This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
MSC_two_6792asdad98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
No_MVS98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
test_0728_THIRD94.78 3598.73 1098.87 695.87 499.84 2297.45 899.72 299.77 1
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6298.53 1298.29 2595.55 598.56 1497.81 8893.90 1599.65 5696.62 2599.21 7399.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4098.28 2799.86 897.52 499.67 699.75 5
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 598.30 2494.76 3798.30 1798.90 393.77 1799.68 5097.93 199.69 399.75 5
IU-MVS99.42 795.39 1197.94 10590.40 18198.94 597.41 1199.66 1099.74 7
test_241102_TWO98.27 3095.13 1798.93 698.89 494.99 1199.85 1797.52 499.65 1299.74 7
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 13998.35 1995.16 1698.71 1298.80 1195.05 1099.89 396.70 2499.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP97.20 1696.86 2398.23 1199.09 3895.16 2497.60 9998.19 4792.82 10497.93 2498.74 1391.60 5699.86 896.26 3599.52 2999.67 10
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8594.25 4298.43 2098.27 3095.34 1098.11 2098.56 1994.53 1299.71 4196.57 2899.62 1599.65 11
Skip Steuart: Steuart Systems R&D Blog.
region2R97.07 2396.84 2697.77 3899.46 293.79 5998.52 1398.24 3793.19 8797.14 4598.34 4391.59 5799.87 795.46 7399.59 1799.64 12
testtj96.93 3496.56 4498.05 2099.10 3694.66 3197.78 7598.22 4292.74 10797.59 2898.20 6391.96 4799.86 894.21 10199.25 6999.63 13
SMA-MVScopyleft97.35 1397.03 1598.30 899.06 4295.42 1097.94 6198.18 4990.57 17798.85 998.94 193.33 2099.83 2596.72 2399.68 499.63 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS97.18 1796.96 1997.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6598.29 5291.70 5399.80 3095.66 6099.40 4999.62 15
X-MVStestdata91.71 20289.67 26297.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6532.69 37191.70 5399.80 3095.66 6099.40 4999.62 15
ACMMPR97.07 2396.84 2697.79 3599.44 693.88 5698.52 1398.31 2393.21 8497.15 4498.33 4691.35 6299.86 895.63 6599.59 1799.62 15
mPP-MVS96.86 3896.60 4197.64 4999.40 1293.44 6998.50 1698.09 6693.27 8395.95 9298.33 4691.04 6999.88 495.20 7699.57 2499.60 18
DVP-MVS++98.06 197.99 198.28 998.67 6495.39 1199.29 198.28 2794.78 3598.93 698.87 696.04 299.86 897.45 899.58 2299.59 19
PC_three_145290.77 16498.89 898.28 5596.24 198.35 20795.76 5899.58 2299.59 19
zzz-MVS97.07 2396.77 3397.97 2599.37 1794.42 3697.15 14598.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
MTAPA97.08 2296.78 3297.97 2599.37 1794.42 3697.24 13298.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
ZNCC-MVS96.96 3196.67 3997.85 2899.37 1794.12 4998.49 1798.18 4992.64 11196.39 7598.18 6491.61 5599.88 495.59 7099.55 2599.57 23
PGM-MVS96.81 4196.53 4597.65 4799.35 2293.53 6797.65 9298.98 192.22 11997.14 4598.44 3091.17 6799.85 1794.35 9999.46 4299.57 23
CNVR-MVS97.68 697.44 998.37 798.90 5395.86 697.27 13098.08 6795.81 397.87 2798.31 4994.26 1399.68 5097.02 1399.49 3899.57 23
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3398.27 3095.13 1799.19 198.89 495.54 599.85 1797.52 499.66 1099.56 26
OPU-MVS98.55 398.82 5896.86 398.25 3398.26 5696.04 299.24 12495.36 7499.59 1799.56 26
Regformer-297.16 1996.99 1797.67 4698.32 9193.84 5796.83 17298.10 6495.24 1197.49 3098.25 5792.57 3399.61 6596.80 1999.29 6199.56 26
NCCC97.30 1597.03 1598.11 1798.77 5995.06 2697.34 12298.04 8495.96 297.09 4997.88 8093.18 2399.71 4195.84 5699.17 7699.56 26
test117296.93 3496.86 2397.15 7099.10 3692.34 9997.96 6098.04 8493.79 6197.35 3798.53 2391.40 6099.56 8496.30 3499.30 6099.55 30
Regformer-197.10 2196.96 1997.54 5298.32 9193.48 6896.83 17297.99 10095.20 1397.46 3198.25 5792.48 3799.58 7496.79 2199.29 6199.55 30
MCST-MVS97.18 1796.84 2698.20 1399.30 2695.35 1597.12 14798.07 7393.54 7196.08 8497.69 9693.86 1699.71 4196.50 2999.39 5199.55 30
SR-MVS97.01 2996.86 2397.47 5499.09 3893.27 7697.98 5598.07 7393.75 6297.45 3298.48 2791.43 5999.59 7196.22 3899.27 6599.54 33
HFP-MVS97.14 2096.92 2197.83 2999.42 794.12 4998.52 1398.32 2193.21 8497.18 4298.29 5292.08 4299.83 2595.63 6599.59 1799.54 33
#test#97.02 2796.75 3497.83 2999.42 794.12 4998.15 4598.32 2192.57 11297.18 4298.29 5292.08 4299.83 2595.12 7999.59 1799.54 33
CP-MVS97.02 2796.81 2997.64 4999.33 2393.54 6698.80 698.28 2792.99 9496.45 7398.30 5191.90 4899.85 1795.61 6799.68 499.54 33
APD-MVScopyleft96.95 3296.60 4198.01 2299.03 4494.93 2897.72 8498.10 6491.50 14098.01 2298.32 4892.33 3899.58 7494.85 8799.51 3399.53 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj97.36 1297.20 1197.83 2998.91 5194.28 3997.02 15297.22 19095.35 898.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
SF-MVS97.39 1197.13 1298.17 1499.02 4595.28 2098.23 3798.27 3092.37 11698.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
APD-MVS_3200maxsize96.81 4196.71 3797.12 7299.01 4892.31 10297.98 5598.06 7693.11 9097.44 3398.55 2190.93 7199.55 8796.06 4699.25 6999.51 38
agg_prior293.94 10899.38 5299.50 41
Regformer-496.97 3096.87 2297.25 6498.34 8892.66 9096.96 16098.01 9495.12 2097.14 4598.42 3391.82 4999.61 6596.90 1599.13 7999.50 41
MP-MVScopyleft96.77 4396.45 5197.72 4299.39 1493.80 5898.41 2198.06 7693.37 7995.54 10998.34 4390.59 7899.88 494.83 8999.54 2799.49 43
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 4696.45 5197.40 5699.36 2093.11 7998.87 498.06 7691.17 15696.40 7497.99 7590.99 7099.58 7495.61 6799.61 1699.49 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3 D test640096.16 6395.52 7198.07 1998.90 5395.06 2697.03 14998.21 4388.16 24396.64 6197.70 9591.18 6699.67 5292.44 13699.47 4099.48 45
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4097.85 11694.92 2698.73 1098.87 695.08 899.84 2297.52 499.67 699.48 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
Regformer-396.85 3996.80 3097.01 7598.34 8892.02 11396.96 16097.76 12095.01 2497.08 5098.42 3391.71 5299.54 8996.80 1999.13 7999.48 45
GST-MVS96.85 3996.52 4697.82 3299.36 2094.14 4898.29 2898.13 5792.72 10896.70 5698.06 7091.35 6299.86 894.83 8999.28 6399.47 48
test9_res94.81 9199.38 5299.45 49
DeepPCF-MVS93.97 196.61 4997.09 1395.15 16598.09 11086.63 27196.00 24198.15 5495.43 697.95 2398.56 1993.40 1999.36 11696.77 2299.48 3999.45 49
TSAR-MVS + MP.97.42 997.33 1097.69 4599.25 2994.24 4398.07 5097.85 11693.72 6398.57 1398.35 4093.69 1899.40 11297.06 1299.46 4299.44 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+91.43 495.40 8194.48 10198.16 1596.90 16795.34 1698.48 1897.87 11294.65 4188.53 26898.02 7383.69 16699.71 4193.18 12598.96 9199.44 51
SR-MVS-dyc-post96.88 3796.80 3097.11 7399.02 4592.34 9997.98 5598.03 8793.52 7397.43 3598.51 2491.40 6099.56 8496.05 4799.26 6799.43 53
RE-MVS-def96.72 3699.02 4592.34 9997.98 5598.03 8793.52 7397.43 3598.51 2490.71 7696.05 4799.26 6799.43 53
ETH3D-3000-0.197.07 2396.71 3798.14 1698.90 5395.33 1797.68 8898.24 3791.57 13897.90 2598.37 3892.61 3299.66 5595.59 7099.51 3399.43 53
DeepC-MVS_fast93.89 296.93 3496.64 4097.78 3698.64 7294.30 3897.41 11498.04 8494.81 3396.59 6598.37 3891.24 6499.64 6495.16 7799.52 2999.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft97.34 1496.97 1898.47 599.08 4096.16 497.55 10397.97 10295.59 496.61 6397.89 7892.57 3399.84 2295.95 5199.51 3399.40 57
train_agg96.30 5995.83 6797.72 4298.70 6294.19 4496.41 20898.02 9188.58 22996.03 8697.56 11292.73 2899.59 7195.04 8199.37 5699.39 58
CDPH-MVS95.97 6895.38 7797.77 3898.93 4994.44 3596.35 21697.88 11086.98 27396.65 6097.89 7891.99 4699.47 10392.26 13799.46 4299.39 58
MP-MVS-pluss96.70 4596.27 5597.98 2499.23 3294.71 3096.96 16098.06 7690.67 16895.55 10798.78 1291.07 6899.86 896.58 2799.55 2599.38 60
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 5296.27 5597.22 6799.32 2492.74 8798.74 798.06 7690.57 17796.77 5398.35 4090.21 8299.53 9294.80 9299.63 1499.38 60
ACMMPcopyleft96.27 6095.93 6397.28 6299.24 3092.62 9298.25 3398.81 392.99 9494.56 12598.39 3788.96 9499.85 1794.57 9897.63 12899.36 62
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS96.77 4396.46 5097.71 4498.40 8394.07 5298.21 4098.45 1589.86 18997.11 4898.01 7492.52 3599.69 4796.03 5099.53 2899.36 62
agg_prior196.22 6295.77 6897.56 5198.67 6493.79 5996.28 22498.00 9688.76 22695.68 10197.55 11492.70 3099.57 8295.01 8299.32 5799.32 64
SD-MVS97.41 1097.53 797.06 7498.57 7794.46 3497.92 6398.14 5694.82 3299.01 398.55 2194.18 1497.41 30996.94 1499.64 1399.32 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet96.39 5796.02 6197.50 5397.62 13693.38 7197.02 15297.96 10395.42 794.86 11997.81 8887.38 11999.82 2896.88 1699.20 7499.29 66
test_prior396.46 5496.20 5897.23 6598.67 6492.99 8196.35 21698.00 9692.80 10596.03 8697.59 10892.01 4499.41 11095.01 8299.38 5299.29 66
test_prior97.23 6598.67 6492.99 8198.00 9699.41 11099.29 66
test111193.19 14992.82 14194.30 20797.58 14184.56 30398.21 4089.02 36393.53 7294.58 12498.21 6072.69 30899.05 14893.06 12898.48 10799.28 69
MVS_111021_HR96.68 4896.58 4396.99 7698.46 7992.31 10296.20 23198.90 294.30 5095.86 9497.74 9392.33 3899.38 11596.04 4999.42 4799.28 69
ETH3D cwj APD-0.1696.56 5196.06 6098.05 2098.26 9795.19 2296.99 15798.05 8389.85 19197.26 3998.22 5991.80 5099.69 4794.84 8899.28 6399.27 71
test250691.60 20690.78 21494.04 21697.66 13383.81 31098.27 3075.53 37593.43 7795.23 11498.21 6067.21 33999.07 14593.01 13298.49 10599.25 72
ECVR-MVScopyleft93.19 14992.73 14794.57 19697.66 13385.41 28998.21 4088.23 36493.43 7794.70 12298.21 6072.57 30999.07 14593.05 12998.49 10599.25 72
test1297.65 4798.46 7994.26 4197.66 13595.52 11190.89 7299.46 10499.25 6999.22 74
CHOSEN 1792x268894.15 11393.51 12296.06 11998.27 9489.38 20095.18 27798.48 1485.60 29393.76 14197.11 13283.15 17699.61 6591.33 16298.72 9899.19 75
3Dnovator91.36 595.19 9094.44 10397.44 5596.56 18593.36 7398.65 998.36 1694.12 5289.25 25298.06 7082.20 20199.77 3293.41 12199.32 5799.18 76
旧先验198.38 8693.38 7197.75 12198.09 6892.30 4199.01 8999.16 77
VNet95.89 7095.45 7497.21 6898.07 11292.94 8497.50 10698.15 5493.87 5797.52 2997.61 10785.29 14599.53 9295.81 5795.27 17899.16 77
CSCG96.05 6595.91 6496.46 9699.24 3090.47 16698.30 2798.57 1189.01 21293.97 13797.57 11092.62 3199.76 3394.66 9599.27 6599.15 79
IS-MVSNet94.90 9894.52 9996.05 12097.67 13190.56 16298.44 1996.22 26293.21 8493.99 13597.74 9385.55 14398.45 20089.98 17997.86 12299.14 80
EI-MVSNet-Vis-set96.51 5296.47 4896.63 8398.24 9891.20 14096.89 16797.73 12494.74 3896.49 6998.49 2690.88 7399.58 7496.44 3298.32 11199.13 81
baseline95.58 7895.42 7696.08 11796.78 17390.41 16997.16 14397.45 16593.69 6695.65 10597.85 8487.29 12098.68 17895.66 6097.25 14299.13 81
MG-MVS95.61 7795.38 7796.31 10698.42 8290.53 16496.04 23797.48 15493.47 7695.67 10498.10 6689.17 9299.25 12391.27 16498.77 9699.13 81
LFMVS93.60 13592.63 15096.52 8898.13 10991.27 13597.94 6193.39 34290.57 17796.29 7798.31 4969.00 32999.16 13194.18 10395.87 16799.12 84
UA-Net95.95 6995.53 7097.20 6997.67 13192.98 8397.65 9298.13 5794.81 3396.61 6398.35 4088.87 9599.51 9790.36 17697.35 13899.11 85
EPNet95.20 8994.56 9697.14 7192.80 33292.68 8997.85 6994.87 31996.64 192.46 16697.80 9086.23 13299.65 5693.72 11498.62 10299.10 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvs95.64 7695.49 7296.08 11796.76 17690.45 16797.29 12997.44 16994.00 5495.46 11297.98 7687.52 11698.73 17395.64 6497.33 13999.08 87
TSAR-MVS + GP.96.69 4696.49 4797.27 6398.31 9393.39 7096.79 17696.72 23394.17 5197.44 3397.66 10092.76 2699.33 11796.86 1797.76 12799.08 87
HyFIR lowres test93.66 13392.92 13995.87 12898.24 9889.88 18294.58 28598.49 1285.06 30293.78 14095.78 20782.86 18598.67 17991.77 15195.71 17299.07 89
mvs_anonymous93.82 12893.74 11294.06 21496.44 19385.41 28995.81 25097.05 20689.85 19190.09 22496.36 17787.44 11897.75 27993.97 10696.69 15499.02 90
abl_696.40 5696.21 5796.98 7798.89 5692.20 10797.89 6498.03 8793.34 8297.22 4198.42 3387.93 10899.72 3895.10 8099.07 8699.02 90
CPTT-MVS95.57 7995.19 8296.70 8099.27 2891.48 12898.33 2598.11 6287.79 25495.17 11698.03 7287.09 12399.61 6593.51 11799.42 4799.02 90
Vis-MVSNet (Re-imp)94.15 11393.88 10994.95 17697.61 13787.92 24298.10 4795.80 27692.22 11993.02 15797.45 11684.53 15597.91 26588.24 21697.97 12099.02 90
GeoE93.89 12593.28 13195.72 13896.96 16689.75 18598.24 3696.92 22089.47 20092.12 17897.21 12784.42 15698.39 20587.71 22796.50 15899.01 94
Anonymous20240521192.07 19490.83 21395.76 13298.19 10588.75 21997.58 10095.00 31086.00 28893.64 14297.45 11666.24 34699.53 9290.68 17392.71 21199.01 94
Vis-MVSNetpermissive95.23 8794.81 8996.51 9197.18 14991.58 12598.26 3298.12 5994.38 4894.90 11898.15 6582.28 19998.92 15791.45 16198.58 10499.01 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DELS-MVS96.61 4996.38 5397.30 6097.79 12693.19 7795.96 24398.18 4995.23 1295.87 9397.65 10191.45 5899.70 4695.87 5299.44 4699.00 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR95.01 9294.59 9596.26 11198.89 5690.68 15997.24 13297.73 12491.80 13392.93 16396.62 16489.13 9399.14 13489.21 20297.78 12598.97 98
MSLP-MVS++96.94 3397.06 1496.59 8698.72 6191.86 11797.67 8998.49 1294.66 4097.24 4098.41 3692.31 4098.94 15696.61 2699.46 4298.96 99
DeepC-MVS93.07 396.06 6495.66 6997.29 6197.96 11493.17 7897.30 12898.06 7693.92 5693.38 15098.66 1486.83 12599.73 3595.60 6999.22 7298.96 99
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs95.87 7295.23 8197.78 3697.56 14295.19 2297.86 6697.17 19394.39 4796.47 7196.40 17585.89 13899.20 12696.21 4295.11 18298.95 101
114514_t93.95 12393.06 13596.63 8399.07 4191.61 12297.46 11397.96 10377.99 35293.00 15897.57 11086.14 13799.33 11789.22 20199.15 7798.94 102
WTY-MVS94.71 10594.02 10796.79 7997.71 13092.05 11196.59 19997.35 18190.61 17494.64 12396.93 13886.41 13199.39 11391.20 16694.71 19098.94 102
EPP-MVSNet95.22 8895.04 8695.76 13297.49 14389.56 19098.67 897.00 21290.69 16794.24 13197.62 10689.79 8998.81 16693.39 12296.49 15998.92 104
canonicalmvs96.02 6695.45 7497.75 4097.59 13995.15 2598.28 2997.60 14294.52 4396.27 7896.12 18787.65 11299.18 12996.20 4394.82 18698.91 105
EI-MVSNet-UG-set96.34 5896.30 5496.47 9498.20 10390.93 15196.86 16897.72 12894.67 3996.16 8198.46 2890.43 7999.58 7496.23 3797.96 12198.90 106
PAPR94.18 11293.42 12896.48 9397.64 13591.42 13295.55 25997.71 13288.99 21392.34 17295.82 20289.19 9199.11 13686.14 25997.38 13698.90 106
无先验95.79 25197.87 11283.87 31899.65 5687.68 23198.89 108
DP-MVS92.76 17091.51 18996.52 8898.77 5990.99 14797.38 12096.08 26782.38 32989.29 24997.87 8183.77 16599.69 4781.37 31196.69 15498.89 108
diffmvs95.25 8695.13 8495.63 14296.43 19589.34 20295.99 24297.35 18192.83 10396.31 7697.37 12086.44 13098.67 17996.26 3597.19 14498.87 110
MVSFormer95.37 8295.16 8395.99 12496.34 19991.21 13898.22 3897.57 14691.42 14496.22 7997.32 12186.20 13597.92 26294.07 10499.05 8798.85 111
jason94.84 10194.39 10496.18 11595.52 23290.93 15196.09 23596.52 24989.28 20596.01 9097.32 12184.70 15298.77 17095.15 7898.91 9498.85 111
jason: jason.
Effi-MVS+94.93 9794.45 10296.36 10496.61 17991.47 12996.41 20897.41 17491.02 16194.50 12695.92 19687.53 11598.78 16893.89 11096.81 14998.84 113
DPM-MVS95.69 7494.92 8798.01 2298.08 11195.71 995.27 27397.62 14190.43 18095.55 10797.07 13491.72 5199.50 10089.62 19098.94 9298.82 114
lupinMVS94.99 9694.56 9696.29 10996.34 19991.21 13895.83 24996.27 25988.93 21796.22 7996.88 14386.20 13598.85 16395.27 7599.05 8798.82 114
test_yl94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16997.10 19991.23 15495.71 9996.93 13884.30 15899.31 11993.10 12695.12 18098.75 116
DCV-MVSNet94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16997.10 19991.23 15495.71 9996.93 13884.30 15899.31 11993.10 12695.12 18098.75 116
CVMVSNet91.23 22991.75 17889.67 32995.77 22374.69 36096.44 20494.88 31685.81 29092.18 17597.64 10479.07 25195.58 34688.06 21995.86 16898.74 118
112194.71 10593.83 11097.34 5898.57 7793.64 6496.04 23797.73 12481.56 33695.68 10197.85 8490.23 8199.65 5687.68 23199.12 8298.73 119
test22298.24 9892.21 10595.33 26897.60 14279.22 34895.25 11397.84 8788.80 9799.15 7798.72 120
MVS_Test94.89 9994.62 9495.68 14096.83 17189.55 19196.70 18497.17 19391.17 15695.60 10696.11 19087.87 10998.76 17193.01 13297.17 14598.72 120
VDD-MVS93.82 12893.08 13496.02 12297.88 12189.96 18197.72 8495.85 27492.43 11495.86 9498.44 3068.42 33399.39 11396.31 3394.85 18498.71 122
新几何197.32 5998.60 7393.59 6597.75 12181.58 33595.75 9897.85 8490.04 8599.67 5286.50 25399.13 7998.69 123
sss94.51 10793.80 11196.64 8197.07 15591.97 11596.32 22098.06 7688.94 21694.50 12696.78 14684.60 15399.27 12291.90 14796.02 16398.68 124
DROMVSNet96.42 5596.47 4896.26 11197.01 16391.52 12798.89 397.75 12194.42 4596.64 6197.68 9789.32 9098.60 18597.45 899.11 8498.67 125
testdata95.46 15898.18 10788.90 21797.66 13582.73 32897.03 5198.07 6990.06 8498.85 16389.67 18898.98 9098.64 126
MVS_111021_LR96.24 6196.19 5996.39 10198.23 10291.35 13396.24 22998.79 493.99 5595.80 9697.65 10189.92 8899.24 12495.87 5299.20 7498.58 127
PVSNet_Blended_VisFu95.27 8594.91 8896.38 10298.20 10390.86 15397.27 13098.25 3590.21 18294.18 13297.27 12387.48 11799.73 3593.53 11697.77 12698.55 128
EIA-MVS95.53 8095.47 7395.71 13997.06 15889.63 18697.82 7197.87 11293.57 6793.92 13895.04 23890.61 7798.95 15594.62 9698.68 10098.54 129
TAMVS94.01 12293.46 12495.64 14196.16 20890.45 16796.71 18396.89 22389.27 20693.46 14896.92 14187.29 12097.94 25988.70 21295.74 17098.53 130
ET-MVSNet_ETH3D91.49 21590.11 24495.63 14296.40 19691.57 12695.34 26793.48 34090.60 17675.58 35695.49 22480.08 23596.79 32994.25 10089.76 25698.52 131
PatchmatchNetpermissive91.91 19791.35 19193.59 24195.38 23884.11 30893.15 32695.39 29089.54 19792.10 17993.68 30182.82 18798.13 22584.81 27895.32 17798.52 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM93.45 14092.27 16496.98 7796.77 17492.62 9298.39 2398.12 5984.50 31088.27 27497.77 9182.39 19899.81 2985.40 27298.81 9598.51 133
1112_ss93.37 14292.42 16096.21 11497.05 16090.99 14796.31 22196.72 23386.87 27689.83 23196.69 15486.51 12999.14 13488.12 21893.67 20198.50 134
ab-mvs93.57 13792.55 15496.64 8197.28 14591.96 11695.40 26597.45 16589.81 19393.22 15696.28 18079.62 24599.46 10490.74 17193.11 20798.50 134
原ACMM196.38 10298.59 7491.09 14697.89 10887.41 26595.22 11597.68 9790.25 8099.54 8987.95 22199.12 8298.49 136
Test_1112_low_res92.84 16791.84 17695.85 12997.04 16189.97 18095.53 26196.64 24285.38 29689.65 23795.18 23385.86 13999.10 13787.70 22893.58 20698.49 136
Patchmatch-test89.42 27787.99 28493.70 23695.27 25085.11 29488.98 35694.37 32981.11 33787.10 29893.69 29982.28 19997.50 30174.37 34594.76 18798.48 138
VDDNet93.05 15592.07 16796.02 12296.84 16990.39 17098.08 4995.85 27486.22 28595.79 9798.46 2867.59 33699.19 12794.92 8694.85 18498.47 139
PVSNet86.66 1892.24 18791.74 18093.73 23397.77 12783.69 31592.88 33096.72 23387.91 24993.00 15894.86 24578.51 26399.05 14886.53 25197.45 13598.47 139
GSMVS98.45 141
sam_mvs182.76 18898.45 141
SCA91.84 19991.18 20293.83 22995.59 22884.95 29894.72 28295.58 28690.82 16292.25 17493.69 29975.80 29098.10 23086.20 25795.98 16498.45 141
CDS-MVSNet94.14 11693.54 11995.93 12596.18 20691.46 13096.33 21997.04 20888.97 21593.56 14396.51 16887.55 11497.89 26689.80 18495.95 16598.44 144
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS Recon95.68 7595.12 8597.37 5799.19 3394.19 4497.03 14998.08 6788.35 23695.09 11797.65 10189.97 8799.48 10292.08 14698.59 10398.44 144
Patchmatch-RL test87.38 29886.24 29990.81 31588.74 36178.40 35588.12 35893.17 34387.11 27282.17 33989.29 34881.95 20695.60 34588.64 21377.02 34798.41 146
LCM-MVSNet-Re92.50 17392.52 15792.44 27996.82 17281.89 32896.92 16493.71 33892.41 11584.30 32494.60 25985.08 14897.03 32091.51 15897.36 13798.40 147
PVSNet_Blended94.87 10094.56 9695.81 13098.27 9489.46 19795.47 26398.36 1688.84 22094.36 12896.09 19188.02 10599.58 7493.44 11998.18 11598.40 147
tttt051792.96 15992.33 16294.87 17997.11 15387.16 25997.97 5992.09 35190.63 17293.88 13997.01 13776.50 28499.06 14790.29 17895.45 17598.38 149
MDTV_nov1_ep13_2view70.35 36593.10 32883.88 31793.55 14482.47 19686.25 25698.38 149
BH-RMVSNet92.72 17191.97 17294.97 17497.16 15087.99 24196.15 23395.60 28490.62 17391.87 18397.15 13178.41 26698.57 19083.16 29397.60 12998.36 151
OMC-MVS95.09 9194.70 9396.25 11398.46 7991.28 13496.43 20697.57 14692.04 12894.77 12197.96 7787.01 12499.09 14091.31 16396.77 15098.36 151
thisisatest053093.03 15692.21 16595.49 15497.07 15589.11 21397.49 11092.19 35090.16 18494.09 13396.41 17476.43 28799.05 14890.38 17595.68 17398.31 153
h-mvs3394.15 11393.52 12196.04 12197.81 12490.22 17297.62 9897.58 14595.19 1496.74 5497.45 11683.67 16799.61 6595.85 5479.73 34098.29 154
CS-MVS-test95.86 7395.88 6695.80 13196.76 17690.59 16198.40 2297.65 13793.52 7395.53 11096.79 14589.98 8698.59 18995.59 7098.69 9998.23 155
Anonymous2024052991.98 19690.73 21895.73 13798.14 10889.40 19997.99 5497.72 12879.63 34693.54 14597.41 11969.94 32799.56 8491.04 16791.11 23898.22 156
GA-MVS91.38 22090.31 23394.59 19194.65 28387.62 24994.34 29596.19 26490.73 16690.35 21193.83 29371.84 31297.96 25687.22 24393.61 20498.21 157
TAPA-MVS90.10 792.30 18391.22 20095.56 14798.33 9089.60 18896.79 17697.65 13781.83 33391.52 18797.23 12687.94 10798.91 15971.31 35598.37 11098.17 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UGNet94.04 12193.28 13196.31 10696.85 16891.19 14197.88 6597.68 13394.40 4693.00 15896.18 18373.39 30799.61 6591.72 15298.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+93.46 13992.75 14595.59 14596.77 17490.03 17496.81 17597.13 19688.19 23991.30 19494.27 27786.21 13498.63 18287.66 23396.46 16198.12 160
tpm90.25 26389.74 26191.76 29993.92 30579.73 34793.98 30593.54 33988.28 23791.99 18193.25 31177.51 27997.44 30687.30 24287.94 27098.12 160
PMMVS92.86 16592.34 16194.42 20294.92 26986.73 26794.53 28796.38 25584.78 30794.27 13095.12 23783.13 17798.40 20291.47 16096.49 15998.12 160
EPMVS90.70 25389.81 25693.37 25294.73 28084.21 30693.67 31688.02 36589.50 19992.38 16993.49 30677.82 27797.78 27686.03 26392.68 21298.11 163
LS3D93.57 13792.61 15296.47 9497.59 13991.61 12297.67 8997.72 12885.17 30090.29 21298.34 4384.60 15399.73 3583.85 29198.27 11298.06 164
UniMVSNet_ETH3D91.34 22590.22 24194.68 19094.86 27487.86 24597.23 13797.46 15987.99 24689.90 22896.92 14166.35 34498.23 21490.30 17790.99 24197.96 165
HY-MVS89.66 993.87 12692.95 13896.63 8397.10 15492.49 9695.64 25796.64 24289.05 21193.00 15895.79 20685.77 14199.45 10689.16 20594.35 19297.96 165
DWT-MVSNet_test90.76 24889.89 25293.38 25195.04 26383.70 31495.85 24894.30 33288.19 23990.46 20892.80 31573.61 30598.50 19588.16 21790.58 24697.95 167
CNLPA94.28 11093.53 12096.52 8898.38 8692.55 9496.59 19996.88 22490.13 18591.91 18297.24 12585.21 14699.09 14087.64 23497.83 12397.92 168
CostFormer91.18 23590.70 21992.62 27794.84 27581.76 32994.09 30494.43 32684.15 31392.72 16593.77 29779.43 24798.20 21890.70 17292.18 22197.90 169
tpmrst91.44 21791.32 19391.79 29695.15 25779.20 35193.42 32195.37 29288.55 23293.49 14793.67 30282.49 19598.27 21290.41 17489.34 25997.90 169
EPNet_dtu91.71 20291.28 19692.99 26593.76 31183.71 31396.69 18695.28 29793.15 8887.02 30095.95 19583.37 17397.38 31179.46 32396.84 14897.88 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051592.29 18491.30 19595.25 16296.60 18088.90 21794.36 29492.32 34987.92 24893.43 14994.57 26077.28 28099.00 15289.42 19495.86 16897.86 172
ADS-MVSNet289.45 27688.59 27892.03 28895.86 21882.26 32690.93 34594.32 33183.23 32591.28 19791.81 33279.01 25695.99 33779.52 32091.39 23497.84 173
ADS-MVSNet89.89 27188.68 27793.53 24495.86 21884.89 29990.93 34595.07 30883.23 32591.28 19791.81 33279.01 25697.85 26879.52 32091.39 23497.84 173
MAR-MVS94.22 11193.46 12496.51 9198.00 11392.19 10897.67 8997.47 15788.13 24593.00 15895.84 20084.86 15199.51 9787.99 22098.17 11697.83 175
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS96.02 6695.89 6596.40 9997.16 15092.44 9797.47 11197.77 11994.55 4296.48 7094.51 26191.23 6598.92 15795.65 6398.19 11497.82 176
CANet_DTU94.37 10893.65 11696.55 8796.46 19292.13 10996.21 23096.67 24194.38 4893.53 14697.03 13679.34 24899.71 4190.76 17098.45 10997.82 176
PLCcopyleft91.00 694.11 11793.43 12696.13 11698.58 7691.15 14596.69 18697.39 17587.29 26891.37 19096.71 15088.39 10399.52 9687.33 24197.13 14697.73 178
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.90 28388.26 28390.81 31594.58 28876.62 35792.85 33194.93 31485.12 30190.07 22693.07 31275.81 28998.12 22880.53 31587.42 27797.71 179
AdaColmapbinary94.34 10993.68 11596.31 10698.59 7491.68 12196.59 19997.81 11889.87 18892.15 17697.06 13583.62 16999.54 8989.34 19698.07 11897.70 180
baseline192.82 16891.90 17495.55 14997.20 14890.77 15797.19 14094.58 32492.20 12192.36 17096.34 17884.16 16198.21 21689.20 20383.90 32397.68 181
test-LLR91.42 21891.19 20192.12 28694.59 28680.66 33594.29 29892.98 34491.11 15890.76 20492.37 32279.02 25498.07 23888.81 20996.74 15197.63 182
test-mter90.19 26689.54 26592.12 28694.59 28680.66 33594.29 29892.98 34487.68 25990.76 20492.37 32267.67 33598.07 23888.81 20996.74 15197.63 182
PAPM91.52 21490.30 23495.20 16395.30 24989.83 18393.38 32296.85 22886.26 28488.59 26695.80 20384.88 15098.15 22475.67 34195.93 16697.63 182
F-COLMAP93.58 13692.98 13795.37 16098.40 8388.98 21597.18 14197.29 18687.75 25790.49 20797.10 13385.21 14699.50 10086.70 25096.72 15397.63 182
TESTMET0.1,190.06 26889.42 26691.97 28994.41 29380.62 33794.29 29891.97 35387.28 26990.44 20992.47 32168.79 33097.67 28488.50 21596.60 15697.61 186
CS-MVS95.88 7195.98 6295.58 14696.44 19390.56 16297.78 7597.73 12493.01 9396.07 8596.77 14790.13 8398.57 19096.83 1899.10 8597.60 187
CR-MVSNet90.82 24789.77 25893.95 22394.45 29187.19 25790.23 35095.68 28286.89 27592.40 16792.36 32580.91 22097.05 31981.09 31393.95 19997.60 187
RPMNet88.98 28087.05 29594.77 18794.45 29187.19 25790.23 35098.03 8777.87 35492.40 16787.55 35680.17 23499.51 9768.84 35993.95 19997.60 187
MIMVSNet88.50 28986.76 29793.72 23594.84 27587.77 24791.39 34094.05 33486.41 28287.99 28292.59 31963.27 35395.82 34277.44 33192.84 21097.57 190
PatchT88.87 28487.42 28993.22 25894.08 30285.10 29589.51 35494.64 32381.92 33292.36 17088.15 35380.05 23697.01 32372.43 35193.65 20297.54 191
tpm289.96 26989.21 27092.23 28594.91 27281.25 33293.78 31294.42 32780.62 34291.56 18693.44 30876.44 28697.94 25985.60 26992.08 22597.49 192
IB-MVS87.33 1789.91 27088.28 28294.79 18695.26 25387.70 24895.12 27993.95 33789.35 20487.03 29992.49 32070.74 32099.19 12789.18 20481.37 33697.49 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
AUN-MVS91.76 20190.75 21794.81 18297.00 16488.57 22496.65 19096.49 25089.63 19692.15 17696.12 18778.66 26198.50 19590.83 16979.18 34397.36 194
hse-mvs293.45 14092.99 13694.81 18297.02 16288.59 22396.69 18696.47 25195.19 1496.74 5496.16 18683.67 16798.48 19995.85 5479.13 34497.35 195
CHOSEN 280x42093.12 15292.72 14894.34 20596.71 17887.27 25390.29 34997.72 12886.61 28091.34 19195.29 22984.29 16098.41 20193.25 12498.94 9297.35 195
BH-untuned92.94 16192.62 15193.92 22797.22 14686.16 28096.40 21196.25 26190.06 18689.79 23296.17 18583.19 17498.35 20787.19 24497.27 14197.24 197
131492.81 16992.03 16995.14 16695.33 24689.52 19496.04 23797.44 16987.72 25886.25 30895.33 22883.84 16498.79 16789.26 19997.05 14797.11 198
PCF-MVS89.48 1191.56 21089.95 25096.36 10496.60 18092.52 9592.51 33697.26 18779.41 34788.90 25696.56 16684.04 16399.55 8777.01 33797.30 14097.01 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.49 17591.60 18395.18 16497.91 11989.47 19597.65 9294.66 32192.18 12593.33 15194.91 24278.06 27399.10 13781.61 30594.06 19896.98 200
thres40092.42 17791.52 18795.12 16897.85 12289.29 20597.41 11494.88 31692.19 12393.27 15494.46 26678.17 26999.08 14281.40 30894.08 19596.98 200
XVG-OURS-SEG-HR93.86 12793.55 11894.81 18297.06 15888.53 22695.28 27197.45 16591.68 13694.08 13497.68 9782.41 19798.90 16093.84 11292.47 21596.98 200
MSDG91.42 21890.24 23894.96 17597.15 15288.91 21693.69 31596.32 25785.72 29286.93 30296.47 17080.24 23298.98 15480.57 31495.05 18396.98 200
XVG-OURS93.72 13293.35 12994.80 18597.07 15588.61 22294.79 28197.46 15991.97 13193.99 13597.86 8381.74 21098.88 16292.64 13592.67 21396.92 204
PatchMatch-RL92.90 16392.02 17095.56 14798.19 10590.80 15595.27 27397.18 19187.96 24791.86 18495.68 21480.44 22898.99 15384.01 28797.54 13096.89 205
mvs-test193.63 13493.69 11493.46 24896.02 21584.61 30297.24 13296.72 23393.85 5892.30 17395.76 20883.08 17898.89 16191.69 15596.54 15796.87 206
tpmvs89.83 27489.15 27291.89 29194.92 26980.30 34193.11 32795.46 28986.28 28388.08 27992.65 31780.44 22898.52 19481.47 30789.92 25496.84 207
baseline291.63 20590.86 20993.94 22594.33 29586.32 27495.92 24591.64 35589.37 20386.94 30194.69 25481.62 21298.69 17788.64 21394.57 19196.81 208
TR-MVS91.48 21690.59 22394.16 21196.40 19687.33 25195.67 25495.34 29687.68 25991.46 18895.52 22376.77 28398.35 20782.85 29793.61 20496.79 209
OpenMVScopyleft89.19 1292.86 16591.68 18196.40 9995.34 24392.73 8898.27 3098.12 5984.86 30585.78 31197.75 9278.89 25999.74 3487.50 23898.65 10196.73 210
tpm cat188.36 29087.21 29391.81 29595.13 25980.55 33892.58 33595.70 27974.97 35687.45 28991.96 33078.01 27598.17 22380.39 31688.74 26596.72 211
DSMNet-mixed86.34 30686.12 30287.00 33989.88 35570.43 36494.93 28090.08 36177.97 35385.42 31692.78 31674.44 29893.96 35674.43 34495.14 17996.62 212
API-MVS94.84 10194.49 10095.90 12797.90 12092.00 11497.80 7397.48 15489.19 20894.81 12096.71 15088.84 9699.17 13088.91 20898.76 9796.53 213
gg-mvs-nofinetune87.82 29585.61 30494.44 19994.46 29089.27 20891.21 34484.61 37080.88 33989.89 23074.98 36371.50 31497.53 29885.75 26897.21 14396.51 214
Effi-MVS+-dtu93.08 15393.21 13392.68 27696.02 21583.25 31897.14 14696.72 23393.85 5891.20 20193.44 30883.08 17898.30 21191.69 15595.73 17196.50 215
thres100view90092.43 17691.58 18494.98 17397.92 11889.37 20197.71 8694.66 32192.20 12193.31 15294.90 24378.06 27399.08 14281.40 30894.08 19596.48 216
tfpn200view992.38 17991.52 18794.95 17697.85 12289.29 20597.41 11494.88 31692.19 12393.27 15494.46 26678.17 26999.08 14281.40 30894.08 19596.48 216
JIA-IIPM88.26 29287.04 29691.91 29093.52 31781.42 33189.38 35594.38 32880.84 34090.93 20380.74 36179.22 25097.92 26282.76 29891.62 22996.38 218
cascas91.20 23190.08 24594.58 19594.97 26589.16 21293.65 31797.59 14479.90 34589.40 24492.92 31475.36 29498.36 20692.14 14294.75 18896.23 219
RPSCF90.75 25090.86 20990.42 32296.84 16976.29 35895.61 25896.34 25683.89 31691.38 18997.87 8176.45 28598.78 16887.16 24692.23 21896.20 220
thres20092.23 18891.39 19094.75 18997.61 13789.03 21496.60 19895.09 30792.08 12793.28 15394.00 28978.39 26799.04 15181.26 31294.18 19496.19 221
xiu_mvs_v2_base95.32 8495.29 8095.40 15997.22 14690.50 16595.44 26497.44 16993.70 6596.46 7296.18 18388.59 10299.53 9294.79 9497.81 12496.17 222
PS-MVSNAJ95.37 8295.33 7995.49 15497.35 14490.66 16095.31 27097.48 15493.85 5896.51 6895.70 21388.65 9999.65 5694.80 9298.27 11296.17 222
AllTest90.23 26488.98 27393.98 21997.94 11686.64 26896.51 20395.54 28785.38 29685.49 31496.77 14770.28 32399.15 13280.02 31892.87 20896.15 224
TestCases93.98 21997.94 11686.64 26895.54 28785.38 29685.49 31496.77 14770.28 32399.15 13280.02 31892.87 20896.15 224
BH-w/o92.14 19391.75 17893.31 25496.99 16585.73 28495.67 25495.69 28088.73 22789.26 25194.82 24882.97 18398.07 23885.26 27496.32 16296.13 226
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
xiu_mvs_v1_base95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
Fast-Effi-MVS+-dtu92.29 18491.99 17193.21 25995.27 25085.52 28797.03 14996.63 24592.09 12689.11 25495.14 23580.33 23198.08 23587.54 23794.74 18996.03 230
nrg03094.05 12093.31 13096.27 11095.22 25494.59 3298.34 2497.46 15992.93 10191.21 20096.64 15787.23 12298.22 21594.99 8585.80 29195.98 231
RRT_test8_iter0591.19 23490.78 21492.41 28195.76 22583.14 31997.32 12597.46 15991.37 14889.07 25595.57 21870.33 32298.21 21693.56 11586.62 28595.89 232
PS-MVSNAJss93.74 13193.51 12294.44 19993.91 30689.28 20797.75 7897.56 14992.50 11389.94 22796.54 16788.65 9998.18 22193.83 11390.90 24395.86 233
HQP_MVS93.78 13093.43 12694.82 18096.21 20389.99 17797.74 7997.51 15294.85 2891.34 19196.64 15781.32 21598.60 18593.02 13092.23 21895.86 233
plane_prior597.51 15298.60 18593.02 13092.23 21895.86 233
FIs94.09 11893.70 11395.27 16195.70 22692.03 11298.10 4798.68 793.36 8190.39 21096.70 15287.63 11397.94 25992.25 13990.50 24995.84 236
FC-MVSNet-test93.94 12493.57 11795.04 16995.48 23491.45 13198.12 4698.71 593.37 7990.23 21396.70 15287.66 11197.85 26891.49 15990.39 25095.83 237
MVS91.71 20290.44 22895.51 15195.20 25691.59 12496.04 23797.45 16573.44 35987.36 29395.60 21785.42 14499.10 13785.97 26497.46 13195.83 237
VPNet92.23 18891.31 19494.99 17195.56 23090.96 14997.22 13897.86 11592.96 10090.96 20296.62 16475.06 29598.20 21891.90 14783.65 32595.80 239
DU-MVS92.90 16392.04 16895.49 15494.95 26792.83 8597.16 14398.24 3793.02 9290.13 21995.71 21183.47 17097.85 26891.71 15383.93 32095.78 240
NR-MVSNet92.34 18091.27 19795.53 15094.95 26793.05 8097.39 11898.07 7392.65 11084.46 32295.71 21185.00 14997.77 27889.71 18683.52 32695.78 240
HQP4-MVS90.14 21598.50 19595.78 240
HQP-MVS93.19 14992.74 14694.54 19795.86 21889.33 20396.65 19097.39 17593.55 6890.14 21595.87 19880.95 21898.50 19592.13 14392.10 22395.78 240
VPA-MVSNet93.24 14692.48 15995.51 15195.70 22692.39 9897.86 6698.66 992.30 11792.09 18095.37 22780.49 22798.40 20293.95 10785.86 29095.75 244
TranMVSNet+NR-MVSNet92.50 17391.63 18295.14 16694.76 27892.07 11097.53 10498.11 6292.90 10289.56 24096.12 18783.16 17597.60 29289.30 19783.20 32995.75 244
UniMVSNet_NR-MVSNet93.37 14292.67 14995.47 15795.34 24392.83 8597.17 14298.58 1092.98 9990.13 21995.80 20388.37 10497.85 26891.71 15383.93 32095.73 246
test_part192.21 19091.10 20495.51 15197.80 12592.66 9098.02 5397.68 13389.79 19488.80 26296.02 19276.85 28298.18 22190.86 16884.11 31895.69 247
WR-MVS92.34 18091.53 18694.77 18795.13 25990.83 15496.40 21197.98 10191.88 13289.29 24995.54 22282.50 19497.80 27389.79 18585.27 29995.69 247
XXY-MVS92.16 19191.23 19994.95 17694.75 27990.94 15097.47 11197.43 17289.14 20988.90 25696.43 17279.71 24298.24 21389.56 19187.68 27395.67 249
ACMM89.79 892.96 15992.50 15894.35 20496.30 20188.71 22097.58 10097.36 18091.40 14790.53 20696.65 15679.77 24198.75 17291.24 16591.64 22895.59 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121190.63 25589.42 26694.27 20898.24 9889.19 21198.05 5197.89 10879.95 34488.25 27594.96 23972.56 31098.13 22589.70 18785.14 30195.49 251
jajsoiax92.42 17791.89 17594.03 21793.33 32488.50 22797.73 8197.53 15092.00 13088.85 25996.50 16975.62 29398.11 22993.88 11191.56 23195.48 252
testgi87.97 29387.21 29390.24 32492.86 33080.76 33496.67 18994.97 31291.74 13485.52 31395.83 20162.66 35594.47 35476.25 33888.36 26895.48 252
MVSTER93.20 14892.81 14294.37 20396.56 18589.59 18997.06 14897.12 19791.24 15391.30 19495.96 19482.02 20498.05 24193.48 11890.55 24795.47 254
RRT_MVS93.21 14792.32 16395.91 12694.92 26994.15 4796.92 16496.86 22791.42 14491.28 19796.43 17279.66 24498.10 23093.29 12390.06 25295.46 255
UniMVSNet (Re)93.31 14492.55 15495.61 14495.39 23793.34 7497.39 11898.71 593.14 8990.10 22394.83 24787.71 11098.03 24591.67 15783.99 31995.46 255
mvs_tets92.31 18291.76 17793.94 22593.41 32188.29 23097.63 9797.53 15092.04 12888.76 26396.45 17174.62 29798.09 23493.91 10991.48 23295.45 257
EI-MVSNet93.03 15692.88 14093.48 24695.77 22386.98 26296.44 20497.12 19790.66 17091.30 19497.64 10486.56 12798.05 24189.91 18190.55 24795.41 258
EU-MVSNet88.72 28788.90 27488.20 33493.15 32774.21 36196.63 19594.22 33385.18 29987.32 29495.97 19376.16 28894.98 35085.27 27386.17 28795.41 258
test0.0.03 189.37 27888.70 27691.41 30692.47 33885.63 28595.22 27692.70 34791.11 15886.91 30393.65 30379.02 25493.19 36178.00 33089.18 26095.41 258
test_djsdf93.07 15492.76 14394.00 21893.49 31988.70 22198.22 3897.57 14691.42 14490.08 22595.55 22182.85 18697.92 26294.07 10491.58 23095.40 261
IterMVS-LS92.29 18491.94 17393.34 25396.25 20286.97 26396.57 20297.05 20690.67 16889.50 24394.80 24986.59 12697.64 28789.91 18186.11 28995.40 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS92.98 15892.53 15694.32 20696.12 21289.20 20995.28 27197.47 15792.66 10989.90 22895.62 21680.58 22598.40 20292.73 13492.40 21695.38 263
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVSNet91.89 19891.24 19893.82 23095.05 26288.57 22497.82 7198.19 4791.70 13588.21 27695.76 20881.96 20597.52 30087.86 22284.65 30895.37 264
FMVSNet391.78 20090.69 22095.03 17096.53 18792.27 10497.02 15296.93 21689.79 19489.35 24694.65 25777.01 28197.47 30386.12 26088.82 26295.35 265
FMVSNet291.31 22690.08 24594.99 17196.51 18892.21 10597.41 11496.95 21488.82 22288.62 26594.75 25173.87 30197.42 30885.20 27588.55 26795.35 265
PS-CasMVS91.55 21190.84 21293.69 23794.96 26688.28 23197.84 7098.24 3791.46 14288.04 28095.80 20379.67 24397.48 30287.02 24784.54 31395.31 267
LPG-MVS_test92.94 16192.56 15394.10 21296.16 20888.26 23297.65 9297.46 15991.29 14990.12 22197.16 12979.05 25298.73 17392.25 13991.89 22695.31 267
LGP-MVS_train94.10 21296.16 20888.26 23297.46 15991.29 14990.12 22197.16 12979.05 25298.73 17392.25 13991.89 22695.31 267
GBi-Net91.35 22390.27 23694.59 19196.51 18891.18 14297.50 10696.93 21688.82 22289.35 24694.51 26173.87 30197.29 31586.12 26088.82 26295.31 267
test191.35 22390.27 23694.59 19196.51 18891.18 14297.50 10696.93 21688.82 22289.35 24694.51 26173.87 30197.29 31586.12 26088.82 26295.31 267
FMVSNet189.88 27288.31 28194.59 19195.41 23691.18 14297.50 10696.93 21686.62 27987.41 29194.51 26165.94 34897.29 31583.04 29587.43 27695.31 267
PVSNet_082.17 1985.46 31583.64 31890.92 31395.27 25079.49 34890.55 34895.60 28483.76 31983.00 33789.95 34471.09 31797.97 25282.75 29960.79 36695.31 267
bset_n11_16_dypcd91.55 21190.59 22394.44 19991.51 34590.25 17192.70 33393.42 34192.27 11890.22 21494.74 25278.42 26597.80 27394.19 10287.86 27295.29 274
ACMP89.59 1092.62 17292.14 16694.05 21596.40 19688.20 23597.36 12197.25 18991.52 13988.30 27296.64 15778.46 26498.72 17691.86 15091.48 23295.23 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48291.59 20790.85 21193.80 23193.87 30888.17 23796.94 16396.88 22489.54 19789.53 24194.90 24381.70 21198.02 24689.25 20085.04 30595.20 276
PEN-MVS91.20 23190.44 22893.48 24694.49 28987.91 24497.76 7798.18 4991.29 14987.78 28595.74 21080.35 23097.33 31385.46 27182.96 33095.19 277
OurMVSNet-221017-090.51 25890.19 24391.44 30593.41 32181.25 33296.98 15996.28 25891.68 13686.55 30696.30 17974.20 30097.98 24988.96 20787.40 27895.09 278
OPM-MVS93.28 14592.76 14394.82 18094.63 28590.77 15796.65 19097.18 19193.72 6391.68 18597.26 12479.33 24998.63 18292.13 14392.28 21795.07 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
eth_miper_zixun_eth91.02 23990.59 22392.34 28395.33 24684.35 30494.10 30396.90 22188.56 23188.84 26094.33 27284.08 16297.60 29288.77 21184.37 31595.06 280
ACMH87.59 1690.53 25789.42 26693.87 22896.21 20387.92 24297.24 13296.94 21588.45 23383.91 33196.27 18171.92 31198.62 18484.43 28489.43 25895.05 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl2291.21 23090.56 22693.14 26196.09 21486.80 26594.41 29296.58 24887.80 25388.58 26793.99 29080.85 22397.62 29089.87 18386.93 28094.99 282
v119291.07 23690.23 23993.58 24293.70 31287.82 24696.73 18097.07 20387.77 25589.58 23894.32 27480.90 22297.97 25286.52 25285.48 29494.95 283
COLMAP_ROBcopyleft87.81 1590.40 26089.28 26993.79 23297.95 11587.13 26096.92 16495.89 27382.83 32786.88 30497.18 12873.77 30499.29 12178.44 32893.62 20394.95 283
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v192192090.85 24690.03 24993.29 25593.55 31586.96 26496.74 17997.04 20887.36 26689.52 24294.34 27180.23 23397.97 25286.27 25585.21 30094.94 285
SixPastTwentyTwo89.15 27988.54 27990.98 31293.49 31980.28 34296.70 18494.70 32090.78 16384.15 32795.57 21871.78 31397.71 28284.63 28185.07 30394.94 285
DIV-MVS_self_test90.97 24290.33 23192.88 26995.36 24186.19 27994.46 29096.63 24587.82 25188.18 27794.23 28082.99 18197.53 29887.72 22585.57 29394.93 287
v14419291.06 23790.28 23593.39 25093.66 31487.23 25696.83 17297.07 20387.43 26489.69 23594.28 27681.48 21398.00 24887.18 24584.92 30794.93 287
cl____90.96 24390.32 23292.89 26895.37 24086.21 27894.46 29096.64 24287.82 25188.15 27894.18 28382.98 18297.54 29687.70 22885.59 29294.92 289
v124090.70 25389.85 25493.23 25793.51 31886.80 26596.61 19697.02 21187.16 27189.58 23894.31 27579.55 24697.98 24985.52 27085.44 29594.90 290
c3_l91.38 22090.89 20792.88 26995.58 22986.30 27594.68 28396.84 22988.17 24188.83 26194.23 28085.65 14297.47 30389.36 19584.63 30994.89 291
pmmvs589.86 27388.87 27592.82 27192.86 33086.23 27796.26 22595.39 29084.24 31287.12 29694.51 26174.27 29997.36 31287.61 23687.57 27494.86 292
v114491.37 22290.60 22293.68 23893.89 30788.23 23496.84 17197.03 21088.37 23589.69 23594.39 26882.04 20397.98 24987.80 22485.37 29694.84 293
K. test v387.64 29786.75 29890.32 32393.02 32979.48 34996.61 19692.08 35290.66 17080.25 34894.09 28667.21 33996.65 33185.96 26580.83 33894.83 294
IterMVS90.15 26789.67 26291.61 30195.48 23483.72 31294.33 29696.12 26689.99 18787.31 29594.15 28575.78 29296.27 33586.97 24886.89 28394.83 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_lstm_enhance90.50 25990.06 24891.83 29395.33 24683.74 31193.86 31096.70 23887.56 26287.79 28493.81 29683.45 17296.92 32687.39 23984.62 31094.82 296
IterMVS-SCA-FT90.31 26189.81 25691.82 29495.52 23284.20 30794.30 29796.15 26590.61 17487.39 29294.27 27775.80 29096.44 33287.34 24086.88 28494.82 296
WR-MVS_H92.00 19591.35 19193.95 22395.09 26189.47 19598.04 5298.68 791.46 14288.34 27094.68 25585.86 13997.56 29485.77 26784.24 31694.82 296
GG-mvs-BLEND93.62 23993.69 31389.20 20992.39 33883.33 37187.98 28389.84 34671.00 31896.87 32782.08 30495.40 17694.80 299
v14890.99 24090.38 23092.81 27293.83 30985.80 28396.78 17896.68 23989.45 20188.75 26493.93 29282.96 18497.82 27287.83 22383.25 32794.80 299
miper_ehance_all_eth91.59 20791.13 20392.97 26695.55 23186.57 27294.47 28896.88 22487.77 25588.88 25894.01 28886.22 13397.54 29689.49 19286.93 28094.79 301
XVG-ACMP-BASELINE90.93 24490.21 24293.09 26294.31 29785.89 28295.33 26897.26 18791.06 16089.38 24595.44 22668.61 33198.60 18589.46 19391.05 23994.79 301
DTE-MVSNet90.56 25689.75 26093.01 26493.95 30487.25 25497.64 9697.65 13790.74 16587.12 29695.68 21479.97 23897.00 32483.33 29281.66 33594.78 303
ACMH+87.92 1490.20 26589.18 27193.25 25696.48 19186.45 27396.99 15796.68 23988.83 22184.79 32196.22 18270.16 32598.53 19384.42 28588.04 26994.77 304
miper_enhance_ethall91.54 21391.01 20593.15 26095.35 24287.07 26193.97 30696.90 22186.79 27789.17 25393.43 31086.55 12897.64 28789.97 18086.93 28094.74 305
lessismore_v090.45 32191.96 34479.09 35387.19 36880.32 34794.39 26866.31 34597.55 29584.00 28876.84 34894.70 306
Patchmtry88.64 28887.25 29192.78 27394.09 30186.64 26889.82 35395.68 28280.81 34187.63 28892.36 32580.91 22097.03 32078.86 32685.12 30294.67 307
v7n90.76 24889.86 25393.45 24993.54 31687.60 25097.70 8797.37 17888.85 21987.65 28794.08 28781.08 21798.10 23084.68 28083.79 32494.66 308
V4291.58 20990.87 20893.73 23394.05 30388.50 22797.32 12596.97 21388.80 22589.71 23394.33 27282.54 19398.05 24189.01 20685.07 30394.64 309
v891.29 22890.53 22793.57 24394.15 29988.12 23997.34 12297.06 20588.99 21388.32 27194.26 27983.08 17898.01 24787.62 23583.92 32294.57 310
anonymousdsp92.16 19191.55 18593.97 22192.58 33689.55 19197.51 10597.42 17389.42 20288.40 26994.84 24680.66 22497.88 26791.87 14991.28 23694.48 311
pm-mvs190.72 25289.65 26493.96 22294.29 29889.63 18697.79 7496.82 23089.07 21086.12 31095.48 22578.61 26297.78 27686.97 24881.67 33494.46 312
LTVRE_ROB88.41 1390.99 24089.92 25194.19 20996.18 20689.55 19196.31 22197.09 20187.88 25085.67 31295.91 19778.79 26098.57 19081.50 30689.98 25394.44 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
YYNet185.87 31284.23 31690.78 31892.38 34182.46 32493.17 32495.14 30582.12 33167.69 35992.36 32578.16 27195.50 34877.31 33379.73 34094.39 314
PVSNet_BlendedMVS94.06 11993.92 10894.47 19898.27 9489.46 19796.73 18098.36 1690.17 18394.36 12895.24 23288.02 10599.58 7493.44 11990.72 24594.36 315
v1091.04 23890.23 23993.49 24594.12 30088.16 23897.32 12597.08 20288.26 23888.29 27394.22 28282.17 20297.97 25286.45 25484.12 31794.33 316
MDA-MVSNet-bldmvs85.00 31682.95 32091.17 31193.13 32883.33 31794.56 28695.00 31084.57 30965.13 36492.65 31770.45 32195.85 34073.57 34877.49 34694.33 316
MDA-MVSNet_test_wron85.87 31284.23 31690.80 31792.38 34182.57 32193.17 32495.15 30482.15 33067.65 36092.33 32878.20 26895.51 34777.33 33279.74 33994.31 318
our_test_388.78 28687.98 28591.20 31092.45 33982.53 32293.61 31995.69 28085.77 29184.88 31993.71 29879.99 23796.78 33079.47 32286.24 28694.28 319
pmmvs490.93 24489.85 25494.17 21093.34 32390.79 15694.60 28496.02 26884.62 30887.45 28995.15 23481.88 20897.45 30587.70 22887.87 27194.27 320
MVS_030488.79 28587.57 28792.46 27894.65 28386.15 28196.40 21197.17 19386.44 28188.02 28191.71 33456.68 36197.03 32084.47 28392.58 21494.19 321
ppachtmachnet_test88.35 29187.29 29091.53 30292.45 33983.57 31693.75 31395.97 26984.28 31185.32 31794.18 28379.00 25896.93 32575.71 34084.99 30694.10 322
UnsupCasMVSNet_eth85.99 31084.45 31490.62 31989.97 35482.40 32593.62 31897.37 17889.86 18978.59 35392.37 32265.25 35095.35 34982.27 30370.75 35894.10 322
pmmvs687.81 29686.19 30092.69 27591.32 34686.30 27597.34 12296.41 25480.59 34384.05 33094.37 27067.37 33897.67 28484.75 27979.51 34294.09 324
ITE_SJBPF92.43 28095.34 24385.37 29195.92 27091.47 14187.75 28696.39 17671.00 31897.96 25682.36 30289.86 25593.97 325
FMVSNet587.29 29985.79 30391.78 29794.80 27787.28 25295.49 26295.28 29784.09 31483.85 33291.82 33162.95 35494.17 35578.48 32785.34 29893.91 326
Anonymous2023120687.09 30086.14 30189.93 32791.22 34780.35 33996.11 23495.35 29383.57 32284.16 32693.02 31373.54 30695.61 34472.16 35286.14 28893.84 327
USDC88.94 28187.83 28692.27 28494.66 28284.96 29793.86 31095.90 27287.34 26783.40 33395.56 22067.43 33798.19 22082.64 30189.67 25793.66 328
D2MVS91.30 22790.95 20692.35 28294.71 28185.52 28796.18 23298.21 4388.89 21886.60 30593.82 29579.92 23997.95 25889.29 19890.95 24293.56 329
N_pmnet78.73 32778.71 32978.79 34592.80 33246.50 37694.14 30243.71 37978.61 35080.83 34291.66 33574.94 29696.36 33367.24 36084.45 31493.50 330
MIMVSNet184.93 31783.05 31990.56 32089.56 35784.84 30095.40 26595.35 29383.91 31580.38 34692.21 32957.23 35993.34 36070.69 35882.75 33393.50 330
TransMVSNet (Re)88.94 28187.56 28893.08 26394.35 29488.45 22997.73 8195.23 30187.47 26384.26 32595.29 22979.86 24097.33 31379.44 32474.44 35393.45 332
Baseline_NR-MVSNet91.20 23190.62 22192.95 26793.83 30988.03 24097.01 15695.12 30688.42 23489.70 23495.13 23683.47 17097.44 30689.66 18983.24 32893.37 333
CL-MVSNet_self_test86.31 30785.15 30989.80 32888.83 36081.74 33093.93 30996.22 26286.67 27885.03 31890.80 33978.09 27294.50 35274.92 34271.86 35793.15 334
TDRefinement86.53 30384.76 31391.85 29282.23 36884.25 30596.38 21495.35 29384.97 30484.09 32894.94 24065.76 34998.34 21084.60 28274.52 35292.97 335
KD-MVS_self_test85.95 31184.95 31088.96 33189.55 35879.11 35295.13 27896.42 25385.91 28984.07 32990.48 34070.03 32694.82 35180.04 31772.94 35692.94 336
ambc86.56 34083.60 36670.00 36685.69 36094.97 31280.60 34588.45 34937.42 36996.84 32882.69 30075.44 35192.86 337
MS-PatchMatch90.27 26289.77 25891.78 29794.33 29584.72 30195.55 25996.73 23286.17 28686.36 30795.28 23171.28 31697.80 27384.09 28698.14 11792.81 338
KD-MVS_2432*160084.81 31882.64 32191.31 30791.07 34885.34 29291.22 34295.75 27785.56 29483.09 33590.21 34267.21 33995.89 33877.18 33562.48 36492.69 339
miper_refine_blended84.81 31882.64 32191.31 30791.07 34885.34 29291.22 34295.75 27785.56 29483.09 33590.21 34267.21 33995.89 33877.18 33562.48 36492.69 339
tfpnnormal89.70 27588.40 28093.60 24095.15 25790.10 17397.56 10298.16 5387.28 26986.16 30994.63 25877.57 27898.05 24174.48 34384.59 31192.65 341
EG-PatchMatch MVS87.02 30185.44 30591.76 29992.67 33485.00 29696.08 23696.45 25283.41 32479.52 35093.49 30657.10 36097.72 28179.34 32590.87 24492.56 342
TinyColmap86.82 30285.35 30891.21 30994.91 27282.99 32093.94 30894.02 33683.58 32181.56 34094.68 25562.34 35698.13 22575.78 33987.35 27992.52 343
CMPMVSbinary62.92 2185.62 31484.92 31187.74 33689.14 35973.12 36394.17 30196.80 23173.98 35773.65 35894.93 24166.36 34397.61 29183.95 28991.28 23692.48 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0386.14 30985.40 30788.35 33290.12 35280.06 34495.90 24695.20 30288.59 22881.29 34193.62 30471.43 31592.65 36271.26 35681.17 33792.34 345
LF4IMVS87.94 29487.25 29189.98 32692.38 34180.05 34594.38 29395.25 30087.59 26184.34 32394.74 25264.31 35197.66 28684.83 27787.45 27592.23 346
Anonymous2024052186.42 30585.44 30589.34 33090.33 35179.79 34696.73 18095.92 27083.71 32083.25 33491.36 33763.92 35296.01 33678.39 32985.36 29792.22 347
MVS-HIRNet82.47 32481.21 32686.26 34195.38 23869.21 36788.96 35789.49 36266.28 36180.79 34374.08 36568.48 33297.39 31071.93 35395.47 17492.18 348
MVP-Stereo90.74 25190.08 24592.71 27493.19 32688.20 23595.86 24796.27 25986.07 28784.86 32094.76 25077.84 27697.75 27983.88 29098.01 11992.17 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d86.22 30884.45 31491.53 30288.34 36287.25 25494.47 28895.01 30983.47 32379.51 35189.61 34769.75 32895.71 34383.13 29476.73 34991.64 350
UnsupCasMVSNet_bld82.13 32579.46 32890.14 32588.00 36382.47 32390.89 34796.62 24778.94 34975.61 35584.40 35956.63 36296.31 33477.30 33466.77 36291.63 351
test_040286.46 30484.79 31291.45 30495.02 26485.55 28696.29 22394.89 31580.90 33882.21 33893.97 29168.21 33497.29 31562.98 36388.68 26691.51 352
PM-MVS83.48 32181.86 32588.31 33387.83 36477.59 35693.43 32091.75 35486.91 27480.63 34489.91 34544.42 36795.84 34185.17 27676.73 34991.50 353
new-patchmatchnet83.18 32281.87 32487.11 33886.88 36575.99 35993.70 31495.18 30385.02 30377.30 35488.40 35065.99 34793.88 35774.19 34770.18 35991.47 354
test_method66.11 33364.89 33569.79 35072.62 37335.23 38065.19 36892.83 34620.35 37165.20 36388.08 35443.14 36882.70 36873.12 35063.46 36391.45 355
OpenMVS_ROBcopyleft81.14 2084.42 32082.28 32390.83 31490.06 35384.05 30995.73 25394.04 33573.89 35880.17 34991.53 33659.15 35897.64 28766.92 36189.05 26190.80 356
LCM-MVSNet72.55 32869.39 33282.03 34370.81 37565.42 37090.12 35294.36 33055.02 36565.88 36281.72 36024.16 37689.96 36374.32 34668.10 36190.71 357
new_pmnet82.89 32381.12 32788.18 33589.63 35680.18 34391.77 33992.57 34876.79 35575.56 35788.23 35261.22 35794.48 35371.43 35482.92 33189.87 358
pmmvs379.97 32677.50 33087.39 33782.80 36779.38 35092.70 33390.75 36070.69 36078.66 35287.47 35751.34 36593.40 35973.39 34969.65 36089.38 359
PMMVS270.19 33066.92 33380.01 34476.35 36965.67 36986.22 35987.58 36764.83 36362.38 36580.29 36226.78 37488.49 36563.79 36254.07 36785.88 360
ANet_high63.94 33459.58 33777.02 34661.24 37766.06 36885.66 36187.93 36678.53 35142.94 36971.04 36625.42 37580.71 36952.60 36730.83 37084.28 361
EGC-MVSNET68.77 33163.01 33686.07 34292.49 33782.24 32793.96 30790.96 3590.71 3762.62 37790.89 33853.66 36393.46 35857.25 36584.55 31282.51 362
FPMVS71.27 32969.85 33175.50 34774.64 37059.03 37291.30 34191.50 35658.80 36457.92 36688.28 35129.98 37285.53 36753.43 36682.84 33281.95 363
DeepMVS_CXcopyleft74.68 34990.84 35064.34 37181.61 37365.34 36267.47 36188.01 35548.60 36680.13 37062.33 36473.68 35579.58 364
PMVScopyleft53.92 2258.58 33555.40 33868.12 35151.00 37848.64 37478.86 36487.10 36946.77 36735.84 37374.28 3648.76 37786.34 36642.07 36973.91 35469.38 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 33748.81 34266.58 35265.34 37657.50 37372.49 36670.94 37740.15 37039.28 37263.51 3686.89 37973.48 37338.29 37042.38 36868.76 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 33265.41 33475.18 34892.66 33573.45 36266.50 36794.52 32553.33 36657.80 36766.07 36730.81 37089.20 36448.15 36878.88 34562.90 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN53.28 33652.56 34055.43 35374.43 37147.13 37583.63 36376.30 37442.23 36842.59 37062.22 36928.57 37374.40 37131.53 37131.51 36944.78 368
EMVS52.08 33851.31 34154.39 35472.62 37345.39 37783.84 36275.51 37641.13 36940.77 37159.65 37030.08 37173.60 37228.31 37229.90 37144.18 369
tmp_tt51.94 33953.82 33946.29 35533.73 37945.30 37878.32 36567.24 37818.02 37250.93 36887.05 35852.99 36453.11 37470.76 35725.29 37240.46 370
test12313.04 34315.66 3465.18 3574.51 3813.45 38192.50 3371.81 3822.50 3757.58 37620.15 3733.67 3802.18 3777.13 3751.07 3759.90 371
testmvs13.36 34216.33 3454.48 3585.04 3802.26 38293.18 3233.28 3812.70 3748.24 37521.66 3722.29 3812.19 3767.58 3742.96 3749.00 372
wuyk23d25.11 34024.57 34426.74 35673.98 37239.89 37957.88 3699.80 38012.27 37310.39 3746.97 3767.03 37836.44 37525.43 37317.39 3733.89 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.24 34130.99 3430.00 3590.00 3820.00 3830.00 37097.63 1400.00 3770.00 37896.88 14384.38 1570.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.39 3459.85 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37788.65 990.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.06 34410.74 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37896.69 1540.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.55 193.34 7499.29 198.35 1994.98 2598.49 15
test_one_060199.32 2495.20 2198.25 3595.13 1798.48 1698.87 695.16 7
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.05 4394.59 3298.08 6789.22 20797.03 5198.10 6692.52 3599.65 5694.58 9799.31 59
test_241102_ONE99.42 795.30 1898.27 3095.09 2199.19 198.81 1095.54 599.65 56
9.1496.75 3498.93 4997.73 8198.23 4191.28 15297.88 2698.44 3093.00 2499.65 5695.76 5899.47 40
save fliter98.91 5194.28 3997.02 15298.02 9195.35 8
test072699.45 395.36 1398.31 2698.29 2594.92 2698.99 498.92 295.08 8
test_part299.28 2795.74 898.10 21
sam_mvs81.94 207
MTGPAbinary98.08 67
test_post192.81 33216.58 37580.53 22697.68 28386.20 257
test_post17.58 37481.76 20998.08 235
patchmatchnet-post90.45 34182.65 19298.10 230
MTMP97.86 6682.03 372
gm-plane-assit93.22 32578.89 35484.82 30693.52 30598.64 18187.72 225
TEST998.70 6294.19 4496.41 20898.02 9188.17 24196.03 8697.56 11292.74 2799.59 71
test_898.67 6494.06 5396.37 21598.01 9488.58 22995.98 9197.55 11492.73 2899.58 74
agg_prior98.67 6493.79 5998.00 9695.68 10199.57 82
test_prior493.66 6396.42 207
test_prior296.35 21692.80 10596.03 8697.59 10892.01 4495.01 8299.38 52
旧先验295.94 24481.66 33497.34 3898.82 16592.26 137
新几何295.79 251
原ACMM295.67 254
testdata299.67 5285.96 265
segment_acmp92.89 25
testdata195.26 27593.10 91
plane_prior796.21 20389.98 179
plane_prior696.10 21390.00 17581.32 215
plane_prior496.64 157
plane_prior390.00 17594.46 4491.34 191
plane_prior297.74 7994.85 28
plane_prior196.14 211
plane_prior89.99 17797.24 13294.06 5392.16 222
n20.00 383
nn0.00 383
door-mid91.06 358
test1197.88 110
door91.13 357
HQP5-MVS89.33 203
HQP-NCC95.86 21896.65 19093.55 6890.14 215
ACMP_Plane95.86 21896.65 19093.55 6890.14 215
BP-MVS92.13 143
HQP3-MVS97.39 17592.10 223
HQP2-MVS80.95 218
NP-MVS95.99 21789.81 18495.87 198
MDTV_nov1_ep1390.76 21695.22 25480.33 34093.03 32995.28 29788.14 24492.84 16493.83 29381.34 21498.08 23582.86 29694.34 193
ACMMP++_ref90.30 251
ACMMP++91.02 240
Test By Simon88.73 98