This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12797.25 9298.82 12599.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 2299.93 1
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9597.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6099.91 2
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4999.90 3
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10895.32 37798.86 298.53 8799.44 2794.38 8799.94 899.86 199.70 5899.90 3
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2299.89 5
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23697.15 9798.84 12198.97 4298.75 399.43 2799.54 893.29 10399.93 2599.64 999.79 2899.89 5
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1198.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3299.80 2299.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3299.80 2299.86 8
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 4099.86 199.85 10
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2898.88 6297.52 2999.41 2898.78 13296.00 3599.79 9897.79 8099.59 8099.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 4099.81 1599.84 12
IU-MVS99.71 1999.23 798.64 13695.28 14799.63 1898.35 5099.81 1599.83 13
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4499.80 2299.83 13
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1299.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32698.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
CHOSEN 1792x268897.12 11996.80 11698.08 13399.30 6894.56 22998.05 25199.71 193.57 23797.09 15998.91 11788.17 22299.89 4796.87 13299.56 9099.81 17
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12798.30 21798.69 12097.21 5298.84 6399.36 4295.41 5399.78 10198.62 2799.65 6899.80 18
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12598.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 7499.75 4499.79 19
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6899.53 798.80 9394.63 18198.61 8398.97 10595.13 7099.77 10697.65 9199.83 1499.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10498.94 5499.17 7495.91 3999.94 897.55 10099.79 2899.78 21
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 8999.20 6795.90 4199.89 4797.85 7699.74 4999.78 21
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 8943.50 40895.90 4199.89 4797.85 7699.74 4999.78 21
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10798.93 5899.19 7295.70 4599.94 897.62 9399.79 2899.78 21
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8199.49 595.43 13799.03 4799.32 4995.56 4899.94 896.80 13799.77 3499.78 21
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8199.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsmconf0.01_n97.86 7297.54 8198.83 6995.48 35996.83 10898.95 9098.60 14198.58 698.93 5899.55 688.57 21299.91 3999.54 1199.61 7699.77 27
dcpmvs_298.08 6098.59 1496.56 24499.57 3390.34 33399.15 4998.38 19896.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11499.39 3294.81 7799.96 497.91 7299.79 2899.77 27
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2598.81 8696.24 9998.35 9999.23 6295.46 5199.94 897.42 10799.81 1599.77 27
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1098.82 8194.46 19098.94 5499.20 6795.16 6899.74 11197.58 9699.85 599.77 27
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1798.87 6995.96 11098.60 8499.13 8296.05 3399.94 897.77 8199.86 199.77 27
HyFIR lowres test96.90 12896.49 13498.14 12499.33 5995.56 17497.38 31099.65 292.34 28697.61 14698.20 19789.29 19299.10 21296.97 12097.60 19199.77 27
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 6399.81 1599.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10798.94 5499.17 7496.06 3299.92 3197.62 9399.78 3299.75 35
CPTT-MVS97.72 7997.32 9498.92 6499.64 2897.10 9899.12 5598.81 8692.34 28698.09 10799.08 9493.01 10699.92 3196.06 15899.77 3499.75 35
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 4099.72 5599.74 37
PC_three_145295.08 16099.60 1999.16 7797.86 298.47 28597.52 10399.72 5599.74 37
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 11998.31 10299.10 8695.46 5199.93 2597.57 9999.81 1599.74 37
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12397.04 6398.52 8898.80 12996.78 1699.83 6997.93 7099.61 7699.74 37
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13498.82 8194.52 18799.23 3799.25 6195.54 5099.80 8896.52 14499.77 3499.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 5199.73 5299.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set98.41 4598.34 3598.61 8099.45 5296.32 13998.28 22098.68 12397.17 5598.74 7299.37 3895.25 6499.79 9898.57 2999.54 9399.73 42
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 5199.22 3798.79 9896.13 10597.92 12599.23 6294.54 8099.94 896.74 14099.78 3299.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5499.82 7697.70 8999.63 7399.72 45
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12598.73 7499.06 9695.27 6299.93 2597.07 11799.63 7399.72 45
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 9999.20 3899.37 3895.30 6099.80 8897.73 8399.67 6399.72 45
DeepPCF-MVS96.37 297.93 7098.48 2396.30 27099.00 11489.54 34597.43 30798.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 5299.77 3499.72 45
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.34 5899.82 7697.72 8499.65 6899.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.29 6197.72 8499.65 6899.71 49
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9298.93 11496.65 1999.83 6997.38 10999.41 11099.71 49
3Dnovator+94.38 697.43 10296.78 11999.38 1897.83 22798.52 2899.37 1398.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8499.71 49
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4499.81 1599.70 53
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17997.24 11299.73 5299.70 53
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7399.03 7199.41 695.98 10997.60 14799.36 4294.45 8599.93 2597.14 11498.85 13999.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 4099.81 1599.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test9_res96.39 14999.57 8499.69 56
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7099.16 7797.05 1399.78 10198.06 6399.66 6599.69 56
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8497.91 26699.58 397.20 5398.33 10099.00 10395.99 3699.64 13198.05 6599.76 4099.69 56
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6099.28 5495.27 6299.82 7697.55 10099.77 3499.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg97.97 6597.52 8299.33 2699.31 6498.50 2997.92 26498.73 11192.98 26397.74 13398.68 14596.20 2899.80 8896.59 14199.57 8499.68 61
agg_prior295.87 16599.57 8499.68 61
CDPH-MVS97.94 6997.49 8399.28 3299.47 4798.44 3197.91 26698.67 12892.57 27898.77 6998.85 12295.93 3899.72 11395.56 17799.69 6099.68 61
DP-MVS96.59 13995.93 15698.57 8399.34 5796.19 14598.70 16098.39 19489.45 35494.52 24099.35 4491.85 13799.85 6392.89 26398.88 13699.68 61
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15599.32 3399.39 3296.22 2699.84 6797.72 8499.73 5299.67 65
MP-MVS-pluss98.31 5697.92 6599.49 1299.72 1298.88 1898.43 20398.78 10094.10 19997.69 13899.42 2995.25 6499.92 3198.09 6299.80 2299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MG-MVS97.81 7597.60 7598.44 9999.12 10295.97 15597.75 28598.78 10096.89 7098.46 8999.22 6493.90 9799.68 12594.81 20099.52 9699.67 65
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10398.83 12595.70 4599.92 3197.53 10299.67 6399.66 68
UA-Net97.96 6797.62 7498.98 5998.86 13097.47 8098.89 10399.08 3296.67 8298.72 7599.54 893.15 10599.81 8194.87 19698.83 14099.65 69
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5899.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator94.51 597.46 9796.93 11199.07 5397.78 23097.64 7199.35 1699.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4499.64 71
test111195.94 16995.78 16096.41 26298.99 11890.12 33599.04 6892.45 39996.99 6698.03 11299.27 5681.40 32499.48 16496.87 13299.04 12799.63 73
test1299.18 4299.16 9898.19 5098.53 16298.07 10895.13 7099.72 11399.56 9099.63 73
旧先验199.29 7397.48 7898.70 11999.09 9295.56 4899.47 10399.61 75
test22299.23 8897.17 9697.40 30898.66 13188.68 36398.05 10998.96 11094.14 9399.53 9599.61 75
无先验97.58 29998.72 11391.38 31399.87 5893.36 24799.60 77
CVMVSNet95.43 19696.04 15193.57 34697.93 22283.62 38498.12 24298.59 14495.68 12696.56 18699.02 9887.51 23997.51 35893.56 24397.44 19499.60 77
test250694.44 26493.91 26196.04 27899.02 11188.99 35599.06 6379.47 41396.96 6798.36 9799.26 5777.21 35899.52 15696.78 13899.04 12799.59 79
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32199.03 7191.80 40096.96 6798.10 10699.26 5781.31 32599.51 15796.90 12699.04 12799.59 79
新几何199.16 4599.34 5798.01 6198.69 12090.06 34398.13 10498.95 11294.60 7999.89 4791.97 28899.47 10399.59 79
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5799.04 6899.09 3193.32 24798.83 6699.10 8696.54 2199.83 6997.70 8999.76 4099.59 79
testdata98.26 11599.20 9295.36 18498.68 12391.89 30098.60 8499.10 8694.44 8699.82 7694.27 21999.44 10799.58 83
Test_1112_low_res96.34 15395.66 17198.36 10698.56 15995.94 15897.71 28898.07 25892.10 29594.79 23597.29 27291.75 13999.56 14594.17 22296.50 21999.58 83
1112_ss96.63 13796.00 15398.50 9198.56 15996.37 13698.18 23698.10 25192.92 26694.84 23198.43 16992.14 12899.58 14194.35 21596.51 21899.56 85
PAPM_NR97.46 9797.11 10398.50 9199.50 4196.41 13398.63 17498.60 14195.18 15297.06 16398.06 20694.26 9199.57 14293.80 23598.87 13899.52 86
CSCG97.85 7497.74 7198.20 12199.67 2595.16 19599.22 3799.32 1193.04 26197.02 16598.92 11695.36 5799.91 3997.43 10699.64 7299.52 86
DeepC-MVS95.98 397.88 7197.58 7698.77 7199.25 8196.93 10398.83 12398.75 10696.96 6796.89 17299.50 1590.46 17199.87 5897.84 7899.76 4099.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet98.05 6297.76 6998.90 6798.73 13997.27 8798.35 20898.78 10097.37 4197.72 13698.96 11091.53 14899.92 3198.79 2499.65 6899.51 89
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9298.11 24498.29 21797.19 5498.99 5299.02 9896.22 2699.67 12698.52 3898.56 15399.51 89
原ACMM198.65 7799.32 6296.62 11698.67 12893.27 25197.81 12898.97 10595.18 6799.83 6993.84 23399.46 10699.50 91
VNet97.79 7697.40 9098.96 6298.88 12797.55 7598.63 17498.93 5096.74 7899.02 4898.84 12390.33 17499.83 6998.53 3296.66 21299.50 91
EPNet97.28 11096.87 11498.51 9094.98 36896.14 14798.90 9997.02 34098.28 1095.99 20799.11 8491.36 15099.89 4796.98 11999.19 12399.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu97.70 8197.46 8698.44 9999.27 7895.91 16398.63 17499.16 2794.48 18997.67 13998.88 11992.80 11299.91 3997.11 11599.12 12599.50 91
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26199.58 397.14 5898.44 9499.01 10295.03 7399.62 13797.91 7299.75 4499.50 91
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18198.86 11599.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10899.49 96
casdiffmvs_mvgpermissive97.72 7997.48 8598.44 9998.42 16896.59 12198.92 9798.44 18496.20 10197.76 13099.20 6791.66 14299.23 19198.27 5698.41 16299.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive97.63 8797.41 8998.28 11198.33 18196.14 14798.82 12598.32 20796.38 9697.95 12099.21 6591.23 15699.23 19198.12 6098.37 16399.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS97.37 10896.92 11298.72 7398.86 13096.89 10798.31 21598.71 11695.26 14897.67 13998.56 16092.21 12699.78 10195.89 16396.85 20799.48 98
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6399.28 5496.47 2399.40 17598.52 3899.70 5899.47 100
114514_t96.93 12696.27 14398.92 6499.50 4197.63 7298.85 11798.90 5784.80 38397.77 12999.11 8492.84 11199.66 12894.85 19799.77 3499.47 100
IS-MVSNet97.22 11296.88 11398.25 11698.85 13296.36 13799.19 4497.97 26995.39 13997.23 15598.99 10491.11 15998.93 23794.60 20798.59 15199.47 100
PAPR96.84 13196.24 14598.65 7798.72 14396.92 10497.36 31498.57 15193.33 24696.67 18097.57 25394.30 8999.56 14591.05 30798.59 15199.47 100
LFMVS95.86 17494.98 20198.47 9598.87 12996.32 13998.84 12196.02 36793.40 24498.62 8299.20 6774.99 37199.63 13497.72 8497.20 19899.46 104
Vis-MVSNet (Re-imp)96.87 12996.55 13197.83 14798.73 13995.46 17999.20 4298.30 21594.96 16696.60 18598.87 12090.05 17798.59 27393.67 23998.60 15099.46 104
Vis-MVSNetpermissive97.42 10397.11 10398.34 10798.66 15096.23 14299.22 3799.00 3996.63 8498.04 11199.21 6588.05 22899.35 18096.01 16199.21 12199.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n95.47 19295.13 19296.49 25297.77 23190.41 33199.27 2798.11 24896.58 8599.66 1599.18 7367.00 39099.62 13799.21 1599.40 11399.44 107
Anonymous20240521195.28 20894.49 22297.67 16599.00 11493.75 25798.70 16097.04 33790.66 33196.49 19298.80 12978.13 35099.83 6996.21 15495.36 24999.44 107
GeoE96.58 14196.07 14998.10 13298.35 17495.89 16599.34 1798.12 24593.12 25896.09 20398.87 12089.71 18398.97 22792.95 25998.08 17499.43 109
DPM-MVS97.55 9596.99 10999.23 3899.04 10998.55 2797.17 33198.35 20394.85 17397.93 12498.58 15795.07 7299.71 11892.60 26799.34 11799.43 109
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28598.89 5997.71 1998.33 10098.97 10594.97 7499.88 5698.42 4699.76 4099.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline97.64 8697.44 8898.25 11698.35 17496.20 14399.00 7898.32 20796.33 9898.03 11299.17 7491.35 15199.16 19898.10 6198.29 16999.39 112
sss97.39 10596.98 11098.61 8098.60 15796.61 11898.22 22598.93 5093.97 20798.01 11798.48 16691.98 13499.85 6396.45 14698.15 17199.39 112
EPP-MVSNet97.46 9797.28 9597.99 13998.64 15395.38 18399.33 2198.31 20993.61 23697.19 15699.07 9594.05 9499.23 19196.89 12798.43 16199.37 114
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11997.66 24295.39 18298.89 10399.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11099.35 115
test_yl97.22 11296.78 11998.54 8798.73 13996.60 11998.45 19898.31 20994.70 17598.02 11498.42 17190.80 16599.70 11996.81 13596.79 20999.34 116
DCV-MVSNet97.22 11296.78 11998.54 8798.73 13996.60 11998.45 19898.31 20994.70 17598.02 11498.42 17190.80 16599.70 11996.81 13596.79 20999.34 116
diffmvspermissive97.58 9297.40 9098.13 12798.32 18495.81 16898.06 25098.37 20096.20 10198.74 7298.89 11891.31 15499.25 18898.16 5998.52 15499.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 9397.49 8397.84 14698.07 20795.76 16999.47 898.40 19294.98 16498.79 6798.83 12592.34 11998.41 29896.91 12399.59 8099.34 116
jason97.32 10997.08 10598.06 13697.45 26195.59 17297.87 27497.91 27594.79 17498.55 8698.83 12591.12 15899.23 19197.58 9699.60 7899.34 116
jason: jason.
QAPM96.29 15495.40 17598.96 6297.85 22697.60 7499.23 3398.93 5089.76 34893.11 30699.02 9889.11 19899.93 2591.99 28699.62 7599.34 116
mvs_anonymous96.70 13696.53 13397.18 19498.19 19793.78 25498.31 21598.19 23094.01 20494.47 24298.27 19192.08 13298.46 28697.39 10897.91 17899.31 122
lupinMVS97.44 10197.22 9998.12 13098.07 20795.76 16997.68 29097.76 28294.50 18898.79 6798.61 15292.34 11999.30 18497.58 9699.59 8099.31 122
CDS-MVSNet96.99 12496.69 12597.90 14498.05 21195.98 15098.20 22898.33 20693.67 23296.95 16698.49 16593.54 9998.42 29195.24 18997.74 18699.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38192.81 39695.93 37291.87 30187.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
BH-RMVSNet95.92 17195.32 18497.69 16298.32 18494.64 22198.19 23197.45 31294.56 18396.03 20598.61 15285.02 28399.12 20690.68 31299.06 12699.30 125
Patchmatch-test94.42 26593.68 28196.63 23497.60 24691.76 30494.83 38697.49 30789.45 35494.14 26397.10 28388.99 20198.83 25385.37 36698.13 17299.29 127
TAMVS97.02 12396.79 11897.70 16198.06 21095.31 18998.52 18998.31 20993.95 20897.05 16498.61 15293.49 10098.52 28095.33 18397.81 18299.29 127
test_vis1_n_192096.71 13596.84 11596.31 26999.11 10489.74 34099.05 6598.58 14998.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6099.27 129
PVSNet_Blended97.38 10697.12 10298.14 12499.25 8195.35 18697.28 32199.26 1593.13 25797.94 12298.21 19692.74 11399.81 8196.88 12999.40 11399.27 129
test_cas_vis1_n_192097.38 10697.36 9297.45 17798.95 12193.25 28099.00 7898.53 16297.70 2099.77 799.35 4484.71 29299.85 6398.57 2999.66 6599.26 131
PatchmatchNetpermissive95.71 18195.52 17396.29 27197.58 24790.72 32596.84 35597.52 30394.06 20097.08 16096.96 30789.24 19498.90 24392.03 28598.37 16399.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19198.85 11799.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9699.25 133
CHOSEN 280x42097.18 11697.18 10197.20 19198.81 13593.27 27895.78 37699.15 2895.25 14996.79 17898.11 20392.29 12199.07 21598.56 3199.85 599.25 133
mvsany_test197.69 8297.70 7297.66 16898.24 18994.18 24497.53 30197.53 30295.52 13399.66 1599.51 1394.30 8999.56 14598.38 4798.62 14999.23 135
PLCcopyleft95.07 497.20 11596.78 11998.44 9999.29 7396.31 14198.14 23998.76 10492.41 28496.39 19798.31 18694.92 7699.78 10194.06 22798.77 14399.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LCM-MVSNet-Re95.22 21195.32 18494.91 31998.18 19987.85 37398.75 14295.66 37495.11 15688.96 36096.85 31690.26 17697.65 35195.65 17598.44 15999.22 137
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 13198.54 16295.24 19298.87 11299.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9399.21 138
GSMVS99.20 139
sam_mvs189.45 18899.20 139
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17397.45 3598.88 6199.14 8195.25 6499.15 20198.83 2399.56 9099.20 139
SCA95.46 19395.13 19296.46 25897.67 24091.29 31497.33 31797.60 29194.68 17896.92 17097.10 28383.97 30998.89 24492.59 26998.32 16899.20 139
Effi-MVS+97.12 11996.69 12598.39 10598.19 19796.72 11497.37 31298.43 18893.71 22597.65 14398.02 20992.20 12799.25 18896.87 13297.79 18399.19 143
alignmvs97.56 9497.07 10699.01 5698.66 15098.37 4098.83 12398.06 26396.74 7898.00 11897.65 24590.80 16599.48 16498.37 4896.56 21699.19 143
EC-MVSNet98.21 5898.11 5698.49 9398.34 17997.26 9199.61 598.43 18896.78 7498.87 6298.84 12393.72 9899.01 22598.91 2099.50 9899.19 143
DP-MVS Recon97.86 7297.46 8699.06 5499.53 3698.35 4298.33 21098.89 5992.62 27598.05 10998.94 11395.34 5899.65 12996.04 15999.42 10999.19 143
OMC-MVS97.55 9597.34 9398.20 12199.33 5995.92 16298.28 22098.59 14495.52 13397.97 11999.10 8693.28 10499.49 15995.09 19198.88 13699.19 143
MDTV_nov1_ep13_2view84.26 38296.89 35190.97 32897.90 12689.89 18093.91 23199.18 148
iter_conf05_1198.04 6397.94 6498.34 10798.60 15796.38 13499.24 3198.57 15195.90 11398.99 5298.79 13192.97 10899.47 16798.58 2899.85 599.17 149
MVS_Test97.28 11097.00 10898.13 12798.33 18195.97 15598.74 14598.07 25894.27 19598.44 9498.07 20592.48 11699.26 18796.43 14798.19 17099.16 150
ab-mvs96.42 14895.71 16698.55 8598.63 15496.75 11297.88 27398.74 10893.84 21496.54 19098.18 19985.34 27899.75 10995.93 16296.35 22299.15 151
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 30096.08 36998.68 12393.69 22897.75 13297.80 23388.86 20799.69 12494.26 22099.01 13099.15 151
tpm94.13 28493.80 27095.12 31396.50 32287.91 37297.44 30595.89 37392.62 27596.37 19896.30 33684.13 30698.30 31193.24 24991.66 30399.14 153
F-COLMAP97.09 12196.80 11697.97 14099.45 5294.95 20898.55 18798.62 14093.02 26296.17 20298.58 15794.01 9599.81 8193.95 22998.90 13499.14 153
Anonymous2024052995.10 21894.22 23797.75 15699.01 11394.26 24198.87 11298.83 8085.79 37996.64 18198.97 10578.73 34399.85 6396.27 15094.89 25099.12 155
h-mvs3396.17 15995.62 17297.81 15099.03 11094.45 23198.64 17198.75 10697.48 3298.67 7698.72 14189.76 18199.86 6297.95 6881.59 38199.11 156
PMMVS96.60 13896.33 14097.41 18197.90 22493.93 25097.35 31598.41 19092.84 26997.76 13097.45 26191.10 16099.20 19596.26 15197.91 17899.11 156
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 17997.17 5598.94 5499.10 8695.73 4499.13 20498.71 2599.49 10099.09 158
GA-MVS94.81 23694.03 25097.14 19797.15 28493.86 25296.76 35897.58 29294.00 20594.76 23697.04 29780.91 32998.48 28291.79 29196.25 23399.09 158
EPNet_dtu95.21 21294.95 20395.99 28096.17 33590.45 33098.16 23897.27 32396.77 7593.14 30598.33 18490.34 17398.42 29185.57 36398.81 14299.09 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.98 795.35 20494.56 21997.74 15799.13 10194.83 21498.33 21098.64 13686.62 37196.29 19998.61 15294.00 9699.29 18580.00 38599.41 11099.09 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net97.62 8897.19 10098.92 6498.66 15098.20 4999.32 2298.38 19896.69 8197.58 14897.42 26592.10 13099.50 15898.28 5396.25 23399.08 162
sasdasda97.67 8397.23 9798.98 5998.70 14498.38 3599.34 1798.39 19496.76 7697.67 13997.40 26692.26 12299.49 15998.28 5396.28 23099.08 162
canonicalmvs97.67 8397.23 9798.98 5998.70 14498.38 3599.34 1798.39 19496.76 7697.67 13997.40 26692.26 12299.49 15998.28 5396.28 23099.08 162
VDD-MVS95.82 17795.23 18897.61 17198.84 13393.98 24898.68 16497.40 31695.02 16297.95 12099.34 4874.37 37699.78 10198.64 2696.80 20899.08 162
MVSMamba_pp98.02 6497.82 6698.61 8098.25 18897.32 8498.73 14998.56 15596.18 10398.84 6398.72 14192.90 11099.45 17098.37 4899.85 599.07 166
mamv497.97 6597.75 7098.63 7998.28 18797.36 8398.72 15498.57 15195.76 12098.76 7098.70 14392.91 10999.45 17098.24 5799.84 1299.07 166
EIA-MVS97.75 7797.58 7698.27 11298.38 17196.44 12999.01 7698.60 14195.88 11597.26 15497.53 25694.97 7499.33 18297.38 10999.20 12299.05 168
tttt051796.07 16295.51 17497.78 15298.41 17094.84 21299.28 2594.33 38894.26 19697.64 14498.64 15084.05 30799.47 16795.34 18297.60 19199.03 169
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17298.22 19296.20 14397.31 31995.37 37694.53 18579.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 170
ADS-MVSNet294.58 25194.40 23195.11 31498.00 21388.74 35996.04 37097.30 32090.15 34196.47 19396.64 32787.89 23197.56 35690.08 31997.06 20099.02 170
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21391.91 30296.04 37097.74 28490.15 34196.47 19396.64 32787.89 23198.96 23190.08 31997.06 20099.02 170
CNLPA97.45 10097.03 10798.73 7299.05 10897.44 8298.07 24998.53 16295.32 14596.80 17798.53 16193.32 10199.72 11394.31 21899.31 11999.02 170
AdaColmapbinary97.15 11896.70 12498.48 9499.16 9896.69 11598.01 25598.89 5994.44 19196.83 17398.68 14590.69 16899.76 10794.36 21499.29 12098.98 174
Fast-Effi-MVS+96.28 15695.70 16898.03 13798.29 18695.97 15598.58 18098.25 22391.74 30395.29 22397.23 27791.03 16299.15 20192.90 26197.96 17798.97 175
EPMVS94.99 22594.48 22396.52 25097.22 27691.75 30597.23 32391.66 40194.11 19897.28 15396.81 31885.70 27198.84 25093.04 25697.28 19798.97 175
LS3D97.16 11796.66 12898.68 7598.53 16397.19 9598.93 9598.90 5792.83 27095.99 20799.37 3892.12 12999.87 5893.67 23999.57 8498.97 175
HY-MVS93.96 896.82 13296.23 14698.57 8398.46 16797.00 10098.14 23998.21 22693.95 20896.72 17997.99 21391.58 14399.76 10794.51 21196.54 21798.95 178
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 13098.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4498.94 179
thisisatest053096.01 16495.36 18097.97 14098.38 17195.52 17798.88 10894.19 39094.04 20197.64 14498.31 18683.82 31499.46 16995.29 18697.70 18898.93 180
MIMVSNet93.26 30792.21 31696.41 26297.73 23693.13 28495.65 37797.03 33891.27 32294.04 26896.06 34675.33 36997.19 36386.56 35696.23 23598.92 181
baseline195.84 17595.12 19498.01 13898.49 16695.98 15098.73 14997.03 33895.37 14296.22 20098.19 19889.96 17999.16 19894.60 20787.48 35398.90 182
test_fmvs1_n95.90 17295.99 15495.63 29698.67 14988.32 36799.26 2898.22 22596.40 9499.67 1499.26 5773.91 37799.70 11999.02 1899.50 9898.87 183
TESTMET0.1,194.18 28293.69 28095.63 29696.92 29689.12 35196.91 34694.78 38393.17 25494.88 23096.45 33378.52 34598.92 23893.09 25398.50 15698.85 184
dp94.15 28393.90 26294.90 32097.31 27186.82 37896.97 34197.19 32791.22 32496.02 20696.61 32985.51 27499.02 22390.00 32394.30 25298.85 184
ETVMVS94.50 25893.44 29197.68 16498.18 19995.35 18698.19 23197.11 33093.73 22296.40 19695.39 36374.53 37398.84 25091.10 30296.31 22598.84 186
PAPM94.95 23094.00 25497.78 15297.04 28995.65 17196.03 37298.25 22391.23 32394.19 26197.80 23391.27 15598.86 24982.61 37997.61 19098.84 186
VDDNet95.36 20394.53 22097.86 14598.10 20695.13 19898.85 11797.75 28390.46 33598.36 9799.39 3273.27 37999.64 13197.98 6696.58 21598.81 188
FE-MVS95.62 18794.90 20597.78 15298.37 17394.92 20997.17 33197.38 31890.95 32997.73 13597.70 23985.32 28099.63 13491.18 30098.33 16698.79 189
CostFormer94.95 23094.73 21295.60 29897.28 27289.06 35297.53 30196.89 34989.66 35096.82 17596.72 32286.05 26598.95 23695.53 17996.13 23898.79 189
UGNet96.78 13396.30 14298.19 12398.24 18995.89 16598.88 10898.93 5097.39 3896.81 17697.84 22782.60 31999.90 4596.53 14399.49 10098.79 189
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testing9194.98 22794.25 23697.20 19197.94 22093.41 27198.00 25797.58 29294.99 16395.45 21896.04 34777.20 35999.42 17494.97 19596.02 24098.78 192
test_fmvs196.42 14896.67 12795.66 29598.82 13488.53 36398.80 13498.20 22896.39 9599.64 1799.20 6780.35 33599.67 12699.04 1799.57 8498.78 192
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28193.38 27498.74 14598.57 15191.21 32593.81 27998.58 15772.85 38098.77 25995.05 19393.93 26898.77 194
testing1195.00 22394.28 23497.16 19697.96 21993.36 27698.09 24797.06 33694.94 16995.33 22296.15 34376.89 36299.40 17595.77 17096.30 22698.72 195
test-LLR95.10 21894.87 20795.80 29096.77 30589.70 34196.91 34695.21 37895.11 15694.83 23395.72 35887.71 23598.97 22793.06 25498.50 15698.72 195
test-mter94.08 29093.51 28895.80 29096.77 30589.70 34196.91 34695.21 37892.89 26794.83 23395.72 35877.69 35398.97 22793.06 25498.50 15698.72 195
FA-MVS(test-final)96.41 15195.94 15597.82 14998.21 19395.20 19497.80 28197.58 29293.21 25297.36 15297.70 23989.47 18799.56 14594.12 22497.99 17598.71 198
MAR-MVS96.91 12796.40 13898.45 9798.69 14796.90 10598.66 16998.68 12392.40 28597.07 16297.96 21691.54 14799.75 10993.68 23798.92 13398.69 199
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9994.83 23594.08 24797.07 20397.94 22093.13 28498.10 24697.17 32894.86 17195.34 21996.00 35076.31 36599.40 17595.08 19295.90 24198.68 200
thisisatest051595.61 19094.89 20697.76 15598.15 20395.15 19796.77 35794.41 38692.95 26597.18 15797.43 26384.78 28999.45 17094.63 20497.73 18798.68 200
BH-untuned95.95 16795.72 16396.65 23098.55 16192.26 29598.23 22497.79 28193.73 22294.62 23798.01 21188.97 20599.00 22693.04 25698.51 15598.68 200
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15596.77 11195.48 38098.20 22884.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13298.68 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CANet_DTU96.96 12596.55 13198.21 11998.17 20296.07 14997.98 25998.21 22697.24 5097.13 15898.93 11486.88 25199.91 3995.00 19499.37 11698.66 204
PatchMatch-RL96.59 13996.03 15298.27 11299.31 6496.51 12697.91 26699.06 3493.72 22496.92 17098.06 20688.50 21799.65 12991.77 29299.00 13198.66 204
tpmrst95.63 18695.69 16995.44 30497.54 25288.54 36296.97 34197.56 29593.50 23997.52 15096.93 31189.49 18599.16 19895.25 18896.42 22198.64 206
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25793.41 27197.09 33695.99 36893.32 24792.47 32595.73 35678.06 35199.53 15394.59 20982.98 37698.62 207
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SDMVSNet96.85 13096.42 13698.14 12499.30 6896.38 13499.21 4099.23 2095.92 11195.96 20998.76 13885.88 26899.44 17397.93 7095.59 24598.60 208
sd_testset96.17 15995.76 16197.42 18099.30 6894.34 23898.82 12599.08 3295.92 11195.96 20998.76 13882.83 31899.32 18395.56 17795.59 24598.60 208
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 35992.65 31895.73 35685.01 28495.76 38486.24 35897.76 18598.59 210
tpm294.19 27993.76 27595.46 30397.23 27589.04 35397.31 31996.85 35387.08 37096.21 20196.79 31983.75 31598.74 26092.43 27796.23 23598.59 210
ETV-MVS97.96 6797.81 6798.40 10498.42 16897.27 8798.73 14998.55 15896.84 7198.38 9697.44 26295.39 5499.35 18097.62 9398.89 13598.58 212
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18196.15 14698.97 8499.15 2898.55 798.45 9299.55 694.26 9199.97 199.65 799.66 6598.57 213
testing22294.12 28693.03 30097.37 18698.02 21294.66 21997.94 26396.65 36094.63 18195.78 21395.76 35371.49 38198.92 23891.17 30195.88 24298.52 214
MSDG95.93 17095.30 18697.83 14798.90 12495.36 18496.83 35698.37 20091.32 31894.43 24798.73 14090.27 17599.60 13990.05 32198.82 14198.52 214
PatchT93.06 31391.97 31996.35 26696.69 31292.67 29194.48 39297.08 33286.62 37197.08 16092.23 39287.94 23097.90 34178.89 38996.69 21198.49 216
CR-MVSNet94.76 23994.15 24396.59 24097.00 29093.43 26994.96 38297.56 29592.46 27996.93 16896.24 33788.15 22397.88 34587.38 35296.65 21398.46 217
RPMNet92.81 31591.34 32497.24 18997.00 29093.43 26994.96 38298.80 9382.27 38996.93 16892.12 39386.98 24999.82 7676.32 39496.65 21398.46 217
thres600view795.49 19194.77 20997.67 16598.98 11995.02 20198.85 11796.90 34795.38 14096.63 18296.90 31284.29 29999.59 14088.65 34396.33 22398.40 219
thres40095.38 20094.62 21697.65 16998.94 12294.98 20598.68 16496.93 34595.33 14396.55 18896.53 33084.23 30399.56 14588.11 34696.29 22798.40 219
TR-MVS94.94 23294.20 23897.17 19597.75 23294.14 24597.59 29897.02 34092.28 29095.75 21497.64 24783.88 31198.96 23189.77 32596.15 23798.40 219
UWE-MVS94.30 27193.89 26495.53 29997.83 22788.95 35697.52 30393.25 39494.44 19196.63 18297.07 29078.70 34499.28 18691.99 28697.56 19398.36 222
JIA-IIPM93.35 30392.49 31195.92 28496.48 32490.65 32795.01 38196.96 34385.93 37796.08 20487.33 39887.70 23798.78 25891.35 29895.58 24798.34 223
PVSNet_088.72 1991.28 32990.03 33595.00 31797.99 21587.29 37694.84 38598.50 17392.06 29689.86 35395.19 36679.81 33899.39 17892.27 27869.79 40198.33 224
131496.25 15895.73 16297.79 15197.13 28595.55 17698.19 23198.59 14493.47 24192.03 33497.82 23191.33 15299.49 15994.62 20698.44 15998.32 225
dmvs_re94.48 26194.18 24195.37 30697.68 23990.11 33698.54 18897.08 33294.56 18394.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 226
RPSCF94.87 23495.40 17593.26 35298.89 12582.06 39098.33 21098.06 26390.30 34096.56 18699.26 5787.09 24699.49 15993.82 23496.32 22498.24 226
hse-mvs295.71 18195.30 18696.93 21298.50 16493.53 26698.36 20798.10 25197.48 3298.67 7697.99 21389.76 18199.02 22397.95 6880.91 38698.22 228
AUN-MVS94.53 25593.73 27796.92 21598.50 16493.52 26798.34 20998.10 25193.83 21695.94 21197.98 21585.59 27399.03 22094.35 21580.94 38598.22 228
bld_raw_dy_0_6497.09 12196.76 12398.08 13398.89 12596.54 12598.17 23798.52 16588.80 36295.67 21598.83 12593.32 10199.48 16498.86 2199.75 4498.21 230
tpmvs94.60 24894.36 23295.33 30897.46 25888.60 36196.88 35297.68 28591.29 32093.80 28096.42 33488.58 21199.24 19091.06 30596.04 23998.17 231
BH-w/o95.38 20095.08 19696.26 27298.34 17991.79 30397.70 28997.43 31492.87 26894.24 25897.22 27888.66 21098.84 25091.55 29697.70 18898.16 232
tpm cat193.36 30292.80 30495.07 31697.58 24787.97 37196.76 35897.86 27882.17 39093.53 28796.04 34786.13 26399.13 20489.24 33695.87 24398.10 233
MVS94.67 24593.54 28798.08 13396.88 30096.56 12398.19 23198.50 17378.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16598.04 234
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28298.59 17898.18 23391.36 31493.52 28898.77 13484.67 29399.72 11389.70 32897.87 18098.02 235
TestCases96.99 20699.25 8193.21 28298.18 23391.36 31493.52 28898.77 13484.67 29399.72 11389.70 32897.87 18098.02 235
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 30895.09 19995.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16697.88 237
baseline295.11 21794.52 22196.87 21796.65 31593.56 26398.27 22294.10 39293.45 24292.02 33597.43 26387.45 24399.19 19693.88 23297.41 19697.87 238
tt080594.54 25393.85 26796.63 23497.98 21793.06 28898.77 14197.84 27993.67 23293.80 28098.04 20876.88 36398.96 23194.79 20192.86 28997.86 239
thres100view90095.38 20094.70 21397.41 18198.98 11994.92 20998.87 11296.90 34795.38 14096.61 18496.88 31384.29 29999.56 14588.11 34696.29 22797.76 240
tfpn200view995.32 20794.62 21697.43 17998.94 12294.98 20598.68 16496.93 34595.33 14396.55 18896.53 33084.23 30399.56 14588.11 34696.29 22797.76 240
XVG-OURS-SEG-HR96.51 14496.34 13997.02 20598.77 13793.76 25597.79 28398.50 17395.45 13696.94 16799.09 9287.87 23399.55 15296.76 13995.83 24497.74 242
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28297.32 8499.21 4098.97 4289.96 34491.14 34299.05 9786.64 25499.92 3193.38 24599.47 10397.73 243
testgi93.06 31392.45 31394.88 32296.43 32689.90 33798.75 14297.54 30195.60 12991.63 33997.91 21974.46 37597.02 36586.10 35993.67 27297.72 244
XVG-OURS96.55 14396.41 13796.99 20698.75 13893.76 25597.50 30498.52 16595.67 12796.83 17399.30 5288.95 20699.53 15395.88 16496.26 23297.69 245
cascas94.63 24793.86 26696.93 21296.91 29894.27 24096.00 37398.51 16885.55 38094.54 23996.23 33984.20 30598.87 24795.80 16896.98 20597.66 246
testing393.19 31092.48 31295.30 30998.07 20792.27 29498.64 17197.17 32893.94 21093.98 27197.04 29767.97 38796.01 38288.40 34497.14 19997.63 247
Syy-MVS92.55 31892.61 30992.38 35997.39 26783.41 38597.91 26697.46 30893.16 25593.42 29495.37 36484.75 29096.12 38077.00 39396.99 20297.60 248
myMVS_eth3d92.73 31692.01 31894.89 32197.39 26790.94 31997.91 26697.46 30893.16 25593.42 29495.37 36468.09 38696.12 38088.34 34596.99 20297.60 248
test0.0.03 194.08 29093.51 28895.80 29095.53 35792.89 29097.38 31095.97 36995.11 15692.51 32496.66 32487.71 23596.94 36787.03 35493.67 27297.57 250
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24782.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14497.43 251
xiu_mvs_v2_base97.66 8597.70 7297.56 17498.61 15695.46 17997.44 30598.46 18097.15 5798.65 8198.15 20094.33 8899.80 8897.84 7898.66 14897.41 252
Effi-MVS+-dtu96.29 15496.56 13095.51 30097.89 22590.22 33498.80 13498.10 25196.57 8796.45 19596.66 32490.81 16498.91 24095.72 17197.99 17597.40 253
PS-MVSNAJ97.73 7897.77 6897.62 17098.68 14895.58 17397.34 31698.51 16897.29 4498.66 8097.88 22394.51 8199.90 4597.87 7599.17 12497.39 254
thres20095.25 20994.57 21897.28 18898.81 13594.92 20998.20 22897.11 33095.24 15196.54 19096.22 34184.58 29699.53 15387.93 35096.50 21997.39 254
xiu_mvs_v1_base_debu97.60 8997.56 7897.72 15898.35 17495.98 15097.86 27598.51 16897.13 5999.01 4998.40 17391.56 14499.80 8898.53 3298.68 14497.37 256
xiu_mvs_v1_base97.60 8997.56 7897.72 15898.35 17495.98 15097.86 27598.51 16897.13 5999.01 4998.40 17391.56 14499.80 8898.53 3298.68 14497.37 256
xiu_mvs_v1_base_debi97.60 8997.56 7897.72 15898.35 17495.98 15097.86 27598.51 16897.13 5999.01 4998.40 17391.56 14499.80 8898.53 3298.68 14497.37 256
API-MVS97.41 10497.25 9697.91 14398.70 14496.80 10998.82 12598.69 12094.53 18598.11 10598.28 18894.50 8499.57 14294.12 22499.49 10097.37 256
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28597.74 23591.74 30698.69 16398.15 24195.56 13194.92 22997.68 24488.98 20498.79 25793.19 25197.78 18497.20 260
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28198.58 18098.11 24889.92 34593.57 28699.10 8686.37 26099.79 9890.78 31098.10 17397.09 261
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 20099.16 4898.50 17395.87 11693.84 27898.34 18394.51 8198.61 27096.88 12993.45 28097.06 262
nrg03096.28 15695.72 16397.96 14296.90 29998.15 5499.39 1198.31 20995.47 13594.42 24898.35 17992.09 13198.69 26397.50 10489.05 33797.04 263
FIs96.51 14496.12 14897.67 16597.13 28597.54 7699.36 1499.22 2395.89 11494.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 264
FC-MVSNet-test96.42 14896.05 15097.53 17596.95 29497.27 8799.36 1499.23 2095.83 11793.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 265
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24594.69 17792.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 266
mvsmamba96.57 14296.32 14197.32 18796.60 31696.43 13099.54 697.98 26896.49 8895.20 22498.64 15090.82 16398.55 27597.97 6793.65 27496.98 266
VPNet94.99 22594.19 23997.40 18397.16 28396.57 12298.71 15698.97 4295.67 12794.84 23198.24 19580.36 33498.67 26796.46 14587.32 35796.96 268
XXY-MVS95.20 21394.45 22797.46 17696.75 30896.56 12398.86 11598.65 13593.30 24993.27 29998.27 19184.85 28798.87 24794.82 19991.26 30896.96 268
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13799.03 7199.03 3795.04 16193.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 270
HQP_MVS96.14 16195.90 15796.85 21897.42 26394.60 22798.80 13498.56 15597.28 4595.34 21998.28 18887.09 24699.03 22096.07 15594.27 25396.92 271
plane_prior598.56 15599.03 22096.07 15594.27 25396.92 271
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18396.84 30296.97 10198.74 14599.24 1795.16 15393.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 271
DU-MVS95.42 19794.76 21097.40 18396.53 32096.97 10198.66 16998.99 4195.43 13793.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 271
NR-MVSNet94.98 22794.16 24297.44 17896.53 32097.22 9498.74 14598.95 4694.96 16689.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 271
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22299.14 5198.52 16595.74 12293.22 30098.36 17883.87 31298.65 26896.95 12294.04 26296.91 276
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23399.00 7898.55 15895.73 12493.21 30198.38 17683.45 31698.63 26997.09 11694.00 26596.91 276
WR-MVS95.15 21594.46 22597.22 19096.67 31496.45 12898.21 22698.81 8694.15 19793.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 278
VPA-MVSNet95.75 17995.11 19597.69 16297.24 27497.27 8798.94 9399.23 2095.13 15495.51 21797.32 27085.73 27098.91 24097.33 11189.55 32996.89 279
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23999.01 7698.88 6286.43 37392.81 31297.57 25381.66 32398.68 26694.83 19889.02 33996.88 280
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17899.47 898.40 19294.98 16494.58 23897.86 22489.16 19698.41 29896.91 12394.12 26196.88 280
HQP4-MVS94.45 24398.96 23196.87 282
ACMM93.85 995.69 18495.38 17996.61 23797.61 24593.84 25398.91 9898.44 18495.25 14994.28 25598.47 16786.04 26799.12 20695.50 18093.95 26796.87 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS95.72 18095.40 17596.69 22897.20 27894.25 24298.05 25198.46 18096.43 9194.45 24397.73 23686.75 25298.96 23195.30 18494.18 25796.86 284
EI-MVSNet95.96 16695.83 15996.36 26597.93 22293.70 26198.12 24298.27 21893.70 22795.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 285
IterMVS-LS95.46 19395.21 18996.22 27398.12 20493.72 26098.32 21498.13 24493.71 22594.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 23294.30 23396.83 21996.72 31095.56 17499.11 5698.95 4693.89 21192.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 287
PS-CasMVS94.67 24593.99 25696.71 22596.68 31395.26 19099.13 5499.03 3793.68 23092.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 288
UniMVSNet (Re)95.78 17895.19 19097.58 17296.99 29297.47 8098.79 13999.18 2595.60 12993.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 288
MVSTER96.06 16395.72 16397.08 20298.23 19195.93 16198.73 14998.27 21894.86 17195.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 288
iter_conf0596.47 14696.48 13596.43 26096.72 31093.98 24898.70 16097.88 27695.76 12095.84 21298.67 14893.01 10698.55 27597.71 8894.02 26496.76 291
LPG-MVS_test95.62 18795.34 18196.47 25597.46 25893.54 26498.99 8198.54 16094.67 17994.36 25198.77 13485.39 27599.11 20895.71 17294.15 25996.76 291
LGP-MVS_train96.47 25597.46 25893.54 26498.54 16094.67 17994.36 25198.77 13485.39 27599.11 20895.71 17294.15 25996.76 291
GG-mvs-BLEND96.59 24096.34 32994.98 20596.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20296.74 294
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21299.17 4799.00 3993.51 23892.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
OurMVSNet-221017-094.21 27794.00 25494.85 32395.60 35489.22 35098.89 10397.43 31495.29 14692.18 33198.52 16482.86 31798.59 27393.46 24491.76 30096.74 294
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21798.67 16798.08 25692.72 27294.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
GBi-Net94.49 25993.80 27096.56 24498.21 19395.00 20298.82 12598.18 23392.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19395.00 20298.82 12598.18 23392.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet193.19 31092.07 31796.56 24497.54 25295.00 20298.82 12598.18 23390.38 33892.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
v119294.32 27093.58 28496.53 24996.10 33894.45 23198.50 19498.17 23891.54 30994.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
v124094.06 29293.29 29696.34 26796.03 34293.90 25198.44 20198.17 23891.18 32694.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
FMVSNet394.97 22994.26 23597.11 20098.18 19996.62 11698.56 18698.26 22293.67 23294.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
FMVSNet294.47 26293.61 28397.04 20498.21 19396.43 13098.79 13998.27 21892.46 27993.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
ACMH92.88 1694.55 25293.95 25896.34 26797.63 24493.26 27998.81 13398.49 17893.43 24389.74 35498.53 16181.91 32199.08 21493.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192094.20 27893.47 29096.40 26495.98 34394.08 24698.52 18998.15 24191.33 31794.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24093.48 26898.73 14998.44 18494.94 16992.53 32298.53 16184.50 29899.14 20395.48 18194.00 26596.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS95.62 18795.34 18196.46 25897.52 25593.75 25797.27 32298.46 18095.53 13294.42 24898.00 21286.21 26298.97 22796.25 15394.37 25196.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v14419294.39 26793.70 27996.48 25496.06 34094.35 23798.58 18098.16 24091.45 31194.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
IterMVS94.09 28993.85 26794.80 32697.99 21590.35 33297.18 32998.12 24593.68 23092.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114494.59 25093.92 25996.60 23996.21 33294.78 21898.59 17898.14 24391.86 30294.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22298.43 20398.39 19496.64 8395.02 22898.78 13285.15 28299.05 21695.21 19094.20 25696.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26694.42 23398.52 18998.59 14491.69 30691.21 34198.35 17984.87 28699.04 21991.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT94.11 28793.87 26594.85 32397.98 21790.56 32997.18 32998.11 24893.75 21992.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
pmmvs593.65 29992.97 30295.68 29495.49 35892.37 29398.20 22897.28 32289.66 35092.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
K. test v392.55 31891.91 32194.48 33695.64 35389.24 34999.07 6294.88 38294.04 20186.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
SixPastTwentyTwo93.34 30492.86 30394.75 32795.67 35289.41 34898.75 14296.67 35893.89 21190.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
miper_lstm_enhance94.33 26994.07 24895.11 31497.75 23290.97 31897.22 32498.03 26591.67 30792.76 31496.97 30590.03 17897.78 34892.51 27489.64 32696.56 318
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32994.83 37190.78 32497.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
ACMH+92.99 1494.30 27193.77 27395.88 28897.81 22992.04 30198.71 15698.37 20093.99 20690.60 34898.47 16780.86 33199.05 21692.75 26592.40 29496.55 320
eth_miper_zixun_eth94.68 24294.41 23095.47 30297.64 24391.71 30796.73 36098.07 25892.71 27393.64 28397.21 27990.54 17098.17 32093.38 24589.76 32496.54 321
YYNet190.70 33689.39 33994.62 33294.79 37390.65 32797.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
DIV-MVS_self_test94.52 25694.03 25095.99 28097.57 25193.38 27497.05 33797.94 27291.74 30392.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
c3_l94.79 23794.43 22995.89 28797.75 23293.12 28697.16 33398.03 26592.23 29193.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
Patchmtry93.22 30892.35 31495.84 28996.77 30593.09 28794.66 38997.56 29587.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
cl____94.51 25794.01 25396.02 27997.58 24793.40 27397.05 33797.96 27191.73 30592.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
v7n94.19 27993.43 29296.47 25595.90 34694.38 23699.26 2898.34 20591.99 29792.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32595.21 36591.34 31297.64 29497.51 30488.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
cl2294.68 24294.19 23996.13 27698.11 20593.60 26296.94 34398.31 20992.43 28393.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
lessismore_v094.45 33994.93 37088.44 36591.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16499.14 5198.41 19093.75 21993.16 30297.46 25987.50 24198.41 29895.63 17694.03 26396.50 331
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 25985.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
v14894.29 27393.76 27595.91 28596.10 33892.93 28998.58 18097.97 26992.59 27793.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
our_test_393.65 29993.30 29594.69 32895.45 36189.68 34396.91 34697.65 28791.97 29891.66 33896.88 31389.67 18497.93 34088.02 34991.49 30496.48 334
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29396.55 31991.65 30898.11 24498.44 18494.96 16694.22 25997.90 22079.18 34299.11 20894.05 22893.85 26996.48 334
DTE-MVSNet93.98 29493.26 29796.14 27596.06 34094.39 23599.20 4298.86 7593.06 26091.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
miper_ehance_all_eth95.01 22294.69 21495.97 28297.70 23893.31 27797.02 33998.07 25892.23 29193.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
v894.47 26293.77 27396.57 24396.36 32894.83 21499.05 6598.19 23091.92 29993.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
WR-MVS_H95.05 22194.46 22596.81 22196.86 30195.82 16799.24 3199.24 1793.87 21392.53 32296.84 31790.37 17298.24 31793.24 24987.93 34996.38 339
miper_enhance_ethall95.10 21894.75 21196.12 27797.53 25493.73 25996.61 36398.08 25692.20 29493.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
V4294.78 23894.14 24496.70 22796.33 33095.22 19398.97 8498.09 25592.32 28894.31 25497.06 29488.39 21898.55 27592.90 26188.87 34196.34 340
v1094.29 27393.55 28696.51 25196.39 32794.80 21698.99 8198.19 23091.35 31693.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15897.40 30897.67 28690.42 33793.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
test_fmvs293.43 30193.58 28492.95 35696.97 29383.91 38399.19 4497.24 32595.74 12295.20 22498.27 19169.65 38398.72 26296.26 15193.73 27196.24 344
ppachtmachnet_test93.22 30892.63 30894.97 31895.45 36190.84 32296.88 35297.88 27690.60 33292.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
PVSNet_BlendedMVS96.73 13496.60 12997.12 19999.25 8195.35 18698.26 22399.26 1594.28 19497.94 12297.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19598.95 9098.03 26592.32 28891.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37598.58 18097.26 32490.48 33490.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
ITE_SJBPF95.44 30497.42 26391.32 31397.50 30595.09 15993.59 28498.35 17981.70 32298.88 24689.71 32793.39 28296.12 348
FMVSNet591.81 32390.92 32694.49 33597.21 27792.09 29898.00 25797.55 30089.31 35790.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34294.08 37889.83 33897.13 33598.67 12893.69 22885.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
USDC93.33 30592.71 30695.21 31096.83 30390.83 32396.91 34697.50 30593.84 21490.72 34698.14 20177.69 35398.82 25489.51 33293.21 28695.97 352
pmmvs691.77 32490.63 32995.17 31294.69 37591.24 31598.67 16797.92 27486.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31798.01 25597.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
TransMVSNet (Re)92.67 31791.51 32396.15 27496.58 31894.65 22098.90 9996.73 35490.86 33089.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
Baseline_NR-MVSNet94.35 26893.81 26995.96 28396.20 33394.05 24798.61 17796.67 35891.44 31293.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
D2MVS95.18 21495.08 19695.48 30197.10 28792.07 29998.30 21799.13 3094.02 20392.90 31096.73 32189.48 18698.73 26194.48 21293.60 27795.65 359
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36996.51 36698.07 25890.49 33390.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
TinyColmap92.31 32191.53 32294.65 33196.92 29689.75 33996.92 34496.68 35790.45 33689.62 35597.85 22676.06 36798.81 25586.74 35592.51 29395.41 361
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35797.95 26197.94 27290.35 33990.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
MS-PatchMatch93.84 29693.63 28294.46 33896.18 33489.45 34697.76 28498.27 21892.23 29192.13 33297.49 25779.50 33998.69 26389.75 32699.38 11595.25 363
KD-MVS_2432*160089.61 34487.96 35194.54 33394.06 37991.59 30995.59 37897.63 28989.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33394.06 37991.59 30995.59 37897.63 28989.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
LF4IMVS93.14 31292.79 30594.20 34195.88 34788.67 36097.66 29297.07 33493.81 21791.71 33797.65 24577.96 35298.81 25591.47 29791.92 29995.12 366
tfpnnormal93.66 29792.70 30796.55 24896.94 29595.94 15898.97 8499.19 2491.04 32791.38 34097.34 26884.94 28598.61 27085.45 36589.02 33995.11 367
EG-PatchMatch MVS91.13 33190.12 33494.17 34394.73 37489.00 35498.13 24197.81 28089.22 35885.32 38496.46 33267.71 38898.42 29187.89 35193.82 27095.08 368
TDRefinement91.06 33289.68 33795.21 31085.35 40691.49 31198.51 19397.07 33491.47 31088.83 36497.84 22777.31 35799.09 21392.79 26477.98 39495.04 369
MVP-Stereo94.28 27593.92 25995.35 30794.95 36992.60 29297.97 26097.65 28791.61 30890.68 34797.09 28786.32 26198.42 29189.70 32899.34 11795.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0390.89 33490.38 33292.43 35893.48 38388.14 37098.33 21097.56 29593.40 24487.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36498.94 9397.56 29588.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
test_040291.32 32790.27 33394.48 33696.60 31691.12 31698.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 28095.49 37593.81 21787.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36796.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
test_vis1_rt91.29 32890.65 32893.19 35497.45 26186.25 37998.57 18590.90 40493.30 24986.94 37393.59 38262.07 39699.11 20897.48 10595.58 24794.22 377
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20380.97 39181.57 39097.75 23574.75 37298.61 27089.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32186.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
pmmvs-eth3d90.36 33889.05 34394.32 34091.10 39392.12 29797.63 29796.95 34488.86 36184.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 38097.16 33397.33 31989.47 35383.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37796.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35894.92 38498.30 21584.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
WB-MVSnew94.19 27994.04 24994.66 33096.82 30492.14 29697.86 27595.96 37093.50 23995.64 21696.77 32088.06 22797.99 33584.87 36896.86 20693.85 385
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34797.91 26696.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6596.61 36192.79 27188.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28796.33 36589.41 35685.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
DeepMVS_CXcopyleft86.78 37297.09 28872.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34497.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35281.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24896.30 36689.04 36081.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1440.00 4140.00 41598.61 15290.60 1690.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 810.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.94 31988.66 342
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7698.97 10595.70 4599.83 6996.07 15599.58 83
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
9.1498.06 5899.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3399.81 8197.00 11899.71 57
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
test_part299.63 2999.18 1099.27 35
sam_mvs88.99 201
MTGPAbinary98.74 108
test_post196.68 36130.43 41287.85 23498.69 26392.59 269
test_post31.83 41188.83 20898.91 240
patchmatchnet-post95.10 36889.42 18998.89 244
MTMP98.89 10394.14 391
gm-plane-assit95.88 34787.47 37489.74 34996.94 31099.19 19693.32 248
TEST999.31 6498.50 2997.92 26498.73 11192.63 27497.74 13398.68 14596.20 2899.80 88
test_899.29 7398.44 3197.89 27298.72 11392.98 26397.70 13798.66 14996.20 2899.80 88
agg_prior99.30 6898.38 3598.72 11397.57 14999.81 81
test_prior498.01 6197.86 275
test_prior297.80 28196.12 10697.89 12798.69 14495.96 3796.89 12799.60 78
旧先验297.57 30091.30 31998.67 7699.80 8895.70 174
新几何297.64 294
原ACMM297.67 291
testdata299.89 4791.65 295
segment_acmp96.85 14
testdata197.32 31896.34 97
plane_prior797.42 26394.63 222
plane_prior697.35 27094.61 22587.09 246
plane_prior498.28 188
plane_prior394.61 22597.02 6495.34 219
plane_prior298.80 13497.28 45
plane_prior197.37 269
plane_prior94.60 22798.44 20196.74 7894.22 255
n20.00 420
nn0.00 420
door-mid94.37 387
test1198.66 131
door94.64 385
HQP5-MVS94.25 242
HQP-NCC97.20 27898.05 25196.43 9194.45 243
ACMP_Plane97.20 27898.05 25196.43 9194.45 243
BP-MVS95.30 184
HQP3-MVS98.46 18094.18 257
HQP2-MVS86.75 252
NP-MVS97.28 27294.51 23097.73 236
MDTV_nov1_ep1395.40 17597.48 25688.34 36696.85 35497.29 32193.74 22197.48 15197.26 27389.18 19599.05 21691.92 28997.43 195
ACMMP++_ref92.97 287
ACMMP++93.61 276
Test By Simon94.64 78