This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21999.37 10499.58 11299.62 4199.41 999.87 2799.92 1498.81 44100.00 199.97 199.93 2799.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9899.58 11299.69 1899.43 799.98 699.91 2198.62 70100.00 199.97 199.95 1899.90 16
test_vis1_n_192098.63 16498.40 17099.31 15099.86 2097.94 25099.67 6799.62 4199.43 799.99 299.91 2187.29 372100.00 199.92 1199.92 2999.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12599.63 3999.48 399.98 699.83 7098.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12599.63 3999.47 499.98 699.82 7998.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 18199.64 3699.45 599.92 1799.92 1498.62 7099.99 499.96 699.99 199.96 7
patch_mono-299.26 7399.62 598.16 30299.81 4694.59 36699.52 15199.64 3699.33 1399.73 6699.90 2899.00 2299.99 499.69 2099.98 499.89 19
h-mvs3397.70 27497.28 29598.97 19799.70 10197.27 27799.36 23599.45 19998.94 5499.66 8799.64 19394.93 20999.99 499.48 4584.36 39999.65 129
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14399.63 13398.97 15899.12 30299.51 11798.86 6099.84 3499.47 25798.18 9799.99 499.50 4099.31 16399.08 238
xiu_mvs_v1_base99.29 6799.27 6299.34 14399.63 13398.97 15899.12 30299.51 11798.86 6099.84 3499.47 25798.18 9799.99 499.50 4099.31 16399.08 238
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14399.63 13398.97 15899.12 30299.51 11798.86 6099.84 3499.47 25798.18 9799.99 499.50 4099.31 16399.08 238
EPNet98.86 13598.71 13999.30 15597.20 39298.18 23299.62 9198.91 34099.28 1698.63 30099.81 9395.96 17399.99 499.24 7199.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.40 5299.28 5999.74 6199.67 11299.31 11399.52 15198.87 34799.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 8799.01 9999.61 8899.81 4698.86 17899.65 7899.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3399.91 3699.99 1
test_vis1_n97.92 23497.44 27299.34 14399.53 16698.08 23899.74 4599.49 14799.15 20100.00 199.94 679.51 40099.98 1399.88 1399.76 11599.97 4
xiu_mvs_v2_base99.26 7399.25 6699.29 15899.53 16698.91 17299.02 32599.45 19998.80 6999.71 7299.26 31498.94 2999.98 1399.34 5999.23 16798.98 252
PS-MVSNAJ99.32 6399.32 4499.30 15599.57 15498.94 16898.97 33999.46 18898.92 5799.71 7299.24 31699.01 1899.98 1399.35 5599.66 13398.97 253
QAPM98.67 16098.30 17799.80 4699.20 26599.67 5199.77 3399.72 1194.74 36398.73 28099.90 2895.78 18399.98 1396.96 29799.88 5699.76 87
3Dnovator97.25 999.24 7899.05 8799.81 4499.12 28799.66 5399.84 1199.74 1099.09 3298.92 25599.90 2895.94 17699.98 1398.95 9699.92 2999.79 74
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30599.53 8499.82 1599.72 1194.56 36698.08 33499.88 3794.73 22599.98 1397.47 26599.76 11599.06 244
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20199.65 5799.50 16599.61 4899.45 599.87 2799.92 1497.31 12599.97 2199.95 799.99 199.97 4
test_fmvs1_n98.41 17598.14 18699.21 17099.82 4297.71 26399.74 4599.49 14799.32 1499.99 299.95 385.32 38199.97 2199.82 1699.84 8299.96 7
CANet_DTU98.97 12698.87 12199.25 16599.33 23198.42 22499.08 31199.30 28199.16 1999.43 14699.75 13995.27 20099.97 2198.56 16299.95 1899.36 213
MVS_030499.15 8998.96 10999.73 6498.92 32299.37 10499.37 23096.92 39799.51 299.66 8799.78 12496.69 14899.97 2199.84 1599.97 799.84 39
MTAPA99.52 1799.39 3099.89 499.90 499.86 1399.66 7299.47 17998.79 7099.68 7899.81 9398.43 8399.97 2198.88 10699.90 4499.83 49
PGM-MVS99.45 3699.31 5199.86 2199.87 1599.78 3699.58 11299.65 3397.84 17899.71 7299.80 10699.12 1399.97 2198.33 18599.87 5999.83 49
mPP-MVS99.44 4099.30 5399.86 2199.88 1199.79 3099.69 5899.48 15998.12 14399.50 13299.75 13998.78 4899.97 2198.57 15999.89 5399.83 49
CP-MVS99.45 3699.32 4499.85 2899.83 3999.75 3999.69 5899.52 10398.07 15399.53 12799.63 19998.93 3399.97 2198.74 13199.91 3699.83 49
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10499.51 11798.62 8599.79 4699.83 7099.28 499.97 2198.48 16999.90 4499.84 39
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 8398.97 10599.82 4199.17 27999.68 4899.81 1999.51 11799.20 1898.72 28199.89 3295.68 18799.97 2198.86 11499.86 6799.81 61
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 15199.65 3399.10 2799.98 699.92 1497.35 12499.96 3199.94 999.92 2999.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15899.67 2399.13 2299.98 699.92 1496.60 15199.96 3199.95 799.96 1299.95 9
mvsany_test199.50 2099.46 2099.62 8699.61 14399.09 14198.94 34599.48 15999.10 2799.96 1499.91 2198.85 3999.96 3199.72 1899.58 14399.82 54
test_fmvs198.88 13198.79 13399.16 17599.69 10597.61 26799.55 13899.49 14799.32 1499.98 699.91 2191.41 32499.96 3199.82 1699.92 2999.90 16
DVP-MVS++99.59 899.50 1399.88 599.51 17499.88 899.87 799.51 11798.99 4599.88 2299.81 9399.27 599.96 3198.85 11699.80 10299.81 61
MSC_two_6792asdad99.87 1199.51 17499.76 3799.33 26399.96 3198.87 10999.84 8299.89 19
No_MVS99.87 1199.51 17499.76 3799.33 26399.96 3198.87 10999.84 8299.89 19
ZD-MVS99.71 9699.79 3099.61 4896.84 28299.56 12099.54 23398.58 7299.96 3196.93 30099.75 117
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9899.48 15999.08 3399.91 1899.81 9399.20 799.96 3198.91 10399.85 7499.79 74
test_241102_TWO99.48 15999.08 3399.88 2299.81 9398.94 2999.96 3198.91 10399.84 8299.88 25
ZNCC-MVS99.47 3099.33 4299.87 1199.87 1599.81 2599.64 8199.67 2398.08 15299.55 12499.64 19398.91 3499.96 3198.72 13499.90 4499.82 54
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11999.37 24399.10 2799.81 4199.80 10698.94 2999.96 3198.93 10099.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 4199.80 10699.09 1499.96 3198.85 11699.90 4499.88 25
test_0728_SECOND99.91 299.84 3299.89 499.57 11999.51 11799.96 3198.93 10099.86 6799.88 25
SR-MVS99.43 4399.29 5799.86 2199.75 7399.83 1699.59 10499.62 4198.21 13099.73 6699.79 11898.68 6499.96 3198.44 17599.77 11299.79 74
DPE-MVScopyleft99.46 3299.32 4499.91 299.78 5699.88 899.36 23599.51 11798.73 7799.88 2299.84 6598.72 6199.96 3198.16 19999.87 5999.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net99.42 4599.29 5799.80 4699.62 13999.55 7999.50 16599.70 1598.79 7099.77 5599.96 197.45 11999.96 3198.92 10299.90 4499.89 19
HFP-MVS99.49 2299.37 3499.86 2199.87 1599.80 2799.66 7299.67 2398.15 13799.68 7899.69 16999.06 1699.96 3198.69 13999.87 5999.84 39
region2R99.48 2699.35 3899.87 1199.88 1199.80 2799.65 7899.66 2898.13 14199.66 8799.68 17598.96 2499.96 3198.62 14799.87 5999.84 39
HPM-MVS++copyleft99.39 5499.23 6999.87 1199.75 7399.84 1599.43 20199.51 11798.68 8299.27 18899.53 23798.64 6999.96 3198.44 17599.80 10299.79 74
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4099.56 7199.02 3899.88 2299.85 5499.18 1099.96 3199.22 7299.92 2999.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2299.36 3699.86 2199.87 1599.79 3099.66 7299.67 2398.15 13799.67 8299.69 16998.95 2799.96 3198.69 13999.87 5999.84 39
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7299.46 18898.09 14899.48 13699.74 14498.29 9299.96 3197.93 21799.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 10498.90 11699.74 6199.80 5299.46 9699.59 10499.49 14797.03 26999.63 10299.69 16997.27 12899.96 3197.82 22899.84 8299.81 61
PVSNet_Blended_VisFu99.36 5899.28 5999.61 8899.86 2099.07 14699.47 18799.93 297.66 20199.71 7299.86 4997.73 11499.96 3199.47 4799.82 9599.79 74
UGNet98.87 13298.69 14199.40 13699.22 26298.72 19299.44 19799.68 2099.24 1799.18 21299.42 26892.74 28699.96 3199.34 5999.94 2599.53 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 6399.32 4499.32 14999.85 2698.29 22799.71 5399.66 2898.11 14599.41 15399.80 10698.37 8999.96 3198.99 9299.96 1299.72 103
ACMMPcopyleft99.45 3699.32 4499.82 4199.89 899.67 5199.62 9199.69 1898.12 14399.63 10299.84 6598.73 6099.96 3198.55 16599.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 8099.03 9199.79 4998.42 37299.48 9399.55 13899.51 11799.39 1099.78 5199.93 994.80 21799.95 5999.93 1099.95 1899.94 11
SR-MVS-dyc-post99.45 3699.31 5199.85 2899.76 6599.82 2299.63 8699.52 10398.38 10699.76 6099.82 7998.53 7699.95 5998.61 15099.81 9899.77 82
GST-MVS99.40 5299.24 6799.85 2899.86 2099.79 3099.60 9899.67 2397.97 16499.63 10299.68 17598.52 7799.95 5998.38 17899.86 6799.81 61
CANet99.25 7799.14 7699.59 9199.41 20999.16 13199.35 24099.57 6698.82 6599.51 13199.61 20896.46 15899.95 5999.59 2899.98 499.65 129
MP-MVS-pluss99.37 5799.20 7199.88 599.90 499.87 1299.30 25199.52 10397.18 25199.60 11299.79 11898.79 4799.95 5998.83 12299.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4599.27 6299.88 599.89 899.80 2799.67 6799.50 13798.70 7999.77 5599.49 24998.21 9599.95 5998.46 17399.77 11299.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 5996.67 312
APD-MVS_3200maxsize99.48 2699.35 3899.85 2899.76 6599.83 1699.63 8699.54 8798.36 11099.79 4699.82 7998.86 3899.95 5998.62 14799.81 9899.78 80
RPMNet96.72 32195.90 33399.19 17299.18 27198.49 21699.22 28599.52 10388.72 39999.56 12097.38 39394.08 25599.95 5986.87 40198.58 21399.14 230
sss99.17 8599.05 8799.53 10999.62 13998.97 15899.36 23599.62 4197.83 17999.67 8299.65 18797.37 12399.95 5999.19 7499.19 17099.68 119
MVSMamba_PlusPlus99.46 3299.41 2699.64 8099.68 10999.50 8999.75 4099.50 13798.27 11999.87 2799.92 1498.09 10199.94 6999.65 2499.95 1899.47 189
fmvsm_s_conf0.1_n_a99.26 7399.06 8699.85 2899.52 17199.62 6599.54 14299.62 4198.69 8099.99 299.96 194.47 24199.94 6999.88 1399.92 2999.98 2
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10199.65 5799.53 15099.62 4198.74 7699.99 299.95 394.53 23999.94 6999.89 1299.96 1299.97 4
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8699.39 22798.91 5899.78 5199.85 5499.36 299.94 6998.84 11999.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
iter_conf0599.48 2699.40 2799.71 6799.68 10999.61 6799.49 17699.58 6298.27 11999.95 1599.92 1498.09 10199.94 6999.65 2499.96 1299.58 154
mamv499.33 6199.42 2299.07 18399.67 11297.73 25899.42 20899.60 5498.15 13799.94 1699.91 2198.42 8599.94 6999.72 1899.96 1299.54 163
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5899.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12799.86 6799.84 39
X-MVStestdata96.55 32395.45 34299.87 1199.85 2699.83 1699.69 5899.68 2098.98 4899.37 16464.01 41698.81 4499.94 6998.79 12799.86 6799.84 39
旧先验298.96 34096.70 28999.47 13799.94 6998.19 195
新几何199.75 5899.75 7399.59 7199.54 8796.76 28599.29 18299.64 19398.43 8399.94 6996.92 30299.66 13399.72 103
testdata99.54 10199.75 7398.95 16599.51 11797.07 26399.43 14699.70 15998.87 3799.94 6997.76 23599.64 13699.72 103
HPM-MVScopyleft99.42 4599.28 5999.83 4099.90 499.72 4299.81 1999.54 8797.59 20699.68 7899.63 19998.91 3499.94 6998.58 15699.91 3699.84 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 8199.10 8099.45 12999.89 898.52 21299.39 22399.94 198.73 7799.11 22199.89 3295.50 19299.94 6999.50 4099.97 799.89 19
APD-MVScopyleft99.27 7199.08 8499.84 3999.75 7399.79 3099.50 16599.50 13797.16 25399.77 5599.82 7998.78 4899.94 6997.56 25699.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2699.42 2299.65 7599.72 9199.40 10399.05 31799.66 2899.14 2199.57 11999.80 10698.46 8199.94 6999.57 3199.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 11298.88 12099.61 8899.62 13999.16 13199.37 23099.56 7198.04 15999.53 12799.62 20496.84 14299.94 6998.85 11698.49 22199.72 103
DeepC-MVS98.35 299.30 6599.19 7299.64 8099.82 4299.23 12499.62 9199.55 7998.94 5499.63 10299.95 395.82 18299.94 6999.37 5499.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 7199.12 7899.74 6199.18 27199.75 3999.56 12599.57 6698.45 9999.49 13599.85 5497.77 11399.94 6998.33 18599.84 8299.52 170
SDMVSNet99.11 10498.90 11699.75 5899.81 4699.59 7199.81 1999.65 3398.78 7399.64 9999.88 3794.56 23599.93 8799.67 2298.26 23399.72 103
FE-MVS98.48 16898.17 18299.40 13699.54 16598.96 16299.68 6498.81 35495.54 34799.62 10699.70 15993.82 26499.93 8797.35 27499.46 15099.32 219
SF-MVS99.38 5699.24 6799.79 4999.79 5499.68 4899.57 11999.54 8797.82 18399.71 7299.80 10698.95 2799.93 8798.19 19599.84 8299.74 92
dcpmvs_299.23 7999.58 798.16 30299.83 3994.68 36499.76 3699.52 10399.07 3599.98 699.88 3798.56 7499.93 8799.67 2299.98 499.87 30
Anonymous2024052998.09 20497.68 24099.34 14399.66 12298.44 22199.40 21999.43 21393.67 37399.22 19999.89 3290.23 34099.93 8799.26 7098.33 22799.66 125
ACMMP_NAP99.47 3099.34 4099.88 599.87 1599.86 1399.47 18799.48 15998.05 15899.76 6099.86 4998.82 4399.93 8798.82 12699.91 3699.84 39
EI-MVSNet-UG-set99.58 999.57 899.64 8099.78 5699.14 13699.60 9899.45 19999.01 4099.90 2099.83 7098.98 2399.93 8799.59 2899.95 1899.86 32
无先验98.99 33399.51 11796.89 27999.93 8797.53 25999.72 103
VDDNet97.55 28897.02 30799.16 17599.49 18598.12 23799.38 22899.30 28195.35 34999.68 7899.90 2882.62 39399.93 8799.31 6298.13 24499.42 202
ab-mvs98.86 13598.63 14899.54 10199.64 13099.19 12699.44 19799.54 8797.77 18799.30 17999.81 9394.20 24999.93 8799.17 7898.82 20299.49 182
F-COLMAP99.19 8199.04 8999.64 8099.78 5699.27 11999.42 20899.54 8797.29 24299.41 15399.59 21398.42 8599.93 8798.19 19599.69 12899.73 97
Anonymous20240521198.30 18597.98 20699.26 16499.57 15498.16 23399.41 21198.55 37596.03 34199.19 20899.74 14491.87 31199.92 9899.16 7998.29 23299.70 113
EI-MVSNet-Vis-set99.58 999.56 1099.64 8099.78 5699.15 13599.61 9799.45 19999.01 4099.89 2199.82 7999.01 1899.92 9899.56 3299.95 1899.85 35
VDD-MVS97.73 26897.35 28498.88 21799.47 19397.12 28599.34 24398.85 34998.19 13299.67 8299.85 5482.98 39199.92 9899.49 4498.32 23199.60 146
VNet99.11 10498.90 11699.73 6499.52 17199.56 7799.41 21199.39 22799.01 4099.74 6499.78 12495.56 19099.92 9899.52 3898.18 24099.72 103
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21599.71 9697.74 25799.12 30299.54 8798.44 10299.42 14999.71 15594.20 24999.92 9898.54 16698.90 19699.00 249
mvsmamba99.06 11298.96 10999.36 14199.47 19398.64 19999.70 5499.05 32197.61 20599.65 9499.83 7096.54 15499.92 9899.19 7499.62 13999.51 177
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3699.56 7197.72 19299.76 6099.75 13999.13 1299.92 9899.07 8699.92 2999.85 35
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20499.08 14499.62 9199.36 24497.39 23499.28 18399.68 17596.44 16099.92 9898.37 18098.22 23599.40 207
DP-MVS99.16 8798.95 11199.78 5299.77 6299.53 8499.41 21199.50 13797.03 26999.04 23799.88 3797.39 12099.92 9898.66 14399.90 4499.87 30
IB-MVS95.67 1896.22 32995.44 34398.57 25599.21 26396.70 31398.65 37397.74 39296.71 28897.27 35898.54 36986.03 37599.92 9898.47 17286.30 39799.10 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2299.39 3099.77 5599.63 13399.59 7199.36 23599.46 18899.07 3599.79 4699.82 7998.85 3999.92 9898.68 14199.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
balanced_conf0399.46 3299.39 3099.67 7099.55 16299.58 7699.74 4599.51 11798.42 10399.87 2799.84 6598.05 10599.91 10999.58 3099.94 2599.52 170
9.1499.10 8099.72 9199.40 21999.51 11797.53 21699.64 9999.78 12498.84 4199.91 10997.63 24799.82 95
SMA-MVScopyleft99.44 4099.30 5399.85 2899.73 8799.83 1699.56 12599.47 17997.45 22599.78 5199.82 7999.18 1099.91 10998.79 12799.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11299.65 5799.05 31799.41 21896.22 32698.95 25199.49 24998.77 5199.91 109
train_agg99.02 11898.77 13499.77 5599.67 11299.65 5799.05 31799.41 21896.28 32098.95 25199.49 24998.76 5299.91 10997.63 24799.72 12399.75 88
test_899.67 11299.61 6799.03 32299.41 21896.28 32098.93 25499.48 25498.76 5299.91 109
agg_prior99.67 11299.62 6599.40 22498.87 26499.91 109
原ACMM199.65 7599.73 8799.33 10899.47 17997.46 22299.12 21999.66 18698.67 6699.91 10997.70 24499.69 12899.71 112
LFMVS97.90 23797.35 28499.54 10199.52 17199.01 15399.39 22398.24 38297.10 26199.65 9499.79 11884.79 38499.91 10999.28 6698.38 22499.69 115
XVG-OURS98.73 15698.68 14298.88 21799.70 10197.73 25898.92 34799.55 7998.52 9499.45 14099.84 6595.27 20099.91 10998.08 20698.84 20099.00 249
PLCcopyleft97.94 499.02 11898.85 12599.53 10999.66 12299.01 15399.24 27999.52 10396.85 28199.27 18899.48 25498.25 9499.91 10997.76 23599.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 28197.06 30699.47 12699.61 14399.09 14198.04 39999.25 29291.24 39098.51 31099.70 15994.55 23799.91 10992.76 37899.85 7499.42 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS97.58 28797.29 29498.48 26699.09 29596.25 33299.01 33096.61 40397.86 17399.19 20899.01 34188.72 35499.90 12197.38 27298.69 20899.28 222
test_vis1_rt95.81 33995.65 33896.32 36599.67 11291.35 39299.49 17696.74 40198.25 12395.24 38098.10 38674.96 40199.90 12199.53 3698.85 19997.70 386
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16299.05 14999.80 2499.01 32596.59 30299.58 11699.59 21395.39 19599.90 12197.78 23199.49 14999.28 222
bld_raw_conf0399.39 5499.32 4499.62 8699.53 16699.50 8999.75 4099.50 13798.13 14199.87 2799.85 5497.89 10899.90 12199.39 5299.95 1899.47 189
MCST-MVS99.43 4399.30 5399.82 4199.79 5499.74 4199.29 25699.40 22498.79 7099.52 12999.62 20498.91 3499.90 12198.64 14599.75 11799.82 54
CDPH-MVS99.13 9498.91 11599.80 4699.75 7399.71 4499.15 29699.41 21896.60 30099.60 11299.55 22898.83 4299.90 12197.48 26399.83 9199.78 80
NCCC99.34 6099.19 7299.79 4999.61 14399.65 5799.30 25199.48 15998.86 6099.21 20299.63 19998.72 6199.90 12198.25 19199.63 13899.80 70
114514_t98.93 12898.67 14399.72 6699.85 2699.53 8499.62 9199.59 5892.65 38599.71 7299.78 12498.06 10499.90 12198.84 11999.91 3699.74 92
1112_ss98.98 12498.77 13499.59 9199.68 10999.02 15199.25 27799.48 15997.23 24899.13 21799.58 21796.93 14199.90 12198.87 10998.78 20599.84 39
PHI-MVS99.30 6599.17 7499.70 6899.56 15899.52 8799.58 11299.80 897.12 25799.62 10699.73 15098.58 7299.90 12198.61 15099.91 3699.68 119
AdaColmapbinary99.01 12298.80 13099.66 7199.56 15899.54 8199.18 29199.70 1598.18 13599.35 17099.63 19996.32 16399.90 12197.48 26399.77 11299.55 161
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17499.88 1198.53 20899.34 24399.59 5897.55 21298.70 28899.89 3295.83 18199.90 12198.10 20199.90 4499.08 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 18198.03 20199.31 15099.63 13398.56 20599.54 14296.75 40097.53 21699.73 6699.65 18791.25 32899.89 13398.62 14799.56 14499.48 183
tttt051798.42 17398.14 18699.28 16299.66 12298.38 22599.74 4596.85 39897.68 19899.79 4699.74 14491.39 32599.89 13398.83 12299.56 14499.57 158
test1299.75 5899.64 13099.61 6799.29 28599.21 20298.38 8899.89 13399.74 12099.74 92
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10598.95 16599.03 32299.47 17996.98 27199.15 21599.23 31796.77 14599.89 13398.83 12298.78 20599.86 32
CNLPA99.14 9298.99 10199.59 9199.58 15299.41 10299.16 29399.44 20798.45 9999.19 20899.49 24998.08 10399.89 13397.73 23999.75 11799.48 183
sd_testset98.75 15398.57 16099.29 15899.81 4698.26 22999.56 12599.62 4198.78 7399.64 9999.88 3792.02 30899.88 13899.54 3498.26 23399.72 103
APD_test195.87 33796.49 32094.00 37299.53 16684.01 40199.54 14299.32 27395.91 34397.99 33999.85 5485.49 37999.88 13891.96 38198.84 20098.12 366
diffmvspermissive99.14 9299.02 9599.51 11799.61 14398.96 16299.28 26199.49 14798.46 9899.72 7199.71 15596.50 15699.88 13899.31 6299.11 17799.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18799.28 26199.91 397.42 23199.67 8299.37 28597.53 11799.88 13898.98 9397.29 29098.42 349
PVSNet_Blended99.08 11098.97 10599.42 13499.76 6598.79 18798.78 36199.91 396.74 28699.67 8299.49 24997.53 11799.88 13898.98 9399.85 7499.60 146
MVS97.28 30696.55 31899.48 12398.78 34098.95 16599.27 26699.39 22783.53 40398.08 33499.54 23396.97 13999.87 14394.23 36099.16 17199.63 140
MG-MVS99.13 9499.02 9599.45 12999.57 15498.63 20099.07 31299.34 25698.99 4599.61 10999.82 7997.98 10799.87 14397.00 29399.80 10299.85 35
MSDG98.98 12498.80 13099.53 10999.76 6599.19 12698.75 36499.55 7997.25 24599.47 13799.77 13297.82 11199.87 14396.93 30099.90 4499.54 163
ETV-MVS99.26 7399.21 7099.40 13699.46 19599.30 11599.56 12599.52 10398.52 9499.44 14599.27 31298.41 8799.86 14699.10 8399.59 14299.04 245
thisisatest051598.14 19997.79 22499.19 17299.50 18398.50 21598.61 37596.82 39996.95 27599.54 12599.43 26691.66 32099.86 14698.08 20699.51 14899.22 227
thres600view797.86 24297.51 25898.92 20699.72 9197.95 24899.59 10498.74 36197.94 16699.27 18898.62 36691.75 31499.86 14693.73 36598.19 23998.96 255
lupinMVS99.13 9499.01 9999.46 12899.51 17498.94 16899.05 31799.16 30697.86 17399.80 4499.56 22597.39 12099.86 14698.94 9799.85 7499.58 154
PVSNet96.02 1798.85 14298.84 12798.89 21599.73 8797.28 27698.32 39199.60 5497.86 17399.50 13299.57 22296.75 14699.86 14698.56 16299.70 12799.54 163
MAR-MVS98.86 13598.63 14899.54 10199.37 22299.66 5399.45 19199.54 8796.61 29899.01 24099.40 27697.09 13299.86 14697.68 24699.53 14799.10 233
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9197.44 30097.02 30798.71 24399.18 27196.89 30799.19 28999.04 32297.78 18698.31 32198.29 37885.41 38099.85 15298.01 21297.95 24999.39 208
test250696.81 32096.65 31697.29 34699.74 8092.21 38999.60 9885.06 42099.13 2299.77 5599.93 987.82 37099.85 15299.38 5399.38 15599.80 70
AllTest98.87 13298.72 13799.31 15099.86 2098.48 21899.56 12599.61 4897.85 17699.36 16799.85 5495.95 17499.85 15296.66 31399.83 9199.59 150
TestCases99.31 15099.86 2098.48 21899.61 4897.85 17699.36 16799.85 5495.95 17499.85 15296.66 31399.83 9199.59 150
jason99.13 9499.03 9199.45 12999.46 19598.87 17599.12 30299.26 29098.03 16199.79 4699.65 18797.02 13799.85 15299.02 9099.90 4499.65 129
jason: jason.
CNVR-MVS99.42 4599.30 5399.78 5299.62 13999.71 4499.26 27599.52 10398.82 6599.39 16099.71 15598.96 2499.85 15298.59 15599.80 10299.77 82
PAPM_NR99.04 11598.84 12799.66 7199.74 8099.44 9899.39 22399.38 23597.70 19699.28 18399.28 30998.34 9099.85 15296.96 29799.45 15199.69 115
testing9997.36 30396.94 31098.63 24899.18 27196.70 31399.30 25198.93 33397.71 19398.23 32698.26 37984.92 38399.84 15998.04 21197.85 25699.35 214
testing22297.16 31196.50 31999.16 17599.16 28198.47 22099.27 26698.66 37197.71 19398.23 32698.15 38282.28 39699.84 15997.36 27397.66 26299.18 229
test111198.04 21498.11 19097.83 32699.74 8093.82 37499.58 11295.40 40799.12 2599.65 9499.93 990.73 33399.84 15999.43 5099.38 15599.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31499.74 8094.37 36999.59 10494.98 40899.13 2299.66 8799.93 990.67 33499.84 15999.40 5199.38 15599.80 70
test_yl98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16599.07 31898.22 12899.61 10999.51 24395.37 19699.84 15998.60 15398.33 22799.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16599.07 31898.22 12899.61 10999.51 24395.37 19699.84 15998.60 15398.33 22799.59 150
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17499.28 11799.52 15199.47 17996.11 33699.01 24099.34 29596.20 16799.84 15997.88 22098.82 20299.39 208
TSAR-MVS + GP.99.36 5899.36 3699.36 14199.67 11298.61 20399.07 31299.33 26399.00 4399.82 4099.81 9399.06 1699.84 15999.09 8499.42 15399.65 129
tpmrst98.33 18298.48 16697.90 32099.16 28194.78 36299.31 24999.11 31197.27 24399.45 14099.59 21395.33 19899.84 15998.48 16998.61 21099.09 237
Vis-MVSNetpermissive99.12 10098.97 10599.56 9899.78 5699.10 14099.68 6499.66 2898.49 9699.86 3299.87 4594.77 22299.84 15999.19 7499.41 15499.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 16498.34 17399.51 11799.40 21499.03 15098.80 35999.36 24496.33 31799.00 24499.12 33198.46 8199.84 15995.23 34699.37 16299.66 125
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9699.28 11799.06 31599.77 997.74 19199.50 13299.53 23795.41 19499.84 15997.17 28799.64 13699.44 200
EPP-MVSNet99.13 9498.99 10199.53 10999.65 12899.06 14799.81 1999.33 26397.43 22999.60 11299.88 3797.14 13099.84 15999.13 8098.94 19199.69 115
testing1197.50 29397.10 30498.71 24399.20 26596.91 30599.29 25698.82 35297.89 17198.21 32998.40 37385.63 37899.83 17298.45 17498.04 24799.37 212
thres100view90097.76 26097.45 26798.69 24599.72 9197.86 25499.59 10498.74 36197.93 16799.26 19298.62 36691.75 31499.83 17293.22 37098.18 24098.37 355
tfpn200view997.72 27097.38 28098.72 24199.69 10597.96 24699.50 16598.73 36797.83 17999.17 21398.45 37191.67 31899.83 17293.22 37098.18 24098.37 355
test_prior99.68 6999.67 11299.48 9399.56 7199.83 17299.74 92
131498.68 15998.54 16399.11 18198.89 32598.65 19799.27 26699.49 14796.89 27997.99 33999.56 22597.72 11599.83 17297.74 23899.27 16698.84 261
thres40097.77 25997.38 28098.92 20699.69 10597.96 24699.50 16598.73 36797.83 17999.17 21398.45 37191.67 31899.83 17293.22 37098.18 24098.96 255
casdiffmvspermissive99.13 9498.98 10499.56 9899.65 12899.16 13199.56 12599.50 13798.33 11499.41 15399.86 4995.92 17799.83 17299.45 4999.16 17199.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11599.89 299.58 6298.56 9099.73 6699.69 16998.55 7599.82 17999.69 2099.85 7499.48 183
MVS_Test99.10 10898.97 10599.48 12399.49 18599.14 13699.67 6799.34 25697.31 24099.58 11699.76 13697.65 11699.82 17998.87 10999.07 18399.46 195
dp97.75 26497.80 22397.59 33899.10 29293.71 37799.32 24698.88 34596.48 30999.08 22899.55 22892.67 29299.82 17996.52 31698.58 21399.24 226
RPSCF98.22 18998.62 15396.99 35299.82 4291.58 39199.72 5199.44 20796.61 29899.66 8799.89 3295.92 17799.82 17997.46 26699.10 18099.57 158
PMMVS98.80 14998.62 15399.34 14399.27 24898.70 19398.76 36399.31 27797.34 23799.21 20299.07 33397.20 12999.82 17998.56 16298.87 19799.52 170
UBG97.85 24397.48 26198.95 20099.25 25497.64 26599.24 27998.74 36197.90 17098.64 29898.20 38188.65 35899.81 18498.27 19098.40 22399.42 202
EIA-MVS99.18 8399.09 8399.45 12999.49 18599.18 12899.67 6799.53 9897.66 20199.40 15899.44 26498.10 10099.81 18498.94 9799.62 13999.35 214
Effi-MVS+98.81 14698.59 15999.48 12399.46 19599.12 13998.08 39899.50 13797.50 22099.38 16299.41 27296.37 16299.81 18499.11 8298.54 21899.51 177
thres20097.61 28597.28 29598.62 24999.64 13098.03 24099.26 27598.74 36197.68 19899.09 22798.32 37791.66 32099.81 18492.88 37598.22 23598.03 372
tpmvs97.98 22598.02 20397.84 32599.04 30594.73 36399.31 24999.20 30196.10 34098.76 27899.42 26894.94 20899.81 18496.97 29698.45 22298.97 253
casdiffmvs_mvgpermissive99.15 8999.02 9599.55 10099.66 12299.09 14199.64 8199.56 7198.26 12299.45 14099.87 4596.03 17199.81 18499.54 3499.15 17499.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 14699.37 3497.12 35099.60 14891.75 39098.61 37599.44 20799.35 1299.83 3999.85 5498.70 6399.81 18499.02 9099.91 3699.81 61
DPM-MVS98.95 12798.71 13999.66 7199.63 13399.55 7998.64 37499.10 31297.93 16799.42 14999.55 22898.67 6699.80 19195.80 33199.68 13199.61 144
DP-MVS Recon99.12 10098.95 11199.65 7599.74 8099.70 4699.27 26699.57 6696.40 31699.42 14999.68 17598.75 5599.80 19197.98 21499.72 12399.44 200
MVS_111021_LR99.41 4999.33 4299.65 7599.77 6299.51 8898.94 34599.85 698.82 6599.65 9499.74 14498.51 7899.80 19198.83 12299.89 5399.64 136
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 10099.90 199.55 7998.56 9099.78 5199.70 15998.65 6899.79 19499.65 2499.78 10999.41 205
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 25099.41 20996.99 29999.52 15199.49 14798.11 14599.24 19499.34 29596.96 14099.79 19497.95 21699.45 15199.02 248
baseline198.31 18397.95 21099.38 14099.50 18398.74 19099.59 10498.93 33398.41 10499.14 21699.60 21194.59 23399.79 19498.48 16993.29 36999.61 144
baseline99.15 8999.02 9599.53 10999.66 12299.14 13699.72 5199.48 15998.35 11199.42 14999.84 6596.07 16999.79 19499.51 3999.14 17599.67 122
PVSNet_094.43 1996.09 33495.47 34197.94 31799.31 23894.34 37197.81 40099.70 1597.12 25797.46 35298.75 36389.71 34599.79 19497.69 24581.69 40399.68 119
API-MVS99.04 11599.03 9199.06 18599.40 21499.31 11399.55 13899.56 7198.54 9299.33 17499.39 28098.76 5299.78 19996.98 29599.78 10998.07 369
OMC-MVS99.08 11099.04 8999.20 17199.67 11298.22 23199.28 26199.52 10398.07 15399.66 8799.81 9397.79 11299.78 19997.79 23099.81 9899.60 146
GeoE98.85 14298.62 15399.53 10999.61 14399.08 14499.80 2499.51 11797.10 26199.31 17699.78 12495.23 20499.77 20198.21 19399.03 18699.75 88
alignmvs98.81 14698.56 16299.58 9499.43 20299.42 10099.51 15898.96 33198.61 8699.35 17098.92 35394.78 21999.77 20199.35 5598.11 24599.54 163
tpm cat197.39 30297.36 28297.50 34199.17 27993.73 37699.43 20199.31 27791.27 38998.71 28299.08 33294.31 24799.77 20196.41 32098.50 22099.00 249
CostFormer97.72 27097.73 23697.71 33399.15 28594.02 37399.54 14299.02 32494.67 36499.04 23799.35 29192.35 30499.77 20198.50 16897.94 25099.34 217
MGCFI-Net99.01 12298.85 12599.50 12299.42 20499.26 12099.82 1599.48 15998.60 8799.28 18398.81 35897.04 13699.76 20599.29 6597.87 25499.47 189
test_241102_ONE99.84 3299.90 299.48 15999.07 3599.91 1899.74 14499.20 799.76 205
MDTV_nov1_ep1398.32 17599.11 28994.44 36899.27 26698.74 36197.51 21999.40 15899.62 20494.78 21999.76 20597.59 25098.81 204
sasdasda99.02 11898.86 12399.51 11799.42 20499.32 10999.80 2499.48 15998.63 8399.31 17698.81 35897.09 13299.75 20899.27 6897.90 25199.47 189
canonicalmvs99.02 11898.86 12399.51 11799.42 20499.32 10999.80 2499.48 15998.63 8399.31 17698.81 35897.09 13299.75 20899.27 6897.90 25199.47 189
Effi-MVS+-dtu98.78 15098.89 11998.47 27199.33 23196.91 30599.57 11999.30 28198.47 9799.41 15398.99 34396.78 14499.74 21098.73 13399.38 15598.74 274
patchmatchnet-post98.70 36494.79 21899.74 210
SCA98.19 19398.16 18398.27 29799.30 23995.55 34599.07 31298.97 32997.57 20999.43 14699.57 22292.72 28799.74 21097.58 25199.20 16999.52 170
BH-untuned98.42 17398.36 17198.59 25199.49 18596.70 31399.27 26699.13 31097.24 24798.80 27399.38 28295.75 18499.74 21097.07 29199.16 17199.33 218
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20998.83 18399.30 25198.77 35797.70 19698.94 25399.65 18792.91 28299.74 21096.52 31699.55 14699.64 136
MVS_111021_HR99.41 4999.32 4499.66 7199.72 9199.47 9598.95 34399.85 698.82 6599.54 12599.73 15098.51 7899.74 21098.91 10399.88 5699.77 82
test_post65.99 41494.65 23299.73 216
XVG-ACMP-BASELINE97.83 24997.71 23898.20 29999.11 28996.33 32999.41 21199.52 10398.06 15799.05 23699.50 24689.64 34799.73 21697.73 23997.38 28898.53 337
HyFIR lowres test99.11 10498.92 11399.65 7599.90 499.37 10499.02 32599.91 397.67 20099.59 11599.75 13995.90 17999.73 21699.53 3699.02 18899.86 32
DeepMVS_CXcopyleft93.34 37599.29 24382.27 40499.22 29785.15 40196.33 37299.05 33690.97 33199.73 21693.57 36797.77 25998.01 373
Patchmatch-test97.93 23197.65 24398.77 23899.18 27197.07 29099.03 32299.14 30996.16 33198.74 27999.57 22294.56 23599.72 22093.36 36999.11 17799.52 170
LPG-MVS_test98.22 18998.13 18898.49 26499.33 23197.05 29299.58 11299.55 7997.46 22299.24 19499.83 7092.58 29499.72 22098.09 20297.51 27498.68 292
LGP-MVS_train98.49 26499.33 23197.05 29299.55 7997.46 22299.24 19499.83 7092.58 29499.72 22098.09 20297.51 27498.68 292
BH-w/o98.00 22397.89 21998.32 28999.35 22696.20 33499.01 33098.90 34296.42 31498.38 31799.00 34295.26 20299.72 22096.06 32498.61 21099.03 246
ACMP97.20 1198.06 20897.94 21298.45 27499.37 22297.01 29799.44 19799.49 14797.54 21598.45 31499.79 11891.95 31099.72 22097.91 21897.49 27998.62 320
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28299.23 25896.80 31199.70 5499.60 5497.12 25798.18 33199.70 15991.73 31699.72 22098.39 17797.45 28198.68 292
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 28165.14 41594.18 25299.71 22697.58 251
ADS-MVSNet98.20 19298.08 19598.56 25899.33 23196.48 32499.23 28199.15 30796.24 32499.10 22499.67 18194.11 25399.71 22696.81 30599.05 18499.48 183
JIA-IIPM97.50 29397.02 30798.93 20498.73 34997.80 25699.30 25198.97 32991.73 38898.91 25694.86 40395.10 20699.71 22697.58 25197.98 24899.28 222
EPMVS97.82 25297.65 24398.35 28698.88 32695.98 33799.49 17694.71 41097.57 20999.26 19299.48 25492.46 30199.71 22697.87 22299.08 18299.35 214
TDRefinement95.42 34394.57 35097.97 31689.83 41396.11 33699.48 18198.75 35896.74 28696.68 36999.88 3788.65 35899.71 22698.37 18082.74 40298.09 368
ACMM97.58 598.37 18098.34 17398.48 26699.41 20997.10 28699.56 12599.45 19998.53 9399.04 23799.85 5493.00 27899.71 22698.74 13197.45 28198.64 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 22897.77 22998.57 25599.59 15096.61 32099.45 19199.08 31598.21 13098.88 26199.80 10688.66 35799.70 23298.58 15697.72 26099.39 208
CHOSEN 280x42099.12 10099.13 7799.08 18299.66 12297.89 25198.43 38599.71 1398.88 5999.62 10699.76 13696.63 15099.70 23299.46 4899.99 199.66 125
EC-MVSNet99.44 4099.39 3099.58 9499.56 15899.49 9199.88 399.58 6298.38 10699.73 6699.69 16998.20 9699.70 23299.64 2799.82 9599.54 163
PatchmatchNetpermissive98.31 18398.36 17198.19 30099.16 28195.32 35399.27 26698.92 33697.37 23599.37 16499.58 21794.90 21299.70 23297.43 26999.21 16899.54 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 20397.99 20598.44 27799.41 20996.96 30399.60 9899.56 7198.09 14898.15 33299.91 2190.87 33299.70 23298.88 10697.45 28198.67 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS97.50 29396.90 31199.29 15899.23 25898.78 18999.32 24698.90 34297.52 21898.56 30798.09 38784.72 38599.69 23797.86 22397.88 25399.39 208
HQP_MVS98.27 18898.22 18198.44 27799.29 24396.97 30199.39 22399.47 17998.97 5199.11 22199.61 20892.71 28999.69 23797.78 23197.63 26398.67 299
plane_prior599.47 17999.69 23797.78 23197.63 26398.67 299
D2MVS98.41 17598.50 16598.15 30599.26 25096.62 31999.40 21999.61 4897.71 19398.98 24699.36 28896.04 17099.67 24098.70 13697.41 28698.15 365
IS-MVSNet99.05 11498.87 12199.57 9699.73 8799.32 10999.75 4099.20 30198.02 16299.56 12099.86 4996.54 15499.67 24098.09 20299.13 17699.73 97
CLD-MVS98.16 19798.10 19198.33 28799.29 24396.82 31098.75 36499.44 20797.83 17999.13 21799.55 22892.92 28099.67 24098.32 18797.69 26198.48 341
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 30897.30 29297.09 35199.43 20293.31 38299.73 4998.87 34798.83 6499.28 18399.80 10684.45 38699.66 24397.88 22097.45 28198.30 357
AUN-MVS96.88 31896.31 32498.59 25199.48 19297.04 29599.27 26699.22 29797.44 22898.51 31099.41 27291.97 30999.66 24397.71 24283.83 40099.07 243
UniMVSNet_ETH3D97.32 30596.81 31398.87 22199.40 21497.46 27099.51 15899.53 9895.86 34498.54 30999.77 13282.44 39499.66 24398.68 14197.52 27399.50 181
OPM-MVS98.19 19398.10 19198.45 27498.88 32697.07 29099.28 26199.38 23598.57 8999.22 19999.81 9392.12 30699.66 24398.08 20697.54 27298.61 329
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 23497.78 22798.32 28999.46 19596.68 31799.56 12599.54 8798.41 10497.79 34899.87 4590.18 34199.66 24398.05 21097.18 29598.62 320
hse-mvs297.50 29397.14 30198.59 25199.49 18597.05 29299.28 26199.22 29798.94 5499.66 8799.42 26894.93 20999.65 24899.48 4583.80 40199.08 238
VPA-MVSNet98.29 18697.95 21099.30 15599.16 28199.54 8199.50 16599.58 6298.27 11999.35 17099.37 28592.53 29699.65 24899.35 5594.46 35298.72 276
TR-MVS97.76 26097.41 27898.82 23099.06 30197.87 25298.87 35398.56 37496.63 29798.68 29099.22 31892.49 29799.65 24895.40 34297.79 25898.95 257
gm-plane-assit98.54 36892.96 38494.65 36599.15 32699.64 25197.56 256
HQP4-MVS98.66 29199.64 25198.64 311
HQP-MVS98.02 21897.90 21598.37 28599.19 26896.83 30898.98 33699.39 22798.24 12498.66 29199.40 27692.47 29899.64 25197.19 28497.58 26898.64 311
PAPM97.59 28697.09 30599.07 18399.06 30198.26 22998.30 39299.10 31294.88 35998.08 33499.34 29596.27 16599.64 25189.87 38998.92 19499.31 220
TAPA-MVS97.07 1597.74 26697.34 28798.94 20299.70 10197.53 26899.25 27799.51 11791.90 38799.30 17999.63 19998.78 4899.64 25188.09 39699.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 17998.09 19499.24 16799.26 25099.32 10999.56 12599.55 7997.45 22598.71 28299.83 7093.23 27399.63 25698.88 10696.32 31098.76 269
ITE_SJBPF98.08 30799.29 24396.37 32798.92 33698.34 11298.83 26999.75 13991.09 32999.62 25795.82 32997.40 28798.25 361
LF4IMVS97.52 29097.46 26697.70 33498.98 31595.55 34599.29 25698.82 35298.07 15398.66 29199.64 19389.97 34299.61 25897.01 29296.68 30097.94 380
tpm97.67 28097.55 25298.03 30999.02 30795.01 35999.43 20198.54 37696.44 31299.12 21999.34 29591.83 31399.60 25997.75 23796.46 30699.48 183
tpm297.44 30097.34 28797.74 33299.15 28594.36 37099.45 19198.94 33293.45 37898.90 25899.44 26491.35 32699.59 26097.31 27598.07 24699.29 221
baseline297.87 24097.55 25298.82 23099.18 27198.02 24199.41 21196.58 40496.97 27296.51 37099.17 32393.43 27099.57 26197.71 24299.03 18698.86 259
MS-PatchMatch97.24 31097.32 29096.99 35298.45 37193.51 38198.82 35799.32 27397.41 23298.13 33399.30 30588.99 35199.56 26295.68 33599.80 10297.90 383
TinyColmap97.12 31396.89 31297.83 32699.07 29995.52 34898.57 37898.74 36197.58 20897.81 34799.79 11888.16 36599.56 26295.10 34797.21 29398.39 353
USDC97.34 30497.20 29997.75 33199.07 29995.20 35598.51 38299.04 32297.99 16398.31 32199.86 4989.02 35099.55 26495.67 33697.36 28998.49 340
MSLP-MVS++99.46 3299.47 1799.44 13399.60 14899.16 13199.41 21199.71 1398.98 4899.45 14099.78 12499.19 999.54 26599.28 6699.84 8299.63 140
TAMVS99.12 10099.08 8499.24 16799.46 19598.55 20699.51 15899.46 18898.09 14899.45 14099.82 7998.34 9099.51 26698.70 13698.93 19299.67 122
EPNet_dtu98.03 21697.96 20898.23 29898.27 37495.54 34799.23 28198.75 35899.02 3897.82 34699.71 15596.11 16899.48 26793.04 37399.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 33695.69 33796.81 35997.78 38192.79 38599.16 29398.93 33396.16 33194.08 38899.22 31882.72 39299.47 26895.67 33697.50 27698.17 364
MVP-Stereo97.81 25497.75 23497.99 31597.53 38596.60 32198.96 34098.85 34997.22 24997.23 35999.36 28895.28 19999.46 26995.51 33899.78 10997.92 382
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 16698.67 14398.30 29199.35 22695.59 34499.50 16599.55 7998.60 8799.39 16099.83 7094.48 24099.45 27098.75 13098.56 21699.85 35
test-LLR98.06 20897.90 21598.55 26098.79 33797.10 28698.67 37097.75 39097.34 23798.61 30398.85 35594.45 24299.45 27097.25 27899.38 15599.10 233
TESTMET0.1,197.55 28897.27 29898.40 28298.93 32096.53 32298.67 37097.61 39396.96 27398.64 29899.28 30988.63 36099.45 27097.30 27699.38 15599.21 228
test-mter97.49 29897.13 30398.55 26098.79 33797.10 28698.67 37097.75 39096.65 29398.61 30398.85 35588.23 36499.45 27097.25 27899.38 15599.10 233
mvs_anonymous99.03 11798.99 10199.16 17599.38 21998.52 21299.51 15899.38 23597.79 18499.38 16299.81 9397.30 12699.45 27099.35 5598.99 18999.51 177
tfpnnormal97.84 24797.47 26498.98 19599.20 26599.22 12599.64 8199.61 4896.32 31898.27 32599.70 15993.35 27299.44 27595.69 33495.40 33598.27 359
v7n97.87 24097.52 25698.92 20698.76 34798.58 20499.84 1199.46 18896.20 32798.91 25699.70 15994.89 21399.44 27596.03 32593.89 36398.75 271
jajsoiax98.43 17298.28 17898.88 21798.60 36498.43 22299.82 1599.53 9898.19 13298.63 30099.80 10693.22 27599.44 27599.22 7297.50 27698.77 267
mvs_tets98.40 17898.23 18098.91 21098.67 35798.51 21499.66 7299.53 9898.19 13298.65 29799.81 9392.75 28499.44 27599.31 6297.48 28098.77 267
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 15099.71 9698.88 17499.80 2499.44 20797.91 16999.36 16799.78 12495.49 19399.43 27997.91 21899.11 17799.62 142
OPU-MVS99.64 8099.56 15899.72 4299.60 9899.70 15999.27 599.42 28098.24 19299.80 10299.79 74
Anonymous2023121197.88 23897.54 25598.90 21299.71 9698.53 20899.48 18199.57 6694.16 36998.81 27199.68 17593.23 27399.42 28098.84 11994.42 35498.76 269
m2depth97.80 25697.63 24798.29 29298.77 34597.38 27399.64 8199.36 24498.78 7396.30 37399.58 21792.34 30599.39 28298.36 18295.58 33098.10 367
VPNet97.84 24797.44 27299.01 19199.21 26398.94 16899.48 18199.57 6698.38 10699.28 18399.73 15088.89 35299.39 28299.19 7493.27 37098.71 278
nrg03098.64 16398.42 16899.28 16299.05 30499.69 4799.81 1999.46 18898.04 15999.01 24099.82 7996.69 14899.38 28499.34 5994.59 35198.78 264
GA-MVS97.85 24397.47 26499.00 19399.38 21997.99 24398.57 37899.15 30797.04 26898.90 25899.30 30589.83 34499.38 28496.70 31098.33 22799.62 142
UniMVSNet (Re)98.29 18698.00 20499.13 18099.00 30999.36 10799.49 17699.51 11797.95 16598.97 24899.13 32896.30 16499.38 28498.36 18293.34 36898.66 307
FIs98.78 15098.63 14899.23 16999.18 27199.54 8199.83 1499.59 5898.28 11798.79 27599.81 9396.75 14699.37 28799.08 8596.38 30898.78 264
PS-MVSNAJss98.92 12998.92 11398.90 21298.78 34098.53 20899.78 3199.54 8798.07 15399.00 24499.76 13699.01 1899.37 28799.13 8097.23 29298.81 262
CDS-MVSNet99.09 10999.03 9199.25 16599.42 20498.73 19199.45 19199.46 18898.11 14599.46 13999.77 13298.01 10699.37 28798.70 13698.92 19499.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 34095.16 34597.51 34099.30 23993.69 37898.88 35195.78 40585.09 40298.78 27692.65 40591.29 32799.37 28794.85 35299.85 7499.46 195
v119297.81 25497.44 27298.91 21098.88 32698.68 19499.51 15899.34 25696.18 32999.20 20599.34 29594.03 25699.36 29195.32 34495.18 33998.69 287
EI-MVSNet98.67 16098.67 14398.68 24699.35 22697.97 24499.50 16599.38 23596.93 27899.20 20599.83 7097.87 10999.36 29198.38 17897.56 27098.71 278
MVSTER98.49 16798.32 17599.00 19399.35 22699.02 15199.54 14299.38 23597.41 23299.20 20599.73 15093.86 26399.36 29198.87 10997.56 27098.62 320
gg-mvs-nofinetune96.17 33295.32 34498.73 24098.79 33798.14 23599.38 22894.09 41191.07 39298.07 33791.04 40989.62 34899.35 29496.75 30799.09 18198.68 292
pm-mvs197.68 27797.28 29598.88 21799.06 30198.62 20199.50 16599.45 19996.32 31897.87 34499.79 11892.47 29899.35 29497.54 25893.54 36798.67 299
OurMVSNet-221017-097.88 23897.77 22998.19 30098.71 35396.53 32299.88 399.00 32697.79 18498.78 27699.94 691.68 31799.35 29497.21 28096.99 29998.69 287
EGC-MVSNET82.80 37477.86 38097.62 33697.91 37896.12 33599.33 24599.28 2878.40 41725.05 41899.27 31284.11 38799.33 29789.20 39198.22 23597.42 391
pmmvs696.53 32496.09 32997.82 32898.69 35595.47 34999.37 23099.47 17993.46 37797.41 35399.78 12487.06 37399.33 29796.92 30292.70 37798.65 309
V4298.06 20897.79 22498.86 22498.98 31598.84 18099.69 5899.34 25696.53 30499.30 17999.37 28594.67 23099.32 29997.57 25594.66 34998.42 349
lessismore_v097.79 33098.69 35595.44 35194.75 40995.71 37999.87 4588.69 35699.32 29995.89 32894.93 34698.62 320
OpenMVS_ROBcopyleft92.34 2094.38 35493.70 36096.41 36497.38 38793.17 38399.06 31598.75 35886.58 40094.84 38698.26 37981.53 39799.32 29989.01 39297.87 25496.76 394
v897.95 23097.63 24798.93 20498.95 31998.81 18699.80 2499.41 21896.03 34199.10 22499.42 26894.92 21199.30 30296.94 29994.08 36098.66 307
v192192097.80 25697.45 26798.84 22898.80 33698.53 20899.52 15199.34 25696.15 33399.24 19499.47 25793.98 25899.29 30395.40 34295.13 34198.69 287
anonymousdsp98.44 17198.28 17898.94 20298.50 36998.96 16299.77 3399.50 13797.07 26398.87 26499.77 13294.76 22399.28 30498.66 14397.60 26698.57 335
MVSFormer99.17 8599.12 7899.29 15899.51 17498.94 16899.88 399.46 18897.55 21299.80 4499.65 18797.39 12099.28 30499.03 8899.85 7499.65 129
test_djsdf98.67 16098.57 16098.98 19598.70 35498.91 17299.88 399.46 18897.55 21299.22 19999.88 3795.73 18599.28 30499.03 8897.62 26598.75 271
cascas97.69 27597.43 27698.48 26698.60 36497.30 27598.18 39699.39 22792.96 38198.41 31598.78 36293.77 26699.27 30798.16 19998.61 21098.86 259
v14419297.92 23497.60 25098.87 22198.83 33598.65 19799.55 13899.34 25696.20 32799.32 17599.40 27694.36 24499.26 30896.37 32195.03 34398.70 283
dmvs_re98.08 20698.16 18397.85 32399.55 16294.67 36599.70 5498.92 33698.15 13799.06 23499.35 29193.67 26999.25 30997.77 23497.25 29199.64 136
v2v48298.06 20897.77 22998.92 20698.90 32498.82 18499.57 11999.36 24496.65 29399.19 20899.35 29194.20 24999.25 30997.72 24194.97 34498.69 287
v124097.69 27597.32 29098.79 23698.85 33398.43 22299.48 18199.36 24496.11 33699.27 18899.36 28893.76 26799.24 31194.46 35695.23 33898.70 283
WBMVS97.74 26697.50 25998.46 27299.24 25697.43 27199.21 28799.42 21597.45 22598.96 25099.41 27288.83 35399.23 31298.94 9796.02 31598.71 278
v114497.98 22597.69 23998.85 22798.87 32998.66 19699.54 14299.35 25196.27 32299.23 19899.35 29194.67 23099.23 31296.73 30895.16 34098.68 292
v1097.85 24397.52 25698.86 22498.99 31298.67 19599.75 4099.41 21895.70 34598.98 24699.41 27294.75 22499.23 31296.01 32794.63 35098.67 299
WR-MVS_H98.13 20097.87 22098.90 21299.02 30798.84 18099.70 5499.59 5897.27 24398.40 31699.19 32295.53 19199.23 31298.34 18493.78 36598.61 329
miper_enhance_ethall98.16 19798.08 19598.41 28098.96 31897.72 26098.45 38499.32 27396.95 27598.97 24899.17 32397.06 13599.22 31697.86 22395.99 31898.29 358
GG-mvs-BLEND98.45 27498.55 36798.16 23399.43 20193.68 41297.23 35998.46 37089.30 34999.22 31695.43 34198.22 23597.98 378
FC-MVSNet-test98.75 15398.62 15399.15 17999.08 29899.45 9799.86 1099.60 5498.23 12798.70 28899.82 7996.80 14399.22 31699.07 8696.38 30898.79 263
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32298.98 15599.48 18199.53 9897.76 18898.71 28299.46 26196.43 16199.22 31698.57 15992.87 37598.69 287
DU-MVS98.08 20697.79 22498.96 19898.87 32998.98 15599.41 21199.45 19997.87 17298.71 28299.50 24694.82 21599.22 31698.57 15992.87 37598.68 292
cl____98.01 22197.84 22298.55 26099.25 25497.97 24498.71 36899.34 25696.47 31198.59 30699.54 23395.65 18899.21 32197.21 28095.77 32498.46 346
WR-MVS98.06 20897.73 23699.06 18598.86 33299.25 12299.19 28999.35 25197.30 24198.66 29199.43 26693.94 25999.21 32198.58 15694.28 35698.71 278
test_040296.64 32296.24 32597.85 32398.85 33396.43 32699.44 19799.26 29093.52 37596.98 36699.52 24088.52 36199.20 32392.58 38097.50 27697.93 381
SixPastTwentyTwo97.50 29397.33 28998.03 30998.65 35896.23 33399.77 3398.68 37097.14 25497.90 34299.93 990.45 33599.18 32497.00 29396.43 30798.67 299
cl2297.85 24397.64 24698.48 26699.09 29597.87 25298.60 37799.33 26397.11 26098.87 26499.22 31892.38 30399.17 32598.21 19395.99 31898.42 349
WB-MVSnew97.65 28297.65 24397.63 33598.78 34097.62 26699.13 29998.33 37997.36 23699.07 22998.94 34995.64 18999.15 32692.95 37498.68 20996.12 401
IterMVS-SCA-FT97.82 25297.75 23498.06 30899.57 15496.36 32899.02 32599.49 14797.18 25198.71 28299.72 15492.72 28799.14 32797.44 26895.86 32398.67 299
pmmvs597.52 29097.30 29298.16 30298.57 36696.73 31299.27 26698.90 34296.14 33498.37 31899.53 23791.54 32399.14 32797.51 26095.87 32298.63 318
v14897.79 25897.55 25298.50 26398.74 34897.72 26099.54 14299.33 26396.26 32398.90 25899.51 24394.68 22999.14 32797.83 22793.15 37298.63 318
miper_ehance_all_eth98.18 19598.10 19198.41 28099.23 25897.72 26098.72 36799.31 27796.60 30098.88 26199.29 30797.29 12799.13 33097.60 24995.99 31898.38 354
NR-MVSNet97.97 22897.61 24999.02 19098.87 32999.26 12099.47 18799.42 21597.63 20397.08 36499.50 24695.07 20799.13 33097.86 22393.59 36698.68 292
IterMVS97.83 24997.77 22998.02 31199.58 15296.27 33199.02 32599.48 15997.22 24998.71 28299.70 15992.75 28499.13 33097.46 26696.00 31798.67 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 35594.90 34791.84 38097.24 39180.01 41098.52 38199.48 15989.01 39791.99 39799.67 18185.67 37799.13 33095.44 34097.03 29896.39 398
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 21397.96 20898.33 28799.26 25097.38 27398.56 38099.31 27796.65 29398.88 26199.52 24096.58 15299.12 33497.39 27195.53 33398.47 343
pmmvs498.13 20097.90 21598.81 23398.61 36398.87 17598.99 33399.21 30096.44 31299.06 23499.58 21795.90 17999.11 33597.18 28696.11 31498.46 346
TransMVSNet (Re)97.15 31296.58 31798.86 22499.12 28798.85 17999.49 17698.91 34095.48 34897.16 36299.80 10693.38 27199.11 33594.16 36291.73 38198.62 320
ambc93.06 37892.68 40982.36 40398.47 38398.73 36795.09 38497.41 39255.55 41099.10 33796.42 31991.32 38297.71 384
Baseline_NR-MVSNet97.76 26097.45 26798.68 24699.09 29598.29 22799.41 21198.85 34995.65 34698.63 30099.67 18194.82 21599.10 33798.07 20992.89 37498.64 311
test_vis3_rt87.04 37085.81 37390.73 38493.99 40881.96 40599.76 3690.23 41992.81 38381.35 40791.56 40740.06 41699.07 33994.27 35988.23 39491.15 407
CP-MVSNet98.09 20497.78 22799.01 19198.97 31799.24 12399.67 6799.46 18897.25 24598.48 31399.64 19393.79 26599.06 34098.63 14694.10 35998.74 274
PS-CasMVS97.93 23197.59 25198.95 20098.99 31299.06 14799.68 6499.52 10397.13 25598.31 32199.68 17592.44 30299.05 34198.51 16794.08 36098.75 271
K. test v397.10 31496.79 31498.01 31298.72 35196.33 32999.87 797.05 39697.59 20696.16 37599.80 10688.71 35599.04 34296.69 31196.55 30598.65 309
new_pmnet96.38 32896.03 33097.41 34298.13 37795.16 35899.05 31799.20 30193.94 37097.39 35698.79 36191.61 32299.04 34290.43 38795.77 32498.05 371
DIV-MVS_self_test98.01 22197.85 22198.48 26699.24 25697.95 24898.71 36899.35 25196.50 30598.60 30599.54 23395.72 18699.03 34497.21 28095.77 32498.46 346
IterMVS-LS98.46 17098.42 16898.58 25499.59 15098.00 24299.37 23099.43 21396.94 27799.07 22999.59 21397.87 10999.03 34498.32 18795.62 32998.71 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 28297.68 24097.55 33998.62 36194.97 36098.84 35599.30 28196.83 28498.19 33099.34 29597.01 13899.02 34695.00 35096.01 31698.64 311
Patchmtry97.75 26497.40 27998.81 23399.10 29298.87 17599.11 30899.33 26394.83 36198.81 27199.38 28294.33 24599.02 34696.10 32395.57 33198.53 337
N_pmnet94.95 34995.83 33592.31 37998.47 37079.33 41199.12 30292.81 41793.87 37197.68 34999.13 32893.87 26299.01 34891.38 38496.19 31298.59 333
CR-MVSNet98.17 19697.93 21398.87 22199.18 27198.49 21699.22 28599.33 26396.96 27399.56 12099.38 28294.33 24599.00 34994.83 35398.58 21399.14 230
c3_l98.12 20298.04 20098.38 28499.30 23997.69 26498.81 35899.33 26396.67 29198.83 26999.34 29597.11 13198.99 35097.58 25195.34 33698.48 341
test0.0.03 197.71 27397.42 27798.56 25898.41 37397.82 25598.78 36198.63 37297.34 23798.05 33898.98 34594.45 24298.98 35195.04 34997.15 29698.89 258
PatchT97.03 31696.44 32198.79 23698.99 31298.34 22699.16 29399.07 31892.13 38699.52 12997.31 39694.54 23898.98 35188.54 39498.73 20799.03 246
GBi-Net97.68 27797.48 26198.29 29299.51 17497.26 27999.43 20199.48 15996.49 30699.07 22999.32 30290.26 33798.98 35197.10 28896.65 30198.62 320
test197.68 27797.48 26198.29 29299.51 17497.26 27999.43 20199.48 15996.49 30699.07 22999.32 30290.26 33798.98 35197.10 28896.65 30198.62 320
FMVSNet398.03 21697.76 23398.84 22899.39 21798.98 15599.40 21999.38 23596.67 29199.07 22999.28 30992.93 27998.98 35197.10 28896.65 30198.56 336
FMVSNet297.72 27097.36 28298.80 23599.51 17498.84 18099.45 19199.42 21596.49 30698.86 26899.29 30790.26 33798.98 35196.44 31896.56 30498.58 334
FMVSNet196.84 31996.36 32398.29 29299.32 23797.26 27999.43 20199.48 15995.11 35398.55 30899.32 30283.95 38898.98 35195.81 33096.26 31198.62 320
ppachtmachnet_test97.49 29897.45 26797.61 33798.62 36195.24 35498.80 35999.46 18896.11 33698.22 32899.62 20496.45 15998.97 35893.77 36495.97 32198.61 329
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23998.78 34098.62 20199.65 7899.49 14797.76 18898.49 31299.60 21194.23 24898.97 35898.00 21392.90 37398.70 283
MVStest196.08 33595.48 34097.89 32198.93 32096.70 31399.56 12599.35 25192.69 38491.81 39899.46 26189.90 34398.96 36095.00 35092.61 37898.00 376
test_method91.10 36591.36 36790.31 38595.85 39873.72 41894.89 40699.25 29268.39 40995.82 37899.02 34080.50 39998.95 36193.64 36694.89 34898.25 361
ADS-MVSNet298.02 21898.07 19897.87 32299.33 23195.19 35699.23 28199.08 31596.24 32499.10 22499.67 18194.11 25398.93 36296.81 30599.05 18499.48 183
ET-MVSNet_ETH3D96.49 32595.64 33999.05 18799.53 16698.82 18498.84 35597.51 39497.63 20384.77 40399.21 32192.09 30798.91 36398.98 9392.21 38099.41 205
miper_lstm_enhance98.00 22397.91 21498.28 29699.34 23097.43 27198.88 35199.36 24496.48 30998.80 27399.55 22895.98 17298.91 36397.27 27795.50 33498.51 339
PEN-MVS97.76 26097.44 27298.72 24198.77 34598.54 20799.78 3199.51 11797.06 26598.29 32499.64 19392.63 29398.89 36598.09 20293.16 37198.72 276
testing397.28 30696.76 31598.82 23099.37 22298.07 23999.45 19199.36 24497.56 21197.89 34398.95 34883.70 38998.82 36696.03 32598.56 21699.58 154
testgi97.65 28297.50 25998.13 30699.36 22596.45 32599.42 20899.48 15997.76 18897.87 34499.45 26391.09 32998.81 36794.53 35598.52 21999.13 232
testf190.42 36890.68 36989.65 38897.78 38173.97 41699.13 29998.81 35489.62 39491.80 39998.93 35062.23 40898.80 36886.61 40291.17 38396.19 399
APD_test290.42 36890.68 36989.65 38897.78 38173.97 41699.13 29998.81 35489.62 39491.80 39998.93 35062.23 40898.80 36886.61 40291.17 38396.19 399
MIMVSNet97.73 26897.45 26798.57 25599.45 20097.50 26999.02 32598.98 32896.11 33699.41 15399.14 32790.28 33698.74 37095.74 33298.93 19299.47 189
LCM-MVSNet-Re97.83 24998.15 18596.87 35899.30 23992.25 38899.59 10498.26 38097.43 22996.20 37499.13 32896.27 16598.73 37198.17 19898.99 18999.64 136
Syy-MVS97.09 31597.14 30196.95 35599.00 30992.73 38699.29 25699.39 22797.06 26597.41 35398.15 38293.92 26198.68 37291.71 38298.34 22599.45 198
myMVS_eth3d96.89 31796.37 32298.43 27999.00 30997.16 28399.29 25699.39 22797.06 26597.41 35398.15 38283.46 39098.68 37295.27 34598.34 22599.45 198
DTE-MVSNet97.51 29297.19 30098.46 27298.63 36098.13 23699.84 1199.48 15996.68 29097.97 34199.67 18192.92 28098.56 37496.88 30492.60 37998.70 283
PC_three_145298.18 13599.84 3499.70 15999.31 398.52 37598.30 18999.80 10299.81 61
mvsany_test393.77 35793.45 36194.74 37095.78 39988.01 39699.64 8198.25 38198.28 11794.31 38797.97 38968.89 40498.51 37697.50 26190.37 38897.71 384
UnsupCasMVSNet_bld93.53 35892.51 36496.58 36397.38 38793.82 37498.24 39399.48 15991.10 39193.10 39296.66 39874.89 40298.37 37794.03 36387.71 39597.56 389
Anonymous2024052196.20 33195.89 33497.13 34997.72 38494.96 36199.79 3099.29 28593.01 38097.20 36199.03 33889.69 34698.36 37891.16 38596.13 31398.07 369
test_f91.90 36491.26 36893.84 37395.52 40385.92 39899.69 5898.53 37795.31 35093.87 38996.37 40055.33 41198.27 37995.70 33390.98 38697.32 392
MDA-MVSNet_test_wron95.45 34294.60 34998.01 31298.16 37697.21 28299.11 30899.24 29493.49 37680.73 40998.98 34593.02 27798.18 38094.22 36194.45 35398.64 311
UnsupCasMVSNet_eth96.44 32696.12 32797.40 34398.65 35895.65 34299.36 23599.51 11797.13 25596.04 37798.99 34388.40 36298.17 38196.71 30990.27 38998.40 352
KD-MVS_2432*160094.62 35093.72 35897.31 34497.19 39395.82 34098.34 38899.20 30195.00 35797.57 35098.35 37587.95 36798.10 38292.87 37677.00 40798.01 373
miper_refine_blended94.62 35093.72 35897.31 34497.19 39395.82 34098.34 38899.20 30195.00 35797.57 35098.35 37587.95 36798.10 38292.87 37677.00 40798.01 373
YYNet195.36 34494.51 35197.92 31897.89 37997.10 28699.10 31099.23 29593.26 37980.77 40899.04 33792.81 28398.02 38494.30 35794.18 35898.64 311
EU-MVSNet97.98 22598.03 20197.81 32998.72 35196.65 31899.66 7299.66 2898.09 14898.35 31999.82 7995.25 20398.01 38597.41 27095.30 33798.78 264
Gipumacopyleft90.99 36690.15 37193.51 37498.73 34990.12 39493.98 40799.45 19979.32 40592.28 39594.91 40269.61 40397.98 38687.42 39895.67 32892.45 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 34594.73 34897.15 34795.53 40295.94 33899.35 24099.10 31295.13 35193.55 39097.54 39188.15 36697.91 38794.58 35489.69 39297.61 387
PM-MVS92.96 36192.23 36595.14 36995.61 40089.98 39599.37 23098.21 38394.80 36295.04 38597.69 39065.06 40597.90 38894.30 35789.98 39197.54 390
MDA-MVSNet-bldmvs94.96 34893.98 35597.92 31898.24 37597.27 27799.15 29699.33 26393.80 37280.09 41099.03 33888.31 36397.86 38993.49 36894.36 35598.62 320
Patchmatch-RL test95.84 33895.81 33695.95 36795.61 40090.57 39398.24 39398.39 37895.10 35595.20 38298.67 36594.78 21997.77 39096.28 32290.02 39099.51 177
Anonymous2023120696.22 32996.03 33096.79 36097.31 39094.14 37299.63 8699.08 31596.17 33097.04 36599.06 33593.94 25997.76 39186.96 40095.06 34298.47 343
SD-MVS99.41 4999.52 1199.05 18799.74 8099.68 4899.46 19099.52 10399.11 2699.88 2299.91 2199.43 197.70 39298.72 13499.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 30897.35 28496.95 35597.84 38093.61 38099.57 11996.63 40296.13 33598.87 26498.61 36894.59 23397.70 39295.08 34898.86 19899.55 161
dongtai93.26 35992.93 36394.25 37199.39 21785.68 39997.68 40293.27 41392.87 38296.85 36899.39 28082.33 39597.48 39476.78 40797.80 25799.58 154
pmmvs394.09 35693.25 36296.60 36294.76 40794.49 36798.92 34798.18 38589.66 39396.48 37198.06 38886.28 37497.33 39589.68 39087.20 39697.97 379
KD-MVS_self_test95.00 34794.34 35296.96 35497.07 39595.39 35299.56 12599.44 20795.11 35397.13 36397.32 39591.86 31297.27 39690.35 38881.23 40498.23 363
FMVSNet596.43 32796.19 32697.15 34799.11 28995.89 33999.32 24699.52 10394.47 36898.34 32099.07 33387.54 37197.07 39792.61 37995.72 32798.47 343
new-patchmatchnet94.48 35394.08 35495.67 36895.08 40592.41 38799.18 29199.28 28794.55 36793.49 39197.37 39487.86 36997.01 39891.57 38388.36 39397.61 387
LCM-MVSNet86.80 37285.22 37691.53 38287.81 41480.96 40898.23 39598.99 32771.05 40790.13 40296.51 39948.45 41596.88 39990.51 38685.30 39896.76 394
CL-MVSNet_self_test94.49 35293.97 35696.08 36696.16 39793.67 37998.33 39099.38 23595.13 35197.33 35798.15 38292.69 29196.57 40088.67 39379.87 40597.99 377
MIMVSNet195.51 34195.04 34696.92 35797.38 38795.60 34399.52 15199.50 13793.65 37496.97 36799.17 32385.28 38296.56 40188.36 39595.55 33298.60 332
test20.0396.12 33395.96 33296.63 36197.44 38695.45 35099.51 15899.38 23596.55 30396.16 37599.25 31593.76 26796.17 40287.35 39994.22 35798.27 359
tmp_tt82.80 37481.52 37786.66 39066.61 42068.44 41992.79 40997.92 38768.96 40880.04 41199.85 5485.77 37696.15 40397.86 22343.89 41395.39 403
test_fmvs392.10 36391.77 36693.08 37796.19 39686.25 39799.82 1598.62 37396.65 29395.19 38396.90 39755.05 41295.93 40496.63 31590.92 38797.06 393
kuosan90.92 36790.11 37293.34 37598.78 34085.59 40098.15 39793.16 41589.37 39692.07 39698.38 37481.48 39895.19 40562.54 41497.04 29799.25 225
dmvs_testset95.02 34696.12 32791.72 38199.10 29280.43 40999.58 11297.87 38997.47 22195.22 38198.82 35793.99 25795.18 40688.09 39694.91 34799.56 160
PMMVS286.87 37185.37 37591.35 38390.21 41283.80 40298.89 35097.45 39583.13 40491.67 40195.03 40148.49 41494.70 40785.86 40477.62 40695.54 402
PMVScopyleft70.75 2275.98 38074.97 38179.01 39670.98 41955.18 42193.37 40898.21 38365.08 41361.78 41493.83 40421.74 42192.53 40878.59 40691.12 38589.34 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 37385.65 37482.75 39486.77 41563.39 42098.35 38798.92 33674.11 40683.39 40598.98 34550.85 41392.40 40984.54 40594.97 34492.46 404
WB-MVS93.10 36094.10 35390.12 38695.51 40481.88 40699.73 4999.27 28995.05 35693.09 39398.91 35494.70 22891.89 41076.62 40894.02 36296.58 396
SSC-MVS92.73 36293.73 35789.72 38795.02 40681.38 40799.76 3699.23 29594.87 36092.80 39498.93 35094.71 22791.37 41174.49 41093.80 36496.42 397
MVEpermissive76.82 2176.91 37974.31 38384.70 39185.38 41776.05 41596.88 40593.17 41467.39 41071.28 41289.01 41121.66 42287.69 41271.74 41172.29 40990.35 408
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 37679.88 37882.81 39390.75 41176.38 41497.69 40195.76 40666.44 41183.52 40492.25 40662.54 40787.16 41368.53 41261.40 41084.89 411
EMVS80.02 37779.22 37982.43 39591.19 41076.40 41397.55 40492.49 41866.36 41283.01 40691.27 40864.63 40685.79 41465.82 41360.65 41185.08 410
ANet_high77.30 37874.86 38284.62 39275.88 41877.61 41297.63 40393.15 41688.81 39864.27 41389.29 41036.51 41783.93 41575.89 40952.31 41292.33 406
wuyk23d40.18 38141.29 38636.84 39786.18 41649.12 42279.73 41022.81 42227.64 41425.46 41728.45 41721.98 42048.89 41655.80 41523.56 41612.51 414
test12339.01 38342.50 38528.53 39839.17 42120.91 42398.75 36419.17 42319.83 41638.57 41566.67 41333.16 41815.42 41737.50 41729.66 41549.26 412
testmvs39.17 38243.78 38425.37 39936.04 42216.84 42498.36 38626.56 42120.06 41538.51 41667.32 41229.64 41915.30 41837.59 41639.90 41443.98 413
test_blank0.13 3870.17 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4191.57 4180.00 4230.00 4190.00 4180.00 4170.00 415
uanet_test0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
DCPMVS0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
cdsmvs_eth3d_5k24.64 38432.85 3870.00 4000.00 4230.00 4250.00 41199.51 1170.00 4180.00 41999.56 22596.58 1520.00 4190.00 4180.00 4170.00 415
pcd_1.5k_mvsjas8.27 38611.03 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 41999.01 180.00 4190.00 4180.00 4170.00 415
sosnet-low-res0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
sosnet0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
uncertanet0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
Regformer0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
ab-mvs-re8.30 38511.06 3880.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 41999.58 2170.00 4230.00 4190.00 4180.00 4170.00 415
uanet0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
WAC-MVS97.16 28395.47 339
FOURS199.91 199.93 199.87 799.56 7199.10 2799.81 41
test_one_060199.81 4699.88 899.49 14798.97 5199.65 9499.81 9399.09 14
eth-test20.00 423
eth-test0.00 423
RE-MVS-def99.34 4099.76 6599.82 2299.63 8699.52 10398.38 10699.76 6099.82 7998.75 5598.61 15099.81 9899.77 82
IU-MVS99.84 3299.88 899.32 27398.30 11699.84 3498.86 11499.85 7499.89 19
save fliter99.76 6599.59 7199.14 29899.40 22499.00 43
test072699.85 2699.89 499.62 9199.50 13799.10 2799.86 3299.82 7998.94 29
GSMVS99.52 170
test_part299.81 4699.83 1699.77 55
sam_mvs194.86 21499.52 170
sam_mvs94.72 226
MTGPAbinary99.47 179
MTMP99.54 14298.88 345
test9_res97.49 26299.72 12399.75 88
agg_prior297.21 28099.73 12299.75 88
test_prior499.56 7798.99 333
test_prior298.96 34098.34 11299.01 24099.52 24098.68 6497.96 21599.74 120
新几何299.01 330
旧先验199.74 8099.59 7199.54 8799.69 16998.47 8099.68 13199.73 97
原ACMM298.95 343
test22299.75 7399.49 9198.91 34999.49 14796.42 31499.34 17399.65 18798.28 9399.69 12899.72 103
segment_acmp98.96 24
testdata198.85 35498.32 115
plane_prior799.29 24397.03 296
plane_prior699.27 24896.98 30092.71 289
plane_prior499.61 208
plane_prior397.00 29898.69 8099.11 221
plane_prior299.39 22398.97 51
plane_prior199.26 250
plane_prior96.97 30199.21 28798.45 9997.60 266
n20.00 424
nn0.00 424
door-mid98.05 386
test1199.35 251
door97.92 387
HQP5-MVS96.83 308
HQP-NCC99.19 26898.98 33698.24 12498.66 291
ACMP_Plane99.19 26898.98 33698.24 12498.66 291
BP-MVS97.19 284
HQP3-MVS99.39 22797.58 268
HQP2-MVS92.47 298
NP-MVS99.23 25896.92 30499.40 276
MDTV_nov1_ep13_2view95.18 35799.35 24096.84 28299.58 11695.19 20597.82 22899.46 195
ACMMP++_ref97.19 294
ACMMP++97.43 285
Test By Simon98.75 55