This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IU-MVS99.42 795.39 1197.94 10490.40 20098.94 897.41 2999.66 1199.74 8
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1399.74 8
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16198.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30596.98 17898.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3699.72 11
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14492.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4299.69 12
MVS_030497.04 2896.73 4297.96 2397.60 13594.36 3698.01 5994.09 35197.33 296.29 8998.79 2489.73 8299.86 899.36 299.42 4999.67 13
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5499.52 3199.67 13
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1899.65 15
Skip Steuart: Steuart Systems R&D Blog.
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5299.87 795.46 9399.59 2099.64 16
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19698.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4899.80 3095.66 8199.40 5399.62 18
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4899.80 3095.66 8199.40 5399.62 18
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5799.86 895.63 8699.59 2099.62 18
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10598.33 5791.04 6499.88 495.20 9699.57 2699.60 21
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24392.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5299.59 22
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2499.59 22
PC_three_145290.77 18198.89 1498.28 6596.24 198.35 22395.76 7999.58 2499.59 22
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15598.08 7495.07 2796.11 9798.59 3090.88 6899.90 296.18 6599.50 3699.58 25
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8798.18 7091.61 5099.88 495.59 9199.55 2799.57 26
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13397.14 5398.44 4491.17 6299.85 1894.35 11899.46 4299.57 26
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3999.57 26
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1199.56 29
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9499.59 2099.56 29
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7799.17 7699.56 29
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16898.07 7993.54 8596.08 9997.69 10693.86 1699.71 4696.50 4799.39 5599.55 32
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5799.27 6599.54 33
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4299.83 2695.63 8699.59 2099.54 33
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8598.30 6291.90 4599.85 1895.61 8899.68 499.54 33
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15598.01 3198.32 5992.33 3899.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4899.52 3199.51 37
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32397.56 11897.51 15893.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3699.51 37
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6699.55 8796.06 6699.25 6999.51 37
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8099.50 40
agg_prior293.94 12599.38 5699.50 40
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 12098.34 5490.59 7299.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17096.40 8697.99 8490.99 6599.58 7795.61 8899.61 1999.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_fmvsmconf0.01_n96.15 6695.85 7097.03 6992.66 36091.83 10997.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8499.48 44
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5799.86 894.83 10699.28 6499.47 46
test9_res94.81 10899.38 5699.45 47
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28296.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 4099.45 47
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+91.43 495.40 8794.48 10998.16 1696.90 17195.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9299.44 49
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6799.26 6799.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6799.26 6799.43 51
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 5999.64 6695.16 9799.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3499.84 2395.95 7299.51 3499.40 54
train_agg96.30 6295.83 7297.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 10097.56 12192.73 3199.59 7495.04 10099.37 5999.39 56
CDPH-MVS95.97 7495.38 8397.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4499.47 10292.26 15299.46 4299.39 56
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 18098.06 8290.67 18795.55 11898.78 2591.07 6399.86 896.58 4499.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19696.77 6598.35 5190.21 7599.53 9194.80 10999.63 1799.38 58
ACMMPcopyleft96.27 6395.93 6697.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9099.85 1894.57 11797.63 13699.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5598.01 8392.52 3599.69 5296.03 7099.53 3099.36 60
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3499.64 1499.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet96.39 5996.02 6597.50 4797.62 13293.38 6397.02 17397.96 10295.42 1594.86 13097.81 9987.38 12699.82 2896.88 3699.20 7499.29 63
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
test111193.19 16192.82 15594.30 22097.58 14084.56 31898.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15693.06 14498.48 11199.28 65
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10797.74 10492.33 3899.38 11396.04 6999.42 4999.28 65
casdiffmvs_mvgpermissive95.81 7995.57 7496.51 8696.87 17291.49 12497.50 12497.56 15493.99 6995.13 12797.92 8987.89 11298.78 18095.97 7197.33 14799.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250691.60 22490.78 23094.04 23197.66 12783.81 32698.27 3375.53 40993.43 9095.23 12498.21 6767.21 35999.07 15193.01 14898.49 10999.25 68
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12785.41 30398.21 4388.23 39493.43 9094.70 13398.21 6772.57 32499.07 15193.05 14598.49 10999.25 68
test1297.65 4298.46 7094.26 3997.66 13795.52 12190.89 6799.46 10399.25 6999.22 70
CHOSEN 1792x268894.15 12293.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15497.11 14583.15 18599.61 6991.33 17798.72 10099.19 71
3Dnovator91.36 595.19 9694.44 11197.44 4996.56 19593.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4199.01 8999.16 73
VNet95.89 7795.45 7897.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7895.27 19099.16 73
CSCG96.05 6995.91 6896.46 9399.24 2890.47 16898.30 2998.57 1889.01 23693.97 15097.57 11992.62 3399.76 3894.66 11299.27 6599.15 75
IS-MVSNet94.90 10494.52 10796.05 12397.67 12590.56 16598.44 2296.22 27093.21 9793.99 14897.74 10485.55 15098.45 21389.98 19997.86 13099.14 76
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18497.73 12994.74 4496.49 8198.49 3890.88 6899.58 7796.44 4998.32 11799.13 77
baseline95.58 8495.42 8196.08 12096.78 18090.41 17197.16 16597.45 17293.69 8095.65 11697.85 9687.29 12798.68 19395.66 8197.25 15199.13 77
MG-MVS95.61 8395.38 8396.31 10498.42 7390.53 16696.04 25297.48 16193.47 8995.67 11598.10 7389.17 8699.25 12391.27 17998.77 9899.13 77
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7393.39 36490.57 19696.29 8998.31 6069.00 34699.16 13494.18 12095.87 17799.12 80
UA-Net95.95 7595.53 7597.20 6397.67 12592.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9199.51 9690.36 19497.35 14699.11 81
EPNet95.20 9594.56 10397.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 17997.80 10186.23 13999.65 5893.72 13198.62 10499.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvspermissive95.64 8295.49 7696.08 12096.76 18590.45 16997.29 15197.44 17694.00 6895.46 12297.98 8587.52 12298.73 18795.64 8597.33 14799.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24094.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13599.08 83
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15395.78 22282.86 19498.67 19491.77 16795.71 18299.07 85
mvs_anonymous93.82 14093.74 12294.06 22996.44 20885.41 30395.81 26597.05 21289.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16499.02 86
CPTT-MVS95.57 8595.19 8896.70 7399.27 2691.48 12598.33 2798.11 7087.79 27995.17 12698.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
Vis-MVSNet (Re-imp)94.15 12293.88 12094.95 18397.61 13387.92 25098.10 5195.80 28692.22 13393.02 17097.45 12484.53 16297.91 28588.24 23797.97 12899.02 86
GeoE93.89 13693.28 14395.72 14296.96 17089.75 18898.24 3996.92 22789.47 22292.12 19397.21 13884.42 16398.39 22087.71 24796.50 16799.01 89
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11695.00 32486.00 31593.64 15597.45 12466.24 36799.53 9190.68 19092.71 23699.01 89
Vis-MVSNetpermissive95.23 9394.81 9596.51 8697.18 15191.58 12198.26 3598.12 6794.38 6094.90 12998.15 7282.28 20898.92 16791.45 17698.58 10799.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25798.18 5795.23 1995.87 10697.65 11191.45 5399.70 5195.87 7399.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR95.01 9894.59 10196.26 11098.89 5190.68 16397.24 15597.73 12991.80 14792.93 17696.62 17889.13 8799.14 13789.21 22297.78 13398.97 93
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10398.49 1994.66 4897.24 5098.41 4792.31 4098.94 16596.61 4399.46 4298.96 94
DeepC-MVS93.07 396.06 6795.66 7397.29 5597.96 10993.17 7097.30 14998.06 8293.92 7193.38 16398.66 2786.83 13299.73 4295.60 9099.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs95.87 7895.23 8797.78 3197.56 14195.19 2197.86 8097.17 19994.39 5996.47 8396.40 18885.89 14599.20 12796.21 6195.11 19498.95 96
CS-MVS-test96.89 3597.04 2396.45 9498.29 8291.66 11799.03 497.85 11695.84 796.90 6097.97 8691.24 5998.75 18596.92 3599.33 6198.94 97
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11897.46 13297.96 10277.99 38393.00 17197.57 11986.14 14499.33 11589.22 22199.15 7898.94 97
WTY-MVS94.71 11194.02 11596.79 7297.71 12492.05 10296.59 21697.35 18890.61 19394.64 13496.93 15386.41 13899.39 11191.20 18194.71 20498.94 97
EPP-MVSNet95.22 9495.04 9295.76 13697.49 14289.56 19398.67 1097.00 21890.69 18594.24 14297.62 11689.79 8198.81 17893.39 13896.49 16898.92 100
MGCFI-Net95.94 7695.40 8297.56 4697.59 13694.62 3098.21 4397.57 15094.41 5796.17 9596.16 20087.54 12099.17 13296.19 6494.73 20398.91 101
sasdasda96.02 7095.45 7897.75 3597.59 13695.15 2398.28 3197.60 14594.52 5296.27 9196.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
canonicalmvs96.02 7095.45 7897.75 3597.59 13695.15 2398.28 3197.60 14594.52 5296.27 9196.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4698.71 19197.10 3199.17 7698.90 104
EI-MVSNet-UG-set96.34 6196.30 6096.47 9198.20 9390.93 15196.86 18697.72 13194.67 4796.16 9698.46 4290.43 7399.58 7796.23 5697.96 12998.90 104
PAPR94.18 11993.42 14096.48 9097.64 12991.42 12995.55 27897.71 13588.99 23792.34 18695.82 21789.19 8599.11 14086.14 27997.38 14498.90 104
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14096.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16498.89 107
diffmvspermissive95.25 9295.13 9095.63 14696.43 20989.34 20595.99 25697.35 18892.83 11796.31 8897.37 12886.44 13798.67 19496.26 5497.19 15398.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer95.37 8895.16 8995.99 12996.34 21391.21 13698.22 4197.57 15091.42 15996.22 9397.32 12986.20 14297.92 28294.07 12199.05 8698.85 110
jason94.84 10794.39 11296.18 11795.52 24990.93 15196.09 25096.52 25689.28 22796.01 10397.32 12984.70 15998.77 18395.15 9898.91 9598.85 110
jason: jason.
Effi-MVS+94.93 10394.45 11096.36 10296.61 18991.47 12696.41 22597.41 18191.02 17694.50 13795.92 21187.53 12198.78 18093.89 12796.81 15998.84 112
DPM-MVS95.69 8094.92 9398.01 1998.08 10495.71 995.27 29397.62 14490.43 19995.55 11897.07 14891.72 4699.50 9989.62 21098.94 9398.82 113
lupinMVS94.99 10294.56 10396.29 10896.34 21391.21 13695.83 26496.27 26788.93 24196.22 9396.88 15886.20 14298.85 17495.27 9599.05 8698.82 113
iter_conf05_1196.17 6596.16 6496.21 11497.48 14390.74 16098.14 4997.80 12292.80 11997.34 4897.29 13188.54 10099.10 14196.40 5099.64 1498.80 115
test_yl94.78 10994.23 11396.43 9597.74 12291.22 13496.85 18797.10 20491.23 16795.71 11296.93 15384.30 16599.31 11993.10 14195.12 19298.75 116
DCV-MVSNet94.78 10994.23 11396.43 9597.74 12291.22 13496.85 18797.10 20491.23 16795.71 11296.93 15384.30 16599.31 11993.10 14195.12 19298.75 116
CVMVSNet91.23 24691.75 19389.67 35095.77 23974.69 38596.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17898.74 118
test22298.24 8792.21 9695.33 28897.60 14579.22 37995.25 12397.84 9888.80 9399.15 7898.72 119
MVS_Test94.89 10594.62 10095.68 14496.83 17689.55 19496.70 20197.17 19991.17 17095.60 11796.11 20687.87 11398.76 18493.01 14897.17 15498.72 119
VDD-MVS93.82 14093.08 14696.02 12697.88 11689.96 18497.72 9995.85 28492.43 12795.86 10798.44 4468.42 35399.39 11196.31 5194.85 19698.71 121
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11197.85 9690.04 7799.67 5686.50 27399.13 8098.69 122
sss94.51 11293.80 12196.64 7497.07 15791.97 10596.32 23698.06 8288.94 24094.50 13796.78 16184.60 16099.27 12291.90 16296.02 17398.68 123
EC-MVSNet96.42 5796.47 5396.26 11097.01 16691.52 12398.89 597.75 12694.42 5696.64 7397.68 10789.32 8498.60 20197.45 2699.11 8398.67 124
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5898.07 7690.06 7698.85 17489.67 20898.98 9198.64 125
MVSMamba_pp96.06 6795.92 6796.50 8997.00 16791.81 11097.33 14697.77 12492.49 12696.78 6497.19 13988.50 10399.07 15196.54 4699.67 698.60 126
MVS_111021_LR96.24 6496.19 6396.39 9998.23 9191.35 13196.24 24498.79 693.99 6995.80 10997.65 11189.92 8099.24 12495.87 7399.20 7498.58 127
mamv496.02 7095.84 7196.53 8197.05 16291.97 10597.30 14997.79 12392.32 13096.58 7997.14 14488.51 10299.06 15496.27 5299.64 1498.57 128
PVSNet_Blended_VisFu95.27 9194.91 9496.38 10098.20 9390.86 15397.27 15298.25 4590.21 20194.18 14497.27 13487.48 12399.73 4293.53 13297.77 13498.55 129
EIA-MVS95.53 8695.47 7795.71 14397.06 16089.63 18997.82 8797.87 11193.57 8193.92 15195.04 25390.61 7198.95 16494.62 11498.68 10198.54 130
TAMVS94.01 13193.46 13595.64 14596.16 22290.45 16996.71 20096.89 23089.27 22893.46 16196.92 15687.29 12797.94 27988.70 23395.74 18098.53 131
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21091.57 12295.34 28793.48 36390.60 19575.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
PatchmatchNetpermissive91.91 21291.35 20693.59 25895.38 25784.11 32393.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24184.81 29895.32 18998.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM93.45 15292.27 17896.98 7196.77 18292.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9798.51 134
1112_ss93.37 15492.42 17596.21 11497.05 16290.99 14696.31 23796.72 24086.87 30189.83 25396.69 16886.51 13699.14 13788.12 23893.67 22498.50 135
ab-mvs93.57 14892.55 16896.64 7497.28 14791.96 10795.40 28597.45 17289.81 21393.22 16996.28 19379.62 25499.46 10390.74 18893.11 23098.50 135
原ACMM196.38 10098.59 6691.09 14597.89 10787.41 29095.22 12597.68 10790.25 7499.54 8987.95 24199.12 8298.49 137
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16489.97 18395.53 28096.64 24885.38 32389.65 25995.18 24885.86 14699.10 14187.70 24893.58 22998.49 137
Patchmatch-test89.42 29987.99 30693.70 25395.27 26985.11 31088.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20098.48 139
VDDNet93.05 16892.07 18296.02 12696.84 17490.39 17298.08 5395.85 28486.22 31295.79 11098.46 4267.59 35699.19 12894.92 10494.85 19698.47 140
PVSNet86.66 1892.24 20291.74 19593.73 25097.77 12183.69 33092.88 36396.72 24087.91 27393.00 17194.86 26178.51 27399.05 15686.53 27197.45 14398.47 140
GSMVS98.45 142
sam_mvs182.76 19798.45 142
SCA91.84 21591.18 21793.83 24595.59 24584.95 31494.72 30795.58 29990.82 17992.25 18993.69 31775.80 30198.10 24686.20 27795.98 17498.45 142
CDS-MVSNet94.14 12593.54 12995.93 13096.18 22091.46 12796.33 23597.04 21488.97 23993.56 15696.51 18287.55 11997.89 28689.80 20495.95 17598.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS Recon95.68 8195.12 9197.37 5199.19 3194.19 4297.03 17198.08 7488.35 26295.09 12897.65 11189.97 7999.48 10192.08 16198.59 10698.44 145
Patchmatch-RL test87.38 32086.24 32390.81 33588.74 38978.40 37888.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
LCM-MVSNet-Re92.50 18792.52 17192.44 29596.82 17881.89 34596.92 18293.71 36192.41 12884.30 34894.60 27485.08 15597.03 34191.51 17397.36 14598.40 148
PVSNet_Blended94.87 10694.56 10395.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 13996.09 20788.02 10999.58 7793.44 13598.18 12398.40 148
tttt051792.96 17292.33 17794.87 18797.11 15587.16 26997.97 6992.09 37690.63 19193.88 15297.01 15176.50 29499.06 15490.29 19695.45 18798.38 150
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15782.47 20586.25 27698.38 150
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15287.99 24896.15 24895.60 29790.62 19291.87 19997.15 14378.41 27598.57 20583.16 31597.60 13798.36 152
OMC-MVS95.09 9794.70 9996.25 11398.46 7091.28 13296.43 22397.57 15092.04 14294.77 13297.96 8787.01 13199.09 14591.31 17896.77 16098.36 152
thisisatest053093.03 16992.21 18095.49 15797.07 15789.11 21797.49 12992.19 37590.16 20394.09 14696.41 18776.43 29799.05 15690.38 19395.68 18398.31 154
h-mvs3394.15 12293.52 13296.04 12497.81 11990.22 17597.62 11497.58 14995.19 2096.74 6697.45 12483.67 17599.61 6995.85 7579.73 36898.29 155
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 12990.72 16198.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11598.25 156
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18288.54 23094.82 30596.21 27289.61 21794.20 14395.25 24683.24 18299.14 13790.01 19896.16 17298.25 156
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6297.72 13179.63 37793.54 15897.41 12769.94 34299.56 8591.04 18491.11 26598.22 158
ETVMVS90.52 27489.14 29394.67 19996.81 17987.85 25495.91 26093.97 35589.71 21592.34 18692.48 34465.41 37197.96 27481.37 33594.27 20998.21 159
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25894.34 32296.19 27390.73 18390.35 23493.83 31171.84 32797.96 27487.22 26293.61 22798.21 159
testing9191.90 21391.02 22094.53 20796.54 19886.55 28595.86 26295.64 29691.77 14891.89 19893.47 32869.94 34298.86 17290.23 19793.86 22298.18 161
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25190.69 16297.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11798.18 161
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 6998.76 894.93 3098.84 1699.06 488.80 9399.65 5899.06 798.63 10398.18 161
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 13787.94 11198.91 16971.31 38498.37 11598.17 164
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18790.25 17497.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10598.15 165
UGNet94.04 13093.28 14396.31 10496.85 17391.19 13997.88 7997.68 13694.40 5893.00 17196.18 19773.39 32299.61 6991.72 16898.46 11298.13 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18290.03 17796.81 19197.13 20188.19 26591.30 21594.27 29486.21 14198.63 19887.66 25296.46 17098.12 167
tpm90.25 28189.74 27891.76 31793.92 32879.73 36893.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 167
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27894.53 31396.38 26384.78 33594.27 14195.12 25283.13 18698.40 21691.47 17596.49 16898.12 167
EPMVS90.70 26989.81 27393.37 26794.73 30384.21 32193.67 34788.02 39589.50 22192.38 18293.49 32677.82 28697.78 29586.03 28392.68 23798.11 170
FE-MVS92.05 20991.05 21995.08 17396.83 17687.93 24993.91 33995.70 29086.30 30994.15 14594.97 25476.59 29399.21 12684.10 30696.86 15798.09 171
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11198.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4298.08 172
LS3D93.57 14892.61 16696.47 9197.59 13691.61 11897.67 10397.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 11998.06 173
testing9991.62 22390.72 23594.32 21796.48 20586.11 29595.81 26594.76 33591.55 15391.75 20393.44 32968.55 35198.82 17690.43 19193.69 22398.04 174
testing1191.68 22190.75 23294.47 20896.53 20086.56 28495.76 26994.51 34291.10 17491.24 22293.59 32368.59 35098.86 17291.10 18294.29 20898.00 175
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25397.23 15997.46 16787.99 27089.90 25096.92 15666.35 36598.23 23190.30 19590.99 26897.96 176
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15692.49 8795.64 27696.64 24889.05 23593.00 17195.79 22185.77 14899.45 10589.16 22594.35 20697.96 176
CNLPA94.28 11793.53 13096.52 8398.38 7892.55 8596.59 21696.88 23190.13 20591.91 19797.24 13685.21 15399.09 14587.64 25397.83 13197.92 178
CostFormer91.18 25190.70 23692.62 29494.84 29781.76 34694.09 33294.43 34384.15 34192.72 17893.77 31579.43 25698.20 23490.70 18992.18 24597.90 179
tpmrst91.44 23491.32 20891.79 31495.15 27879.20 37493.42 35395.37 30688.55 25693.49 16093.67 32082.49 20498.27 22990.41 19289.34 28697.90 179
EPNet_dtu91.71 21891.28 21192.99 28093.76 33483.71 32996.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15897.88 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051592.29 19991.30 21095.25 16696.60 19088.90 22194.36 32192.32 37487.92 27293.43 16294.57 27577.28 28999.00 16189.42 21495.86 17897.86 182
ADS-MVSNet289.45 29888.59 30092.03 30695.86 23482.26 34290.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 183
ADS-MVSNet89.89 29188.68 29993.53 26195.86 23484.89 31590.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 183
MAR-MVS94.22 11893.46 13596.51 8698.00 10892.19 9997.67 10397.47 16488.13 26993.00 17195.84 21584.86 15899.51 9687.99 24098.17 12497.83 185
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS96.02 7095.89 6996.40 9797.16 15292.44 8897.47 13097.77 12494.55 5096.48 8294.51 27891.23 6198.92 16795.65 8498.19 12297.82 186
CANet_DTU94.37 11493.65 12596.55 8096.46 20792.13 10096.21 24596.67 24794.38 6093.53 15997.03 15079.34 25799.71 4690.76 18798.45 11397.82 186
testing22290.31 27888.96 29594.35 21496.54 19887.29 26195.50 28193.84 35990.97 17791.75 20392.96 33662.18 38098.00 26582.86 31894.08 21597.76 188
PLCcopyleft91.00 694.11 12693.43 13896.13 11998.58 6891.15 14496.69 20397.39 18287.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15597.73 189
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.90 30588.26 30590.81 33594.58 31076.62 38192.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24480.53 34087.42 30497.71 190
AdaColmapbinary94.34 11593.68 12496.31 10498.59 6691.68 11696.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12697.70 191
baseline192.82 18191.90 18995.55 15397.20 15090.77 15897.19 16294.58 34092.20 13592.36 18396.34 19184.16 16998.21 23389.20 22383.90 34897.68 192
test-LLR91.42 23591.19 21692.12 30494.59 30880.66 35594.29 32692.98 36691.11 17290.76 22892.37 34679.02 26498.07 25588.81 23096.74 16197.63 193
test-mter90.19 28589.54 28392.12 30494.59 30880.66 35594.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16197.63 193
PAPM91.52 23190.30 25095.20 16795.30 26889.83 18693.38 35496.85 23486.26 31188.59 28795.80 21884.88 15798.15 23975.67 36795.93 17697.63 193
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16397.29 19387.75 28290.49 23197.10 14685.21 15399.50 9986.70 27096.72 16397.63 193
TESTMET0.1,190.06 28789.42 28691.97 30794.41 31680.62 35794.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16697.61 197
CR-MVSNet90.82 26489.77 27593.95 23994.45 31487.19 26790.23 38395.68 29486.89 30092.40 18092.36 34980.91 22997.05 34081.09 33893.95 22097.60 198
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26790.23 38398.03 9177.87 38592.40 18087.55 38880.17 24399.51 9668.84 38993.95 22097.60 198
MIMVSNet88.50 31086.76 32093.72 25294.84 29787.77 25691.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23397.57 200
PatchT88.87 30687.42 31093.22 27394.08 32585.10 31189.51 38894.64 33981.92 36292.36 18388.15 38480.05 24597.01 34372.43 38093.65 22597.54 201
tpm289.96 28889.21 29092.23 30394.91 29381.25 34993.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 24997.49 202
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27287.70 25795.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvsmvis_n_192096.70 4796.84 3396.31 10496.62 18891.73 11197.98 6398.30 3296.19 596.10 9898.95 889.42 8399.76 3898.90 1099.08 8497.43 204
UWE-MVS89.91 28989.48 28591.21 32795.88 23378.23 37994.91 30490.26 38889.11 23292.35 18594.52 27768.76 34897.96 27483.95 31095.59 18597.42 205
test_vis1_n_192094.17 12094.58 10292.91 28397.42 14582.02 34497.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1598.82 9697.40 206
test_fmvs1_n92.73 18492.88 15392.29 30096.08 23081.05 35297.98 6397.08 20790.72 18496.79 6398.18 7063.07 37698.45 21397.62 2098.42 11497.36 207
AUN-MVS91.76 21790.75 23294.81 19097.00 16788.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 20990.83 18579.18 37197.36 207
hse-mvs293.45 15292.99 14894.81 19097.02 16588.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21295.85 7579.13 37297.35 209
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18687.27 26390.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21593.25 13998.94 9397.35 209
test_cas_vis1_n_192094.48 11394.55 10694.28 22196.78 18086.45 28697.63 11297.64 14193.32 9597.68 3898.36 5073.75 32099.08 14796.73 3999.05 8697.31 211
SDMVSNet94.17 12093.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20197.28 13279.13 26098.93 16694.61 11592.84 23397.28 212
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18497.64 14193.18 10191.79 20197.28 13275.35 30698.65 19688.99 22792.84 23397.28 212
BH-untuned92.94 17492.62 16593.92 24397.22 14886.16 29496.40 22996.25 26990.06 20689.79 25496.17 19983.19 18398.35 22387.19 26397.27 15097.24 214
test_vis1_n92.37 19492.26 17992.72 29094.75 30182.64 33698.02 5896.80 23791.18 16997.77 3797.93 8858.02 38498.29 22897.63 1998.21 12197.23 215
test_fmvs193.21 15993.53 13092.25 30296.55 19781.20 35197.40 13796.96 22090.68 18696.80 6298.04 7969.25 34598.40 21697.58 2198.50 10897.16 216
131492.81 18292.03 18495.14 17095.33 26589.52 19796.04 25297.44 17687.72 28386.25 33295.33 24283.84 17298.79 17989.26 21997.05 15697.11 217
PCF-MVS89.48 1191.56 22889.95 26796.36 10296.60 19092.52 8692.51 36897.26 19479.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 14997.01 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.49 18991.60 19895.18 16897.91 11489.47 19897.65 10694.66 33792.18 13993.33 16494.91 25878.06 28299.10 14181.61 32994.06 21996.98 219
thres40092.42 19191.52 20295.12 17297.85 11789.29 20897.41 13394.88 33192.19 13793.27 16794.46 28378.17 27899.08 14781.40 33294.08 21596.98 219
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16088.53 23195.28 29197.45 17291.68 15194.08 14797.68 10782.41 20698.90 17093.84 12992.47 23996.98 219
MSDG91.42 23590.24 25494.96 18297.15 15488.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16380.57 33995.05 19596.98 219
XVG-OURS93.72 14493.35 14194.80 19397.07 15788.61 22694.79 30697.46 16791.97 14593.99 14897.86 9581.74 21998.88 17192.64 15192.67 23896.92 223
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19787.96 27191.86 20095.68 22880.44 23798.99 16284.01 30897.54 13896.89 224
bld_raw_dy_0_6494.33 11693.90 11995.62 14897.64 12990.95 14995.17 29897.47 16482.34 35991.28 21996.84 16089.10 8899.04 15996.27 5299.00 9096.85 225
tpmvs89.83 29589.15 29291.89 30994.92 29180.30 36293.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20881.47 33189.92 28096.84 226
baseline291.63 22290.86 22593.94 24194.33 31886.32 28895.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19288.64 23494.57 20596.81 227
TR-MVS91.48 23390.59 24094.16 22596.40 21087.33 26095.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22382.85 32093.61 22796.79 228
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9795.34 26292.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10296.73 229
tpm cat188.36 31187.21 31491.81 31395.13 28080.55 35892.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23880.39 34188.74 29296.72 230
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19196.62 231
API-MVS94.84 10794.49 10895.90 13197.90 11592.00 10497.80 9097.48 16189.19 23094.81 13196.71 16488.84 9299.17 13288.91 22998.76 9996.53 232
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15296.51 233
Effi-MVS+-dtu93.08 16693.21 14592.68 29396.02 23183.25 33397.14 16796.72 24093.85 7491.20 22493.44 32983.08 18798.30 22791.69 17195.73 18196.50 234
thres100view90092.43 19091.58 19994.98 18097.92 11389.37 20497.71 10194.66 33792.20 13593.31 16594.90 25978.06 28299.08 14781.40 33294.08 21596.48 235
tfpn200view992.38 19391.52 20294.95 18397.85 11789.29 20897.41 13394.88 33192.19 13793.27 16794.46 28378.17 27899.08 14781.40 33294.08 21596.48 235
mvsany_test193.93 13593.98 11793.78 24994.94 29086.80 27594.62 30992.55 37388.77 25096.85 6198.49 3888.98 8998.08 25195.03 10195.62 18496.46 237
JIA-IIPM88.26 31387.04 31791.91 30893.52 34181.42 34889.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 238
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14879.90 37689.40 26692.92 33775.36 30598.36 22292.14 15794.75 20196.23 239
dmvs_re90.21 28389.50 28492.35 29795.47 25485.15 30995.70 27194.37 34690.94 17888.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 240
RPSCF90.75 26690.86 22590.42 34296.84 17476.29 38395.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18087.16 26592.23 24296.20 241
thres20092.23 20391.39 20594.75 19797.61 13389.03 21896.60 21595.09 32192.08 14193.28 16694.00 30778.39 27699.04 15981.26 33794.18 21196.19 242
xiu_mvs_v2_base95.32 9095.29 8695.40 16297.22 14890.50 16795.44 28497.44 17693.70 7996.46 8496.18 19788.59 9999.53 9194.79 11197.81 13296.17 243
PS-MVSNAJ95.37 8895.33 8595.49 15797.35 14690.66 16495.31 29097.48 16193.85 7496.51 8095.70 22788.65 9699.65 5894.80 10998.27 11996.17 243
AllTest90.23 28288.98 29493.98 23597.94 11186.64 27996.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
TestCases93.98 23597.94 11186.64 27995.54 30085.38 32385.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
BH-w/o92.14 20791.75 19393.31 26996.99 16985.73 29895.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17196.13 247
xiu_mvs_v1_base_debu95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base_debi95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27495.27 26985.52 30197.03 17196.63 25192.09 14089.11 27795.14 25080.33 24098.08 25187.54 25694.74 20296.03 251
nrg03094.05 12993.31 14296.27 10995.22 27394.59 3198.34 2697.46 16792.93 11591.21 22396.64 17187.23 12998.22 23294.99 10385.80 31795.98 252
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9397.56 15492.50 12589.94 24996.54 18188.65 9698.18 23793.83 13090.90 27095.86 253
HQP_MVS93.78 14293.43 13894.82 18896.21 21789.99 18097.74 9497.51 15894.85 3491.34 21296.64 17181.32 22498.60 20193.02 14692.23 24295.86 253
plane_prior597.51 15898.60 20193.02 14692.23 24295.86 253
FIs94.09 12793.70 12395.27 16595.70 24192.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 256
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25191.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 257
MVS91.71 21890.44 24495.51 15595.20 27591.59 12096.04 25297.45 17273.44 39287.36 31595.60 23285.42 15199.10 14185.97 28497.46 13995.83 257
tt080591.09 25290.07 26494.16 22595.61 24488.31 23697.56 11896.51 25789.56 21889.17 27595.64 23067.08 36398.38 22191.07 18388.44 29595.80 259
VPNet92.23 20391.31 20994.99 17895.56 24790.96 14897.22 16097.86 11592.96 11490.96 22596.62 17875.06 30798.20 23491.90 16283.65 35095.80 259
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16598.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 261
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 261
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24095.56 9291.17 26395.78 261
HQP4-MVS90.14 23798.50 20995.78 261
HQP-MVS93.19 16192.74 16094.54 20695.86 23489.33 20696.65 20797.39 18293.55 8290.14 23795.87 21380.95 22798.50 20992.13 15892.10 24795.78 261
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24192.39 8997.86 8098.66 1692.30 13292.09 19595.37 24180.49 23698.40 21693.95 12485.86 31695.75 266
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 266
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26292.83 7697.17 16498.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 268
WR-MVS92.34 19591.53 20194.77 19595.13 28090.83 15596.40 22997.98 10091.88 14689.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 269
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13097.43 17989.14 23188.90 27896.43 18679.71 25198.24 23089.56 21187.68 30095.67 270
ACMM89.79 892.96 17292.50 17294.35 21496.30 21588.71 22497.58 11697.36 18791.40 16190.53 23096.65 17079.77 25098.75 18591.24 18091.64 25395.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf0594.01 13194.00 11694.04 23195.06 28388.46 23497.27 15296.57 25592.32 13092.26 18897.10 14688.54 10098.10 24695.10 9991.82 25295.57 272
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24189.70 20785.14 32795.49 273
jajsoiax92.42 19191.89 19094.03 23393.33 34988.50 23297.73 9697.53 15692.00 14488.85 28196.50 18375.62 30498.11 24593.88 12891.56 25695.48 274
testgi87.97 31487.21 31490.24 34492.86 35580.76 35396.67 20694.97 32691.74 14985.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
MVSTER93.20 16092.81 15694.37 21396.56 19589.59 19297.06 17097.12 20291.24 16691.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25693.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
mvs_tets92.31 19791.76 19293.94 24193.41 34688.29 23797.63 11297.53 15692.04 14288.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
EI-MVSNet93.03 16992.88 15393.48 26395.77 23986.98 27296.44 22197.12 20290.66 18991.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38696.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
test0.0.03 189.37 30088.70 29891.41 32492.47 36485.63 29995.22 29692.70 37191.11 17286.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
test_djsdf93.07 16792.76 15794.00 23493.49 34388.70 22598.22 4197.57 15091.42 15990.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
IterMVS-LS92.29 19991.94 18893.34 26896.25 21686.97 27396.57 21997.05 21290.67 18789.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS92.98 17192.53 17094.32 21796.12 22789.20 21395.28 29197.47 16492.66 12289.90 25095.62 23180.58 23498.40 21692.73 15092.40 24095.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVSNet91.89 21491.24 21393.82 24695.05 28488.57 22897.82 8798.19 5591.70 15088.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
testing387.67 31886.88 31990.05 34696.14 22580.71 35497.10 16992.85 36890.15 20487.54 31094.55 27655.70 38994.10 38173.77 37694.10 21495.35 286
FMVSNet391.78 21690.69 23795.03 17696.53 20092.27 9597.02 17396.93 22389.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
FMVSNet291.31 24390.08 26194.99 17896.51 20292.21 9697.41 13396.95 22188.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
PS-CasMVS91.55 22990.84 22893.69 25494.96 28788.28 23897.84 8498.24 4791.46 15788.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22288.26 23997.65 10697.46 16791.29 16290.12 24397.16 14179.05 26298.73 18792.25 15491.89 25095.31 289
LGP-MVS_train94.10 22796.16 22288.26 23997.46 16791.29 16290.12 24397.16 14179.05 26298.73 18792.25 15491.89 25095.31 289
GBi-Net91.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet189.88 29288.31 30394.59 20095.41 25591.18 14097.50 12496.93 22386.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
PVSNet_082.17 1985.46 34083.64 34390.92 33295.27 26979.49 37190.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21088.20 24297.36 14197.25 19691.52 15488.30 29496.64 17178.46 27498.72 19091.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Syy-MVS87.13 32387.02 31887.47 36195.16 27673.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21295.20 297
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27679.53 36995.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21295.20 297
v2v48291.59 22590.85 22793.80 24793.87 33188.17 24496.94 18196.88 23189.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
PEN-MVS91.20 24890.44 24493.48 26394.49 31287.91 25297.76 9298.18 5791.29 16287.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
OurMVSNet-221017-090.51 27590.19 25991.44 32393.41 34681.25 34996.98 17896.28 26691.68 15186.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19793.72 7791.68 20597.26 13579.33 25898.63 19892.13 15892.28 24195.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
eth_miper_zixun_eth91.02 25690.59 24092.34 29995.33 26584.35 31994.10 33196.90 22888.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
ACMH87.59 1690.53 27389.42 28693.87 24496.21 21787.92 25097.24 15596.94 22288.45 25983.91 35696.27 19471.92 32698.62 20084.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl2291.21 24790.56 24293.14 27696.09 22986.80 27594.41 31996.58 25487.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
v119291.07 25390.23 25593.58 25993.70 33587.82 25596.73 19797.07 20987.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24897.95 11087.13 27096.92 18295.89 28382.83 35586.88 32897.18 14073.77 31999.29 12178.44 35393.62 22694.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v192192090.85 26390.03 26693.29 27093.55 33986.96 27496.74 19697.04 21487.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
SixPastTwentyTwo89.15 30188.54 30190.98 33193.49 34380.28 36396.70 20194.70 33690.78 18084.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
DIV-MVS_self_test90.97 25990.33 24792.88 28595.36 26086.19 29394.46 31796.63 25187.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
v14419291.06 25490.28 25193.39 26693.66 33887.23 26696.83 19097.07 20987.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
cl____90.96 26090.32 24892.89 28495.37 25986.21 29294.46 31796.64 24887.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
v124090.70 26989.85 27193.23 27293.51 34286.80 27596.61 21397.02 21787.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
c3_l91.38 23790.89 22392.88 28595.58 24686.30 28994.68 30896.84 23588.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
pmmvs589.86 29488.87 29792.82 28792.86 35586.23 29196.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
v114491.37 23990.60 23993.68 25593.89 33088.23 24196.84 18997.03 21688.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37296.61 21392.08 37790.66 18980.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
IterMVS90.15 28689.67 27991.61 31995.48 25183.72 32894.33 32396.12 27589.99 20787.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_lstm_enhance90.50 27690.06 26591.83 31195.33 26583.74 32793.86 34096.70 24487.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
IterMVS-SCA-FT90.31 27889.81 27391.82 31295.52 24984.20 32294.30 32596.15 27490.61 19387.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
WR-MVS_H92.00 21091.35 20693.95 23995.09 28289.47 19898.04 5798.68 1391.46 15788.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
GG-mvs-BLEND93.62 25693.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18894.80 322
v14890.99 25790.38 24692.81 28893.83 33285.80 29796.78 19496.68 24589.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
miper_ehance_all_eth91.59 22591.13 21892.97 28195.55 24886.57 28394.47 31596.88 23187.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27794.31 32085.89 29695.33 28897.26 19491.06 17589.38 26795.44 24068.61 34998.60 20189.46 21391.05 26694.79 324
DTE-MVSNet90.56 27289.75 27793.01 27993.95 32787.25 26497.64 11097.65 13990.74 18287.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
ACMH+87.92 1490.20 28489.18 29193.25 27196.48 20586.45 28696.99 17796.68 24588.83 24584.79 34596.22 19670.16 33998.53 20784.42 30488.04 29794.77 327
miper_enhance_ethall91.54 23091.01 22193.15 27595.35 26187.07 27193.97 33496.90 22886.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
lessismore_v090.45 34191.96 37079.09 37687.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
Patchmtry88.64 30987.25 31292.78 28994.09 32486.64 27989.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
v7n90.76 26589.86 27093.45 26593.54 34087.60 25997.70 10297.37 18588.85 24387.65 30894.08 30581.08 22698.10 24684.68 30083.79 34994.66 331
V4291.58 22790.87 22493.73 25094.05 32688.50 23297.32 14796.97 21988.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
v891.29 24590.53 24393.57 26094.15 32288.12 24697.34 14397.06 21188.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
anonymousdsp92.16 20591.55 20093.97 23792.58 36289.55 19497.51 12397.42 18089.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38297.64 11095.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
pm-mvs190.72 26889.65 28193.96 23894.29 32189.63 18997.79 9196.82 23689.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22089.55 19496.31 23797.09 20687.88 27485.67 33695.91 21278.79 27098.57 20581.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
YYNet185.87 33784.23 34190.78 33892.38 36782.46 34093.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
PVSNet_BlendedMVS94.06 12893.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20294.36 13995.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
v1091.04 25590.23 25593.49 26294.12 32388.16 24597.32 14797.08 20788.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 33093.13 35383.33 33294.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33792.38 36782.57 33793.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
our_test_388.78 30787.98 30791.20 32992.45 36582.53 33893.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
ppachtmachnet_test88.35 31287.29 31191.53 32092.45 36583.57 33193.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33989.97 38082.40 34193.62 34997.37 18589.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
pmmvs687.81 31786.19 32492.69 29291.32 37286.30 28997.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
ITE_SJBPF92.43 29695.34 26285.37 30695.92 27991.47 15687.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
FMVSNet587.29 32185.79 32791.78 31594.80 29987.28 26295.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 36096.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
USDC88.94 30387.83 30892.27 30194.66 30584.96 31393.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23682.64 32589.67 28393.66 351
D2MVS91.30 24490.95 22292.35 29794.71 30485.52 30196.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
MIMVSNet184.93 34283.05 34490.56 34089.56 38384.84 31695.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
TransMVSNet (Re)88.94 30387.56 30993.08 27894.35 31788.45 23597.73 9695.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
Baseline_NR-MVSNet91.20 24890.62 23892.95 28293.83 33288.03 24797.01 17695.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34793.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
TDRefinement86.53 32784.76 33891.85 31082.23 40284.25 32096.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22684.60 30274.52 38292.97 359
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37595.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
MS-PatchMatch90.27 28089.77 27591.78 31594.33 31884.72 31795.55 27896.73 23986.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12592.81 362
KD-MVS_2432*160084.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
tfpnnormal89.70 29788.40 30293.60 25795.15 27890.10 17697.56 11898.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
EG-PatchMatch MVS87.02 32585.44 32991.76 31792.67 35985.00 31296.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
WB-MVSnew89.88 29289.56 28290.82 33494.57 31183.06 33495.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21092.54 367
TinyColmap86.82 32685.35 33291.21 32794.91 29382.99 33593.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24175.78 36587.35 30692.52 368
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23773.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36595.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36694.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36796.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25769.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18692.18 373
MVP-Stereo90.74 26790.08 26192.71 29193.19 35188.20 24295.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12792.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d86.22 33284.45 33991.53 32088.34 39087.25 26494.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33990.89 38096.62 25378.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38793.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
test_040286.46 32884.79 33791.45 32295.02 28585.55 30096.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 38093.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38493.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35996.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33390.06 37984.05 32595.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36491.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37392.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34393.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38866.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1430.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 960.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36975.56 368
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5898.10 7392.52 3599.65 5894.58 11699.31 63
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
9.1496.75 4198.93 4797.73 9698.23 5091.28 16597.88 3598.44 4493.00 2699.65 5895.76 7999.47 41
save fliter98.91 4994.28 3897.02 17398.02 9495.35 16
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
test_part299.28 2595.74 898.10 29
sam_mvs81.94 216
MTGPAbinary98.08 74
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21898.08 251
patchmatchnet-post90.45 36782.65 20198.10 246
MTMP97.86 8082.03 406
gm-plane-assit93.22 35078.89 37784.82 33493.52 32598.64 19787.72 245
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 10097.56 12192.74 3099.59 74
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10497.55 12392.73 3199.58 77
agg_prior98.67 5893.79 5498.00 9895.68 11499.57 84
test_prior493.66 5796.42 224
test_prior296.35 23392.80 11996.03 10097.59 11892.01 4395.01 10299.38 56
旧先验295.94 25881.66 36597.34 4898.82 17692.26 152
新几何295.79 267
原ACMM295.67 272
testdata299.67 5685.96 285
segment_acmp92.89 27
testdata195.26 29593.10 106
plane_prior796.21 21789.98 182
plane_prior696.10 22890.00 17881.32 224
plane_prior496.64 171
plane_prior390.00 17894.46 5591.34 212
plane_prior297.74 9494.85 34
plane_prior196.14 225
plane_prior89.99 18097.24 15594.06 6792.16 246
n20.00 420
nn0.00 420
door-mid91.06 384
test1197.88 109
door91.13 383
HQP5-MVS89.33 206
HQP-NCC95.86 23496.65 20793.55 8290.14 237
ACMP_Plane95.86 23496.65 20793.55 8290.14 237
BP-MVS92.13 158
HQP3-MVS97.39 18292.10 247
HQP2-MVS80.95 227
NP-MVS95.99 23289.81 18795.87 213
MDTV_nov1_ep1390.76 23195.22 27380.33 36193.03 36195.28 31188.14 26892.84 17793.83 31181.34 22398.08 25182.86 31894.34 207
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 95