This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21599.37 10399.58 10899.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2699.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9699.58 10899.69 1899.43 799.98 699.91 1998.62 70100.00 199.97 199.95 1899.90 17
test_vis1_n_192098.63 16498.40 17099.31 14899.86 2097.94 24999.67 6499.62 4199.43 799.99 299.91 1987.29 368100.00 199.92 1299.92 2899.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12199.63 3999.48 399.98 699.83 6698.75 5599.99 499.97 199.96 1399.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12199.63 3999.47 499.98 699.82 7498.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
patch_mono-299.26 7199.62 598.16 29999.81 4694.59 36299.52 14699.64 3699.33 1399.73 6599.90 2599.00 2299.99 499.69 1999.98 499.89 20
h-mvs3397.70 27197.28 29298.97 19599.70 10197.27 27299.36 23199.45 19898.94 5499.66 8799.64 19194.93 20999.99 499.48 4184.36 39399.65 129
xiu_mvs_v1_base_debu99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 233
xiu_mvs_v1_base99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 233
xiu_mvs_v1_base_debi99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 233
EPNet98.86 13498.71 13999.30 15397.20 38698.18 23199.62 8798.91 33799.28 1698.63 29899.81 8995.96 17399.99 499.24 7199.72 12299.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.40 5099.28 5599.74 6199.67 11199.31 11199.52 14698.87 34499.55 199.74 6399.80 10396.47 15799.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 8699.01 9999.61 8699.81 4698.86 17899.65 7599.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 2999.91 3599.99 1
test_vis1_n97.92 23497.44 26999.34 14199.53 16398.08 23799.74 4499.49 14499.15 20100.00 199.94 679.51 39499.98 1399.88 1499.76 11499.97 4
xiu_mvs_v2_base99.26 7199.25 6399.29 15699.53 16398.91 17299.02 31999.45 19898.80 6999.71 7199.26 31098.94 2999.98 1399.34 5899.23 16598.98 247
PS-MVSNAJ99.32 6199.32 4099.30 15399.57 15298.94 16898.97 33499.46 18798.92 5799.71 7199.24 31299.01 1899.98 1399.35 5299.66 13298.97 248
QAPM98.67 16098.30 17799.80 4699.20 26199.67 5199.77 3499.72 1194.74 36098.73 27999.90 2595.78 18399.98 1396.96 29499.88 5599.76 87
3Dnovator97.25 999.24 7699.05 8799.81 4499.12 28399.66 5399.84 1299.74 1099.09 3298.92 25499.90 2595.94 17699.98 1398.95 9699.92 2899.79 74
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11399.04 30399.53 8299.82 1699.72 1194.56 36398.08 33299.88 3594.73 22599.98 1397.47 26299.76 11499.06 239
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16199.61 4899.45 599.87 2599.92 1497.31 12699.97 2199.95 899.99 199.97 4
test_fmvs1_n98.41 17598.14 18699.21 16899.82 4297.71 26199.74 4499.49 14499.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8199.96 7
CANet_DTU98.97 12498.87 12099.25 16399.33 22998.42 22399.08 30599.30 27999.16 1999.43 14599.75 13795.27 20099.97 2198.56 16199.95 1899.36 208
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17798.79 7099.68 7899.81 8998.43 8399.97 2198.88 10599.90 4399.83 49
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10899.65 3397.84 17799.71 7199.80 10399.12 1399.97 2198.33 18399.87 5899.83 49
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15798.12 14399.50 13099.75 13798.78 4899.97 2198.57 15899.89 5299.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 15399.53 12599.63 19798.93 3399.97 2198.74 13099.91 3599.83 49
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10099.51 11598.62 8499.79 4299.83 6699.28 499.97 2198.48 16899.90 4399.84 40
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 8298.97 10599.82 4199.17 27599.68 4899.81 2099.51 11599.20 1898.72 28099.89 2995.68 18799.97 2198.86 11399.86 6699.81 61
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14699.65 3399.10 2799.98 699.92 1497.35 12599.96 3099.94 1099.92 2899.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15499.67 2399.13 2299.98 699.92 1496.60 15299.96 3099.95 899.96 1399.95 9
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 14198.94 34199.48 15799.10 2799.96 1499.91 1998.85 3999.96 3099.72 1899.58 14199.82 54
test_fmvs198.88 13098.79 13399.16 17399.69 10697.61 26499.55 13399.49 14499.32 1499.98 699.91 1991.41 32399.96 3099.82 1699.92 2899.90 17
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 899.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11599.80 10199.81 61
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
No_MVS99.87 1199.51 17099.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
ZD-MVS99.71 9699.79 3099.61 4896.84 27999.56 11899.54 23198.58 7299.96 3096.93 29799.75 116
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9499.48 15799.08 3399.91 1699.81 8999.20 799.96 3098.91 10299.85 7399.79 74
test_241102_TWO99.48 15799.08 3399.88 2099.81 8998.94 2999.96 3098.91 10299.84 8199.88 26
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 15299.55 12299.64 19198.91 3499.96 3098.72 13399.90 4399.82 54
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11599.37 24299.10 2799.81 3799.80 10398.94 2999.96 3098.93 9999.86 6699.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11599.90 4399.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11599.51 11599.96 3098.93 9999.86 6699.88 26
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10099.62 4198.21 12899.73 6599.79 11698.68 6499.96 3098.44 17499.77 11199.79 74
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23199.51 11598.73 7699.88 2099.84 6298.72 6199.96 3098.16 19699.87 5899.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11799.52 14697.57 39099.51 299.82 3599.78 12298.09 10099.96 3099.97 199.97 799.94 11
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16199.70 1598.79 7099.77 5199.96 197.45 12099.96 3098.92 10199.90 4399.89 20
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13599.68 7899.69 16799.06 1699.96 3098.69 13899.87 5899.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 14099.66 8799.68 17398.96 2499.96 3098.62 14699.87 5899.84 40
HPM-MVS++copyleft99.39 5299.23 6699.87 1199.75 7399.84 1599.43 19999.51 11598.68 8199.27 18899.53 23598.64 6999.96 3098.44 17499.80 10199.79 74
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5299.18 1099.96 3099.22 7299.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13599.67 8299.69 16798.95 2799.96 3098.69 13899.87 5899.84 40
MP-MVScopyleft99.33 5999.15 7399.87 1199.88 1199.82 2299.66 6999.46 18798.09 14899.48 13499.74 14298.29 9199.96 3097.93 21499.87 5899.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 10298.90 11499.74 6199.80 5299.46 9499.59 10099.49 14497.03 26699.63 10099.69 16797.27 12999.96 3097.82 22599.84 8199.81 61
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8699.86 2099.07 14699.47 18599.93 297.66 20099.71 7199.86 4797.73 11199.96 3099.47 4399.82 9499.79 74
UGNet98.87 13198.69 14199.40 13599.22 25898.72 19299.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5899.94 2499.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 6199.32 4099.32 14799.85 2698.29 22699.71 5199.66 2898.11 14599.41 15299.80 10398.37 8899.96 3098.99 9299.96 1399.72 103
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8799.69 1898.12 14399.63 10099.84 6298.73 6099.96 3098.55 16499.83 9099.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 7899.03 9199.79 4998.42 36699.48 9199.55 13399.51 11599.39 1099.78 4799.93 994.80 21799.95 5999.93 1199.95 1899.94 11
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10699.76 5799.82 7498.53 7699.95 5998.61 14999.81 9799.77 82
GST-MVS99.40 5099.24 6499.85 2899.86 2099.79 3099.60 9499.67 2397.97 16499.63 10099.68 17398.52 7799.95 5998.38 17799.86 6699.81 61
CANet99.25 7599.14 7599.59 8999.41 20599.16 13099.35 23699.57 6498.82 6599.51 12999.61 20696.46 15899.95 5999.59 2599.98 499.65 129
MP-MVS-pluss99.37 5499.20 6999.88 599.90 499.87 1299.30 24799.52 10197.18 24899.60 11099.79 11698.79 4799.95 5998.83 12199.91 3599.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4299.27 5999.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 17299.77 11199.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 5996.67 309
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 11099.79 4299.82 7498.86 3899.95 5998.62 14699.81 9799.78 80
RPMNet96.72 31895.90 33099.19 17099.18 26798.49 21599.22 28099.52 10188.72 39399.56 11897.38 38794.08 25599.95 5986.87 39798.58 21199.14 225
sss99.17 8499.05 8799.53 10799.62 13798.97 15899.36 23199.62 4197.83 17899.67 8299.65 18597.37 12499.95 5999.19 7599.19 16899.68 119
fmvsm_s_conf0.1_n_a99.26 7199.06 8699.85 2899.52 16799.62 6599.54 13799.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2899.98 2
fmvsm_s_conf0.1_n99.29 6599.10 8099.86 2199.70 10199.65 5799.53 14599.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1399.97 4
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22598.91 5899.78 4799.85 5299.36 299.94 6998.84 11899.88 5599.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16499.74 14298.81 4499.94 6998.79 12699.86 6699.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16464.01 41098.81 4499.94 6998.79 12699.86 6699.84 40
旧先验298.96 33596.70 28699.47 13699.94 6998.19 192
新几何199.75 5899.75 7399.59 7099.54 8596.76 28299.29 18299.64 19198.43 8399.94 6996.92 29999.66 13299.72 103
testdata99.54 9999.75 7398.95 16599.51 11597.07 26099.43 14599.70 15798.87 3799.94 6997.76 23299.64 13599.72 103
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20499.68 7899.63 19798.91 3499.94 6998.58 15599.91 3599.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 8099.10 8099.45 12899.89 898.52 21199.39 22099.94 198.73 7699.11 22199.89 2995.50 19299.94 6999.50 3699.97 799.89 20
APD-MVScopyleft99.27 6999.08 8499.84 3999.75 7399.79 3099.50 16199.50 13597.16 25099.77 5199.82 7498.78 4899.94 6997.56 25399.86 6699.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 10299.05 31199.66 2899.14 2199.57 11799.80 10398.46 8199.94 6999.57 2799.84 8199.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 11098.88 11999.61 8699.62 13799.16 13099.37 22799.56 6998.04 15999.53 12599.62 20296.84 14499.94 6998.85 11598.49 21999.72 103
DeepC-MVS98.35 299.30 6399.19 7099.64 7899.82 4299.23 12399.62 8799.55 7798.94 5499.63 10099.95 395.82 18299.94 6999.37 5199.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6999.12 7899.74 6199.18 26799.75 3999.56 12199.57 6498.45 10099.49 13399.85 5297.77 11099.94 6998.33 18399.84 8199.52 167
SDMVSNet99.11 10298.90 11499.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9799.88 3594.56 23599.93 8499.67 2198.26 23099.72 103
FE-MVS98.48 16898.17 18299.40 13599.54 16298.96 16299.68 6198.81 35195.54 34499.62 10499.70 15793.82 26499.93 8497.35 27199.46 14899.32 214
SF-MVS99.38 5399.24 6499.79 4999.79 5499.68 4899.57 11599.54 8597.82 18299.71 7199.80 10398.95 2799.93 8498.19 19299.84 8199.74 92
dcpmvs_299.23 7799.58 798.16 29999.83 3994.68 36099.76 3799.52 10199.07 3599.98 699.88 3598.56 7499.93 8499.67 2199.98 499.87 31
Anonymous2024052998.09 20497.68 24099.34 14199.66 12098.44 22099.40 21699.43 21293.67 37099.22 19999.89 2990.23 33999.93 8499.26 6998.33 22499.66 125
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18599.48 15798.05 15899.76 5799.86 4798.82 4399.93 8498.82 12599.91 3599.84 40
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13699.60 9499.45 19899.01 4099.90 1899.83 6698.98 2399.93 8499.59 2599.95 1899.86 33
无先验98.99 32899.51 11596.89 27699.93 8497.53 25699.72 103
VDDNet97.55 28597.02 30499.16 17399.49 18198.12 23699.38 22599.30 27995.35 34699.68 7899.90 2582.62 38999.93 8499.31 6198.13 24199.42 197
ab-mvs98.86 13498.63 14899.54 9999.64 12899.19 12599.44 19599.54 8597.77 18699.30 17999.81 8994.20 24999.93 8499.17 7898.82 20099.49 177
F-COLMAP99.19 8099.04 8999.64 7899.78 5699.27 11799.42 20699.54 8597.29 23999.41 15299.59 21198.42 8599.93 8498.19 19299.69 12799.73 97
Anonymous20240521198.30 18597.98 20699.26 16299.57 15298.16 23299.41 20898.55 37196.03 33899.19 20899.74 14291.87 31099.92 9599.16 7998.29 22999.70 113
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13599.61 9399.45 19899.01 4099.89 1999.82 7499.01 1899.92 9599.56 2899.95 1899.85 36
VDD-MVS97.73 26597.35 28198.88 21499.47 18997.12 28099.34 23998.85 34698.19 13099.67 8299.85 5282.98 38799.92 9599.49 4098.32 22899.60 146
VNet99.11 10298.90 11499.73 6499.52 16799.56 7599.41 20899.39 22599.01 4099.74 6399.78 12295.56 19099.92 9599.52 3498.18 23799.72 103
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21299.71 9697.74 25699.12 29699.54 8598.44 10399.42 14899.71 15394.20 24999.92 9598.54 16598.90 19499.00 244
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 19199.76 5799.75 13799.13 1299.92 9599.07 8699.92 2899.85 36
HY-MVS97.30 798.85 14198.64 14799.47 12599.42 20099.08 14499.62 8799.36 24397.39 23199.28 18399.68 17396.44 16099.92 9598.37 17998.22 23299.40 201
DP-MVS99.16 8698.95 10999.78 5299.77 6299.53 8299.41 20899.50 13597.03 26699.04 23799.88 3597.39 12199.92 9598.66 14299.90 4399.87 31
IB-MVS95.67 1896.22 32695.44 33998.57 25399.21 25996.70 31098.65 36997.74 38896.71 28597.27 35698.54 36586.03 37199.92 9598.47 17186.30 39199.10 228
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23199.46 18799.07 3599.79 4299.82 7498.85 3999.92 9598.68 14099.87 5899.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 8099.72 9199.40 21699.51 11597.53 21499.64 9799.78 12298.84 4199.91 10597.63 24499.82 94
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12199.47 17797.45 22399.78 4799.82 7499.18 1099.91 10598.79 12699.89 5299.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11199.65 5799.05 31199.41 21696.22 32398.95 25099.49 24798.77 5199.91 105
train_agg99.02 11698.77 13499.77 5599.67 11199.65 5799.05 31199.41 21696.28 31798.95 25099.49 24798.76 5299.91 10597.63 24499.72 12299.75 88
test_899.67 11199.61 6799.03 31699.41 21696.28 31798.93 25399.48 25398.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22298.87 26399.91 105
原ACMM199.65 7399.73 8799.33 10699.47 17797.46 22099.12 21999.66 18498.67 6699.91 10597.70 24199.69 12799.71 112
LFMVS97.90 23797.35 28199.54 9999.52 16799.01 15399.39 22098.24 37897.10 25899.65 9399.79 11684.79 38099.91 10599.28 6598.38 22199.69 115
XVG-OURS98.73 15698.68 14298.88 21499.70 10197.73 25798.92 34399.55 7798.52 9499.45 13999.84 6295.27 20099.91 10598.08 20398.84 19899.00 244
PLCcopyleft97.94 499.02 11698.85 12599.53 10799.66 12099.01 15399.24 27599.52 10196.85 27899.27 18899.48 25398.25 9399.91 10597.76 23299.62 13899.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 27897.06 30399.47 12599.61 14199.09 14198.04 39499.25 29091.24 38598.51 30899.70 15794.55 23799.91 10592.76 37499.85 7399.42 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS97.58 28497.29 29198.48 26499.09 29196.25 32899.01 32596.61 39997.86 17299.19 20899.01 33788.72 35199.90 11697.38 26998.69 20699.28 217
test_vis1_rt95.81 33595.65 33596.32 36199.67 11191.35 38899.49 17596.74 39798.25 12195.24 37698.10 38074.96 39599.90 11699.53 3298.85 19797.70 380
FA-MVS(test-final)98.75 15398.53 16499.41 13499.55 16099.05 14999.80 2599.01 32296.59 29999.58 11499.59 21195.39 19599.90 11697.78 22899.49 14799.28 217
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25299.40 22298.79 7099.52 12799.62 20298.91 3499.90 11698.64 14499.75 11699.82 54
CDPH-MVS99.13 9298.91 11399.80 4699.75 7399.71 4499.15 29099.41 21696.60 29799.60 11099.55 22698.83 4299.90 11697.48 26099.83 9099.78 80
NCCC99.34 5899.19 7099.79 4999.61 14199.65 5799.30 24799.48 15798.86 6099.21 20299.63 19798.72 6199.90 11698.25 18899.63 13799.80 70
114514_t98.93 12698.67 14399.72 6599.85 2699.53 8299.62 8799.59 5792.65 38099.71 7199.78 12298.06 10299.90 11698.84 11899.91 3599.74 92
1112_ss98.98 12298.77 13499.59 8999.68 11099.02 15199.25 27399.48 15797.23 24599.13 21799.58 21596.93 14399.90 11698.87 10898.78 20399.84 40
PHI-MVS99.30 6399.17 7299.70 6799.56 15699.52 8599.58 10899.80 897.12 25499.62 10499.73 14898.58 7299.90 11698.61 14999.91 3599.68 119
AdaColmapbinary99.01 12098.80 13099.66 6999.56 15699.54 7999.18 28599.70 1598.18 13399.35 17099.63 19796.32 16399.90 11697.48 26099.77 11199.55 159
COLMAP_ROBcopyleft97.56 698.86 13498.75 13699.17 17299.88 1198.53 20799.34 23999.59 5797.55 21098.70 28799.89 2995.83 18199.90 11698.10 19899.90 4399.08 233
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 18198.03 20199.31 14899.63 13198.56 20499.54 13796.75 39697.53 21499.73 6599.65 18591.25 32799.89 12798.62 14699.56 14299.48 179
tttt051798.42 17398.14 18699.28 16099.66 12098.38 22499.74 4496.85 39497.68 19799.79 4299.74 14291.39 32499.89 12798.83 12199.56 14299.57 156
test1299.75 5899.64 12899.61 6799.29 28399.21 20298.38 8799.89 12799.74 11999.74 92
Test_1112_low_res98.89 12998.66 14699.57 9499.69 10698.95 16599.03 31699.47 17796.98 26899.15 21599.23 31396.77 14799.89 12798.83 12198.78 20399.86 33
CNLPA99.14 9098.99 10199.59 8999.58 15099.41 10199.16 28799.44 20698.45 10099.19 20899.49 24798.08 10199.89 12797.73 23699.75 11699.48 179
MVSMamba_pp99.36 5599.28 5599.62 8399.38 21599.50 8799.50 16199.49 14498.55 9199.77 5199.82 7497.62 11699.88 13299.39 4899.96 1399.47 185
sd_testset98.75 15398.57 16099.29 15699.81 4698.26 22899.56 12199.62 4198.78 7399.64 9799.88 3592.02 30799.88 13299.54 3098.26 23099.72 103
APD_test195.87 33396.49 31794.00 36799.53 16384.01 39599.54 13799.32 27095.91 34097.99 33799.85 5285.49 37599.88 13291.96 37798.84 19898.12 362
bld_raw_dy_0_6499.05 11199.15 7398.74 23799.46 19096.95 30099.02 31999.47 17798.15 13599.75 6299.56 22297.63 11599.88 13299.35 5299.97 799.40 201
mamv499.33 5999.23 6699.62 8399.39 21399.50 8799.50 16199.50 13598.13 14099.76 5799.81 8997.69 11399.88 13299.35 5299.95 1899.49 177
diffmvspermissive99.14 9099.02 9599.51 11599.61 14198.96 16299.28 25799.49 14498.46 9999.72 7099.71 15396.50 15699.88 13299.31 6199.11 17599.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13498.80 13099.03 18799.76 6598.79 18799.28 25799.91 397.42 22899.67 8299.37 28197.53 11899.88 13298.98 9397.29 28898.42 345
PVSNet_Blended99.08 10898.97 10599.42 13399.76 6598.79 18798.78 35799.91 396.74 28399.67 8299.49 24797.53 11899.88 13298.98 9399.85 7399.60 146
iter_conf05_1199.22 7899.13 7699.49 12199.37 21999.43 9898.95 33899.38 23398.52 9499.70 7799.49 24797.62 11699.87 14099.20 7499.94 2499.16 224
MVS97.28 30396.55 31599.48 12298.78 33698.95 16599.27 26299.39 22583.53 39798.08 33299.54 23196.97 14199.87 14094.23 35699.16 16999.63 140
MG-MVS99.13 9299.02 9599.45 12899.57 15298.63 19999.07 30699.34 25398.99 4599.61 10799.82 7497.98 10499.87 14097.00 29099.80 10199.85 36
MSDG98.98 12298.80 13099.53 10799.76 6599.19 12598.75 36099.55 7797.25 24299.47 13699.77 13097.82 10899.87 14096.93 29799.90 4399.54 161
ETV-MVS99.26 7199.21 6899.40 13599.46 19099.30 11399.56 12199.52 10198.52 9499.44 14499.27 30898.41 8699.86 14499.10 8399.59 14099.04 240
thisisatest051598.14 19997.79 22499.19 17099.50 17998.50 21498.61 37196.82 39596.95 27299.54 12399.43 26491.66 31999.86 14498.08 20399.51 14699.22 221
thres600view797.86 24297.51 25798.92 20399.72 9197.95 24799.59 10098.74 35897.94 16699.27 18898.62 36291.75 31399.86 14493.73 36198.19 23698.96 250
lupinMVS99.13 9299.01 9999.46 12799.51 17098.94 16899.05 31199.16 30497.86 17299.80 4099.56 22297.39 12199.86 14498.94 9799.85 7399.58 154
PVSNet96.02 1798.85 14198.84 12798.89 21299.73 8797.28 27198.32 38799.60 5497.86 17299.50 13099.57 21996.75 14899.86 14498.56 16199.70 12699.54 161
MAR-MVS98.86 13498.63 14899.54 9999.37 21999.66 5399.45 18999.54 8596.61 29599.01 24099.40 27397.09 13499.86 14497.68 24399.53 14599.10 228
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9197.44 29797.02 30498.71 24199.18 26796.89 30499.19 28399.04 31997.78 18598.31 31998.29 37385.41 37699.85 15098.01 20997.95 24699.39 203
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9485.06 41499.13 2299.77 5199.93 987.82 36699.85 15099.38 4999.38 15399.80 70
AllTest98.87 13198.72 13799.31 14899.86 2098.48 21799.56 12199.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
TestCases99.31 14899.86 2098.48 21799.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
jason99.13 9299.03 9199.45 12899.46 19098.87 17599.12 29699.26 28898.03 16199.79 4299.65 18597.02 13999.85 15099.02 9099.90 4399.65 129
jason: jason.
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27199.52 10198.82 6599.39 16099.71 15398.96 2499.85 15098.59 15499.80 10199.77 82
PAPM_NR99.04 11398.84 12799.66 6999.74 8099.44 9699.39 22099.38 23397.70 19599.28 18399.28 30598.34 8999.85 15096.96 29499.45 14999.69 115
testing9997.36 30096.94 30798.63 24699.18 26796.70 31099.30 24798.93 33097.71 19298.23 32498.26 37484.92 37999.84 15798.04 20897.85 25399.35 209
testing22297.16 30896.50 31699.16 17399.16 27798.47 21999.27 26298.66 36797.71 19298.23 32498.15 37682.28 39199.84 15797.36 27097.66 25999.18 223
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10895.40 40399.12 2599.65 9399.93 990.73 33299.84 15799.43 4699.38 15399.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10094.98 40499.13 2299.66 8799.93 990.67 33399.84 15799.40 4799.38 15399.80 70
test_yl98.86 13498.63 14899.54 9999.49 18199.18 12799.50 16199.07 31698.22 12699.61 10799.51 24195.37 19699.84 15798.60 15298.33 22499.59 150
DCV-MVSNet98.86 13498.63 14899.54 9999.49 18199.18 12799.50 16199.07 31698.22 12699.61 10799.51 24195.37 19699.84 15798.60 15298.33 22499.59 150
Fast-Effi-MVS+98.70 15798.43 16799.51 11599.51 17099.28 11599.52 14699.47 17796.11 33399.01 24099.34 29196.20 16799.84 15797.88 21798.82 20099.39 203
TSAR-MVS + GP.99.36 5599.36 3299.36 14099.67 11198.61 20299.07 30699.33 26099.00 4399.82 3599.81 8999.06 1699.84 15799.09 8499.42 15199.65 129
tpmrst98.33 18298.48 16697.90 31799.16 27794.78 35899.31 24599.11 30997.27 24099.45 13999.59 21195.33 19899.84 15798.48 16898.61 20899.09 232
Vis-MVSNetpermissive99.12 9898.97 10599.56 9699.78 5699.10 14099.68 6199.66 2898.49 9799.86 2799.87 4394.77 22299.84 15799.19 7599.41 15299.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 16498.34 17399.51 11599.40 21099.03 15098.80 35599.36 24396.33 31499.00 24499.12 32798.46 8199.84 15795.23 34399.37 16099.66 125
PatchMatch-RL98.84 14498.62 15399.52 11399.71 9699.28 11599.06 30999.77 997.74 19099.50 13099.53 23595.41 19499.84 15797.17 28499.64 13599.44 195
EPP-MVSNet99.13 9298.99 10199.53 10799.65 12699.06 14799.81 2099.33 26097.43 22699.60 11099.88 3597.14 13199.84 15799.13 8098.94 18999.69 115
testing1197.50 29097.10 30198.71 24199.20 26196.91 30299.29 25298.82 34997.89 17098.21 32798.40 36985.63 37499.83 17098.45 17398.04 24499.37 207
thres100view90097.76 25897.45 26498.69 24399.72 9197.86 25399.59 10098.74 35897.93 16799.26 19298.62 36291.75 31399.83 17093.22 36698.18 23798.37 351
tfpn200view997.72 26797.38 27798.72 23999.69 10697.96 24599.50 16198.73 36397.83 17899.17 21398.45 36791.67 31799.83 17093.22 36698.18 23798.37 351
test_prior99.68 6899.67 11199.48 9199.56 6999.83 17099.74 92
131498.68 15998.54 16399.11 17998.89 32198.65 19799.27 26299.49 14496.89 27697.99 33799.56 22297.72 11299.83 17097.74 23599.27 16498.84 256
thres40097.77 25797.38 27798.92 20399.69 10697.96 24599.50 16198.73 36397.83 17899.17 21398.45 36791.67 31799.83 17093.22 36698.18 23798.96 250
casdiffmvspermissive99.13 9298.98 10499.56 9699.65 12699.16 13099.56 12199.50 13598.33 11499.41 15299.86 4795.92 17799.83 17099.45 4599.16 16999.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 2299.48 1599.54 9999.78 5699.30 11399.89 299.58 6198.56 8999.73 6599.69 16798.55 7599.82 17799.69 1999.85 7399.48 179
MVS_Test99.10 10698.97 10599.48 12299.49 18199.14 13699.67 6499.34 25397.31 23799.58 11499.76 13497.65 11499.82 17798.87 10899.07 18199.46 190
dp97.75 26297.80 22397.59 33499.10 28893.71 37399.32 24298.88 34296.48 30699.08 22899.55 22692.67 29299.82 17796.52 31398.58 21199.24 220
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 4999.44 20696.61 29599.66 8799.89 2995.92 17799.82 17797.46 26399.10 17899.57 156
PMMVS98.80 14898.62 15399.34 14199.27 24698.70 19398.76 35999.31 27497.34 23499.21 20299.07 32997.20 13099.82 17798.56 16198.87 19599.52 167
EIA-MVS99.18 8299.09 8399.45 12899.49 18199.18 12799.67 6499.53 9697.66 20099.40 15799.44 26298.10 9999.81 18298.94 9799.62 13899.35 209
Effi-MVS+98.81 14598.59 15999.48 12299.46 19099.12 13998.08 39399.50 13597.50 21899.38 16299.41 27096.37 16299.81 18299.11 8298.54 21699.51 173
thres20097.61 28297.28 29298.62 24799.64 12898.03 23999.26 27198.74 35897.68 19799.09 22798.32 37291.66 31999.81 18292.88 37198.22 23298.03 367
tpmvs97.98 22598.02 20397.84 32199.04 30394.73 35999.31 24599.20 29996.10 33798.76 27799.42 26694.94 20899.81 18296.97 29398.45 22098.97 248
casdiffmvs_mvgpermissive99.15 8899.02 9599.55 9899.66 12099.09 14199.64 7899.56 6998.26 12099.45 13999.87 4396.03 17199.81 18299.54 3099.15 17299.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 14599.37 3097.12 34699.60 14691.75 38698.61 37199.44 20699.35 1299.83 3499.85 5298.70 6399.81 18299.02 9099.91 3599.81 61
DPM-MVS98.95 12598.71 13999.66 6999.63 13199.55 7798.64 37099.10 31097.93 16799.42 14899.55 22698.67 6699.80 18895.80 32899.68 13099.61 144
DP-MVS Recon99.12 9898.95 10999.65 7399.74 8099.70 4699.27 26299.57 6496.40 31399.42 14899.68 17398.75 5599.80 18897.98 21199.72 12299.44 195
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34199.85 698.82 6599.65 9399.74 14298.51 7899.80 18898.83 12199.89 5299.64 136
CS-MVS99.50 2099.48 1599.54 9999.76 6599.42 9999.90 199.55 7798.56 8999.78 4799.70 15798.65 6899.79 19199.65 2399.78 10899.41 199
Fast-Effi-MVS+-dtu98.77 15198.83 12998.60 24899.41 20596.99 29499.52 14699.49 14498.11 14599.24 19499.34 29196.96 14299.79 19197.95 21399.45 14999.02 243
baseline198.31 18397.95 21099.38 13999.50 17998.74 19099.59 10098.93 33098.41 10499.14 21699.60 20994.59 23399.79 19198.48 16893.29 36499.61 144
baseline99.15 8899.02 9599.53 10799.66 12099.14 13699.72 4999.48 15798.35 11199.42 14899.84 6296.07 16999.79 19199.51 3599.14 17399.67 122
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23694.34 36797.81 39599.70 1597.12 25497.46 35098.75 35989.71 34399.79 19197.69 24281.69 39799.68 119
API-MVS99.04 11399.03 9199.06 18399.40 21099.31 11199.55 13399.56 6998.54 9299.33 17499.39 27798.76 5299.78 19696.98 29299.78 10898.07 364
OMC-MVS99.08 10899.04 8999.20 16999.67 11198.22 23099.28 25799.52 10198.07 15399.66 8799.81 8997.79 10999.78 19697.79 22799.81 9799.60 146
GeoE98.85 14198.62 15399.53 10799.61 14199.08 14499.80 2599.51 11597.10 25899.31 17699.78 12295.23 20499.77 19898.21 19099.03 18499.75 88
alignmvs98.81 14598.56 16299.58 9299.43 19899.42 9999.51 15498.96 32898.61 8599.35 17098.92 34994.78 21999.77 19899.35 5298.11 24299.54 161
tpm cat197.39 29997.36 27997.50 33799.17 27593.73 37299.43 19999.31 27491.27 38498.71 28199.08 32894.31 24799.77 19896.41 31798.50 21899.00 244
CostFormer97.72 26797.73 23697.71 32999.15 28194.02 36999.54 13799.02 32194.67 36199.04 23799.35 28792.35 30499.77 19898.50 16797.94 24799.34 212
MGCFI-Net99.01 12098.85 12599.50 12099.42 20099.26 11999.82 1699.48 15798.60 8699.28 18398.81 35497.04 13899.76 20299.29 6497.87 25199.47 185
test_241102_ONE99.84 3299.90 299.48 15799.07 3599.91 1699.74 14299.20 799.76 202
MDTV_nov1_ep1398.32 17599.11 28594.44 36499.27 26298.74 35897.51 21799.40 15799.62 20294.78 21999.76 20297.59 24798.81 202
sasdasda99.02 11698.86 12399.51 11599.42 20099.32 10799.80 2599.48 15798.63 8299.31 17698.81 35497.09 13499.75 20599.27 6797.90 24899.47 185
canonicalmvs99.02 11698.86 12399.51 11599.42 20099.32 10799.80 2599.48 15798.63 8299.31 17698.81 35497.09 13499.75 20599.27 6797.90 24899.47 185
Effi-MVS+-dtu98.78 14998.89 11898.47 26999.33 22996.91 30299.57 11599.30 27998.47 9899.41 15298.99 33996.78 14699.74 20798.73 13299.38 15398.74 269
patchmatchnet-post98.70 36094.79 21899.74 207
SCA98.19 19398.16 18398.27 29499.30 23795.55 34199.07 30698.97 32697.57 20799.43 14599.57 21992.72 28799.74 20797.58 24899.20 16799.52 167
BH-untuned98.42 17398.36 17198.59 24999.49 18196.70 31099.27 26299.13 30897.24 24498.80 27299.38 27895.75 18499.74 20797.07 28899.16 16999.33 213
BH-RMVSNet98.41 17598.08 19599.40 13599.41 20598.83 18399.30 24798.77 35497.70 19598.94 25299.65 18592.91 28299.74 20796.52 31399.55 14499.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9398.95 33899.85 698.82 6599.54 12399.73 14898.51 7899.74 20798.91 10299.88 5599.77 82
test_post65.99 40894.65 23299.73 213
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28596.33 32599.41 20899.52 10198.06 15799.05 23699.50 24489.64 34599.73 21397.73 23697.38 28698.53 333
HyFIR lowres test99.11 10298.92 11199.65 7399.90 499.37 10399.02 31999.91 397.67 19999.59 11399.75 13795.90 17999.73 21399.53 3299.02 18699.86 33
DeepMVS_CXcopyleft93.34 37099.29 24182.27 39899.22 29585.15 39596.33 36999.05 33290.97 33099.73 21393.57 36397.77 25598.01 368
Patchmatch-test97.93 23197.65 24398.77 23599.18 26797.07 28599.03 31699.14 30796.16 32898.74 27899.57 21994.56 23599.72 21793.36 36599.11 17599.52 167
LPG-MVS_test98.22 18998.13 18898.49 26299.33 22997.05 28799.58 10899.55 7797.46 22099.24 19499.83 6692.58 29499.72 21798.09 19997.51 27198.68 287
LGP-MVS_train98.49 26299.33 22997.05 28799.55 7797.46 22099.24 19499.83 6692.58 29499.72 21798.09 19997.51 27198.68 287
BH-w/o98.00 22397.89 21998.32 28799.35 22496.20 33099.01 32598.90 33996.42 31198.38 31599.00 33895.26 20299.72 21796.06 32198.61 20899.03 241
ACMP97.20 1198.06 20897.94 21298.45 27199.37 21997.01 29299.44 19599.49 14497.54 21398.45 31299.79 11691.95 30999.72 21797.91 21597.49 27698.62 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 21897.90 21598.40 27999.23 25496.80 30899.70 5299.60 5497.12 25498.18 32999.70 15791.73 31599.72 21798.39 17697.45 27898.68 287
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 27665.14 40994.18 25299.71 22397.58 248
ADS-MVSNet98.20 19298.08 19598.56 25699.33 22996.48 32099.23 27699.15 30596.24 32199.10 22499.67 17994.11 25399.71 22396.81 30299.05 18299.48 179
JIA-IIPM97.50 29097.02 30498.93 20198.73 34397.80 25599.30 24798.97 32691.73 38398.91 25594.86 39795.10 20699.71 22397.58 24897.98 24599.28 217
EPMVS97.82 25197.65 24398.35 28398.88 32295.98 33399.49 17594.71 40697.57 20799.26 19299.48 25392.46 30199.71 22397.87 21999.08 18099.35 209
TDRefinement95.42 33994.57 34697.97 31389.83 40796.11 33299.48 17998.75 35596.74 28396.68 36699.88 3588.65 35599.71 22398.37 17982.74 39698.09 363
ACMM97.58 598.37 18098.34 17398.48 26499.41 20597.10 28199.56 12199.45 19898.53 9399.04 23799.85 5293.00 27899.71 22398.74 13097.45 27898.64 306
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 22897.77 22998.57 25399.59 14896.61 31699.45 18999.08 31398.21 12898.88 26099.80 10388.66 35499.70 22998.58 15597.72 25699.39 203
CHOSEN 280x42099.12 9899.13 7699.08 18099.66 12097.89 25098.43 38199.71 1398.88 5999.62 10499.76 13496.63 15199.70 22999.46 4499.99 199.66 125
EC-MVSNet99.44 3799.39 2799.58 9299.56 15699.49 8999.88 399.58 6198.38 10699.73 6599.69 16798.20 9599.70 22999.64 2499.82 9499.54 161
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27795.32 34999.27 26298.92 33397.37 23299.37 16499.58 21594.90 21299.70 22997.43 26699.21 16699.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 20397.99 20598.44 27499.41 20596.96 29999.60 9499.56 6998.09 14898.15 33099.91 1990.87 33199.70 22998.88 10597.45 27898.67 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS97.50 29096.90 30899.29 15699.23 25498.78 18999.32 24298.90 33997.52 21698.56 30598.09 38184.72 38199.69 23497.86 22097.88 25099.39 203
HQP_MVS98.27 18898.22 18198.44 27499.29 24196.97 29699.39 22099.47 17798.97 5199.11 22199.61 20692.71 28999.69 23497.78 22897.63 26098.67 294
plane_prior599.47 17799.69 23497.78 22897.63 26098.67 294
D2MVS98.41 17598.50 16598.15 30299.26 24896.62 31599.40 21699.61 4897.71 19298.98 24699.36 28496.04 17099.67 23798.70 13597.41 28398.15 361
IS-MVSNet99.05 11198.87 12099.57 9499.73 8799.32 10799.75 4199.20 29998.02 16299.56 11899.86 4796.54 15599.67 23798.09 19999.13 17499.73 97
CLD-MVS98.16 19798.10 19198.33 28499.29 24196.82 30798.75 36099.44 20697.83 17899.13 21799.55 22692.92 28099.67 23798.32 18597.69 25798.48 337
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 30597.30 28997.09 34799.43 19893.31 37899.73 4798.87 34498.83 6499.28 18399.80 10384.45 38299.66 24097.88 21797.45 27898.30 353
AUN-MVS96.88 31596.31 32198.59 24999.48 18897.04 29099.27 26299.22 29597.44 22598.51 30899.41 27091.97 30899.66 24097.71 23983.83 39499.07 238
UniMVSNet_ETH3D97.32 30296.81 31098.87 21899.40 21097.46 26799.51 15499.53 9695.86 34198.54 30799.77 13082.44 39099.66 24098.68 14097.52 27099.50 176
OPM-MVS98.19 19398.10 19198.45 27198.88 32297.07 28599.28 25799.38 23398.57 8899.22 19999.81 8992.12 30599.66 24098.08 20397.54 26998.61 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19096.68 31399.56 12199.54 8598.41 10497.79 34699.87 4390.18 34099.66 24098.05 20797.18 29398.62 315
hse-mvs297.50 29097.14 29898.59 24999.49 18197.05 28799.28 25799.22 29598.94 5499.66 8799.42 26694.93 20999.65 24599.48 4183.80 39599.08 233
VPA-MVSNet98.29 18697.95 21099.30 15399.16 27799.54 7999.50 16199.58 6198.27 11999.35 17099.37 28192.53 29699.65 24599.35 5294.46 34798.72 272
TR-MVS97.76 25897.41 27598.82 22799.06 29997.87 25198.87 34998.56 37096.63 29498.68 28999.22 31492.49 29799.65 24595.40 33997.79 25498.95 252
gm-plane-assit98.54 36292.96 38094.65 36299.15 32299.64 24897.56 253
HQP4-MVS98.66 29099.64 24898.64 306
HQP-MVS98.02 21897.90 21598.37 28299.19 26496.83 30598.98 33199.39 22598.24 12298.66 29099.40 27392.47 29899.64 24897.19 28197.58 26598.64 306
PAPM97.59 28397.09 30299.07 18299.06 29998.26 22898.30 38899.10 31094.88 35698.08 33299.34 29196.27 16599.64 24889.87 38598.92 19299.31 215
TAPA-MVS97.07 1597.74 26497.34 28498.94 19999.70 10197.53 26599.25 27399.51 11591.90 38299.30 17999.63 19798.78 4899.64 24888.09 39299.87 5899.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 17998.09 19499.24 16599.26 24899.32 10799.56 12199.55 7797.45 22398.71 28199.83 6693.23 27399.63 25398.88 10596.32 30798.76 264
ITE_SJBPF98.08 30499.29 24196.37 32398.92 33398.34 11298.83 26899.75 13791.09 32899.62 25495.82 32697.40 28498.25 357
LF4IMVS97.52 28797.46 26397.70 33098.98 31395.55 34199.29 25298.82 34998.07 15398.66 29099.64 19189.97 34199.61 25597.01 28996.68 29797.94 374
tpm97.67 27797.55 25198.03 30699.02 30595.01 35599.43 19998.54 37296.44 30999.12 21999.34 29191.83 31299.60 25697.75 23496.46 30399.48 179
tpm297.44 29797.34 28497.74 32899.15 28194.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25797.31 27298.07 24399.29 216
baseline297.87 24097.55 25198.82 22799.18 26798.02 24099.41 20896.58 40096.97 26996.51 36799.17 31993.43 27099.57 25897.71 23999.03 18498.86 254
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36593.51 37798.82 35399.32 27097.41 22998.13 33199.30 30188.99 34999.56 25995.68 33299.80 10197.90 377
TinyColmap97.12 31096.89 30997.83 32299.07 29595.52 34498.57 37498.74 35897.58 20697.81 34599.79 11688.16 36199.56 25995.10 34497.21 29198.39 349
USDC97.34 30197.20 29697.75 32799.07 29595.20 35198.51 37899.04 31997.99 16398.31 31999.86 4789.02 34899.55 26195.67 33397.36 28798.49 336
MSLP-MVS++99.46 3199.47 1799.44 13299.60 14699.16 13099.41 20899.71 1398.98 4899.45 13999.78 12299.19 999.54 26299.28 6599.84 8199.63 140
TAMVS99.12 9899.08 8499.24 16599.46 19098.55 20599.51 15499.46 18798.09 14899.45 13999.82 7498.34 8999.51 26398.70 13598.93 19099.67 122
EPNet_dtu98.03 21697.96 20898.23 29598.27 36895.54 34399.23 27698.75 35599.02 3897.82 34499.71 15396.11 16899.48 26493.04 36999.65 13499.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37592.79 38199.16 28798.93 33096.16 32894.08 38499.22 31482.72 38899.47 26595.67 33397.50 27398.17 360
MVP-Stereo97.81 25397.75 23497.99 31297.53 37996.60 31798.96 33598.85 34697.22 24697.23 35799.36 28495.28 19999.46 26695.51 33599.78 10897.92 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
iter_conf0598.76 15298.90 11498.33 28499.07 29596.97 29699.50 16199.31 27498.13 14099.48 13499.80 10397.89 10599.46 26699.25 7097.68 25898.56 331
CVMVSNet98.57 16698.67 14398.30 28999.35 22495.59 34099.50 16199.55 7798.60 8699.39 16099.83 6694.48 24099.45 26898.75 12998.56 21499.85 36
test-LLR98.06 20897.90 21598.55 25898.79 33397.10 28198.67 36697.75 38697.34 23498.61 30198.85 35194.45 24299.45 26897.25 27599.38 15399.10 228
TESTMET0.1,197.55 28597.27 29598.40 27998.93 31896.53 31898.67 36697.61 38996.96 27098.64 29799.28 30588.63 35699.45 26897.30 27399.38 15399.21 222
test-mter97.49 29597.13 30098.55 25898.79 33397.10 28198.67 36697.75 38696.65 29098.61 30198.85 35188.23 36099.45 26897.25 27599.38 15399.10 228
mvs_anonymous99.03 11598.99 10199.16 17399.38 21598.52 21199.51 15499.38 23397.79 18399.38 16299.81 8997.30 12799.45 26899.35 5298.99 18799.51 173
tfpnnormal97.84 24697.47 26198.98 19399.20 26199.22 12499.64 7899.61 4896.32 31598.27 32399.70 15793.35 27299.44 27395.69 33195.40 33098.27 355
v7n97.87 24097.52 25598.92 20398.76 34198.58 20399.84 1299.46 18796.20 32498.91 25599.70 15794.89 21399.44 27396.03 32293.89 35898.75 266
jajsoiax98.43 17298.28 17898.88 21498.60 35898.43 22199.82 1699.53 9698.19 13098.63 29899.80 10393.22 27599.44 27399.22 7297.50 27398.77 262
mvs_tets98.40 17898.23 18098.91 20798.67 35198.51 21399.66 6999.53 9698.19 13098.65 29699.81 8992.75 28499.44 27399.31 6197.48 27798.77 262
Vis-MVSNet (Re-imp)98.87 13198.72 13799.31 14899.71 9698.88 17499.80 2599.44 20697.91 16999.36 16799.78 12295.49 19399.43 27797.91 21599.11 17599.62 142
OPU-MVS99.64 7899.56 15699.72 4299.60 9499.70 15799.27 599.42 27898.24 18999.80 10199.79 74
Anonymous2023121197.88 23897.54 25498.90 20999.71 9698.53 20799.48 17999.57 6494.16 36698.81 27099.68 17393.23 27399.42 27898.84 11894.42 34998.76 264
VPNet97.84 24697.44 26999.01 18999.21 25998.94 16899.48 17999.57 6498.38 10699.28 18399.73 14888.89 35099.39 28099.19 7593.27 36598.71 274
nrg03098.64 16398.42 16899.28 16099.05 30299.69 4799.81 2099.46 18798.04 15999.01 24099.82 7496.69 15099.38 28199.34 5894.59 34698.78 259
GA-MVS97.85 24397.47 26199.00 19199.38 21597.99 24298.57 37499.15 30597.04 26598.90 25799.30 30189.83 34299.38 28196.70 30798.33 22499.62 142
UniMVSNet (Re)98.29 18698.00 20499.13 17899.00 30799.36 10599.49 17599.51 11597.95 16598.97 24899.13 32496.30 16499.38 28198.36 18193.34 36398.66 302
FIs98.78 14998.63 14899.23 16799.18 26799.54 7999.83 1599.59 5798.28 11798.79 27499.81 8996.75 14899.37 28499.08 8596.38 30598.78 259
PS-MVSNAJss98.92 12798.92 11198.90 20998.78 33698.53 20799.78 3299.54 8598.07 15399.00 24499.76 13499.01 1899.37 28499.13 8097.23 29098.81 257
CDS-MVSNet99.09 10799.03 9199.25 16399.42 20098.73 19199.45 18999.46 18798.11 14599.46 13899.77 13098.01 10399.37 28498.70 13598.92 19299.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23793.69 37498.88 34795.78 40185.09 39698.78 27592.65 39991.29 32699.37 28494.85 34899.85 7399.46 190
v119297.81 25397.44 26998.91 20798.88 32298.68 19499.51 15499.34 25396.18 32699.20 20599.34 29194.03 25699.36 28895.32 34195.18 33498.69 282
EI-MVSNet98.67 16098.67 14398.68 24499.35 22497.97 24399.50 16199.38 23396.93 27599.20 20599.83 6697.87 10699.36 28898.38 17797.56 26798.71 274
MVSTER98.49 16798.32 17599.00 19199.35 22499.02 15199.54 13799.38 23397.41 22999.20 20599.73 14893.86 26399.36 28898.87 10897.56 26798.62 315
gg-mvs-nofinetune96.17 32995.32 34098.73 23898.79 33398.14 23499.38 22594.09 40791.07 38798.07 33591.04 40389.62 34699.35 29196.75 30499.09 17998.68 287
pm-mvs197.68 27497.28 29298.88 21499.06 29998.62 20099.50 16199.45 19896.32 31597.87 34299.79 11692.47 29899.35 29197.54 25593.54 36298.67 294
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34796.53 31899.88 399.00 32397.79 18398.78 27599.94 691.68 31699.35 29197.21 27796.99 29698.69 282
EGC-MVSNET82.80 36877.86 37497.62 33297.91 37296.12 33199.33 24199.28 2858.40 41125.05 41299.27 30884.11 38399.33 29489.20 38798.22 23297.42 385
pmmvs696.53 32196.09 32697.82 32498.69 34995.47 34599.37 22799.47 17793.46 37497.41 35199.78 12287.06 36999.33 29496.92 29992.70 37298.65 304
mvsmamba98.92 12798.87 12099.08 18099.07 29599.16 13099.88 399.51 11598.15 13599.40 15799.89 2997.12 13299.33 29499.38 4997.40 28498.73 271
V4298.06 20897.79 22498.86 22198.98 31398.84 18099.69 5599.34 25396.53 30199.30 17999.37 28194.67 23099.32 29797.57 25294.66 34498.42 345
lessismore_v097.79 32698.69 34995.44 34794.75 40595.71 37599.87 4388.69 35399.32 29795.89 32594.93 34198.62 315
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38193.17 37999.06 30998.75 35586.58 39494.84 38298.26 37481.53 39299.32 29789.01 38897.87 25196.76 388
v897.95 23097.63 24798.93 20198.95 31798.81 18699.80 2599.41 21696.03 33899.10 22499.42 26694.92 21199.30 30096.94 29694.08 35598.66 302
v192192097.80 25597.45 26498.84 22598.80 33298.53 20799.52 14699.34 25396.15 33099.24 19499.47 25693.98 25899.29 30195.40 33995.13 33698.69 282
anonymousdsp98.44 17198.28 17898.94 19998.50 36398.96 16299.77 3499.50 13597.07 26098.87 26399.77 13094.76 22399.28 30298.66 14297.60 26398.57 330
MVSFormer99.17 8499.12 7899.29 15699.51 17098.94 16899.88 399.46 18797.55 21099.80 4099.65 18597.39 12199.28 30299.03 8899.85 7399.65 129
test_djsdf98.67 16098.57 16098.98 19398.70 34898.91 17299.88 399.46 18797.55 21099.22 19999.88 3595.73 18599.28 30299.03 8897.62 26298.75 266
cascas97.69 27297.43 27398.48 26498.60 35897.30 27098.18 39299.39 22592.96 37898.41 31398.78 35893.77 26699.27 30598.16 19698.61 20898.86 254
v14419297.92 23497.60 24998.87 21898.83 33198.65 19799.55 13399.34 25396.20 32499.32 17599.40 27394.36 24499.26 30696.37 31895.03 33898.70 278
dmvs_re98.08 20698.16 18397.85 31999.55 16094.67 36199.70 5298.92 33398.15 13599.06 23499.35 28793.67 26999.25 30797.77 23197.25 28999.64 136
v2v48298.06 20897.77 22998.92 20398.90 32098.82 18499.57 11599.36 24396.65 29099.19 20899.35 28794.20 24999.25 30797.72 23894.97 33998.69 282
v124097.69 27297.32 28798.79 23398.85 32998.43 22199.48 17999.36 24396.11 33399.27 18899.36 28493.76 26799.24 30994.46 35295.23 33398.70 278
v114497.98 22597.69 23998.85 22498.87 32598.66 19699.54 13799.35 24996.27 31999.23 19899.35 28794.67 23099.23 31096.73 30595.16 33598.68 287
v1097.85 24397.52 25598.86 22198.99 31098.67 19599.75 4199.41 21695.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34598.67 294
WR-MVS_H98.13 20097.87 22098.90 20999.02 30598.84 18099.70 5299.59 5797.27 24098.40 31499.19 31895.53 19199.23 31098.34 18293.78 36098.61 324
miper_enhance_ethall98.16 19798.08 19598.41 27798.96 31697.72 25898.45 38099.32 27096.95 27298.97 24899.17 31997.06 13799.22 31397.86 22095.99 31498.29 354
GG-mvs-BLEND98.45 27198.55 36198.16 23299.43 19993.68 40897.23 35798.46 36689.30 34799.22 31395.43 33898.22 23297.98 372
FC-MVSNet-test98.75 15398.62 15399.15 17799.08 29499.45 9599.86 1199.60 5498.23 12598.70 28799.82 7496.80 14599.22 31399.07 8696.38 30598.79 258
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19698.92 31998.98 15599.48 17999.53 9697.76 18798.71 28199.46 26096.43 16199.22 31398.57 15892.87 37098.69 282
DU-MVS98.08 20697.79 22498.96 19698.87 32598.98 15599.41 20899.45 19897.87 17198.71 28199.50 24494.82 21599.22 31398.57 15892.87 37098.68 287
cl____98.01 22197.84 22298.55 25899.25 25297.97 24398.71 36499.34 25396.47 30898.59 30499.54 23195.65 18899.21 31897.21 27795.77 32098.46 342
WR-MVS98.06 20897.73 23699.06 18398.86 32899.25 12199.19 28399.35 24997.30 23898.66 29099.43 26493.94 25999.21 31898.58 15594.28 35198.71 274
test_040296.64 31996.24 32297.85 31998.85 32996.43 32299.44 19599.26 28893.52 37296.98 36499.52 23888.52 35799.20 32092.58 37697.50 27397.93 375
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35296.23 32999.77 3498.68 36697.14 25197.90 34099.93 990.45 33499.18 32197.00 29096.43 30498.67 294
cl2297.85 24397.64 24698.48 26499.09 29197.87 25198.60 37399.33 26097.11 25798.87 26399.22 31492.38 30399.17 32298.21 19095.99 31498.42 345
WB-MVSnew97.65 27997.65 24397.63 33198.78 33697.62 26399.13 29398.33 37597.36 23399.07 22998.94 34595.64 18999.15 32392.95 37098.68 20796.12 395
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15296.36 32499.02 31999.49 14497.18 24898.71 28199.72 15292.72 28799.14 32497.44 26595.86 31998.67 294
pmmvs597.52 28797.30 28998.16 29998.57 36096.73 30999.27 26298.90 33996.14 33198.37 31699.53 23591.54 32299.14 32497.51 25795.87 31898.63 313
v14897.79 25697.55 25198.50 26198.74 34297.72 25899.54 13799.33 26096.26 32098.90 25799.51 24194.68 22999.14 32497.83 22493.15 36798.63 313
miper_ehance_all_eth98.18 19598.10 19198.41 27799.23 25497.72 25898.72 36399.31 27496.60 29798.88 26099.29 30397.29 12899.13 32797.60 24695.99 31498.38 350
NR-MVSNet97.97 22897.61 24899.02 18898.87 32599.26 11999.47 18599.42 21497.63 20297.08 36299.50 24495.07 20799.13 32797.86 22093.59 36198.68 287
IterMVS97.83 24897.77 22998.02 30899.58 15096.27 32799.02 31999.48 15797.22 24698.71 28199.70 15792.75 28499.13 32797.46 26396.00 31398.67 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37497.24 38580.01 40498.52 37799.48 15789.01 39191.99 39299.67 17985.67 37399.13 32795.44 33797.03 29596.39 392
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 21397.96 20898.33 28499.26 24897.38 26998.56 37699.31 27496.65 29098.88 26099.52 23896.58 15399.12 33197.39 26895.53 32898.47 339
pmmvs498.13 20097.90 21598.81 23098.61 35798.87 17598.99 32899.21 29896.44 30999.06 23499.58 21595.90 17999.11 33297.18 28396.11 31198.46 342
TransMVSNet (Re)97.15 30996.58 31498.86 22199.12 28398.85 17999.49 17598.91 33795.48 34597.16 36099.80 10393.38 27199.11 33294.16 35891.73 37598.62 315
ambc93.06 37292.68 40382.36 39798.47 37998.73 36395.09 38097.41 38655.55 40499.10 33496.42 31691.32 37697.71 378
Baseline_NR-MVSNet97.76 25897.45 26498.68 24499.09 29198.29 22699.41 20898.85 34695.65 34398.63 29899.67 17994.82 21599.10 33498.07 20692.89 36998.64 306
test_vis3_rt87.04 36485.81 36790.73 37893.99 40281.96 39999.76 3790.23 41392.81 37981.35 40191.56 40140.06 41099.07 33694.27 35588.23 38891.15 401
CP-MVSNet98.09 20497.78 22799.01 18998.97 31599.24 12299.67 6499.46 18797.25 24298.48 31199.64 19193.79 26599.06 33798.63 14594.10 35498.74 269
PS-CasMVS97.93 23197.59 25098.95 19898.99 31099.06 14799.68 6199.52 10197.13 25298.31 31999.68 17392.44 30299.05 33898.51 16694.08 35598.75 266
K. test v397.10 31196.79 31198.01 30998.72 34596.33 32599.87 897.05 39397.59 20496.16 37199.80 10388.71 35299.04 33996.69 30896.55 30298.65 304
new_pmnet96.38 32596.03 32797.41 33898.13 37195.16 35499.05 31199.20 29993.94 36797.39 35498.79 35791.61 32199.04 33990.43 38395.77 32098.05 366
DIV-MVS_self_test98.01 22197.85 22198.48 26499.24 25397.95 24798.71 36499.35 24996.50 30298.60 30399.54 23195.72 18699.03 34197.21 27795.77 32098.46 342
IterMVS-LS98.46 17098.42 16898.58 25299.59 14898.00 24199.37 22799.43 21296.94 27499.07 22999.59 21197.87 10699.03 34198.32 18595.62 32598.71 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 27997.68 24097.55 33598.62 35594.97 35698.84 35199.30 27996.83 28198.19 32899.34 29197.01 14099.02 34395.00 34796.01 31298.64 306
Patchmtry97.75 26297.40 27698.81 23099.10 28898.87 17599.11 30299.33 26094.83 35898.81 27099.38 27894.33 24599.02 34396.10 32095.57 32698.53 333
N_pmnet94.95 34595.83 33292.31 37398.47 36479.33 40599.12 29692.81 41193.87 36897.68 34799.13 32493.87 26299.01 34591.38 38096.19 30998.59 328
CR-MVSNet98.17 19697.93 21398.87 21899.18 26798.49 21599.22 28099.33 26096.96 27099.56 11899.38 27894.33 24599.00 34694.83 34998.58 21199.14 225
c3_l98.12 20298.04 20098.38 28199.30 23797.69 26298.81 35499.33 26096.67 28898.83 26899.34 29197.11 13398.99 34797.58 24895.34 33198.48 337
test0.0.03 197.71 27097.42 27498.56 25698.41 36797.82 25498.78 35798.63 36897.34 23498.05 33698.98 34194.45 24298.98 34895.04 34697.15 29498.89 253
PatchT97.03 31396.44 31898.79 23398.99 31098.34 22599.16 28799.07 31692.13 38199.52 12797.31 39094.54 23898.98 34888.54 39098.73 20599.03 241
GBi-Net97.68 27497.48 25998.29 29099.51 17097.26 27499.43 19999.48 15796.49 30399.07 22999.32 29890.26 33698.98 34897.10 28596.65 29898.62 315
test197.68 27497.48 25998.29 29099.51 17097.26 27499.43 19999.48 15796.49 30399.07 22999.32 29890.26 33698.98 34897.10 28596.65 29898.62 315
FMVSNet398.03 21697.76 23398.84 22599.39 21398.98 15599.40 21699.38 23396.67 28899.07 22999.28 30592.93 27998.98 34897.10 28596.65 29898.56 331
FMVSNet297.72 26797.36 27998.80 23299.51 17098.84 18099.45 18999.42 21496.49 30398.86 26799.29 30390.26 33698.98 34896.44 31596.56 30198.58 329
FMVSNet196.84 31696.36 32098.29 29099.32 23597.26 27499.43 19999.48 15795.11 35098.55 30699.32 29883.95 38498.98 34895.81 32796.26 30898.62 315
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35595.24 35098.80 35599.46 18796.11 33398.22 32699.62 20296.45 15998.97 35593.77 36095.97 31798.61 324
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23698.78 33698.62 20099.65 7599.49 14497.76 18798.49 31099.60 20994.23 24898.97 35598.00 21092.90 36898.70 278
test_method91.10 36091.36 36290.31 37995.85 39273.72 41294.89 40099.25 29068.39 40395.82 37499.02 33680.50 39398.95 35793.64 36294.89 34398.25 357
ADS-MVSNet298.02 21898.07 19897.87 31899.33 22995.19 35299.23 27699.08 31396.24 32199.10 22499.67 17994.11 25398.93 35896.81 30299.05 18299.48 179
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18599.53 16398.82 18498.84 35197.51 39197.63 20284.77 39799.21 31792.09 30698.91 35998.98 9392.21 37499.41 199
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 22897.43 26898.88 34799.36 24396.48 30698.80 27299.55 22695.98 17298.91 35997.27 27495.50 32998.51 335
PEN-MVS97.76 25897.44 26998.72 23998.77 34098.54 20699.78 3299.51 11597.06 26298.29 32299.64 19192.63 29398.89 36198.09 19993.16 36698.72 272
testing397.28 30396.76 31298.82 22799.37 21998.07 23899.45 18999.36 24397.56 20997.89 34198.95 34483.70 38598.82 36296.03 32298.56 21499.58 154
testgi97.65 27997.50 25898.13 30399.36 22396.45 32199.42 20699.48 15797.76 18797.87 34299.45 26191.09 32898.81 36394.53 35198.52 21799.13 227
testf190.42 36290.68 36489.65 38297.78 37573.97 41099.13 29398.81 35189.62 38991.80 39398.93 34662.23 40298.80 36486.61 39891.17 37796.19 393
APD_test290.42 36290.68 36489.65 38297.78 37573.97 41099.13 29398.81 35189.62 38991.80 39398.93 34662.23 40298.80 36486.61 39891.17 37796.19 393
MIMVSNet97.73 26597.45 26498.57 25399.45 19697.50 26699.02 31998.98 32596.11 33399.41 15299.14 32390.28 33598.74 36695.74 32998.93 19099.47 185
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23792.25 38499.59 10098.26 37697.43 22696.20 37099.13 32496.27 16598.73 36798.17 19598.99 18799.64 136
Syy-MVS97.09 31297.14 29896.95 35199.00 30792.73 38299.29 25299.39 22597.06 26297.41 35198.15 37693.92 26198.68 36891.71 37898.34 22299.45 193
myMVS_eth3d96.89 31496.37 31998.43 27699.00 30797.16 27899.29 25299.39 22597.06 26297.41 35198.15 37683.46 38698.68 36895.27 34298.34 22299.45 193
DTE-MVSNet97.51 28997.19 29798.46 27098.63 35498.13 23599.84 1299.48 15796.68 28797.97 33999.67 17992.92 28098.56 37096.88 30192.60 37398.70 278
PC_three_145298.18 13399.84 2999.70 15799.31 398.52 37198.30 18799.80 10199.81 61
mvsany_test393.77 35393.45 35794.74 36695.78 39388.01 39299.64 7898.25 37798.28 11794.31 38397.97 38368.89 39898.51 37297.50 25890.37 38297.71 378
UnsupCasMVSNet_bld93.53 35492.51 35996.58 35997.38 38193.82 37098.24 38999.48 15791.10 38693.10 38896.66 39274.89 39698.37 37394.03 35987.71 38997.56 383
Anonymous2024052196.20 32895.89 33197.13 34597.72 37894.96 35799.79 3199.29 28393.01 37797.20 35999.03 33489.69 34498.36 37491.16 38196.13 31098.07 364
test_f91.90 35991.26 36393.84 36895.52 39785.92 39499.69 5598.53 37395.31 34793.87 38596.37 39455.33 40598.27 37595.70 33090.98 38097.32 386
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37097.21 27799.11 30299.24 29293.49 37380.73 40398.98 34193.02 27798.18 37694.22 35794.45 34898.64 306
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35295.65 33899.36 23199.51 11597.13 25296.04 37398.99 33988.40 35898.17 37796.71 30690.27 38398.40 348
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38795.82 33698.34 38499.20 29995.00 35497.57 34898.35 37087.95 36398.10 37892.87 37277.00 40198.01 368
miper_refine_blended94.62 34693.72 35497.31 34097.19 38795.82 33698.34 38499.20 29995.00 35497.57 34898.35 37087.95 36398.10 37892.87 37277.00 40198.01 368
YYNet195.36 34094.51 34797.92 31597.89 37397.10 28199.10 30499.23 29393.26 37680.77 40299.04 33392.81 28398.02 38094.30 35394.18 35398.64 306
EU-MVSNet97.98 22598.03 20197.81 32598.72 34596.65 31499.66 6999.66 2898.09 14898.35 31799.82 7495.25 20398.01 38197.41 26795.30 33298.78 259
Gipumacopyleft90.99 36190.15 36693.51 36998.73 34390.12 39093.98 40199.45 19879.32 39992.28 39194.91 39669.61 39797.98 38287.42 39495.67 32492.45 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39695.94 33499.35 23699.10 31095.13 34893.55 38697.54 38588.15 36297.91 38394.58 35089.69 38697.61 381
PM-MVS92.96 35692.23 36095.14 36595.61 39489.98 39199.37 22798.21 37994.80 35995.04 38197.69 38465.06 39997.90 38494.30 35389.98 38597.54 384
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 36997.27 27299.15 29099.33 26093.80 36980.09 40499.03 33488.31 35997.86 38593.49 36494.36 35098.62 315
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39490.57 38998.24 38998.39 37495.10 35295.20 37898.67 36194.78 21997.77 38696.28 31990.02 38499.51 173
Anonymous2023120696.22 32696.03 32796.79 35697.31 38494.14 36899.63 8299.08 31396.17 32797.04 36399.06 33193.94 25997.76 38786.96 39695.06 33798.47 339
SD-MVS99.41 4799.52 1199.05 18599.74 8099.68 4899.46 18899.52 10199.11 2699.88 2099.91 1999.43 197.70 38898.72 13399.93 2699.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37493.61 37699.57 11596.63 39896.13 33298.87 26398.61 36494.59 23397.70 38895.08 34598.86 19699.55 159
pmmvs394.09 35293.25 35896.60 35894.76 40194.49 36398.92 34398.18 38189.66 38896.48 36898.06 38286.28 37097.33 39089.68 38687.20 39097.97 373
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 38995.39 34899.56 12199.44 20695.11 35097.13 36197.32 38991.86 31197.27 39190.35 38481.23 39898.23 359
FMVSNet596.43 32496.19 32397.15 34399.11 28595.89 33599.32 24299.52 10194.47 36598.34 31899.07 32987.54 36797.07 39292.61 37595.72 32398.47 339
new-patchmatchnet94.48 34994.08 35095.67 36495.08 39992.41 38399.18 28599.28 28594.55 36493.49 38797.37 38887.86 36597.01 39391.57 37988.36 38797.61 381
LCM-MVSNet86.80 36685.22 37091.53 37687.81 40880.96 40298.23 39198.99 32471.05 40190.13 39696.51 39348.45 40996.88 39490.51 38285.30 39296.76 388
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39193.67 37598.33 38699.38 23395.13 34897.33 35598.15 37692.69 29196.57 39588.67 38979.87 39997.99 371
MIMVSNet195.51 33795.04 34296.92 35397.38 38195.60 33999.52 14699.50 13593.65 37196.97 36599.17 31985.28 37896.56 39688.36 39195.55 32798.60 327
test20.0396.12 33095.96 32996.63 35797.44 38095.45 34699.51 15499.38 23396.55 30096.16 37199.25 31193.76 26796.17 39787.35 39594.22 35298.27 355
tmp_tt82.80 36881.52 37186.66 38466.61 41468.44 41392.79 40397.92 38368.96 40280.04 40599.85 5285.77 37296.15 39897.86 22043.89 40795.39 397
test_fmvs392.10 35891.77 36193.08 37196.19 39086.25 39399.82 1698.62 36996.65 29095.19 37996.90 39155.05 40695.93 39996.63 31290.92 38197.06 387
dmvs_testset95.02 34296.12 32491.72 37599.10 28880.43 40399.58 10897.87 38597.47 21995.22 37798.82 35393.99 25795.18 40088.09 39294.91 34299.56 158
PMMVS286.87 36585.37 36991.35 37790.21 40683.80 39698.89 34697.45 39283.13 39891.67 39595.03 39548.49 40894.70 40185.86 40077.62 40095.54 396
PMVScopyleft70.75 2275.98 37474.97 37579.01 39070.98 41355.18 41593.37 40298.21 37965.08 40761.78 40893.83 39821.74 41592.53 40278.59 40291.12 37989.34 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 36785.65 36882.75 38886.77 40963.39 41498.35 38398.92 33374.11 40083.39 39998.98 34150.85 40792.40 40384.54 40194.97 33992.46 398
WB-MVS93.10 35594.10 34990.12 38095.51 39881.88 40099.73 4799.27 28795.05 35393.09 38998.91 35094.70 22891.89 40476.62 40394.02 35796.58 390
SSC-MVS92.73 35793.73 35389.72 38195.02 40081.38 40199.76 3799.23 29394.87 35792.80 39098.93 34694.71 22791.37 40574.49 40593.80 35996.42 391
MVEpermissive76.82 2176.91 37374.31 37784.70 38585.38 41176.05 40996.88 39993.17 40967.39 40471.28 40689.01 40521.66 41687.69 40671.74 40672.29 40390.35 402
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 37079.88 37282.81 38790.75 40576.38 40897.69 39695.76 40266.44 40583.52 39892.25 40062.54 40187.16 40768.53 40761.40 40484.89 405
EMVS80.02 37179.22 37382.43 38991.19 40476.40 40797.55 39892.49 41266.36 40683.01 40091.27 40264.63 40085.79 40865.82 40860.65 40585.08 404
ANet_high77.30 37274.86 37684.62 38675.88 41277.61 40697.63 39793.15 41088.81 39264.27 40789.29 40436.51 41183.93 40975.89 40452.31 40692.33 400
wuyk23d40.18 37541.29 38036.84 39186.18 41049.12 41679.73 40422.81 41627.64 40825.46 41128.45 41121.98 41448.89 41055.80 40923.56 41012.51 408
test12339.01 37742.50 37928.53 39239.17 41520.91 41798.75 36019.17 41719.83 41038.57 40966.67 40733.16 41215.42 41137.50 41129.66 40949.26 406
testmvs39.17 37643.78 37825.37 39336.04 41616.84 41898.36 38226.56 41520.06 40938.51 41067.32 40629.64 41315.30 41237.59 41039.90 40843.98 407
test_blank0.13 3810.17 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4131.57 4120.00 4170.00 4130.00 4120.00 4110.00 409
uanet_test0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
DCPMVS0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
cdsmvs_eth3d_5k24.64 37832.85 3810.00 3940.00 4170.00 4190.00 40599.51 1150.00 4120.00 41399.56 22296.58 1530.00 4130.00 4120.00 4110.00 409
pcd_1.5k_mvsjas8.27 38011.03 3830.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 41399.01 180.00 4130.00 4120.00 4110.00 409
sosnet-low-res0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
sosnet0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
uncertanet0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
Regformer0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
ab-mvs-re8.30 37911.06 3820.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 41399.58 2150.00 4170.00 4130.00 4120.00 4110.00 409
uanet0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
WAC-MVS97.16 27895.47 336
FOURS199.91 199.93 199.87 899.56 6999.10 2799.81 37
test_one_060199.81 4699.88 899.49 14498.97 5199.65 9399.81 8999.09 14
eth-test20.00 417
eth-test0.00 417
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10699.76 5799.82 7498.75 5598.61 14999.81 9799.77 82
IU-MVS99.84 3299.88 899.32 27098.30 11699.84 2998.86 11399.85 7399.89 20
save fliter99.76 6599.59 7099.14 29299.40 22299.00 43
test072699.85 2699.89 499.62 8799.50 13599.10 2799.86 2799.82 7498.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 21499.52 167
sam_mvs94.72 226
MTGPAbinary99.47 177
MTMP99.54 13798.88 342
test9_res97.49 25999.72 12299.75 88
agg_prior297.21 27799.73 12199.75 88
test_prior499.56 7598.99 328
test_prior298.96 33598.34 11299.01 24099.52 23898.68 6497.96 21299.74 119
新几何299.01 325
旧先验199.74 8099.59 7099.54 8599.69 16798.47 8099.68 13099.73 97
原ACMM298.95 338
test22299.75 7399.49 8998.91 34599.49 14496.42 31199.34 17399.65 18598.28 9299.69 12799.72 103
segment_acmp98.96 24
testdata198.85 35098.32 115
plane_prior799.29 24197.03 291
plane_prior699.27 24696.98 29592.71 289
plane_prior499.61 206
plane_prior397.00 29398.69 7999.11 221
plane_prior299.39 22098.97 51
plane_prior199.26 248
plane_prior96.97 29699.21 28298.45 10097.60 263
n20.00 418
nn0.00 418
door-mid98.05 382
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
HQP-NCC99.19 26498.98 33198.24 12298.66 290
ACMP_Plane99.19 26498.98 33198.24 12298.66 290
BP-MVS97.19 281
HQP3-MVS99.39 22597.58 265
HQP2-MVS92.47 298
NP-MVS99.23 25496.92 30199.40 273
MDTV_nov1_ep13_2view95.18 35399.35 23696.84 27999.58 11495.19 20597.82 22599.46 190
ACMMP++_ref97.19 292
ACMMP++97.43 282
Test By Simon98.75 55