This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
APDe-MVS99.02 498.84 499.55 999.57 3598.96 1699.39 1298.93 3997.38 3099.41 1399.54 196.66 1799.84 5798.86 499.85 599.87 1
MSC_two_6792asdad99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
No_MVS99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
test_0728_THIRD97.32 3399.45 1199.46 1397.88 199.94 498.47 2299.86 199.85 4
MSP-MVS98.74 998.55 1399.29 3499.75 498.23 5499.26 2698.88 5197.52 1799.41 1398.78 12496.00 3899.79 9697.79 6199.59 7799.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1399.35 198.97 8198.88 5199.94 498.47 2299.81 1299.84 6
IU-MVS99.71 2199.23 798.64 14195.28 13499.63 498.35 3299.81 1299.83 7
test_241102_TWO98.87 5897.65 1099.53 999.48 897.34 1199.94 498.43 2699.80 1999.83 7
DPE-MVScopyleft98.92 598.67 899.65 299.58 3499.20 998.42 18498.91 4597.58 1599.54 899.46 1397.10 1299.94 497.64 7399.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
patch_mono-298.36 4898.87 396.82 21199.53 3990.68 31498.64 15199.29 897.88 599.19 2999.52 396.80 1599.97 199.11 199.86 199.82 10
CHOSEN 1792x268897.12 11496.80 10998.08 12999.30 7994.56 22698.05 23399.71 193.57 21597.09 15098.91 11088.17 21899.89 3996.87 11699.56 8699.81 11
EI-MVSNet-Vis-set98.47 4098.39 2498.69 8199.46 5596.49 13298.30 20198.69 12297.21 4398.84 5599.36 3095.41 6099.78 10098.62 1099.65 6499.80 12
ACMMP_NAP98.61 1898.30 3999.55 999.62 3298.95 1798.82 11198.81 8095.80 10799.16 3299.47 1095.37 6399.92 2597.89 5299.75 4299.79 13
Regformer-498.64 1598.53 1498.99 6699.43 6197.37 9298.40 18698.79 9697.46 2399.09 3699.31 3995.86 4699.80 8498.64 899.76 3699.79 13
HPM-MVScopyleft98.36 4898.10 5499.13 5799.74 897.82 7799.53 898.80 9194.63 16698.61 7498.97 9795.13 7799.77 10597.65 7299.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R98.61 1898.38 2599.29 3499.74 898.16 6099.23 2998.93 3996.15 9098.94 4599.17 6395.91 4399.94 497.55 8199.79 2399.78 16
Regformer-398.59 2198.50 1798.86 7699.43 6197.05 10598.40 18698.68 12597.43 2699.06 3799.31 3995.80 4799.77 10598.62 1099.76 3699.78 16
XVS98.70 1098.49 2099.34 2699.70 2498.35 4899.29 2298.88 5197.40 2798.46 7999.20 5995.90 4499.89 3997.85 5699.74 4599.78 16
X-MVStestdata94.06 27692.30 29699.34 2699.70 2498.35 4899.29 2298.88 5197.40 2798.46 7943.50 37695.90 4499.89 3997.85 5699.74 4599.78 16
ACMMPR98.59 2198.36 2799.29 3499.74 898.15 6199.23 2998.95 3596.10 9598.93 5099.19 6295.70 5099.94 497.62 7499.79 2399.78 16
PGM-MVS98.49 3798.23 4799.27 4199.72 1398.08 6498.99 7799.49 595.43 12499.03 3999.32 3795.56 5399.94 496.80 12199.77 3099.78 16
SteuartSystems-ACMMP98.90 698.75 699.36 2499.22 9898.43 3899.10 5598.87 5897.38 3099.35 1799.40 1797.78 599.87 4897.77 6299.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.08 6198.59 1096.56 23499.57 3590.34 32099.15 4398.38 19596.82 6499.29 2099.49 795.78 4899.57 14098.94 299.86 199.77 23
zzz-MVS98.55 3198.25 4399.46 1599.76 298.64 2798.55 16698.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
MTAPA98.58 2498.29 4099.46 1599.76 298.64 2798.90 9198.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
mPP-MVS98.51 3698.26 4299.25 4299.75 498.04 6599.28 2498.81 8096.24 8798.35 8999.23 5295.46 5799.94 497.42 8799.81 1299.77 23
HPM-MVS_fast98.38 4698.13 5199.12 6099.75 497.86 7399.44 1198.82 7494.46 17398.94 4599.20 5995.16 7699.74 11197.58 7799.85 599.77 23
CP-MVS98.57 2798.36 2799.19 4699.66 2897.86 7399.34 1898.87 5895.96 10098.60 7599.13 7396.05 3699.94 497.77 6299.86 199.77 23
HyFIR lowres test96.90 12296.49 12798.14 12399.33 6995.56 17797.38 28499.65 292.34 26097.61 13798.20 18989.29 18899.10 19696.97 10297.60 18499.77 23
testtj98.33 5497.95 6199.47 1499.49 4998.70 2398.83 10898.86 6495.48 12198.91 5299.17 6395.48 5699.93 1995.80 15599.53 9299.76 30
SMA-MVScopyleft98.58 2498.25 4399.56 899.51 4399.04 1598.95 8598.80 9193.67 21199.37 1699.52 396.52 2199.89 3998.06 4199.81 1299.76 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.63 1798.40 2399.32 3199.72 1398.29 5199.23 2998.96 3396.10 9598.94 4599.17 6396.06 3499.92 2597.62 7499.78 2799.75 32
#test#98.54 3398.27 4199.32 3199.72 1398.29 5198.98 8098.96 3395.65 11598.94 4599.17 6396.06 3499.92 2597.21 9599.78 2799.75 32
Regformer-198.66 1398.51 1699.12 6099.35 6497.81 7998.37 18898.76 10397.49 1999.20 2699.21 5596.08 3399.79 9698.42 2899.73 4799.75 32
Regformer-298.69 1298.52 1599.19 4699.35 6498.01 6798.37 18898.81 8097.48 2099.21 2599.21 5596.13 3199.80 8498.40 3099.73 4799.75 32
CPTT-MVS97.72 7797.32 8998.92 7299.64 3097.10 10499.12 5098.81 8092.34 26098.09 9799.08 8693.01 11399.92 2596.06 14599.77 3099.75 32
DVP-MVS++99.08 298.89 299.64 399.17 10399.23 799.69 198.88 5197.32 3399.53 999.47 1097.81 399.94 498.47 2299.72 5499.74 37
PC_three_145295.08 14799.60 599.16 6897.86 298.47 26897.52 8499.72 5499.74 37
ZNCC-MVS98.49 3798.20 4999.35 2599.73 1298.39 3999.19 3998.86 6495.77 10898.31 9299.10 7895.46 5799.93 1997.57 8099.81 1299.74 37
MCST-MVS98.65 1498.37 2699.48 1399.60 3398.87 1998.41 18598.68 12597.04 5498.52 7898.80 12296.78 1699.83 6097.93 4899.61 7399.74 37
APD-MVScopyleft98.35 5098.00 5999.42 1899.51 4398.72 2198.80 11898.82 7494.52 17099.23 2499.25 5095.54 5599.80 8496.52 13199.77 3099.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test117298.56 2998.35 2999.16 5399.53 3997.94 7199.09 5698.83 7296.52 7799.05 3899.34 3595.34 6599.82 6897.86 5599.64 6899.73 42
TSAR-MVS + MP.98.78 798.62 999.24 4399.69 2698.28 5399.14 4598.66 13696.84 6299.56 699.31 3996.34 2399.70 11998.32 3399.73 4799.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set98.41 4498.34 3398.61 8699.45 5996.32 14198.28 20498.68 12597.17 4698.74 6299.37 2695.25 7299.79 9698.57 1299.54 9199.73 42
MP-MVScopyleft98.33 5498.01 5899.28 3899.75 498.18 5899.22 3398.79 9696.13 9297.92 11799.23 5294.54 9099.94 496.74 12599.78 2799.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SR-MVS98.57 2798.35 2999.24 4399.53 3998.18 5899.09 5698.82 7496.58 7499.10 3599.32 3795.39 6199.82 6897.70 7099.63 7099.72 46
GST-MVS98.43 4398.12 5299.34 2699.72 1398.38 4099.09 5698.82 7495.71 11198.73 6499.06 8895.27 7099.93 1997.07 9999.63 7099.72 46
APD-MVS_3200maxsize98.53 3598.33 3799.15 5699.50 4597.92 7299.15 4398.81 8096.24 8799.20 2699.37 2695.30 6899.80 8497.73 6499.67 6099.72 46
DeepPCF-MVS96.37 297.93 6998.48 2296.30 25999.00 12189.54 33097.43 28198.87 5898.16 299.26 2299.38 2596.12 3299.64 13098.30 3499.77 3099.72 46
SR-MVS-dyc-post98.54 3398.35 2999.13 5799.49 4997.86 7399.11 5298.80 9196.49 7899.17 3099.35 3295.34 6599.82 6897.72 6599.65 6499.71 50
RE-MVS-def98.34 3399.49 4997.86 7399.11 5298.80 9196.49 7899.17 3099.35 3295.29 6997.72 6599.65 6499.71 50
NCCC98.61 1898.35 2999.38 2099.28 8698.61 2998.45 17798.76 10397.82 698.45 8298.93 10796.65 1899.83 6097.38 8999.41 10699.71 50
3Dnovator+94.38 697.43 9796.78 11299.38 2097.83 21698.52 3299.37 1498.71 11897.09 5392.99 28999.13 7389.36 18699.89 3996.97 10299.57 8199.71 50
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 7198.87 5897.65 1099.73 199.48 897.53 799.94 498.43 2699.81 1299.70 54
OPU-MVS99.37 2399.24 9699.05 1499.02 7199.16 6897.81 399.37 16797.24 9299.73 4799.70 54
ACMMPcopyleft98.23 5897.95 6199.09 6299.74 897.62 8499.03 6799.41 695.98 9897.60 13899.36 3094.45 9599.93 1997.14 9698.85 13399.70 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft99.03 398.83 599.63 499.72 1399.25 298.97 8198.58 15397.62 1299.45 1199.46 1397.42 999.94 498.47 2299.81 1299.69 57
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test9_res96.39 13799.57 8199.69 57
abl_698.30 5798.03 5799.13 5799.56 3797.76 8099.13 4898.82 7496.14 9199.26 2299.37 2693.33 10999.93 1996.96 10499.67 6099.69 57
CNVR-MVS98.78 798.56 1299.45 1799.32 7298.87 1998.47 17698.81 8097.72 798.76 6199.16 6897.05 1399.78 10098.06 4199.66 6399.69 57
MVS_111021_HR98.47 4098.34 3398.88 7599.22 9897.32 9397.91 24699.58 397.20 4498.33 9099.00 9595.99 3999.64 13098.05 4399.76 3699.69 57
DeepC-MVS_fast96.70 198.55 3198.34 3399.18 5099.25 9098.04 6598.50 17398.78 9997.72 798.92 5199.28 4495.27 7099.82 6897.55 8199.77 3099.69 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg97.97 6397.52 7799.33 3099.31 7498.50 3497.92 24498.73 11292.98 23897.74 12598.68 13596.20 2799.80 8496.59 12799.57 8199.68 63
agg_prior295.87 15299.57 8199.68 63
CDPH-MVS97.94 6897.49 8099.28 3899.47 5298.44 3697.91 24698.67 13392.57 25298.77 6098.85 11595.93 4299.72 11395.56 16599.69 5899.68 63
DP-MVS96.59 13295.93 14798.57 8899.34 6696.19 14798.70 14098.39 19289.45 33194.52 22399.35 3291.85 13599.85 5492.89 24898.88 13099.68 63
xxxxxxxxxxxxxcwj98.70 1098.50 1799.30 3399.46 5598.38 4098.21 21098.52 16497.95 399.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
SF-MVS98.59 2198.32 3899.41 1999.54 3898.71 2299.04 6498.81 8095.12 14299.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
MP-MVS-pluss98.31 5697.92 6399.49 1299.72 1398.88 1898.43 18298.78 9994.10 18197.69 13099.42 1695.25 7299.92 2598.09 4099.80 1999.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MG-MVS97.81 7397.60 7198.44 10399.12 11195.97 15797.75 26398.78 9996.89 6198.46 7999.22 5493.90 10599.68 12594.81 18599.52 9499.67 67
agg_prior197.95 6797.51 7999.28 3899.30 7998.38 4097.81 25798.72 11493.16 23297.57 13998.66 13896.14 3099.81 7596.63 12699.56 8699.66 71
HPM-MVS++copyleft98.58 2498.25 4399.55 999.50 4599.08 1198.72 13598.66 13697.51 1898.15 9398.83 11995.70 5099.92 2597.53 8399.67 6099.66 71
UA-Net97.96 6497.62 7098.98 6898.86 13397.47 8998.89 9599.08 2296.67 7198.72 6599.54 193.15 11299.81 7594.87 18198.83 13499.65 73
test_prior398.22 5997.90 6499.19 4699.31 7498.22 5597.80 25898.84 6996.12 9397.89 11998.69 13395.96 4099.70 11996.89 11099.60 7499.65 73
test_prior99.19 4699.31 7498.22 5598.84 6999.70 11999.65 73
ETH3 D test640097.59 8697.01 10199.34 2699.40 6398.56 3098.20 21398.81 8091.63 28398.44 8398.85 11593.98 10499.82 6894.11 21099.69 5899.64 76
SD-MVS98.64 1598.68 798.53 9499.33 6998.36 4798.90 9198.85 6897.28 3699.72 399.39 1896.63 1997.60 33598.17 3699.85 599.64 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator94.51 597.46 9296.93 10599.07 6397.78 21897.64 8299.35 1799.06 2397.02 5593.75 26499.16 6889.25 19099.92 2597.22 9499.75 4299.64 76
test111195.94 16295.78 15296.41 25198.99 12490.12 32299.04 6492.45 37296.99 5798.03 10299.27 4681.40 31599.48 15996.87 11699.04 12199.63 79
ETH3D-3000-0.198.35 5098.00 5999.38 2099.47 5298.68 2598.67 14698.84 6994.66 16599.11 3499.25 5095.46 5799.81 7596.80 12199.73 4799.63 79
test1299.18 5099.16 10798.19 5798.53 16298.07 9895.13 7799.72 11399.56 8699.63 79
旧先验199.29 8297.48 8898.70 12199.09 8495.56 5399.47 9999.61 82
test22299.23 9797.17 10397.40 28298.66 13688.68 33798.05 9998.96 10394.14 10099.53 9299.61 82
112197.37 10296.77 11699.16 5399.34 6697.99 7098.19 21798.68 12590.14 32098.01 10898.97 9794.80 8699.87 4893.36 23199.46 10299.61 82
无先验97.58 27598.72 11491.38 28999.87 4893.36 23199.60 85
CVMVSNet95.43 18896.04 14393.57 32997.93 21083.62 36498.12 22798.59 14895.68 11296.56 17699.02 9087.51 23597.51 33993.56 22797.44 18699.60 85
test250694.44 25193.91 24896.04 26799.02 11888.99 34099.06 6179.47 38396.96 5898.36 8799.26 4777.21 34699.52 15396.78 12399.04 12199.59 87
ECVR-MVScopyleft95.95 16095.71 15896.65 22199.02 11890.86 30999.03 6791.80 37396.96 5898.10 9699.26 4781.31 31699.51 15496.90 10999.04 12199.59 87
新几何199.16 5399.34 6698.01 6798.69 12290.06 32198.13 9498.95 10594.60 8999.89 3991.97 27299.47 9999.59 87
PHI-MVS98.34 5298.06 5599.18 5099.15 10998.12 6399.04 6499.09 2193.32 22498.83 5799.10 7896.54 2099.83 6097.70 7099.76 3699.59 87
testdata98.26 11699.20 10195.36 18598.68 12591.89 27598.60 7599.10 7894.44 9699.82 6894.27 20399.44 10499.58 91
Test_1112_low_res96.34 14595.66 16398.36 10998.56 15895.94 16097.71 26598.07 25292.10 27094.79 21797.29 26291.75 13799.56 14394.17 20696.50 20799.58 91
1112_ss96.63 12996.00 14598.50 9698.56 15896.37 13898.18 22198.10 24492.92 24194.84 21398.43 16292.14 12899.58 13994.35 19996.51 20699.56 93
ETH3D cwj APD-0.1697.96 6497.52 7799.29 3499.05 11498.52 3298.33 19398.68 12593.18 23098.68 6699.13 7394.62 8899.83 6096.45 13399.55 9099.52 94
PAPM_NR97.46 9297.11 9698.50 9699.50 4596.41 13798.63 15398.60 14695.18 13997.06 15498.06 19894.26 9999.57 14093.80 21998.87 13299.52 94
CSCG97.85 7297.74 6898.20 12099.67 2795.16 19399.22 3399.32 793.04 23697.02 15698.92 10995.36 6499.91 3497.43 8699.64 6899.52 94
DeepC-MVS95.98 397.88 7097.58 7298.77 7899.25 9096.93 11098.83 10898.75 10696.96 5896.89 16399.50 590.46 16799.87 4897.84 5899.76 3699.52 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet98.05 6297.76 6798.90 7498.73 14297.27 9598.35 19198.78 9997.37 3297.72 12898.96 10391.53 14599.92 2598.79 699.65 6499.51 98
TSAR-MVS + GP.98.38 4698.24 4698.81 7799.22 9897.25 10098.11 22998.29 21397.19 4598.99 4499.02 9096.22 2499.67 12698.52 2098.56 14699.51 98
原ACMM198.65 8499.32 7296.62 12298.67 13393.27 22797.81 12198.97 9795.18 7599.83 6093.84 21799.46 10299.50 100
VNet97.79 7497.40 8698.96 7098.88 13197.55 8698.63 15398.93 3996.74 6899.02 4098.84 11790.33 17099.83 6098.53 1496.66 20099.50 100
EPNet97.28 10596.87 10898.51 9594.98 34596.14 14898.90 9197.02 32698.28 195.99 19799.11 7691.36 14799.89 3996.98 10199.19 11799.50 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu97.70 7897.46 8298.44 10399.27 8795.91 16598.63 15399.16 1894.48 17297.67 13198.88 11292.80 11599.91 3497.11 9799.12 11999.50 100
MVS_111021_LR98.34 5298.23 4798.67 8399.27 8796.90 11297.95 24299.58 397.14 4998.44 8399.01 9495.03 8099.62 13697.91 4999.75 4299.50 100
casdiffmvs97.63 8297.41 8598.28 11398.33 17996.14 14898.82 11198.32 20396.38 8497.95 11299.21 5591.23 15299.23 17798.12 3898.37 15599.48 105
WTY-MVS97.37 10296.92 10698.72 8098.86 13396.89 11498.31 19998.71 11895.26 13597.67 13198.56 15092.21 12699.78 10095.89 15096.85 19599.48 105
MSLP-MVS++98.56 2998.57 1198.55 9099.26 8996.80 11598.71 13699.05 2597.28 3698.84 5599.28 4496.47 2299.40 16598.52 2099.70 5799.47 107
114514_t96.93 12096.27 13498.92 7299.50 4597.63 8398.85 10498.90 4684.80 35697.77 12299.11 7692.84 11499.66 12794.85 18299.77 3099.47 107
IS-MVSNet97.22 10796.88 10798.25 11798.85 13596.36 13999.19 3997.97 26595.39 12697.23 14698.99 9691.11 15498.93 22094.60 19198.59 14499.47 107
PAPR96.84 12496.24 13698.65 8498.72 14696.92 11197.36 28898.57 15493.33 22396.67 17197.57 24594.30 9899.56 14391.05 28898.59 14499.47 107
LFMVS95.86 16694.98 19398.47 10098.87 13296.32 14198.84 10796.02 34693.40 22198.62 7399.20 5974.99 35599.63 13397.72 6597.20 19099.46 111
Vis-MVSNet (Re-imp)96.87 12396.55 12497.83 14298.73 14295.46 18299.20 3798.30 21194.96 15296.60 17598.87 11390.05 17398.59 25493.67 22398.60 14399.46 111
Vis-MVSNetpermissive97.42 9897.11 9698.34 11098.66 15196.23 14499.22 3399.00 2896.63 7398.04 10199.21 5588.05 22399.35 16896.01 14899.21 11599.45 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous20240521195.28 20094.49 21497.67 16099.00 12193.75 25298.70 14097.04 32390.66 30896.49 18398.80 12278.13 33899.83 6096.21 14195.36 22899.44 114
GeoE96.58 13496.07 14198.10 12898.35 17295.89 16799.34 1898.12 23993.12 23496.09 19398.87 11389.71 17998.97 21192.95 24498.08 16699.43 115
DPM-MVS97.55 9096.99 10399.23 4599.04 11698.55 3197.17 30398.35 19994.85 15797.93 11698.58 14795.07 7999.71 11892.60 25299.34 11199.43 115
DELS-MVS98.40 4598.20 4998.99 6699.00 12197.66 8197.75 26398.89 4897.71 998.33 9098.97 9794.97 8199.88 4798.42 2899.76 3699.42 117
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline97.64 8197.44 8498.25 11798.35 17296.20 14599.00 7598.32 20396.33 8698.03 10299.17 6391.35 14899.16 18398.10 3998.29 16199.39 118
sss97.39 10096.98 10498.61 8698.60 15796.61 12498.22 20998.93 3993.97 18998.01 10898.48 15691.98 13399.85 5496.45 13398.15 16399.39 118
EPP-MVSNet97.46 9297.28 9097.99 13498.64 15395.38 18499.33 2198.31 20593.61 21497.19 14799.07 8794.05 10199.23 17796.89 11098.43 15499.37 120
test_yl97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17798.31 20594.70 15998.02 10498.42 16490.80 16199.70 11996.81 11996.79 19799.34 121
DCV-MVSNet97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17798.31 20594.70 15998.02 10498.42 16490.80 16199.70 11996.81 11996.79 19799.34 121
diffmvs97.58 8797.40 8698.13 12598.32 18195.81 17098.06 23298.37 19696.20 8998.74 6298.89 11191.31 15099.25 17498.16 3798.52 14799.34 121
MVSFormer97.57 8897.49 8097.84 14198.07 20195.76 17199.47 998.40 19094.98 15098.79 5898.83 11992.34 12098.41 28296.91 10699.59 7799.34 121
jason97.32 10497.08 9898.06 13197.45 24695.59 17597.87 25297.91 27294.79 15898.55 7798.83 11991.12 15399.23 17797.58 7799.60 7499.34 121
jason: jason.
QAPM96.29 14695.40 16798.96 7097.85 21597.60 8599.23 2998.93 3989.76 32693.11 28699.02 9089.11 19599.93 1991.99 27199.62 7299.34 121
mvs_anonymous96.70 12896.53 12697.18 18598.19 19193.78 24998.31 19998.19 22494.01 18694.47 22598.27 18492.08 13198.46 26997.39 8897.91 17199.31 127
lupinMVS97.44 9697.22 9398.12 12798.07 20195.76 17197.68 26797.76 27794.50 17198.79 5898.61 14292.34 12099.30 17197.58 7799.59 7799.31 127
CDS-MVSNet96.99 11896.69 11897.90 13998.05 20495.98 15298.20 21398.33 20293.67 21196.95 15798.49 15593.54 10798.42 27495.24 17697.74 17999.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-RL test91.49 30790.85 30893.41 33191.37 36784.40 36292.81 36495.93 35091.87 27687.25 34994.87 34888.99 19896.53 35692.54 25882.00 35299.30 130
BH-RMVSNet95.92 16495.32 17697.69 15898.32 18194.64 21898.19 21797.45 30394.56 16796.03 19598.61 14285.02 27999.12 19190.68 29399.06 12099.30 130
Patchmatch-test94.42 25293.68 26796.63 22597.60 23091.76 29394.83 35897.49 30089.45 33194.14 24597.10 27288.99 19898.83 23485.37 34398.13 16499.29 132
TAMVS97.02 11796.79 11197.70 15798.06 20395.31 18998.52 16898.31 20593.95 19097.05 15598.61 14293.49 10898.52 26295.33 17097.81 17599.29 132
PVSNet_Blended97.38 10197.12 9598.14 12399.25 9095.35 18797.28 29599.26 993.13 23397.94 11498.21 18892.74 11699.81 7596.88 11399.40 10899.27 134
PatchmatchNetpermissive95.71 17495.52 16596.29 26097.58 23190.72 31396.84 32797.52 29694.06 18297.08 15196.96 29489.24 19198.90 22592.03 27098.37 15599.26 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 280x42097.18 11197.18 9497.20 18398.81 13893.27 27195.78 34899.15 1995.25 13696.79 16998.11 19592.29 12299.07 19998.56 1399.85 599.25 136
PLCcopyleft95.07 497.20 11096.78 11298.44 10399.29 8296.31 14398.14 22498.76 10392.41 25896.39 18798.31 17994.92 8399.78 10094.06 21298.77 13799.23 137
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LCM-MVSNet-Re95.22 20395.32 17694.91 30498.18 19387.85 35598.75 12495.66 35295.11 14388.96 34196.85 30390.26 17297.65 33395.65 16398.44 15299.22 138
GSMVS99.20 139
sam_mvs189.45 18499.20 139
CS-MVS-test98.49 3798.50 1798.46 10199.20 10197.05 10599.64 498.50 17297.45 2598.88 5399.14 7295.25 7299.15 18698.83 599.56 8699.20 139
SCA95.46 18595.13 18596.46 24897.67 22591.29 30497.33 29197.60 28694.68 16296.92 16197.10 27283.97 30098.89 22692.59 25498.32 16099.20 139
Effi-MVS+97.12 11496.69 11898.39 10898.19 19196.72 12097.37 28698.43 18693.71 20497.65 13498.02 20092.20 12799.25 17496.87 11697.79 17699.19 143
alignmvs97.56 8997.07 9999.01 6598.66 15198.37 4698.83 10898.06 25796.74 6898.00 11097.65 23790.80 16199.48 15998.37 3196.56 20499.19 143
DROMVSNet98.21 6098.11 5398.49 9898.34 17797.26 9999.61 598.43 18696.78 6598.87 5498.84 11793.72 10699.01 20998.91 399.50 9599.19 143
DP-MVS Recon97.86 7197.46 8299.06 6499.53 3998.35 4898.33 19398.89 4892.62 24998.05 9998.94 10695.34 6599.65 12896.04 14699.42 10599.19 143
OMC-MVS97.55 9097.34 8898.20 12099.33 6995.92 16498.28 20498.59 14895.52 12097.97 11199.10 7893.28 11199.49 15595.09 17898.88 13099.19 143
MDTV_nov1_ep13_2view84.26 36396.89 32390.97 30597.90 11889.89 17693.91 21599.18 148
MVS_Test97.28 10597.00 10298.13 12598.33 17995.97 15798.74 12798.07 25294.27 17798.44 8398.07 19792.48 11899.26 17396.43 13598.19 16299.16 149
ab-mvs96.42 14095.71 15898.55 9098.63 15496.75 11897.88 25198.74 10893.84 19596.54 18098.18 19185.34 27599.75 10995.93 14996.35 21099.15 150
PVSNet91.96 1896.35 14496.15 13896.96 20199.17 10392.05 28896.08 34198.68 12593.69 20797.75 12497.80 22588.86 20499.69 12494.26 20499.01 12499.15 150
tpm94.13 26993.80 25695.12 29896.50 30187.91 35497.44 27995.89 35192.62 24996.37 18896.30 32284.13 29798.30 29593.24 23491.66 28299.14 152
F-COLMAP97.09 11696.80 10997.97 13599.45 5994.95 20698.55 16698.62 14593.02 23796.17 19298.58 14794.01 10299.81 7593.95 21498.90 12899.14 152
Anonymous2024052995.10 21094.22 22797.75 15299.01 12094.26 23798.87 10198.83 7285.79 35396.64 17298.97 9778.73 33399.85 5496.27 13894.89 22999.12 154
h-mvs3396.17 15195.62 16497.81 14699.03 11794.45 22898.64 15198.75 10697.48 2098.67 6798.72 13189.76 17799.86 5397.95 4681.59 35599.11 155
PMMVS96.60 13096.33 13197.41 17397.90 21293.93 24597.35 28998.41 18892.84 24497.76 12397.45 25391.10 15599.20 18096.26 13997.91 17199.11 155
CS-MVS98.44 4298.49 2098.31 11299.08 11396.73 11999.67 398.47 17897.17 4698.94 4599.10 7895.73 4999.13 18998.71 799.49 9699.09 157
GA-MVS94.81 22694.03 23797.14 18897.15 26693.86 24796.76 33097.58 28794.00 18794.76 21897.04 28580.91 32098.48 26591.79 27596.25 21899.09 157
EPNet_dtu95.21 20494.95 19595.99 26996.17 31690.45 31898.16 22397.27 31596.77 6693.14 28598.33 17790.34 16998.42 27485.57 34098.81 13699.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.98 795.35 19694.56 21197.74 15399.13 11094.83 21298.33 19398.64 14186.62 34596.29 18998.61 14294.00 10399.29 17280.00 36099.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs97.67 7997.23 9298.98 6898.70 14798.38 4099.34 1898.39 19296.76 6797.67 13197.40 25792.26 12399.49 15598.28 3596.28 21699.08 161
VDD-MVS95.82 16995.23 18197.61 16598.84 13693.98 24498.68 14397.40 30795.02 14997.95 11299.34 3574.37 35999.78 10098.64 896.80 19699.08 161
EIA-MVS97.75 7597.58 7298.27 11498.38 16996.44 13499.01 7398.60 14695.88 10497.26 14597.53 24894.97 8199.33 17097.38 8999.20 11699.05 163
tttt051796.07 15495.51 16697.78 14898.41 16894.84 21099.28 2494.33 36494.26 17897.64 13598.64 14084.05 29899.47 16195.34 16997.60 18499.03 164
ET-MVSNet_ETH3D94.13 26992.98 28497.58 16698.22 18696.20 14597.31 29395.37 35394.53 16879.56 36597.63 24186.51 25197.53 33896.91 10690.74 29299.02 165
ADS-MVSNet294.58 24194.40 22395.11 29998.00 20588.74 34396.04 34297.30 31290.15 31896.47 18496.64 31387.89 22697.56 33790.08 30097.06 19199.02 165
ADS-MVSNet95.00 21594.45 21996.63 22598.00 20591.91 29096.04 34297.74 27990.15 31896.47 18496.64 31387.89 22698.96 21590.08 30097.06 19199.02 165
CNLPA97.45 9597.03 10098.73 7999.05 11497.44 9198.07 23198.53 16295.32 13296.80 16898.53 15193.32 11099.72 11394.31 20299.31 11399.02 165
AdaColmapbinary97.15 11396.70 11798.48 9999.16 10796.69 12198.01 23798.89 4894.44 17496.83 16498.68 13590.69 16499.76 10794.36 19899.29 11498.98 169
Fast-Effi-MVS+96.28 14895.70 16098.03 13298.29 18395.97 15798.58 15998.25 21991.74 27895.29 20697.23 26691.03 15799.15 18692.90 24697.96 17098.97 170
EPMVS94.99 21694.48 21596.52 24197.22 25891.75 29497.23 29791.66 37494.11 18097.28 14496.81 30585.70 26798.84 23293.04 24197.28 18998.97 170
LS3D97.16 11296.66 12198.68 8298.53 16197.19 10298.93 8998.90 4692.83 24595.99 19799.37 2692.12 12999.87 4893.67 22399.57 8198.97 170
HY-MVS93.96 896.82 12596.23 13798.57 8898.46 16597.00 10798.14 22498.21 22193.95 19096.72 17097.99 20491.58 14099.76 10794.51 19596.54 20598.95 173
thisisatest053096.01 15695.36 17297.97 13598.38 16995.52 18098.88 9894.19 36694.04 18397.64 13598.31 17983.82 30599.46 16295.29 17397.70 18198.93 174
MIMVSNet93.26 29092.21 29796.41 25197.73 22393.13 27695.65 34997.03 32491.27 29894.04 25096.06 33075.33 35397.19 34386.56 33396.23 21998.92 175
baseline195.84 16795.12 18698.01 13398.49 16495.98 15298.73 13197.03 32495.37 12996.22 19098.19 19089.96 17599.16 18394.60 19187.48 33298.90 176
TESTMET0.1,194.18 26793.69 26695.63 28496.92 27789.12 33696.91 31894.78 35993.17 23194.88 21296.45 31978.52 33498.92 22193.09 23898.50 14998.85 177
dp94.15 26893.90 24994.90 30597.31 25386.82 36096.97 31397.19 31891.22 30096.02 19696.61 31585.51 27199.02 20790.00 30494.30 23198.85 177
PAPM94.95 22094.00 24197.78 14897.04 27195.65 17496.03 34498.25 21991.23 29994.19 24397.80 22591.27 15198.86 23182.61 35497.61 18398.84 179
VDDNet95.36 19594.53 21297.86 14098.10 20095.13 19698.85 10497.75 27890.46 31298.36 8799.39 1873.27 36199.64 13097.98 4496.58 20398.81 180
FE-MVS95.62 18094.90 19797.78 14898.37 17194.92 20797.17 30397.38 30990.95 30697.73 12797.70 23185.32 27799.63 13391.18 28398.33 15898.79 181
CostFormer94.95 22094.73 20495.60 28597.28 25489.06 33797.53 27796.89 33489.66 32896.82 16696.72 30886.05 26198.95 21995.53 16696.13 22298.79 181
UGNet96.78 12696.30 13398.19 12298.24 18495.89 16798.88 9898.93 3997.39 2996.81 16797.84 21982.60 30999.90 3796.53 13099.49 9698.79 181
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_ETH3D94.24 26293.33 27896.97 20097.19 26393.38 26898.74 12798.57 15491.21 30193.81 26198.58 14772.85 36298.77 24095.05 17993.93 24698.77 184
test-LLR95.10 21094.87 19995.80 27996.77 28589.70 32696.91 31895.21 35495.11 14394.83 21595.72 33887.71 23198.97 21193.06 23998.50 14998.72 185
test-mter94.08 27493.51 27395.80 27996.77 28589.70 32696.91 31895.21 35492.89 24294.83 21595.72 33877.69 34198.97 21193.06 23998.50 14998.72 185
FA-MVS(test-final)96.41 14395.94 14697.82 14498.21 18795.20 19297.80 25897.58 28793.21 22897.36 14397.70 23189.47 18399.56 14394.12 20897.99 16898.71 187
MAR-MVS96.91 12196.40 12998.45 10298.69 14996.90 11298.66 14998.68 12592.40 25997.07 15397.96 20791.54 14499.75 10993.68 22198.92 12798.69 188
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051595.61 18394.89 19897.76 15198.15 19795.15 19596.77 32994.41 36292.95 24097.18 14897.43 25584.78 28499.45 16394.63 18897.73 18098.68 189
BH-untuned95.95 16095.72 15596.65 22198.55 16092.26 28498.23 20897.79 27693.73 20294.62 22098.01 20288.97 20299.00 21093.04 24198.51 14898.68 189
PCF-MVS93.45 1194.68 23293.43 27698.42 10698.62 15596.77 11795.48 35298.20 22384.63 35793.34 27798.32 17888.55 21199.81 7584.80 34798.96 12698.68 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CANet_DTU96.96 11996.55 12498.21 11998.17 19596.07 15097.98 24098.21 22197.24 4297.13 14998.93 10786.88 24799.91 3495.00 18099.37 11098.66 192
PatchMatch-RL96.59 13296.03 14498.27 11499.31 7496.51 13197.91 24699.06 2393.72 20396.92 16198.06 19888.50 21399.65 12891.77 27699.00 12598.66 192
tpmrst95.63 17995.69 16195.44 29097.54 23688.54 34696.97 31397.56 28993.50 21797.52 14196.93 29889.49 18199.16 18395.25 17596.42 20998.64 194
IB-MVS91.98 1793.27 28991.97 30097.19 18497.47 24193.41 26697.09 30895.99 34793.32 22492.47 30695.73 33678.06 33999.53 15094.59 19382.98 35098.62 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DSMNet-mixed92.52 30192.58 29292.33 34094.15 35482.65 36798.30 20194.26 36589.08 33592.65 29895.73 33685.01 28095.76 36186.24 33597.76 17898.59 196
tpm294.19 26593.76 26195.46 28997.23 25789.04 33897.31 29396.85 33887.08 34496.21 19196.79 30683.75 30698.74 24192.43 26296.23 21998.59 196
ETV-MVS97.96 6497.81 6598.40 10798.42 16797.27 9598.73 13198.55 15896.84 6298.38 8697.44 25495.39 6199.35 16897.62 7498.89 12998.58 198
MSDG95.93 16395.30 17997.83 14298.90 12995.36 18596.83 32898.37 19691.32 29494.43 23098.73 13090.27 17199.60 13790.05 30298.82 13598.52 199
PatchT93.06 29591.97 30096.35 25696.69 29192.67 28194.48 36097.08 32086.62 34597.08 15192.23 36287.94 22597.90 32578.89 36496.69 19998.49 200
CR-MVSNet94.76 22994.15 23296.59 23097.00 27293.43 26494.96 35497.56 28992.46 25396.93 15996.24 32388.15 21997.88 32987.38 32996.65 20198.46 201
RPMNet92.81 29791.34 30597.24 18197.00 27293.43 26494.96 35498.80 9182.27 36096.93 15992.12 36386.98 24599.82 6876.32 36896.65 20198.46 201
thres600view795.49 18494.77 20197.67 16098.98 12595.02 19998.85 10496.90 33295.38 12796.63 17396.90 29984.29 29199.59 13888.65 32296.33 21198.40 203
thres40095.38 19294.62 20897.65 16398.94 12794.98 20398.68 14396.93 33095.33 13096.55 17896.53 31684.23 29499.56 14388.11 32396.29 21398.40 203
TR-MVS94.94 22294.20 22897.17 18697.75 21994.14 24197.59 27497.02 32692.28 26595.75 20097.64 23983.88 30298.96 21589.77 30696.15 22198.40 203
JIA-IIPM93.35 28692.49 29395.92 27396.48 30390.65 31595.01 35396.96 32885.93 35196.08 19487.33 36787.70 23398.78 23991.35 28295.58 22798.34 206
PVSNet_088.72 1991.28 30990.03 31595.00 30297.99 20787.29 35894.84 35798.50 17292.06 27189.86 33495.19 34479.81 32899.39 16692.27 26369.79 36998.33 207
131496.25 15095.73 15497.79 14797.13 26795.55 17998.19 21798.59 14893.47 21892.03 31597.82 22391.33 14999.49 15594.62 19098.44 15298.32 208
RPSCF94.87 22495.40 16793.26 33598.89 13082.06 36998.33 19398.06 25790.30 31796.56 17699.26 4787.09 24299.49 15593.82 21896.32 21298.24 209
hse-mvs295.71 17495.30 17996.93 20398.50 16293.53 26198.36 19098.10 24497.48 2098.67 6797.99 20489.76 17799.02 20797.95 4680.91 35998.22 210
AUN-MVS94.53 24493.73 26396.92 20698.50 16293.52 26298.34 19298.10 24493.83 19795.94 19997.98 20685.59 26999.03 20494.35 19980.94 35898.22 210
tpmvs94.60 23894.36 22495.33 29397.46 24288.60 34596.88 32497.68 28091.29 29693.80 26296.42 32088.58 20899.24 17691.06 28696.04 22498.17 212
BH-w/o95.38 19295.08 18896.26 26198.34 17791.79 29297.70 26697.43 30592.87 24394.24 24097.22 26788.66 20798.84 23291.55 28097.70 18198.16 213
tpm cat193.36 28592.80 28795.07 30197.58 23187.97 35396.76 33097.86 27482.17 36193.53 26996.04 33186.13 25999.13 18989.24 31795.87 22598.10 214
MVS94.67 23593.54 27298.08 12996.88 28196.56 12898.19 21798.50 17278.05 36592.69 29798.02 20091.07 15699.63 13390.09 29998.36 15798.04 215
AllTest95.24 20294.65 20796.99 19799.25 9093.21 27498.59 15798.18 22791.36 29093.52 27098.77 12684.67 28699.72 11389.70 30997.87 17398.02 216
TestCases96.99 19799.25 9093.21 27498.18 22791.36 29093.52 27098.77 12684.67 28699.72 11389.70 30997.87 17398.02 216
gg-mvs-nofinetune92.21 30390.58 31097.13 18996.75 28895.09 19795.85 34689.40 37785.43 35594.50 22481.98 37080.80 32398.40 28892.16 26498.33 15897.88 218
baseline295.11 20994.52 21396.87 20896.65 29493.56 25898.27 20694.10 36893.45 21992.02 31697.43 25587.45 23999.19 18193.88 21697.41 18897.87 219
mvs-test196.60 13096.68 12096.37 25497.89 21391.81 29198.56 16498.10 24496.57 7596.52 18297.94 20990.81 15999.45 16395.72 15898.01 16797.86 220
thres100view90095.38 19294.70 20597.41 17398.98 12594.92 20798.87 10196.90 33295.38 12796.61 17496.88 30084.29 29199.56 14388.11 32396.29 21397.76 221
tfpn200view995.32 19994.62 20897.43 17298.94 12794.98 20398.68 14396.93 33095.33 13096.55 17896.53 31684.23 29499.56 14388.11 32396.29 21397.76 221
XVG-OURS-SEG-HR96.51 13796.34 13097.02 19698.77 14093.76 25097.79 26198.50 17295.45 12396.94 15899.09 8487.87 22899.55 14996.76 12495.83 22697.74 223
OpenMVScopyleft93.04 1395.83 16895.00 19198.32 11197.18 26497.32 9399.21 3698.97 3189.96 32291.14 32399.05 8986.64 25099.92 2593.38 22999.47 9997.73 224
testgi93.06 29592.45 29494.88 30696.43 30689.90 32398.75 12497.54 29595.60 11691.63 32097.91 21174.46 35897.02 34586.10 33693.67 25197.72 225
XVG-OURS96.55 13696.41 12896.99 19798.75 14193.76 25097.50 27898.52 16495.67 11396.83 16499.30 4288.95 20399.53 15095.88 15196.26 21797.69 226
cascas94.63 23793.86 25296.93 20396.91 27994.27 23696.00 34598.51 16785.55 35494.54 22296.23 32584.20 29698.87 22995.80 15596.98 19497.66 227
test0.0.03 194.08 27493.51 27395.80 27995.53 33792.89 28097.38 28495.97 34895.11 14392.51 30496.66 31087.71 23196.94 34787.03 33193.67 25197.57 228
MVS-HIRNet89.46 32688.40 32592.64 33897.58 23182.15 36894.16 36393.05 37175.73 36790.90 32582.52 36979.42 33098.33 29083.53 35298.68 13897.43 229
xiu_mvs_v2_base97.66 8097.70 6997.56 16898.61 15695.46 18297.44 27998.46 17997.15 4898.65 7298.15 19294.33 9799.80 8497.84 5898.66 14297.41 230
Effi-MVS+-dtu96.29 14696.56 12395.51 28697.89 21390.22 32198.80 11898.10 24496.57 7596.45 18696.66 31090.81 15998.91 22295.72 15897.99 16897.40 231
PS-MVSNAJ97.73 7697.77 6697.62 16498.68 15095.58 17697.34 29098.51 16797.29 3598.66 7197.88 21594.51 9199.90 3797.87 5499.17 11897.39 232
thres20095.25 20194.57 21097.28 18098.81 13894.92 20798.20 21397.11 31995.24 13896.54 18096.22 32784.58 28899.53 15087.93 32796.50 20797.39 232
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
xiu_mvs_v1_base97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
API-MVS97.41 9997.25 9197.91 13898.70 14796.80 11598.82 11198.69 12294.53 16898.11 9598.28 18194.50 9499.57 14094.12 20899.49 9697.37 234
Fast-Effi-MVS+-dtu95.87 16595.85 14995.91 27497.74 22291.74 29598.69 14298.15 23595.56 11894.92 21197.68 23688.98 20198.79 23893.19 23697.78 17797.20 238
COLMAP_ROBcopyleft93.27 1295.33 19894.87 19996.71 21699.29 8293.24 27398.58 15998.11 24289.92 32393.57 26899.10 7886.37 25699.79 9690.78 29198.10 16597.09 239
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJss96.43 13996.26 13596.92 20695.84 32995.08 19899.16 4298.50 17295.87 10593.84 26098.34 17694.51 9198.61 25196.88 11393.45 26097.06 240
nrg03096.28 14895.72 15597.96 13796.90 28098.15 6199.39 1298.31 20595.47 12294.42 23198.35 17292.09 13098.69 24397.50 8589.05 31597.04 241
RRT_MVS95.98 15895.78 15296.56 23496.48 30394.22 24099.57 697.92 27095.89 10293.95 25398.70 13289.27 18998.42 27497.23 9393.02 26797.04 241
FIs96.51 13796.12 13997.67 16097.13 26797.54 8799.36 1599.22 1595.89 10294.03 25198.35 17291.98 13398.44 27296.40 13692.76 27097.01 243
FC-MVSNet-test96.42 14096.05 14297.53 16996.95 27597.27 9599.36 1599.23 1395.83 10693.93 25498.37 17092.00 13298.32 29196.02 14792.72 27197.00 244
test_part194.82 22593.82 25497.82 14498.84 13697.82 7799.03 6798.81 8092.31 26492.51 30497.89 21481.96 31198.67 24794.80 18688.24 32496.98 245
EU-MVSNet93.66 28194.14 23392.25 34295.96 32583.38 36598.52 16898.12 23994.69 16192.61 29998.13 19487.36 24096.39 35891.82 27490.00 30096.98 245
mvsmamba96.57 13596.32 13297.32 17996.60 29596.43 13599.54 797.98 26396.49 7895.20 20798.64 14090.82 15898.55 25897.97 4593.65 25396.98 245
VPNet94.99 21694.19 22997.40 17597.16 26596.57 12798.71 13698.97 3195.67 11394.84 21398.24 18780.36 32598.67 24796.46 13287.32 33596.96 248
XXY-MVS95.20 20594.45 21997.46 17096.75 28896.56 12898.86 10398.65 14093.30 22693.27 27998.27 18484.85 28398.87 22994.82 18491.26 28796.96 248
TranMVSNet+NR-MVSNet95.14 20894.48 21597.11 19196.45 30596.36 13999.03 6799.03 2695.04 14893.58 26797.93 21088.27 21698.03 31694.13 20786.90 34196.95 250
HQP_MVS96.14 15295.90 14896.85 20997.42 24794.60 22498.80 11898.56 15697.28 3695.34 20498.28 18187.09 24299.03 20496.07 14294.27 23296.92 251
plane_prior598.56 15699.03 20496.07 14294.27 23296.92 251
UniMVSNet_NR-MVSNet95.71 17495.15 18497.40 17596.84 28396.97 10898.74 12799.24 1195.16 14093.88 25797.72 23091.68 13898.31 29395.81 15387.25 33696.92 251
DU-MVS95.42 18994.76 20297.40 17596.53 29996.97 10898.66 14998.99 3095.43 12493.88 25797.69 23388.57 20998.31 29395.81 15387.25 33696.92 251
NR-MVSNet94.98 21894.16 23197.44 17196.53 29997.22 10198.74 12798.95 3594.96 15289.25 34097.69 23389.32 18798.18 30394.59 19387.40 33496.92 251
jajsoiax95.45 18795.03 19096.73 21595.42 34294.63 21999.14 4598.52 16495.74 10993.22 28098.36 17183.87 30398.65 24996.95 10594.04 24196.91 256
mvs_tets95.41 19195.00 19196.65 22195.58 33594.42 23099.00 7598.55 15895.73 11093.21 28198.38 16983.45 30798.63 25097.09 9894.00 24396.91 256
WR-MVS95.15 20794.46 21797.22 18296.67 29396.45 13398.21 21098.81 8094.15 17993.16 28297.69 23387.51 23598.30 29595.29 17388.62 32196.90 258
VPA-MVSNet95.75 17195.11 18797.69 15897.24 25697.27 9598.94 8799.23 1395.13 14195.51 20397.32 26085.73 26698.91 22297.33 9189.55 30796.89 259
Anonymous2023121194.10 27293.26 28196.61 22799.11 11294.28 23599.01 7398.88 5186.43 34792.81 29297.57 24581.66 31498.68 24694.83 18389.02 31796.88 260
test_djsdf96.00 15795.69 16196.93 20395.72 33195.49 18199.47 998.40 19094.98 15094.58 22197.86 21689.16 19398.41 28296.91 10694.12 24096.88 260
iter_conf_final96.42 14096.12 13997.34 17898.46 16596.55 13099.08 5998.06 25796.03 9795.63 20198.46 16087.72 23098.59 25497.84 5893.80 24996.87 262
HQP4-MVS94.45 22698.96 21596.87 262
ACMM93.85 995.69 17795.38 17196.61 22797.61 22993.84 24898.91 9098.44 18395.25 13694.28 23798.47 15886.04 26399.12 19195.50 16793.95 24596.87 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf0596.13 15395.79 15197.15 18798.16 19695.99 15198.88 9897.98 26395.91 10195.58 20298.46 16085.53 27098.59 25497.88 5393.75 25096.86 265
HQP-MVS95.72 17395.40 16796.69 21997.20 26094.25 23898.05 23398.46 17996.43 8194.45 22697.73 22886.75 24898.96 21595.30 17194.18 23696.86 265
bld_raw_dy_0_6495.74 17295.31 17897.03 19596.35 30995.76 17199.12 5097.37 31095.97 9994.70 21998.48 15685.80 26598.49 26496.55 12993.48 25796.84 267
EI-MVSNet95.96 15995.83 15096.36 25597.93 21093.70 25698.12 22798.27 21493.70 20695.07 20899.02 9092.23 12598.54 26094.68 18793.46 25896.84 267
IterMVS-LS95.46 18595.21 18296.22 26298.12 19893.72 25598.32 19898.13 23893.71 20494.26 23897.31 26192.24 12498.10 30994.63 18890.12 29896.84 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 22294.30 22596.83 21096.72 29095.56 17799.11 5298.95 3593.89 19292.42 30897.90 21287.19 24198.12 30894.32 20188.21 32596.82 270
PS-CasMVS94.67 23593.99 24396.71 21696.68 29295.26 19099.13 4899.03 2693.68 20992.33 30997.95 20885.35 27498.10 30993.59 22588.16 32796.79 271
UniMVSNet (Re)95.78 17095.19 18397.58 16696.99 27497.47 8998.79 12299.18 1795.60 11693.92 25597.04 28591.68 13898.48 26595.80 15587.66 33196.79 271
MVSTER96.06 15595.72 15597.08 19398.23 18595.93 16398.73 13198.27 21494.86 15695.07 20898.09 19688.21 21798.54 26096.59 12793.46 25896.79 271
LPG-MVS_test95.62 18095.34 17396.47 24597.46 24293.54 25998.99 7798.54 16094.67 16394.36 23398.77 12685.39 27299.11 19395.71 16094.15 23896.76 274
LGP-MVS_train96.47 24597.46 24293.54 25998.54 16094.67 16394.36 23398.77 12685.39 27299.11 19395.71 16094.15 23896.76 274
GG-mvs-BLEND96.59 23096.34 31094.98 20396.51 33888.58 37893.10 28794.34 35480.34 32698.05 31589.53 31296.99 19396.74 276
PEN-MVS94.42 25293.73 26396.49 24396.28 31294.84 21099.17 4199.00 2893.51 21692.23 31197.83 22286.10 26097.90 32592.55 25786.92 34096.74 276
OurMVSNet-221017-094.21 26394.00 24194.85 30795.60 33489.22 33598.89 9597.43 30595.29 13392.18 31298.52 15482.86 30898.59 25493.46 22891.76 27996.74 276
v2v48294.69 23094.03 23796.65 22196.17 31694.79 21598.67 14698.08 25092.72 24694.00 25297.16 27087.69 23498.45 27092.91 24588.87 31996.72 279
GBi-Net94.49 24793.80 25696.56 23498.21 18795.00 20098.82 11198.18 22792.46 25394.09 24797.07 27981.16 31797.95 32192.08 26692.14 27496.72 279
test194.49 24793.80 25696.56 23498.21 18795.00 20098.82 11198.18 22792.46 25394.09 24797.07 27981.16 31797.95 32192.08 26692.14 27496.72 279
FMVSNet193.19 29392.07 29896.56 23497.54 23695.00 20098.82 11198.18 22790.38 31592.27 31097.07 27973.68 36097.95 32189.36 31691.30 28596.72 279
v119294.32 25793.58 27096.53 24096.10 31994.45 22898.50 17398.17 23291.54 28594.19 24397.06 28286.95 24698.43 27390.14 29889.57 30596.70 283
v124094.06 27693.29 28096.34 25796.03 32393.90 24698.44 18098.17 23291.18 30294.13 24697.01 28986.05 26198.42 27489.13 31989.50 30996.70 283
FMVSNet394.97 21994.26 22697.11 19198.18 19396.62 12298.56 16498.26 21893.67 21194.09 24797.10 27284.25 29398.01 31792.08 26692.14 27496.70 283
FMVSNet294.47 24993.61 26997.04 19498.21 18796.43 13598.79 12298.27 21492.46 25393.50 27397.09 27681.16 31798.00 31991.09 28491.93 27796.70 283
ACMH92.88 1694.55 24293.95 24596.34 25797.63 22893.26 27298.81 11798.49 17793.43 22089.74 33598.53 15181.91 31299.08 19893.69 22093.30 26496.70 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192094.20 26493.47 27596.40 25395.98 32494.08 24298.52 16898.15 23591.33 29394.25 23997.20 26986.41 25598.42 27490.04 30389.39 31196.69 288
ACMP93.49 1095.34 19794.98 19396.43 25097.67 22593.48 26398.73 13198.44 18394.94 15592.53 30298.53 15184.50 29099.14 18895.48 16894.00 24396.66 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS95.62 18095.34 17396.46 24897.52 23993.75 25297.27 29698.46 17995.53 11994.42 23198.00 20386.21 25898.97 21196.25 14094.37 23096.66 289
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v14419294.39 25493.70 26596.48 24496.06 32194.35 23498.58 15998.16 23491.45 28794.33 23597.02 28787.50 23798.45 27091.08 28589.11 31496.63 291
IterMVS94.09 27393.85 25394.80 31097.99 20790.35 31997.18 30198.12 23993.68 20992.46 30797.34 25884.05 29897.41 34092.51 25991.33 28496.62 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114494.59 24093.92 24696.60 22996.21 31394.78 21698.59 15798.14 23791.86 27794.21 24297.02 28787.97 22498.41 28291.72 27789.57 30596.61 293
OPM-MVS95.69 17795.33 17596.76 21496.16 31894.63 21998.43 18298.39 19296.64 7295.02 21098.78 12485.15 27899.05 20095.21 17794.20 23596.60 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LTVRE_ROB92.95 1594.60 23893.90 24996.68 22097.41 25094.42 23098.52 16898.59 14891.69 28191.21 32298.35 17284.87 28299.04 20391.06 28693.44 26196.60 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT94.11 27193.87 25194.85 30797.98 20990.56 31797.18 30198.11 24293.75 19992.58 30097.48 25083.97 30097.41 34092.48 26191.30 28596.58 296
pmmvs593.65 28392.97 28595.68 28395.49 33892.37 28398.20 21397.28 31489.66 32892.58 30097.26 26382.14 31098.09 31193.18 23790.95 29196.58 296
K. test v392.55 30091.91 30294.48 31995.64 33389.24 33499.07 6094.88 35894.04 18386.78 35197.59 24377.64 34497.64 33492.08 26689.43 31096.57 298
SixPastTwentyTwo93.34 28792.86 28694.75 31195.67 33289.41 33398.75 12496.67 34393.89 19290.15 33398.25 18680.87 32198.27 30090.90 28990.64 29396.57 298
miper_lstm_enhance94.33 25694.07 23695.11 29997.75 21990.97 30897.22 29898.03 26091.67 28292.76 29496.97 29290.03 17497.78 33192.51 25989.64 30496.56 300
MDA-MVSNet_test_wron90.71 31589.38 32094.68 31394.83 34890.78 31297.19 30097.46 30187.60 34172.41 37095.72 33886.51 25196.71 35385.92 33886.80 34296.56 300
ACMH+92.99 1494.30 25893.77 25995.88 27797.81 21792.04 28998.71 13698.37 19693.99 18890.60 32998.47 15880.86 32299.05 20092.75 25092.40 27396.55 302
eth_miper_zixun_eth94.68 23294.41 22295.47 28897.64 22791.71 29696.73 33298.07 25292.71 24793.64 26597.21 26890.54 16698.17 30493.38 22989.76 30296.54 303
YYNet190.70 31689.39 31994.62 31594.79 35090.65 31597.20 29997.46 30187.54 34272.54 36995.74 33486.51 25196.66 35486.00 33786.76 34396.54 303
DIV-MVS_self_test94.52 24594.03 23795.99 26997.57 23593.38 26897.05 30997.94 26891.74 27892.81 29297.10 27289.12 19498.07 31392.60 25290.30 29696.53 305
c3_l94.79 22794.43 22195.89 27697.75 21993.12 27797.16 30598.03 26092.23 26693.46 27597.05 28491.39 14698.01 31793.58 22689.21 31396.53 305
Patchmtry93.22 29192.35 29595.84 27896.77 28593.09 27894.66 35997.56 28987.37 34392.90 29096.24 32388.15 21997.90 32587.37 33090.10 29996.53 305
cl____94.51 24694.01 24096.02 26897.58 23193.40 26797.05 30997.96 26791.73 28092.76 29497.08 27889.06 19798.13 30792.61 25190.29 29796.52 308
v7n94.19 26593.43 27696.47 24595.90 32694.38 23399.26 2698.34 20191.99 27292.76 29497.13 27188.31 21598.52 26289.48 31487.70 33096.52 308
MDA-MVSNet-bldmvs89.97 32188.35 32694.83 30995.21 34391.34 30197.64 27097.51 29788.36 33971.17 37196.13 32979.22 33196.63 35583.65 35186.27 34496.52 308
cl2294.68 23294.19 22996.13 26598.11 19993.60 25796.94 31598.31 20592.43 25793.32 27896.87 30286.51 25198.28 29994.10 21191.16 28896.51 311
lessismore_v094.45 32294.93 34788.44 34891.03 37586.77 35297.64 23976.23 35098.42 27490.31 29785.64 34896.51 311
anonymousdsp95.42 18994.91 19696.94 20295.10 34495.90 16699.14 4598.41 18893.75 19993.16 28297.46 25187.50 23798.41 28295.63 16494.03 24296.50 313
v14894.29 25993.76 26195.91 27496.10 31992.93 27998.58 15997.97 26592.59 25193.47 27496.95 29688.53 21298.32 29192.56 25687.06 33896.49 314
our_test_393.65 28393.30 27994.69 31295.45 34089.68 32896.91 31897.65 28291.97 27391.66 31996.88 30089.67 18097.93 32488.02 32691.49 28396.48 315
XVG-ACMP-BASELINE94.54 24394.14 23395.75 28296.55 29891.65 29798.11 22998.44 18394.96 15294.22 24197.90 21279.18 33299.11 19394.05 21393.85 24796.48 315
DTE-MVSNet93.98 27893.26 28196.14 26496.06 32194.39 23299.20 3798.86 6493.06 23591.78 31797.81 22485.87 26497.58 33690.53 29486.17 34596.46 317
miper_ehance_all_eth95.01 21494.69 20695.97 27197.70 22493.31 27097.02 31198.07 25292.23 26693.51 27296.96 29491.85 13598.15 30593.68 22191.16 28896.44 318
v894.47 24993.77 25996.57 23396.36 30894.83 21299.05 6398.19 22491.92 27493.16 28296.97 29288.82 20698.48 26591.69 27887.79 32996.39 319
WR-MVS_H95.05 21394.46 21796.81 21296.86 28295.82 16999.24 2899.24 1193.87 19492.53 30296.84 30490.37 16898.24 30193.24 23487.93 32896.38 320
miper_enhance_ethall95.10 21094.75 20396.12 26697.53 23893.73 25496.61 33598.08 25092.20 26993.89 25696.65 31292.44 11998.30 29594.21 20591.16 28896.34 321
V4294.78 22894.14 23396.70 21896.33 31195.22 19198.97 8198.09 24992.32 26294.31 23697.06 28288.39 21498.55 25892.90 24688.87 31996.34 321
v1094.29 25993.55 27196.51 24296.39 30794.80 21498.99 7798.19 22491.35 29293.02 28896.99 29088.09 22198.41 28290.50 29588.41 32396.33 323
MVS_030492.81 29792.01 29995.23 29497.46 24291.33 30298.17 22298.81 8091.13 30393.80 26295.68 34166.08 36998.06 31490.79 29096.13 22296.32 324
pmmvs494.69 23093.99 24396.81 21295.74 33095.94 16097.40 28297.67 28190.42 31493.37 27697.59 24389.08 19698.20 30292.97 24391.67 28196.30 325
ppachtmachnet_test93.22 29192.63 29194.97 30395.45 34090.84 31096.88 32497.88 27390.60 30992.08 31497.26 26388.08 22297.86 33085.12 34490.33 29596.22 326
PVSNet_BlendedMVS96.73 12796.60 12297.12 19099.25 9095.35 18798.26 20799.26 994.28 17697.94 11497.46 25192.74 11699.81 7596.88 11393.32 26396.20 327
pm-mvs193.94 27993.06 28396.59 23096.49 30295.16 19398.95 8598.03 26092.32 26291.08 32497.84 21984.54 28998.41 28292.16 26486.13 34796.19 328
Anonymous2023120691.66 30691.10 30693.33 33394.02 35887.35 35798.58 15997.26 31690.48 31190.16 33296.31 32183.83 30496.53 35679.36 36289.90 30196.12 329
ITE_SJBPF95.44 29097.42 24791.32 30397.50 29895.09 14693.59 26698.35 17281.70 31398.88 22889.71 30893.39 26296.12 329
FMVSNet591.81 30490.92 30794.49 31897.21 25992.09 28698.00 23997.55 29489.31 33390.86 32695.61 34274.48 35795.32 36485.57 34089.70 30396.07 331
UnsupCasMVSNet_eth90.99 31389.92 31694.19 32594.08 35589.83 32497.13 30798.67 13393.69 20785.83 35696.19 32875.15 35496.74 35089.14 31879.41 36096.00 332
USDC93.33 28892.71 28995.21 29596.83 28490.83 31196.91 31897.50 29893.84 19590.72 32798.14 19377.69 34198.82 23589.51 31393.21 26695.97 333
pmmvs691.77 30590.63 30995.17 29794.69 35291.24 30598.67 14697.92 27086.14 34989.62 33697.56 24775.79 35298.34 28990.75 29284.56 34995.94 334
N_pmnet87.12 33187.77 33085.17 35195.46 33961.92 37897.37 28670.66 38485.83 35288.73 34596.04 33185.33 27697.76 33280.02 35990.48 29495.84 335
MIMVSNet189.67 32388.28 32793.82 32792.81 36491.08 30798.01 23797.45 30387.95 34087.90 34895.87 33367.63 36794.56 36878.73 36588.18 32695.83 336
test_method79.03 33378.17 33681.63 35386.06 37354.40 38382.75 37296.89 33439.54 37680.98 36495.57 34358.37 37294.73 36784.74 34878.61 36195.75 337
TransMVSNet (Re)92.67 29991.51 30496.15 26396.58 29794.65 21798.90 9196.73 33990.86 30789.46 33997.86 21685.62 26898.09 31186.45 33481.12 35695.71 338
Baseline_NR-MVSNet94.35 25593.81 25595.96 27296.20 31494.05 24398.61 15696.67 34391.44 28893.85 25997.60 24288.57 20998.14 30694.39 19786.93 33995.68 339
D2MVS95.18 20695.08 18895.48 28797.10 26992.07 28798.30 20199.13 2094.02 18592.90 29096.73 30789.48 18298.73 24294.48 19693.60 25695.65 340
CL-MVSNet_self_test90.11 31989.14 32293.02 33791.86 36688.23 35196.51 33898.07 25290.49 31090.49 33094.41 35084.75 28595.34 36380.79 35874.95 36695.50 341
TinyColmap92.31 30291.53 30394.65 31496.92 27789.75 32596.92 31696.68 34290.45 31389.62 33697.85 21876.06 35198.81 23686.74 33292.51 27295.41 342
KD-MVS_self_test90.38 31789.38 32093.40 33292.85 36388.94 34197.95 24297.94 26890.35 31690.25 33193.96 35579.82 32795.94 36084.62 34976.69 36495.33 343
MS-PatchMatch93.84 28093.63 26894.46 32196.18 31589.45 33197.76 26298.27 21492.23 26692.13 31397.49 24979.50 32998.69 24389.75 30799.38 10995.25 344
KD-MVS_2432*160089.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28489.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
miper_refine_blended89.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28489.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
LF4IMVS93.14 29492.79 28894.20 32495.88 32788.67 34497.66 26997.07 32193.81 19891.71 31897.65 23777.96 34098.81 23691.47 28191.92 27895.12 347
tfpnnormal93.66 28192.70 29096.55 23996.94 27695.94 16098.97 8199.19 1691.04 30491.38 32197.34 25884.94 28198.61 25185.45 34289.02 31795.11 348
EG-PatchMatch MVS91.13 31190.12 31494.17 32694.73 35189.00 33998.13 22697.81 27589.22 33485.32 35896.46 31867.71 36698.42 27487.89 32893.82 24895.08 349
TDRefinement91.06 31289.68 31795.21 29585.35 37491.49 30098.51 17297.07 32191.47 28688.83 34497.84 21977.31 34599.09 19792.79 24977.98 36295.04 350
MVP-Stereo94.28 26193.92 24695.35 29294.95 34692.60 28297.97 24197.65 28291.61 28490.68 32897.09 27686.32 25798.42 27489.70 30999.34 11195.02 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0390.89 31490.38 31292.43 33993.48 36088.14 35298.33 19397.56 28993.40 22187.96 34796.71 30980.69 32494.13 36979.15 36386.17 34595.01 352
Anonymous2024052191.18 31090.44 31193.42 33093.70 35988.47 34798.94 8797.56 28988.46 33889.56 33895.08 34777.15 34896.97 34683.92 35089.55 30794.82 353
ambc89.49 34786.66 37275.78 37292.66 36596.72 34086.55 35392.50 36146.01 37497.90 32590.32 29682.09 35194.80 354
test_040291.32 30890.27 31394.48 31996.60 29591.12 30698.50 17397.22 31786.10 35088.30 34696.98 29177.65 34397.99 32078.13 36692.94 26994.34 355
new_pmnet90.06 32089.00 32493.22 33694.18 35388.32 35096.42 34096.89 33486.19 34885.67 35793.62 35677.18 34797.10 34481.61 35689.29 31294.23 356
CMPMVSbinary66.06 2189.70 32289.67 31889.78 34693.19 36176.56 37197.00 31298.35 19980.97 36281.57 36397.75 22774.75 35698.61 25189.85 30593.63 25494.17 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS87.77 32986.55 33391.40 34591.03 36983.36 36696.92 31695.18 35691.28 29786.48 35493.42 35753.27 37396.74 35089.43 31581.97 35394.11 358
pmmvs-eth3d90.36 31889.05 32394.32 32391.10 36892.12 28597.63 27396.95 32988.86 33684.91 35993.13 35878.32 33596.74 35088.70 32181.81 35494.09 359
new-patchmatchnet88.50 32887.45 33191.67 34490.31 37085.89 36197.16 30597.33 31189.47 33083.63 36192.77 35976.38 34995.06 36682.70 35377.29 36394.06 360
pmmvs386.67 33284.86 33592.11 34388.16 37187.19 35996.63 33494.75 36079.88 36387.22 35092.75 36066.56 36895.20 36581.24 35776.56 36593.96 361
UnsupCasMVSNet_bld87.17 33085.12 33493.31 33491.94 36588.77 34294.92 35698.30 21184.30 35882.30 36290.04 36463.96 37197.25 34285.85 33974.47 36893.93 362
LCM-MVSNet78.70 33476.24 33986.08 34977.26 38071.99 37594.34 36196.72 34061.62 37176.53 36689.33 36533.91 38092.78 37181.85 35574.60 36793.46 363
OpenMVS_ROBcopyleft86.42 2089.00 32787.43 33293.69 32893.08 36289.42 33297.91 24696.89 33478.58 36485.86 35594.69 34969.48 36498.29 29877.13 36793.29 26593.36 364
DeepMVS_CXcopyleft86.78 34897.09 27072.30 37495.17 35775.92 36684.34 36095.19 34470.58 36395.35 36279.98 36189.04 31692.68 365
EGC-MVSNET75.22 33869.54 34192.28 34194.81 34989.58 32997.64 27096.50 3451.82 3815.57 38295.74 33468.21 36596.26 35973.80 37091.71 28090.99 366
PMMVS277.95 33675.44 34085.46 35082.54 37574.95 37394.23 36293.08 37072.80 36874.68 36787.38 36636.36 37991.56 37273.95 36963.94 37289.87 367
FPMVS77.62 33777.14 33779.05 35579.25 37860.97 37995.79 34795.94 34965.96 36967.93 37294.40 35137.73 37888.88 37468.83 37188.46 32287.29 368
tmp_tt68.90 34066.97 34274.68 35750.78 38459.95 38087.13 36983.47 38138.80 37762.21 37396.23 32564.70 37076.91 37988.91 32030.49 37787.19 369
ANet_high69.08 33965.37 34380.22 35465.99 38271.96 37690.91 36890.09 37682.62 35949.93 37778.39 37229.36 38181.75 37562.49 37338.52 37686.95 370
MVEpermissive62.14 2263.28 34459.38 34774.99 35674.33 38165.47 37785.55 37080.50 38252.02 37451.10 37675.00 37510.91 38580.50 37651.60 37553.40 37378.99 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 34163.57 34573.09 35857.90 38351.22 38485.05 37193.93 36954.45 37244.32 37883.57 36813.22 38289.15 37358.68 37481.00 35778.91 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft78.40 33576.75 33883.38 35295.54 33680.43 37079.42 37397.40 30764.67 37073.46 36880.82 37145.65 37593.14 37066.32 37287.43 33376.56 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 34363.26 34666.53 36081.73 37758.81 38291.85 36684.75 38051.93 37559.09 37575.13 37443.32 37679.09 37842.03 37739.47 37561.69 374
E-PMN64.94 34264.25 34467.02 35982.28 37659.36 38191.83 36785.63 37952.69 37360.22 37477.28 37341.06 37780.12 37746.15 37641.14 37461.57 375
test12320.95 34823.72 35112.64 36213.54 3868.19 38696.55 3376.13 3877.48 38016.74 38037.98 37812.97 3836.05 38116.69 3795.43 38023.68 376
testmvs21.48 34724.95 35011.09 36314.89 3856.47 38796.56 3369.87 3867.55 37917.93 37939.02 3779.43 3865.90 38216.56 38012.72 37920.91 377
wuyk23d30.17 34530.18 34930.16 36178.61 37943.29 38566.79 37414.21 38517.31 37814.82 38111.93 38111.55 38441.43 38037.08 37819.30 3785.76 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.98 34631.98 3480.00 3640.00 3870.00 3880.00 37598.59 1480.00 3820.00 38398.61 14290.60 1650.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.88 35010.50 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38294.51 910.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.20 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.43 1620.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.82 198.66 2699.69 198.95 3597.46 2399.39 15
test_one_060199.66 2899.25 298.86 6497.55 1699.20 2699.47 1097.57 6
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.46 5598.70 2398.79 9693.21 22898.67 6798.97 9795.70 5099.83 6096.07 14299.58 80
test_241102_ONE99.71 2199.24 598.87 5897.62 1299.73 199.39 1897.53 799.74 111
9.1498.06 5599.47 5298.71 13698.82 7494.36 17599.16 3299.29 4396.05 3699.81 7597.00 10099.71 56
save fliter99.46 5598.38 4098.21 21098.71 11897.95 3
test072699.72 1399.25 299.06 6198.88 5197.62 1299.56 699.50 597.42 9
test_part299.63 3199.18 1099.27 21
sam_mvs88.99 198
MTGPAbinary98.74 108
test_post196.68 33330.43 38087.85 22998.69 24392.59 254
test_post31.83 37988.83 20598.91 222
patchmatchnet-post95.10 34689.42 18598.89 226
MTMP98.89 9594.14 367
gm-plane-assit95.88 32787.47 35689.74 32796.94 29799.19 18193.32 233
TEST999.31 7498.50 3497.92 24498.73 11292.63 24897.74 12598.68 13596.20 2799.80 84
test_899.29 8298.44 3697.89 25098.72 11492.98 23897.70 12998.66 13896.20 2799.80 84
agg_prior99.30 7998.38 4098.72 11497.57 13999.81 75
test_prior498.01 6797.86 253
test_prior297.80 25896.12 9397.89 11998.69 13395.96 4096.89 11099.60 74
旧先验297.57 27691.30 29598.67 6799.80 8495.70 162
新几何297.64 270
原ACMM297.67 268
testdata299.89 3991.65 279
segment_acmp96.85 14
testdata197.32 29296.34 85
plane_prior797.42 24794.63 219
plane_prior697.35 25294.61 22287.09 242
plane_prior498.28 181
plane_prior394.61 22297.02 5595.34 204
plane_prior298.80 11897.28 36
plane_prior197.37 251
plane_prior94.60 22498.44 18096.74 6894.22 234
n20.00 388
nn0.00 388
door-mid94.37 363
test1198.66 136
door94.64 361
HQP5-MVS94.25 238
HQP-NCC97.20 26098.05 23396.43 8194.45 226
ACMP_Plane97.20 26098.05 23396.43 8194.45 226
BP-MVS95.30 171
HQP3-MVS98.46 17994.18 236
HQP2-MVS86.75 248
NP-MVS97.28 25494.51 22797.73 228
MDTV_nov1_ep1395.40 16797.48 24088.34 34996.85 32697.29 31393.74 20197.48 14297.26 26389.18 19299.05 20091.92 27397.43 187
ACMMP++_ref92.97 268
ACMMP++93.61 255
Test By Simon94.64 87