This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192098.44 3698.51 1598.23 10698.33 17196.15 13598.97 8499.15 2198.55 398.45 7999.55 194.26 8899.97 199.65 399.66 5698.57 194
test_fmvsm_n_192098.87 799.01 198.45 8799.42 5496.43 12098.96 8999.36 798.63 299.86 299.51 695.91 3799.97 199.72 299.75 3898.94 164
patch_mono-298.36 4398.87 496.82 20299.53 3690.68 30498.64 15999.29 997.88 899.19 3299.52 496.80 1599.97 199.11 699.86 199.82 11
MTAPA98.58 2098.29 3699.46 1499.76 298.64 2598.90 9798.74 10097.27 4098.02 10199.39 2294.81 7499.96 497.91 5699.79 2399.77 22
DVP-MVS++99.08 298.89 399.64 399.17 9199.23 799.69 198.88 5497.32 3399.53 1699.47 1397.81 399.94 598.47 2899.72 4799.74 31
MSC_two_6792asdad99.62 699.17 9199.08 1198.63 13099.94 598.53 2099.80 1999.86 3
No_MVS99.62 699.17 9199.08 1198.63 13099.94 598.53 2099.80 1999.86 3
SED-MVS99.09 198.91 299.63 499.71 1999.24 599.02 7498.87 6197.65 1499.73 499.48 1197.53 799.94 598.43 3299.81 1299.70 47
test_241102_TWO98.87 6197.65 1499.53 1699.48 1197.34 1199.94 598.43 3299.80 1999.83 8
DVP-MVScopyleft99.03 398.83 699.63 499.72 1299.25 298.97 8498.58 14097.62 1699.45 1899.46 1697.42 999.94 598.47 2899.81 1299.69 50
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 3399.45 1899.46 1697.88 199.94 598.47 2899.86 199.85 5
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 5499.94 598.47 2899.81 1299.84 7
DPE-MVScopyleft98.92 598.67 999.65 299.58 3299.20 998.42 19298.91 4897.58 1999.54 1599.46 1697.10 1299.94 597.64 7799.84 1099.83 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030498.47 3398.22 4399.21 3899.00 10997.80 6698.88 10495.32 35398.86 198.53 7499.44 1994.38 8499.94 599.86 199.70 5099.90 1
region2R98.61 1598.38 2299.29 2899.74 798.16 5199.23 3198.93 4296.15 9198.94 4499.17 6495.91 3799.94 597.55 8599.79 2399.78 16
ACMMPR98.59 1898.36 2499.29 2899.74 798.15 5299.23 3198.95 3896.10 9498.93 4899.19 6295.70 4399.94 597.62 7899.79 2399.78 16
MP-MVScopyleft98.33 4898.01 5299.28 3199.75 398.18 4999.22 3598.79 9096.13 9297.92 11299.23 5294.54 7799.94 596.74 12699.78 2699.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.49 3098.23 4199.27 3399.72 1298.08 5598.99 8199.49 595.43 12599.03 3899.32 3995.56 4699.94 596.80 12399.77 2899.78 16
mPP-MVS98.51 2998.26 3799.25 3499.75 398.04 5699.28 2498.81 7896.24 8798.35 8699.23 5295.46 4999.94 597.42 9299.81 1299.77 22
CP-MVS98.57 2398.36 2499.19 3999.66 2697.86 6199.34 1898.87 6195.96 9998.60 7199.13 7296.05 3199.94 597.77 6799.86 199.77 22
test_vis1_n_192096.71 11996.84 10096.31 25199.11 10089.74 31899.05 6598.58 14098.08 699.87 199.37 2878.48 32899.93 2199.29 499.69 5299.27 121
ZNCC-MVS98.49 3098.20 4499.35 2299.73 1198.39 3499.19 4298.86 6795.77 10998.31 8999.10 7695.46 4999.93 2197.57 8499.81 1299.74 31
GST-MVS98.43 3898.12 4799.34 2399.72 1298.38 3599.09 5998.82 7395.71 11398.73 6199.06 8695.27 6099.93 2197.07 10399.63 6499.72 39
QAPM96.29 13895.40 16198.96 5697.85 20997.60 7199.23 3198.93 4289.76 32693.11 28399.02 8889.11 18399.93 2191.99 27099.62 6699.34 108
ACMMPcopyleft98.23 5097.95 5499.09 4999.74 797.62 7099.03 7199.41 695.98 9797.60 13399.36 3294.45 8299.93 2197.14 10098.85 12599.70 47
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet98.05 5397.76 5898.90 6098.73 13297.27 8098.35 19598.78 9297.37 3297.72 12398.96 10091.53 13499.92 2698.79 1399.65 5999.51 83
MP-MVS-pluss98.31 4997.92 5599.49 1299.72 1298.88 1898.43 19098.78 9294.10 18297.69 12599.42 2095.25 6299.92 2698.09 4699.80 1999.67 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP98.61 1598.30 3599.55 999.62 3098.95 1798.82 11798.81 7895.80 10899.16 3599.47 1395.37 5499.92 2697.89 5899.75 3899.79 14
HFP-MVS98.63 1498.40 2099.32 2799.72 1298.29 4499.23 3198.96 3796.10 9498.94 4499.17 6496.06 3099.92 2697.62 7899.78 2699.75 29
HPM-MVS++copyleft98.58 2098.25 3899.55 999.50 4199.08 1198.72 14498.66 12397.51 2298.15 9098.83 11595.70 4399.92 2697.53 8799.67 5499.66 62
CPTT-MVS97.72 6697.32 8198.92 5899.64 2897.10 8999.12 5398.81 7892.34 26498.09 9499.08 8493.01 10199.92 2696.06 14599.77 2899.75 29
3Dnovator94.51 597.46 8296.93 9699.07 5097.78 21297.64 6899.35 1799.06 2797.02 5493.75 26199.16 6789.25 17899.92 2697.22 9999.75 3899.64 65
OpenMVScopyleft93.04 1395.83 16295.00 18698.32 9897.18 26097.32 7899.21 3898.97 3589.96 32291.14 31999.05 8786.64 23899.92 2693.38 22999.47 9197.73 221
CANet_DTU96.96 10996.55 11598.21 10798.17 18996.07 13897.98 23998.21 21197.24 4197.13 14398.93 10486.88 23599.91 3495.00 17999.37 10298.66 185
PVSNet_Blended_VisFu97.70 6897.46 7398.44 8999.27 7595.91 15398.63 16199.16 2094.48 17397.67 12698.88 10992.80 10399.91 3497.11 10199.12 11199.50 85
CSCG97.85 6197.74 5998.20 10899.67 2595.16 18199.22 3599.32 893.04 23997.02 15098.92 10695.36 5599.91 3497.43 9199.64 6399.52 80
PS-MVSNAJ97.73 6597.77 5797.62 15398.68 14095.58 16497.34 29198.51 15597.29 3598.66 6797.88 21294.51 7899.90 3797.87 6099.17 11097.39 229
UGNet96.78 11796.30 12598.19 11098.24 17795.89 15598.88 10498.93 4297.39 2996.81 16197.84 21682.60 30299.90 3796.53 13099.49 8898.79 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SMA-MVScopyleft98.58 2098.25 3899.56 899.51 3999.04 1598.95 9098.80 8593.67 21399.37 2399.52 496.52 2199.89 3998.06 4799.81 1299.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS98.70 1198.49 1799.34 2399.70 2298.35 4199.29 2298.88 5497.40 2798.46 7699.20 5795.90 3999.89 3997.85 6199.74 4299.78 16
X-MVStestdata94.06 27292.30 29399.34 2399.70 2298.35 4199.29 2298.88 5497.40 2798.46 7643.50 38195.90 3999.89 3997.85 6199.74 4299.78 16
新几何199.16 4499.34 5598.01 5898.69 11290.06 32198.13 9198.95 10294.60 7699.89 3991.97 27199.47 9199.59 73
testdata299.89 3991.65 278
CHOSEN 1792x268897.12 10496.80 10198.08 11899.30 6694.56 21498.05 23299.71 193.57 21897.09 14498.91 10788.17 20699.89 3996.87 11899.56 8099.81 12
EPNet97.28 9596.87 9998.51 8094.98 34496.14 13698.90 9797.02 32198.28 495.99 19099.11 7491.36 13699.89 3996.98 10599.19 10999.50 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+94.38 697.43 8796.78 10499.38 1897.83 21098.52 2899.37 1498.71 10897.09 5292.99 28699.13 7289.36 17499.89 3996.97 10699.57 7499.71 43
DELS-MVS98.40 4098.20 4498.99 5399.00 10997.66 6797.75 26198.89 5197.71 1298.33 8798.97 9594.97 7199.88 4798.42 3499.76 3499.42 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
无先验97.58 27598.72 10591.38 29199.87 4893.36 23199.60 71
SteuartSystems-ACMMP98.90 698.75 799.36 2199.22 8698.43 3399.10 5898.87 6197.38 3099.35 2499.40 2197.78 599.87 4897.77 6799.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS95.98 397.88 5997.58 6498.77 6399.25 7896.93 9498.83 11598.75 9896.96 5796.89 15799.50 890.46 15599.87 4897.84 6399.76 3499.52 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D97.16 10296.66 11298.68 6798.53 15297.19 8798.93 9498.90 4992.83 24895.99 19099.37 2892.12 11799.87 4893.67 22399.57 7498.97 160
h-mvs3396.17 14395.62 15897.81 13499.03 10594.45 21698.64 15998.75 9897.48 2398.67 6398.72 12989.76 16599.86 5297.95 5281.59 35799.11 145
test_cas_vis1_n_192097.38 9197.36 7997.45 16098.95 11693.25 26399.00 7898.53 15097.70 1399.77 399.35 3484.71 27699.85 5398.57 1799.66 5699.26 123
Anonymous2024052995.10 20594.22 22297.75 14099.01 10894.26 22698.87 10898.83 7285.79 35496.64 16698.97 9578.73 32699.85 5396.27 13794.89 22499.12 144
sss97.39 9096.98 9598.61 7198.60 14896.61 10898.22 21298.93 4293.97 19098.01 10498.48 15291.98 12199.85 5396.45 13398.15 15799.39 105
DP-MVS96.59 12395.93 14098.57 7399.34 5596.19 13498.70 14998.39 18189.45 33194.52 21999.35 3491.85 12399.85 5392.89 24798.88 12299.68 55
SF-MVS98.59 1898.32 3499.41 1799.54 3598.71 2299.04 6898.81 7895.12 14399.32 2599.39 2296.22 2499.84 5797.72 7099.73 4499.67 59
APDe-MVS99.02 498.84 599.55 999.57 3398.96 1699.39 1298.93 4297.38 3099.41 2099.54 296.66 1799.84 5798.86 1199.85 599.87 2
ZD-MVS99.46 4998.70 2398.79 9093.21 23298.67 6398.97 9595.70 4399.83 5996.07 14299.58 73
Anonymous20240521195.28 19594.49 20997.67 14899.00 10993.75 24298.70 14997.04 31890.66 30996.49 17698.80 11878.13 33299.83 5996.21 14195.36 22399.44 100
原ACMM198.65 6999.32 6096.62 10698.67 12093.27 23197.81 11598.97 9595.18 6599.83 5993.84 21799.46 9499.50 85
VNet97.79 6397.40 7798.96 5698.88 12197.55 7298.63 16198.93 4296.74 6799.02 3998.84 11390.33 15899.83 5998.53 2096.66 19399.50 85
MCST-MVS98.65 1298.37 2399.48 1399.60 3198.87 1998.41 19398.68 11597.04 5398.52 7598.80 11896.78 1699.83 5997.93 5499.61 6799.74 31
NCCC98.61 1598.35 2699.38 1899.28 7498.61 2698.45 18598.76 9697.82 998.45 7998.93 10496.65 1899.83 5997.38 9499.41 9799.71 43
PHI-MVS98.34 4698.06 5099.18 4199.15 9798.12 5499.04 6899.09 2493.32 22798.83 5499.10 7696.54 2099.83 5997.70 7499.76 3499.59 73
SR-MVS-dyc-post98.54 2798.35 2699.13 4699.49 4597.86 6199.11 5598.80 8596.49 7699.17 3399.35 3495.34 5699.82 6697.72 7099.65 5999.71 43
SR-MVS98.57 2398.35 2699.24 3599.53 3698.18 4999.09 5998.82 7396.58 7399.10 3799.32 3995.39 5299.82 6697.70 7499.63 6499.72 39
testdata98.26 10399.20 8995.36 17398.68 11591.89 27898.60 7199.10 7694.44 8399.82 6694.27 20399.44 9599.58 77
RPMNet92.81 29491.34 30197.24 17297.00 26893.43 25494.96 35798.80 8582.27 36396.93 15392.12 36686.98 23399.82 6676.32 37096.65 19498.46 197
DeepC-MVS_fast96.70 198.55 2698.34 2999.18 4199.25 7898.04 5698.50 18198.78 9297.72 1098.92 4999.28 4495.27 6099.82 6697.55 8599.77 2899.69 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1498.06 5099.47 4798.71 14598.82 7394.36 17699.16 3599.29 4396.05 3199.81 7197.00 10499.71 49
agg_prior99.30 6698.38 3598.72 10597.57 13499.81 71
UA-Net97.96 5597.62 6298.98 5498.86 12397.47 7598.89 10199.08 2596.67 7098.72 6299.54 293.15 10099.81 7194.87 18098.83 12699.65 63
PVSNet_BlendedMVS96.73 11896.60 11397.12 18199.25 7895.35 17598.26 21099.26 1094.28 17797.94 10997.46 24892.74 10499.81 7196.88 11593.32 25996.20 324
PVSNet_Blended97.38 9197.12 8798.14 11199.25 7895.35 17597.28 29699.26 1093.13 23597.94 10998.21 18592.74 10499.81 7196.88 11599.40 9999.27 121
F-COLMAP97.09 10696.80 10197.97 12499.45 5294.95 19498.55 17498.62 13293.02 24096.17 18598.58 14394.01 9299.81 7193.95 21398.90 12099.14 142
PCF-MVS93.45 1194.68 22693.43 27398.42 9398.62 14696.77 10195.48 35598.20 21384.63 35993.34 27498.32 17488.55 19999.81 7184.80 34898.96 11898.68 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
xiu_mvs_v2_base97.66 7197.70 6097.56 15798.61 14795.46 17097.44 28098.46 16797.15 4798.65 6898.15 18994.33 8599.80 7897.84 6398.66 13497.41 227
xiu_mvs_v1_base97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
xiu_mvs_v1_base_debi97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
TEST999.31 6298.50 2997.92 24398.73 10392.63 25297.74 12098.68 13296.20 2699.80 78
train_agg97.97 5497.52 6999.33 2699.31 6298.50 2997.92 24398.73 10392.98 24197.74 12098.68 13296.20 2699.80 7896.59 12799.57 7499.68 55
test_899.29 7098.44 3197.89 24998.72 10592.98 24197.70 12498.66 13596.20 2699.80 78
旧先验297.57 27691.30 29798.67 6399.80 7895.70 160
APD-MVS_3200maxsize98.53 2898.33 3399.15 4599.50 4197.92 6099.15 4798.81 7896.24 8799.20 3099.37 2895.30 5899.80 7897.73 6999.67 5499.72 39
APD-MVScopyleft98.35 4598.00 5399.42 1699.51 3998.72 2198.80 12598.82 7394.52 17199.23 2999.25 5195.54 4899.80 7896.52 13199.77 2899.74 31
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSP-MVS98.74 1098.55 1499.29 2899.75 398.23 4699.26 2798.88 5497.52 2199.41 2098.78 12096.00 3399.79 8897.79 6699.59 7099.85 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EI-MVSNet-UG-set98.41 3998.34 2998.61 7199.45 5296.32 12898.28 20798.68 11597.17 4598.74 5999.37 2895.25 6299.79 8898.57 1799.54 8399.73 36
COLMAP_ROBcopyleft93.27 1295.33 19394.87 19496.71 20799.29 7093.24 26498.58 16798.11 23389.92 32393.57 26599.10 7686.37 24499.79 8890.78 29198.10 15997.09 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EI-MVSNet-Vis-set98.47 3398.39 2198.69 6699.46 4996.49 11798.30 20498.69 11297.21 4298.84 5299.36 3295.41 5199.78 9198.62 1699.65 5999.80 13
VDD-MVS95.82 16395.23 17597.61 15498.84 12693.98 23498.68 15297.40 30095.02 15097.95 10799.34 3874.37 35499.78 9198.64 1596.80 18999.08 151
CNVR-MVS98.78 898.56 1399.45 1599.32 6098.87 1998.47 18498.81 7897.72 1098.76 5899.16 6797.05 1399.78 9198.06 4799.66 5699.69 50
WTY-MVS97.37 9396.92 9798.72 6598.86 12396.89 9898.31 20298.71 10895.26 13697.67 12698.56 14692.21 11499.78 9195.89 15096.85 18899.48 91
PLCcopyleft95.07 497.20 10096.78 10498.44 8999.29 7096.31 13098.14 22398.76 9692.41 26296.39 18098.31 17594.92 7399.78 9194.06 21198.77 12999.23 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HPM-MVScopyleft98.36 4398.10 4999.13 4699.74 797.82 6599.53 898.80 8594.63 16698.61 7098.97 9595.13 6799.77 9697.65 7699.83 1199.79 14
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS93.96 896.82 11696.23 12998.57 7398.46 15697.00 9198.14 22398.21 21193.95 19196.72 16497.99 20291.58 12999.76 9794.51 19596.54 19898.95 163
AdaColmapbinary97.15 10396.70 10898.48 8499.16 9596.69 10598.01 23698.89 5194.44 17596.83 15898.68 13290.69 15299.76 9794.36 19899.29 10698.98 159
ab-mvs96.42 13195.71 15298.55 7598.63 14596.75 10297.88 25098.74 10093.84 19696.54 17498.18 18885.34 26499.75 9995.93 14996.35 20399.15 140
MAR-MVS96.91 11196.40 12198.45 8798.69 13996.90 9698.66 15798.68 11592.40 26397.07 14797.96 20591.54 13399.75 9993.68 22198.92 11998.69 181
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_241102_ONE99.71 1999.24 598.87 6197.62 1699.73 499.39 2297.53 799.74 101
HPM-MVS_fast98.38 4198.13 4699.12 4899.75 397.86 6199.44 1198.82 7394.46 17498.94 4499.20 5795.16 6699.74 10197.58 8199.85 599.77 22
AllTest95.24 19794.65 20296.99 18899.25 7893.21 26598.59 16598.18 21891.36 29293.52 26798.77 12284.67 27799.72 10389.70 30997.87 16698.02 213
TestCases96.99 18899.25 7893.21 26598.18 21891.36 29293.52 26798.77 12284.67 27799.72 10389.70 30997.87 16698.02 213
CDPH-MVS97.94 5797.49 7099.28 3199.47 4798.44 3197.91 24598.67 12092.57 25698.77 5798.85 11295.93 3699.72 10395.56 16399.69 5299.68 55
test1299.18 4199.16 9598.19 4898.53 15098.07 9595.13 6799.72 10399.56 8099.63 67
CNLPA97.45 8597.03 9298.73 6499.05 10397.44 7798.07 23098.53 15095.32 13396.80 16298.53 14793.32 9899.72 10394.31 20299.31 10599.02 155
DPM-MVS97.55 8096.99 9499.23 3799.04 10498.55 2797.17 30698.35 18894.85 15897.93 11198.58 14395.07 6999.71 10892.60 25199.34 10399.43 102
test_fmvs1_n95.90 15895.99 13895.63 27898.67 14188.32 34499.26 2798.22 21096.40 8299.67 799.26 4773.91 35599.70 10999.02 899.50 8698.87 168
test_yl97.22 9796.78 10498.54 7798.73 13296.60 10998.45 18598.31 19494.70 16098.02 10198.42 16090.80 14999.70 10996.81 12196.79 19099.34 108
DCV-MVSNet97.22 9796.78 10498.54 7798.73 13296.60 10998.45 18598.31 19494.70 16098.02 10198.42 16090.80 14999.70 10996.81 12196.79 19099.34 108
TSAR-MVS + MP.98.78 898.62 1099.24 3599.69 2498.28 4599.14 4998.66 12396.84 6199.56 1399.31 4196.34 2399.70 10998.32 3899.73 4499.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_prior99.19 3999.31 6298.22 4798.84 7199.70 10999.65 63
PVSNet91.96 1896.35 13696.15 13096.96 19299.17 9192.05 28096.08 34498.68 11593.69 20997.75 11997.80 22288.86 19299.69 11494.26 20499.01 11699.15 140
MG-MVS97.81 6297.60 6398.44 8999.12 9995.97 14597.75 26198.78 9296.89 6098.46 7699.22 5493.90 9499.68 11594.81 18499.52 8599.67 59
test_fmvs196.42 13196.67 11195.66 27798.82 12788.53 34098.80 12598.20 21396.39 8399.64 1099.20 5780.35 31899.67 11699.04 799.57 7498.78 176
TSAR-MVS + GP.98.38 4198.24 4098.81 6299.22 8697.25 8598.11 22898.29 20297.19 4498.99 4399.02 8896.22 2499.67 11698.52 2698.56 13999.51 83
114514_t96.93 11096.27 12698.92 5899.50 4197.63 6998.85 11198.90 4984.80 35897.77 11699.11 7492.84 10299.66 11894.85 18199.77 2899.47 93
DP-MVS Recon97.86 6097.46 7399.06 5199.53 3698.35 4198.33 19798.89 5192.62 25398.05 9698.94 10395.34 5699.65 11996.04 14699.42 9699.19 133
PatchMatch-RL96.59 12396.03 13698.27 10199.31 6296.51 11697.91 24599.06 2793.72 20596.92 15598.06 19588.50 20199.65 11991.77 27599.00 11798.66 185
VDDNet95.36 19094.53 20797.86 12998.10 19495.13 18498.85 11197.75 27090.46 31398.36 8499.39 2273.27 35799.64 12197.98 5096.58 19698.81 172
MVS_111021_HR98.47 3398.34 2998.88 6199.22 8697.32 7897.91 24599.58 397.20 4398.33 8799.00 9395.99 3499.64 12198.05 4999.76 3499.69 50
DeepPCF-MVS96.37 297.93 5898.48 1996.30 25299.00 10989.54 32397.43 28298.87 6198.16 599.26 2899.38 2796.12 2999.64 12198.30 3999.77 2899.72 39
FE-MVS95.62 17494.90 19297.78 13698.37 16394.92 19597.17 30697.38 30290.95 30797.73 12297.70 22885.32 26699.63 12491.18 28398.33 15298.79 173
LFMVS95.86 16094.98 18898.47 8598.87 12296.32 12898.84 11496.02 34493.40 22498.62 6999.20 5774.99 35099.63 12497.72 7097.20 18399.46 97
MVS94.67 22993.54 26998.08 11896.88 27896.56 11398.19 21898.50 16078.05 36892.69 29498.02 19891.07 14599.63 12490.09 29998.36 15198.04 212
test_vis1_n95.47 17995.13 17996.49 23597.77 21390.41 30999.27 2698.11 23396.58 7399.66 899.18 6367.00 36599.62 12799.21 599.40 9999.44 100
MVS_111021_LR98.34 4698.23 4198.67 6899.27 7596.90 9697.95 24199.58 397.14 4898.44 8199.01 9295.03 7099.62 12797.91 5699.75 3899.50 85
MSDG95.93 15695.30 17397.83 13198.90 11995.36 17396.83 33198.37 18591.32 29694.43 22698.73 12890.27 15999.60 12990.05 30298.82 12798.52 195
thres600view795.49 17894.77 19697.67 14898.98 11495.02 18798.85 11196.90 32795.38 12896.63 16796.90 29784.29 28299.59 13088.65 32396.33 20498.40 199
1112_ss96.63 12196.00 13798.50 8198.56 14996.37 12598.18 22198.10 23692.92 24494.84 20998.43 15892.14 11699.58 13194.35 19996.51 19999.56 79
dcpmvs_298.08 5298.59 1196.56 22699.57 3390.34 31199.15 4798.38 18496.82 6399.29 2699.49 1095.78 4199.57 13298.94 999.86 199.77 22
PAPM_NR97.46 8297.11 8898.50 8199.50 4196.41 12398.63 16198.60 13395.18 14097.06 14898.06 19594.26 8899.57 13293.80 21998.87 12499.52 80
API-MVS97.41 8997.25 8397.91 12798.70 13796.80 9998.82 11798.69 11294.53 16998.11 9298.28 17794.50 8199.57 13294.12 20899.49 8897.37 231
mvsany_test197.69 6997.70 6097.66 15198.24 17794.18 23097.53 27797.53 28895.52 12199.66 899.51 694.30 8699.56 13598.38 3598.62 13599.23 126
FA-MVS(test-final)96.41 13595.94 13997.82 13398.21 18195.20 18097.80 25797.58 27993.21 23297.36 13797.70 22889.47 17199.56 13594.12 20897.99 16198.71 180
thres100view90095.38 18794.70 20097.41 16498.98 11494.92 19598.87 10896.90 32795.38 12896.61 16896.88 29884.29 28299.56 13588.11 32496.29 20697.76 218
tfpn200view995.32 19494.62 20397.43 16298.94 11794.98 19198.68 15296.93 32595.33 13196.55 17296.53 31484.23 28699.56 13588.11 32496.29 20697.76 218
thres40095.38 18794.62 20397.65 15298.94 11794.98 19198.68 15296.93 32595.33 13196.55 17296.53 31484.23 28699.56 13588.11 32496.29 20698.40 199
Test_1112_low_res96.34 13795.66 15798.36 9698.56 14995.94 14897.71 26498.07 24392.10 27394.79 21397.29 25991.75 12599.56 13594.17 20696.50 20099.58 77
PAPR96.84 11596.24 12898.65 6998.72 13696.92 9597.36 28998.57 14293.33 22696.67 16597.57 24294.30 8699.56 13591.05 28898.59 13799.47 93
XVG-OURS-SEG-HR96.51 12896.34 12297.02 18798.77 13093.76 24097.79 25998.50 16095.45 12496.94 15299.09 8287.87 21699.55 14296.76 12595.83 21897.74 220
thres20095.25 19694.57 20597.28 17198.81 12894.92 19598.20 21597.11 31395.24 13996.54 17496.22 32584.58 27999.53 14387.93 32896.50 20097.39 229
XVG-OURS96.55 12796.41 12096.99 18898.75 13193.76 24097.50 27998.52 15395.67 11596.83 15899.30 4288.95 19199.53 14395.88 15196.26 21097.69 223
IB-MVS91.98 1793.27 28691.97 29697.19 17597.47 23793.41 25697.09 31195.99 34593.32 22792.47 30295.73 33578.06 33399.53 14394.59 19382.98 35298.62 188
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250694.44 24793.91 24496.04 26099.02 10688.99 33399.06 6379.47 38896.96 5798.36 8499.26 4777.21 34099.52 14696.78 12499.04 11399.59 73
ECVR-MVScopyleft95.95 15395.71 15296.65 21299.02 10690.86 29999.03 7191.80 37596.96 5798.10 9399.26 4781.31 30899.51 14796.90 11299.04 11399.59 73
canonicalmvs97.67 7097.23 8498.98 5498.70 13798.38 3599.34 1898.39 18196.76 6697.67 12697.40 25492.26 11199.49 14898.28 4096.28 20999.08 151
131496.25 14295.73 14897.79 13597.13 26395.55 16798.19 21898.59 13593.47 22192.03 31197.82 22091.33 13899.49 14894.62 19098.44 14598.32 204
RPSCF94.87 21995.40 16193.26 33098.89 12082.06 36698.33 19798.06 24890.30 31896.56 17099.26 4787.09 23099.49 14893.82 21896.32 20598.24 205
OMC-MVS97.55 8097.34 8098.20 10899.33 5795.92 15298.28 20798.59 13595.52 12197.97 10699.10 7693.28 9999.49 14895.09 17798.88 12299.19 133
test111195.94 15595.78 14596.41 24498.99 11390.12 31399.04 6892.45 37496.99 5698.03 9999.27 4681.40 30799.48 15296.87 11899.04 11399.63 67
alignmvs97.56 7997.07 9199.01 5298.66 14298.37 3998.83 11598.06 24896.74 6798.00 10597.65 23490.80 14999.48 15298.37 3696.56 19799.19 133
tttt051796.07 14795.51 16097.78 13698.41 16094.84 19899.28 2494.33 36494.26 17997.64 13098.64 13684.05 29099.47 15495.34 16897.60 17799.03 154
thisisatest053096.01 14995.36 16697.97 12498.38 16195.52 16898.88 10494.19 36694.04 18497.64 13098.31 17583.82 29799.46 15595.29 17297.70 17498.93 165
thisisatest051595.61 17794.89 19397.76 13998.15 19195.15 18396.77 33294.41 36292.95 24397.18 14297.43 25284.78 27499.45 15694.63 18897.73 17398.68 182
SDMVSNet96.85 11496.42 11998.14 11199.30 6696.38 12499.21 3899.23 1495.92 10095.96 19298.76 12685.88 25299.44 15797.93 5495.59 21998.60 189
MSLP-MVS++98.56 2598.57 1298.55 7599.26 7796.80 9998.71 14599.05 2997.28 3698.84 5299.28 4496.47 2299.40 15898.52 2699.70 5099.47 93
PVSNet_088.72 1991.28 30690.03 31295.00 29797.99 20187.29 35394.84 36098.50 16092.06 27489.86 33095.19 34279.81 32199.39 15992.27 26269.79 37498.33 203
OPU-MVS99.37 2099.24 8499.05 1499.02 7499.16 6797.81 399.37 16097.24 9799.73 4499.70 47
ETV-MVS97.96 5597.81 5698.40 9498.42 15897.27 8098.73 14098.55 14696.84 6198.38 8397.44 25195.39 5299.35 16197.62 7898.89 12198.58 193
Vis-MVSNetpermissive97.42 8897.11 8898.34 9798.66 14296.23 13199.22 3599.00 3296.63 7298.04 9899.21 5588.05 21199.35 16196.01 14899.21 10799.45 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS97.75 6497.58 6498.27 10198.38 16196.44 11999.01 7698.60 13395.88 10597.26 13997.53 24594.97 7199.33 16397.38 9499.20 10899.05 153
sd_testset96.17 14395.76 14797.42 16399.30 6694.34 22398.82 11799.08 2595.92 10095.96 19298.76 12682.83 30199.32 16495.56 16395.59 21998.60 189
lupinMVS97.44 8697.22 8598.12 11698.07 19595.76 15997.68 26697.76 26994.50 17298.79 5598.61 13892.34 10899.30 16597.58 8199.59 7099.31 114
TAPA-MVS93.98 795.35 19194.56 20697.74 14199.13 9894.83 20098.33 19798.64 12886.62 34696.29 18298.61 13894.00 9399.29 16680.00 36299.41 9799.09 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_Test97.28 9597.00 9398.13 11498.33 17195.97 14598.74 13698.07 24394.27 17898.44 8198.07 19492.48 10699.26 16796.43 13498.19 15699.16 139
Effi-MVS+97.12 10496.69 10998.39 9598.19 18596.72 10497.37 28798.43 17593.71 20697.65 12998.02 19892.20 11599.25 16896.87 11897.79 16999.19 133
diffmvspermissive97.58 7797.40 7798.13 11498.32 17495.81 15898.06 23198.37 18596.20 8998.74 5998.89 10891.31 13999.25 16898.16 4398.52 14099.34 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmvs94.60 23294.36 21995.33 28997.46 23888.60 33896.88 32797.68 27291.29 29893.80 25996.42 31888.58 19699.24 17091.06 28696.04 21698.17 209
casdiffmvspermissive97.63 7397.41 7698.28 10098.33 17196.14 13698.82 11798.32 19296.38 8497.95 10799.21 5591.23 14199.23 17198.12 4498.37 14999.48 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason97.32 9497.08 9098.06 12097.45 24195.59 16397.87 25197.91 26394.79 15998.55 7398.83 11591.12 14299.23 17197.58 8199.60 6899.34 108
jason: jason.
casdiffmvs_mvgpermissive97.72 6697.48 7298.44 8998.42 15896.59 11198.92 9598.44 17196.20 8997.76 11799.20 5791.66 12899.23 17198.27 4198.41 14899.49 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet97.46 8297.28 8297.99 12398.64 14495.38 17299.33 2198.31 19493.61 21797.19 14199.07 8594.05 9199.23 17196.89 11398.43 14799.37 107
PMMVS96.60 12296.33 12397.41 16497.90 20793.93 23597.35 29098.41 17792.84 24797.76 11797.45 25091.10 14499.20 17596.26 13897.91 16499.11 145
gm-plane-assit95.88 32587.47 35189.74 32796.94 29599.19 17693.32 232
baseline295.11 20494.52 20896.87 19996.65 29193.56 24898.27 20994.10 36893.45 22292.02 31297.43 25287.45 22799.19 17693.88 21697.41 18197.87 216
baseline195.84 16195.12 18198.01 12298.49 15595.98 14098.73 14097.03 31995.37 13096.22 18398.19 18789.96 16399.16 17894.60 19187.48 33098.90 167
baseline97.64 7297.44 7598.25 10498.35 16496.20 13299.00 7898.32 19296.33 8698.03 9999.17 6491.35 13799.16 17898.10 4598.29 15599.39 105
tpmrst95.63 17395.69 15595.44 28597.54 23288.54 33996.97 31697.56 28193.50 22097.52 13596.93 29689.49 16999.16 17895.25 17496.42 20298.64 187
CS-MVS-test98.49 3098.50 1698.46 8699.20 8997.05 9099.64 498.50 16097.45 2698.88 5099.14 7195.25 6299.15 18198.83 1299.56 8099.20 129
Fast-Effi-MVS+96.28 14095.70 15498.03 12198.29 17695.97 14598.58 16798.25 20891.74 28195.29 20197.23 26491.03 14699.15 18192.90 24597.96 16398.97 160
ACMP93.49 1095.34 19294.98 18896.43 24397.67 22193.48 25398.73 14098.44 17194.94 15692.53 29998.53 14784.50 28199.14 18395.48 16794.00 23896.66 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS98.44 3698.49 1798.31 9999.08 10296.73 10399.67 398.47 16697.17 4598.94 4499.10 7695.73 4299.13 18498.71 1499.49 8899.09 147
tpm cat193.36 28292.80 28495.07 29697.58 22787.97 34896.76 33397.86 26582.17 36493.53 26696.04 32986.13 24799.13 18489.24 31795.87 21798.10 211
BH-RMVSNet95.92 15795.32 17097.69 14698.32 17494.64 20698.19 21897.45 29694.56 16796.03 18898.61 13885.02 26999.12 18690.68 29399.06 11299.30 117
ACMM93.85 995.69 17195.38 16596.61 21997.61 22593.84 23898.91 9698.44 17195.25 13794.28 23498.47 15486.04 25199.12 18695.50 16693.95 24096.87 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_rt91.29 30590.65 30593.19 33297.45 24186.25 35698.57 17290.90 37993.30 22986.94 34993.59 35662.07 36999.11 18897.48 9095.58 22194.22 355
XVG-ACMP-BASELINE94.54 23794.14 22995.75 27596.55 29591.65 28898.11 22898.44 17194.96 15394.22 23897.90 20979.18 32599.11 18894.05 21293.85 24296.48 312
LPG-MVS_test95.62 17495.34 16796.47 23897.46 23893.54 24998.99 8198.54 14894.67 16494.36 23098.77 12285.39 26199.11 18895.71 15894.15 23396.76 270
LGP-MVS_train96.47 23897.46 23893.54 24998.54 14894.67 16494.36 23098.77 12285.39 26199.11 18895.71 15894.15 23396.76 270
HyFIR lowres test96.90 11296.49 11898.14 11199.33 5795.56 16597.38 28599.65 292.34 26497.61 13298.20 18689.29 17699.10 19296.97 10697.60 17799.77 22
TDRefinement91.06 30989.68 31495.21 29085.35 37991.49 29198.51 18097.07 31691.47 28888.83 34197.84 21677.31 33999.09 19392.79 24877.98 36795.04 347
ACMH92.88 1694.55 23693.95 24196.34 24997.63 22493.26 26298.81 12498.49 16593.43 22389.74 33198.53 14781.91 30499.08 19493.69 22093.30 26096.70 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42097.18 10197.18 8697.20 17498.81 12893.27 26195.78 35199.15 2195.25 13796.79 16398.11 19292.29 11099.07 19598.56 1999.85 599.25 125
OPM-MVS95.69 17195.33 16996.76 20596.16 31594.63 20798.43 19098.39 18196.64 7195.02 20698.78 12085.15 26899.05 19695.21 17694.20 23096.60 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MDTV_nov1_ep1395.40 16197.48 23688.34 34396.85 32997.29 30693.74 20397.48 13697.26 26089.18 18099.05 19691.92 27297.43 180
ACMH+92.99 1494.30 25493.77 25595.88 27097.81 21192.04 28198.71 14598.37 18593.99 18990.60 32598.47 15480.86 31499.05 19692.75 24992.40 27196.55 298
LTVRE_ROB92.95 1594.60 23293.90 24596.68 21197.41 24694.42 21898.52 17698.59 13591.69 28491.21 31898.35 16884.87 27299.04 19991.06 28693.44 25796.60 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS94.53 23993.73 25996.92 19798.50 15393.52 25298.34 19698.10 23693.83 19895.94 19497.98 20485.59 25899.03 20094.35 19980.94 36098.22 207
HQP_MVS96.14 14595.90 14196.85 20097.42 24394.60 21298.80 12598.56 14497.28 3695.34 19998.28 17787.09 23099.03 20096.07 14294.27 22796.92 247
plane_prior598.56 14499.03 20096.07 14294.27 22796.92 247
hse-mvs295.71 16895.30 17396.93 19498.50 15393.53 25198.36 19498.10 23697.48 2398.67 6397.99 20289.76 16599.02 20397.95 5280.91 36198.22 207
dp94.15 26493.90 24594.90 30097.31 24986.82 35596.97 31697.19 31291.22 30296.02 18996.61 31385.51 26099.02 20390.00 30494.30 22698.85 169
EC-MVSNet98.21 5198.11 4898.49 8398.34 16997.26 8499.61 598.43 17596.78 6498.87 5198.84 11393.72 9599.01 20598.91 1099.50 8699.19 133
BH-untuned95.95 15395.72 14996.65 21298.55 15192.26 27698.23 21197.79 26893.73 20494.62 21698.01 20088.97 19099.00 20693.04 24098.51 14198.68 182
GeoE96.58 12596.07 13398.10 11798.35 16495.89 15599.34 1898.12 23093.12 23696.09 18698.87 11089.71 16798.97 20792.95 24398.08 16099.43 102
test-LLR95.10 20594.87 19495.80 27296.77 28289.70 31996.91 32195.21 35495.11 14494.83 21195.72 33787.71 21998.97 20793.06 23898.50 14298.72 178
test-mter94.08 27093.51 27095.80 27296.77 28289.70 31996.91 32195.21 35492.89 24594.83 21195.72 33777.69 33598.97 20793.06 23898.50 14298.72 178
CLD-MVS95.62 17495.34 16796.46 24197.52 23593.75 24297.27 29798.46 16795.53 12094.42 22798.00 20186.21 24698.97 20796.25 14094.37 22596.66 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tt080594.54 23793.85 24996.63 21697.98 20393.06 27098.77 13297.84 26693.67 21393.80 25998.04 19776.88 34398.96 21194.79 18592.86 26697.86 217
ADS-MVSNet95.00 21094.45 21496.63 21698.00 19991.91 28296.04 34597.74 27190.15 31996.47 17796.64 31187.89 21498.96 21190.08 30097.06 18499.02 155
HQP4-MVS94.45 22298.96 21196.87 258
TR-MVS94.94 21794.20 22397.17 17797.75 21494.14 23197.59 27497.02 32192.28 26895.75 19597.64 23683.88 29498.96 21189.77 30696.15 21498.40 199
HQP-MVS95.72 16795.40 16196.69 21097.20 25694.25 22798.05 23298.46 16796.43 7994.45 22297.73 22586.75 23698.96 21195.30 17094.18 23196.86 261
CostFormer94.95 21594.73 19995.60 28097.28 25089.06 33097.53 27796.89 32989.66 32896.82 16096.72 30686.05 24998.95 21695.53 16596.13 21598.79 173
IS-MVSNet97.22 9796.88 9898.25 10498.85 12596.36 12699.19 4297.97 25695.39 12797.23 14098.99 9491.11 14398.93 21794.60 19198.59 13799.47 93
TESTMET0.1,194.18 26393.69 26295.63 27896.92 27489.12 32996.91 32194.78 35993.17 23494.88 20896.45 31778.52 32798.92 21893.09 23798.50 14298.85 169
Effi-MVS+-dtu96.29 13896.56 11495.51 28197.89 20890.22 31298.80 12598.10 23696.57 7596.45 17996.66 30890.81 14898.91 21995.72 15797.99 16197.40 228
test_post31.83 38488.83 19398.91 219
VPA-MVSNet95.75 16595.11 18297.69 14697.24 25297.27 8098.94 9299.23 1495.13 14295.51 19897.32 25785.73 25598.91 21997.33 9689.55 30696.89 255
PatchmatchNetpermissive95.71 16895.52 15996.29 25397.58 22790.72 30396.84 33097.52 28994.06 18397.08 14596.96 29289.24 17998.90 22292.03 26998.37 14999.26 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post95.10 34489.42 17398.89 223
SCA95.46 18095.13 17996.46 24197.67 22191.29 29497.33 29297.60 27894.68 16396.92 15597.10 27083.97 29298.89 22392.59 25398.32 15499.20 129
ITE_SJBPF95.44 28597.42 24391.32 29397.50 29195.09 14793.59 26398.35 16881.70 30598.88 22589.71 30893.39 25896.12 326
cascas94.63 23193.86 24896.93 19496.91 27694.27 22596.00 34898.51 15585.55 35594.54 21896.23 32384.20 28898.87 22695.80 15596.98 18797.66 224
XXY-MVS95.20 20094.45 21497.46 15996.75 28596.56 11398.86 11098.65 12793.30 22993.27 27698.27 18084.85 27398.87 22694.82 18391.26 28596.96 244
PAPM94.95 21594.00 23797.78 13697.04 26795.65 16296.03 34798.25 20891.23 30194.19 24097.80 22291.27 14098.86 22882.61 35697.61 17698.84 171
BH-w/o95.38 18795.08 18396.26 25498.34 16991.79 28397.70 26597.43 29892.87 24694.24 23797.22 26588.66 19598.84 22991.55 27997.70 17498.16 210
EPMVS94.99 21194.48 21096.52 23397.22 25491.75 28597.23 29891.66 37694.11 18197.28 13896.81 30385.70 25698.84 22993.04 24097.28 18298.97 160
Patchmatch-test94.42 24893.68 26396.63 21697.60 22691.76 28494.83 36197.49 29389.45 33194.14 24297.10 27088.99 18698.83 23185.37 34498.13 15899.29 119
USDC93.33 28592.71 28695.21 29096.83 28190.83 30196.91 32197.50 29193.84 19690.72 32398.14 19077.69 33598.82 23289.51 31393.21 26295.97 330
TinyColmap92.31 29891.53 29994.65 30996.92 27489.75 31796.92 31996.68 33790.45 31489.62 33297.85 21576.06 34698.81 23386.74 33392.51 27095.41 339
LF4IMVS93.14 29192.79 28594.20 31995.88 32588.67 33797.66 26897.07 31693.81 19991.71 31497.65 23477.96 33498.81 23391.47 28091.92 27695.12 344
Fast-Effi-MVS+-dtu95.87 15995.85 14295.91 26797.74 21791.74 28698.69 15198.15 22695.56 11994.92 20797.68 23388.98 18998.79 23593.19 23597.78 17097.20 235
JIA-IIPM93.35 28392.49 29095.92 26696.48 30090.65 30595.01 35696.96 32385.93 35296.08 18787.33 37187.70 22198.78 23691.35 28195.58 22198.34 202
UniMVSNet_ETH3D94.24 25893.33 27596.97 19197.19 25993.38 25898.74 13698.57 14291.21 30393.81 25898.58 14372.85 35898.77 23795.05 17893.93 24198.77 177
tpm294.19 26193.76 25795.46 28497.23 25389.04 33197.31 29496.85 33387.08 34596.21 18496.79 30483.75 29898.74 23892.43 26196.23 21298.59 191
D2MVS95.18 20195.08 18395.48 28297.10 26592.07 27998.30 20499.13 2394.02 18692.90 28796.73 30589.48 17098.73 23994.48 19693.60 25295.65 337
test_fmvs293.43 28193.58 26692.95 33496.97 27183.91 36099.19 4297.24 31095.74 11095.20 20298.27 18069.65 36098.72 24096.26 13893.73 24696.24 322
test_post196.68 33630.43 38587.85 21798.69 24192.59 253
MS-PatchMatch93.84 27693.63 26494.46 31696.18 31289.45 32497.76 26098.27 20392.23 26992.13 30997.49 24679.50 32298.69 24189.75 30799.38 10195.25 341
nrg03096.28 14095.72 14997.96 12696.90 27798.15 5299.39 1298.31 19495.47 12394.42 22798.35 16892.09 11898.69 24197.50 8989.05 31497.04 238
Anonymous2023121194.10 26893.26 27896.61 21999.11 10094.28 22499.01 7698.88 5486.43 34892.81 28997.57 24281.66 30698.68 24494.83 18289.02 31696.88 256
VPNet94.99 21194.19 22497.40 16697.16 26196.57 11298.71 14598.97 3595.67 11594.84 20998.24 18480.36 31798.67 24596.46 13287.32 33496.96 244
jajsoiax95.45 18295.03 18596.73 20695.42 34094.63 20799.14 4998.52 15395.74 11093.22 27798.36 16783.87 29598.65 24696.95 10894.04 23696.91 252
mvs_tets95.41 18695.00 18696.65 21295.58 33394.42 21899.00 7898.55 14695.73 11293.21 27898.38 16583.45 29998.63 24797.09 10294.00 23896.91 252
tfpnnormal93.66 27792.70 28796.55 23196.94 27395.94 14898.97 8499.19 1891.04 30591.38 31797.34 25584.94 27198.61 24885.45 34389.02 31695.11 345
PS-MVSNAJss96.43 13096.26 12796.92 19795.84 32795.08 18699.16 4698.50 16095.87 10693.84 25798.34 17294.51 7898.61 24896.88 11593.45 25697.06 237
CMPMVSbinary66.06 2189.70 31989.67 31589.78 34493.19 36076.56 36997.00 31598.35 18880.97 36581.57 36597.75 22474.75 35198.61 24889.85 30593.63 25094.17 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
iter_conf_final96.42 13196.12 13197.34 16998.46 15696.55 11599.08 6198.06 24896.03 9695.63 19698.46 15687.72 21898.59 25197.84 6393.80 24496.87 258
iter_conf0596.13 14695.79 14497.15 17898.16 19095.99 13998.88 10497.98 25495.91 10295.58 19798.46 15685.53 25998.59 25197.88 5993.75 24596.86 261
OurMVSNet-221017-094.21 25994.00 23794.85 30295.60 33289.22 32898.89 10197.43 29895.29 13492.18 30898.52 15082.86 30098.59 25193.46 22891.76 27796.74 272
Vis-MVSNet (Re-imp)96.87 11396.55 11597.83 13198.73 13295.46 17099.20 4098.30 20094.96 15396.60 16998.87 11090.05 16198.59 25193.67 22398.60 13699.46 97
V4294.78 22294.14 22996.70 20996.33 30895.22 17998.97 8498.09 24092.32 26694.31 23397.06 28088.39 20298.55 25592.90 24588.87 31896.34 318
mvsmamba96.57 12696.32 12497.32 17096.60 29296.43 12099.54 797.98 25496.49 7695.20 20298.64 13690.82 14798.55 25597.97 5193.65 24996.98 242
EI-MVSNet95.96 15295.83 14396.36 24797.93 20593.70 24698.12 22698.27 20393.70 20895.07 20499.02 8892.23 11398.54 25794.68 18693.46 25496.84 263
MVSTER96.06 14895.72 14997.08 18498.23 17995.93 15198.73 14098.27 20394.86 15795.07 20498.09 19388.21 20598.54 25796.59 12793.46 25496.79 267
v7n94.19 26193.43 27396.47 23895.90 32494.38 22199.26 2798.34 19091.99 27592.76 29197.13 26988.31 20398.52 25989.48 31487.70 32896.52 304
TAMVS97.02 10796.79 10397.70 14598.06 19795.31 17798.52 17698.31 19493.95 19197.05 14998.61 13893.49 9798.52 25995.33 16997.81 16899.29 119
bld_raw_dy_0_6495.74 16695.31 17297.03 18696.35 30695.76 15999.12 5397.37 30395.97 9894.70 21598.48 15285.80 25498.49 26196.55 12993.48 25396.84 263
v894.47 24593.77 25596.57 22596.36 30594.83 20099.05 6598.19 21591.92 27793.16 27996.97 29088.82 19498.48 26291.69 27787.79 32796.39 316
GA-MVS94.81 22094.03 23397.14 17997.15 26293.86 23796.76 33397.58 27994.00 18894.76 21497.04 28380.91 31298.48 26291.79 27496.25 21199.09 147
UniMVSNet (Re)95.78 16495.19 17797.58 15596.99 27097.47 7598.79 13099.18 1995.60 11793.92 25297.04 28391.68 12698.48 26295.80 15587.66 32996.79 267
PC_three_145295.08 14899.60 1299.16 6797.86 298.47 26597.52 8899.72 4799.74 31
mvs_anonymous96.70 12096.53 11797.18 17698.19 18593.78 23998.31 20298.19 21594.01 18794.47 22198.27 18092.08 11998.46 26697.39 9397.91 16499.31 114
v14419294.39 25093.70 26196.48 23796.06 31894.35 22298.58 16798.16 22591.45 28994.33 23297.02 28587.50 22598.45 26791.08 28589.11 31396.63 287
v2v48294.69 22494.03 23396.65 21296.17 31394.79 20398.67 15598.08 24192.72 25094.00 24997.16 26887.69 22298.45 26792.91 24488.87 31896.72 275
FIs96.51 12896.12 13197.67 14897.13 26397.54 7399.36 1599.22 1795.89 10394.03 24898.35 16891.98 12198.44 26996.40 13592.76 26897.01 240
v119294.32 25393.58 26696.53 23296.10 31694.45 21698.50 18198.17 22391.54 28794.19 24097.06 28086.95 23498.43 27090.14 29889.57 30496.70 279
MVP-Stereo94.28 25793.92 24295.35 28894.95 34592.60 27497.97 24097.65 27491.61 28690.68 32497.09 27486.32 24598.42 27189.70 30999.34 10395.02 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v192192094.20 26093.47 27296.40 24695.98 32194.08 23298.52 17698.15 22691.33 29594.25 23697.20 26786.41 24398.42 27190.04 30389.39 31096.69 284
RRT_MVS95.98 15195.78 14596.56 22696.48 30094.22 22999.57 697.92 26195.89 10393.95 25098.70 13089.27 17798.42 27197.23 9893.02 26397.04 238
v124094.06 27293.29 27796.34 24996.03 32093.90 23698.44 18898.17 22391.18 30494.13 24397.01 28786.05 24998.42 27189.13 31989.50 30896.70 279
lessismore_v094.45 31794.93 34688.44 34291.03 37886.77 35197.64 23676.23 34598.42 27190.31 29785.64 34796.51 307
EPNet_dtu95.21 19994.95 19095.99 26296.17 31390.45 30898.16 22297.27 30896.77 6593.14 28298.33 17390.34 15798.42 27185.57 34198.81 12899.09 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS91.13 30890.12 31194.17 32194.73 35089.00 33298.13 22597.81 26789.22 33585.32 36096.46 31667.71 36398.42 27187.89 32993.82 24395.08 346
CDS-MVSNet96.99 10896.69 10997.90 12898.05 19895.98 14098.20 21598.33 19193.67 21396.95 15198.49 15193.54 9698.42 27195.24 17597.74 17299.31 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp95.42 18494.91 19196.94 19395.10 34395.90 15499.14 4998.41 17793.75 20193.16 27997.46 24887.50 22598.41 27995.63 16294.03 23796.50 309
v114494.59 23493.92 24296.60 22196.21 31094.78 20498.59 16598.14 22891.86 28094.21 23997.02 28587.97 21298.41 27991.72 27689.57 30496.61 289
pm-mvs193.94 27593.06 28096.59 22296.49 29995.16 18198.95 9098.03 25192.32 26691.08 32097.84 21684.54 28098.41 27992.16 26386.13 34696.19 325
v1094.29 25593.55 26896.51 23496.39 30494.80 20298.99 8198.19 21591.35 29493.02 28596.99 28888.09 20998.41 27990.50 29588.41 32296.33 320
MVSFormer97.57 7897.49 7097.84 13098.07 19595.76 15999.47 998.40 17994.98 15198.79 5598.83 11592.34 10898.41 27996.91 10999.59 7099.34 108
test_djsdf96.00 15095.69 15596.93 19495.72 32995.49 16999.47 998.40 17994.98 15194.58 21797.86 21389.16 18198.41 27996.91 10994.12 23596.88 256
gg-mvs-nofinetune92.21 29990.58 30797.13 18096.75 28595.09 18595.85 34989.40 38185.43 35694.50 22081.98 37480.80 31598.40 28592.16 26398.33 15297.88 215
pmmvs691.77 30190.63 30695.17 29294.69 35191.24 29598.67 15597.92 26186.14 35089.62 33297.56 24475.79 34798.34 28690.75 29284.56 34895.94 331
MVS-HIRNet89.46 32388.40 32392.64 33597.58 22782.15 36594.16 36893.05 37375.73 37090.90 32182.52 37379.42 32398.33 28783.53 35398.68 13097.43 226
FC-MVSNet-test96.42 13196.05 13497.53 15896.95 27297.27 8099.36 1599.23 1495.83 10793.93 25198.37 16692.00 12098.32 28896.02 14792.72 26997.00 241
v14894.29 25593.76 25795.91 26796.10 31692.93 27198.58 16797.97 25692.59 25593.47 27196.95 29488.53 20098.32 28892.56 25587.06 33796.49 310
UniMVSNet_NR-MVSNet95.71 16895.15 17897.40 16696.84 28096.97 9298.74 13699.24 1295.16 14193.88 25497.72 22791.68 12698.31 29095.81 15387.25 33596.92 247
DU-MVS95.42 18494.76 19797.40 16696.53 29696.97 9298.66 15798.99 3495.43 12593.88 25497.69 23088.57 19798.31 29095.81 15387.25 33596.92 247
miper_enhance_ethall95.10 20594.75 19896.12 25997.53 23493.73 24496.61 33898.08 24192.20 27293.89 25396.65 31092.44 10798.30 29294.21 20591.16 28696.34 318
WR-MVS95.15 20294.46 21297.22 17396.67 29096.45 11898.21 21398.81 7894.15 18093.16 27997.69 23087.51 22398.30 29295.29 17288.62 32096.90 254
tpm94.13 26593.80 25295.12 29396.50 29887.91 34997.44 28095.89 34992.62 25396.37 18196.30 32084.13 28998.30 29293.24 23391.66 28099.14 142
OpenMVS_ROBcopyleft86.42 2089.00 32487.43 33293.69 32393.08 36189.42 32597.91 24596.89 32978.58 36785.86 35594.69 34769.48 36198.29 29577.13 36993.29 26193.36 364
cl2294.68 22694.19 22496.13 25898.11 19393.60 24796.94 31898.31 19492.43 26193.32 27596.87 30086.51 23998.28 29694.10 21091.16 28696.51 307
SixPastTwentyTwo93.34 28492.86 28394.75 30695.67 33089.41 32698.75 13396.67 33893.89 19390.15 32998.25 18380.87 31398.27 29790.90 29090.64 29196.57 294
WR-MVS_H95.05 20894.46 21296.81 20396.86 27995.82 15799.24 3099.24 1293.87 19592.53 29996.84 30290.37 15698.24 29893.24 23387.93 32696.38 317
pmmvs494.69 22493.99 23996.81 20395.74 32895.94 14897.40 28397.67 27390.42 31593.37 27397.59 24089.08 18498.20 29992.97 24291.67 27996.30 321
NR-MVSNet94.98 21394.16 22797.44 16196.53 29697.22 8698.74 13698.95 3894.96 15389.25 33697.69 23089.32 17598.18 30094.59 19387.40 33296.92 247
eth_miper_zixun_eth94.68 22694.41 21795.47 28397.64 22391.71 28796.73 33598.07 24392.71 25193.64 26297.21 26690.54 15498.17 30193.38 22989.76 30196.54 299
miper_ehance_all_eth95.01 20994.69 20195.97 26497.70 21993.31 26097.02 31498.07 24392.23 26993.51 26996.96 29291.85 12398.15 30293.68 22191.16 28696.44 315
Baseline_NR-MVSNet94.35 25193.81 25195.96 26596.20 31194.05 23398.61 16496.67 33891.44 29093.85 25697.60 23988.57 19798.14 30394.39 19786.93 33895.68 336
cl____94.51 24194.01 23696.02 26197.58 22793.40 25797.05 31297.96 25891.73 28392.76 29197.08 27689.06 18598.13 30492.61 25090.29 29596.52 304
CP-MVSNet94.94 21794.30 22096.83 20196.72 28795.56 16599.11 5598.95 3893.89 19392.42 30497.90 20987.19 22998.12 30594.32 20188.21 32396.82 266
PS-CasMVS94.67 22993.99 23996.71 20796.68 28995.26 17899.13 5299.03 3093.68 21192.33 30597.95 20685.35 26398.10 30693.59 22588.16 32596.79 267
IterMVS-LS95.46 18095.21 17696.22 25598.12 19293.72 24598.32 20198.13 22993.71 20694.26 23597.31 25892.24 11298.10 30694.63 18890.12 29796.84 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs593.65 27992.97 28295.68 27695.49 33692.37 27598.20 21597.28 30789.66 32892.58 29797.26 26082.14 30398.09 30893.18 23690.95 28996.58 292
TransMVSNet (Re)92.67 29591.51 30096.15 25696.58 29494.65 20598.90 9796.73 33490.86 30889.46 33597.86 21385.62 25798.09 30886.45 33581.12 35895.71 335
DIV-MVS_self_test94.52 24094.03 23395.99 26297.57 23193.38 25897.05 31297.94 25991.74 28192.81 28997.10 27089.12 18298.07 31092.60 25190.30 29496.53 301
GG-mvs-BLEND96.59 22296.34 30794.98 19196.51 34188.58 38293.10 28494.34 35280.34 31998.05 31189.53 31296.99 18696.74 272
TranMVSNet+NR-MVSNet95.14 20394.48 21097.11 18296.45 30296.36 12699.03 7199.03 3095.04 14993.58 26497.93 20788.27 20498.03 31294.13 20786.90 34096.95 246
c3_l94.79 22194.43 21695.89 26997.75 21493.12 26897.16 30898.03 25192.23 26993.46 27297.05 28291.39 13598.01 31393.58 22689.21 31296.53 301
FMVSNet394.97 21494.26 22197.11 18298.18 18796.62 10698.56 17398.26 20793.67 21394.09 24497.10 27084.25 28498.01 31392.08 26592.14 27296.70 279
FMVSNet294.47 24593.61 26597.04 18598.21 18196.43 12098.79 13098.27 20392.46 25793.50 27097.09 27481.16 30998.00 31591.09 28491.93 27596.70 279
test_040291.32 30490.27 31094.48 31496.60 29291.12 29698.50 18197.22 31186.10 35188.30 34396.98 28977.65 33797.99 31678.13 36892.94 26594.34 352
GBi-Net94.49 24293.80 25296.56 22698.21 18195.00 18898.82 11798.18 21892.46 25794.09 24497.07 27781.16 30997.95 31792.08 26592.14 27296.72 275
test194.49 24293.80 25296.56 22698.21 18195.00 18898.82 11798.18 21892.46 25794.09 24497.07 27781.16 30997.95 31792.08 26592.14 27296.72 275
FMVSNet193.19 29092.07 29596.56 22697.54 23295.00 18898.82 11798.18 21890.38 31692.27 30697.07 27773.68 35697.95 31789.36 31691.30 28396.72 275
our_test_393.65 27993.30 27694.69 30795.45 33889.68 32196.91 32197.65 27491.97 27691.66 31596.88 29889.67 16897.93 32088.02 32791.49 28196.48 312
ambc89.49 34586.66 37675.78 37092.66 37096.72 33586.55 35392.50 36446.01 37497.90 32190.32 29682.09 35394.80 351
PEN-MVS94.42 24893.73 25996.49 23596.28 30994.84 19899.17 4599.00 3293.51 21992.23 30797.83 21986.10 24897.90 32192.55 25686.92 33996.74 272
Patchmtry93.22 28892.35 29295.84 27196.77 28293.09 26994.66 36497.56 28187.37 34492.90 28796.24 32188.15 20797.90 32187.37 33190.10 29896.53 301
PatchT93.06 29291.97 29696.35 24896.69 28892.67 27394.48 36597.08 31486.62 34697.08 14592.23 36587.94 21397.90 32178.89 36696.69 19298.49 196
CR-MVSNet94.76 22394.15 22896.59 22297.00 26893.43 25494.96 35797.56 28192.46 25796.93 15396.24 32188.15 20797.88 32587.38 33096.65 19498.46 197
ppachtmachnet_test93.22 28892.63 28894.97 29895.45 33890.84 30096.88 32797.88 26490.60 31092.08 31097.26 26088.08 21097.86 32685.12 34590.33 29396.22 323
APD_test188.22 32788.01 32788.86 34695.98 32174.66 37597.21 30096.44 34283.96 36186.66 35297.90 20960.95 37097.84 32782.73 35490.23 29694.09 358
miper_lstm_enhance94.33 25294.07 23295.11 29497.75 21490.97 29897.22 29998.03 25191.67 28592.76 29196.97 29090.03 16297.78 32892.51 25889.64 30396.56 296
dmvs_re94.48 24494.18 22695.37 28797.68 22090.11 31498.54 17597.08 31494.56 16794.42 22797.24 26384.25 28497.76 32991.02 28992.83 26798.24 205
N_pmnet87.12 33287.77 33085.17 35295.46 33761.92 38397.37 28770.66 38985.83 35388.73 34296.04 32985.33 26597.76 32980.02 36190.48 29295.84 332
LCM-MVSNet-Re95.22 19895.32 17094.91 29998.18 18787.85 35098.75 13395.66 35095.11 14488.96 33796.85 30190.26 16097.65 33195.65 16198.44 14599.22 128
K. test v392.55 29691.91 29894.48 31495.64 33189.24 32799.07 6294.88 35894.04 18486.78 35097.59 24077.64 33897.64 33292.08 26589.43 30996.57 294
test_vis3_rt79.22 33577.40 34184.67 35386.44 37774.85 37497.66 26881.43 38684.98 35767.12 37781.91 37528.09 38697.60 33388.96 32080.04 36281.55 375
SD-MVS98.64 1398.68 898.53 7999.33 5798.36 4098.90 9798.85 7097.28 3699.72 699.39 2296.63 1997.60 33398.17 4299.85 599.64 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DTE-MVSNet93.98 27493.26 27896.14 25796.06 31894.39 22099.20 4098.86 6793.06 23891.78 31397.81 22185.87 25397.58 33590.53 29486.17 34496.46 314
ADS-MVSNet294.58 23594.40 21895.11 29498.00 19988.74 33696.04 34597.30 30590.15 31996.47 17796.64 31187.89 21497.56 33690.08 30097.06 18499.02 155
ET-MVSNet_ETH3D94.13 26592.98 28197.58 15598.22 18096.20 13297.31 29495.37 35294.53 16979.56 36797.63 23886.51 23997.53 33796.91 10990.74 29099.02 155
CVMVSNet95.43 18396.04 13593.57 32497.93 20583.62 36198.12 22698.59 13595.68 11496.56 17099.02 8887.51 22397.51 33893.56 22797.44 17999.60 71
mvsany_test388.80 32588.04 32691.09 34389.78 37181.57 36797.83 25695.49 35193.81 19987.53 34693.95 35456.14 37297.43 33994.68 18683.13 35194.26 353
IterMVS-SCA-FT94.11 26793.87 24794.85 30297.98 20390.56 30797.18 30498.11 23393.75 20192.58 29797.48 24783.97 29297.41 34092.48 26091.30 28396.58 292
IterMVS94.09 26993.85 24994.80 30597.99 20190.35 31097.18 30498.12 23093.68 21192.46 30397.34 25584.05 29097.41 34092.51 25891.33 28296.62 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UnsupCasMVSNet_bld87.17 33085.12 33693.31 32991.94 36488.77 33594.92 35998.30 20084.30 36082.30 36490.04 36863.96 36897.25 34285.85 34074.47 37393.93 362
MIMVSNet93.26 28792.21 29496.41 24497.73 21893.13 26795.65 35297.03 31991.27 30094.04 24796.06 32875.33 34897.19 34386.56 33496.23 21298.92 166
new_pmnet90.06 31789.00 32193.22 33194.18 35288.32 34496.42 34396.89 32986.19 34985.67 35793.62 35577.18 34197.10 34481.61 35889.29 31194.23 354
testgi93.06 29292.45 29194.88 30196.43 30389.90 31598.75 13397.54 28795.60 11791.63 31697.91 20874.46 35397.02 34586.10 33793.67 24797.72 222
Anonymous2024052191.18 30790.44 30893.42 32593.70 35888.47 34198.94 9297.56 28188.46 33989.56 33495.08 34577.15 34296.97 34683.92 35189.55 30694.82 350
test0.0.03 194.08 27093.51 27095.80 27295.53 33592.89 27297.38 28595.97 34695.11 14492.51 30196.66 30887.71 21996.94 34787.03 33293.67 24797.57 225
KD-MVS_2432*160089.61 32187.96 32894.54 31194.06 35591.59 28995.59 35397.63 27689.87 32488.95 33894.38 35078.28 33096.82 34884.83 34668.05 37595.21 342
miper_refine_blended89.61 32187.96 32894.54 31194.06 35591.59 28995.59 35397.63 27689.87 32488.95 33894.38 35078.28 33096.82 34884.83 34668.05 37595.21 342
pmmvs-eth3d90.36 31589.05 32094.32 31891.10 36892.12 27797.63 27396.95 32488.86 33784.91 36193.13 36078.32 32996.74 35088.70 32281.81 35694.09 358
PM-MVS87.77 32886.55 33491.40 34291.03 36983.36 36396.92 31995.18 35691.28 29986.48 35493.42 35753.27 37396.74 35089.43 31581.97 35594.11 357
UnsupCasMVSNet_eth90.99 31089.92 31394.19 32094.08 35489.83 31697.13 31098.67 12093.69 20985.83 35696.19 32675.15 34996.74 35089.14 31879.41 36396.00 329
MDA-MVSNet_test_wron90.71 31289.38 31794.68 30894.83 34790.78 30297.19 30397.46 29487.60 34272.41 37495.72 33786.51 23996.71 35385.92 33986.80 34196.56 296
YYNet190.70 31389.39 31694.62 31094.79 34990.65 30597.20 30197.46 29487.54 34372.54 37395.74 33386.51 23996.66 35486.00 33886.76 34296.54 299
MDA-MVSNet-bldmvs89.97 31888.35 32494.83 30495.21 34291.34 29297.64 27097.51 29088.36 34071.17 37596.13 32779.22 32496.63 35583.65 35286.27 34396.52 304
Anonymous2023120691.66 30291.10 30293.33 32894.02 35787.35 35298.58 16797.26 30990.48 31290.16 32896.31 31983.83 29696.53 35679.36 36489.90 30096.12 326
Patchmatch-RL test91.49 30390.85 30493.41 32691.37 36684.40 35892.81 36995.93 34891.87 27987.25 34794.87 34688.99 18696.53 35692.54 25782.00 35499.30 117
EU-MVSNet93.66 27794.14 22992.25 33995.96 32383.38 36298.52 17698.12 23094.69 16292.61 29698.13 19187.36 22896.39 35891.82 27390.00 29996.98 242
EGC-MVSNET75.22 34369.54 34692.28 33894.81 34889.58 32297.64 27096.50 3411.82 3865.57 38795.74 33368.21 36296.26 35973.80 37291.71 27890.99 368
KD-MVS_self_test90.38 31489.38 31793.40 32792.85 36288.94 33497.95 24197.94 25990.35 31790.25 32793.96 35379.82 32095.94 36084.62 35076.69 36995.33 340
DSMNet-mixed92.52 29792.58 28992.33 33794.15 35382.65 36498.30 20494.26 36589.08 33692.65 29595.73 33585.01 27095.76 36186.24 33697.76 17198.59 191
test_f86.07 33485.39 33588.10 34789.28 37275.57 37297.73 26396.33 34389.41 33385.35 35991.56 36743.31 37895.53 36291.32 28284.23 35093.21 366
DeepMVS_CXcopyleft86.78 34997.09 26672.30 37695.17 35775.92 36984.34 36295.19 34270.58 35995.35 36379.98 36389.04 31592.68 367
CL-MVSNet_self_test90.11 31689.14 31993.02 33391.86 36588.23 34696.51 34198.07 24390.49 31190.49 32694.41 34884.75 27595.34 36480.79 36074.95 37195.50 338
FMVSNet591.81 30090.92 30394.49 31397.21 25592.09 27898.00 23897.55 28689.31 33490.86 32295.61 34074.48 35295.32 36585.57 34189.70 30296.07 328
pmmvs386.67 33384.86 33792.11 34088.16 37387.19 35496.63 33794.75 36079.88 36687.22 34892.75 36366.56 36695.20 36681.24 35976.56 37093.96 361
new-patchmatchnet88.50 32687.45 33191.67 34190.31 37085.89 35797.16 30897.33 30489.47 33083.63 36392.77 36276.38 34495.06 36782.70 35577.29 36894.06 360
test_method79.03 33678.17 33881.63 35886.06 37854.40 38882.75 37796.89 32939.54 38180.98 36695.57 34158.37 37194.73 36884.74 34978.61 36495.75 334
MIMVSNet189.67 32088.28 32593.82 32292.81 36391.08 29798.01 23697.45 29687.95 34187.90 34595.87 33267.63 36494.56 36978.73 36788.18 32495.83 333
test20.0390.89 31190.38 30992.43 33693.48 35988.14 34798.33 19797.56 28193.40 22487.96 34496.71 30780.69 31694.13 37079.15 36586.17 34495.01 349
test_fmvs387.17 33087.06 33387.50 34891.21 36775.66 37199.05 6596.61 34092.79 24988.85 34092.78 36143.72 37693.49 37193.95 21384.56 34893.34 365
testf179.02 33777.70 33982.99 35688.10 37466.90 37994.67 36293.11 37071.08 37274.02 37093.41 35834.15 38293.25 37272.25 37378.50 36588.82 370
APD_test279.02 33777.70 33982.99 35688.10 37466.90 37994.67 36293.11 37071.08 37274.02 37093.41 35834.15 38293.25 37272.25 37378.50 36588.82 370
Gipumacopyleft78.40 34076.75 34383.38 35595.54 33480.43 36879.42 37897.40 30064.67 37573.46 37280.82 37645.65 37593.14 37466.32 37787.43 33176.56 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 33976.24 34486.08 35077.26 38571.99 37794.34 36696.72 33561.62 37676.53 36889.33 36933.91 38492.78 37581.85 35774.60 37293.46 363
PMMVS277.95 34175.44 34585.46 35182.54 38074.95 37394.23 36793.08 37272.80 37174.68 36987.38 37036.36 38191.56 37673.95 37163.94 37789.87 369
dmvs_testset87.64 32988.93 32283.79 35495.25 34163.36 38297.20 30191.17 37793.07 23785.64 35895.98 33185.30 26791.52 37769.42 37587.33 33396.49 310
PMVScopyleft61.03 2365.95 34663.57 35073.09 36357.90 38851.22 38985.05 37693.93 36954.45 37744.32 38383.57 37213.22 38789.15 37858.68 37981.00 35978.91 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS77.62 34277.14 34279.05 36079.25 38360.97 38495.79 35095.94 34765.96 37467.93 37694.40 34937.73 38088.88 37968.83 37688.46 32187.29 372
ANet_high69.08 34465.37 34880.22 35965.99 38771.96 37890.91 37390.09 38082.62 36249.93 38278.39 37729.36 38581.75 38062.49 37838.52 38186.95 374
MVEpermissive62.14 2263.28 34959.38 35274.99 36174.33 38665.47 38185.55 37580.50 38752.02 37951.10 38175.00 38010.91 39080.50 38151.60 38053.40 37878.99 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 34764.25 34967.02 36482.28 38159.36 38691.83 37285.63 38352.69 37860.22 37977.28 37841.06 37980.12 38246.15 38141.14 37961.57 380
EMVS64.07 34863.26 35166.53 36581.73 38258.81 38791.85 37184.75 38451.93 38059.09 38075.13 37943.32 37779.09 38342.03 38239.47 38061.69 379
tmp_tt68.90 34566.97 34774.68 36250.78 38959.95 38587.13 37483.47 38538.80 38262.21 37896.23 32364.70 36776.91 38488.91 32130.49 38287.19 373
wuyk23d30.17 35030.18 35430.16 36678.61 38443.29 39066.79 37914.21 39017.31 38314.82 38611.93 38611.55 38941.43 38537.08 38319.30 3835.76 383
test12320.95 35323.72 35612.64 36713.54 3918.19 39196.55 3406.13 3927.48 38516.74 38537.98 38312.97 3886.05 38616.69 3845.43 38523.68 381
testmvs21.48 35224.95 35511.09 36814.89 3906.47 39296.56 3399.87 3917.55 38417.93 38439.02 3829.43 3915.90 38716.56 38512.72 38420.91 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.98 35131.98 3530.00 3690.00 3920.00 3930.00 38098.59 1350.00 3870.00 38898.61 13890.60 1530.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.88 35510.50 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38794.51 780.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.20 35410.94 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38898.43 1580.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.82 198.66 2499.69 198.95 3897.46 2599.39 22
test_one_060199.66 2699.25 298.86 6797.55 2099.20 3099.47 1397.57 6
eth-test20.00 392
eth-test0.00 392
RE-MVS-def98.34 2999.49 4597.86 6199.11 5598.80 8596.49 7699.17 3399.35 3495.29 5997.72 7099.65 5999.71 43
IU-MVS99.71 1999.23 798.64 12895.28 13599.63 1198.35 3799.81 1299.83 8
save fliter99.46 4998.38 3598.21 21398.71 10897.95 7
test072699.72 1299.25 299.06 6398.88 5497.62 1699.56 1399.50 897.42 9
GSMVS99.20 129
test_part299.63 2999.18 1099.27 27
sam_mvs189.45 17299.20 129
sam_mvs88.99 186
MTGPAbinary98.74 100
MTMP98.89 10194.14 367
test9_res96.39 13699.57 7499.69 50
agg_prior295.87 15299.57 7499.68 55
test_prior498.01 5897.86 252
test_prior297.80 25796.12 9397.89 11498.69 13195.96 3596.89 11399.60 68
新几何297.64 270
旧先验199.29 7097.48 7498.70 11199.09 8295.56 4699.47 9199.61 69
原ACMM297.67 267
test22299.23 8597.17 8897.40 28398.66 12388.68 33898.05 9698.96 10094.14 9099.53 8499.61 69
segment_acmp96.85 14
testdata197.32 29396.34 85
plane_prior797.42 24394.63 207
plane_prior697.35 24894.61 21087.09 230
plane_prior498.28 177
plane_prior394.61 21097.02 5495.34 199
plane_prior298.80 12597.28 36
plane_prior197.37 247
plane_prior94.60 21298.44 18896.74 6794.22 229
n20.00 393
nn0.00 393
door-mid94.37 363
test1198.66 123
door94.64 361
HQP5-MVS94.25 227
HQP-NCC97.20 25698.05 23296.43 7994.45 222
ACMP_Plane97.20 25698.05 23296.43 7994.45 222
BP-MVS95.30 170
HQP3-MVS98.46 16794.18 231
HQP2-MVS86.75 236
NP-MVS97.28 25094.51 21597.73 225
MDTV_nov1_ep13_2view84.26 35996.89 32690.97 30697.90 11389.89 16493.91 21599.18 138
ACMMP++_ref92.97 264
ACMMP++93.61 251
Test By Simon94.64 75