This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 5899.38 22499.37 10599.58 11799.62 4199.41 999.87 2999.92 1498.81 47100.00 199.97 199.93 2599.94 11
test_fmvsm_n_192099.69 499.66 399.78 5599.84 3299.44 9999.58 11799.69 1899.43 799.98 699.91 2098.62 73100.00 199.97 199.95 1799.90 16
test_vis1_n_192098.63 16898.40 17599.31 15499.86 2097.94 25499.67 6999.62 4199.43 799.99 299.91 2087.29 378100.00 199.92 1199.92 2799.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3199.86 2099.61 7099.56 13099.63 3999.48 399.98 699.83 7298.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3199.84 3299.63 6799.56 13099.63 3999.47 499.98 699.82 8198.75 5899.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1499.80 5299.66 5699.48 18899.64 3699.45 599.92 1699.92 1498.62 7399.99 499.96 699.99 199.96 7
patch_mono-299.26 7499.62 598.16 30699.81 4694.59 37499.52 15799.64 3699.33 1399.73 7099.90 2799.00 2299.99 499.69 2199.98 499.89 19
h-mvs3397.70 28097.28 30198.97 20199.70 10497.27 28199.36 24299.45 20298.94 5899.66 9299.64 19894.93 21399.99 499.48 4684.36 40799.65 133
xiu_mvs_v1_base_debu99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v1_base99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v1_base_debi99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
EPNet98.86 13998.71 14399.30 15997.20 39998.18 23699.62 9598.91 34799.28 1698.63 30799.81 9595.96 17599.99 499.24 7299.72 12599.73 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.40 5499.28 6099.74 6499.67 11499.31 11599.52 15798.87 35499.55 199.74 6899.80 10896.47 15899.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 8899.01 10099.61 9199.81 4698.86 18199.65 8199.64 3699.39 1099.97 1399.94 693.20 28199.98 1399.55 3499.91 3499.99 1
test_vis1_n97.92 23997.44 27899.34 14799.53 16898.08 24299.74 4699.49 14999.15 21100.00 199.94 679.51 40899.98 1399.88 1399.76 11799.97 4
xiu_mvs_v2_base99.26 7499.25 6799.29 16299.53 16898.91 17599.02 33299.45 20298.80 7399.71 7799.26 32198.94 3299.98 1399.34 6099.23 17198.98 257
PS-MVSNAJ99.32 6499.32 4699.30 15999.57 15698.94 17198.97 34699.46 19198.92 6199.71 7799.24 32399.01 1899.98 1399.35 5599.66 13598.97 258
QAPM98.67 16498.30 18299.80 4999.20 27199.67 5499.77 3499.72 1194.74 37198.73 28799.90 2795.78 18599.98 1396.96 30499.88 5799.76 90
3Dnovator97.25 999.24 7999.05 8899.81 4799.12 29399.66 5699.84 1299.74 1099.09 3698.92 26199.90 2795.94 17899.98 1398.95 10299.92 2799.79 77
OpenMVScopyleft96.50 1698.47 17398.12 19499.52 11899.04 31199.53 8699.82 1699.72 1194.56 37498.08 34199.88 3994.73 22999.98 1397.47 27299.76 11799.06 249
reproduce_model99.63 799.54 1199.90 499.78 5699.88 899.56 13099.55 7899.15 2199.90 1999.90 2799.00 2299.97 2199.11 8399.91 3499.86 32
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2499.44 20699.65 6099.50 17399.61 4899.45 599.87 2999.92 1497.31 12699.97 2199.95 799.99 199.97 4
test_fmvs1_n98.41 17998.14 19199.21 17499.82 4297.71 26799.74 4699.49 14999.32 1499.99 299.95 385.32 38999.97 2199.82 1699.84 8399.96 7
CANet_DTU98.97 12998.87 12499.25 16999.33 23698.42 22899.08 31899.30 28499.16 2099.43 15299.75 14295.27 20299.97 2198.56 16999.95 1799.36 217
MVS_030499.15 9098.96 11099.73 6798.92 32899.37 10599.37 23796.92 40599.51 299.66 9299.78 12796.69 14999.97 2199.84 1599.97 799.84 42
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18298.79 7499.68 8399.81 9598.43 8699.97 2198.88 11299.90 4399.83 52
PGM-MVS99.45 3899.31 5299.86 2499.87 1599.78 3999.58 11799.65 3397.84 18599.71 7799.80 10899.12 1399.97 2198.33 19299.87 6099.83 52
mPP-MVS99.44 4299.30 5499.86 2499.88 1199.79 3399.69 6099.48 16198.12 14899.50 13799.75 14298.78 5199.97 2198.57 16699.89 5499.83 52
CP-MVS99.45 3899.32 4699.85 3199.83 3999.75 4299.69 6099.52 10598.07 15899.53 13299.63 20498.93 3699.97 2198.74 13799.91 3499.83 52
SteuartSystems-ACMMP99.54 1899.42 2599.87 1499.82 4299.81 2899.59 10999.51 11998.62 8999.79 4999.83 7299.28 499.97 2198.48 17699.90 4399.84 42
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 8498.97 10699.82 4499.17 28599.68 5199.81 2099.51 11999.20 1898.72 28899.89 3295.68 18999.97 2198.86 12099.86 6899.81 64
reproduce-ours99.61 899.52 1299.90 499.76 6699.88 899.52 15799.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9199.90 4399.85 36
our_new_method99.61 899.52 1299.90 499.76 6699.88 899.52 15799.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9199.90 4399.85 36
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3199.83 3999.64 6699.52 15799.65 3399.10 3199.98 699.92 1497.35 12599.96 3299.94 999.92 2799.95 9
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3199.84 3299.65 6099.51 16699.67 2399.13 2499.98 699.92 1496.60 15299.96 3299.95 799.96 1299.95 9
mvsany_test199.50 2399.46 2399.62 9099.61 14599.09 14498.94 35299.48 16199.10 3199.96 1499.91 2098.85 4299.96 3299.72 1999.58 14599.82 57
test_fmvs198.88 13598.79 13699.16 17999.69 10897.61 27199.55 14499.49 14999.32 1499.98 699.91 2091.41 32999.96 3299.82 1699.92 2799.90 16
DVP-MVS++99.59 1199.50 1699.88 899.51 17699.88 899.87 899.51 11998.99 4999.88 2499.81 9599.27 599.96 3298.85 12299.80 10399.81 64
MSC_two_6792asdad99.87 1499.51 17699.76 4099.33 26699.96 3298.87 11599.84 8399.89 19
No_MVS99.87 1499.51 17699.76 4099.33 26699.96 3298.87 11599.84 8399.89 19
ZD-MVS99.71 9999.79 3399.61 4896.84 28999.56 12599.54 23898.58 7599.96 3296.93 30799.75 119
SED-MVS99.61 899.52 1299.88 899.84 3299.90 299.60 10299.48 16199.08 3799.91 1799.81 9599.20 799.96 3298.91 10999.85 7599.79 77
test_241102_TWO99.48 16199.08 3799.88 2499.81 9598.94 3299.96 3298.91 10999.84 8399.88 25
ZNCC-MVS99.47 3299.33 4499.87 1499.87 1599.81 2899.64 8499.67 2398.08 15799.55 12999.64 19898.91 3799.96 3298.72 14099.90 4399.82 57
DVP-MVScopyleft99.57 1599.47 2099.88 899.85 2699.89 499.57 12499.37 24699.10 3199.81 4399.80 10898.94 3299.96 3298.93 10699.86 6899.81 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4999.81 4399.80 10899.09 1499.96 3298.85 12299.90 4399.88 25
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 11999.96 3298.93 10699.86 6899.88 25
SR-MVS99.43 4599.29 5899.86 2499.75 7699.83 1999.59 10999.62 4198.21 13599.73 7099.79 12098.68 6799.96 3298.44 18299.77 11499.79 77
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5699.88 899.36 24299.51 11998.73 8199.88 2499.84 6798.72 6499.96 3298.16 20699.87 6099.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net99.42 4799.29 5899.80 4999.62 14199.55 8199.50 17399.70 1598.79 7499.77 5899.96 197.45 12099.96 3298.92 10899.90 4399.89 19
HFP-MVS99.49 2599.37 3699.86 2499.87 1599.80 3099.66 7599.67 2398.15 14299.68 8399.69 17299.06 1699.96 3298.69 14599.87 6099.84 42
region2R99.48 2999.35 4099.87 1499.88 1199.80 3099.65 8199.66 2898.13 14799.66 9299.68 17998.96 2599.96 3298.62 15499.87 6099.84 42
HPM-MVS++copyleft99.39 5699.23 7099.87 1499.75 7699.84 1899.43 20899.51 11998.68 8699.27 19499.53 24298.64 7299.96 3298.44 18299.80 10399.79 77
APDe-MVScopyleft99.66 599.57 899.92 199.77 6399.89 499.75 4299.56 7099.02 4299.88 2499.85 5799.18 1099.96 3299.22 7399.92 2799.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2599.36 3899.86 2499.87 1599.79 3399.66 7599.67 2398.15 14299.67 8799.69 17298.95 3099.96 3298.69 14599.87 6099.84 42
MP-MVScopyleft99.33 6299.15 7699.87 1499.88 1199.82 2599.66 7599.46 19198.09 15399.48 14199.74 14798.29 9599.96 3297.93 22499.87 6099.82 57
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 10698.90 11899.74 6499.80 5299.46 9799.59 10999.49 14997.03 27699.63 10799.69 17297.27 12999.96 3297.82 23599.84 8399.81 64
PVSNet_Blended_VisFu99.36 5999.28 6099.61 9199.86 2099.07 14999.47 19499.93 297.66 20899.71 7799.86 5297.73 11599.96 3299.47 4899.82 9699.79 77
UGNet98.87 13698.69 14599.40 13999.22 26898.72 19599.44 20499.68 2099.24 1799.18 21899.42 27592.74 29199.96 3299.34 6099.94 2399.53 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 6499.32 4699.32 15399.85 2698.29 23199.71 5599.66 2898.11 15099.41 15999.80 10898.37 9299.96 3298.99 9799.96 1299.72 106
ACMMPcopyleft99.45 3899.32 4699.82 4499.89 899.67 5499.62 9599.69 1898.12 14899.63 10799.84 6798.73 6399.96 3298.55 17299.83 9299.81 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 8199.03 9299.79 5298.42 37999.48 9499.55 14499.51 11999.39 1099.78 5499.93 994.80 22199.95 6299.93 1099.95 1799.94 11
SR-MVS-dyc-post99.45 3899.31 5299.85 3199.76 6699.82 2599.63 9099.52 10598.38 11199.76 6499.82 8198.53 7999.95 6298.61 15799.81 9999.77 85
GST-MVS99.40 5499.24 6899.85 3199.86 2099.79 3399.60 10299.67 2397.97 17099.63 10799.68 17998.52 8099.95 6298.38 18599.86 6899.81 64
CANet99.25 7899.14 7799.59 9499.41 21499.16 13499.35 24799.57 6598.82 6999.51 13699.61 21396.46 15999.95 6299.59 2999.98 499.65 133
MP-MVS-pluss99.37 5899.20 7299.88 899.90 499.87 1599.30 25899.52 10597.18 25899.60 11799.79 12098.79 5099.95 6298.83 12899.91 3499.83 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4799.27 6399.88 899.89 899.80 3099.67 6999.50 13998.70 8399.77 5899.49 25598.21 9899.95 6298.46 18099.77 11499.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 6296.67 319
APD-MVS_3200maxsize99.48 2999.35 4099.85 3199.76 6699.83 1999.63 9099.54 8798.36 11599.79 4999.82 8198.86 4199.95 6298.62 15499.81 9999.78 83
RPMNet96.72 32895.90 34199.19 17699.18 27798.49 22099.22 29299.52 10588.72 40799.56 12597.38 40194.08 25999.95 6286.87 40998.58 21799.14 235
sss99.17 8699.05 8899.53 11299.62 14198.97 16199.36 24299.62 4197.83 18699.67 8799.65 19297.37 12499.95 6299.19 7599.19 17499.68 123
MVSMamba_PlusPlus99.46 3499.41 2999.64 8399.68 11299.50 9199.75 4299.50 13998.27 12599.87 2999.92 1498.09 10499.94 7299.65 2599.95 1799.47 194
fmvsm_s_conf0.1_n_a99.26 7499.06 8799.85 3199.52 17399.62 6899.54 14899.62 4198.69 8499.99 299.96 194.47 24599.94 7299.88 1399.92 2799.98 2
fmvsm_s_conf0.1_n99.29 6899.10 8199.86 2499.70 10499.65 6099.53 15699.62 4198.74 8099.99 299.95 394.53 24399.94 7299.89 1299.96 1299.97 4
TSAR-MVS + MP.99.58 1299.50 1699.81 4799.91 199.66 5699.63 9099.39 23098.91 6299.78 5499.85 5799.36 299.94 7298.84 12599.88 5799.82 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RRT-MVS98.91 13398.75 13999.39 14399.46 19998.61 20699.76 3799.50 13998.06 16299.81 4399.88 3993.91 26699.94 7299.11 8399.27 16999.61 149
mamv499.33 6299.42 2599.07 18799.67 11497.73 26299.42 21599.60 5498.15 14299.94 1599.91 2098.42 8899.94 7299.72 1999.96 1299.54 168
XVS99.53 1999.42 2599.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 17099.74 14798.81 4799.94 7298.79 13399.86 6899.84 42
X-MVStestdata96.55 33195.45 35099.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 17064.01 42498.81 4799.94 7298.79 13399.86 6899.84 42
旧先验298.96 34796.70 29699.47 14299.94 7298.19 202
新几何199.75 6199.75 7699.59 7399.54 8796.76 29299.29 18899.64 19898.43 8699.94 7296.92 30999.66 13599.72 106
testdata99.54 10499.75 7698.95 16899.51 11997.07 27099.43 15299.70 16298.87 4099.94 7297.76 24299.64 13899.72 106
HPM-MVScopyleft99.42 4799.28 6099.83 4399.90 499.72 4599.81 2099.54 8797.59 21399.68 8399.63 20498.91 3799.94 7298.58 16399.91 3499.84 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 8299.10 8199.45 13299.89 898.52 21699.39 23099.94 198.73 8199.11 22799.89 3295.50 19499.94 7299.50 4199.97 799.89 19
APD-MVScopyleft99.27 7299.08 8599.84 4299.75 7699.79 3399.50 17399.50 13997.16 26099.77 5899.82 8198.78 5199.94 7297.56 26399.86 6899.80 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2999.42 2599.65 7799.72 9499.40 10499.05 32499.66 2899.14 2399.57 12499.80 10898.46 8499.94 7299.57 3299.84 8399.60 152
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 11598.88 12399.61 9199.62 14199.16 13499.37 23799.56 7098.04 16599.53 13299.62 20996.84 14399.94 7298.85 12298.49 22599.72 106
DeepC-MVS98.35 299.30 6699.19 7399.64 8399.82 4299.23 12799.62 9599.55 7898.94 5899.63 10799.95 395.82 18499.94 7299.37 5499.97 799.73 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 7299.12 7999.74 6499.18 27799.75 4299.56 13099.57 6598.45 10499.49 14099.85 5797.77 11499.94 7298.33 19299.84 8399.52 175
GDP-MVS99.08 11298.89 12199.64 8399.53 16899.34 10999.64 8499.48 16198.32 12099.77 5899.66 19095.14 20899.93 9098.97 10199.50 15199.64 140
SDMVSNet99.11 10698.90 11899.75 6199.81 4699.59 7399.81 2099.65 3398.78 7799.64 10499.88 3994.56 23999.93 9099.67 2398.26 23799.72 106
FE-MVS98.48 17298.17 18799.40 13999.54 16798.96 16599.68 6698.81 36195.54 35599.62 11199.70 16293.82 26999.93 9097.35 28199.46 15399.32 223
SF-MVS99.38 5799.24 6899.79 5299.79 5499.68 5199.57 12499.54 8797.82 19099.71 7799.80 10898.95 3099.93 9098.19 20299.84 8399.74 95
dcpmvs_299.23 8099.58 798.16 30699.83 3994.68 37299.76 3799.52 10599.07 3999.98 699.88 3998.56 7799.93 9099.67 2399.98 499.87 30
Anonymous2024052998.09 20997.68 24699.34 14799.66 12498.44 22599.40 22699.43 21693.67 38199.22 20599.89 3290.23 34599.93 9099.26 7198.33 23199.66 129
ACMMP_NAP99.47 3299.34 4299.88 899.87 1599.86 1699.47 19499.48 16198.05 16499.76 6499.86 5298.82 4699.93 9098.82 13299.91 3499.84 42
EI-MVSNet-UG-set99.58 1299.57 899.64 8399.78 5699.14 13999.60 10299.45 20299.01 4499.90 1999.83 7298.98 2499.93 9099.59 2999.95 1799.86 32
无先验98.99 34099.51 11996.89 28699.93 9097.53 26699.72 106
VDDNet97.55 29497.02 31399.16 17999.49 18998.12 24199.38 23599.30 28495.35 35799.68 8399.90 2782.62 40199.93 9099.31 6398.13 24899.42 206
ab-mvs98.86 13998.63 15299.54 10499.64 13299.19 12999.44 20499.54 8797.77 19499.30 18599.81 9594.20 25399.93 9099.17 7998.82 20699.49 187
F-COLMAP99.19 8299.04 9099.64 8399.78 5699.27 12299.42 21599.54 8797.29 24999.41 15999.59 21898.42 8899.93 9098.19 20299.69 13099.73 100
BP-MVS199.12 10198.94 11499.65 7799.51 17699.30 11799.67 6998.92 34298.48 10199.84 3599.69 17294.96 21199.92 10299.62 2899.79 11099.71 115
Anonymous20240521198.30 19097.98 21199.26 16899.57 15698.16 23799.41 21898.55 38396.03 34999.19 21499.74 14791.87 31699.92 10299.16 8098.29 23699.70 117
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8399.78 5699.15 13899.61 10199.45 20299.01 4499.89 2199.82 8199.01 1899.92 10299.56 3399.95 1799.85 36
VDD-MVS97.73 27497.35 29098.88 22199.47 19797.12 28999.34 25098.85 35698.19 13799.67 8799.85 5782.98 39999.92 10299.49 4598.32 23599.60 152
VNet99.11 10698.90 11899.73 6799.52 17399.56 7999.41 21899.39 23099.01 4499.74 6899.78 12795.56 19299.92 10299.52 3998.18 24499.72 106
XVG-OURS-SEG-HR98.69 16298.62 15798.89 21999.71 9997.74 26199.12 30999.54 8798.44 10799.42 15599.71 15894.20 25399.92 10298.54 17398.90 20099.00 254
mvsmamba99.06 11598.96 11099.36 14599.47 19798.64 20299.70 5699.05 32697.61 21299.65 9999.83 7296.54 15599.92 10299.19 7599.62 14199.51 182
HPM-MVS_fast99.51 2199.40 3099.85 3199.91 199.79 3399.76 3799.56 7097.72 19999.76 6499.75 14299.13 1299.92 10299.07 8999.92 2799.85 36
HY-MVS97.30 798.85 14698.64 15199.47 12999.42 20999.08 14799.62 9599.36 24797.39 24199.28 18999.68 17996.44 16199.92 10298.37 18798.22 23999.40 211
DP-MVS99.16 8898.95 11299.78 5599.77 6399.53 8699.41 21899.50 13997.03 27699.04 24399.88 3997.39 12199.92 10298.66 14999.90 4399.87 30
IB-MVS95.67 1896.22 33795.44 35198.57 25999.21 26996.70 31798.65 38197.74 40096.71 29597.27 36598.54 37786.03 38399.92 10298.47 17986.30 40599.10 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 5899.63 13599.59 7399.36 24299.46 19199.07 3999.79 4999.82 8198.85 4299.92 10298.68 14799.87 6099.82 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
balanced_conf0399.46 3499.39 3299.67 7299.55 16499.58 7899.74 4699.51 11998.42 10899.87 2999.84 6798.05 10799.91 11499.58 3199.94 2399.52 175
9.1499.10 8199.72 9499.40 22699.51 11997.53 22399.64 10499.78 12798.84 4499.91 11497.63 25499.82 96
SMA-MVScopyleft99.44 4299.30 5499.85 3199.73 9099.83 1999.56 13099.47 18297.45 23299.78 5499.82 8199.18 1099.91 11498.79 13399.89 5499.81 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11499.65 6099.05 32499.41 22196.22 33498.95 25799.49 25598.77 5499.91 114
train_agg99.02 12198.77 13799.77 5899.67 11499.65 6099.05 32499.41 22196.28 32898.95 25799.49 25598.76 5599.91 11497.63 25499.72 12599.75 91
test_899.67 11499.61 7099.03 32999.41 22196.28 32898.93 26099.48 26198.76 5599.91 114
agg_prior99.67 11499.62 6899.40 22798.87 27099.91 114
原ACMM199.65 7799.73 9099.33 11099.47 18297.46 22999.12 22599.66 19098.67 6999.91 11497.70 25199.69 13099.71 115
LFMVS97.90 24297.35 29099.54 10499.52 17399.01 15699.39 23098.24 39097.10 26899.65 9999.79 12084.79 39299.91 11499.28 6798.38 22899.69 119
XVG-OURS98.73 16098.68 14698.88 22199.70 10497.73 26298.92 35499.55 7898.52 9899.45 14599.84 6795.27 20299.91 11498.08 21398.84 20499.00 254
PLCcopyleft97.94 499.02 12198.85 12899.53 11299.66 12499.01 15699.24 28699.52 10596.85 28899.27 19499.48 26198.25 9799.91 11497.76 24299.62 14199.65 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 28797.06 31299.47 12999.61 14599.09 14498.04 40799.25 29691.24 39898.51 31799.70 16294.55 24199.91 11492.76 38699.85 7599.42 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mmtdpeth96.95 32396.71 32297.67 34299.33 23694.90 36999.89 299.28 29098.15 14299.72 7598.57 37686.56 38199.90 12699.82 1689.02 40098.20 370
UWE-MVS97.58 29397.29 30098.48 27099.09 30196.25 33799.01 33796.61 41197.86 18099.19 21499.01 34888.72 36099.90 12697.38 27998.69 21299.28 226
test_vis1_rt95.81 34795.65 34696.32 37399.67 11491.35 40099.49 18496.74 40998.25 12895.24 38898.10 39474.96 40999.90 12699.53 3798.85 20397.70 394
FA-MVS(test-final)98.75 15798.53 16899.41 13899.55 16499.05 15299.80 2599.01 33196.59 31099.58 12199.59 21895.39 19799.90 12697.78 23899.49 15299.28 226
MCST-MVS99.43 4599.30 5499.82 4499.79 5499.74 4499.29 26399.40 22798.79 7499.52 13499.62 20998.91 3799.90 12698.64 15199.75 11999.82 57
CDPH-MVS99.13 9598.91 11799.80 4999.75 7699.71 4799.15 30399.41 22196.60 30899.60 11799.55 23398.83 4599.90 12697.48 27099.83 9299.78 83
NCCC99.34 6199.19 7399.79 5299.61 14599.65 6099.30 25899.48 16198.86 6499.21 20899.63 20498.72 6499.90 12698.25 19899.63 14099.80 73
114514_t98.93 13198.67 14799.72 6999.85 2699.53 8699.62 9599.59 5892.65 39399.71 7799.78 12798.06 10699.90 12698.84 12599.91 3499.74 95
1112_ss98.98 12798.77 13799.59 9499.68 11299.02 15499.25 28499.48 16197.23 25599.13 22399.58 22296.93 14299.90 12698.87 11598.78 20999.84 42
PHI-MVS99.30 6699.17 7599.70 7099.56 16099.52 8999.58 11799.80 897.12 26499.62 11199.73 15398.58 7599.90 12698.61 15799.91 3499.68 123
AdaColmapbinary99.01 12598.80 13399.66 7399.56 16099.54 8399.18 29899.70 1598.18 14099.35 17699.63 20496.32 16499.90 12697.48 27099.77 11499.55 166
COLMAP_ROBcopyleft97.56 698.86 13998.75 13999.17 17899.88 1198.53 21299.34 25099.59 5897.55 21998.70 29599.89 3295.83 18399.90 12698.10 20899.90 4399.08 243
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 18698.03 20699.31 15499.63 13598.56 20999.54 14896.75 40897.53 22399.73 7099.65 19291.25 33399.89 13898.62 15499.56 14699.48 188
tttt051798.42 17798.14 19199.28 16699.66 12498.38 22999.74 4696.85 40697.68 20599.79 4999.74 14791.39 33099.89 13898.83 12899.56 14699.57 163
test1299.75 6199.64 13299.61 7099.29 28899.21 20898.38 9199.89 13899.74 12299.74 95
Test_1112_low_res98.89 13498.66 15099.57 9999.69 10898.95 16899.03 32999.47 18296.98 27899.15 22199.23 32496.77 14699.89 13898.83 12898.78 20999.86 32
CNLPA99.14 9398.99 10299.59 9499.58 15499.41 10399.16 30099.44 21098.45 10499.19 21499.49 25598.08 10599.89 13897.73 24699.75 11999.48 188
sd_testset98.75 15798.57 16499.29 16299.81 4698.26 23399.56 13099.62 4198.78 7799.64 10499.88 3992.02 31399.88 14399.54 3598.26 23799.72 106
APD_test195.87 34596.49 32794.00 38099.53 16884.01 40999.54 14899.32 27695.91 35197.99 34699.85 5785.49 38799.88 14391.96 38998.84 20498.12 374
diffmvspermissive99.14 9399.02 9699.51 12099.61 14598.96 16599.28 26899.49 14998.46 10399.72 7599.71 15896.50 15799.88 14399.31 6399.11 18199.67 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13998.80 13399.03 19399.76 6698.79 19099.28 26899.91 397.42 23899.67 8799.37 29297.53 11899.88 14398.98 9897.29 29598.42 355
PVSNet_Blended99.08 11298.97 10699.42 13799.76 6698.79 19098.78 36899.91 396.74 29399.67 8799.49 25597.53 11899.88 14398.98 9899.85 7599.60 152
MVS97.28 31296.55 32599.48 12698.78 34698.95 16899.27 27399.39 23083.53 41198.08 34199.54 23896.97 14099.87 14894.23 36899.16 17599.63 145
MG-MVS99.13 9599.02 9699.45 13299.57 15698.63 20399.07 31999.34 25998.99 4999.61 11499.82 8197.98 10999.87 14897.00 30099.80 10399.85 36
MSDG98.98 12798.80 13399.53 11299.76 6699.19 12998.75 37199.55 7897.25 25299.47 14299.77 13597.82 11299.87 14896.93 30799.90 4399.54 168
ETV-MVS99.26 7499.21 7199.40 13999.46 19999.30 11799.56 13099.52 10598.52 9899.44 15099.27 31998.41 9099.86 15199.10 8699.59 14499.04 250
thisisatest051598.14 20497.79 23099.19 17699.50 18798.50 21998.61 38396.82 40796.95 28299.54 13099.43 27391.66 32599.86 15198.08 21399.51 15099.22 232
thres600view797.86 24897.51 26498.92 21099.72 9497.95 25299.59 10998.74 36997.94 17299.27 19498.62 37391.75 31999.86 15193.73 37398.19 24398.96 260
lupinMVS99.13 9599.01 10099.46 13199.51 17698.94 17199.05 32499.16 31197.86 18099.80 4799.56 23097.39 12199.86 15198.94 10399.85 7599.58 160
PVSNet96.02 1798.85 14698.84 13098.89 21999.73 9097.28 28098.32 39999.60 5497.86 18099.50 13799.57 22796.75 14799.86 15198.56 16999.70 12999.54 168
MAR-MVS98.86 13998.63 15299.54 10499.37 22799.66 5699.45 19899.54 8796.61 30599.01 24699.40 28397.09 13399.86 15197.68 25399.53 14999.10 238
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9197.44 30697.02 31398.71 24799.18 27796.89 31199.19 29699.04 32797.78 19398.31 32898.29 38685.41 38899.85 15798.01 21997.95 25399.39 212
test250696.81 32796.65 32397.29 35499.74 8392.21 39799.60 10285.06 42899.13 2499.77 5899.93 987.82 37699.85 15799.38 5399.38 15899.80 73
AllTest98.87 13698.72 14199.31 15499.86 2098.48 22299.56 13099.61 4897.85 18399.36 17399.85 5795.95 17699.85 15796.66 32099.83 9299.59 156
TestCases99.31 15499.86 2098.48 22299.61 4897.85 18399.36 17399.85 5795.95 17699.85 15796.66 32099.83 9299.59 156
jason99.13 9599.03 9299.45 13299.46 19998.87 17899.12 30999.26 29498.03 16799.79 4999.65 19297.02 13899.85 15799.02 9599.90 4399.65 133
jason: jason.
CNVR-MVS99.42 4799.30 5499.78 5599.62 14199.71 4799.26 28299.52 10598.82 6999.39 16699.71 15898.96 2599.85 15798.59 16299.80 10399.77 85
PAPM_NR99.04 11898.84 13099.66 7399.74 8399.44 9999.39 23099.38 23897.70 20399.28 18999.28 31698.34 9399.85 15796.96 30499.45 15499.69 119
testing9997.36 30996.94 31698.63 25299.18 27796.70 31799.30 25898.93 33997.71 20098.23 33398.26 38784.92 39199.84 16498.04 21897.85 26099.35 218
testing22297.16 31796.50 32699.16 17999.16 28798.47 22499.27 27398.66 37997.71 20098.23 33398.15 39082.28 40499.84 16497.36 28097.66 26699.18 234
test111198.04 21998.11 19597.83 33399.74 8393.82 38299.58 11795.40 41599.12 2999.65 9999.93 990.73 33899.84 16499.43 5199.38 15899.82 57
ECVR-MVScopyleft98.04 21998.05 20498.00 31999.74 8394.37 37799.59 10994.98 41699.13 2499.66 9299.93 990.67 33999.84 16499.40 5299.38 15899.80 73
test_yl98.86 13998.63 15299.54 10499.49 18999.18 13199.50 17399.07 32398.22 13399.61 11499.51 24995.37 19899.84 16498.60 16098.33 23199.59 156
DCV-MVSNet98.86 13998.63 15299.54 10499.49 18999.18 13199.50 17399.07 32398.22 13399.61 11499.51 24995.37 19899.84 16498.60 16098.33 23199.59 156
Fast-Effi-MVS+98.70 16198.43 17299.51 12099.51 17699.28 12099.52 15799.47 18296.11 34499.01 24699.34 30296.20 16899.84 16497.88 22798.82 20699.39 212
TSAR-MVS + GP.99.36 5999.36 3899.36 14599.67 11498.61 20699.07 31999.33 26699.00 4799.82 4299.81 9599.06 1699.84 16499.09 8799.42 15699.65 133
tpmrst98.33 18798.48 17097.90 32799.16 28794.78 37099.31 25699.11 31697.27 25099.45 14599.59 21895.33 20099.84 16498.48 17698.61 21499.09 242
Vis-MVSNetpermissive99.12 10198.97 10699.56 10199.78 5699.10 14399.68 6699.66 2898.49 10099.86 3399.87 4894.77 22699.84 16499.19 7599.41 15799.74 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 16898.34 17899.51 12099.40 21999.03 15398.80 36699.36 24796.33 32599.00 25099.12 33898.46 8499.84 16495.23 35499.37 16599.66 129
PatchMatch-RL98.84 14998.62 15799.52 11899.71 9999.28 12099.06 32299.77 997.74 19899.50 13799.53 24295.41 19699.84 16497.17 29499.64 13899.44 204
EPP-MVSNet99.13 9598.99 10299.53 11299.65 13099.06 15099.81 2099.33 26697.43 23699.60 11799.88 3997.14 13199.84 16499.13 8198.94 19599.69 119
testing1197.50 29997.10 31098.71 24799.20 27196.91 30999.29 26398.82 35997.89 17798.21 33698.40 38185.63 38699.83 17798.45 18198.04 25199.37 216
thres100view90097.76 26697.45 27398.69 24999.72 9497.86 25899.59 10998.74 36997.93 17399.26 19898.62 37391.75 31999.83 17793.22 37898.18 24498.37 361
tfpn200view997.72 27697.38 28698.72 24599.69 10897.96 25099.50 17398.73 37597.83 18699.17 21998.45 37991.67 32399.83 17793.22 37898.18 24498.37 361
test_prior99.68 7199.67 11499.48 9499.56 7099.83 17799.74 95
131498.68 16398.54 16799.11 18598.89 33198.65 20099.27 27399.49 14996.89 28697.99 34699.56 23097.72 11699.83 17797.74 24599.27 16998.84 266
thres40097.77 26597.38 28698.92 21099.69 10897.96 25099.50 17398.73 37597.83 18699.17 21998.45 37991.67 32399.83 17793.22 37898.18 24498.96 260
casdiffmvspermissive99.13 9598.98 10599.56 10199.65 13099.16 13499.56 13099.50 13998.33 11999.41 15999.86 5295.92 17999.83 17799.45 5099.16 17599.70 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SPE-MVS-test99.49 2599.48 1899.54 10499.78 5699.30 11799.89 299.58 6298.56 9499.73 7099.69 17298.55 7899.82 18499.69 2199.85 7599.48 188
MVS_Test99.10 11098.97 10699.48 12699.49 18999.14 13999.67 6999.34 25997.31 24799.58 12199.76 13997.65 11799.82 18498.87 11599.07 18799.46 199
dp97.75 27097.80 22997.59 34699.10 29893.71 38599.32 25398.88 35296.48 31799.08 23499.55 23392.67 29799.82 18496.52 32498.58 21799.24 231
RPSCF98.22 19498.62 15796.99 36099.82 4291.58 39999.72 5299.44 21096.61 30599.66 9299.89 3295.92 17999.82 18497.46 27399.10 18499.57 163
PMMVS98.80 15398.62 15799.34 14799.27 25498.70 19698.76 37099.31 28097.34 24499.21 20899.07 34097.20 13099.82 18498.56 16998.87 20199.52 175
UBG97.85 24997.48 26798.95 20499.25 26097.64 26999.24 28698.74 36997.90 17698.64 30598.20 38988.65 36499.81 18998.27 19798.40 22799.42 206
EIA-MVS99.18 8499.09 8499.45 13299.49 18999.18 13199.67 6999.53 10097.66 20899.40 16499.44 27198.10 10399.81 18998.94 10399.62 14199.35 218
Effi-MVS+98.81 15098.59 16399.48 12699.46 19999.12 14298.08 40699.50 13997.50 22799.38 16899.41 27996.37 16399.81 18999.11 8398.54 22299.51 182
thres20097.61 29197.28 30198.62 25399.64 13298.03 24499.26 28298.74 36997.68 20599.09 23398.32 38591.66 32599.81 18992.88 38398.22 23998.03 380
tpmvs97.98 23098.02 20897.84 33299.04 31194.73 37199.31 25699.20 30696.10 34898.76 28599.42 27594.94 21299.81 18996.97 30398.45 22698.97 258
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10399.66 12499.09 14499.64 8499.56 7098.26 12799.45 14599.87 4896.03 17399.81 18999.54 3599.15 17899.73 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 15099.37 3697.12 35899.60 15091.75 39898.61 38399.44 21099.35 1299.83 4199.85 5798.70 6699.81 18999.02 9599.91 3499.81 64
DPM-MVS98.95 13098.71 14399.66 7399.63 13599.55 8198.64 38299.10 31797.93 17399.42 15599.55 23398.67 6999.80 19695.80 33999.68 13399.61 149
DP-MVS Recon99.12 10198.95 11299.65 7799.74 8399.70 4999.27 27399.57 6596.40 32499.42 15599.68 17998.75 5899.80 19697.98 22199.72 12599.44 204
MVS_111021_LR99.41 5199.33 4499.65 7799.77 6399.51 9098.94 35299.85 698.82 6999.65 9999.74 14798.51 8199.80 19698.83 12899.89 5499.64 140
CS-MVS99.50 2399.48 1899.54 10499.76 6699.42 10199.90 199.55 7898.56 9499.78 5499.70 16298.65 7199.79 19999.65 2599.78 11199.41 209
Fast-Effi-MVS+-dtu98.77 15698.83 13298.60 25499.41 21496.99 30399.52 15799.49 14998.11 15099.24 20099.34 30296.96 14199.79 19997.95 22399.45 15499.02 253
baseline198.31 18897.95 21599.38 14499.50 18798.74 19399.59 10998.93 33998.41 10999.14 22299.60 21694.59 23799.79 19998.48 17693.29 37699.61 149
baseline99.15 9099.02 9699.53 11299.66 12499.14 13999.72 5299.48 16198.35 11699.42 15599.84 6796.07 17199.79 19999.51 4099.14 17999.67 126
PVSNet_094.43 1996.09 34295.47 34997.94 32499.31 24494.34 37997.81 40899.70 1597.12 26497.46 35998.75 37089.71 35099.79 19997.69 25281.69 41199.68 123
API-MVS99.04 11899.03 9299.06 18999.40 21999.31 11599.55 14499.56 7098.54 9699.33 18099.39 28798.76 5599.78 20496.98 30299.78 11198.07 377
OMC-MVS99.08 11299.04 9099.20 17599.67 11498.22 23599.28 26899.52 10598.07 15899.66 9299.81 9597.79 11399.78 20497.79 23799.81 9999.60 152
GeoE98.85 14698.62 15799.53 11299.61 14599.08 14799.80 2599.51 11997.10 26899.31 18299.78 12795.23 20699.77 20698.21 20099.03 19099.75 91
alignmvs98.81 15098.56 16699.58 9799.43 20799.42 10199.51 16698.96 33798.61 9099.35 17698.92 36094.78 22399.77 20699.35 5598.11 24999.54 168
tpm cat197.39 30897.36 28897.50 34999.17 28593.73 38499.43 20899.31 28091.27 39798.71 28999.08 33994.31 25199.77 20696.41 32898.50 22499.00 254
CostFormer97.72 27697.73 24297.71 34099.15 29194.02 38199.54 14899.02 33094.67 37299.04 24399.35 29892.35 30999.77 20698.50 17597.94 25499.34 221
MGCFI-Net99.01 12598.85 12899.50 12599.42 20999.26 12399.82 1699.48 16198.60 9199.28 18998.81 36597.04 13799.76 21099.29 6697.87 25899.47 194
test_241102_ONE99.84 3299.90 299.48 16199.07 3999.91 1799.74 14799.20 799.76 210
MDTV_nov1_ep1398.32 18099.11 29594.44 37699.27 27398.74 36997.51 22699.40 16499.62 20994.78 22399.76 21097.59 25798.81 208
sasdasda99.02 12198.86 12699.51 12099.42 20999.32 11199.80 2599.48 16198.63 8799.31 18298.81 36597.09 13399.75 21399.27 6997.90 25599.47 194
canonicalmvs99.02 12198.86 12699.51 12099.42 20999.32 11199.80 2599.48 16198.63 8799.31 18298.81 36597.09 13399.75 21399.27 6997.90 25599.47 194
Effi-MVS+-dtu98.78 15498.89 12198.47 27599.33 23696.91 30999.57 12499.30 28498.47 10299.41 15998.99 35096.78 14599.74 21598.73 13999.38 15898.74 280
patchmatchnet-post98.70 37194.79 22299.74 215
SCA98.19 19898.16 18898.27 30199.30 24595.55 35199.07 31998.97 33597.57 21699.43 15299.57 22792.72 29299.74 21597.58 25899.20 17399.52 175
BH-untuned98.42 17798.36 17698.59 25599.49 18996.70 31799.27 27399.13 31597.24 25498.80 28099.38 28995.75 18699.74 21597.07 29899.16 17599.33 222
BH-RMVSNet98.41 17998.08 20099.40 13999.41 21498.83 18699.30 25898.77 36597.70 20398.94 25999.65 19292.91 28799.74 21596.52 32499.55 14899.64 140
MVS_111021_HR99.41 5199.32 4699.66 7399.72 9499.47 9698.95 35099.85 698.82 6999.54 13099.73 15398.51 8199.74 21598.91 10999.88 5799.77 85
test_post65.99 42294.65 23699.73 221
XVG-ACMP-BASELINE97.83 25597.71 24498.20 30399.11 29596.33 33399.41 21899.52 10598.06 16299.05 24299.50 25289.64 35299.73 22197.73 24697.38 29398.53 343
HyFIR lowres test99.11 10698.92 11599.65 7799.90 499.37 10599.02 33299.91 397.67 20799.59 12099.75 14295.90 18199.73 22199.53 3799.02 19299.86 32
DeepMVS_CXcopyleft93.34 38399.29 24982.27 41299.22 30285.15 40996.33 38099.05 34390.97 33699.73 22193.57 37597.77 26398.01 381
Patchmatch-test97.93 23697.65 24998.77 24299.18 27797.07 29499.03 32999.14 31496.16 33998.74 28699.57 22794.56 23999.72 22593.36 37799.11 18199.52 175
LPG-MVS_test98.22 19498.13 19398.49 26899.33 23697.05 29699.58 11799.55 7897.46 22999.24 20099.83 7292.58 29999.72 22598.09 20997.51 27998.68 298
LGP-MVS_train98.49 26899.33 23697.05 29699.55 7897.46 22999.24 20099.83 7292.58 29999.72 22598.09 20997.51 27998.68 298
BH-w/o98.00 22897.89 22498.32 29399.35 23196.20 33999.01 33798.90 34996.42 32298.38 32499.00 34995.26 20499.72 22596.06 33298.61 21499.03 251
ACMP97.20 1198.06 21397.94 21798.45 27899.37 22797.01 30199.44 20499.49 14997.54 22298.45 32199.79 12091.95 31599.72 22597.91 22597.49 28498.62 326
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 22397.90 22098.40 28699.23 26496.80 31599.70 5699.60 5497.12 26498.18 33899.70 16291.73 32199.72 22598.39 18497.45 28698.68 298
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 28865.14 42394.18 25699.71 23197.58 258
ADS-MVSNet98.20 19798.08 20098.56 26299.33 23696.48 32899.23 28899.15 31296.24 33299.10 23099.67 18594.11 25799.71 23196.81 31299.05 18899.48 188
JIA-IIPM97.50 29997.02 31398.93 20898.73 35597.80 26099.30 25898.97 33591.73 39698.91 26294.86 41195.10 20999.71 23197.58 25897.98 25299.28 226
EPMVS97.82 25897.65 24998.35 29098.88 33295.98 34399.49 18494.71 41897.57 21699.26 19899.48 26192.46 30699.71 23197.87 22999.08 18699.35 218
TDRefinement95.42 35194.57 35897.97 32189.83 42196.11 34299.48 18898.75 36696.74 29396.68 37799.88 3988.65 36499.71 23198.37 18782.74 41098.09 376
ACMM97.58 598.37 18598.34 17898.48 27099.41 21497.10 29099.56 13099.45 20298.53 9799.04 24399.85 5793.00 28399.71 23198.74 13797.45 28698.64 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 23397.77 23598.57 25999.59 15296.61 32499.45 19899.08 32098.21 13598.88 26799.80 10888.66 36399.70 23798.58 16397.72 26499.39 212
CHOSEN 280x42099.12 10199.13 7899.08 18699.66 12497.89 25598.43 39399.71 1398.88 6399.62 11199.76 13996.63 15199.70 23799.46 4999.99 199.66 129
EC-MVSNet99.44 4299.39 3299.58 9799.56 16099.49 9299.88 499.58 6298.38 11199.73 7099.69 17298.20 9999.70 23799.64 2799.82 9699.54 168
PatchmatchNetpermissive98.31 18898.36 17698.19 30499.16 28795.32 36099.27 27398.92 34297.37 24299.37 17099.58 22294.90 21699.70 23797.43 27699.21 17299.54 168
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 20897.99 21098.44 28199.41 21496.96 30799.60 10299.56 7098.09 15398.15 33999.91 2090.87 33799.70 23798.88 11297.45 28698.67 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS97.50 29996.90 31799.29 16299.23 26498.78 19299.32 25398.90 34997.52 22598.56 31498.09 39584.72 39399.69 24297.86 23097.88 25799.39 212
HQP_MVS98.27 19398.22 18698.44 28199.29 24996.97 30599.39 23099.47 18298.97 5599.11 22799.61 21392.71 29499.69 24297.78 23897.63 26798.67 305
plane_prior599.47 18299.69 24297.78 23897.63 26798.67 305
D2MVS98.41 17998.50 16998.15 30999.26 25696.62 32399.40 22699.61 4897.71 20098.98 25299.36 29596.04 17299.67 24598.70 14297.41 29198.15 373
IS-MVSNet99.05 11798.87 12499.57 9999.73 9099.32 11199.75 4299.20 30698.02 16899.56 12599.86 5296.54 15599.67 24598.09 20999.13 18099.73 100
CLD-MVS98.16 20298.10 19698.33 29199.29 24996.82 31498.75 37199.44 21097.83 18699.13 22399.55 23392.92 28599.67 24598.32 19497.69 26598.48 347
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 31497.30 29897.09 35999.43 20793.31 39099.73 5098.87 35498.83 6899.28 18999.80 10884.45 39499.66 24897.88 22797.45 28698.30 363
AUN-MVS96.88 32596.31 33198.59 25599.48 19697.04 29999.27 27399.22 30297.44 23598.51 31799.41 27991.97 31499.66 24897.71 24983.83 40899.07 248
UniMVSNet_ETH3D97.32 31196.81 31998.87 22599.40 21997.46 27499.51 16699.53 10095.86 35298.54 31699.77 13582.44 40299.66 24898.68 14797.52 27899.50 186
OPM-MVS98.19 19898.10 19698.45 27898.88 33297.07 29499.28 26899.38 23898.57 9399.22 20599.81 9592.12 31199.66 24898.08 21397.54 27698.61 335
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 23997.78 23398.32 29399.46 19996.68 32199.56 13099.54 8798.41 10997.79 35599.87 4890.18 34699.66 24898.05 21797.18 30098.62 326
hse-mvs297.50 29997.14 30798.59 25599.49 18997.05 29699.28 26899.22 30298.94 5899.66 9299.42 27594.93 21399.65 25399.48 4683.80 40999.08 243
VPA-MVSNet98.29 19197.95 21599.30 15999.16 28799.54 8399.50 17399.58 6298.27 12599.35 17699.37 29292.53 30199.65 25399.35 5594.46 35898.72 282
TR-MVS97.76 26697.41 28498.82 23499.06 30797.87 25698.87 36098.56 38296.63 30498.68 29799.22 32592.49 30299.65 25395.40 35097.79 26298.95 262
reproduce_monomvs97.89 24397.87 22597.96 32399.51 17695.45 35699.60 10299.25 29699.17 1998.85 27599.49 25589.29 35599.64 25699.35 5596.31 31698.78 269
gm-plane-assit98.54 37592.96 39294.65 37399.15 33399.64 25697.56 263
HQP4-MVS98.66 29899.64 25698.64 317
HQP-MVS98.02 22397.90 22098.37 28999.19 27496.83 31298.98 34399.39 23098.24 12998.66 29899.40 28392.47 30399.64 25697.19 29197.58 27298.64 317
PAPM97.59 29297.09 31199.07 18799.06 30798.26 23398.30 40099.10 31794.88 36798.08 34199.34 30296.27 16699.64 25689.87 39798.92 19899.31 224
TAPA-MVS97.07 1597.74 27297.34 29398.94 20699.70 10497.53 27299.25 28499.51 11991.90 39599.30 18599.63 20498.78 5199.64 25688.09 40499.87 6099.65 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 18398.09 19999.24 17199.26 25699.32 11199.56 13099.55 7897.45 23298.71 28999.83 7293.23 27899.63 26298.88 11296.32 31598.76 275
ITE_SJBPF98.08 31299.29 24996.37 33198.92 34298.34 11798.83 27699.75 14291.09 33499.62 26395.82 33797.40 29298.25 367
LF4IMVS97.52 29697.46 27297.70 34198.98 32195.55 35199.29 26398.82 35998.07 15898.66 29899.64 19889.97 34799.61 26497.01 29996.68 30597.94 388
tpm97.67 28697.55 25898.03 31499.02 31395.01 36699.43 20898.54 38496.44 32099.12 22599.34 30291.83 31899.60 26597.75 24496.46 31199.48 188
tpm297.44 30697.34 29397.74 33999.15 29194.36 37899.45 19898.94 33893.45 38698.90 26499.44 27191.35 33199.59 26697.31 28298.07 25099.29 225
baseline297.87 24697.55 25898.82 23499.18 27798.02 24599.41 21896.58 41296.97 27996.51 37899.17 33093.43 27599.57 26797.71 24999.03 19098.86 264
MS-PatchMatch97.24 31697.32 29696.99 36098.45 37893.51 38998.82 36499.32 27697.41 23998.13 34099.30 31288.99 35799.56 26895.68 34399.80 10397.90 391
TinyColmap97.12 31996.89 31897.83 33399.07 30595.52 35498.57 38698.74 36997.58 21597.81 35499.79 12088.16 37199.56 26895.10 35597.21 29898.39 359
USDC97.34 31097.20 30597.75 33899.07 30595.20 36298.51 39099.04 32797.99 16998.31 32899.86 5289.02 35699.55 27095.67 34497.36 29498.49 346
MSLP-MVS++99.46 3499.47 2099.44 13699.60 15099.16 13499.41 21899.71 1398.98 5299.45 14599.78 12799.19 999.54 27199.28 6799.84 8399.63 145
TAMVS99.12 10199.08 8599.24 17199.46 19998.55 21099.51 16699.46 19198.09 15399.45 14599.82 8198.34 9399.51 27298.70 14298.93 19699.67 126
EPNet_dtu98.03 22197.96 21398.23 30298.27 38195.54 35399.23 28898.75 36699.02 4297.82 35399.71 15896.11 17099.48 27393.04 38199.65 13799.69 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs5depth96.66 32996.22 33397.97 32197.00 40396.28 33598.66 38099.03 32996.61 30596.93 37599.79 12087.20 37999.47 27496.65 32294.13 36598.16 372
EG-PatchMatch MVS95.97 34495.69 34596.81 36797.78 38892.79 39399.16 30098.93 33996.16 33994.08 39699.22 32582.72 40099.47 27495.67 34497.50 28198.17 371
MVP-Stereo97.81 26097.75 24097.99 32097.53 39296.60 32598.96 34798.85 35697.22 25697.23 36699.36 29595.28 20199.46 27695.51 34699.78 11197.92 390
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 17098.67 14798.30 29599.35 23195.59 35099.50 17399.55 7898.60 9199.39 16699.83 7294.48 24499.45 27798.75 13698.56 22099.85 36
test-LLR98.06 21397.90 22098.55 26498.79 34397.10 29098.67 37797.75 39897.34 24498.61 31098.85 36294.45 24699.45 27797.25 28599.38 15899.10 238
TESTMET0.1,197.55 29497.27 30498.40 28698.93 32696.53 32698.67 37797.61 40196.96 28098.64 30599.28 31688.63 36699.45 27797.30 28399.38 15899.21 233
test-mter97.49 30497.13 30998.55 26498.79 34397.10 29098.67 37797.75 39896.65 30098.61 31098.85 36288.23 37099.45 27797.25 28599.38 15899.10 238
mvs_anonymous99.03 12098.99 10299.16 17999.38 22498.52 21699.51 16699.38 23897.79 19199.38 16899.81 9597.30 12799.45 27799.35 5598.99 19399.51 182
tfpnnormal97.84 25397.47 27098.98 19999.20 27199.22 12899.64 8499.61 4896.32 32698.27 33299.70 16293.35 27799.44 28295.69 34295.40 34198.27 365
v7n97.87 24697.52 26298.92 21098.76 35398.58 20899.84 1299.46 19196.20 33598.91 26299.70 16294.89 21799.44 28296.03 33393.89 37098.75 277
jajsoiax98.43 17698.28 18398.88 22198.60 37098.43 22699.82 1699.53 10098.19 13798.63 30799.80 10893.22 28099.44 28299.22 7397.50 28198.77 273
mvs_tets98.40 18298.23 18598.91 21498.67 36398.51 21899.66 7599.53 10098.19 13798.65 30499.81 9592.75 28999.44 28299.31 6397.48 28598.77 273
Vis-MVSNet (Re-imp)98.87 13698.72 14199.31 15499.71 9998.88 17799.80 2599.44 21097.91 17599.36 17399.78 12795.49 19599.43 28697.91 22599.11 18199.62 147
OPU-MVS99.64 8399.56 16099.72 4599.60 10299.70 16299.27 599.42 28798.24 19999.80 10399.79 77
Anonymous2023121197.88 24497.54 26198.90 21699.71 9998.53 21299.48 18899.57 6594.16 37798.81 27899.68 17993.23 27899.42 28798.84 12594.42 36098.76 275
ttmdpeth97.80 26297.63 25398.29 29698.77 35197.38 27799.64 8499.36 24798.78 7796.30 38199.58 22292.34 31099.39 28998.36 18995.58 33698.10 375
VPNet97.84 25397.44 27899.01 19599.21 26998.94 17199.48 18899.57 6598.38 11199.28 18999.73 15388.89 35899.39 28999.19 7593.27 37798.71 284
nrg03098.64 16798.42 17399.28 16699.05 31099.69 5099.81 2099.46 19198.04 16599.01 24699.82 8196.69 14999.38 29199.34 6094.59 35798.78 269
GA-MVS97.85 24997.47 27099.00 19799.38 22497.99 24798.57 38699.15 31297.04 27598.90 26499.30 31289.83 34999.38 29196.70 31798.33 23199.62 147
UniMVSNet (Re)98.29 19198.00 20999.13 18499.00 31599.36 10899.49 18499.51 11997.95 17198.97 25499.13 33596.30 16599.38 29198.36 18993.34 37598.66 313
FIs98.78 15498.63 15299.23 17399.18 27799.54 8399.83 1599.59 5898.28 12398.79 28299.81 9596.75 14799.37 29499.08 8896.38 31398.78 269
PS-MVSNAJss98.92 13298.92 11598.90 21698.78 34698.53 21299.78 3299.54 8798.07 15899.00 25099.76 13999.01 1899.37 29499.13 8197.23 29798.81 267
CDS-MVSNet99.09 11199.03 9299.25 16999.42 20998.73 19499.45 19899.46 19198.11 15099.46 14499.77 13598.01 10899.37 29498.70 14298.92 19899.66 129
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 34895.16 35397.51 34899.30 24593.69 38698.88 35895.78 41385.09 41098.78 28392.65 41391.29 33299.37 29494.85 36099.85 7599.46 199
v119297.81 26097.44 27898.91 21498.88 33298.68 19799.51 16699.34 25996.18 33799.20 21199.34 30294.03 26099.36 29895.32 35295.18 34598.69 293
EI-MVSNet98.67 16498.67 14798.68 25099.35 23197.97 24899.50 17399.38 23896.93 28599.20 21199.83 7297.87 11099.36 29898.38 18597.56 27498.71 284
MVSTER98.49 17198.32 18099.00 19799.35 23199.02 15499.54 14899.38 23897.41 23999.20 21199.73 15393.86 26899.36 29898.87 11597.56 27498.62 326
gg-mvs-nofinetune96.17 34095.32 35298.73 24498.79 34398.14 23999.38 23594.09 41991.07 40098.07 34491.04 41789.62 35399.35 30196.75 31499.09 18598.68 298
pm-mvs197.68 28397.28 30198.88 22199.06 30798.62 20499.50 17399.45 20296.32 32697.87 35199.79 12092.47 30399.35 30197.54 26593.54 37498.67 305
OurMVSNet-221017-097.88 24497.77 23598.19 30498.71 35996.53 32699.88 499.00 33297.79 19198.78 28399.94 691.68 32299.35 30197.21 28796.99 30498.69 293
EGC-MVSNET82.80 38277.86 38897.62 34497.91 38596.12 34199.33 25299.28 2908.40 42525.05 42699.27 31984.11 39599.33 30489.20 39998.22 23997.42 399
pmmvs696.53 33296.09 33797.82 33598.69 36195.47 35599.37 23799.47 18293.46 38597.41 36099.78 12787.06 38099.33 30496.92 30992.70 38498.65 315
V4298.06 21397.79 23098.86 22898.98 32198.84 18399.69 6099.34 25996.53 31299.30 18599.37 29294.67 23499.32 30697.57 26294.66 35598.42 355
lessismore_v097.79 33798.69 36195.44 35894.75 41795.71 38799.87 4888.69 36299.32 30695.89 33694.93 35298.62 326
OpenMVS_ROBcopyleft92.34 2094.38 36293.70 36896.41 37297.38 39493.17 39199.06 32298.75 36686.58 40894.84 39498.26 38781.53 40599.32 30689.01 40097.87 25896.76 402
v897.95 23597.63 25398.93 20898.95 32598.81 18999.80 2599.41 22196.03 34999.10 23099.42 27594.92 21599.30 30996.94 30694.08 36798.66 313
v192192097.80 26297.45 27398.84 23298.80 34298.53 21299.52 15799.34 25996.15 34199.24 20099.47 26493.98 26299.29 31095.40 35095.13 34798.69 293
anonymousdsp98.44 17598.28 18398.94 20698.50 37698.96 16599.77 3499.50 13997.07 27098.87 27099.77 13594.76 22799.28 31198.66 14997.60 27098.57 341
MVSFormer99.17 8699.12 7999.29 16299.51 17698.94 17199.88 499.46 19197.55 21999.80 4799.65 19297.39 12199.28 31199.03 9399.85 7599.65 133
test_djsdf98.67 16498.57 16498.98 19998.70 36098.91 17599.88 499.46 19197.55 21999.22 20599.88 3995.73 18799.28 31199.03 9397.62 26998.75 277
cascas97.69 28197.43 28298.48 27098.60 37097.30 27998.18 40499.39 23092.96 38998.41 32298.78 36993.77 27199.27 31498.16 20698.61 21498.86 264
v14419297.92 23997.60 25698.87 22598.83 34198.65 20099.55 14499.34 25996.20 33599.32 18199.40 28394.36 24899.26 31596.37 32995.03 34998.70 289
dmvs_re98.08 21198.16 18897.85 33099.55 16494.67 37399.70 5698.92 34298.15 14299.06 24099.35 29893.67 27499.25 31697.77 24197.25 29699.64 140
v2v48298.06 21397.77 23598.92 21098.90 33098.82 18799.57 12499.36 24796.65 30099.19 21499.35 29894.20 25399.25 31697.72 24894.97 35098.69 293
v124097.69 28197.32 29698.79 24098.85 33998.43 22699.48 18899.36 24796.11 34499.27 19499.36 29593.76 27299.24 31894.46 36495.23 34498.70 289
WBMVS97.74 27297.50 26598.46 27699.24 26297.43 27599.21 29499.42 21897.45 23298.96 25699.41 27988.83 35999.23 31998.94 10396.02 32198.71 284
v114497.98 23097.69 24598.85 23198.87 33598.66 19999.54 14899.35 25496.27 33099.23 20499.35 29894.67 23499.23 31996.73 31595.16 34698.68 298
v1097.85 24997.52 26298.86 22898.99 31898.67 19899.75 4299.41 22195.70 35398.98 25299.41 27994.75 22899.23 31996.01 33594.63 35698.67 305
WR-MVS_H98.13 20597.87 22598.90 21699.02 31398.84 18399.70 5699.59 5897.27 25098.40 32399.19 32995.53 19399.23 31998.34 19193.78 37298.61 335
miper_enhance_ethall98.16 20298.08 20098.41 28498.96 32497.72 26498.45 39299.32 27696.95 28298.97 25499.17 33097.06 13699.22 32397.86 23095.99 32498.29 364
GG-mvs-BLEND98.45 27898.55 37498.16 23799.43 20893.68 42097.23 36698.46 37889.30 35499.22 32395.43 34998.22 23997.98 386
FC-MVSNet-test98.75 15798.62 15799.15 18399.08 30499.45 9899.86 1199.60 5498.23 13298.70 29599.82 8196.80 14499.22 32399.07 8996.38 31398.79 268
UniMVSNet_NR-MVSNet98.22 19497.97 21298.96 20298.92 32898.98 15899.48 18899.53 10097.76 19598.71 28999.46 26896.43 16299.22 32398.57 16692.87 38298.69 293
DU-MVS98.08 21197.79 23098.96 20298.87 33598.98 15899.41 21899.45 20297.87 17998.71 28999.50 25294.82 21999.22 32398.57 16692.87 38298.68 298
cl____98.01 22697.84 22898.55 26499.25 26097.97 24898.71 37599.34 25996.47 31998.59 31399.54 23895.65 19099.21 32897.21 28795.77 33098.46 352
WR-MVS98.06 21397.73 24299.06 18998.86 33899.25 12599.19 29699.35 25497.30 24898.66 29899.43 27393.94 26399.21 32898.58 16394.28 36298.71 284
test_040296.64 33096.24 33297.85 33098.85 33996.43 33099.44 20499.26 29493.52 38396.98 37399.52 24588.52 36799.20 33092.58 38897.50 28197.93 389
SixPastTwentyTwo97.50 29997.33 29598.03 31498.65 36496.23 33899.77 3498.68 37897.14 26197.90 34999.93 990.45 34099.18 33197.00 30096.43 31298.67 305
cl2297.85 24997.64 25298.48 27099.09 30197.87 25698.60 38599.33 26697.11 26798.87 27099.22 32592.38 30899.17 33298.21 20095.99 32498.42 355
WB-MVSnew97.65 28897.65 24997.63 34398.78 34697.62 27099.13 30698.33 38797.36 24399.07 23598.94 35695.64 19199.15 33392.95 38298.68 21396.12 409
IterMVS-SCA-FT97.82 25897.75 24098.06 31399.57 15696.36 33299.02 33299.49 14997.18 25898.71 28999.72 15792.72 29299.14 33497.44 27595.86 32998.67 305
pmmvs597.52 29697.30 29898.16 30698.57 37396.73 31699.27 27398.90 34996.14 34298.37 32599.53 24291.54 32899.14 33497.51 26795.87 32898.63 324
v14897.79 26497.55 25898.50 26798.74 35497.72 26499.54 14899.33 26696.26 33198.90 26499.51 24994.68 23399.14 33497.83 23493.15 37998.63 324
miper_ehance_all_eth98.18 20098.10 19698.41 28499.23 26497.72 26498.72 37499.31 28096.60 30898.88 26799.29 31497.29 12899.13 33797.60 25695.99 32498.38 360
NR-MVSNet97.97 23397.61 25599.02 19498.87 33599.26 12399.47 19499.42 21897.63 21097.08 37199.50 25295.07 21099.13 33797.86 23093.59 37398.68 298
IterMVS97.83 25597.77 23598.02 31699.58 15496.27 33699.02 33299.48 16197.22 25698.71 28999.70 16292.75 28999.13 33797.46 27396.00 32398.67 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 36394.90 35591.84 38897.24 39880.01 41898.52 38999.48 16189.01 40591.99 40599.67 18585.67 38599.13 33795.44 34897.03 30396.39 406
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 21897.96 21398.33 29199.26 25697.38 27798.56 38899.31 28096.65 30098.88 26799.52 24596.58 15399.12 34197.39 27895.53 33998.47 349
pmmvs498.13 20597.90 22098.81 23798.61 36998.87 17898.99 34099.21 30596.44 32099.06 24099.58 22295.90 18199.11 34297.18 29396.11 32098.46 352
TransMVSNet (Re)97.15 31896.58 32498.86 22899.12 29398.85 18299.49 18498.91 34795.48 35697.16 36999.80 10893.38 27699.11 34294.16 37091.73 38898.62 326
ambc93.06 38692.68 41782.36 41198.47 39198.73 37595.09 39297.41 40055.55 41899.10 34496.42 32791.32 38997.71 392
Baseline_NR-MVSNet97.76 26697.45 27398.68 25099.09 30198.29 23199.41 21898.85 35695.65 35498.63 30799.67 18594.82 21999.10 34498.07 21692.89 38198.64 317
test_vis3_rt87.04 37885.81 38190.73 39293.99 41681.96 41399.76 3790.23 42792.81 39181.35 41591.56 41540.06 42499.07 34694.27 36788.23 40291.15 415
CP-MVSNet98.09 20997.78 23399.01 19598.97 32399.24 12699.67 6999.46 19197.25 25298.48 32099.64 19893.79 27099.06 34798.63 15394.10 36698.74 280
PS-CasMVS97.93 23697.59 25798.95 20498.99 31899.06 15099.68 6699.52 10597.13 26298.31 32899.68 17992.44 30799.05 34898.51 17494.08 36798.75 277
K. test v397.10 32096.79 32098.01 31798.72 35796.33 33399.87 897.05 40497.59 21396.16 38399.80 10888.71 36199.04 34996.69 31896.55 31098.65 315
new_pmnet96.38 33696.03 33897.41 35098.13 38495.16 36599.05 32499.20 30693.94 37897.39 36398.79 36891.61 32799.04 34990.43 39595.77 33098.05 379
DIV-MVS_self_test98.01 22697.85 22798.48 27099.24 26297.95 25298.71 37599.35 25496.50 31398.60 31299.54 23895.72 18899.03 35197.21 28795.77 33098.46 352
IterMVS-LS98.46 17498.42 17398.58 25899.59 15298.00 24699.37 23799.43 21696.94 28499.07 23599.59 21897.87 11099.03 35198.32 19495.62 33598.71 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 28897.68 24697.55 34798.62 36794.97 36798.84 36299.30 28496.83 29198.19 33799.34 30297.01 13999.02 35395.00 35896.01 32298.64 317
Patchmtry97.75 27097.40 28598.81 23799.10 29898.87 17899.11 31599.33 26694.83 36998.81 27899.38 28994.33 24999.02 35396.10 33195.57 33798.53 343
N_pmnet94.95 35795.83 34392.31 38798.47 37779.33 41999.12 30992.81 42593.87 37997.68 35699.13 33593.87 26799.01 35591.38 39296.19 31898.59 339
CR-MVSNet98.17 20197.93 21898.87 22599.18 27798.49 22099.22 29299.33 26696.96 28099.56 12599.38 28994.33 24999.00 35694.83 36198.58 21799.14 235
c3_l98.12 20798.04 20598.38 28899.30 24597.69 26898.81 36599.33 26696.67 29898.83 27699.34 30297.11 13298.99 35797.58 25895.34 34298.48 347
test0.0.03 197.71 27997.42 28398.56 26298.41 38097.82 25998.78 36898.63 38097.34 24498.05 34598.98 35294.45 24698.98 35895.04 35797.15 30198.89 263
PatchT97.03 32296.44 32898.79 24098.99 31898.34 23099.16 30099.07 32392.13 39499.52 13497.31 40494.54 24298.98 35888.54 40298.73 21199.03 251
GBi-Net97.68 28397.48 26798.29 29699.51 17697.26 28399.43 20899.48 16196.49 31499.07 23599.32 30990.26 34298.98 35897.10 29596.65 30698.62 326
test197.68 28397.48 26798.29 29699.51 17697.26 28399.43 20899.48 16196.49 31499.07 23599.32 30990.26 34298.98 35897.10 29596.65 30698.62 326
FMVSNet398.03 22197.76 23998.84 23299.39 22298.98 15899.40 22699.38 23896.67 29899.07 23599.28 31692.93 28498.98 35897.10 29596.65 30698.56 342
FMVSNet297.72 27697.36 28898.80 23999.51 17698.84 18399.45 19899.42 21896.49 31498.86 27499.29 31490.26 34298.98 35896.44 32696.56 30998.58 340
FMVSNet196.84 32696.36 33098.29 29699.32 24397.26 28399.43 20899.48 16195.11 36198.55 31599.32 30983.95 39698.98 35895.81 33896.26 31798.62 326
ppachtmachnet_test97.49 30497.45 27397.61 34598.62 36795.24 36198.80 36699.46 19196.11 34498.22 33599.62 20996.45 16098.97 36593.77 37295.97 32798.61 335
TranMVSNet+NR-MVSNet97.93 23697.66 24898.76 24398.78 34698.62 20499.65 8199.49 14997.76 19598.49 31999.60 21694.23 25298.97 36598.00 22092.90 38098.70 289
MVStest196.08 34395.48 34897.89 32898.93 32696.70 31799.56 13099.35 25492.69 39291.81 40699.46 26889.90 34898.96 36795.00 35892.61 38598.00 384
test_method91.10 37391.36 37590.31 39395.85 40673.72 42694.89 41499.25 29668.39 41795.82 38699.02 34780.50 40798.95 36893.64 37494.89 35498.25 367
ADS-MVSNet298.02 22398.07 20397.87 32999.33 23695.19 36399.23 28899.08 32096.24 33299.10 23099.67 18594.11 25798.93 36996.81 31299.05 18899.48 188
ET-MVSNet_ETH3D96.49 33395.64 34799.05 19199.53 16898.82 18798.84 36297.51 40297.63 21084.77 41199.21 32892.09 31298.91 37098.98 9892.21 38799.41 209
miper_lstm_enhance98.00 22897.91 21998.28 30099.34 23597.43 27598.88 35899.36 24796.48 31798.80 28099.55 23395.98 17498.91 37097.27 28495.50 34098.51 345
MonoMVSNet98.38 18398.47 17198.12 31198.59 37296.19 34099.72 5298.79 36497.89 17799.44 15099.52 24596.13 16998.90 37298.64 15197.54 27699.28 226
PEN-MVS97.76 26697.44 27898.72 24598.77 35198.54 21199.78 3299.51 11997.06 27298.29 33199.64 19892.63 29898.89 37398.09 20993.16 37898.72 282
testing397.28 31296.76 32198.82 23499.37 22798.07 24399.45 19899.36 24797.56 21897.89 35098.95 35583.70 39798.82 37496.03 33398.56 22099.58 160
testgi97.65 28897.50 26598.13 31099.36 23096.45 32999.42 21599.48 16197.76 19597.87 35199.45 27091.09 33498.81 37594.53 36398.52 22399.13 237
testf190.42 37690.68 37789.65 39697.78 38873.97 42499.13 30698.81 36189.62 40291.80 40798.93 35762.23 41698.80 37686.61 41091.17 39096.19 407
APD_test290.42 37690.68 37789.65 39697.78 38873.97 42499.13 30698.81 36189.62 40291.80 40798.93 35762.23 41698.80 37686.61 41091.17 39096.19 407
MIMVSNet97.73 27497.45 27398.57 25999.45 20597.50 27399.02 33298.98 33496.11 34499.41 15999.14 33490.28 34198.74 37895.74 34098.93 19699.47 194
LCM-MVSNet-Re97.83 25598.15 19096.87 36699.30 24592.25 39699.59 10998.26 38897.43 23696.20 38299.13 33596.27 16698.73 37998.17 20598.99 19399.64 140
Syy-MVS97.09 32197.14 30796.95 36399.00 31592.73 39499.29 26399.39 23097.06 27297.41 36098.15 39093.92 26598.68 38091.71 39098.34 22999.45 202
myMVS_eth3d96.89 32496.37 32998.43 28399.00 31597.16 28799.29 26399.39 23097.06 27297.41 36098.15 39083.46 39898.68 38095.27 35398.34 22999.45 202
DTE-MVSNet97.51 29897.19 30698.46 27698.63 36698.13 24099.84 1299.48 16196.68 29797.97 34899.67 18592.92 28598.56 38296.88 31192.60 38698.70 289
PC_three_145298.18 14099.84 3599.70 16299.31 398.52 38398.30 19699.80 10399.81 64
mvsany_test393.77 36593.45 36994.74 37895.78 40788.01 40499.64 8498.25 38998.28 12394.31 39597.97 39768.89 41298.51 38497.50 26890.37 39597.71 392
UnsupCasMVSNet_bld93.53 36692.51 37296.58 37197.38 39493.82 38298.24 40199.48 16191.10 39993.10 40096.66 40674.89 41098.37 38594.03 37187.71 40397.56 397
Anonymous2024052196.20 33995.89 34297.13 35797.72 39194.96 36899.79 3199.29 28893.01 38897.20 36899.03 34589.69 35198.36 38691.16 39396.13 31998.07 377
test_f91.90 37291.26 37693.84 38195.52 41185.92 40699.69 6098.53 38595.31 35893.87 39796.37 40855.33 41998.27 38795.70 34190.98 39397.32 400
MDA-MVSNet_test_wron95.45 35094.60 35798.01 31798.16 38397.21 28699.11 31599.24 29993.49 38480.73 41798.98 35293.02 28298.18 38894.22 36994.45 35998.64 317
UnsupCasMVSNet_eth96.44 33496.12 33597.40 35198.65 36495.65 34899.36 24299.51 11997.13 26296.04 38598.99 35088.40 36898.17 38996.71 31690.27 39698.40 358
KD-MVS_2432*160094.62 35893.72 36697.31 35297.19 40095.82 34698.34 39699.20 30695.00 36597.57 35798.35 38387.95 37398.10 39092.87 38477.00 41598.01 381
miper_refine_blended94.62 35893.72 36697.31 35297.19 40095.82 34698.34 39699.20 30695.00 36597.57 35798.35 38387.95 37398.10 39092.87 38477.00 41598.01 381
YYNet195.36 35294.51 35997.92 32597.89 38697.10 29099.10 31799.23 30093.26 38780.77 41699.04 34492.81 28898.02 39294.30 36594.18 36498.64 317
EU-MVSNet97.98 23098.03 20697.81 33698.72 35796.65 32299.66 7599.66 2898.09 15398.35 32699.82 8195.25 20598.01 39397.41 27795.30 34398.78 269
Gipumacopyleft90.99 37490.15 37993.51 38298.73 35590.12 40293.98 41599.45 20279.32 41392.28 40394.91 41069.61 41197.98 39487.42 40695.67 33492.45 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 35394.73 35697.15 35595.53 41095.94 34499.35 24799.10 31795.13 35993.55 39897.54 39988.15 37297.91 39594.58 36289.69 39997.61 395
PM-MVS92.96 36992.23 37395.14 37795.61 40889.98 40399.37 23798.21 39194.80 37095.04 39397.69 39865.06 41397.90 39694.30 36589.98 39897.54 398
MDA-MVSNet-bldmvs94.96 35693.98 36397.92 32598.24 38297.27 28199.15 30399.33 26693.80 38080.09 41899.03 34588.31 36997.86 39793.49 37694.36 36198.62 326
Patchmatch-RL test95.84 34695.81 34495.95 37595.61 40890.57 40198.24 40198.39 38695.10 36395.20 39098.67 37294.78 22397.77 39896.28 33090.02 39799.51 182
Anonymous2023120696.22 33796.03 33896.79 36897.31 39794.14 38099.63 9099.08 32096.17 33897.04 37299.06 34293.94 26397.76 39986.96 40895.06 34898.47 349
SD-MVS99.41 5199.52 1299.05 19199.74 8399.68 5199.46 19799.52 10599.11 3099.88 2499.91 2099.43 197.70 40098.72 14099.93 2599.77 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 31497.35 29096.95 36397.84 38793.61 38899.57 12496.63 41096.13 34398.87 27098.61 37594.59 23797.70 40095.08 35698.86 20299.55 166
dongtai93.26 36792.93 37194.25 37999.39 22285.68 40797.68 41093.27 42192.87 39096.85 37699.39 28782.33 40397.48 40276.78 41597.80 26199.58 160
pmmvs394.09 36493.25 37096.60 37094.76 41594.49 37598.92 35498.18 39389.66 40196.48 37998.06 39686.28 38297.33 40389.68 39887.20 40497.97 387
KD-MVS_self_test95.00 35594.34 36096.96 36297.07 40295.39 35999.56 13099.44 21095.11 36197.13 37097.32 40391.86 31797.27 40490.35 39681.23 41298.23 369
FMVSNet596.43 33596.19 33497.15 35599.11 29595.89 34599.32 25399.52 10594.47 37698.34 32799.07 34087.54 37797.07 40592.61 38795.72 33398.47 349
new-patchmatchnet94.48 36194.08 36295.67 37695.08 41392.41 39599.18 29899.28 29094.55 37593.49 39997.37 40287.86 37597.01 40691.57 39188.36 40197.61 395
LCM-MVSNet86.80 38085.22 38491.53 39087.81 42280.96 41698.23 40398.99 33371.05 41590.13 41096.51 40748.45 42396.88 40790.51 39485.30 40696.76 402
CL-MVSNet_self_test94.49 36093.97 36496.08 37496.16 40593.67 38798.33 39899.38 23895.13 35997.33 36498.15 39092.69 29696.57 40888.67 40179.87 41397.99 385
MIMVSNet195.51 34995.04 35496.92 36597.38 39495.60 34999.52 15799.50 13993.65 38296.97 37499.17 33085.28 39096.56 40988.36 40395.55 33898.60 338
test20.0396.12 34195.96 34096.63 36997.44 39395.45 35699.51 16699.38 23896.55 31196.16 38399.25 32293.76 27296.17 41087.35 40794.22 36398.27 365
tmp_tt82.80 38281.52 38586.66 39866.61 42868.44 42792.79 41797.92 39568.96 41680.04 41999.85 5785.77 38496.15 41197.86 23043.89 42195.39 411
test_fmvs392.10 37191.77 37493.08 38596.19 40486.25 40599.82 1698.62 38196.65 30095.19 39196.90 40555.05 42095.93 41296.63 32390.92 39497.06 401
kuosan90.92 37590.11 38093.34 38398.78 34685.59 40898.15 40593.16 42389.37 40492.07 40498.38 38281.48 40695.19 41362.54 42297.04 30299.25 230
dmvs_testset95.02 35496.12 33591.72 38999.10 29880.43 41799.58 11797.87 39797.47 22895.22 38998.82 36493.99 26195.18 41488.09 40494.91 35399.56 165
PMMVS286.87 37985.37 38391.35 39190.21 42083.80 41098.89 35797.45 40383.13 41291.67 40995.03 40948.49 42294.70 41585.86 41277.62 41495.54 410
PMVScopyleft70.75 2275.98 38874.97 38979.01 40470.98 42755.18 42993.37 41698.21 39165.08 42161.78 42293.83 41221.74 42992.53 41678.59 41491.12 39289.34 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 38185.65 38282.75 40286.77 42363.39 42898.35 39598.92 34274.11 41483.39 41398.98 35250.85 42192.40 41784.54 41394.97 35092.46 412
WB-MVS93.10 36894.10 36190.12 39495.51 41281.88 41499.73 5099.27 29395.05 36493.09 40198.91 36194.70 23291.89 41876.62 41694.02 36996.58 404
SSC-MVS92.73 37093.73 36589.72 39595.02 41481.38 41599.76 3799.23 30094.87 36892.80 40298.93 35794.71 23191.37 41974.49 41893.80 37196.42 405
MVEpermissive76.82 2176.91 38774.31 39184.70 39985.38 42576.05 42396.88 41393.17 42267.39 41871.28 42089.01 41921.66 43087.69 42071.74 41972.29 41790.35 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 38479.88 38682.81 40190.75 41976.38 42297.69 40995.76 41466.44 41983.52 41292.25 41462.54 41587.16 42168.53 42061.40 41884.89 419
EMVS80.02 38579.22 38782.43 40391.19 41876.40 42197.55 41292.49 42666.36 42083.01 41491.27 41664.63 41485.79 42265.82 42160.65 41985.08 418
ANet_high77.30 38674.86 39084.62 40075.88 42677.61 42097.63 41193.15 42488.81 40664.27 42189.29 41836.51 42583.93 42375.89 41752.31 42092.33 414
wuyk23d40.18 38941.29 39436.84 40586.18 42449.12 43079.73 41822.81 43027.64 42225.46 42528.45 42521.98 42848.89 42455.80 42323.56 42412.51 422
test12339.01 39142.50 39328.53 40639.17 42920.91 43198.75 37119.17 43119.83 42438.57 42366.67 42133.16 42615.42 42537.50 42529.66 42349.26 420
testmvs39.17 39043.78 39225.37 40736.04 43016.84 43298.36 39426.56 42920.06 42338.51 42467.32 42029.64 42715.30 42637.59 42439.90 42243.98 421
mmdepth0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.13 3950.17 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4271.57 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.64 39232.85 3950.00 4080.00 4310.00 4330.00 41999.51 1190.00 4260.00 42799.56 23096.58 1530.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.27 39411.03 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 42799.01 180.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.30 39311.06 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.58 2220.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS97.16 28795.47 347
FOURS199.91 199.93 199.87 899.56 7099.10 3199.81 43
test_one_060199.81 4699.88 899.49 14998.97 5599.65 9999.81 9599.09 14
eth-test20.00 431
eth-test0.00 431
RE-MVS-def99.34 4299.76 6699.82 2599.63 9099.52 10598.38 11199.76 6499.82 8198.75 5898.61 15799.81 9999.77 85
IU-MVS99.84 3299.88 899.32 27698.30 12299.84 3598.86 12099.85 7599.89 19
save fliter99.76 6699.59 7399.14 30599.40 22799.00 47
test072699.85 2699.89 499.62 9599.50 13999.10 3199.86 3399.82 8198.94 32
GSMVS99.52 175
test_part299.81 4699.83 1999.77 58
sam_mvs194.86 21899.52 175
sam_mvs94.72 230
MTGPAbinary99.47 182
MTMP99.54 14898.88 352
test9_res97.49 26999.72 12599.75 91
agg_prior297.21 28799.73 12499.75 91
test_prior499.56 7998.99 340
test_prior298.96 34798.34 11799.01 24699.52 24598.68 6797.96 22299.74 122
新几何299.01 337
旧先验199.74 8399.59 7399.54 8799.69 17298.47 8399.68 13399.73 100
原ACMM298.95 350
test22299.75 7699.49 9298.91 35699.49 14996.42 32299.34 17999.65 19298.28 9699.69 13099.72 106
segment_acmp98.96 25
testdata198.85 36198.32 120
plane_prior799.29 24997.03 300
plane_prior699.27 25496.98 30492.71 294
plane_prior499.61 213
plane_prior397.00 30298.69 8499.11 227
plane_prior299.39 23098.97 55
plane_prior199.26 256
plane_prior96.97 30599.21 29498.45 10497.60 270
n20.00 432
nn0.00 432
door-mid98.05 394
test1199.35 254
door97.92 395
HQP5-MVS96.83 312
HQP-NCC99.19 27498.98 34398.24 12998.66 298
ACMP_Plane99.19 27498.98 34398.24 12998.66 298
BP-MVS97.19 291
HQP3-MVS99.39 23097.58 272
HQP2-MVS92.47 303
NP-MVS99.23 26496.92 30899.40 283
MDTV_nov1_ep13_2view95.18 36499.35 24796.84 28999.58 12195.19 20797.82 23599.46 199
ACMMP++_ref97.19 299
ACMMP++97.43 290
Test By Simon98.75 58