This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
patch_mono-299.26 5899.62 198.16 27199.81 4094.59 33299.52 13399.64 3299.33 299.73 4799.90 1599.00 2299.99 199.69 599.98 299.89 5
h-mvs3397.70 25097.28 26998.97 17399.70 9197.27 25099.36 20899.45 17998.94 4199.66 6899.64 17594.93 19399.99 199.48 2484.36 36099.65 112
xiu_mvs_v1_base_debu99.29 5399.27 4899.34 12199.63 11898.97 13999.12 26599.51 10298.86 4799.84 1799.47 23898.18 9199.99 199.50 1999.31 14299.08 199
xiu_mvs_v1_base99.29 5399.27 4899.34 12199.63 11898.97 13999.12 26599.51 10298.86 4799.84 1799.47 23898.18 9199.99 199.50 1999.31 14299.08 199
xiu_mvs_v1_base_debi99.29 5399.27 4899.34 12199.63 11898.97 13999.12 26599.51 10298.86 4799.84 1799.47 23898.18 9199.99 199.50 1999.31 14299.08 199
EPNet98.86 11398.71 11799.30 13297.20 35598.18 21299.62 8298.91 31299.28 598.63 27599.81 7595.96 15799.99 199.24 5199.72 10399.73 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis1_n97.92 21397.44 24799.34 12199.53 14998.08 21899.74 4299.49 12999.15 9100.00 199.94 479.51 36199.98 799.88 199.76 9599.97 1
xiu_mvs_v2_base99.26 5899.25 5299.29 13599.53 14998.91 15599.02 28999.45 17998.80 5699.71 5399.26 29198.94 2999.98 799.34 3899.23 14798.98 213
PS-MVSNAJ99.32 4999.32 3299.30 13299.57 13998.94 15198.97 30299.46 16898.92 4499.71 5399.24 29399.01 1899.98 799.35 3499.66 11398.97 214
QAPM98.67 14098.30 15799.80 3899.20 23999.67 5199.77 3399.72 1194.74 32798.73 25699.90 1595.78 16799.98 796.96 26899.88 3699.76 72
3Dnovator97.25 999.24 6299.05 7199.81 3699.12 25799.66 5399.84 1399.74 1099.09 1998.92 23199.90 1595.94 16099.98 798.95 7699.92 1399.79 59
OpenMVScopyleft96.50 1698.47 14998.12 16899.52 9699.04 27499.53 7399.82 1799.72 1194.56 33098.08 30599.88 2594.73 20999.98 797.47 23799.76 9599.06 205
test_fmvs1_n98.41 15598.14 16599.21 14599.82 3697.71 24099.74 4299.49 12999.32 399.99 299.95 285.32 34899.97 1399.82 299.84 6299.96 2
CANet_DTU98.97 10398.87 10099.25 14099.33 20798.42 20599.08 27499.30 25899.16 899.43 12399.75 12195.27 18499.97 1398.56 14199.95 899.36 178
MTAPA99.52 1099.39 1999.89 499.90 499.86 1399.66 6499.47 15998.79 5799.68 5999.81 7598.43 7899.97 1398.88 8599.90 2499.83 34
PGM-MVS99.45 2599.31 3899.86 2099.87 1599.78 3699.58 10399.65 3197.84 15399.71 5399.80 8899.12 1399.97 1398.33 16299.87 3999.83 34
mPP-MVS99.44 2999.30 4099.86 2099.88 1199.79 3099.69 5199.48 14198.12 12099.50 10999.75 12198.78 4799.97 1398.57 13899.89 3399.83 34
CP-MVS99.45 2599.32 3299.85 2599.83 3499.75 3999.69 5199.52 8898.07 13099.53 10499.63 18198.93 3399.97 1398.74 11099.91 1799.83 34
SteuartSystems-ACMMP99.54 899.42 1599.87 1199.82 3699.81 2599.59 9599.51 10298.62 6699.79 2999.83 5599.28 499.97 1398.48 14899.90 2499.84 25
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 6698.97 8799.82 3399.17 25099.68 4899.81 2099.51 10299.20 798.72 25799.89 1995.68 17299.97 1398.86 9399.86 4799.81 46
mvsany_test199.50 1299.46 1499.62 6999.61 12899.09 12298.94 30899.48 14199.10 1599.96 599.91 1198.85 3999.96 2199.72 499.58 12299.82 39
test_fmvs198.88 10998.79 11199.16 15099.69 9497.61 24299.55 12299.49 12999.32 399.98 399.91 1191.41 29899.96 2199.82 299.92 1399.90 3
DVP-MVS++99.59 399.50 899.88 599.51 15599.88 899.87 999.51 10298.99 3299.88 1099.81 7599.27 599.96 2198.85 9599.80 8299.81 46
MSC_two_6792asdad99.87 1199.51 15599.76 3799.33 24099.96 2198.87 8899.84 6299.89 5
No_MVS99.87 1199.51 15599.76 3799.33 24099.96 2198.87 8899.84 6299.89 5
ZD-MVS99.71 8699.79 3099.61 3596.84 24799.56 9799.54 21498.58 6799.96 2196.93 27199.75 97
SED-MVS99.61 299.52 699.88 599.84 3099.90 299.60 8999.48 14199.08 2099.91 699.81 7599.20 799.96 2198.91 8299.85 5499.79 59
test_241102_TWO99.48 14199.08 2099.88 1099.81 7598.94 2999.96 2198.91 8299.84 6299.88 11
ZNCC-MVS99.47 2199.33 3099.87 1199.87 1599.81 2599.64 7299.67 2298.08 12999.55 10199.64 17598.91 3499.96 2198.72 11399.90 2499.82 39
DVP-MVScopyleft99.57 799.47 1299.88 599.85 2499.89 499.57 10799.37 22399.10 1599.81 2499.80 8898.94 2999.96 2198.93 7999.86 4799.81 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 3299.81 2499.80 8899.09 1499.96 2198.85 9599.90 2499.88 11
test_0728_SECOND99.91 299.84 3099.89 499.57 10799.51 10299.96 2198.93 7999.86 4799.88 11
SR-MVS99.43 3299.29 4499.86 2099.75 6399.83 1699.59 9599.62 3398.21 10799.73 4799.79 9998.68 6199.96 2198.44 15399.77 9299.79 59
DPE-MVScopyleft99.46 2399.32 3299.91 299.78 4699.88 899.36 20899.51 10298.73 6099.88 1099.84 5198.72 5899.96 2198.16 17599.87 3999.88 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net99.42 3499.29 4499.80 3899.62 12499.55 6899.50 14499.70 1598.79 5799.77 3799.96 197.45 10999.96 2198.92 8199.90 2499.89 5
HFP-MVS99.49 1499.37 2299.86 2099.87 1599.80 2799.66 6499.67 2298.15 11699.68 5999.69 15199.06 1699.96 2198.69 11899.87 3999.84 25
region2R99.48 1899.35 2699.87 1199.88 1199.80 2799.65 7099.66 2698.13 11999.66 6899.68 15798.96 2499.96 2198.62 12699.87 3999.84 25
HPM-MVS++copyleft99.39 4299.23 5599.87 1199.75 6399.84 1599.43 17699.51 10298.68 6499.27 16799.53 21898.64 6699.96 2198.44 15399.80 8299.79 59
APDe-MVS99.66 199.57 399.92 199.77 5299.89 499.75 3999.56 5699.02 2599.88 1099.85 4199.18 1099.96 2199.22 5299.92 1399.90 3
ACMMPR99.49 1499.36 2499.86 2099.87 1599.79 3099.66 6499.67 2298.15 11699.67 6399.69 15198.95 2799.96 2198.69 11899.87 3999.84 25
MP-MVScopyleft99.33 4899.15 6199.87 1199.88 1199.82 2299.66 6499.46 16898.09 12599.48 11399.74 12698.29 8699.96 2197.93 19199.87 3999.82 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 8598.90 9699.74 4999.80 4399.46 8299.59 9599.49 12997.03 23499.63 7999.69 15197.27 11699.96 2197.82 20199.84 6299.81 46
PVSNet_Blended_VisFu99.36 4599.28 4699.61 7099.86 2099.07 12799.47 16399.93 297.66 17499.71 5399.86 3697.73 10499.96 2199.47 2699.82 7599.79 59
UGNet98.87 11098.69 11999.40 11599.22 23598.72 17399.44 17299.68 1999.24 699.18 19099.42 24892.74 26299.96 2199.34 3899.94 1199.53 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 4999.32 3299.32 12799.85 2498.29 20899.71 4899.66 2698.11 12299.41 13099.80 8898.37 8399.96 2198.99 7299.96 799.72 88
ACMMPcopyleft99.45 2599.32 3299.82 3399.89 899.67 5199.62 8299.69 1898.12 12099.63 7999.84 5198.73 5799.96 2198.55 14499.83 7199.81 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.45 2599.31 3899.85 2599.76 5599.82 2299.63 7699.52 8898.38 8599.76 4299.82 6298.53 7199.95 4798.61 12999.81 7899.77 67
GST-MVS99.40 4199.24 5399.85 2599.86 2099.79 3099.60 8999.67 2297.97 14199.63 7999.68 15798.52 7299.95 4798.38 15699.86 4799.81 46
CANet99.25 6199.14 6299.59 7299.41 18799.16 11199.35 21399.57 5198.82 5299.51 10899.61 19096.46 14299.95 4799.59 1099.98 299.65 112
MP-MVS-pluss99.37 4499.20 5799.88 599.90 499.87 1299.30 22399.52 8897.18 21899.60 8999.79 9998.79 4699.95 4798.83 10199.91 1799.83 34
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 3499.27 4899.88 599.89 899.80 2799.67 6099.50 12198.70 6299.77 3799.49 23098.21 8999.95 4798.46 15299.77 9299.88 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 4796.67 283
APD-MVS_3200maxsize99.48 1899.35 2699.85 2599.76 5599.83 1699.63 7699.54 7298.36 8999.79 2999.82 6298.86 3899.95 4798.62 12699.81 7899.78 65
RPMNet96.72 28895.90 29999.19 14799.18 24498.49 19799.22 25199.52 8888.72 36099.56 9797.38 35494.08 23499.95 4786.87 36598.58 19199.14 191
sss99.17 6899.05 7199.53 9099.62 12498.97 13999.36 20899.62 3397.83 15499.67 6399.65 16997.37 11399.95 4799.19 5499.19 15099.68 102
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5399.63 7699.39 20998.91 4599.78 3499.85 4199.36 299.94 5698.84 9899.88 3699.82 39
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS99.53 999.42 1599.87 1199.85 2499.83 1699.69 5199.68 1998.98 3599.37 14399.74 12698.81 4499.94 5698.79 10699.86 4799.84 25
X-MVStestdata96.55 29095.45 30799.87 1199.85 2499.83 1699.69 5199.68 1998.98 3599.37 14364.01 37798.81 4499.94 5698.79 10699.86 4799.84 25
旧先验298.96 30396.70 25499.47 11499.94 5698.19 171
新几何199.75 4799.75 6399.59 6299.54 7296.76 25099.29 16299.64 17598.43 7899.94 5696.92 27399.66 11399.72 88
testdata99.54 8299.75 6398.95 14899.51 10297.07 23099.43 12399.70 14198.87 3799.94 5697.76 20799.64 11699.72 88
HPM-MVScopyleft99.42 3499.28 4699.83 3299.90 499.72 4299.81 2099.54 7297.59 17899.68 5999.63 18198.91 3499.94 5698.58 13599.91 1799.84 25
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 6499.10 6699.45 10899.89 898.52 19399.39 19799.94 198.73 6099.11 19999.89 1995.50 17699.94 5699.50 1999.97 599.89 5
APD-MVScopyleft99.27 5699.08 6999.84 3199.75 6399.79 3099.50 14499.50 12197.16 22099.77 3799.82 6298.78 4799.94 5697.56 22899.86 4799.80 55
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 1899.42 1599.65 5999.72 8199.40 8899.05 28099.66 2699.14 1099.57 9699.80 8898.46 7699.94 5699.57 1299.84 6299.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 9298.88 9999.61 7099.62 12499.16 11199.37 20499.56 5698.04 13699.53 10499.62 18696.84 13099.94 5698.85 9598.49 19899.72 88
DeepC-MVS98.35 299.30 5199.19 5899.64 6499.82 3699.23 10499.62 8299.55 6498.94 4199.63 7999.95 295.82 16699.94 5699.37 3399.97 599.73 82
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 5699.12 6499.74 4999.18 24499.75 3999.56 11399.57 5198.45 7999.49 11299.85 4197.77 10399.94 5698.33 16299.84 6299.52 147
FE-MVS98.48 14898.17 16299.40 11599.54 14898.96 14399.68 5798.81 32395.54 31399.62 8399.70 14193.82 24199.93 6997.35 24499.46 12999.32 183
SF-MVS99.38 4399.24 5399.79 4199.79 4499.68 4899.57 10799.54 7297.82 15899.71 5399.80 8898.95 2799.93 6998.19 17199.84 6299.74 77
dcpmvs_299.23 6399.58 298.16 27199.83 3494.68 33199.76 3699.52 8899.07 2299.98 399.88 2598.56 6999.93 6999.67 799.98 299.87 16
Anonymous2024052998.09 18497.68 21999.34 12199.66 10798.44 20299.40 19399.43 19393.67 33799.22 17899.89 1990.23 31499.93 6999.26 5098.33 20199.66 108
ACMMP_NAP99.47 2199.34 2899.88 599.87 1599.86 1399.47 16399.48 14198.05 13599.76 4299.86 3698.82 4399.93 6998.82 10599.91 1799.84 25
EI-MVSNet-UG-set99.58 499.57 399.64 6499.78 4699.14 11799.60 8999.45 17999.01 2799.90 899.83 5598.98 2399.93 6999.59 1099.95 899.86 18
无先验98.99 29699.51 10296.89 24499.93 6997.53 23199.72 88
VDDNet97.55 26297.02 27999.16 15099.49 16698.12 21799.38 20299.30 25895.35 31599.68 5999.90 1582.62 35699.93 6999.31 4198.13 21699.42 171
ab-mvs98.86 11398.63 12799.54 8299.64 11599.19 10699.44 17299.54 7297.77 16199.30 15999.81 7594.20 22899.93 6999.17 5798.82 18299.49 157
F-COLMAP99.19 6499.04 7399.64 6499.78 4699.27 10099.42 18399.54 7297.29 20999.41 13099.59 19598.42 8099.93 6998.19 17199.69 10899.73 82
Anonymous20240521198.30 16597.98 18599.26 13999.57 13998.16 21399.41 18598.55 34296.03 30799.19 18799.74 12691.87 28599.92 7999.16 5898.29 20699.70 96
EI-MVSNet-Vis-set99.58 499.56 599.64 6499.78 4699.15 11699.61 8899.45 17999.01 2799.89 999.82 6299.01 1899.92 7999.56 1399.95 899.85 21
VDD-MVS97.73 24497.35 25998.88 19299.47 17597.12 25699.34 21698.85 31998.19 11099.67 6399.85 4182.98 35499.92 7999.49 2398.32 20599.60 128
VNet99.11 8598.90 9699.73 5199.52 15399.56 6699.41 18599.39 20999.01 2799.74 4699.78 10595.56 17499.92 7999.52 1798.18 21299.72 88
XVG-OURS-SEG-HR98.69 13798.62 13298.89 19099.71 8697.74 23599.12 26599.54 7298.44 8299.42 12699.71 13794.20 22899.92 7998.54 14598.90 17699.00 210
HPM-MVS_fast99.51 1199.40 1899.85 2599.91 199.79 3099.76 3699.56 5697.72 16799.76 4299.75 12199.13 1299.92 7999.07 6699.92 1399.85 21
HY-MVS97.30 798.85 12098.64 12699.47 10599.42 18499.08 12599.62 8299.36 22497.39 20299.28 16399.68 15796.44 14499.92 7998.37 15898.22 20799.40 175
DP-MVS99.16 7098.95 9199.78 4399.77 5299.53 7399.41 18599.50 12197.03 23499.04 21399.88 2597.39 11099.92 7998.66 12299.90 2499.87 16
IB-MVS95.67 1896.22 29695.44 30898.57 22899.21 23796.70 28298.65 33697.74 35796.71 25397.27 32698.54 33986.03 34499.92 7998.47 15186.30 35899.10 194
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 1499.39 1999.77 4599.63 11899.59 6299.36 20899.46 16899.07 2299.79 2999.82 6298.85 3999.92 7998.68 12099.87 3999.82 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 6699.72 8199.40 19399.51 10297.53 18799.64 7899.78 10598.84 4199.91 8997.63 21999.82 75
SMA-MVScopyleft99.44 2999.30 4099.85 2599.73 7799.83 1699.56 11399.47 15997.45 19499.78 3499.82 6299.18 1099.91 8998.79 10699.89 3399.81 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 9999.65 5699.05 28099.41 19896.22 29298.95 22699.49 23098.77 5099.91 89
train_agg99.02 9798.77 11299.77 4599.67 9999.65 5699.05 28099.41 19896.28 28698.95 22699.49 23098.76 5199.91 8997.63 21999.72 10399.75 73
test_899.67 9999.61 6099.03 28699.41 19896.28 28698.93 23099.48 23598.76 5199.91 89
agg_prior99.67 9999.62 5999.40 20698.87 24099.91 89
原ACMM199.65 5999.73 7799.33 9199.47 15997.46 19199.12 19799.66 16898.67 6399.91 8997.70 21699.69 10899.71 95
LFMVS97.90 21697.35 25999.54 8299.52 15399.01 13499.39 19798.24 34897.10 22899.65 7499.79 9984.79 35099.91 8999.28 4698.38 20099.69 98
XVG-OURS98.73 13398.68 12098.88 19299.70 9197.73 23698.92 31099.55 6498.52 7499.45 11799.84 5195.27 18499.91 8998.08 18298.84 18099.00 210
PLCcopyleft97.94 499.02 9798.85 10499.53 9099.66 10799.01 13499.24 24699.52 8896.85 24699.27 16799.48 23598.25 8899.91 8997.76 20799.62 11999.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 25797.06 27899.47 10599.61 12899.09 12298.04 36199.25 26991.24 35298.51 28499.70 14194.55 21899.91 8992.76 34499.85 5499.42 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_rt95.81 30595.65 30496.32 33199.67 9991.35 35799.49 15496.74 36598.25 10095.24 34698.10 34874.96 36299.90 10099.53 1598.85 17997.70 350
FA-MVS(test-final)98.75 13198.53 14499.41 11499.55 14799.05 13099.80 2499.01 29996.59 26799.58 9399.59 19595.39 17999.90 10097.78 20499.49 12899.28 186
MCST-MVS99.43 3299.30 4099.82 3399.79 4499.74 4199.29 22799.40 20698.79 5799.52 10699.62 18698.91 3499.90 10098.64 12499.75 9799.82 39
CDPH-MVS99.13 7598.91 9599.80 3899.75 6399.71 4499.15 26099.41 19896.60 26599.60 8999.55 20998.83 4299.90 10097.48 23599.83 7199.78 65
NCCC99.34 4799.19 5899.79 4199.61 12899.65 5699.30 22399.48 14198.86 4799.21 18199.63 18198.72 5899.90 10098.25 16799.63 11899.80 55
114514_t98.93 10598.67 12199.72 5299.85 2499.53 7399.62 8299.59 4392.65 34799.71 5399.78 10598.06 9699.90 10098.84 9899.91 1799.74 77
1112_ss98.98 10198.77 11299.59 7299.68 9899.02 13299.25 24499.48 14197.23 21599.13 19599.58 19996.93 12999.90 10098.87 8898.78 18599.84 25
PHI-MVS99.30 5199.17 6099.70 5399.56 14399.52 7699.58 10399.80 897.12 22499.62 8399.73 13298.58 6799.90 10098.61 12999.91 1799.68 102
AdaColmapbinary99.01 10098.80 10899.66 5599.56 14399.54 7099.18 25599.70 1598.18 11499.35 15099.63 18196.32 14799.90 10097.48 23599.77 9299.55 139
COLMAP_ROBcopyleft97.56 698.86 11398.75 11499.17 14999.88 1198.53 18999.34 21699.59 4397.55 18398.70 26499.89 1995.83 16599.90 10098.10 17799.90 2499.08 199
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 16198.03 18099.31 12899.63 11898.56 18699.54 12696.75 36497.53 18799.73 4799.65 16991.25 30299.89 11098.62 12699.56 12399.48 158
tttt051798.42 15398.14 16599.28 13799.66 10798.38 20699.74 4296.85 36297.68 17199.79 2999.74 12691.39 29999.89 11098.83 10199.56 12399.57 137
test1299.75 4799.64 11599.61 6099.29 26299.21 18198.38 8299.89 11099.74 10099.74 77
Test_1112_low_res98.89 10898.66 12499.57 7799.69 9498.95 14899.03 28699.47 15996.98 23699.15 19399.23 29496.77 13399.89 11098.83 10198.78 18599.86 18
CNLPA99.14 7398.99 8399.59 7299.58 13799.41 8799.16 25799.44 18798.45 7999.19 18799.49 23098.08 9599.89 11097.73 21199.75 9799.48 158
APD_test195.87 30396.49 28894.00 33799.53 14984.01 36499.54 12699.32 25095.91 30997.99 31099.85 4185.49 34799.88 11591.96 34798.84 18098.12 332
diffmvspermissive99.14 7399.02 7899.51 9899.61 12898.96 14399.28 22999.49 12998.46 7899.72 5299.71 13796.50 14199.88 11599.31 4199.11 15799.67 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 11398.80 10899.03 16399.76 5598.79 16999.28 22999.91 397.42 19999.67 6399.37 26397.53 10799.88 11598.98 7397.29 25798.42 315
PVSNet_Blended99.08 9098.97 8799.42 11399.76 5598.79 16998.78 32499.91 396.74 25199.67 6399.49 23097.53 10799.88 11598.98 7399.85 5499.60 128
MVS97.28 27696.55 28699.48 10298.78 30798.95 14899.27 23499.39 20983.53 36498.08 30599.54 21496.97 12799.87 11994.23 32799.16 15199.63 122
MG-MVS99.13 7599.02 7899.45 10899.57 13998.63 18099.07 27599.34 23398.99 3299.61 8699.82 6297.98 9899.87 11997.00 26499.80 8299.85 21
MSDG98.98 10198.80 10899.53 9099.76 5599.19 10698.75 32799.55 6497.25 21299.47 11499.77 11297.82 10199.87 11996.93 27199.90 2499.54 141
ETV-MVS99.26 5899.21 5699.40 11599.46 17699.30 9699.56 11399.52 8898.52 7499.44 12299.27 28998.41 8199.86 12299.10 6299.59 12199.04 206
thisisatest051598.14 17997.79 20399.19 14799.50 16498.50 19698.61 33896.82 36396.95 24099.54 10299.43 24691.66 29499.86 12298.08 18299.51 12799.22 189
thres600view797.86 22197.51 23598.92 18199.72 8197.95 22799.59 9598.74 33097.94 14399.27 16798.62 33691.75 28899.86 12293.73 33298.19 21198.96 216
lupinMVS99.13 7599.01 8299.46 10799.51 15598.94 15199.05 28099.16 28297.86 14999.80 2799.56 20697.39 11099.86 12298.94 7799.85 5499.58 136
PVSNet96.02 1798.85 12098.84 10598.89 19099.73 7797.28 24998.32 35499.60 4097.86 14999.50 10999.57 20396.75 13499.86 12298.56 14199.70 10799.54 141
MAR-MVS98.86 11398.63 12799.54 8299.37 19899.66 5399.45 16799.54 7296.61 26399.01 21699.40 25597.09 12199.86 12297.68 21899.53 12699.10 194
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250696.81 28696.65 28497.29 31399.74 7092.21 35499.60 8985.06 38199.13 1199.77 3799.93 687.82 34099.85 12899.38 3199.38 13499.80 55
AllTest98.87 11098.72 11599.31 12899.86 2098.48 19999.56 11399.61 3597.85 15199.36 14799.85 4195.95 15899.85 12896.66 28499.83 7199.59 132
TestCases99.31 12899.86 2098.48 19999.61 3597.85 15199.36 14799.85 4195.95 15899.85 12896.66 28499.83 7199.59 132
jason99.13 7599.03 7599.45 10899.46 17698.87 15899.12 26599.26 26798.03 13899.79 2999.65 16997.02 12499.85 12899.02 7099.90 2499.65 112
jason: jason.
CNVR-MVS99.42 3499.30 4099.78 4399.62 12499.71 4499.26 24299.52 8898.82 5299.39 13899.71 13798.96 2499.85 12898.59 13499.80 8299.77 67
PAPM_NR99.04 9498.84 10599.66 5599.74 7099.44 8499.39 19799.38 21597.70 16999.28 16399.28 28698.34 8499.85 12896.96 26899.45 13099.69 98
test111198.04 19398.11 16997.83 29399.74 7093.82 34099.58 10395.40 37099.12 1399.65 7499.93 690.73 30799.84 13499.43 2999.38 13499.82 39
ECVR-MVScopyleft98.04 19398.05 17898.00 28399.74 7094.37 33599.59 9594.98 37199.13 1199.66 6899.93 690.67 30899.84 13499.40 3099.38 13499.80 55
test_yl98.86 11398.63 12799.54 8299.49 16699.18 10899.50 14499.07 29498.22 10599.61 8699.51 22495.37 18099.84 13498.60 13298.33 20199.59 132
DCV-MVSNet98.86 11398.63 12799.54 8299.49 16699.18 10899.50 14499.07 29498.22 10599.61 8699.51 22495.37 18099.84 13498.60 13298.33 20199.59 132
Fast-Effi-MVS+98.70 13598.43 14899.51 9899.51 15599.28 9899.52 13399.47 15996.11 30299.01 21699.34 27296.20 15199.84 13497.88 19498.82 18299.39 176
TSAR-MVS + GP.99.36 4599.36 2499.36 12099.67 9998.61 18399.07 27599.33 24099.00 3099.82 2399.81 7599.06 1699.84 13499.09 6399.42 13299.65 112
tpmrst98.33 16298.48 14697.90 28999.16 25294.78 32999.31 22199.11 28797.27 21099.45 11799.59 19595.33 18299.84 13498.48 14898.61 18899.09 198
Vis-MVSNetpermissive99.12 8198.97 8799.56 7999.78 4699.10 12199.68 5799.66 2698.49 7699.86 1599.87 3194.77 20699.84 13499.19 5499.41 13399.74 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 14498.34 15399.51 9899.40 19299.03 13198.80 32299.36 22496.33 28399.00 22099.12 30898.46 7699.84 13495.23 31499.37 14199.66 108
PatchMatch-RL98.84 12398.62 13299.52 9699.71 8699.28 9899.06 27899.77 997.74 16699.50 10999.53 21895.41 17899.84 13497.17 25799.64 11699.44 169
EPP-MVSNet99.13 7598.99 8399.53 9099.65 11399.06 12899.81 2099.33 24097.43 19799.60 8999.88 2597.14 11899.84 13499.13 5998.94 17199.69 98
thres100view90097.76 23797.45 24298.69 21999.72 8197.86 23299.59 9598.74 33097.93 14499.26 17198.62 33691.75 28899.83 14593.22 33798.18 21298.37 321
tfpn200view997.72 24697.38 25598.72 21799.69 9497.96 22599.50 14498.73 33597.83 15499.17 19198.45 34191.67 29299.83 14593.22 33798.18 21298.37 321
test_prior99.68 5499.67 9999.48 8099.56 5699.83 14599.74 77
131498.68 13998.54 14399.11 15598.89 29198.65 17899.27 23499.49 12996.89 24497.99 31099.56 20697.72 10599.83 14597.74 21099.27 14598.84 222
thres40097.77 23697.38 25598.92 18199.69 9497.96 22599.50 14498.73 33597.83 15499.17 19198.45 34191.67 29299.83 14593.22 33798.18 21298.96 216
casdiffmvspermissive99.13 7598.98 8699.56 7999.65 11399.16 11199.56 11399.50 12198.33 9399.41 13099.86 3695.92 16199.83 14599.45 2899.16 15199.70 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 1499.48 1099.54 8299.78 4699.30 9699.89 299.58 4898.56 7099.73 4799.69 15198.55 7099.82 15199.69 599.85 5499.48 158
MVS_Test99.10 8898.97 8799.48 10299.49 16699.14 11799.67 6099.34 23397.31 20799.58 9399.76 11897.65 10699.82 15198.87 8899.07 16399.46 166
dp97.75 24197.80 20297.59 30499.10 26293.71 34399.32 21998.88 31696.48 27599.08 20699.55 20992.67 26899.82 15196.52 28798.58 19199.24 188
RPSCF98.22 16998.62 13296.99 31999.82 3691.58 35699.72 4699.44 18796.61 26399.66 6899.89 1995.92 16199.82 15197.46 23899.10 16099.57 137
PMMVS98.80 12798.62 13299.34 12199.27 22498.70 17498.76 32699.31 25497.34 20499.21 18199.07 31097.20 11799.82 15198.56 14198.87 17799.52 147
EIA-MVS99.18 6699.09 6899.45 10899.49 16699.18 10899.67 6099.53 8397.66 17499.40 13599.44 24498.10 9499.81 15698.94 7799.62 11999.35 179
Effi-MVS+98.81 12498.59 13999.48 10299.46 17699.12 12098.08 36099.50 12197.50 19099.38 14199.41 25296.37 14699.81 15699.11 6198.54 19599.51 153
thres20097.61 26097.28 26998.62 22299.64 11598.03 21999.26 24298.74 33097.68 17199.09 20598.32 34591.66 29499.81 15692.88 34198.22 20798.03 337
tpmvs97.98 20498.02 18297.84 29299.04 27494.73 33099.31 22199.20 27796.10 30698.76 25499.42 24894.94 19299.81 15696.97 26798.45 19998.97 214
casdiffmvs_mvgpermissive99.15 7199.02 7899.55 8199.66 10799.09 12299.64 7299.56 5698.26 9999.45 11799.87 3196.03 15599.81 15699.54 1499.15 15499.73 82
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 12499.37 2297.12 31799.60 13391.75 35598.61 33899.44 18799.35 199.83 2299.85 4198.70 6099.81 15699.02 7099.91 1799.81 46
DPM-MVS98.95 10498.71 11799.66 5599.63 11899.55 6898.64 33799.10 28897.93 14499.42 12699.55 20998.67 6399.80 16295.80 30199.68 11199.61 126
DP-MVS Recon99.12 8198.95 9199.65 5999.74 7099.70 4699.27 23499.57 5196.40 28299.42 12699.68 15798.75 5499.80 16297.98 18899.72 10399.44 169
MVS_111021_LR99.41 3899.33 3099.65 5999.77 5299.51 7798.94 30899.85 698.82 5299.65 7499.74 12698.51 7399.80 16298.83 10199.89 3399.64 119
CS-MVS99.50 1299.48 1099.54 8299.76 5599.42 8599.90 199.55 6498.56 7099.78 3499.70 14198.65 6599.79 16599.65 899.78 8999.41 173
Fast-Effi-MVS+-dtu98.77 13098.83 10798.60 22399.41 18796.99 27099.52 13399.49 12998.11 12299.24 17399.34 27296.96 12899.79 16597.95 19099.45 13099.02 209
baseline198.31 16397.95 18999.38 11999.50 16498.74 17199.59 9598.93 30798.41 8399.14 19499.60 19394.59 21599.79 16598.48 14893.29 33199.61 126
baseline99.15 7199.02 7899.53 9099.66 10799.14 11799.72 4699.48 14198.35 9099.42 12699.84 5196.07 15399.79 16599.51 1899.14 15599.67 105
PVSNet_094.43 1996.09 30195.47 30697.94 28699.31 21494.34 33797.81 36299.70 1597.12 22497.46 32298.75 33389.71 31899.79 16597.69 21781.69 36499.68 102
API-MVS99.04 9499.03 7599.06 15999.40 19299.31 9599.55 12299.56 5698.54 7299.33 15499.39 25998.76 5199.78 17096.98 26699.78 8998.07 334
OMC-MVS99.08 9099.04 7399.20 14699.67 9998.22 21199.28 22999.52 8898.07 13099.66 6899.81 7597.79 10299.78 17097.79 20399.81 7899.60 128
GeoE98.85 12098.62 13299.53 9099.61 12899.08 12599.80 2499.51 10297.10 22899.31 15799.78 10595.23 18899.77 17298.21 16999.03 16699.75 73
alignmvs98.81 12498.56 14299.58 7599.43 18299.42 8599.51 13898.96 30598.61 6799.35 15098.92 32794.78 20399.77 17299.35 3498.11 21799.54 141
tpm cat197.39 27397.36 25797.50 30899.17 25093.73 34299.43 17699.31 25491.27 35198.71 25899.08 30994.31 22699.77 17296.41 29198.50 19799.00 210
CostFormer97.72 24697.73 21597.71 30099.15 25594.02 33999.54 12699.02 29894.67 32899.04 21399.35 26992.35 28099.77 17298.50 14797.94 22099.34 181
test_241102_ONE99.84 3099.90 299.48 14199.07 2299.91 699.74 12699.20 799.76 176
MDTV_nov1_ep1398.32 15599.11 25994.44 33499.27 23498.74 33097.51 18999.40 13599.62 18694.78 20399.76 17697.59 22298.81 184
canonicalmvs99.02 9798.86 10399.51 9899.42 18499.32 9299.80 2499.48 14198.63 6599.31 15798.81 33097.09 12199.75 17899.27 4997.90 22199.47 164
Effi-MVS+-dtu98.78 12898.89 9898.47 24399.33 20796.91 27699.57 10799.30 25898.47 7799.41 13098.99 31996.78 13299.74 17998.73 11299.38 13498.74 236
patchmatchnet-post98.70 33494.79 20299.74 179
SCA98.19 17398.16 16398.27 26699.30 21595.55 31199.07 27598.97 30397.57 18199.43 12399.57 20392.72 26399.74 17997.58 22399.20 14999.52 147
BH-untuned98.42 15398.36 15198.59 22499.49 16696.70 28299.27 23499.13 28697.24 21498.80 24999.38 26095.75 16899.74 17997.07 26299.16 15199.33 182
BH-RMVSNet98.41 15598.08 17499.40 11599.41 18798.83 16599.30 22398.77 32697.70 16998.94 22899.65 16992.91 25899.74 17996.52 28799.55 12599.64 119
MVS_111021_HR99.41 3899.32 3299.66 5599.72 8199.47 8198.95 30699.85 698.82 5299.54 10299.73 13298.51 7399.74 17998.91 8299.88 3699.77 67
test_post65.99 37594.65 21499.73 185
XVG-ACMP-BASELINE97.83 22797.71 21798.20 26899.11 25996.33 29699.41 18599.52 8898.06 13499.05 21299.50 22789.64 32099.73 18597.73 21197.38 25598.53 302
HyFIR lowres test99.11 8598.92 9399.65 5999.90 499.37 8999.02 28999.91 397.67 17399.59 9299.75 12195.90 16399.73 18599.53 1599.02 16899.86 18
DeepMVS_CXcopyleft93.34 34099.29 21982.27 36799.22 27385.15 36296.33 33999.05 31390.97 30599.73 18593.57 33497.77 22498.01 338
Patchmatch-test97.93 21097.65 22298.77 21499.18 24497.07 26199.03 28699.14 28596.16 29798.74 25599.57 20394.56 21799.72 18993.36 33699.11 15799.52 147
LPG-MVS_test98.22 16998.13 16798.49 23799.33 20797.05 26399.58 10399.55 6497.46 19199.24 17399.83 5592.58 27099.72 18998.09 17897.51 23998.68 255
LGP-MVS_train98.49 23799.33 20797.05 26399.55 6497.46 19199.24 17399.83 5592.58 27099.72 18998.09 17897.51 23998.68 255
BH-w/o98.00 20297.89 19898.32 25999.35 20196.20 30099.01 29498.90 31496.42 28098.38 29299.00 31895.26 18699.72 18996.06 29598.61 18899.03 207
ACMP97.20 1198.06 18797.94 19198.45 24599.37 19897.01 26899.44 17299.49 12997.54 18698.45 28899.79 9991.95 28499.72 18997.91 19297.49 24498.62 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25299.23 23296.80 28099.70 4999.60 4097.12 22498.18 30299.70 14191.73 29099.72 18998.39 15597.45 24798.68 255
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 24765.14 37694.18 23199.71 19597.58 223
ADS-MVSNet98.20 17298.08 17498.56 23199.33 20796.48 29199.23 24799.15 28396.24 29099.10 20299.67 16394.11 23299.71 19596.81 27699.05 16499.48 158
JIA-IIPM97.50 26797.02 27998.93 17998.73 31397.80 23499.30 22398.97 30391.73 35098.91 23294.86 36495.10 19099.71 19597.58 22397.98 21999.28 186
EPMVS97.82 23097.65 22298.35 25698.88 29295.98 30399.49 15494.71 37397.57 18199.26 17199.48 23592.46 27799.71 19597.87 19699.08 16299.35 179
TDRefinement95.42 30994.57 31597.97 28589.83 37496.11 30299.48 15898.75 32796.74 25196.68 33699.88 2588.65 32999.71 19598.37 15882.74 36398.09 333
ACMM97.58 598.37 16098.34 15398.48 23999.41 18797.10 25799.56 11399.45 17998.53 7399.04 21399.85 4193.00 25499.71 19598.74 11097.45 24798.64 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 20797.77 20898.57 22899.59 13596.61 28799.45 16799.08 29198.21 10798.88 23799.80 8888.66 32899.70 20198.58 13597.72 22599.39 176
CHOSEN 280x42099.12 8199.13 6399.08 15699.66 10797.89 22998.43 34899.71 1398.88 4699.62 8399.76 11896.63 13799.70 20199.46 2799.99 199.66 108
DROMVSNet99.44 2999.39 1999.58 7599.56 14399.49 7899.88 499.58 4898.38 8599.73 4799.69 15198.20 9099.70 20199.64 999.82 7599.54 141
PatchmatchNetpermissive98.31 16398.36 15198.19 26999.16 25295.32 31999.27 23498.92 30997.37 20399.37 14399.58 19994.90 19699.70 20197.43 24199.21 14899.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 18397.99 18498.44 24899.41 18796.96 27499.60 8999.56 5698.09 12598.15 30399.91 1190.87 30699.70 20198.88 8597.45 24798.67 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS98.27 16898.22 16198.44 24899.29 21996.97 27299.39 19799.47 15998.97 3899.11 19999.61 19092.71 26599.69 20697.78 20497.63 22798.67 262
plane_prior599.47 15999.69 20697.78 20497.63 22798.67 262
D2MVS98.41 15598.50 14598.15 27499.26 22696.62 28699.40 19399.61 3597.71 16898.98 22299.36 26696.04 15499.67 20898.70 11597.41 25298.15 331
IS-MVSNet99.05 9398.87 10099.57 7799.73 7799.32 9299.75 3999.20 27798.02 13999.56 9799.86 3696.54 14099.67 20898.09 17899.13 15699.73 82
CLD-MVS98.16 17798.10 17098.33 25799.29 21996.82 27998.75 32799.44 18797.83 15499.13 19599.55 20992.92 25699.67 20898.32 16497.69 22698.48 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 27797.30 26797.09 31899.43 18293.31 34899.73 4598.87 31898.83 5199.28 16399.80 8884.45 35199.66 21197.88 19497.45 24798.30 323
AUN-MVS96.88 28496.31 29198.59 22499.48 17497.04 26699.27 23499.22 27397.44 19698.51 28499.41 25291.97 28399.66 21197.71 21483.83 36199.07 204
UniMVSNet_ETH3D97.32 27596.81 28298.87 19699.40 19297.46 24599.51 13899.53 8395.86 31098.54 28399.77 11282.44 35799.66 21198.68 12097.52 23799.50 156
OPM-MVS98.19 17398.10 17098.45 24598.88 29297.07 26199.28 22999.38 21598.57 6999.22 17899.81 7592.12 28199.66 21198.08 18297.54 23698.61 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 21397.78 20698.32 25999.46 17696.68 28499.56 11399.54 7298.41 8397.79 31899.87 3190.18 31599.66 21198.05 18697.18 26298.62 285
hse-mvs297.50 26797.14 27598.59 22499.49 16697.05 26399.28 22999.22 27398.94 4199.66 6899.42 24894.93 19399.65 21699.48 2483.80 36299.08 199
VPA-MVSNet98.29 16697.95 18999.30 13299.16 25299.54 7099.50 14499.58 4898.27 9899.35 15099.37 26392.53 27299.65 21699.35 3494.46 31698.72 239
TR-MVS97.76 23797.41 25398.82 20799.06 27097.87 23098.87 31698.56 34196.63 26298.68 26699.22 29592.49 27399.65 21695.40 31197.79 22398.95 218
gm-plane-assit98.54 33292.96 35094.65 32999.15 30399.64 21997.56 228
HQP4-MVS98.66 26799.64 21998.64 274
HQP-MVS98.02 19797.90 19498.37 25599.19 24196.83 27798.98 29999.39 20998.24 10198.66 26799.40 25592.47 27499.64 21997.19 25497.58 23298.64 274
PAPM97.59 26197.09 27799.07 15899.06 27098.26 21098.30 35599.10 28894.88 32498.08 30599.34 27296.27 14999.64 21989.87 35498.92 17499.31 184
TAPA-MVS97.07 1597.74 24397.34 26298.94 17799.70 9197.53 24399.25 24499.51 10291.90 34999.30 15999.63 18198.78 4799.64 21988.09 36199.87 3999.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 15998.09 17399.24 14299.26 22699.32 9299.56 11399.55 6497.45 19498.71 25899.83 5593.23 25099.63 22498.88 8596.32 27798.76 231
ITE_SJBPF98.08 27699.29 21996.37 29498.92 30998.34 9198.83 24599.75 12191.09 30399.62 22595.82 29997.40 25398.25 327
LF4IMVS97.52 26497.46 24197.70 30198.98 28295.55 31199.29 22798.82 32298.07 13098.66 26799.64 17589.97 31699.61 22697.01 26396.68 26797.94 344
tpm97.67 25697.55 22998.03 27899.02 27695.01 32599.43 17698.54 34396.44 27899.12 19799.34 27291.83 28799.60 22797.75 20996.46 27399.48 158
tpm297.44 27297.34 26297.74 29999.15 25594.36 33699.45 16798.94 30693.45 34298.90 23499.44 24491.35 30099.59 22897.31 24598.07 21899.29 185
baseline297.87 21997.55 22998.82 20799.18 24498.02 22099.41 18596.58 36796.97 23796.51 33799.17 30093.43 24799.57 22997.71 21499.03 16698.86 220
MS-PatchMatch97.24 27997.32 26596.99 31998.45 33593.51 34798.82 32099.32 25097.41 20098.13 30499.30 28288.99 32499.56 23095.68 30599.80 8297.90 347
TinyColmap97.12 28196.89 28197.83 29399.07 26795.52 31498.57 34198.74 33097.58 18097.81 31799.79 9988.16 33599.56 23095.10 31597.21 26098.39 319
USDC97.34 27497.20 27397.75 29899.07 26795.20 32198.51 34599.04 29797.99 14098.31 29699.86 3689.02 32399.55 23295.67 30697.36 25698.49 305
MSLP-MVS++99.46 2399.47 1299.44 11299.60 13399.16 11199.41 18599.71 1398.98 3599.45 11799.78 10599.19 999.54 23399.28 4699.84 6299.63 122
TAMVS99.12 8199.08 6999.24 14299.46 17698.55 18799.51 13899.46 16898.09 12599.45 11799.82 6298.34 8499.51 23498.70 11598.93 17299.67 105
EPNet_dtu98.03 19597.96 18798.23 26798.27 33795.54 31399.23 24798.75 32799.02 2597.82 31699.71 13796.11 15299.48 23593.04 34099.65 11599.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 30295.69 30396.81 32597.78 34492.79 35199.16 25798.93 30796.16 29794.08 35399.22 29582.72 35599.47 23695.67 30697.50 24198.17 330
MVP-Stereo97.81 23297.75 21397.99 28497.53 34896.60 28898.96 30398.85 31997.22 21697.23 32799.36 26695.28 18399.46 23795.51 30899.78 8997.92 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 14598.67 12198.30 26199.35 20195.59 31099.50 14499.55 6498.60 6899.39 13899.83 5594.48 22099.45 23898.75 10998.56 19499.85 21
test-LLR98.06 18797.90 19498.55 23398.79 30497.10 25798.67 33397.75 35597.34 20498.61 27898.85 32894.45 22199.45 23897.25 24899.38 13499.10 194
TESTMET0.1,197.55 26297.27 27298.40 25298.93 28796.53 28998.67 33397.61 35896.96 23898.64 27499.28 28688.63 33099.45 23897.30 24699.38 13499.21 190
test-mter97.49 27097.13 27698.55 23398.79 30497.10 25798.67 33397.75 35596.65 25898.61 27898.85 32888.23 33499.45 23897.25 24899.38 13499.10 194
mvs_anonymous99.03 9698.99 8399.16 15099.38 19698.52 19399.51 13899.38 21597.79 15999.38 14199.81 7597.30 11499.45 23899.35 3498.99 16999.51 153
tfpnnormal97.84 22597.47 23998.98 17199.20 23999.22 10599.64 7299.61 3596.32 28498.27 29999.70 14193.35 24999.44 24395.69 30495.40 30098.27 325
v7n97.87 21997.52 23398.92 18198.76 31198.58 18599.84 1399.46 16896.20 29398.91 23299.70 14194.89 19799.44 24396.03 29693.89 32698.75 233
jajsoiax98.43 15298.28 15898.88 19298.60 32898.43 20399.82 1799.53 8398.19 11098.63 27599.80 8893.22 25299.44 24399.22 5297.50 24198.77 229
mvs_tets98.40 15898.23 16098.91 18598.67 32198.51 19599.66 6499.53 8398.19 11098.65 27399.81 7592.75 26099.44 24399.31 4197.48 24598.77 229
Vis-MVSNet (Re-imp)98.87 11098.72 11599.31 12899.71 8698.88 15799.80 2499.44 18797.91 14699.36 14799.78 10595.49 17799.43 24797.91 19299.11 15799.62 124
OPU-MVS99.64 6499.56 14399.72 4299.60 8999.70 14199.27 599.42 24898.24 16899.80 8299.79 59
Anonymous2023121197.88 21797.54 23298.90 18799.71 8698.53 18999.48 15899.57 5194.16 33398.81 24799.68 15793.23 25099.42 24898.84 9894.42 31898.76 231
MVS_030496.79 28796.52 28797.59 30499.22 23594.92 32899.04 28599.59 4396.49 27198.43 28998.99 31980.48 36099.39 25097.15 25899.27 14598.47 308
VPNet97.84 22597.44 24799.01 16599.21 23798.94 15199.48 15899.57 5198.38 8599.28 16399.73 13288.89 32599.39 25099.19 5493.27 33298.71 241
iter_conf_final98.71 13498.61 13898.99 16999.49 16698.96 14399.63 7699.41 19898.19 11099.39 13899.77 11294.82 19999.38 25299.30 4497.52 23798.64 274
nrg03098.64 14398.42 14999.28 13799.05 27399.69 4799.81 2099.46 16898.04 13699.01 21699.82 6296.69 13699.38 25299.34 3894.59 31598.78 226
iter_conf0598.55 14698.44 14798.87 19699.34 20598.60 18499.55 12299.42 19598.21 10799.37 14399.77 11293.55 24699.38 25299.30 4497.48 24598.63 282
GA-MVS97.85 22297.47 23999.00 16799.38 19697.99 22298.57 34199.15 28397.04 23398.90 23499.30 28289.83 31799.38 25296.70 28198.33 20199.62 124
UniMVSNet (Re)98.29 16698.00 18399.13 15499.00 27899.36 9099.49 15499.51 10297.95 14298.97 22499.13 30596.30 14899.38 25298.36 16093.34 33098.66 270
FIs98.78 12898.63 12799.23 14499.18 24499.54 7099.83 1699.59 4398.28 9698.79 25199.81 7596.75 13499.37 25799.08 6596.38 27598.78 226
PS-MVSNAJss98.92 10698.92 9398.90 18798.78 30798.53 18999.78 3199.54 7298.07 13099.00 22099.76 11899.01 1899.37 25799.13 5997.23 25998.81 223
CDS-MVSNet99.09 8999.03 7599.25 14099.42 18498.73 17299.45 16799.46 16898.11 12299.46 11699.77 11298.01 9799.37 25798.70 11598.92 17499.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 30695.16 31097.51 30799.30 21593.69 34498.88 31495.78 36885.09 36398.78 25292.65 36691.29 30199.37 25794.85 31999.85 5499.46 166
v119297.81 23297.44 24798.91 18598.88 29298.68 17599.51 13899.34 23396.18 29599.20 18499.34 27294.03 23599.36 26195.32 31395.18 30498.69 250
EI-MVSNet98.67 14098.67 12198.68 22099.35 20197.97 22399.50 14499.38 21596.93 24399.20 18499.83 5597.87 9999.36 26198.38 15697.56 23498.71 241
MVSTER98.49 14798.32 15599.00 16799.35 20199.02 13299.54 12699.38 21597.41 20099.20 18499.73 13293.86 24099.36 26198.87 8897.56 23498.62 285
gg-mvs-nofinetune96.17 29995.32 30998.73 21698.79 30498.14 21599.38 20294.09 37491.07 35498.07 30891.04 37089.62 32199.35 26496.75 27899.09 16198.68 255
pm-mvs197.68 25397.28 26998.88 19299.06 27098.62 18199.50 14499.45 17996.32 28497.87 31499.79 9992.47 27499.35 26497.54 23093.54 32998.67 262
OurMVSNet-221017-097.88 21797.77 20898.19 26998.71 31796.53 28999.88 499.00 30097.79 15998.78 25299.94 491.68 29199.35 26497.21 25096.99 26698.69 250
EGC-MVSNET82.80 33577.86 34197.62 30297.91 34196.12 30199.33 21899.28 2648.40 37825.05 37999.27 28984.11 35299.33 26789.20 35698.22 20797.42 355
pmmvs696.53 29196.09 29597.82 29598.69 31995.47 31599.37 20499.47 15993.46 34197.41 32399.78 10587.06 34299.33 26796.92 27392.70 33998.65 272
mvsmamba98.92 10698.87 10099.08 15699.07 26799.16 11199.88 499.51 10298.15 11699.40 13599.89 1997.12 11999.33 26799.38 3197.40 25398.73 238
V4298.06 18797.79 20398.86 20098.98 28298.84 16299.69 5199.34 23396.53 26999.30 15999.37 26394.67 21299.32 27097.57 22794.66 31398.42 315
lessismore_v097.79 29798.69 31995.44 31794.75 37295.71 34599.87 3188.69 32799.32 27095.89 29894.93 31198.62 285
OpenMVS_ROBcopyleft92.34 2094.38 31993.70 32396.41 33097.38 35093.17 34999.06 27898.75 32786.58 36194.84 35198.26 34681.53 35899.32 27089.01 35797.87 22296.76 358
bld_raw_dy_0_6498.69 13798.58 14098.99 16998.88 29298.96 14399.80 2499.41 19897.91 14699.32 15599.87 3195.70 17199.31 27399.09 6397.27 25898.71 241
v897.95 20997.63 22598.93 17998.95 28698.81 16899.80 2499.41 19896.03 30799.10 20299.42 24894.92 19599.30 27496.94 27094.08 32498.66 270
v192192097.80 23497.45 24298.84 20498.80 30398.53 18999.52 13399.34 23396.15 29999.24 17399.47 23893.98 23699.29 27595.40 31195.13 30698.69 250
anonymousdsp98.44 15198.28 15898.94 17798.50 33398.96 14399.77 3399.50 12197.07 23098.87 24099.77 11294.76 20799.28 27698.66 12297.60 23098.57 300
MVSFormer99.17 6899.12 6499.29 13599.51 15598.94 15199.88 499.46 16897.55 18399.80 2799.65 16997.39 11099.28 27699.03 6899.85 5499.65 112
test_djsdf98.67 14098.57 14198.98 17198.70 31898.91 15599.88 499.46 16897.55 18399.22 17899.88 2595.73 16999.28 27699.03 6897.62 22998.75 233
cascas97.69 25197.43 25198.48 23998.60 32897.30 24898.18 35999.39 20992.96 34598.41 29098.78 33293.77 24399.27 27998.16 17598.61 18898.86 220
v14419297.92 21397.60 22798.87 19698.83 30298.65 17899.55 12299.34 23396.20 29399.32 15599.40 25594.36 22399.26 28096.37 29295.03 30898.70 246
RRT_MVS98.70 13598.66 12498.83 20698.90 28998.45 20199.89 299.28 26497.76 16298.94 22899.92 1096.98 12699.25 28199.28 4697.00 26598.80 224
v2v48298.06 18797.77 20898.92 18198.90 28998.82 16699.57 10799.36 22496.65 25899.19 18799.35 26994.20 22899.25 28197.72 21394.97 30998.69 250
v124097.69 25197.32 26598.79 21298.85 30098.43 20399.48 15899.36 22496.11 30299.27 16799.36 26693.76 24499.24 28394.46 32395.23 30398.70 246
v114497.98 20497.69 21898.85 20398.87 29698.66 17799.54 12699.35 22996.27 28899.23 17799.35 26994.67 21299.23 28496.73 27995.16 30598.68 255
v1097.85 22297.52 23398.86 20098.99 27998.67 17699.75 3999.41 19895.70 31198.98 22299.41 25294.75 20899.23 28496.01 29794.63 31498.67 262
WR-MVS_H98.13 18097.87 19998.90 18799.02 27698.84 16299.70 4999.59 4397.27 21098.40 29199.19 29995.53 17599.23 28498.34 16193.78 32798.61 294
miper_enhance_ethall98.16 17798.08 17498.41 25098.96 28597.72 23798.45 34799.32 25096.95 24098.97 22499.17 30097.06 12399.22 28797.86 19795.99 28498.29 324
GG-mvs-BLEND98.45 24598.55 33198.16 21399.43 17693.68 37597.23 32798.46 34089.30 32299.22 28795.43 31098.22 20797.98 342
FC-MVSNet-test98.75 13198.62 13299.15 15399.08 26699.45 8399.86 1299.60 4098.23 10498.70 26499.82 6296.80 13199.22 28799.07 6696.38 27598.79 225
UniMVSNet_NR-MVSNet98.22 16997.97 18698.96 17498.92 28898.98 13699.48 15899.53 8397.76 16298.71 25899.46 24296.43 14599.22 28798.57 13892.87 33798.69 250
DU-MVS98.08 18697.79 20398.96 17498.87 29698.98 13699.41 18599.45 17997.87 14898.71 25899.50 22794.82 19999.22 28798.57 13892.87 33798.68 255
cl____98.01 20097.84 20198.55 23399.25 23097.97 22398.71 33199.34 23396.47 27798.59 28199.54 21495.65 17399.21 29297.21 25095.77 29098.46 312
WR-MVS98.06 18797.73 21599.06 15998.86 29999.25 10299.19 25499.35 22997.30 20898.66 26799.43 24693.94 23799.21 29298.58 13594.28 32098.71 241
test_040296.64 28996.24 29297.85 29198.85 30096.43 29399.44 17299.26 26793.52 33996.98 33499.52 22188.52 33199.20 29492.58 34697.50 24197.93 345
SixPastTwentyTwo97.50 26797.33 26498.03 27898.65 32296.23 29999.77 3398.68 33897.14 22197.90 31399.93 690.45 30999.18 29597.00 26496.43 27498.67 262
cl2297.85 22297.64 22498.48 23999.09 26497.87 23098.60 34099.33 24097.11 22798.87 24099.22 29592.38 27999.17 29698.21 16995.99 28498.42 315
IterMVS-SCA-FT97.82 23097.75 21398.06 27799.57 13996.36 29599.02 28999.49 12997.18 21898.71 25899.72 13692.72 26399.14 29797.44 24095.86 28998.67 262
pmmvs597.52 26497.30 26798.16 27198.57 33096.73 28199.27 23498.90 31496.14 30098.37 29399.53 21891.54 29799.14 29797.51 23295.87 28898.63 282
v14897.79 23597.55 22998.50 23698.74 31297.72 23799.54 12699.33 24096.26 28998.90 23499.51 22494.68 21199.14 29797.83 20093.15 33498.63 282
miper_ehance_all_eth98.18 17598.10 17098.41 25099.23 23297.72 23798.72 33099.31 25496.60 26598.88 23799.29 28497.29 11599.13 30097.60 22195.99 28498.38 320
NR-MVSNet97.97 20797.61 22699.02 16498.87 29699.26 10199.47 16399.42 19597.63 17697.08 33299.50 22795.07 19199.13 30097.86 19793.59 32898.68 255
IterMVS97.83 22797.77 20898.02 28099.58 13796.27 29899.02 28999.48 14197.22 21698.71 25899.70 14192.75 26099.13 30097.46 23896.00 28398.67 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 32094.90 31291.84 34497.24 35480.01 37098.52 34499.48 14189.01 35891.99 35999.67 16385.67 34699.13 30095.44 30997.03 26496.39 360
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 19297.96 18798.33 25799.26 22697.38 24798.56 34399.31 25496.65 25898.88 23799.52 22196.58 13899.12 30497.39 24395.53 29898.47 308
pmmvs498.13 18097.90 19498.81 20998.61 32798.87 15898.99 29699.21 27696.44 27899.06 21199.58 19995.90 16399.11 30597.18 25696.11 28198.46 312
TransMVSNet (Re)97.15 28096.58 28598.86 20099.12 25798.85 16199.49 15498.91 31295.48 31497.16 33099.80 8893.38 24899.11 30594.16 32991.73 34298.62 285
ambc93.06 34292.68 37082.36 36698.47 34698.73 33595.09 34997.41 35355.55 37199.10 30796.42 29091.32 34397.71 348
Baseline_NR-MVSNet97.76 23797.45 24298.68 22099.09 26498.29 20899.41 18598.85 31995.65 31298.63 27599.67 16394.82 19999.10 30798.07 18592.89 33698.64 274
test_vis3_rt87.04 33185.81 33490.73 34793.99 36981.96 36899.76 3690.23 38092.81 34681.35 36891.56 36840.06 37799.07 30994.27 32688.23 35591.15 368
CP-MVSNet98.09 18497.78 20699.01 16598.97 28499.24 10399.67 6099.46 16897.25 21298.48 28799.64 17593.79 24299.06 31098.63 12594.10 32398.74 236
PS-CasMVS97.93 21097.59 22898.95 17698.99 27999.06 12899.68 5799.52 8897.13 22298.31 29699.68 15792.44 27899.05 31198.51 14694.08 32498.75 233
K. test v397.10 28296.79 28398.01 28198.72 31596.33 29699.87 997.05 36197.59 17896.16 34199.80 8888.71 32699.04 31296.69 28296.55 27298.65 272
new_pmnet96.38 29596.03 29697.41 30998.13 34095.16 32499.05 28099.20 27793.94 33497.39 32498.79 33191.61 29699.04 31290.43 35295.77 29098.05 336
DIV-MVS_self_test98.01 20097.85 20098.48 23999.24 23197.95 22798.71 33199.35 22996.50 27098.60 28099.54 21495.72 17099.03 31497.21 25095.77 29098.46 312
IterMVS-LS98.46 15098.42 14998.58 22799.59 13598.00 22199.37 20499.43 19396.94 24299.07 20799.59 19597.87 9999.03 31498.32 16495.62 29598.71 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 25897.68 21997.55 30698.62 32594.97 32698.84 31899.30 25896.83 24998.19 30199.34 27297.01 12599.02 31695.00 31896.01 28298.64 274
Patchmtry97.75 24197.40 25498.81 20999.10 26298.87 15899.11 27199.33 24094.83 32598.81 24799.38 26094.33 22499.02 31696.10 29495.57 29698.53 302
N_pmnet94.95 31495.83 30192.31 34398.47 33479.33 37199.12 26592.81 37893.87 33597.68 31999.13 30593.87 23999.01 31891.38 34996.19 27998.59 298
CR-MVSNet98.17 17697.93 19298.87 19699.18 24498.49 19799.22 25199.33 24096.96 23899.56 9799.38 26094.33 22499.00 31994.83 32098.58 19199.14 191
c3_l98.12 18298.04 17998.38 25499.30 21597.69 24198.81 32199.33 24096.67 25698.83 24599.34 27297.11 12098.99 32097.58 22395.34 30198.48 306
test0.0.03 197.71 24997.42 25298.56 23198.41 33697.82 23398.78 32498.63 33997.34 20498.05 30998.98 32294.45 22198.98 32195.04 31797.15 26398.89 219
PatchT97.03 28396.44 28998.79 21298.99 27998.34 20799.16 25799.07 29492.13 34899.52 10697.31 35794.54 21998.98 32188.54 35998.73 18799.03 207
GBi-Net97.68 25397.48 23798.29 26299.51 15597.26 25299.43 17699.48 14196.49 27199.07 20799.32 27990.26 31198.98 32197.10 25996.65 26898.62 285
test197.68 25397.48 23798.29 26299.51 15597.26 25299.43 17699.48 14196.49 27199.07 20799.32 27990.26 31198.98 32197.10 25996.65 26898.62 285
FMVSNet398.03 19597.76 21298.84 20499.39 19598.98 13699.40 19399.38 21596.67 25699.07 20799.28 28692.93 25598.98 32197.10 25996.65 26898.56 301
FMVSNet297.72 24697.36 25798.80 21199.51 15598.84 16299.45 16799.42 19596.49 27198.86 24499.29 28490.26 31198.98 32196.44 28996.56 27198.58 299
FMVSNet196.84 28596.36 29098.29 26299.32 21397.26 25299.43 17699.48 14195.11 31998.55 28299.32 27983.95 35398.98 32195.81 30096.26 27898.62 285
ppachtmachnet_test97.49 27097.45 24297.61 30398.62 32595.24 32098.80 32299.46 16896.11 30298.22 30099.62 18696.45 14398.97 32893.77 33195.97 28798.61 294
TranMVSNet+NR-MVSNet97.93 21097.66 22198.76 21598.78 30798.62 18199.65 7099.49 12997.76 16298.49 28699.60 19394.23 22798.97 32898.00 18792.90 33598.70 246
test_method91.10 32791.36 32990.31 34895.85 36173.72 37894.89 36799.25 26968.39 37095.82 34499.02 31780.50 35998.95 33093.64 33394.89 31298.25 327
ADS-MVSNet298.02 19798.07 17797.87 29099.33 20795.19 32299.23 24799.08 29196.24 29099.10 20299.67 16394.11 23298.93 33196.81 27699.05 16499.48 158
ET-MVSNet_ETH3D96.49 29295.64 30599.05 16199.53 14998.82 16698.84 31897.51 35997.63 17684.77 36499.21 29892.09 28298.91 33298.98 7392.21 34199.41 173
miper_lstm_enhance98.00 20297.91 19398.28 26599.34 20597.43 24698.88 31499.36 22496.48 27598.80 24999.55 20995.98 15698.91 33297.27 24795.50 29998.51 304
PEN-MVS97.76 23797.44 24798.72 21798.77 31098.54 18899.78 3199.51 10297.06 23298.29 29899.64 17592.63 26998.89 33498.09 17893.16 33398.72 239
testgi97.65 25897.50 23698.13 27599.36 20096.45 29299.42 18399.48 14197.76 16297.87 31499.45 24391.09 30398.81 33594.53 32298.52 19699.13 193
testf190.42 32990.68 33189.65 34997.78 34473.97 37699.13 26398.81 32389.62 35691.80 36098.93 32562.23 36998.80 33686.61 36691.17 34496.19 361
APD_test290.42 32990.68 33189.65 34997.78 34473.97 37699.13 26398.81 32389.62 35691.80 36098.93 32562.23 36998.80 33686.61 36691.17 34496.19 361
MIMVSNet97.73 24497.45 24298.57 22899.45 18197.50 24499.02 28998.98 30296.11 30299.41 13099.14 30490.28 31098.74 33895.74 30298.93 17299.47 164
LCM-MVSNet-Re97.83 22798.15 16496.87 32499.30 21592.25 35399.59 9598.26 34697.43 19796.20 34099.13 30596.27 14998.73 33998.17 17498.99 16999.64 119
DTE-MVSNet97.51 26697.19 27498.46 24498.63 32498.13 21699.84 1399.48 14196.68 25597.97 31299.67 16392.92 25698.56 34096.88 27592.60 34098.70 246
PC_three_145298.18 11499.84 1799.70 14199.31 398.52 34198.30 16699.80 8299.81 46
mvsany_test393.77 32293.45 32494.74 33695.78 36288.01 36199.64 7298.25 34798.28 9694.31 35297.97 35068.89 36598.51 34297.50 23390.37 34997.71 348
UnsupCasMVSNet_bld93.53 32392.51 32696.58 32997.38 35093.82 34098.24 35699.48 14191.10 35393.10 35796.66 35974.89 36398.37 34394.03 33087.71 35697.56 353
Anonymous2024052196.20 29895.89 30097.13 31697.72 34794.96 32799.79 3099.29 26293.01 34497.20 32999.03 31589.69 31998.36 34491.16 35096.13 28098.07 334
test_f91.90 32691.26 33093.84 33895.52 36685.92 36399.69 5198.53 34495.31 31693.87 35496.37 36155.33 37298.27 34595.70 30390.98 34797.32 356
MDA-MVSNet_test_wron95.45 30894.60 31498.01 28198.16 33997.21 25599.11 27199.24 27193.49 34080.73 37098.98 32293.02 25398.18 34694.22 32894.45 31798.64 274
UnsupCasMVSNet_eth96.44 29396.12 29497.40 31098.65 32295.65 30899.36 20899.51 10297.13 22296.04 34398.99 31988.40 33298.17 34796.71 28090.27 35098.40 318
KD-MVS_2432*160094.62 31593.72 32197.31 31197.19 35695.82 30698.34 35199.20 27795.00 32297.57 32098.35 34387.95 33798.10 34892.87 34277.00 36898.01 338
miper_refine_blended94.62 31593.72 32197.31 31197.19 35695.82 30698.34 35199.20 27795.00 32297.57 32098.35 34387.95 33798.10 34892.87 34277.00 36898.01 338
YYNet195.36 31094.51 31697.92 28797.89 34297.10 25799.10 27399.23 27293.26 34380.77 36999.04 31492.81 25998.02 35094.30 32494.18 32298.64 274
EU-MVSNet97.98 20498.03 18097.81 29698.72 31596.65 28599.66 6499.66 2698.09 12598.35 29499.82 6295.25 18798.01 35197.41 24295.30 30298.78 226
Gipumacopyleft90.99 32890.15 33393.51 33998.73 31390.12 35993.98 36899.45 17979.32 36692.28 35894.91 36369.61 36497.98 35287.42 36295.67 29492.45 366
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 31194.73 31397.15 31495.53 36595.94 30499.35 21399.10 28895.13 31793.55 35597.54 35288.15 33697.91 35394.58 32189.69 35397.61 351
PM-MVS92.96 32492.23 32795.14 33595.61 36389.98 36099.37 20498.21 34994.80 32695.04 35097.69 35165.06 36697.90 35494.30 32489.98 35297.54 354
MDA-MVSNet-bldmvs94.96 31393.98 31997.92 28798.24 33897.27 25099.15 26099.33 24093.80 33680.09 37199.03 31588.31 33397.86 35593.49 33594.36 31998.62 285
Patchmatch-RL test95.84 30495.81 30295.95 33395.61 36390.57 35898.24 35698.39 34595.10 32195.20 34798.67 33594.78 20397.77 35696.28 29390.02 35199.51 153
Anonymous2023120696.22 29696.03 29696.79 32697.31 35394.14 33899.63 7699.08 29196.17 29697.04 33399.06 31293.94 23797.76 35786.96 36495.06 30798.47 308
SD-MVS99.41 3899.52 699.05 16199.74 7099.68 4899.46 16699.52 8899.11 1499.88 1099.91 1199.43 197.70 35898.72 11399.93 1299.77 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 27797.35 25996.95 32297.84 34393.61 34699.57 10796.63 36696.13 30198.87 24098.61 33894.59 21597.70 35895.08 31698.86 17899.55 139
pmmvs394.09 32193.25 32596.60 32894.76 36894.49 33398.92 31098.18 35189.66 35596.48 33898.06 34986.28 34397.33 36089.68 35587.20 35797.97 343
KD-MVS_self_test95.00 31294.34 31796.96 32197.07 35895.39 31899.56 11399.44 18795.11 31997.13 33197.32 35691.86 28697.27 36190.35 35381.23 36598.23 329
FMVSNet596.43 29496.19 29397.15 31499.11 25995.89 30599.32 21999.52 8894.47 33298.34 29599.07 31087.54 34197.07 36292.61 34595.72 29398.47 308
new-patchmatchnet94.48 31894.08 31895.67 33495.08 36792.41 35299.18 25599.28 26494.55 33193.49 35697.37 35587.86 33997.01 36391.57 34888.36 35497.61 351
LCM-MVSNet86.80 33385.22 33791.53 34587.81 37580.96 36998.23 35898.99 30171.05 36890.13 36396.51 36048.45 37696.88 36490.51 35185.30 35996.76 358
CL-MVSNet_self_test94.49 31793.97 32096.08 33296.16 36093.67 34598.33 35399.38 21595.13 31797.33 32598.15 34792.69 26796.57 36588.67 35879.87 36697.99 341
MIMVSNet195.51 30795.04 31196.92 32397.38 35095.60 30999.52 13399.50 12193.65 33896.97 33599.17 30085.28 34996.56 36688.36 36095.55 29798.60 297
test20.0396.12 30095.96 29896.63 32797.44 34995.45 31699.51 13899.38 21596.55 26896.16 34199.25 29293.76 24496.17 36787.35 36394.22 32198.27 325
tmp_tt82.80 33581.52 33886.66 35166.61 38168.44 37992.79 37097.92 35368.96 36980.04 37299.85 4185.77 34596.15 36897.86 19743.89 37495.39 364
test_fmvs392.10 32591.77 32893.08 34196.19 35986.25 36299.82 1798.62 34096.65 25895.19 34896.90 35855.05 37395.93 36996.63 28690.92 34897.06 357
PMMVS286.87 33285.37 33691.35 34690.21 37383.80 36598.89 31397.45 36083.13 36591.67 36295.03 36248.49 37594.70 37085.86 36877.62 36795.54 363
PMVScopyleft70.75 2275.98 34174.97 34279.01 35770.98 38055.18 38193.37 36998.21 34965.08 37461.78 37593.83 36521.74 38292.53 37178.59 37091.12 34689.34 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 33485.65 33582.75 35586.77 37663.39 38098.35 35098.92 30974.11 36783.39 36698.98 32250.85 37492.40 37284.54 36994.97 30992.46 365
MVEpermissive76.82 2176.91 34074.31 34484.70 35285.38 37876.05 37596.88 36693.17 37667.39 37171.28 37389.01 37221.66 38387.69 37371.74 37272.29 37090.35 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 33779.88 33982.81 35490.75 37276.38 37497.69 36395.76 36966.44 37283.52 36592.25 36762.54 36887.16 37468.53 37361.40 37184.89 372
EMVS80.02 33879.22 34082.43 35691.19 37176.40 37397.55 36592.49 37966.36 37383.01 36791.27 36964.63 36785.79 37565.82 37460.65 37285.08 371
ANet_high77.30 33974.86 34384.62 35375.88 37977.61 37297.63 36493.15 37788.81 35964.27 37489.29 37136.51 37883.93 37675.89 37152.31 37392.33 367
wuyk23d40.18 34241.29 34736.84 35886.18 37749.12 38279.73 37122.81 38327.64 37525.46 37828.45 37821.98 38148.89 37755.80 37523.56 37712.51 375
test12339.01 34442.50 34628.53 35939.17 38220.91 38398.75 32719.17 38419.83 37738.57 37666.67 37433.16 37915.42 37837.50 37729.66 37649.26 373
testmvs39.17 34343.78 34525.37 36036.04 38316.84 38498.36 34926.56 38220.06 37638.51 37767.32 37329.64 38015.30 37937.59 37639.90 37543.98 374
test_blank0.13 3480.17 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3801.57 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k24.64 34532.85 3480.00 3610.00 3840.00 3850.00 37299.51 1020.00 3790.00 38099.56 20696.58 1380.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas8.27 34711.03 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 38099.01 180.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.30 34611.06 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.58 1990.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.91 199.93 199.87 999.56 5699.10 1599.81 24
test_one_060199.81 4099.88 899.49 12998.97 3899.65 7499.81 7599.09 14
eth-test20.00 384
eth-test0.00 384
RE-MVS-def99.34 2899.76 5599.82 2299.63 7699.52 8898.38 8599.76 4299.82 6298.75 5498.61 12999.81 7899.77 67
IU-MVS99.84 3099.88 899.32 25098.30 9599.84 1798.86 9399.85 5499.89 5
save fliter99.76 5599.59 6299.14 26299.40 20699.00 30
test072699.85 2499.89 499.62 8299.50 12199.10 1599.86 1599.82 6298.94 29
GSMVS99.52 147
test_part299.81 4099.83 1699.77 37
sam_mvs194.86 19899.52 147
sam_mvs94.72 210
MTGPAbinary99.47 159
MTMP99.54 12698.88 316
test9_res97.49 23499.72 10399.75 73
agg_prior297.21 25099.73 10299.75 73
test_prior499.56 6698.99 296
test_prior298.96 30398.34 9199.01 21699.52 22198.68 6197.96 18999.74 100
新几何299.01 294
旧先验199.74 7099.59 6299.54 7299.69 15198.47 7599.68 11199.73 82
原ACMM298.95 306
test22299.75 6399.49 7898.91 31299.49 12996.42 28099.34 15399.65 16998.28 8799.69 10899.72 88
segment_acmp98.96 24
testdata198.85 31798.32 94
plane_prior799.29 21997.03 267
plane_prior699.27 22496.98 27192.71 265
plane_prior499.61 190
plane_prior397.00 26998.69 6399.11 199
plane_prior299.39 19798.97 38
plane_prior199.26 226
plane_prior96.97 27299.21 25398.45 7997.60 230
n20.00 385
nn0.00 385
door-mid98.05 352
test1199.35 229
door97.92 353
HQP5-MVS96.83 277
HQP-NCC99.19 24198.98 29998.24 10198.66 267
ACMP_Plane99.19 24198.98 29998.24 10198.66 267
BP-MVS97.19 254
HQP3-MVS99.39 20997.58 232
HQP2-MVS92.47 274
NP-MVS99.23 23296.92 27599.40 255
MDTV_nov1_ep13_2view95.18 32399.35 21396.84 24799.58 9395.19 18997.82 20199.46 166
ACMMP++_ref97.19 261
ACMMP++97.43 251
Test By Simon98.75 54