127.64 37325.46 37628.45 37621.98 37948.89 37555.80 37323.56 37512.51 373
test_blank0.13 3460.17 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3781.57 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.64 34332.85 3460.00 3590.00 3820.00 3830.00 37099.51 1040.00 3770.00 37899.56 20596.58 1500.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas8.27 34511.03 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 37899.01 190.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.30 34411.06 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.58 1980.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.91 199.93 199.87 599.56 5799.10 1199.81 24
test_one_060199.81 4199.88 899.49 13298.97 3599.65 7599.81 6599.09 14
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.71 9199.79 3399.61 3596.84 24899.56 9999.54 21398.58 7399.96 1996.93 27399.75 102
test_241102_ONE99.84 3399.90 299.48 14599.07 1799.91 199.74 12299.20 799.76 181
9.1499.10 7299.72 8599.40 18599.51 10497.53 18599.64 7999.78 10098.84 4599.91 9497.63 22099.82 80
save fliter99.76 5499.59 7399.14 25999.40 21299.00 26
test072699.85 2699.89 499.62 7099.50 12499.10 1199.86 1299.82 5298.94 34
test_part299.81 4199.83 1799.77 36
sam_mvs94.72 220
MTGPAbinary99.47 163
test_post199.23 24265.14 37494.18 24199.71 20297.58 224
test_post65.99 37394.65 22499.73 192
patchmatchnet-post98.70 33794.79 21299.74 185
MTMP99.54 11798.88 321
gm-plane-assit98.54 33592.96 35694.65 33099.15 30799.64 22497.56 229
TEST999.67 10699.65 6299.05 27699.41 20696.22 29498.95 23099.49 23098.77 5499.91 94
test_899.67 10699.61 6899.03 28299.41 20696.28 28798.93 23499.48 23698.76 5699.91 94
agg_prior99.67 10699.62 6699.40 21298.87 24399.91 94
test_prior499.56 7898.99 292
test_prior298.96 30098.34 9099.01 21999.52 22098.68 6697.96 19099.74 105
旧先验298.96 30096.70 25699.47 11799.94 5798.19 170
新几何299.01 290
原ACMM298.95 304
testdata299.95 4696.67 286
segment_acmp98.96 28
testdata198.85 31498.32 94
plane_prior799.29 22297.03 275
plane_prior699.27 22796.98 27992.71 273
plane_prior499.61 189
plane_prior397.00 27798.69 6299.11 200
plane_prior299.39 18998.97 35
plane_prior199.26 229
plane_prior96.97 28099.21 24998.45 7797.60 236
n20.00 383
nn0.00 383
door-mid98.05 351
test1199.35 237
door97.92 353
HQP5-MVS96.83 285
HQP-NCC99.19 24598.98 29698.24 10098.66 271
ACMP_Plane99.19 24598.98 29698.24 10098.66 271
BP-MVS97.19 256
HQP3-MVS99.39 21697.58 238
HQP2-MVS92.47 282
NP-MVS99.23 23596.92 28399.40 259
MDTV_nov1_ep1398.32 16299.11 26394.44 34199.27 22898.74 33197.51 18799.40 13799.62 18594.78 21399.76 18197.59 22398.81 190
ACMMP++_ref97.19 262
ACMMP++97.43 254
Test By Simon98.75 59