This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2699.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
test_0728_THIRD97.32 2999.45 999.46 997.88 199.94 398.47 1699.86 199.85 2
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 2098.88 4997.52 1599.41 1198.78 11396.00 3499.79 9297.79 5199.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 6998.88 4999.94 398.47 1699.81 1099.84 4
IU-MVS99.71 2099.23 698.64 13795.28 12099.63 498.35 2599.81 1099.83 5
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1999.80 1799.83 5
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17298.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6399.84 899.83 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CHOSEN 1792x268897.12 10996.80 10498.08 12499.30 7594.56 21598.05 22299.71 193.57 20297.09 13798.91 10088.17 20999.89 3596.87 10399.56 8099.81 8
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 19098.69 11897.21 3898.84 4699.36 2695.41 5499.78 9698.62 699.65 5899.80 9
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9998.81 7695.80 9299.16 2699.47 895.37 5799.92 2197.89 4499.75 3899.79 10
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17498.79 9297.46 2199.09 3099.31 3595.86 4299.80 8098.64 499.76 3299.79 10
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15398.61 6598.97 8795.13 7099.77 10197.65 6299.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2398.93 3796.15 7998.94 3999.17 5695.91 3999.94 397.55 7199.79 1999.78 13
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17498.68 12197.43 2299.06 3199.31 3595.80 4399.77 10198.62 699.76 3299.78 13
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7199.20 5295.90 4099.89 3597.85 4799.74 4199.78 13
X-MVStestdata94.06 26592.30 28599.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7143.50 36295.90 4099.89 3597.85 4799.74 4199.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2398.95 3496.10 8498.93 4399.19 5595.70 4499.94 397.62 6499.79 1999.78 13
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6599.49 595.43 11099.03 3399.32 3395.56 4799.94 396.80 10799.77 2699.78 13
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4798.87 5597.38 2699.35 1499.40 1397.78 399.87 4497.77 5299.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15498.74 10497.27 3598.02 9399.39 1494.81 7799.96 197.91 4199.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 8098.74 10497.27 3598.02 9399.39 1494.81 7799.96 197.91 4199.79 1999.77 20
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1898.81 7696.24 7698.35 8099.23 4595.46 5199.94 397.42 7699.81 1099.77 20
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 16098.94 3999.20 5295.16 6999.74 10797.58 6799.85 399.77 20
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1298.87 5595.96 8798.60 6699.13 6496.05 3299.94 397.77 5299.86 199.77 20
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16797.38 27199.65 292.34 24797.61 12598.20 17589.29 17999.10 18596.97 9097.60 17199.77 20
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9698.86 6195.48 10798.91 4599.17 5695.48 5099.93 1595.80 14299.53 8599.76 26
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7398.80 8793.67 19899.37 1399.52 396.52 1799.89 3598.06 3499.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2398.96 3296.10 8498.94 3999.17 5696.06 3099.92 2197.62 6499.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6898.96 3295.65 10098.94 3999.17 5696.06 3099.92 2197.21 8399.78 2399.75 28
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17698.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2199.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17698.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2399.73 4399.75 28
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4398.81 7692.34 24798.09 8799.08 7693.01 10699.92 2196.06 13299.77 2699.75 28
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3398.86 6195.77 9398.31 8399.10 6995.46 5199.93 1597.57 7099.81 1099.74 33
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17398.68 12197.04 4898.52 7098.80 11196.78 1299.83 5697.93 4099.61 6799.74 33
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10698.82 7094.52 15799.23 2099.25 4395.54 4999.80 8096.52 11799.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4898.83 6896.52 6699.05 3299.34 3195.34 5999.82 6497.86 4699.64 6299.73 36
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3898.66 13296.84 5399.56 599.31 3596.34 1999.70 11598.32 2699.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 19398.68 12197.17 4198.74 5399.37 2295.25 6699.79 9298.57 899.54 8499.73 36
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2798.79 9296.13 8197.92 10699.23 4594.54 8399.94 396.74 11199.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4898.82 7096.58 6399.10 2999.32 3395.39 5599.82 6497.70 6099.63 6499.72 40
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4898.82 7095.71 9698.73 5599.06 7895.27 6499.93 1597.07 8799.63 6499.72 40
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3798.81 7696.24 7699.20 2299.37 2295.30 6299.80 8097.73 5499.67 5499.72 40
DeepPCF-MVS96.37 297.93 6498.48 1796.30 24599.00 11089.54 31597.43 26898.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2799.77 2699.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.34 5999.82 6497.72 5599.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.29 6397.72 5599.65 5899.71 44
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16598.76 9997.82 598.45 7498.93 9796.65 1499.83 5697.38 7899.41 9899.71 44
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 20098.52 2799.37 898.71 11497.09 4792.99 27599.13 6489.36 17799.89 3596.97 9099.57 7599.71 44
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5998.87 5597.65 999.73 199.48 697.53 499.94 398.43 1999.81 1099.70 48
OPU-MVS99.37 2099.24 9299.05 1099.02 5999.16 6197.81 299.37 15797.24 8199.73 4399.70 48
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5699.41 695.98 8697.60 12699.36 2694.45 8899.93 1597.14 8498.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6998.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1699.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test9_res96.39 12399.57 7599.69 51
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 4198.82 7096.14 8099.26 1899.37 2293.33 10299.93 1596.96 9299.67 5499.69 51
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16498.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3499.66 5799.69 51
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23599.58 397.20 3998.33 8199.00 8595.99 3599.64 12698.05 3699.76 3299.69 51
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16198.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7199.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg97.97 5897.52 7299.33 2799.31 7098.50 2997.92 23398.73 10892.98 22497.74 11498.68 12396.20 2399.80 8096.59 11399.57 7599.68 57
agg_prior295.87 13999.57 7599.68 57
CDPH-MVS97.94 6397.49 7599.28 3599.47 4898.44 3197.91 23598.67 12992.57 23998.77 5198.85 10595.93 3899.72 10995.56 15299.69 5299.68 57
DP-MVS96.59 12795.93 13998.57 8599.34 6296.19 13998.70 12898.39 18589.45 31794.52 20999.35 2891.85 12899.85 5092.89 23598.88 11999.68 57
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19998.52 15897.95 399.32 1599.39 1496.22 2099.84 5397.72 5599.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5498.81 7695.12 12999.32 1599.39 1496.22 2099.84 5397.72 5599.73 4399.67 61
MP-MVS-pluss98.31 5297.92 5899.49 999.72 1298.88 1498.43 17098.78 9594.10 16897.69 11899.42 1295.25 6699.92 2198.09 3399.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MG-MVS97.81 6897.60 6698.44 9899.12 10395.97 14897.75 25198.78 9596.89 5298.46 7199.22 4793.90 9899.68 12194.81 17299.52 8799.67 61
agg_prior197.95 6297.51 7499.28 3599.30 7598.38 3597.81 24698.72 11093.16 21897.57 12798.66 12696.14 2699.81 7196.63 11299.56 8099.66 65
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12398.66 13297.51 1698.15 8498.83 10895.70 4499.92 2197.53 7399.67 5499.66 65
UA-Net97.96 5997.62 6598.98 6598.86 12197.47 8498.89 8499.08 2196.67 6098.72 5699.54 193.15 10599.81 7194.87 16898.83 12399.65 67
test_prior398.22 5597.90 5999.19 4399.31 7098.22 5097.80 24798.84 6596.12 8297.89 10898.69 12195.96 3699.70 11596.89 9799.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 20298.81 7691.63 27098.44 7598.85 10593.98 9799.82 6494.11 19799.69 5299.64 70
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 8098.85 6497.28 3199.72 399.39 1496.63 1597.60 32198.17 2999.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 20297.64 7799.35 1199.06 2297.02 4993.75 24999.16 6189.25 18099.92 2197.22 8299.75 3899.64 70
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13498.84 6594.66 15299.11 2899.25 4395.46 5199.81 7196.80 10799.73 4399.63 73
test1299.18 4799.16 9998.19 5298.53 15698.07 8895.13 7099.72 10999.56 8099.63 73
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9099.61 75
test22299.23 9397.17 9897.40 26998.66 13288.68 32398.05 8998.96 9394.14 9399.53 8599.61 75
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20698.68 12190.14 30698.01 9798.97 8794.80 7999.87 4493.36 21899.46 9399.61 75
无先验97.58 26298.72 11091.38 27699.87 4493.36 21899.60 78
CVMVSNet95.43 17596.04 13693.57 31697.93 19483.62 34898.12 21698.59 14295.68 9796.56 16399.02 8087.51 22597.51 32593.56 21497.44 17399.60 78
新几何199.16 5099.34 6298.01 6298.69 11890.06 30798.13 8598.95 9594.60 8299.89 3591.97 25999.47 9099.59 80
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5499.09 2093.32 21198.83 4899.10 6996.54 1699.83 5697.70 6099.76 3299.59 80
testdata98.26 11199.20 9795.36 17598.68 12191.89 26298.60 6699.10 6994.44 8999.82 6494.27 19199.44 9599.58 82
Test_1112_low_res96.34 13795.66 15198.36 10498.56 14695.94 15197.71 25398.07 24592.10 25794.79 20397.29 24891.75 13099.56 13794.17 19496.50 19499.58 82
1112_ss96.63 12496.00 13898.50 9398.56 14696.37 13098.18 21098.10 23692.92 22794.84 19998.43 14892.14 12199.58 13494.35 18796.51 19399.56 84
ETH3D cwj APD-0.1697.96 5997.52 7299.29 3199.05 10598.52 2798.33 18298.68 12193.18 21698.68 5799.13 6494.62 8199.83 5696.45 11999.55 8399.52 85
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 14098.60 14095.18 12597.06 14198.06 18494.26 9299.57 13593.80 20698.87 12199.52 85
CSCG97.85 6797.74 6398.20 11599.67 2695.16 18299.22 2799.32 793.04 22297.02 14398.92 9995.36 5899.91 3097.43 7599.64 6299.52 85
DeepC-MVS95.98 397.88 6597.58 6798.77 7599.25 8696.93 10598.83 9698.75 10296.96 5196.89 15099.50 490.46 15999.87 4497.84 4999.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet98.05 5697.76 6298.90 7198.73 13097.27 9198.35 17998.78 9597.37 2897.72 11698.96 9391.53 13899.92 2198.79 299.65 5899.51 89
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21898.29 20597.19 4098.99 3899.02 8096.22 2099.67 12298.52 1498.56 13599.51 89
原ACMM198.65 8199.32 6896.62 11698.67 12993.27 21497.81 11098.97 8795.18 6899.83 5693.84 20499.46 9399.50 91
VNet97.79 6997.40 8198.96 6798.88 11997.55 8198.63 14098.93 3796.74 5799.02 3498.84 10790.33 16299.83 5698.53 1096.66 18799.50 91
EPNet97.28 10096.87 10398.51 9294.98 32996.14 14098.90 8097.02 31298.28 195.99 18499.11 6791.36 14099.89 3596.98 8999.19 10999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 14099.16 1794.48 15997.67 11998.88 10292.80 10899.91 3097.11 8599.12 11199.50 91
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 23199.58 397.14 4398.44 7599.01 8495.03 7399.62 13197.91 4199.75 3899.50 91
casdiffmvs97.63 7797.41 8098.28 10898.33 16496.14 14098.82 9998.32 19596.38 7397.95 10199.21 4891.23 14599.23 16798.12 3198.37 14499.48 96
WTY-MVS97.37 9796.92 10198.72 7798.86 12196.89 10998.31 18898.71 11495.26 12197.67 11998.56 13792.21 11999.78 9695.89 13796.85 18299.48 96
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12499.05 2497.28 3198.84 4699.28 4096.47 1899.40 15598.52 1499.70 5199.47 98
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9298.90 4484.80 34297.77 11199.11 6792.84 10799.66 12394.85 16999.77 2699.47 98
IS-MVSNet97.22 10296.88 10298.25 11298.85 12396.36 13199.19 3397.97 25595.39 11297.23 13398.99 8691.11 14798.93 20994.60 17898.59 13399.47 98
PAPR96.84 11996.24 13098.65 8198.72 13496.92 10697.36 27598.57 14893.33 21096.67 15897.57 23094.30 9199.56 13791.05 27498.59 13399.47 98
LFMVS95.86 15594.98 18198.47 9698.87 12096.32 13398.84 9596.02 33293.40 20898.62 6499.20 5274.99 34299.63 12997.72 5597.20 17799.46 102
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13798.73 13095.46 17299.20 3198.30 20394.96 13896.60 16298.87 10390.05 16598.59 24493.67 21098.60 13299.46 102
Vis-MVSNetpermissive97.42 9397.11 9198.34 10598.66 13996.23 13699.22 2799.00 2796.63 6298.04 9199.21 4888.05 21499.35 15896.01 13599.21 10799.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous20240521195.28 18794.49 20197.67 15399.00 11093.75 24098.70 12897.04 30990.66 29496.49 17098.80 11178.13 32699.83 5696.21 12795.36 21699.44 105
GeoE96.58 12996.07 13498.10 12398.35 15895.89 15899.34 1298.12 23193.12 22096.09 18098.87 10389.71 17198.97 20092.95 23198.08 15499.43 106
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 29098.35 19194.85 14397.93 10598.58 13495.07 7299.71 11492.60 23999.34 10399.43 106
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 25198.89 4697.71 898.33 8198.97 8794.97 7499.88 4398.42 2199.76 3299.42 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline97.64 7697.44 7998.25 11298.35 15896.20 13799.00 6398.32 19596.33 7598.03 9299.17 5691.35 14199.16 17398.10 3298.29 14999.39 109
sss97.39 9596.98 9998.61 8398.60 14596.61 11898.22 19898.93 3793.97 17698.01 9798.48 14491.98 12699.85 5096.45 11998.15 15199.39 109
EPP-MVSNet97.46 8797.28 8597.99 12998.64 14195.38 17499.33 1598.31 19793.61 20197.19 13499.07 7794.05 9499.23 16796.89 9798.43 14399.37 111
test_yl97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16598.31 19794.70 14698.02 9398.42 15090.80 15399.70 11596.81 10596.79 18499.34 112
DCV-MVSNet97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16598.31 19794.70 14698.02 9398.42 15090.80 15399.70 11596.81 10596.79 18499.34 112
diffmvs97.58 8297.40 8198.13 12098.32 16695.81 16198.06 22198.37 18896.20 7898.74 5398.89 10191.31 14399.25 16498.16 3098.52 13699.34 112
MVSFormer97.57 8397.49 7597.84 13698.07 18595.76 16299.47 298.40 18394.98 13698.79 4998.83 10892.34 11398.41 26796.91 9499.59 7199.34 112
jason97.32 9997.08 9398.06 12697.45 23195.59 16597.87 24197.91 26194.79 14498.55 6998.83 10891.12 14699.23 16797.58 6799.60 6899.34 112
jason: jason.
QAPM96.29 13895.40 15698.96 6797.85 19997.60 8099.23 2398.93 3789.76 31293.11 27299.02 8089.11 18599.93 1591.99 25899.62 6699.34 112
mvs_anonymous96.70 12396.53 12197.18 17798.19 17593.78 23798.31 18898.19 21694.01 17394.47 21198.27 17092.08 12498.46 25597.39 7797.91 15899.31 118
lupinMVS97.44 9197.22 8898.12 12298.07 18595.76 16297.68 25597.76 26694.50 15898.79 4998.61 12992.34 11399.30 16197.58 6799.59 7199.31 118
CDS-MVSNet96.99 11396.69 11397.90 13498.05 18895.98 14398.20 20298.33 19493.67 19896.95 14498.49 14393.54 10098.42 26095.24 16397.74 16699.31 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-RL test91.49 29690.85 29793.41 31891.37 35184.40 34692.81 35195.93 33691.87 26387.25 33594.87 33488.99 18896.53 34292.54 24582.00 33799.30 121
BH-RMVSNet95.92 15395.32 16597.69 15198.32 16694.64 20798.19 20697.45 29194.56 15496.03 18298.61 12985.02 26799.12 17990.68 27999.06 11299.30 121
Patchmatch-test94.42 24193.68 25696.63 21497.60 21491.76 28194.83 34597.49 28889.45 31794.14 23197.10 25888.99 18898.83 22385.37 32998.13 15299.29 123
TAMVS97.02 11296.79 10697.70 15098.06 18795.31 17998.52 15698.31 19793.95 17797.05 14298.61 12993.49 10198.52 25095.33 15797.81 16299.29 123
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17797.28 28299.26 893.13 21997.94 10398.21 17492.74 10999.81 7196.88 10099.40 10099.27 125
PatchmatchNetpermissive95.71 16295.52 15496.29 24697.58 21690.72 30296.84 31397.52 28494.06 16997.08 13896.96 28089.24 18198.90 21492.03 25798.37 14499.26 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 280x42097.18 10697.18 8997.20 17598.81 12693.27 25995.78 33499.15 1895.25 12296.79 15698.11 18192.29 11599.07 18898.56 999.85 399.25 127
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 21398.76 9992.41 24596.39 17498.31 16594.92 7699.78 9694.06 19998.77 12699.23 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LCM-MVSNet-Re95.22 19095.32 16594.91 29198.18 17787.85 33998.75 11295.66 33895.11 13088.96 32796.85 28990.26 16497.65 31995.65 15098.44 14199.22 129
GSMVS99.20 130
sam_mvs189.45 17599.20 130
SCA95.46 17295.13 17396.46 23597.67 20991.29 29397.33 27897.60 27594.68 14996.92 14897.10 25883.97 28898.89 21592.59 24198.32 14899.20 130
Effi-MVS+97.12 10996.69 11398.39 10398.19 17596.72 11497.37 27398.43 17893.71 19197.65 12298.02 18692.20 12099.25 16496.87 10397.79 16399.19 133
alignmvs97.56 8497.07 9499.01 6298.66 13998.37 4198.83 9698.06 25096.74 5798.00 9997.65 22290.80 15399.48 15098.37 2496.56 19199.19 133
DP-MVS Recon97.86 6697.46 7799.06 6199.53 3698.35 4398.33 18298.89 4692.62 23698.05 8998.94 9695.34 5999.65 12496.04 13399.42 9799.19 133
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 19398.59 14295.52 10697.97 10099.10 6993.28 10499.49 14695.09 16598.88 11999.19 133
MDTV_nov1_ep13_2view84.26 34796.89 30990.97 29297.90 10789.89 16893.91 20299.18 137
MVS_Test97.28 10097.00 9798.13 12098.33 16495.97 14898.74 11598.07 24594.27 16498.44 7598.07 18392.48 11199.26 16396.43 12198.19 15099.16 138
ab-mvs96.42 13495.71 14798.55 8798.63 14296.75 11397.88 24098.74 10493.84 18296.54 16798.18 17785.34 26499.75 10595.93 13696.35 19799.15 139
PVSNet91.96 1896.35 13696.15 13296.96 19199.17 9892.05 27696.08 32798.68 12193.69 19497.75 11397.80 21288.86 19499.69 12094.26 19299.01 11399.15 139
tpm94.13 25893.80 24595.12 28596.50 28787.91 33897.44 26695.89 33792.62 23696.37 17596.30 30984.13 28598.30 28093.24 22191.66 26599.14 141
F-COLMAP97.09 11196.80 10497.97 13099.45 5594.95 19698.55 15498.62 13993.02 22396.17 17998.58 13494.01 9599.81 7193.95 20198.90 11799.14 141
Anonymous2024052995.10 19794.22 21697.75 14599.01 10994.26 22698.87 8998.83 6885.79 33996.64 15998.97 8778.73 32199.85 5096.27 12494.89 21799.12 143
hse-mvs396.17 14395.62 15297.81 14099.03 10894.45 21798.64 13998.75 10297.48 1898.67 5898.72 12089.76 16999.86 4997.95 3881.59 34099.11 144
PMMVS96.60 12596.33 12697.41 16797.90 19693.93 23397.35 27698.41 18092.84 23197.76 11297.45 23991.10 14899.20 17096.26 12597.91 15899.11 144
GA-MVS94.81 21594.03 22797.14 17997.15 25293.86 23596.76 31697.58 27694.00 17494.76 20497.04 27180.91 30798.48 25291.79 26296.25 20599.09 146
EPNet_dtu95.21 19194.95 18395.99 25596.17 30090.45 30698.16 21297.27 30196.77 5593.14 27198.33 16390.34 16198.42 26085.57 32698.81 12599.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.98 795.35 18394.56 19897.74 14699.13 10294.83 20198.33 18298.64 13786.62 33196.29 17698.61 12994.00 9699.29 16280.00 34699.41 9899.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs97.67 7497.23 8798.98 6598.70 13598.38 3599.34 1298.39 18596.76 5697.67 11997.40 24392.26 11699.49 14698.28 2896.28 20399.08 149
VDD-MVS95.82 15895.23 16997.61 15898.84 12493.98 23298.68 13197.40 29595.02 13597.95 10199.34 3174.37 34699.78 9698.64 496.80 18399.08 149
EIA-MVS97.75 7097.58 6798.27 10998.38 15696.44 12799.01 6198.60 14095.88 8997.26 13297.53 23394.97 7499.33 16097.38 7899.20 10899.05 151
tttt051796.07 14595.51 15597.78 14298.41 15594.84 19999.28 1894.33 35194.26 16597.64 12398.64 12884.05 28699.47 15195.34 15697.60 17199.03 152
ET-MVSNet_ETH3D94.13 25892.98 27397.58 15998.22 17196.20 13797.31 28095.37 34094.53 15579.56 35197.63 22686.51 24297.53 32496.91 9490.74 27799.02 153
ADS-MVSNet294.58 23094.40 21095.11 28698.00 18988.74 32796.04 32897.30 29890.15 30496.47 17196.64 29987.89 21797.56 32390.08 28697.06 17899.02 153
ADS-MVSNet95.00 20294.45 20696.63 21498.00 18991.91 27896.04 32897.74 26890.15 30496.47 17196.64 29987.89 21798.96 20490.08 28697.06 17899.02 153
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 22098.53 15695.32 11896.80 15598.53 13893.32 10399.72 10994.31 19099.31 10599.02 153
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22698.89 4694.44 16196.83 15198.68 12390.69 15699.76 10394.36 18699.29 10698.98 157
Fast-Effi-MVS+96.28 14095.70 14898.03 12798.29 16895.97 14898.58 14698.25 21191.74 26595.29 19297.23 25291.03 15099.15 17692.90 23397.96 15798.97 158
EPMVS94.99 20394.48 20296.52 22897.22 24491.75 28297.23 28491.66 35994.11 16797.28 13196.81 29185.70 25798.84 22193.04 22897.28 17698.97 158
LS3D97.16 10796.66 11698.68 7998.53 14997.19 9798.93 7798.90 4492.83 23295.99 18499.37 2292.12 12299.87 4493.67 21099.57 7598.97 158
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15397.00 10298.14 21398.21 21393.95 17796.72 15797.99 19091.58 13399.76 10394.51 18396.54 19298.95 161
thisisatest053096.01 14895.36 16197.97 13098.38 15695.52 17098.88 8794.19 35394.04 17097.64 12398.31 16583.82 29399.46 15295.29 16097.70 16898.93 162
MIMVSNet93.26 27992.21 28696.41 23897.73 20793.13 26495.65 33697.03 31091.27 28594.04 23696.06 31775.33 34097.19 32986.56 31996.23 20698.92 163
baseline195.84 15695.12 17498.01 12898.49 15295.98 14398.73 11997.03 31095.37 11596.22 17798.19 17689.96 16799.16 17394.60 17887.48 31798.90 164
TESTMET0.1,194.18 25693.69 25595.63 27196.92 26489.12 32196.91 30494.78 34693.17 21794.88 19896.45 30578.52 32298.92 21093.09 22598.50 13898.85 165
dp94.15 25793.90 23894.90 29297.31 23986.82 34496.97 29997.19 30491.22 28796.02 18396.61 30185.51 26099.02 19790.00 29094.30 21998.85 165
PAPM94.95 20794.00 23197.78 14297.04 25895.65 16496.03 33098.25 21191.23 28694.19 22997.80 21291.27 14498.86 22082.61 34097.61 17098.84 167
VDDNet95.36 18294.53 19997.86 13598.10 18495.13 18698.85 9297.75 26790.46 29898.36 7999.39 1473.27 34899.64 12697.98 3796.58 19098.81 168
CostFormer94.95 20794.73 19195.60 27297.28 24089.06 32297.53 26496.89 32089.66 31496.82 15396.72 29486.05 25298.95 20895.53 15396.13 20998.79 169
UGNet96.78 12196.30 12798.19 11798.24 16995.89 15898.88 8798.93 3797.39 2596.81 15497.84 20682.60 29799.90 3396.53 11699.49 8898.79 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_ETH3D94.24 25193.33 26796.97 19097.19 24993.38 25698.74 11598.57 14891.21 28893.81 24698.58 13472.85 34998.77 22995.05 16693.93 23498.77 171
CS-MVS98.04 5797.95 5598.32 10698.14 18197.15 9999.39 598.41 18096.51 6798.59 6898.51 14293.89 9999.03 19398.66 399.43 9698.77 171
test-LLR95.10 19794.87 18695.80 26596.77 27289.70 31296.91 30495.21 34195.11 13094.83 20195.72 32487.71 22198.97 20093.06 22698.50 13898.72 173
test-mter94.08 26393.51 26295.80 26596.77 27289.70 31296.91 30495.21 34192.89 22994.83 20195.72 32477.69 32998.97 20093.06 22698.50 13898.72 173
DWT-MVSNet_test94.82 21394.36 21196.20 24997.35 23790.79 30098.34 18096.57 33192.91 22895.33 19196.44 30682.00 29999.12 17994.52 18295.78 21498.70 175
MAR-MVS96.91 11696.40 12498.45 9798.69 13796.90 10798.66 13798.68 12192.40 24697.07 14097.96 19391.54 13799.75 10593.68 20898.92 11698.69 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051595.61 17094.89 18597.76 14498.15 18095.15 18496.77 31594.41 34992.95 22697.18 13597.43 24184.78 27299.45 15394.63 17597.73 16798.68 177
BH-untuned95.95 15195.72 14496.65 21198.55 14892.26 27298.23 19797.79 26593.73 18994.62 20698.01 18888.97 19299.00 19993.04 22898.51 13798.68 177
PCF-MVS93.45 1194.68 22193.43 26598.42 10198.62 14396.77 11295.48 33998.20 21584.63 34393.34 26398.32 16488.55 20199.81 7184.80 33398.96 11598.68 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CANet_DTU96.96 11496.55 11998.21 11498.17 17996.07 14297.98 22998.21 21397.24 3797.13 13698.93 9786.88 23899.91 3095.00 16799.37 10298.66 180
PatchMatch-RL96.59 12796.03 13798.27 10999.31 7096.51 12497.91 23599.06 2293.72 19096.92 14898.06 18488.50 20399.65 12491.77 26399.00 11498.66 180
tpmrst95.63 16795.69 14995.44 27797.54 22188.54 33096.97 29997.56 27793.50 20497.52 12996.93 28489.49 17399.16 17395.25 16296.42 19698.64 182
IB-MVS91.98 1793.27 27891.97 28997.19 17697.47 22693.41 25497.09 29495.99 33393.32 21192.47 29295.73 32278.06 32799.53 14394.59 18082.98 33598.62 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DSMNet-mixed92.52 29092.58 28192.33 32794.15 33882.65 35198.30 19094.26 35289.08 32192.65 28495.73 32285.01 26895.76 34686.24 32197.76 16598.59 184
tpm294.19 25493.76 25095.46 27697.23 24389.04 32397.31 28096.85 32487.08 33096.21 17896.79 29283.75 29498.74 23092.43 24996.23 20698.59 184
ETV-MVS97.96 5997.81 6098.40 10298.42 15497.27 9198.73 11998.55 15296.84 5398.38 7897.44 24095.39 5599.35 15897.62 6498.89 11898.58 186
MSDG95.93 15295.30 16797.83 13798.90 11795.36 17596.83 31498.37 18891.32 28194.43 21698.73 11990.27 16399.60 13290.05 28898.82 12498.52 187
PatchT93.06 28491.97 28996.35 24296.69 27892.67 26994.48 34797.08 30686.62 33197.08 13892.23 34887.94 21697.90 31178.89 35096.69 18698.49 188
CR-MVSNet94.76 21894.15 22296.59 21997.00 25993.43 25294.96 34197.56 27792.46 24096.93 14696.24 31088.15 21097.88 31587.38 31596.65 18898.46 189
RPMNet92.81 28691.34 29497.24 17397.00 25993.43 25294.96 34198.80 8782.27 34696.93 14692.12 34986.98 23699.82 6476.32 35496.65 18898.46 189
thres600view795.49 17194.77 18897.67 15398.98 11395.02 18998.85 9296.90 31895.38 11396.63 16096.90 28584.29 27999.59 13388.65 30896.33 19898.40 191
thres40095.38 17994.62 19597.65 15698.94 11594.98 19398.68 13196.93 31695.33 11696.55 16596.53 30284.23 28299.56 13788.11 30996.29 20098.40 191
TR-MVS94.94 20994.20 21797.17 17897.75 20394.14 22997.59 26197.02 31292.28 25295.75 18797.64 22483.88 29098.96 20489.77 29296.15 20898.40 191
JIA-IIPM93.35 27592.49 28295.92 25996.48 28990.65 30395.01 34096.96 31485.93 33796.08 18187.33 35387.70 22398.78 22891.35 26995.58 21598.34 194
PVSNet_088.72 1991.28 29890.03 30495.00 28997.99 19187.29 34294.84 34498.50 16692.06 25889.86 32095.19 33079.81 31599.39 15692.27 25069.79 35498.33 195
131496.25 14295.73 14397.79 14197.13 25395.55 16998.19 20698.59 14293.47 20592.03 30197.82 21091.33 14299.49 14694.62 17798.44 14198.32 196
RPSCF94.87 21295.40 15693.26 32298.89 11882.06 35398.33 18298.06 25090.30 30396.56 16399.26 4287.09 23399.49 14693.82 20596.32 19998.24 197
hse-mvs295.71 16295.30 16796.93 19398.50 15093.53 24998.36 17898.10 23697.48 1898.67 5897.99 19089.76 16999.02 19797.95 3880.91 34498.22 198
AUN-MVS94.53 23493.73 25296.92 19698.50 15093.52 25098.34 18098.10 23693.83 18495.94 18697.98 19285.59 25999.03 19394.35 18780.94 34398.22 198
tpmvs94.60 22794.36 21195.33 28097.46 22788.60 32996.88 31097.68 26991.29 28393.80 24796.42 30788.58 19899.24 16691.06 27296.04 21198.17 200
BH-w/o95.38 17995.08 17696.26 24798.34 16391.79 28097.70 25497.43 29392.87 23094.24 22697.22 25388.66 19798.84 22191.55 26797.70 16898.16 201
tpm cat193.36 27492.80 27695.07 28897.58 21687.97 33796.76 31697.86 26382.17 34793.53 25496.04 31886.13 25099.13 17889.24 30395.87 21298.10 202
MVS94.67 22493.54 26198.08 12496.88 26896.56 12298.19 20698.50 16678.05 35192.69 28398.02 18691.07 14999.63 12990.09 28598.36 14698.04 203
AllTest95.24 18994.65 19496.99 18799.25 8693.21 26298.59 14498.18 21991.36 27793.52 25598.77 11584.67 27499.72 10989.70 29597.87 16098.02 204
TestCases96.99 18799.25 8693.21 26298.18 21991.36 27793.52 25598.77 11584.67 27499.72 10989.70 29597.87 16098.02 204
gg-mvs-nofinetune92.21 29290.58 29997.13 18096.75 27595.09 18795.85 33289.40 36285.43 34194.50 21081.98 35680.80 31098.40 27392.16 25198.33 14797.88 206
baseline295.11 19694.52 20096.87 19896.65 28193.56 24698.27 19594.10 35593.45 20692.02 30297.43 24187.45 22999.19 17193.88 20397.41 17597.87 207
mvs-test196.60 12596.68 11596.37 24097.89 19791.81 27998.56 15298.10 23696.57 6496.52 16997.94 19590.81 15199.45 15395.72 14598.01 15597.86 208
thres100view90095.38 17994.70 19297.41 16798.98 11394.92 19798.87 8996.90 31895.38 11396.61 16196.88 28684.29 27999.56 13788.11 30996.29 20097.76 209
tfpn200view995.32 18694.62 19597.43 16698.94 11594.98 19398.68 13196.93 31695.33 11696.55 16596.53 30284.23 28299.56 13788.11 30996.29 20097.76 209
XVG-OURS-SEG-HR96.51 13196.34 12597.02 18698.77 12893.76 23897.79 24998.50 16695.45 10996.94 14599.09 7487.87 21999.55 14296.76 11095.83 21397.74 211
OpenMVScopyleft93.04 1395.83 15795.00 17998.32 10697.18 25097.32 8899.21 3098.97 3089.96 30891.14 30999.05 7986.64 24199.92 2193.38 21699.47 9097.73 212
testgi93.06 28492.45 28394.88 29396.43 29189.90 30998.75 11297.54 28395.60 10191.63 30697.91 19774.46 34597.02 33186.10 32293.67 23797.72 213
XVG-OURS96.55 13096.41 12396.99 18798.75 12993.76 23897.50 26598.52 15895.67 9896.83 15199.30 3888.95 19399.53 14395.88 13896.26 20497.69 214
cascas94.63 22693.86 24196.93 19396.91 26694.27 22596.00 33198.51 16185.55 34094.54 20896.23 31284.20 28498.87 21895.80 14296.98 18197.66 215
test0.0.03 194.08 26393.51 26295.80 26595.53 32192.89 26897.38 27195.97 33495.11 13092.51 29096.66 29687.71 22196.94 33387.03 31793.67 23797.57 216
MVS-HIRNet89.46 31588.40 31492.64 32597.58 21682.15 35294.16 35093.05 35875.73 35390.90 31182.52 35579.42 31798.33 27583.53 33898.68 12797.43 217
xiu_mvs_v2_base97.66 7597.70 6497.56 16198.61 14495.46 17297.44 26698.46 17197.15 4298.65 6398.15 17894.33 9099.80 8097.84 4998.66 13197.41 218
Effi-MVS+-dtu96.29 13896.56 11895.51 27397.89 19790.22 30898.80 10698.10 23696.57 6496.45 17396.66 29690.81 15198.91 21195.72 14597.99 15697.40 219
PS-MVSNAJ97.73 7197.77 6197.62 15798.68 13895.58 16697.34 27798.51 16197.29 3098.66 6297.88 20194.51 8499.90 3397.87 4599.17 11097.39 220
thres20095.25 18894.57 19797.28 17298.81 12694.92 19798.20 20297.11 30595.24 12496.54 16796.22 31484.58 27699.53 14387.93 31396.50 19497.39 220
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
xiu_mvs_v1_base97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
API-MVS97.41 9497.25 8697.91 13398.70 13596.80 11098.82 9998.69 11894.53 15598.11 8698.28 16794.50 8799.57 13594.12 19699.49 8897.37 222
Fast-Effi-MVS+-dtu95.87 15495.85 14195.91 26097.74 20691.74 28398.69 13098.15 22795.56 10394.92 19797.68 22188.98 19198.79 22793.19 22397.78 16497.20 226
COLMAP_ROBcopyleft93.27 1295.33 18594.87 18696.71 20699.29 7893.24 26198.58 14698.11 23489.92 30993.57 25399.10 6986.37 24799.79 9290.78 27798.10 15397.09 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT_test8_iter0594.56 23194.19 21895.67 27097.60 21491.34 28998.93 7798.42 17994.75 14593.39 26197.87 20279.00 32098.61 24096.78 10990.99 27597.07 228
PS-MVSNAJss96.43 13396.26 12996.92 19695.84 31395.08 18899.16 3698.50 16695.87 9093.84 24598.34 16294.51 8498.61 24096.88 10093.45 24497.06 229
nrg03096.28 14095.72 14497.96 13296.90 26798.15 5699.39 598.31 19795.47 10894.42 21798.35 15892.09 12398.69 23297.50 7489.05 30097.04 230
FIs96.51 13196.12 13397.67 15397.13 25397.54 8299.36 999.22 1495.89 8894.03 23798.35 15891.98 12698.44 25896.40 12292.76 25497.01 231
FC-MVSNet-test96.42 13496.05 13597.53 16396.95 26297.27 9199.36 999.23 1295.83 9193.93 23998.37 15692.00 12598.32 27696.02 13492.72 25597.00 232
test_part194.82 21393.82 24397.82 13998.84 12497.82 7299.03 5698.81 7692.31 25192.51 29097.89 20081.96 30098.67 23694.80 17388.24 30996.98 233
EU-MVSNet93.66 27094.14 22392.25 32895.96 30983.38 34998.52 15698.12 23194.69 14892.61 28598.13 18087.36 23096.39 34491.82 26190.00 28596.98 233
VPNet94.99 20394.19 21897.40 16997.16 25196.57 12198.71 12498.97 3095.67 9894.84 19998.24 17380.36 31298.67 23696.46 11887.32 32096.96 235
XXY-MVS95.20 19294.45 20697.46 16496.75 27596.56 12298.86 9198.65 13693.30 21393.27 26598.27 17084.85 27198.87 21894.82 17191.26 27196.96 235
TranMVSNet+NR-MVSNet95.14 19594.48 20297.11 18296.45 29096.36 13199.03 5699.03 2595.04 13493.58 25297.93 19688.27 20698.03 30294.13 19586.90 32696.95 237
HQP_MVS96.14 14495.90 14096.85 19997.42 23294.60 21398.80 10698.56 15097.28 3195.34 18998.28 16787.09 23399.03 19396.07 12994.27 22096.92 238
plane_prior598.56 15099.03 19396.07 12994.27 22096.92 238
UniMVSNet_NR-MVSNet95.71 16295.15 17297.40 16996.84 27096.97 10398.74 11599.24 1095.16 12693.88 24297.72 21791.68 13198.31 27895.81 14087.25 32196.92 238
DU-MVS95.42 17694.76 18997.40 16996.53 28596.97 10398.66 13798.99 2995.43 11093.88 24297.69 21888.57 19998.31 27895.81 14087.25 32196.92 238
NR-MVSNet94.98 20594.16 22197.44 16596.53 28597.22 9698.74 11598.95 3494.96 13889.25 32697.69 21889.32 17898.18 28994.59 18087.40 31996.92 238
jajsoiax95.45 17495.03 17896.73 20595.42 32694.63 20899.14 3898.52 15895.74 9493.22 26698.36 15783.87 29198.65 23896.95 9394.04 22996.91 243
mvs_tets95.41 17895.00 17996.65 21195.58 31994.42 21999.00 6398.55 15295.73 9593.21 26798.38 15583.45 29598.63 23997.09 8694.00 23196.91 243
WR-MVS95.15 19494.46 20497.22 17496.67 28096.45 12698.21 19998.81 7694.15 16693.16 26897.69 21887.51 22598.30 28095.29 16088.62 30696.90 245
VPA-MVSNet95.75 16095.11 17597.69 15197.24 24297.27 9198.94 7599.23 1295.13 12895.51 18897.32 24685.73 25698.91 21197.33 8089.55 29296.89 246
Anonymous2023121194.10 26193.26 27096.61 21699.11 10494.28 22499.01 6198.88 4986.43 33392.81 27897.57 23081.66 30398.68 23594.83 17089.02 30296.88 247
test_djsdf96.00 14995.69 14996.93 19395.72 31595.49 17199.47 298.40 18394.98 13694.58 20797.86 20389.16 18398.41 26796.91 9494.12 22896.88 247
HQP4-MVS94.45 21298.96 20496.87 249
ACMM93.85 995.69 16595.38 16096.61 21697.61 21393.84 23698.91 7998.44 17595.25 12294.28 22398.47 14586.04 25499.12 17995.50 15493.95 23396.87 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS95.72 16195.40 15696.69 20997.20 24694.25 22798.05 22298.46 17196.43 7094.45 21297.73 21586.75 23998.96 20495.30 15894.18 22496.86 251
EI-MVSNet95.96 15095.83 14296.36 24197.93 19493.70 24498.12 21698.27 20693.70 19395.07 19399.02 8092.23 11898.54 24894.68 17493.46 24296.84 252
IterMVS-LS95.46 17295.21 17096.22 24898.12 18293.72 24398.32 18798.13 23093.71 19194.26 22497.31 24792.24 11798.10 29594.63 17590.12 28396.84 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
bset_n11_16_dypcd94.89 21194.27 21496.76 20394.41 33695.15 18495.67 33595.64 33995.53 10494.65 20597.52 23487.10 23298.29 28396.58 11591.35 26796.83 254
CP-MVSNet94.94 20994.30 21396.83 20096.72 27795.56 16799.11 4498.95 3493.89 17992.42 29497.90 19887.19 23198.12 29494.32 18988.21 31096.82 255
RRT_MVS96.04 14795.53 15397.56 16197.07 25797.32 8898.57 15198.09 24195.15 12795.02 19598.44 14788.20 20898.58 24696.17 12893.09 25196.79 256
PS-CasMVS94.67 22493.99 23396.71 20696.68 27995.26 18099.13 4199.03 2593.68 19692.33 29597.95 19485.35 26398.10 29593.59 21288.16 31296.79 256
UniMVSNet (Re)95.78 15995.19 17197.58 15996.99 26197.47 8498.79 11099.18 1695.60 10193.92 24097.04 27191.68 13198.48 25295.80 14287.66 31696.79 256
MVSTER96.06 14695.72 14497.08 18498.23 17095.93 15498.73 11998.27 20694.86 14295.07 19398.09 18288.21 20798.54 24896.59 11393.46 24296.79 256
LPG-MVS_test95.62 16895.34 16296.47 23297.46 22793.54 24798.99 6598.54 15494.67 15094.36 21998.77 11585.39 26199.11 18295.71 14794.15 22696.76 260
LGP-MVS_train96.47 23297.46 22793.54 24798.54 15494.67 15094.36 21998.77 11585.39 26199.11 18295.71 14794.15 22696.76 260
GG-mvs-BLEND96.59 21996.34 29494.98 19396.51 32488.58 36393.10 27394.34 34080.34 31398.05 30189.53 29896.99 18096.74 262
PEN-MVS94.42 24193.73 25296.49 23096.28 29694.84 19999.17 3599.00 2793.51 20392.23 29797.83 20986.10 25197.90 31192.55 24486.92 32596.74 262
OurMVSNet-221017-094.21 25294.00 23194.85 29495.60 31889.22 32098.89 8497.43 29395.29 11992.18 29898.52 14182.86 29698.59 24493.46 21591.76 26396.74 262
v2v48294.69 21994.03 22796.65 21196.17 30094.79 20498.67 13498.08 24392.72 23394.00 23897.16 25687.69 22498.45 25692.91 23288.87 30496.72 265
GBi-Net94.49 23793.80 24596.56 22398.21 17295.00 19098.82 9998.18 21992.46 24094.09 23397.07 26581.16 30497.95 30792.08 25392.14 25896.72 265
test194.49 23793.80 24596.56 22398.21 17295.00 19098.82 9998.18 21992.46 24094.09 23397.07 26581.16 30497.95 30792.08 25392.14 25896.72 265
FMVSNet193.19 28292.07 28796.56 22397.54 22195.00 19098.82 9998.18 21990.38 30192.27 29697.07 26573.68 34797.95 30789.36 30291.30 26996.72 265
v119294.32 24693.58 25996.53 22796.10 30394.45 21798.50 16198.17 22491.54 27294.19 22997.06 26886.95 23798.43 25990.14 28489.57 29096.70 269
v124094.06 26593.29 26996.34 24396.03 30793.90 23498.44 16898.17 22491.18 28994.13 23297.01 27586.05 25298.42 26089.13 30589.50 29496.70 269
FMVSNet394.97 20694.26 21597.11 18298.18 17796.62 11698.56 15298.26 21093.67 19894.09 23397.10 25884.25 28198.01 30392.08 25392.14 25896.70 269
FMVSNet294.47 23993.61 25897.04 18598.21 17296.43 12898.79 11098.27 20692.46 24093.50 25897.09 26281.16 30498.00 30591.09 27091.93 26196.70 269
ACMH92.88 1694.55 23293.95 23596.34 24397.63 21293.26 26098.81 10598.49 17093.43 20789.74 32198.53 13881.91 30199.08 18793.69 20793.30 24896.70 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192094.20 25393.47 26496.40 23995.98 30894.08 23098.52 15698.15 22791.33 28094.25 22597.20 25586.41 24698.42 26090.04 28989.39 29696.69 274
ACMP93.49 1095.34 18494.98 18196.43 23797.67 20993.48 25198.73 11998.44 17594.94 14192.53 28898.53 13884.50 27899.14 17795.48 15594.00 23196.66 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS95.62 16895.34 16296.46 23597.52 22493.75 24097.27 28398.46 17195.53 10494.42 21798.00 18986.21 24998.97 20096.25 12694.37 21896.66 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v14419294.39 24393.70 25496.48 23196.06 30594.35 22398.58 14698.16 22691.45 27494.33 22197.02 27387.50 22798.45 25691.08 27189.11 29996.63 277
IterMVS94.09 26293.85 24294.80 29797.99 19190.35 30797.18 28898.12 23193.68 19692.46 29397.34 24484.05 28697.41 32692.51 24691.33 26896.62 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114494.59 22993.92 23696.60 21896.21 29794.78 20598.59 14498.14 22991.86 26494.21 22897.02 27387.97 21598.41 26791.72 26489.57 29096.61 279
OPM-MVS95.69 16595.33 16496.76 20396.16 30294.63 20898.43 17098.39 18596.64 6195.02 19598.78 11385.15 26699.05 18995.21 16494.20 22396.60 280
LTVRE_ROB92.95 1594.60 22793.90 23896.68 21097.41 23594.42 21998.52 15698.59 14291.69 26891.21 30898.35 15884.87 27099.04 19291.06 27293.44 24596.60 280
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT94.11 26093.87 24094.85 29497.98 19390.56 30597.18 28898.11 23493.75 18692.58 28697.48 23683.97 28897.41 32692.48 24891.30 26996.58 282
pmmvs593.65 27292.97 27495.68 26995.49 32292.37 27198.20 20297.28 30089.66 31492.58 28697.26 24982.14 29898.09 29793.18 22490.95 27696.58 282
K. test v392.55 28991.91 29194.48 30695.64 31789.24 31999.07 5194.88 34594.04 17086.78 33797.59 22877.64 33297.64 32092.08 25389.43 29596.57 284
SixPastTwentyTwo93.34 27692.86 27594.75 29895.67 31689.41 31898.75 11296.67 32993.89 17990.15 31998.25 17280.87 30898.27 28690.90 27590.64 27896.57 284
miper_lstm_enhance94.33 24594.07 22695.11 28697.75 20390.97 29797.22 28598.03 25291.67 26992.76 28096.97 27890.03 16697.78 31792.51 24689.64 28996.56 286
MDA-MVSNet_test_wron90.71 30489.38 30994.68 30094.83 33290.78 30197.19 28797.46 28987.60 32772.41 35695.72 32486.51 24296.71 33985.92 32486.80 32796.56 286
ACMH+92.99 1494.30 24793.77 24895.88 26397.81 20192.04 27798.71 12498.37 18893.99 17590.60 31598.47 14580.86 30999.05 18992.75 23792.40 25796.55 288
eth_miper_zixun_eth94.68 22194.41 20995.47 27597.64 21191.71 28496.73 31898.07 24592.71 23493.64 25097.21 25490.54 15898.17 29093.38 21689.76 28796.54 289
YYNet190.70 30589.39 30894.62 30294.79 33390.65 30397.20 28697.46 28987.54 32872.54 35595.74 32186.51 24296.66 34086.00 32386.76 32896.54 289
cl-mvsnet194.52 23594.03 22795.99 25597.57 22093.38 25697.05 29597.94 25891.74 26592.81 27897.10 25889.12 18498.07 29992.60 23990.30 28196.53 291
cl_fuxian94.79 21694.43 20895.89 26297.75 20393.12 26597.16 29198.03 25292.23 25393.46 26097.05 27091.39 13998.01 30393.58 21389.21 29896.53 291
Patchmtry93.22 28092.35 28495.84 26496.77 27293.09 26694.66 34697.56 27787.37 32992.90 27696.24 31088.15 21097.90 31187.37 31690.10 28496.53 291
cl-mvsnet____94.51 23694.01 23096.02 25497.58 21693.40 25597.05 29597.96 25791.73 26792.76 28097.08 26489.06 18798.13 29392.61 23890.29 28296.52 294
v7n94.19 25493.43 26596.47 23295.90 31094.38 22299.26 2098.34 19391.99 25992.76 28097.13 25788.31 20598.52 25089.48 30087.70 31596.52 294
MDA-MVSNet-bldmvs89.97 31088.35 31594.83 29695.21 32791.34 28997.64 25897.51 28588.36 32571.17 35796.13 31679.22 31896.63 34183.65 33786.27 32996.52 294
cl-mvsnet294.68 22194.19 21896.13 25298.11 18393.60 24596.94 30198.31 19792.43 24493.32 26496.87 28886.51 24298.28 28594.10 19891.16 27296.51 297
lessismore_v094.45 30994.93 33188.44 33291.03 36086.77 33897.64 22476.23 33798.42 26090.31 28385.64 33396.51 297
anonymousdsp95.42 17694.91 18496.94 19295.10 32895.90 15799.14 3898.41 18093.75 18693.16 26897.46 23787.50 22798.41 26795.63 15194.03 23096.50 299
v14894.29 24893.76 25095.91 26096.10 30392.93 26798.58 14697.97 25592.59 23893.47 25996.95 28288.53 20298.32 27692.56 24387.06 32396.49 300
our_test_393.65 27293.30 26894.69 29995.45 32489.68 31496.91 30497.65 27191.97 26091.66 30596.88 28689.67 17297.93 31088.02 31291.49 26696.48 301
XVG-ACMP-BASELINE94.54 23394.14 22395.75 26896.55 28491.65 28598.11 21898.44 17594.96 13894.22 22797.90 19879.18 31999.11 18294.05 20093.85 23596.48 301
DTE-MVSNet93.98 26793.26 27096.14 25196.06 30594.39 22199.20 3198.86 6193.06 22191.78 30397.81 21185.87 25597.58 32290.53 28086.17 33096.46 303
miper_ehance_all_eth95.01 20194.69 19395.97 25797.70 20893.31 25897.02 29798.07 24592.23 25393.51 25796.96 28091.85 12898.15 29193.68 20891.16 27296.44 304
v894.47 23993.77 24896.57 22296.36 29394.83 20199.05 5398.19 21691.92 26193.16 26896.97 27888.82 19698.48 25291.69 26587.79 31496.39 305
WR-MVS_H95.05 20094.46 20496.81 20196.86 26995.82 16099.24 2299.24 1093.87 18192.53 28896.84 29090.37 16098.24 28793.24 22187.93 31396.38 306
miper_enhance_ethall95.10 19794.75 19096.12 25397.53 22393.73 24296.61 32198.08 24392.20 25693.89 24196.65 29892.44 11298.30 28094.21 19391.16 27296.34 307
V4294.78 21794.14 22396.70 20896.33 29595.22 18198.97 6998.09 24192.32 24994.31 22297.06 26888.39 20498.55 24792.90 23388.87 30496.34 307
v1094.29 24893.55 26096.51 22996.39 29294.80 20398.99 6598.19 21691.35 27993.02 27496.99 27688.09 21298.41 26790.50 28188.41 30896.33 309
MVS_030492.81 28692.01 28895.23 28197.46 22791.33 29198.17 21198.81 7691.13 29093.80 24795.68 32766.08 35598.06 30090.79 27696.13 20996.32 310
pmmvs494.69 21993.99 23396.81 20195.74 31495.94 15197.40 26997.67 27090.42 30093.37 26297.59 22889.08 18698.20 28892.97 23091.67 26496.30 311
ppachtmachnet_test93.22 28092.63 28094.97 29095.45 32490.84 29896.88 31097.88 26290.60 29592.08 30097.26 24988.08 21397.86 31685.12 33090.33 28096.22 312
PVSNet_BlendedMVS96.73 12296.60 11797.12 18199.25 8695.35 17798.26 19699.26 894.28 16397.94 10397.46 23792.74 10999.81 7196.88 10093.32 24796.20 313
pm-mvs193.94 26893.06 27296.59 21996.49 28895.16 18298.95 7398.03 25292.32 24991.08 31097.84 20684.54 27798.41 26792.16 25186.13 33296.19 314
Anonymous2023120691.66 29591.10 29593.33 32094.02 34287.35 34198.58 14697.26 30290.48 29790.16 31896.31 30883.83 29296.53 34279.36 34889.90 28696.12 315
ITE_SJBPF95.44 27797.42 23291.32 29297.50 28695.09 13393.59 25198.35 15881.70 30298.88 21789.71 29493.39 24696.12 315
FMVSNet591.81 29390.92 29694.49 30597.21 24592.09 27498.00 22897.55 28289.31 31990.86 31295.61 32874.48 34495.32 34985.57 32689.70 28896.07 317
UnsupCasMVSNet_eth90.99 30289.92 30594.19 31294.08 33989.83 31097.13 29398.67 12993.69 19485.83 34296.19 31575.15 34196.74 33689.14 30479.41 34596.00 318
USDC93.33 27792.71 27895.21 28296.83 27190.83 29996.91 30497.50 28693.84 18290.72 31398.14 17977.69 32998.82 22489.51 29993.21 25095.97 319
pmmvs691.77 29490.63 29895.17 28494.69 33591.24 29498.67 13497.92 26086.14 33589.62 32297.56 23275.79 33998.34 27490.75 27884.56 33495.94 320
N_pmnet87.12 32087.77 31985.17 33795.46 32361.92 36297.37 27370.66 36885.83 33888.73 33196.04 31885.33 26597.76 31880.02 34590.48 27995.84 321
MIMVSNet189.67 31288.28 31693.82 31492.81 34891.08 29698.01 22697.45 29187.95 32687.90 33495.87 32067.63 35394.56 35378.73 35188.18 31195.83 322
test_method79.03 32278.17 32581.63 33986.06 35754.40 36782.75 35996.89 32039.54 36280.98 35095.57 32958.37 35894.73 35284.74 33478.61 34695.75 323
TransMVSNet (Re)92.67 28891.51 29396.15 25096.58 28394.65 20698.90 8096.73 32590.86 29389.46 32597.86 20385.62 25898.09 29786.45 32081.12 34195.71 324
Baseline_NR-MVSNet94.35 24493.81 24495.96 25896.20 29894.05 23198.61 14396.67 32991.44 27593.85 24497.60 22788.57 19998.14 29294.39 18586.93 32495.68 325
D2MVS95.18 19395.08 17695.48 27497.10 25592.07 27598.30 19099.13 1994.02 17292.90 27696.73 29389.48 17498.73 23194.48 18493.60 24195.65 326
CL-MVSNet_2432*160090.11 30889.14 31193.02 32491.86 35088.23 33596.51 32498.07 24590.49 29690.49 31694.41 33684.75 27395.34 34880.79 34474.95 35195.50 327
TinyColmap92.31 29191.53 29294.65 30196.92 26489.75 31196.92 30296.68 32890.45 29989.62 32297.85 20576.06 33898.81 22586.74 31892.51 25695.41 328
DIV-MVS_2432*160090.38 30689.38 30993.40 31992.85 34788.94 32597.95 23197.94 25890.35 30290.25 31793.96 34179.82 31495.94 34584.62 33576.69 34995.33 329
MS-PatchMatch93.84 26993.63 25794.46 30896.18 29989.45 31697.76 25098.27 20692.23 25392.13 29997.49 23579.50 31698.69 23289.75 29399.38 10195.25 330
KD-MVS_2432*160089.61 31387.96 31794.54 30394.06 34091.59 28695.59 33797.63 27389.87 31088.95 32894.38 33878.28 32496.82 33484.83 33168.05 35595.21 331
miper_refine_blended89.61 31387.96 31794.54 30394.06 34091.59 28695.59 33797.63 27389.87 31088.95 32894.38 33878.28 32496.82 33484.83 33168.05 35595.21 331
LF4IMVS93.14 28392.79 27794.20 31195.88 31188.67 32897.66 25797.07 30793.81 18591.71 30497.65 22277.96 32898.81 22591.47 26891.92 26295.12 333
tfpnnormal93.66 27092.70 27996.55 22696.94 26395.94 15198.97 6999.19 1591.04 29191.38 30797.34 24484.94 26998.61 24085.45 32889.02 30295.11 334
EG-PatchMatch MVS91.13 30090.12 30394.17 31394.73 33489.00 32498.13 21597.81 26489.22 32085.32 34496.46 30467.71 35298.42 26087.89 31493.82 23695.08 335
TDRefinement91.06 30189.68 30695.21 28285.35 35891.49 28898.51 16097.07 30791.47 27388.83 33097.84 20677.31 33399.09 18692.79 23677.98 34795.04 336
MVP-Stereo94.28 25093.92 23695.35 27994.95 33092.60 27097.97 23097.65 27191.61 27190.68 31497.09 26286.32 24898.42 26089.70 29599.34 10395.02 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0390.89 30390.38 30192.43 32693.48 34488.14 33698.33 18297.56 27793.40 20887.96 33396.71 29580.69 31194.13 35479.15 34986.17 33095.01 338
Anonymous2024052191.18 29990.44 30093.42 31793.70 34388.47 33198.94 7597.56 27788.46 32489.56 32495.08 33377.15 33596.97 33283.92 33689.55 29294.82 339
ambc89.49 33386.66 35675.78 35692.66 35296.72 32686.55 33992.50 34746.01 36097.90 31190.32 28282.09 33694.80 340
test_040291.32 29790.27 30294.48 30696.60 28291.12 29598.50 16197.22 30386.10 33688.30 33296.98 27777.65 33197.99 30678.13 35292.94 25394.34 341
new_pmnet90.06 30989.00 31393.22 32394.18 33788.32 33496.42 32696.89 32086.19 33485.67 34393.62 34277.18 33497.10 33081.61 34289.29 29794.23 342
CMPMVSbinary66.06 2189.70 31189.67 30789.78 33293.19 34576.56 35597.00 29898.35 19180.97 34881.57 34997.75 21474.75 34398.61 24089.85 29193.63 23994.17 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS87.77 31886.55 32291.40 33191.03 35383.36 35096.92 30295.18 34391.28 28486.48 34093.42 34353.27 35996.74 33689.43 30181.97 33894.11 344
pmmvs-eth3d90.36 30789.05 31294.32 31091.10 35292.12 27397.63 26096.95 31588.86 32284.91 34593.13 34478.32 32396.74 33688.70 30781.81 33994.09 345
new-patchmatchnet88.50 31787.45 32091.67 33090.31 35485.89 34597.16 29197.33 29789.47 31683.63 34792.77 34576.38 33695.06 35182.70 33977.29 34894.06 346
pmmvs386.67 32184.86 32492.11 32988.16 35587.19 34396.63 32094.75 34779.88 34987.22 33692.75 34666.56 35495.20 35081.24 34376.56 35093.96 347
UnsupCasMVSNet_bld87.17 31985.12 32393.31 32191.94 34988.77 32694.92 34398.30 20384.30 34482.30 34890.04 35063.96 35797.25 32885.85 32574.47 35393.93 348
LCM-MVSNet78.70 32376.24 32886.08 33577.26 36471.99 35994.34 34896.72 32661.62 35776.53 35289.33 35133.91 36692.78 35681.85 34174.60 35293.46 349
OpenMVS_ROBcopyleft86.42 2089.00 31687.43 32193.69 31593.08 34689.42 31797.91 23596.89 32078.58 35085.86 34194.69 33569.48 35198.29 28377.13 35393.29 24993.36 350
DeepMVS_CXcopyleft86.78 33497.09 25672.30 35895.17 34475.92 35284.34 34695.19 33070.58 35095.35 34779.98 34789.04 30192.68 351
PMMVS277.95 32575.44 32985.46 33682.54 35974.95 35794.23 34993.08 35772.80 35474.68 35387.38 35236.36 36591.56 35773.95 35563.94 35789.87 352
FPMVS77.62 32677.14 32679.05 34179.25 36260.97 36395.79 33395.94 33565.96 35567.93 35894.40 33737.73 36488.88 35968.83 35688.46 30787.29 353
tmp_tt68.90 32866.97 33074.68 34350.78 36859.95 36487.13 35683.47 36638.80 36362.21 35996.23 31264.70 35676.91 36488.91 30630.49 36287.19 354
ANet_high69.08 32765.37 33180.22 34065.99 36671.96 36090.91 35590.09 36182.62 34549.93 36378.39 35829.36 36781.75 36062.49 35838.52 36186.95 355
MVEpermissive62.14 2263.28 33259.38 33574.99 34274.33 36565.47 36185.55 35780.50 36752.02 36051.10 36275.00 36110.91 37180.50 36151.60 36053.40 35878.99 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 32963.57 33373.09 34457.90 36751.22 36885.05 35893.93 35654.45 35844.32 36483.57 35413.22 36889.15 35858.68 35981.00 34278.91 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft78.40 32476.75 32783.38 33895.54 32080.43 35479.42 36097.40 29564.67 35673.46 35480.82 35745.65 36193.14 35566.32 35787.43 31876.56 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 33163.26 33466.53 34681.73 36158.81 36691.85 35384.75 36551.93 36159.09 36175.13 36043.32 36279.09 36342.03 36239.47 36061.69 359
E-PMN64.94 33064.25 33267.02 34582.28 36059.36 36591.83 35485.63 36452.69 35960.22 36077.28 35941.06 36380.12 36246.15 36141.14 35961.57 360
test12320.95 33623.72 33912.64 34813.54 3708.19 37096.55 3236.13 3717.48 36616.74 36637.98 36412.97 3696.05 36616.69 3645.43 36523.68 361
testmvs21.48 33524.95 33811.09 34914.89 3696.47 37196.56 3229.87 3707.55 36517.93 36539.02 3639.43 3725.90 36716.56 36512.72 36420.91 362
wuyk23d30.17 33330.18 33730.16 34778.61 36343.29 36966.79 36114.21 36917.31 36414.82 36711.93 36711.55 37041.43 36537.08 36319.30 3635.76 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.98 33431.98 3360.00 3500.00 3710.00 3720.00 36298.59 1420.00 3670.00 36898.61 12990.60 1570.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.88 33810.50 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36894.51 840.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.20 33710.94 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36898.43 1480.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.46 5198.70 1998.79 9293.21 21598.67 5898.97 8795.70 4499.83 5696.07 12999.58 74
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
9.1498.06 4999.47 4898.71 12498.82 7094.36 16299.16 2699.29 3996.05 3299.81 7197.00 8899.71 50
save fliter99.46 5198.38 3598.21 19998.71 11497.95 3
test072699.72 1299.25 299.06 5298.88 4997.62 1199.56 599.50 497.42 6
test_part299.63 2999.18 899.27 17
sam_mvs88.99 188
MTGPAbinary98.74 104
test_post196.68 31930.43 36687.85 22098.69 23292.59 241
test_post31.83 36588.83 19598.91 211
patchmatchnet-post95.10 33289.42 17698.89 215
MTMP98.89 8494.14 354
gm-plane-assit95.88 31187.47 34089.74 31396.94 28399.19 17193.32 220
TEST999.31 7098.50 2997.92 23398.73 10892.63 23597.74 11498.68 12396.20 2399.80 80
test_899.29 7898.44 3197.89 23998.72 11092.98 22497.70 11798.66 12696.20 2399.80 80
agg_prior99.30 7598.38 3598.72 11097.57 12799.81 71
test_prior498.01 6297.86 242
test_prior297.80 24796.12 8297.89 10898.69 12195.96 3696.89 9799.60 68
旧先验297.57 26391.30 28298.67 5899.80 8095.70 149
新几何297.64 258
原ACMM297.67 256
testdata299.89 3591.65 266
segment_acmp96.85 11
testdata197.32 27996.34 74
plane_prior797.42 23294.63 208
plane_prior697.35 23794.61 21187.09 233
plane_prior498.28 167
plane_prior394.61 21197.02 4995.34 189
plane_prior298.80 10697.28 31
plane_prior197.37 236
plane_prior94.60 21398.44 16896.74 5794.22 222
n20.00 372
nn0.00 372
door-mid94.37 350
test1198.66 132
door94.64 348
HQP5-MVS94.25 227
HQP-NCC97.20 24698.05 22296.43 7094.45 212
ACMP_Plane97.20 24698.05 22296.43 7094.45 212
BP-MVS95.30 158
HQP3-MVS98.46 17194.18 224
HQP2-MVS86.75 239
NP-MVS97.28 24094.51 21697.73 215
MDTV_nov1_ep1395.40 15697.48 22588.34 33396.85 31297.29 29993.74 18897.48 13097.26 24989.18 18299.05 18991.92 26097.43 174
ACMMP++_ref92.97 252
ACMMP++93.61 240
Test By Simon94.64 80