This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21199.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test_vis1_n_192098.63 15998.40 16699.31 14399.86 2097.94 24699.67 6499.62 4199.43 799.99 299.91 2087.29 363100.00 199.92 1299.92 2499.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
patch_mono-299.26 6899.62 598.16 29099.81 4694.59 35299.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
h-mvs3397.70 26797.28 28698.97 19099.70 10197.27 26899.36 23099.45 19398.94 5499.66 8399.64 19294.93 20399.99 499.48 4184.36 38399.65 129
xiu_mvs_v1_base_debu99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
xiu_mvs_v1_base99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
xiu_mvs_v1_base_debi99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
EPNet98.86 12798.71 13199.30 14897.20 37598.18 22899.62 8898.91 33299.28 1698.63 29399.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.74 6199.31 10799.52 14898.87 33899.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 8299.01 9499.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27299.98 1399.55 2999.91 3199.99 1
test_vis1_n97.92 23097.44 26499.34 13699.53 16298.08 23499.74 4499.49 14399.15 20100.00 199.94 679.51 38499.98 1399.88 1499.76 11099.97 4
xiu_mvs_v2_base99.26 6899.25 6199.29 15199.53 16298.91 16999.02 31299.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 235
PS-MVSNAJ99.32 5899.32 4099.30 14899.57 15198.94 16598.97 32599.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 236
QAPM98.67 15598.30 17399.80 4699.20 25599.67 5199.77 3499.72 1194.74 35098.73 27499.90 2695.78 17799.98 1396.96 28599.88 5199.76 87
3Dnovator97.25 999.24 7399.05 8299.81 4499.12 27399.66 5399.84 1399.74 1099.09 3298.92 24999.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
OpenMVScopyleft96.50 1698.47 16598.12 18599.52 11199.04 29199.53 8299.82 1799.72 1194.56 35398.08 32299.88 3694.73 22099.98 1397.47 25599.76 11099.06 227
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_fmvs1_n98.41 17198.14 18299.21 16299.82 4297.71 25899.74 4499.49 14399.32 1499.99 299.95 385.32 37099.97 2199.82 1699.84 7799.96 7
CANet_DTU98.97 11798.87 11499.25 15799.33 22498.42 22099.08 29899.30 27599.16 1999.43 14099.75 13895.27 19499.97 2198.56 15899.95 1699.36 200
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17199.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 7898.97 10099.82 4199.17 26699.68 4899.81 2099.51 11599.20 1898.72 27599.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
mvsany_test199.50 2099.46 2099.62 8399.61 14099.09 13698.94 33199.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
test_fmvs198.88 12398.79 12599.16 16799.69 10697.61 26099.55 13499.49 14399.32 1499.98 699.91 2091.41 31999.96 3099.82 1699.92 2499.90 17
DVP-MVS++99.59 899.50 1399.88 599.51 16999.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
MSC_two_6792asdad99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
ZD-MVS99.71 9699.79 3099.61 4896.84 26999.56 11499.54 23198.58 7299.96 3096.93 28899.75 112
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38199.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
UA-Net99.42 4299.29 5399.80 4699.62 13699.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
HPM-MVS++copyleft99.39 5199.23 6499.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
MP-MVScopyleft99.33 5799.15 7099.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20899.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 9898.90 10999.74 6199.80 5299.46 9299.59 10199.49 14397.03 25699.63 9699.69 16897.27 12499.96 3097.82 21899.84 7799.81 61
PVSNet_Blended_VisFu99.36 5499.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19299.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
UGNet98.87 12498.69 13399.40 13099.22 25298.72 18899.44 19499.68 2099.24 1799.18 20799.42 26592.74 28299.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 5899.32 4099.32 14299.85 2698.29 22399.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 7599.03 8699.79 4998.42 35599.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21299.95 5999.93 1199.95 1699.94 11
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
GST-MVS99.40 5099.24 6299.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
CANet99.25 7299.14 7199.59 8799.41 20299.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
MP-MVS-pluss99.37 5399.20 6699.88 599.90 499.87 1299.30 24599.52 10197.18 23899.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4299.27 5799.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 5996.67 300
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
RPMNet96.72 30795.90 31999.19 16499.18 26098.49 21299.22 27599.52 10188.72 38399.56 11497.38 37794.08 25099.95 5986.87 38798.58 20599.14 213
sss99.17 8099.05 8299.53 10599.62 13698.97 15399.36 23099.62 4197.83 17299.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
fmvsm_s_conf0.1_n_a99.26 6899.06 8199.85 2899.52 16699.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23699.94 6999.88 1499.92 2499.98 2
fmvsm_s_conf0.1_n99.29 6299.10 7599.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23499.94 6999.89 1399.96 1299.97 4
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 30995.45 32799.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40098.81 4499.94 6998.79 12399.86 6299.84 40
旧先验298.96 32696.70 27699.47 13199.94 6998.19 188
新几何199.75 5899.75 7399.59 7099.54 8596.76 27299.29 17999.64 19298.43 8399.94 6996.92 29099.66 12899.72 103
testdata99.54 9799.75 7398.95 16299.51 11597.07 25099.43 14099.70 15898.87 3799.94 6997.76 22599.64 13199.72 103
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19699.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 7699.10 7599.45 12399.89 898.52 20899.39 21999.94 198.73 7699.11 21699.89 3095.50 18699.94 6999.50 3699.97 799.89 20
APD-MVScopyleft99.27 6699.08 7999.84 3999.75 7399.79 3099.50 16399.50 13597.16 24099.77 5199.82 7698.78 4899.94 6997.56 24699.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30499.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 10698.88 11399.61 8499.62 13699.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21399.72 103
DeepC-MVS98.35 299.30 6099.19 6799.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6699.12 7399.74 6199.18 26099.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
SDMVSNet99.11 9898.90 10999.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23099.93 8499.67 2198.26 22499.72 103
FE-MVS98.48 16498.17 17899.40 13099.54 16198.96 15799.68 6198.81 34495.54 33499.62 10099.70 15893.82 25999.93 8497.35 26299.46 14499.32 205
SF-MVS99.38 5299.24 6299.79 4999.79 5499.68 4899.57 11699.54 8597.82 17699.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
dcpmvs_299.23 7499.58 798.16 29099.83 3994.68 35099.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
Anonymous2024052998.09 20097.68 23699.34 13699.66 11998.44 21799.40 21599.43 20793.67 36099.22 19599.89 3090.23 33599.93 8499.26 6798.33 21899.66 125
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
无先验98.99 31999.51 11596.89 26699.93 8497.53 24999.72 103
VDDNet97.55 27997.02 29799.16 16799.49 18098.12 23399.38 22499.30 27595.35 33699.68 7499.90 2682.62 38099.93 8499.31 5898.13 23599.42 193
ab-mvs98.86 12798.63 14199.54 9799.64 12799.19 12099.44 19499.54 8597.77 17999.30 17699.81 9094.20 24499.93 8499.17 7498.82 19699.49 177
F-COLMAP99.19 7699.04 8499.64 7899.78 5699.27 11399.42 20599.54 8597.29 22999.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
Anonymous20240521198.30 18197.98 20299.26 15699.57 15198.16 22999.41 20798.55 36396.03 32899.19 20499.74 14391.87 30699.92 9599.16 7598.29 22399.70 113
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
VDD-MVS97.73 26197.35 27698.88 20999.47 18997.12 27699.34 23898.85 34098.19 12799.67 7899.85 5482.98 37899.92 9599.49 4098.32 22299.60 146
VNet99.11 9898.90 10999.73 6499.52 16699.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18499.92 9599.52 3498.18 23199.72 103
XVG-OURS-SEG-HR98.69 15298.62 14698.89 20799.71 9697.74 25399.12 28999.54 8598.44 9999.42 14399.71 15494.20 24499.92 9598.54 16298.90 19099.00 232
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18599.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
HY-MVS97.30 798.85 13498.64 14099.47 12099.42 19999.08 13999.62 8899.36 24097.39 22299.28 18099.68 17496.44 15499.92 9598.37 17598.22 22699.40 197
DP-MVS99.16 8298.95 10499.78 5299.77 6299.53 8299.41 20799.50 13597.03 25699.04 23199.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
IB-MVS95.67 1896.22 31595.44 32898.57 24699.21 25396.70 30298.65 35997.74 37996.71 27597.27 34698.54 36086.03 36699.92 9598.47 16886.30 38199.10 216
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13099.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 7599.72 9199.40 21599.51 11597.53 20699.64 9399.78 12198.84 4199.91 10597.63 23799.82 90
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21499.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11199.65 5799.05 30499.41 21296.22 31398.95 24499.49 24798.77 5199.91 105
train_agg99.02 11198.77 12699.77 5599.67 11199.65 5799.05 30499.41 21296.28 30798.95 24499.49 24798.76 5299.91 10597.63 23799.72 11899.75 88
test_899.67 11199.61 6799.03 30999.41 21296.28 30798.93 24899.48 25298.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22098.87 25899.91 105
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21199.12 21499.66 18598.67 6699.91 10597.70 23499.69 12399.71 112
LFMVS97.90 23397.35 27699.54 9799.52 16699.01 14899.39 21998.24 36997.10 24899.65 8999.79 11584.79 37299.91 10599.28 6398.38 21599.69 115
XVG-OURS98.73 14898.68 13498.88 20999.70 10197.73 25498.92 33399.55 7798.52 9199.45 13499.84 6495.27 19499.91 10598.08 19998.84 19499.00 232
PLCcopyleft97.94 499.02 11198.85 11899.53 10599.66 11999.01 14899.24 27099.52 10196.85 26899.27 18499.48 25298.25 9399.91 10597.76 22599.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 27497.06 29699.47 12099.61 14099.09 13698.04 38499.25 28791.24 37598.51 30299.70 15894.55 23299.91 10592.76 36499.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_rt95.81 32495.65 32496.32 35199.67 11191.35 37899.49 17496.74 38898.25 11795.24 36698.10 37174.96 38599.90 11699.53 3298.85 19397.70 371
FA-MVS(test-final)98.75 14598.53 15999.41 12999.55 15999.05 14499.80 2599.01 31896.59 28999.58 11099.59 21295.39 18999.90 11697.78 22199.49 14399.28 208
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 24999.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
CDPH-MVS99.13 8898.91 10899.80 4699.75 7399.71 4499.15 28499.41 21296.60 28799.60 10699.55 22698.83 4299.90 11697.48 25399.83 8699.78 80
NCCC99.34 5699.19 6799.79 4999.61 14099.65 5799.30 24599.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
114514_t98.93 11998.67 13599.72 6599.85 2699.53 8299.62 8899.59 5792.65 37099.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
1112_ss98.98 11598.77 12699.59 8799.68 11099.02 14699.25 26899.48 15597.23 23599.13 21299.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
PHI-MVS99.30 6099.17 6999.70 6799.56 15599.52 8599.58 10999.80 897.12 24499.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
AdaColmapbinary99.01 11498.80 12299.66 6999.56 15599.54 7999.18 27999.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25399.77 10799.55 159
COLMAP_ROBcopyleft97.56 698.86 12798.75 12899.17 16699.88 1198.53 20499.34 23899.59 5797.55 20298.70 28299.89 3095.83 17599.90 11698.10 19499.90 3999.08 221
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 17798.03 19799.31 14399.63 13098.56 20199.54 13996.75 38797.53 20699.73 6299.65 18691.25 32399.89 12698.62 14399.56 13899.48 178
tttt051798.42 16998.14 18299.28 15499.66 11998.38 22199.74 4496.85 38597.68 18999.79 4299.74 14391.39 32099.89 12698.83 11899.56 13899.57 156
test1299.75 5899.64 12799.61 6799.29 27999.21 19898.38 8799.89 12699.74 11599.74 92
Test_1112_low_res98.89 12298.66 13899.57 9299.69 10698.95 16299.03 30999.47 17396.98 25899.15 21099.23 31296.77 14199.89 12698.83 11898.78 19999.86 33
CNLPA99.14 8698.99 9699.59 8799.58 14999.41 9899.16 28199.44 20198.45 9699.19 20499.49 24798.08 10199.89 12697.73 22999.75 11299.48 178
sd_testset98.75 14598.57 15599.29 15199.81 4698.26 22599.56 12299.62 4198.78 7399.64 9399.88 3692.02 30399.88 13199.54 3098.26 22499.72 103
APD_test195.87 32296.49 30694.00 35799.53 16284.01 38599.54 13999.32 26795.91 33097.99 32799.85 5485.49 36999.88 13191.96 36798.84 19498.12 353
diffmvspermissive99.14 8699.02 9099.51 11399.61 14098.96 15799.28 25399.49 14398.46 9599.72 6799.71 15496.50 15099.88 13199.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 12798.80 12299.03 18099.76 6598.79 18499.28 25399.91 397.42 21999.67 7899.37 28097.53 11399.88 13198.98 9097.29 27698.42 336
PVSNet_Blended99.08 10498.97 10099.42 12899.76 6598.79 18498.78 34799.91 396.74 27399.67 7899.49 24797.53 11399.88 13198.98 9099.85 6999.60 146
MVS97.28 29396.55 30599.48 11798.78 32698.95 16299.27 25899.39 22383.53 38798.08 32299.54 23196.97 13599.87 13694.23 34799.16 16599.63 140
MG-MVS99.13 8899.02 9099.45 12399.57 15198.63 19599.07 29999.34 25098.99 4599.61 10399.82 7697.98 10499.87 13697.00 28199.80 9799.85 36
MSDG98.98 11598.80 12299.53 10599.76 6599.19 12098.75 35099.55 7797.25 23299.47 13199.77 12997.82 10799.87 13696.93 28899.90 3999.54 161
ETV-MVS99.26 6899.21 6599.40 13099.46 19099.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 13999.10 7999.59 13699.04 228
thisisatest051598.14 19597.79 22099.19 16499.50 17898.50 21198.61 36196.82 38696.95 26299.54 11999.43 26391.66 31599.86 13998.08 19999.51 14299.22 211
thres600view797.86 23897.51 25298.92 19899.72 9197.95 24499.59 10198.74 35197.94 16199.27 18498.62 35791.75 30999.86 13993.73 35298.19 23098.96 238
lupinMVS99.13 8899.01 9499.46 12299.51 16998.94 16599.05 30499.16 30197.86 16799.80 4099.56 22397.39 11699.86 13998.94 9499.85 6999.58 154
PVSNet96.02 1798.85 13498.84 11998.89 20799.73 8797.28 26798.32 37799.60 5497.86 16799.50 12699.57 22096.75 14299.86 13998.56 15899.70 12299.54 161
MAR-MVS98.86 12798.63 14199.54 9799.37 21499.66 5399.45 18899.54 8596.61 28599.01 23499.40 27297.09 12999.86 13997.68 23699.53 14199.10 216
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250696.81 30696.65 30397.29 33299.74 8092.21 37599.60 9585.06 40499.13 2299.77 5199.93 987.82 36199.85 14599.38 4899.38 14999.80 70
AllTest98.87 12498.72 12999.31 14399.86 2098.48 21499.56 12299.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30199.83 8699.59 150
TestCases99.31 14399.86 2098.48 21499.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30199.83 8699.59 150
jason99.13 8899.03 8699.45 12399.46 19098.87 17299.12 28999.26 28598.03 15699.79 4299.65 18697.02 13299.85 14599.02 8799.90 3999.65 129
jason: jason.
CNVR-MVS99.42 4299.30 4999.78 5299.62 13699.71 4499.26 26699.52 10198.82 6599.39 15599.71 15498.96 2499.85 14598.59 15199.80 9799.77 82
PAPM_NR99.04 10898.84 11999.66 6999.74 8099.44 9499.39 21999.38 23197.70 18799.28 18099.28 30498.34 8999.85 14596.96 28599.45 14599.69 115
test111198.04 21098.11 18697.83 31399.74 8093.82 36099.58 10995.40 39399.12 2599.65 8999.93 990.73 32899.84 15199.43 4699.38 14999.82 54
ECVR-MVScopyleft98.04 21098.05 19598.00 30299.74 8094.37 35599.59 10194.98 39499.13 2299.66 8399.93 990.67 32999.84 15199.40 4799.38 14999.80 70
test_yl98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19099.84 15198.60 14998.33 21899.59 150
DCV-MVSNet98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19099.84 15198.60 14998.33 21899.59 150
Fast-Effi-MVS+98.70 15098.43 16399.51 11399.51 16999.28 11199.52 14899.47 17396.11 32399.01 23499.34 29096.20 16199.84 15197.88 21198.82 19699.39 198
TSAR-MVS + GP.99.36 5499.36 3299.36 13599.67 11198.61 19899.07 29999.33 25799.00 4399.82 3599.81 9099.06 1699.84 15199.09 8099.42 14799.65 129
tpmrst98.33 17898.48 16197.90 30899.16 26894.78 34899.31 24399.11 30697.27 23099.45 13499.59 21295.33 19299.84 15198.48 16598.61 20299.09 220
Vis-MVSNetpermissive99.12 9498.97 10099.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21799.84 15199.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 15998.34 16999.51 11399.40 20799.03 14598.80 34599.36 24096.33 30499.00 23899.12 32698.46 8199.84 15195.23 33499.37 15699.66 125
PatchMatch-RL98.84 13798.62 14699.52 11199.71 9699.28 11199.06 30299.77 997.74 18499.50 12699.53 23595.41 18899.84 15197.17 27599.64 13199.44 191
EPP-MVSNet99.13 8898.99 9699.53 10599.65 12599.06 14299.81 2099.33 25797.43 21799.60 10699.88 3697.14 12699.84 15199.13 7698.94 18599.69 115
thres100view90097.76 25497.45 25998.69 23799.72 9197.86 25099.59 10198.74 35197.93 16299.26 18898.62 35791.75 30999.83 16293.22 35798.18 23198.37 342
tfpn200view997.72 26397.38 27298.72 23599.69 10697.96 24299.50 16398.73 35697.83 17299.17 20898.45 36291.67 31399.83 16293.22 35798.18 23198.37 342
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16299.74 92
131498.68 15498.54 15899.11 17298.89 31098.65 19399.27 25899.49 14396.89 26697.99 32799.56 22397.72 11199.83 16297.74 22899.27 16098.84 244
thres40097.77 25397.38 27298.92 19899.69 10697.96 24299.50 16398.73 35697.83 17299.17 20898.45 36291.67 31399.83 16293.22 35798.18 23198.96 238
casdiffmvspermissive99.13 8898.98 9999.56 9499.65 12599.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16299.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 16899.69 1999.85 6999.48 178
MVS_Test99.10 10298.97 10099.48 11799.49 18099.14 13199.67 6499.34 25097.31 22799.58 11099.76 13597.65 11299.82 16898.87 10599.07 17799.46 186
dp97.75 25897.80 21997.59 32499.10 27893.71 36399.32 24198.88 33696.48 29699.08 22399.55 22692.67 28899.82 16896.52 30498.58 20599.24 210
RPSCF98.22 18598.62 14696.99 33899.82 4291.58 37799.72 4999.44 20196.61 28599.66 8399.89 3095.92 17199.82 16897.46 25699.10 17499.57 156
PMMVS98.80 14198.62 14699.34 13699.27 24198.70 18998.76 34999.31 27197.34 22499.21 19899.07 32897.20 12599.82 16898.56 15898.87 19199.52 167
EIA-MVS99.18 7899.09 7899.45 12399.49 18099.18 12299.67 6499.53 9697.66 19299.40 15299.44 26198.10 9999.81 17398.94 9499.62 13499.35 201
Effi-MVS+98.81 13898.59 15399.48 11799.46 19099.12 13498.08 38399.50 13597.50 20999.38 15899.41 26996.37 15699.81 17399.11 7898.54 21099.51 173
thres20097.61 27797.28 28698.62 24099.64 12798.03 23699.26 26698.74 35197.68 18999.09 22298.32 36691.66 31599.81 17392.88 36198.22 22698.03 358
tpmvs97.98 22198.02 19997.84 31299.04 29194.73 34999.31 24399.20 29696.10 32798.76 27299.42 26594.94 20299.81 17396.97 28498.45 21498.97 236
casdiffmvs_mvgpermissive99.15 8499.02 9099.55 9699.66 11999.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17399.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 13899.37 3097.12 33699.60 14591.75 37698.61 36199.44 20199.35 1299.83 3499.85 5498.70 6399.81 17399.02 8799.91 3199.81 61
DPM-MVS98.95 11898.71 13199.66 6999.63 13099.55 7798.64 36099.10 30797.93 16299.42 14399.55 22698.67 6699.80 17995.80 31999.68 12699.61 144
DP-MVS Recon99.12 9498.95 10499.65 7399.74 8099.70 4699.27 25899.57 6496.40 30399.42 14399.68 17498.75 5599.80 17997.98 20599.72 11899.44 191
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33199.85 698.82 6599.65 8999.74 14398.51 7899.80 17998.83 11899.89 4899.64 136
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18299.65 2399.78 10499.41 195
Fast-Effi-MVS+-dtu98.77 14498.83 12198.60 24199.41 20296.99 29099.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18297.95 20799.45 14599.02 231
baseline198.31 17997.95 20699.38 13499.50 17898.74 18699.59 10198.93 32698.41 10099.14 21199.60 21094.59 22899.79 18298.48 16593.29 35499.61 144
baseline99.15 8499.02 9099.53 10599.66 11999.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18299.51 3599.14 16999.67 122
PVSNet_094.43 1996.09 32095.47 32697.94 30599.31 23194.34 35797.81 38599.70 1597.12 24497.46 34098.75 35489.71 33999.79 18297.69 23581.69 38799.68 119
API-MVS99.04 10899.03 8699.06 17699.40 20799.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 18796.98 28399.78 10498.07 355
OMC-MVS99.08 10499.04 8499.20 16399.67 11198.22 22799.28 25399.52 10198.07 14899.66 8399.81 9097.79 10899.78 18797.79 22099.81 9399.60 146
GeoE98.85 13498.62 14699.53 10599.61 14099.08 13999.80 2599.51 11597.10 24899.31 17499.78 12195.23 19899.77 18998.21 18699.03 18099.75 88
alignmvs98.81 13898.56 15799.58 9099.43 19799.42 9699.51 15698.96 32498.61 8499.35 16798.92 34694.78 21499.77 18999.35 5198.11 23699.54 161
tpm cat197.39 29097.36 27497.50 32799.17 26693.73 36299.43 19899.31 27191.27 37498.71 27699.08 32794.31 24299.77 18996.41 30898.50 21299.00 232
CostFormer97.72 26397.73 23297.71 32099.15 27194.02 35999.54 13999.02 31794.67 35199.04 23199.35 28692.35 30099.77 18998.50 16497.94 23999.34 203
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 193
MDTV_nov1_ep1398.32 17199.11 27594.44 35499.27 25898.74 35197.51 20899.40 15299.62 20394.78 21499.76 19397.59 24098.81 198
canonicalmvs99.02 11198.86 11799.51 11399.42 19999.32 10499.80 2599.48 15598.63 8299.31 17498.81 35197.09 12999.75 19599.27 6697.90 24099.47 184
Effi-MVS+-dtu98.78 14298.89 11298.47 26199.33 22496.91 29699.57 11699.30 27598.47 9499.41 14798.99 33796.78 14099.74 19698.73 12999.38 14998.74 258
patchmatchnet-post98.70 35594.79 21399.74 196
SCA98.19 18998.16 17998.27 28599.30 23295.55 33199.07 29998.97 32297.57 19999.43 14099.57 22092.72 28399.74 19697.58 24199.20 16399.52 167
BH-untuned98.42 16998.36 16798.59 24299.49 18096.70 30299.27 25899.13 30597.24 23498.80 26799.38 27795.75 17899.74 19697.07 27999.16 16599.33 204
BH-RMVSNet98.41 17198.08 19199.40 13099.41 20298.83 18099.30 24598.77 34797.70 18798.94 24699.65 18692.91 27899.74 19696.52 30499.55 14099.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 32999.85 698.82 6599.54 11999.73 14998.51 7899.74 19698.91 9999.88 5199.77 82
test_post65.99 39894.65 22799.73 202
XVG-ACMP-BASELINE97.83 24497.71 23498.20 28799.11 27596.33 31699.41 20799.52 10198.06 15299.05 23099.50 24489.64 34199.73 20297.73 22997.38 27498.53 324
HyFIR lowres test99.11 9898.92 10699.65 7399.90 499.37 10099.02 31299.91 397.67 19199.59 10999.75 13895.90 17399.73 20299.53 3299.02 18299.86 33
DeepMVS_CXcopyleft93.34 36099.29 23682.27 38899.22 29285.15 38596.33 35999.05 33190.97 32699.73 20293.57 35497.77 24398.01 359
Patchmatch-test97.93 22797.65 23998.77 23299.18 26097.07 28199.03 30999.14 30496.16 31898.74 27399.57 22094.56 23099.72 20693.36 35699.11 17199.52 167
LPG-MVS_test98.22 18598.13 18498.49 25599.33 22497.05 28399.58 10999.55 7797.46 21199.24 19099.83 6892.58 29099.72 20698.09 19597.51 25898.68 277
LGP-MVS_train98.49 25599.33 22497.05 28399.55 7797.46 21199.24 19099.83 6892.58 29099.72 20698.09 19597.51 25898.68 277
BH-w/o98.00 21997.89 21598.32 27899.35 21896.20 32099.01 31798.90 33496.42 30198.38 30999.00 33695.26 19699.72 20696.06 31298.61 20299.03 229
ACMP97.20 1198.06 20497.94 20898.45 26399.37 21497.01 28899.44 19499.49 14397.54 20598.45 30699.79 11591.95 30599.72 20697.91 20997.49 26398.62 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 21497.90 21198.40 27199.23 24996.80 30099.70 5299.60 5497.12 24498.18 31999.70 15891.73 31199.72 20698.39 17297.45 26698.68 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 27165.14 39994.18 24799.71 21297.58 241
ADS-MVSNet98.20 18898.08 19198.56 24999.33 22496.48 31199.23 27199.15 30296.24 31199.10 21999.67 18094.11 24899.71 21296.81 29399.05 17899.48 178
JIA-IIPM97.50 28497.02 29798.93 19698.73 33297.80 25299.30 24598.97 32291.73 37398.91 25094.86 38795.10 20099.71 21297.58 24197.98 23899.28 208
EPMVS97.82 24797.65 23998.35 27598.88 31195.98 32399.49 17494.71 39697.57 19999.26 18899.48 25292.46 29799.71 21297.87 21399.08 17699.35 201
TDRefinement95.42 32894.57 33597.97 30489.83 39696.11 32299.48 17898.75 34896.74 27396.68 35699.88 3688.65 35099.71 21298.37 17582.74 38698.09 354
ACMM97.58 598.37 17698.34 16998.48 25799.41 20297.10 27799.56 12299.45 19398.53 9099.04 23199.85 5493.00 27499.71 21298.74 12797.45 26698.64 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 22497.77 22598.57 24699.59 14796.61 30799.45 18899.08 31098.21 12498.88 25599.80 10388.66 34999.70 21898.58 15297.72 24499.39 198
CHOSEN 280x42099.12 9499.13 7299.08 17399.66 11997.89 24798.43 37199.71 1398.88 5999.62 10099.76 13596.63 14599.70 21899.46 4499.99 199.66 125
EC-MVSNet99.44 3799.39 2799.58 9099.56 15599.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 21899.64 2499.82 9099.54 161
PatchmatchNetpermissive98.31 17998.36 16798.19 28899.16 26895.32 33999.27 25898.92 32897.37 22399.37 16099.58 21694.90 20699.70 21897.43 25999.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 19997.99 20198.44 26699.41 20296.96 29499.60 9599.56 6998.09 14398.15 32099.91 2090.87 32799.70 21898.88 10297.45 26698.67 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS98.27 18498.22 17798.44 26699.29 23696.97 29299.39 21999.47 17398.97 5199.11 21699.61 20792.71 28599.69 22397.78 22197.63 24698.67 284
plane_prior599.47 17399.69 22397.78 22197.63 24698.67 284
D2MVS98.41 17198.50 16098.15 29399.26 24396.62 30699.40 21599.61 4897.71 18698.98 24099.36 28396.04 16499.67 22598.70 13297.41 27198.15 352
IS-MVSNet99.05 10798.87 11499.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22598.09 19599.13 17099.73 97
CLD-MVS98.16 19398.10 18798.33 27699.29 23696.82 29998.75 35099.44 20197.83 17299.13 21299.55 22692.92 27699.67 22598.32 18197.69 24598.48 328
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 29597.30 28497.09 33799.43 19793.31 36899.73 4798.87 33898.83 6499.28 18099.80 10384.45 37399.66 22897.88 21197.45 26698.30 344
AUN-MVS96.88 30496.31 31098.59 24299.48 18897.04 28699.27 25899.22 29297.44 21698.51 30299.41 26991.97 30499.66 22897.71 23283.83 38499.07 226
UniMVSNet_ETH3D97.32 29296.81 30098.87 21399.40 20797.46 26399.51 15699.53 9695.86 33198.54 30199.77 12982.44 38199.66 22898.68 13797.52 25699.50 176
OPM-MVS98.19 18998.10 18798.45 26398.88 31197.07 28199.28 25399.38 23198.57 8699.22 19599.81 9092.12 30199.66 22898.08 19997.54 25598.61 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 23097.78 22398.32 27899.46 19096.68 30499.56 12299.54 8598.41 10097.79 33699.87 4490.18 33699.66 22898.05 20397.18 28298.62 307
hse-mvs297.50 28497.14 29298.59 24299.49 18097.05 28399.28 25399.22 29298.94 5499.66 8399.42 26594.93 20399.65 23399.48 4183.80 38599.08 221
VPA-MVSNet98.29 18297.95 20699.30 14899.16 26899.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29299.65 23399.35 5194.46 33798.72 261
TR-MVS97.76 25497.41 27098.82 22499.06 28797.87 24898.87 33998.56 36296.63 28498.68 28499.22 31392.49 29399.65 23395.40 33097.79 24298.95 240
gm-plane-assit98.54 35192.96 37094.65 35299.15 32199.64 23697.56 246
HQP4-MVS98.66 28599.64 23698.64 296
HQP-MVS98.02 21497.90 21198.37 27499.19 25796.83 29798.98 32299.39 22398.24 11898.66 28599.40 27292.47 29499.64 23697.19 27297.58 25198.64 296
PAPM97.59 27897.09 29599.07 17599.06 28798.26 22598.30 37899.10 30794.88 34698.08 32299.34 29096.27 15999.64 23689.87 37598.92 18899.31 206
TAPA-MVS97.07 1597.74 26097.34 27998.94 19499.70 10197.53 26199.25 26899.51 11591.90 37299.30 17699.63 19898.78 4899.64 23688.09 38299.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 17598.09 19099.24 15999.26 24399.32 10499.56 12299.55 7797.45 21498.71 27699.83 6893.23 26999.63 24198.88 10296.32 29798.76 253
ITE_SJBPF98.08 29599.29 23696.37 31498.92 32898.34 10898.83 26399.75 13891.09 32499.62 24295.82 31797.40 27298.25 348
LF4IMVS97.52 28197.46 25897.70 32198.98 30195.55 33199.29 24998.82 34398.07 14898.66 28599.64 19289.97 33799.61 24397.01 28096.68 28797.94 365
tpm97.67 27397.55 24698.03 29799.02 29395.01 34599.43 19898.54 36496.44 29999.12 21499.34 29091.83 30899.60 24497.75 22796.46 29399.48 178
tpm297.44 28997.34 27997.74 31999.15 27194.36 35699.45 18898.94 32593.45 36598.90 25299.44 26191.35 32199.59 24597.31 26398.07 23799.29 207
baseline297.87 23697.55 24698.82 22499.18 26098.02 23799.41 20796.58 39096.97 25996.51 35799.17 31893.43 26699.57 24697.71 23299.03 18098.86 242
MS-PatchMatch97.24 29797.32 28296.99 33898.45 35493.51 36798.82 34399.32 26797.41 22098.13 32199.30 30088.99 34599.56 24795.68 32399.80 9797.90 368
TinyColmap97.12 29996.89 29997.83 31399.07 28495.52 33498.57 36498.74 35197.58 19897.81 33599.79 11588.16 35699.56 24795.10 33597.21 28098.39 340
USDC97.34 29197.20 29097.75 31899.07 28495.20 34198.51 36899.04 31697.99 15898.31 31399.86 4989.02 34499.55 24995.67 32497.36 27598.49 327
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14599.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25099.28 6399.84 7799.63 140
TAMVS99.12 9499.08 7999.24 15999.46 19098.55 20299.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25198.70 13298.93 18699.67 122
EPNet_dtu98.03 21297.96 20498.23 28698.27 35795.54 33399.23 27198.75 34899.02 3897.82 33499.71 15496.11 16299.48 25293.04 36099.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 32195.69 32396.81 34597.78 36492.79 37199.16 28198.93 32696.16 31894.08 37499.22 31382.72 37999.47 25395.67 32497.50 26098.17 351
MVP-Stereo97.81 24997.75 23097.99 30397.53 36896.60 30898.96 32698.85 34097.22 23697.23 34799.36 28395.28 19399.46 25495.51 32699.78 10497.92 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 16198.67 13598.30 28099.35 21895.59 33099.50 16399.55 7798.60 8599.39 15599.83 6894.48 23599.45 25598.75 12698.56 20899.85 36
test-LLR98.06 20497.90 21198.55 25198.79 32397.10 27798.67 35697.75 37797.34 22498.61 29698.85 34894.45 23799.45 25597.25 26699.38 14999.10 216
TESTMET0.1,197.55 27997.27 28998.40 27198.93 30696.53 30998.67 35697.61 38096.96 26098.64 29299.28 30488.63 35199.45 25597.30 26499.38 14999.21 212
test-mter97.49 28797.13 29498.55 25198.79 32397.10 27798.67 35697.75 37796.65 28098.61 29698.85 34888.23 35599.45 25597.25 26699.38 14999.10 216
mvs_anonymous99.03 11098.99 9699.16 16799.38 21198.52 20899.51 15699.38 23197.79 17799.38 15899.81 9097.30 12299.45 25599.35 5198.99 18399.51 173
tfpnnormal97.84 24297.47 25698.98 18899.20 25599.22 11999.64 7899.61 4896.32 30598.27 31699.70 15893.35 26899.44 26095.69 32295.40 32098.27 346
v7n97.87 23697.52 25098.92 19898.76 33098.58 20099.84 1399.46 18296.20 31498.91 25099.70 15894.89 20799.44 26096.03 31393.89 34898.75 255
jajsoiax98.43 16898.28 17498.88 20998.60 34798.43 21899.82 1799.53 9698.19 12798.63 29399.80 10393.22 27199.44 26099.22 6997.50 26098.77 251
mvs_tets98.40 17498.23 17698.91 20298.67 34098.51 21099.66 6999.53 9698.19 12798.65 29199.81 9092.75 28099.44 26099.31 5897.48 26498.77 251
Vis-MVSNet (Re-imp)98.87 12498.72 12999.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18799.43 26497.91 20999.11 17199.62 142
OPU-MVS99.64 7899.56 15599.72 4299.60 9599.70 15899.27 599.42 26598.24 18599.80 9799.79 74
Anonymous2023121197.88 23497.54 24998.90 20499.71 9698.53 20499.48 17899.57 6494.16 35698.81 26599.68 17493.23 26999.42 26598.84 11594.42 33998.76 253
VPNet97.84 24297.44 26499.01 18299.21 25398.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34699.39 26799.19 7193.27 35598.71 263
iter_conf_final98.71 14998.61 15298.99 18699.49 18098.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 20999.38 26899.30 6197.52 25698.64 296
nrg03098.64 15898.42 16499.28 15499.05 29099.69 4799.81 2099.46 18298.04 15499.01 23499.82 7696.69 14499.38 26899.34 5594.59 33698.78 248
iter_conf0598.55 16298.44 16298.87 21399.34 22298.60 19999.55 13499.42 20998.21 12499.37 16099.77 12993.55 26599.38 26899.30 6197.48 26498.63 304
GA-MVS97.85 23997.47 25699.00 18499.38 21197.99 23998.57 36499.15 30297.04 25598.90 25299.30 30089.83 33899.38 26896.70 29898.33 21899.62 142
UniMVSNet (Re)98.29 18298.00 20099.13 17199.00 29599.36 10299.49 17499.51 11597.95 16098.97 24299.13 32396.30 15899.38 26898.36 17793.34 35398.66 292
FIs98.78 14298.63 14199.23 16199.18 26099.54 7999.83 1699.59 5798.28 11398.79 26999.81 9096.75 14299.37 27399.08 8296.38 29598.78 248
PS-MVSNAJss98.92 12098.92 10698.90 20498.78 32698.53 20499.78 3299.54 8598.07 14899.00 23899.76 13599.01 1899.37 27399.13 7697.23 27998.81 245
CDS-MVSNet99.09 10399.03 8699.25 15799.42 19998.73 18799.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27398.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 32595.16 33097.51 32699.30 23293.69 36498.88 33795.78 39185.09 38698.78 27092.65 38991.29 32299.37 27394.85 33999.85 6999.46 186
v119297.81 24997.44 26498.91 20298.88 31198.68 19099.51 15699.34 25096.18 31699.20 20199.34 29094.03 25199.36 27795.32 33295.18 32498.69 272
EI-MVSNet98.67 15598.67 13598.68 23899.35 21897.97 24099.50 16399.38 23196.93 26599.20 20199.83 6897.87 10599.36 27798.38 17397.56 25398.71 263
MVSTER98.49 16398.32 17199.00 18499.35 21899.02 14699.54 13999.38 23197.41 22099.20 20199.73 14993.86 25899.36 27798.87 10597.56 25398.62 307
gg-mvs-nofinetune96.17 31895.32 32998.73 23498.79 32398.14 23199.38 22494.09 39791.07 37798.07 32591.04 39389.62 34299.35 28096.75 29599.09 17598.68 277
pm-mvs197.68 27097.28 28698.88 20999.06 28798.62 19699.50 16399.45 19396.32 30597.87 33299.79 11592.47 29499.35 28097.54 24893.54 35298.67 284
OurMVSNet-221017-097.88 23497.77 22598.19 28898.71 33696.53 30999.88 499.00 31997.79 17798.78 27099.94 691.68 31299.35 28097.21 26896.99 28698.69 272
EGC-MVSNET82.80 35777.86 36397.62 32297.91 36196.12 32199.33 24099.28 2818.40 40125.05 40299.27 30784.11 37499.33 28389.20 37798.22 22697.42 376
pmmvs696.53 31096.09 31597.82 31598.69 33895.47 33599.37 22699.47 17393.46 36497.41 34199.78 12187.06 36499.33 28396.92 29092.70 36298.65 294
mvsmamba98.92 12098.87 11499.08 17399.07 28499.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28399.38 4897.40 27298.73 260
V4298.06 20497.79 22098.86 21798.98 30198.84 17799.69 5599.34 25096.53 29199.30 17699.37 28094.67 22599.32 28697.57 24594.66 33498.42 336
lessismore_v097.79 31798.69 33895.44 33794.75 39595.71 36599.87 4488.69 34899.32 28695.89 31694.93 33198.62 307
OpenMVS_ROBcopyleft92.34 2094.38 33993.70 34596.41 35097.38 37093.17 36999.06 30298.75 34886.58 38494.84 37298.26 36781.53 38299.32 28689.01 37897.87 24196.76 379
bld_raw_dy_0_6498.69 15298.58 15498.99 18698.88 31198.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 28999.09 8097.27 27798.71 263
v897.95 22697.63 24298.93 19698.95 30598.81 18399.80 2599.41 21296.03 32899.10 21999.42 26594.92 20599.30 29096.94 28794.08 34598.66 292
v192192097.80 25197.45 25998.84 22198.80 32298.53 20499.52 14899.34 25096.15 32099.24 19099.47 25593.98 25399.29 29195.40 33095.13 32698.69 272
anonymousdsp98.44 16798.28 17498.94 19498.50 35298.96 15799.77 3499.50 13597.07 25098.87 25899.77 12994.76 21899.28 29298.66 13997.60 24998.57 322
MVSFormer99.17 8099.12 7399.29 15199.51 16998.94 16599.88 499.46 18297.55 20299.80 4099.65 18697.39 11699.28 29299.03 8599.85 6999.65 129
test_djsdf98.67 15598.57 15598.98 18898.70 33798.91 16999.88 499.46 18297.55 20299.22 19599.88 3695.73 17999.28 29299.03 8597.62 24898.75 255
cascas97.69 26897.43 26898.48 25798.60 34797.30 26698.18 38299.39 22392.96 36898.41 30798.78 35393.77 26199.27 29598.16 19298.61 20298.86 242
v14419297.92 23097.60 24498.87 21398.83 32198.65 19399.55 13499.34 25096.20 31499.32 17299.40 27294.36 23999.26 29696.37 30995.03 32898.70 268
dmvs_re98.08 20298.16 17997.85 31099.55 15994.67 35199.70 5298.92 32898.15 13399.06 22899.35 28693.67 26499.25 29797.77 22497.25 27899.64 136
RRT_MVS98.70 15098.66 13898.83 22398.90 30898.45 21699.89 299.28 28197.76 18098.94 24699.92 1496.98 13499.25 29799.28 6397.00 28598.80 246
v2v48298.06 20497.77 22598.92 19898.90 30898.82 18199.57 11699.36 24096.65 28099.19 20499.35 28694.20 24499.25 29797.72 23194.97 32998.69 272
v124097.69 26897.32 28298.79 23098.85 31998.43 21899.48 17899.36 24096.11 32399.27 18499.36 28393.76 26299.24 30094.46 34395.23 32398.70 268
v114497.98 22197.69 23598.85 22098.87 31598.66 19299.54 13999.35 24696.27 30999.23 19499.35 28694.67 22599.23 30196.73 29695.16 32598.68 277
v1097.85 23997.52 25098.86 21798.99 29898.67 19199.75 4199.41 21295.70 33298.98 24099.41 26994.75 21999.23 30196.01 31594.63 33598.67 284
WR-MVS_H98.13 19697.87 21698.90 20499.02 29398.84 17799.70 5299.59 5797.27 23098.40 30899.19 31795.53 18599.23 30198.34 17893.78 35098.61 316
miper_enhance_ethall98.16 19398.08 19198.41 26998.96 30497.72 25598.45 37099.32 26796.95 26298.97 24299.17 31897.06 13199.22 30497.86 21495.99 30498.29 345
GG-mvs-BLEND98.45 26398.55 35098.16 22999.43 19893.68 39897.23 34798.46 36189.30 34399.22 30495.43 32998.22 22697.98 363
FC-MVSNet-test98.75 14598.62 14699.15 17099.08 28399.45 9399.86 1299.60 5498.23 12198.70 28299.82 7696.80 13999.22 30499.07 8396.38 29598.79 247
UniMVSNet_NR-MVSNet98.22 18597.97 20398.96 19198.92 30798.98 15099.48 17899.53 9697.76 18098.71 27699.46 25996.43 15599.22 30498.57 15592.87 36098.69 272
DU-MVS98.08 20297.79 22098.96 19198.87 31598.98 15099.41 20799.45 19397.87 16698.71 27699.50 24494.82 20999.22 30498.57 15592.87 36098.68 277
cl____98.01 21797.84 21898.55 25199.25 24797.97 24098.71 35499.34 25096.47 29898.59 29999.54 23195.65 18399.21 30997.21 26895.77 31098.46 333
WR-MVS98.06 20497.73 23299.06 17698.86 31899.25 11699.19 27899.35 24697.30 22898.66 28599.43 26393.94 25499.21 30998.58 15294.28 34198.71 263
test_040296.64 30896.24 31197.85 31098.85 31996.43 31399.44 19499.26 28593.52 36296.98 35499.52 23888.52 35299.20 31192.58 36697.50 26097.93 366
SixPastTwentyTwo97.50 28497.33 28198.03 29798.65 34196.23 31999.77 3498.68 35997.14 24197.90 33099.93 990.45 33099.18 31297.00 28196.43 29498.67 284
cl2297.85 23997.64 24198.48 25799.09 28197.87 24898.60 36399.33 25797.11 24798.87 25899.22 31392.38 29999.17 31398.21 18695.99 30498.42 336
IterMVS-SCA-FT97.82 24797.75 23098.06 29699.57 15196.36 31599.02 31299.49 14397.18 23898.71 27699.72 15392.72 28399.14 31497.44 25895.86 30998.67 284
pmmvs597.52 28197.30 28498.16 29098.57 34996.73 30199.27 25898.90 33496.14 32198.37 31099.53 23591.54 31899.14 31497.51 25095.87 30898.63 304
v14897.79 25297.55 24698.50 25498.74 33197.72 25599.54 13999.33 25796.26 31098.90 25299.51 24194.68 22499.14 31497.83 21793.15 35798.63 304
miper_ehance_all_eth98.18 19198.10 18798.41 26999.23 24997.72 25598.72 35399.31 27196.60 28798.88 25599.29 30297.29 12399.13 31797.60 23995.99 30498.38 341
NR-MVSNet97.97 22497.61 24399.02 18198.87 31599.26 11599.47 18499.42 20997.63 19497.08 35299.50 24495.07 20199.13 31797.86 21493.59 35198.68 277
IterMVS97.83 24497.77 22598.02 29999.58 14996.27 31899.02 31299.48 15597.22 23698.71 27699.70 15892.75 28099.13 31797.46 25696.00 30398.67 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 34094.90 33291.84 36497.24 37480.01 39498.52 36799.48 15589.01 38191.99 38299.67 18085.67 36899.13 31795.44 32897.03 28496.39 383
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 20997.96 20498.33 27699.26 24397.38 26598.56 36699.31 27196.65 28098.88 25599.52 23896.58 14799.12 32197.39 26195.53 31898.47 330
pmmvs498.13 19697.90 21198.81 22798.61 34698.87 17298.99 31999.21 29596.44 29999.06 22899.58 21695.90 17399.11 32297.18 27496.11 30198.46 333
TransMVSNet (Re)97.15 29896.58 30498.86 21799.12 27398.85 17699.49 17498.91 33295.48 33597.16 35099.80 10393.38 26799.11 32294.16 34991.73 36598.62 307
ambc93.06 36292.68 39282.36 38798.47 36998.73 35695.09 37097.41 37655.55 39499.10 32496.42 30791.32 36697.71 369
Baseline_NR-MVSNet97.76 25497.45 25998.68 23899.09 28198.29 22399.41 20798.85 34095.65 33398.63 29399.67 18094.82 20999.10 32498.07 20292.89 35998.64 296
test_vis3_rt87.04 35385.81 35690.73 36893.99 39181.96 38999.76 3790.23 40392.81 36981.35 39191.56 39140.06 40099.07 32694.27 34688.23 37891.15 391
CP-MVSNet98.09 20097.78 22399.01 18298.97 30399.24 11799.67 6499.46 18297.25 23298.48 30599.64 19293.79 26099.06 32798.63 14294.10 34498.74 258
PS-CasMVS97.93 22797.59 24598.95 19398.99 29899.06 14299.68 6199.52 10197.13 24298.31 31399.68 17492.44 29899.05 32898.51 16394.08 34598.75 255
K. test v397.10 30096.79 30198.01 30098.72 33496.33 31699.87 997.05 38497.59 19696.16 36199.80 10388.71 34799.04 32996.69 29996.55 29298.65 294
new_pmnet96.38 31496.03 31697.41 32898.13 36095.16 34499.05 30499.20 29693.94 35797.39 34498.79 35291.61 31799.04 32990.43 37395.77 31098.05 357
DIV-MVS_self_test98.01 21797.85 21798.48 25799.24 24897.95 24498.71 35499.35 24696.50 29298.60 29899.54 23195.72 18099.03 33197.21 26895.77 31098.46 333
IterMVS-LS98.46 16698.42 16498.58 24599.59 14798.00 23899.37 22699.43 20796.94 26499.07 22499.59 21297.87 10599.03 33198.32 18195.62 31598.71 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 27597.68 23697.55 32598.62 34494.97 34698.84 34199.30 27596.83 27198.19 31899.34 29097.01 13399.02 33395.00 33896.01 30298.64 296
Patchmtry97.75 25897.40 27198.81 22799.10 27898.87 17299.11 29599.33 25794.83 34898.81 26599.38 27794.33 24099.02 33396.10 31195.57 31698.53 324
N_pmnet94.95 33495.83 32192.31 36398.47 35379.33 39599.12 28992.81 40193.87 35897.68 33799.13 32393.87 25799.01 33591.38 37096.19 29998.59 320
CR-MVSNet98.17 19297.93 20998.87 21399.18 26098.49 21299.22 27599.33 25796.96 26099.56 11499.38 27794.33 24099.00 33694.83 34098.58 20599.14 213
c3_l98.12 19898.04 19698.38 27399.30 23297.69 25998.81 34499.33 25796.67 27898.83 26399.34 29097.11 12898.99 33797.58 24195.34 32198.48 328
test0.0.03 197.71 26697.42 26998.56 24998.41 35697.82 25198.78 34798.63 36097.34 22498.05 32698.98 33994.45 23798.98 33895.04 33797.15 28398.89 241
PatchT97.03 30296.44 30798.79 23098.99 29898.34 22299.16 28199.07 31392.13 37199.52 12397.31 38094.54 23398.98 33888.54 38098.73 20199.03 229
GBi-Net97.68 27097.48 25498.29 28199.51 16997.26 27099.43 19899.48 15596.49 29399.07 22499.32 29790.26 33298.98 33897.10 27696.65 28898.62 307
test197.68 27097.48 25498.29 28199.51 16997.26 27099.43 19899.48 15596.49 29399.07 22499.32 29790.26 33298.98 33897.10 27696.65 28898.62 307
FMVSNet398.03 21297.76 22998.84 22199.39 21098.98 15099.40 21599.38 23196.67 27899.07 22499.28 30492.93 27598.98 33897.10 27696.65 28898.56 323
FMVSNet297.72 26397.36 27498.80 22999.51 16998.84 17799.45 18899.42 20996.49 29398.86 26299.29 30290.26 33298.98 33896.44 30696.56 29198.58 321
FMVSNet196.84 30596.36 30998.29 28199.32 23097.26 27099.43 19899.48 15595.11 34098.55 30099.32 29783.95 37598.98 33895.81 31896.26 29898.62 307
ppachtmachnet_test97.49 28797.45 25997.61 32398.62 34495.24 34098.80 34599.46 18296.11 32398.22 31799.62 20396.45 15398.97 34593.77 35195.97 30798.61 316
TranMVSNet+NR-MVSNet97.93 22797.66 23898.76 23398.78 32698.62 19699.65 7599.49 14397.76 18098.49 30499.60 21094.23 24398.97 34598.00 20492.90 35898.70 268
test_method91.10 34991.36 35190.31 36995.85 38173.72 40294.89 39099.25 28768.39 39395.82 36499.02 33580.50 38398.95 34793.64 35394.89 33398.25 348
ADS-MVSNet298.02 21498.07 19497.87 30999.33 22495.19 34299.23 27199.08 31096.24 31199.10 21999.67 18094.11 24898.93 34896.81 29399.05 17899.48 178
ET-MVSNet_ETH3D96.49 31195.64 32599.05 17899.53 16298.82 18198.84 34197.51 38297.63 19484.77 38799.21 31692.09 30298.91 34998.98 9092.21 36499.41 195
miper_lstm_enhance98.00 21997.91 21098.28 28499.34 22297.43 26498.88 33799.36 24096.48 29698.80 26799.55 22695.98 16698.91 34997.27 26595.50 31998.51 326
PEN-MVS97.76 25497.44 26498.72 23598.77 32998.54 20399.78 3299.51 11597.06 25298.29 31599.64 19292.63 28998.89 35198.09 19593.16 35698.72 261
testing397.28 29396.76 30298.82 22499.37 21498.07 23599.45 18899.36 24097.56 20197.89 33198.95 34283.70 37698.82 35296.03 31398.56 20899.58 154
testgi97.65 27597.50 25398.13 29499.36 21796.45 31299.42 20599.48 15597.76 18097.87 33299.45 26091.09 32498.81 35394.53 34298.52 21199.13 215
testf190.42 35190.68 35389.65 37297.78 36473.97 40099.13 28798.81 34489.62 37991.80 38398.93 34362.23 39298.80 35486.61 38891.17 36796.19 384
APD_test290.42 35190.68 35389.65 37297.78 36473.97 40099.13 28798.81 34489.62 37991.80 38398.93 34362.23 39298.80 35486.61 38891.17 36796.19 384
MIMVSNet97.73 26197.45 25998.57 24699.45 19597.50 26299.02 31298.98 32196.11 32399.41 14799.14 32290.28 33198.74 35695.74 32098.93 18699.47 184
LCM-MVSNet-Re97.83 24498.15 18196.87 34499.30 23292.25 37499.59 10198.26 36797.43 21796.20 36099.13 32396.27 15998.73 35798.17 19198.99 18399.64 136
Syy-MVS97.09 30197.14 29296.95 34199.00 29592.73 37299.29 24999.39 22397.06 25297.41 34198.15 36893.92 25698.68 35891.71 36898.34 21699.45 189
myMVS_eth3d96.89 30396.37 30898.43 26899.00 29597.16 27499.29 24999.39 22397.06 25297.41 34198.15 36883.46 37798.68 35895.27 33398.34 21699.45 189
DTE-MVSNet97.51 28397.19 29198.46 26298.63 34398.13 23299.84 1399.48 15596.68 27797.97 32999.67 18092.92 27698.56 36096.88 29292.60 36398.70 268
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36198.30 18399.80 9799.81 61
mvsany_test393.77 34293.45 34694.74 35695.78 38288.01 38299.64 7898.25 36898.28 11394.31 37397.97 37368.89 38898.51 36297.50 25190.37 37297.71 369
UnsupCasMVSNet_bld93.53 34392.51 34896.58 34997.38 37093.82 36098.24 37999.48 15591.10 37693.10 37896.66 38274.89 38698.37 36394.03 35087.71 37997.56 374
Anonymous2024052196.20 31795.89 32097.13 33597.72 36794.96 34799.79 3199.29 27993.01 36797.20 34999.03 33389.69 34098.36 36491.16 37196.13 30098.07 355
test_f91.90 34891.26 35293.84 35895.52 38685.92 38499.69 5598.53 36595.31 33793.87 37596.37 38455.33 39598.27 36595.70 32190.98 37097.32 377
MDA-MVSNet_test_wron95.45 32794.60 33498.01 30098.16 35997.21 27399.11 29599.24 28993.49 36380.73 39398.98 33993.02 27398.18 36694.22 34894.45 33898.64 296
UnsupCasMVSNet_eth96.44 31296.12 31397.40 32998.65 34195.65 32899.36 23099.51 11597.13 24296.04 36398.99 33788.40 35398.17 36796.71 29790.27 37398.40 339
KD-MVS_2432*160094.62 33593.72 34397.31 33097.19 37695.82 32698.34 37499.20 29695.00 34497.57 33898.35 36487.95 35898.10 36892.87 36277.00 39198.01 359
miper_refine_blended94.62 33593.72 34397.31 33097.19 37695.82 32698.34 37499.20 29695.00 34497.57 33898.35 36487.95 35898.10 36892.87 36277.00 39198.01 359
YYNet195.36 32994.51 33697.92 30697.89 36297.10 27799.10 29799.23 29093.26 36680.77 39299.04 33292.81 27998.02 37094.30 34494.18 34398.64 296
EU-MVSNet97.98 22198.03 19797.81 31698.72 33496.65 30599.66 6999.66 2898.09 14398.35 31199.82 7695.25 19798.01 37197.41 26095.30 32298.78 248
Gipumacopyleft90.99 35090.15 35593.51 35998.73 33290.12 38093.98 39199.45 19379.32 38992.28 38194.91 38669.61 38797.98 37287.42 38495.67 31492.45 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 33094.73 33397.15 33395.53 38595.94 32499.35 23599.10 30795.13 33893.55 37697.54 37588.15 35797.91 37394.58 34189.69 37697.61 372
PM-MVS92.96 34592.23 34995.14 35595.61 38389.98 38199.37 22698.21 37094.80 34995.04 37197.69 37465.06 38997.90 37494.30 34489.98 37597.54 375
MDA-MVSNet-bldmvs94.96 33393.98 34097.92 30698.24 35897.27 26899.15 28499.33 25793.80 35980.09 39499.03 33388.31 35497.86 37593.49 35594.36 34098.62 307
Patchmatch-RL test95.84 32395.81 32295.95 35395.61 38390.57 37998.24 37998.39 36695.10 34295.20 36898.67 35694.78 21497.77 37696.28 31090.02 37499.51 173
Anonymous2023120696.22 31596.03 31696.79 34697.31 37394.14 35899.63 8299.08 31096.17 31797.04 35399.06 33093.94 25497.76 37786.96 38695.06 32798.47 330
SD-MVS99.41 4799.52 1199.05 17899.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 37898.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 29597.35 27696.95 34197.84 36393.61 36699.57 11696.63 38996.13 32298.87 25898.61 35994.59 22897.70 37895.08 33698.86 19299.55 159
pmmvs394.09 34193.25 34796.60 34894.76 39094.49 35398.92 33398.18 37289.66 37896.48 35898.06 37286.28 36597.33 38089.68 37687.20 38097.97 364
KD-MVS_self_test95.00 33294.34 33796.96 34097.07 37895.39 33899.56 12299.44 20195.11 34097.13 35197.32 37991.86 30797.27 38190.35 37481.23 38898.23 350
FMVSNet596.43 31396.19 31297.15 33399.11 27595.89 32599.32 24199.52 10194.47 35598.34 31299.07 32887.54 36297.07 38292.61 36595.72 31398.47 330
new-patchmatchnet94.48 33894.08 33995.67 35495.08 38892.41 37399.18 27999.28 28194.55 35493.49 37797.37 37887.86 36097.01 38391.57 36988.36 37797.61 372
LCM-MVSNet86.80 35585.22 35991.53 36687.81 39780.96 39298.23 38198.99 32071.05 39190.13 38696.51 38348.45 39996.88 38490.51 37285.30 38296.76 379
CL-MVSNet_self_test94.49 33793.97 34196.08 35296.16 38093.67 36598.33 37699.38 23195.13 33897.33 34598.15 36892.69 28796.57 38588.67 37979.87 38997.99 362
MIMVSNet195.51 32695.04 33196.92 34397.38 37095.60 32999.52 14899.50 13593.65 36196.97 35599.17 31885.28 37196.56 38688.36 38195.55 31798.60 319
test20.0396.12 31995.96 31896.63 34797.44 36995.45 33699.51 15699.38 23196.55 29096.16 36199.25 31093.76 26296.17 38787.35 38594.22 34298.27 346
tmp_tt82.80 35781.52 36086.66 37466.61 40368.44 40392.79 39397.92 37468.96 39280.04 39599.85 5485.77 36796.15 38897.86 21443.89 39795.39 387
test_fmvs392.10 34791.77 35093.08 36196.19 37986.25 38399.82 1798.62 36196.65 28095.19 36996.90 38155.05 39695.93 38996.63 30390.92 37197.06 378
dmvs_testset95.02 33196.12 31391.72 36599.10 27880.43 39399.58 10997.87 37697.47 21095.22 36798.82 35093.99 25295.18 39088.09 38294.91 33299.56 158
PMMVS286.87 35485.37 35891.35 36790.21 39583.80 38698.89 33697.45 38383.13 38891.67 38595.03 38548.49 39894.70 39185.86 39077.62 39095.54 386
PMVScopyleft70.75 2275.98 36374.97 36479.01 38070.98 40255.18 40593.37 39298.21 37065.08 39761.78 39893.83 38821.74 40592.53 39278.59 39291.12 36989.34 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 35685.65 35782.75 37886.77 39863.39 40498.35 37398.92 32874.11 39083.39 38998.98 33950.85 39792.40 39384.54 39194.97 32992.46 388
WB-MVS93.10 34494.10 33890.12 37095.51 38781.88 39099.73 4799.27 28495.05 34393.09 37998.91 34794.70 22391.89 39476.62 39394.02 34796.58 381
SSC-MVS92.73 34693.73 34289.72 37195.02 38981.38 39199.76 3799.23 29094.87 34792.80 38098.93 34394.71 22291.37 39574.49 39593.80 34996.42 382
MVEpermissive76.82 2176.91 36274.31 36684.70 37585.38 40076.05 39996.88 38993.17 39967.39 39471.28 39689.01 39521.66 40687.69 39671.74 39672.29 39390.35 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 35979.88 36182.81 37790.75 39476.38 39897.69 38695.76 39266.44 39583.52 38892.25 39062.54 39187.16 39768.53 39761.40 39484.89 395
EMVS80.02 36079.22 36282.43 37991.19 39376.40 39797.55 38892.49 40266.36 39683.01 39091.27 39264.63 39085.79 39865.82 39860.65 39585.08 394
ANet_high77.30 36174.86 36584.62 37675.88 40177.61 39697.63 38793.15 40088.81 38264.27 39789.29 39436.51 40183.93 39975.89 39452.31 39692.33 390
wuyk23d40.18 36441.29 36936.84 38186.18 39949.12 40679.73 39422.81 40627.64 39825.46 40128.45 40121.98 40448.89 40055.80 39923.56 40012.51 398
test12339.01 36642.50 36828.53 38239.17 40420.91 40798.75 35019.17 40719.83 40038.57 39966.67 39733.16 40215.42 40137.50 40129.66 39949.26 396
testmvs39.17 36543.78 36725.37 38336.04 40516.84 40898.36 37226.56 40520.06 39938.51 40067.32 39629.64 40315.30 40237.59 40039.90 39843.98 397
test_blank0.13 3700.17 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4031.57 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.64 36732.85 3700.00 3840.00 4060.00 4090.00 39599.51 1150.00 4020.00 40399.56 22396.58 1470.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas8.27 36911.03 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 40399.01 180.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.30 36811.06 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.58 2160.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS97.16 27495.47 327
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 406
eth-test0.00 406
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
save fliter99.76 6599.59 7099.14 28699.40 22099.00 43
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20899.52 167
sam_mvs94.72 221
MTGPAbinary99.47 173
MTMP99.54 13998.88 336
test9_res97.49 25299.72 11899.75 88
agg_prior297.21 26899.73 11799.75 88
test_prior499.56 7598.99 319
test_prior298.96 32698.34 10899.01 23499.52 23898.68 6497.96 20699.74 115
新几何299.01 317
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
原ACMM298.95 329
test22299.75 7399.49 8798.91 33599.49 14396.42 30199.34 17099.65 18698.28 9299.69 12399.72 103
segment_acmp98.96 24
testdata198.85 34098.32 111
plane_prior799.29 23697.03 287
plane_prior699.27 24196.98 29192.71 285
plane_prior499.61 207
plane_prior397.00 28998.69 7999.11 216
plane_prior299.39 21998.97 51
plane_prior199.26 243
plane_prior96.97 29299.21 27798.45 9697.60 249
n20.00 408
nn0.00 408
door-mid98.05 373
test1199.35 246
door97.92 374
HQP5-MVS96.83 297
HQP-NCC99.19 25798.98 32298.24 11898.66 285
ACMP_Plane99.19 25798.98 32298.24 11898.66 285
BP-MVS97.19 272
HQP3-MVS99.39 22397.58 251
HQP2-MVS92.47 294
NP-MVS99.23 24996.92 29599.40 272
MDTV_nov1_ep13_2view95.18 34399.35 23596.84 26999.58 11095.19 19997.82 21899.46 186
ACMMP++_ref97.19 281
ACMMP++97.43 270
Test By Simon98.75 55