This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 5899.38 22199.37 10599.58 11499.62 4199.41 999.87 2999.92 1498.81 47100.00 199.97 199.93 2599.94 11
test_fmvsm_n_192099.69 499.66 399.78 5599.84 3299.44 9999.58 11499.69 1899.43 799.98 699.91 2098.62 73100.00 199.97 199.95 1799.90 16
test_vis1_n_192098.63 16698.40 17399.31 15299.86 2097.94 25299.67 6999.62 4199.43 799.99 299.91 2087.29 375100.00 199.92 1199.92 2799.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3199.86 2099.61 7099.56 12799.63 3999.48 399.98 699.83 7298.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3199.84 3299.63 6799.56 12799.63 3999.47 499.98 699.82 8198.75 5899.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1499.80 5299.66 5699.48 18599.64 3699.45 599.92 1699.92 1498.62 7399.99 499.96 699.99 199.96 7
patch_mono-299.26 7499.62 598.16 30499.81 4694.59 37199.52 15499.64 3699.33 1399.73 6899.90 2799.00 2299.99 499.69 2199.98 499.89 19
h-mvs3397.70 27797.28 29898.97 19999.70 10497.27 27999.36 23999.45 20198.94 5799.66 9099.64 19694.93 21199.99 499.48 4584.36 40499.65 132
xiu_mvs_v1_base_debu99.29 6899.27 6399.34 14599.63 13598.97 15999.12 30699.51 11998.86 6399.84 3599.47 26198.18 10099.99 499.50 4099.31 16499.08 241
xiu_mvs_v1_base99.29 6899.27 6399.34 14599.63 13598.97 15999.12 30699.51 11998.86 6399.84 3599.47 26198.18 10099.99 499.50 4099.31 16499.08 241
xiu_mvs_v1_base_debi99.29 6899.27 6399.34 14599.63 13598.97 15999.12 30699.51 11998.86 6399.84 3599.47 26198.18 10099.99 499.50 4099.31 16499.08 241
EPNet98.86 13798.71 14199.30 15797.20 39698.18 23499.62 9398.91 34499.28 1698.63 30499.81 9595.96 17599.99 499.24 7099.72 12499.73 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.40 5499.28 6099.74 6499.67 11499.31 11499.52 15498.87 35199.55 199.74 6699.80 10896.47 15899.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 8899.01 10099.61 8999.81 4698.86 17999.65 8099.64 3699.39 1099.97 1399.94 693.20 27999.98 1399.55 3399.91 3499.99 1
test_vis1_n97.92 23797.44 27599.34 14599.53 16898.08 24099.74 4699.49 14999.15 20100.00 199.94 679.51 40599.98 1399.88 1399.76 11699.97 4
xiu_mvs_v2_base99.26 7499.25 6799.29 16099.53 16898.91 17399.02 32999.45 20198.80 7299.71 7599.26 31898.94 3299.98 1399.34 5899.23 16998.98 255
PS-MVSNAJ99.32 6499.32 4699.30 15799.57 15698.94 16998.97 34399.46 19098.92 6099.71 7599.24 32099.01 1899.98 1399.35 5499.66 13498.97 256
QAPM98.67 16298.30 18099.80 4999.20 26899.67 5499.77 3499.72 1194.74 36898.73 28499.90 2795.78 18599.98 1396.96 30199.88 5799.76 90
3Dnovator97.25 999.24 7999.05 8899.81 4799.12 29099.66 5699.84 1299.74 1099.09 3598.92 25999.90 2795.94 17899.98 1398.95 9999.92 2799.79 77
OpenMVScopyleft96.50 1698.47 17198.12 19299.52 11699.04 30899.53 8699.82 1699.72 1194.56 37198.08 33899.88 3994.73 22799.98 1397.47 26999.76 11699.06 247
reproduce_model99.63 799.54 1199.90 499.78 5699.88 899.56 12799.55 7899.15 2099.90 1999.90 2799.00 2299.97 2199.11 8199.91 3499.86 32
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2499.44 20399.65 6099.50 17099.61 4899.45 599.87 2999.92 1497.31 12699.97 2199.95 799.99 199.97 4
test_fmvs1_n98.41 17798.14 18999.21 17299.82 4297.71 26599.74 4699.49 14999.32 1499.99 299.95 385.32 38699.97 2199.82 1699.84 8399.96 7
CANet_DTU98.97 12798.87 12299.25 16799.33 23398.42 22699.08 31599.30 28399.16 1999.43 15099.75 14295.27 20299.97 2198.56 16699.95 1799.36 215
MVS_030499.15 9098.96 11099.73 6798.92 32599.37 10599.37 23496.92 40299.51 299.66 9099.78 12796.69 14999.97 2199.84 1599.97 799.84 42
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7499.47 18198.79 7399.68 8199.81 9598.43 8699.97 2198.88 10999.90 4399.83 52
PGM-MVS99.45 3899.31 5299.86 2499.87 1599.78 3999.58 11499.65 3397.84 18299.71 7599.80 10899.12 1399.97 2198.33 18999.87 6099.83 52
mPP-MVS99.44 4299.30 5499.86 2499.88 1199.79 3399.69 6099.48 16198.12 14599.50 13599.75 14298.78 5199.97 2198.57 16399.89 5499.83 52
CP-MVS99.45 3899.32 4699.85 3199.83 3999.75 4299.69 6099.52 10598.07 15599.53 13099.63 20298.93 3699.97 2198.74 13499.91 3499.83 52
SteuartSystems-ACMMP99.54 1899.42 2599.87 1499.82 4299.81 2899.59 10699.51 11998.62 8899.79 4899.83 7299.28 499.97 2198.48 17399.90 4399.84 42
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 8498.97 10699.82 4499.17 28299.68 5199.81 2099.51 11999.20 1898.72 28599.89 3295.68 18999.97 2198.86 11799.86 6899.81 64
reproduce-ours99.61 899.52 1299.90 499.76 6699.88 899.52 15499.54 8799.13 2399.89 2199.89 3298.96 2599.96 3299.04 8999.90 4399.85 36
our_new_method99.61 899.52 1299.90 499.76 6699.88 899.52 15499.54 8799.13 2399.89 2199.89 3298.96 2599.96 3299.04 8999.90 4399.85 36
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3199.83 3999.64 6699.52 15499.65 3399.10 3099.98 699.92 1497.35 12599.96 3299.94 999.92 2799.95 9
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3199.84 3299.65 6099.51 16399.67 2399.13 2399.98 699.92 1496.60 15299.96 3299.95 799.96 1299.95 9
mvsany_test199.50 2399.46 2399.62 8899.61 14599.09 14298.94 34999.48 16199.10 3099.96 1499.91 2098.85 4299.96 3299.72 1999.58 14499.82 57
test_fmvs198.88 13398.79 13499.16 17799.69 10897.61 26999.55 14199.49 14999.32 1499.98 699.91 2091.41 32799.96 3299.82 1699.92 2799.90 16
DVP-MVS++99.59 1199.50 1699.88 899.51 17599.88 899.87 899.51 11998.99 4899.88 2499.81 9599.27 599.96 3298.85 11999.80 10399.81 64
MSC_two_6792asdad99.87 1499.51 17599.76 4099.33 26599.96 3298.87 11299.84 8399.89 19
No_MVS99.87 1499.51 17599.76 4099.33 26599.96 3298.87 11299.84 8399.89 19
ZD-MVS99.71 9999.79 3399.61 4896.84 28699.56 12399.54 23698.58 7599.96 3296.93 30499.75 118
SED-MVS99.61 899.52 1299.88 899.84 3299.90 299.60 10099.48 16199.08 3699.91 1799.81 9599.20 799.96 3298.91 10699.85 7599.79 77
test_241102_TWO99.48 16199.08 3699.88 2499.81 9598.94 3299.96 3298.91 10699.84 8399.88 25
ZNCC-MVS99.47 3299.33 4499.87 1499.87 1599.81 2899.64 8399.67 2398.08 15499.55 12799.64 19698.91 3799.96 3298.72 13799.90 4399.82 57
DVP-MVScopyleft99.57 1599.47 2099.88 899.85 2699.89 499.57 12199.37 24599.10 3099.81 4299.80 10898.94 3299.96 3298.93 10399.86 6899.81 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4899.81 4299.80 10899.09 1499.96 3298.85 11999.90 4399.88 25
test_0728_SECOND99.91 299.84 3299.89 499.57 12199.51 11999.96 3298.93 10399.86 6899.88 25
SR-MVS99.43 4599.29 5899.86 2499.75 7699.83 1999.59 10699.62 4198.21 13299.73 6899.79 12098.68 6799.96 3298.44 17999.77 11399.79 77
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5699.88 899.36 23999.51 11998.73 8099.88 2499.84 6798.72 6499.96 3298.16 20399.87 6099.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net99.42 4799.29 5899.80 4999.62 14199.55 8199.50 17099.70 1598.79 7399.77 5799.96 197.45 12099.96 3298.92 10599.90 4399.89 19
HFP-MVS99.49 2599.37 3699.86 2499.87 1599.80 3099.66 7499.67 2398.15 13999.68 8199.69 17299.06 1699.96 3298.69 14299.87 6099.84 42
region2R99.48 2999.35 4099.87 1499.88 1199.80 3099.65 8099.66 2898.13 14499.66 9099.68 17898.96 2599.96 3298.62 15199.87 6099.84 42
HPM-MVS++copyleft99.39 5699.23 7099.87 1499.75 7699.84 1899.43 20599.51 11998.68 8599.27 19299.53 24098.64 7299.96 3298.44 17999.80 10399.79 77
APDe-MVScopyleft99.66 599.57 899.92 199.77 6399.89 499.75 4299.56 7099.02 4199.88 2499.85 5799.18 1099.96 3299.22 7199.92 2799.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2599.36 3899.86 2499.87 1599.79 3399.66 7499.67 2398.15 13999.67 8599.69 17298.95 3099.96 3298.69 14299.87 6099.84 42
MP-MVScopyleft99.33 6299.15 7699.87 1499.88 1199.82 2599.66 7499.46 19098.09 15099.48 13999.74 14798.29 9599.96 3297.93 22199.87 6099.82 57
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 10598.90 11799.74 6499.80 5299.46 9799.59 10699.49 14997.03 27399.63 10599.69 17297.27 12999.96 3297.82 23299.84 8399.81 64
PVSNet_Blended_VisFu99.36 5999.28 6099.61 8999.86 2099.07 14799.47 19199.93 297.66 20599.71 7599.86 5297.73 11599.96 3299.47 4799.82 9699.79 77
UGNet98.87 13498.69 14399.40 13799.22 26598.72 19399.44 20199.68 2099.24 1799.18 21699.42 27292.74 28999.96 3299.34 5899.94 2399.53 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 6499.32 4699.32 15199.85 2698.29 22999.71 5599.66 2898.11 14799.41 15799.80 10898.37 9299.96 3298.99 9599.96 1299.72 106
ACMMPcopyleft99.45 3899.32 4699.82 4499.89 899.67 5499.62 9399.69 1898.12 14599.63 10599.84 6798.73 6399.96 3298.55 16999.83 9299.81 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 8199.03 9299.79 5298.42 37699.48 9499.55 14199.51 11999.39 1099.78 5399.93 994.80 21999.95 6299.93 1099.95 1799.94 11
SR-MVS-dyc-post99.45 3899.31 5299.85 3199.76 6699.82 2599.63 8899.52 10598.38 10999.76 6299.82 8198.53 7999.95 6298.61 15499.81 9999.77 85
GST-MVS99.40 5499.24 6899.85 3199.86 2099.79 3399.60 10099.67 2397.97 16799.63 10599.68 17898.52 8099.95 6298.38 18299.86 6899.81 64
CANet99.25 7899.14 7799.59 9299.41 21199.16 13299.35 24499.57 6598.82 6899.51 13499.61 21196.46 15999.95 6299.59 2899.98 499.65 132
MP-MVS-pluss99.37 5899.20 7299.88 899.90 499.87 1599.30 25599.52 10597.18 25599.60 11599.79 12098.79 5099.95 6298.83 12599.91 3499.83 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4799.27 6399.88 899.89 899.80 3099.67 6999.50 13998.70 8299.77 5799.49 25398.21 9899.95 6298.46 17799.77 11399.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 6296.67 316
APD-MVS_3200maxsize99.48 2999.35 4099.85 3199.76 6699.83 1999.63 8899.54 8798.36 11399.79 4899.82 8198.86 4199.95 6298.62 15199.81 9999.78 83
RPMNet96.72 32595.90 33899.19 17499.18 27498.49 21899.22 28999.52 10588.72 40499.56 12397.38 39894.08 25799.95 6286.87 40698.58 21599.14 233
sss99.17 8699.05 8899.53 11099.62 14198.97 15999.36 23999.62 4197.83 18399.67 8599.65 19097.37 12499.95 6299.19 7399.19 17299.68 122
MVSMamba_PlusPlus99.46 3499.41 2999.64 8299.68 11299.50 9199.75 4299.50 13998.27 12299.87 2999.92 1498.09 10499.94 7299.65 2599.95 1799.47 192
fmvsm_s_conf0.1_n_a99.26 7499.06 8799.85 3199.52 17299.62 6899.54 14599.62 4198.69 8399.99 299.96 194.47 24399.94 7299.88 1399.92 2799.98 2
fmvsm_s_conf0.1_n99.29 6899.10 8199.86 2499.70 10499.65 6099.53 15399.62 4198.74 7999.99 299.95 394.53 24199.94 7299.89 1299.96 1299.97 4
TSAR-MVS + MP.99.58 1299.50 1699.81 4799.91 199.66 5699.63 8899.39 22998.91 6199.78 5399.85 5799.36 299.94 7298.84 12299.88 5799.82 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RRT-MVS98.91 13198.75 13799.39 14199.46 19698.61 20499.76 3799.50 13998.06 15999.81 4299.88 3993.91 26499.94 7299.11 8199.27 16799.61 147
mamv499.33 6299.42 2599.07 18599.67 11497.73 26099.42 21299.60 5498.15 13999.94 1599.91 2098.42 8899.94 7299.72 1999.96 1299.54 166
XVS99.53 1999.42 2599.87 1499.85 2699.83 1999.69 6099.68 2098.98 5199.37 16899.74 14798.81 4799.94 7298.79 13099.86 6899.84 42
X-MVStestdata96.55 32895.45 34799.87 1499.85 2699.83 1999.69 6099.68 2098.98 5199.37 16864.01 42198.81 4799.94 7298.79 13099.86 6899.84 42
旧先验298.96 34496.70 29399.47 14099.94 7298.19 199
新几何199.75 6199.75 7699.59 7399.54 8796.76 28999.29 18699.64 19698.43 8699.94 7296.92 30699.66 13499.72 106
testdata99.54 10299.75 7698.95 16699.51 11997.07 26799.43 15099.70 16298.87 4099.94 7297.76 23999.64 13799.72 106
HPM-MVScopyleft99.42 4799.28 6099.83 4399.90 499.72 4599.81 2099.54 8797.59 21099.68 8199.63 20298.91 3799.94 7298.58 16099.91 3499.84 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 8299.10 8199.45 13099.89 898.52 21499.39 22799.94 198.73 8099.11 22599.89 3295.50 19499.94 7299.50 4099.97 799.89 19
APD-MVScopyleft99.27 7299.08 8599.84 4299.75 7699.79 3399.50 17099.50 13997.16 25799.77 5799.82 8198.78 5199.94 7297.56 26099.86 6899.80 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2999.42 2599.65 7799.72 9499.40 10499.05 32199.66 2899.14 2299.57 12299.80 10898.46 8499.94 7299.57 3199.84 8399.60 150
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 11398.88 12199.61 8999.62 14199.16 13299.37 23499.56 7098.04 16299.53 13099.62 20796.84 14399.94 7298.85 11998.49 22399.72 106
DeepC-MVS98.35 299.30 6699.19 7399.64 8299.82 4299.23 12599.62 9399.55 7898.94 5799.63 10599.95 395.82 18499.94 7299.37 5399.97 799.73 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 7299.12 7999.74 6499.18 27499.75 4299.56 12799.57 6598.45 10299.49 13899.85 5797.77 11499.94 7298.33 18999.84 8399.52 173
SDMVSNet99.11 10598.90 11799.75 6199.81 4699.59 7399.81 2099.65 3398.78 7699.64 10299.88 3994.56 23799.93 9099.67 2398.26 23599.72 106
FE-MVS98.48 17098.17 18599.40 13799.54 16798.96 16399.68 6698.81 35895.54 35299.62 10999.70 16293.82 26799.93 9097.35 27899.46 15199.32 221
SF-MVS99.38 5799.24 6899.79 5299.79 5499.68 5199.57 12199.54 8797.82 18799.71 7599.80 10898.95 3099.93 9098.19 19999.84 8399.74 95
dcpmvs_299.23 8099.58 798.16 30499.83 3994.68 36999.76 3799.52 10599.07 3899.98 699.88 3998.56 7799.93 9099.67 2399.98 499.87 30
Anonymous2024052998.09 20797.68 24399.34 14599.66 12498.44 22399.40 22399.43 21593.67 37899.22 20399.89 3290.23 34399.93 9099.26 6998.33 22999.66 128
ACMMP_NAP99.47 3299.34 4299.88 899.87 1599.86 1699.47 19199.48 16198.05 16199.76 6299.86 5298.82 4699.93 9098.82 12999.91 3499.84 42
EI-MVSNet-UG-set99.58 1299.57 899.64 8299.78 5699.14 13799.60 10099.45 20199.01 4399.90 1999.83 7298.98 2499.93 9099.59 2899.95 1799.86 32
无先验98.99 33799.51 11996.89 28399.93 9097.53 26399.72 106
VDDNet97.55 29197.02 31099.16 17799.49 18698.12 23999.38 23299.30 28395.35 35499.68 8199.90 2782.62 39899.93 9099.31 6198.13 24699.42 204
ab-mvs98.86 13798.63 15099.54 10299.64 13299.19 12799.44 20199.54 8797.77 19199.30 18399.81 9594.20 25199.93 9099.17 7798.82 20499.49 185
F-COLMAP99.19 8299.04 9099.64 8299.78 5699.27 12099.42 21299.54 8797.29 24699.41 15799.59 21698.42 8899.93 9098.19 19999.69 12999.73 100
Anonymous20240521198.30 18897.98 20999.26 16699.57 15698.16 23599.41 21598.55 38096.03 34699.19 21299.74 14791.87 31499.92 10199.16 7898.29 23499.70 116
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8299.78 5699.15 13699.61 9999.45 20199.01 4399.89 2199.82 8199.01 1899.92 10199.56 3299.95 1799.85 36
VDD-MVS97.73 27197.35 28798.88 21999.47 19497.12 28799.34 24798.85 35398.19 13499.67 8599.85 5782.98 39699.92 10199.49 4498.32 23399.60 150
VNet99.11 10598.90 11799.73 6799.52 17299.56 7999.41 21599.39 22999.01 4399.74 6699.78 12795.56 19299.92 10199.52 3898.18 24299.72 106
XVG-OURS-SEG-HR98.69 16098.62 15598.89 21799.71 9997.74 25999.12 30699.54 8798.44 10599.42 15399.71 15894.20 25199.92 10198.54 17098.90 19899.00 252
mvsmamba99.06 11398.96 11099.36 14399.47 19498.64 20099.70 5699.05 32497.61 20999.65 9799.83 7296.54 15599.92 10199.19 7399.62 14099.51 180
HPM-MVS_fast99.51 2199.40 3099.85 3199.91 199.79 3399.76 3799.56 7097.72 19699.76 6299.75 14299.13 1299.92 10199.07 8799.92 2799.85 36
HY-MVS97.30 798.85 14498.64 14999.47 12799.42 20699.08 14599.62 9399.36 24697.39 23899.28 18799.68 17896.44 16199.92 10198.37 18498.22 23799.40 209
DP-MVS99.16 8898.95 11299.78 5599.77 6399.53 8699.41 21599.50 13997.03 27399.04 24199.88 3997.39 12199.92 10198.66 14699.90 4399.87 30
IB-MVS95.67 1896.22 33495.44 34898.57 25799.21 26696.70 31598.65 37897.74 39796.71 29297.27 36298.54 37486.03 38099.92 10198.47 17686.30 40299.10 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 5899.63 13599.59 7399.36 23999.46 19099.07 3899.79 4899.82 8198.85 4299.92 10198.68 14499.87 6099.82 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
balanced_conf0399.46 3499.39 3299.67 7299.55 16499.58 7899.74 4699.51 11998.42 10699.87 2999.84 6798.05 10799.91 11299.58 3099.94 2399.52 173
9.1499.10 8199.72 9499.40 22399.51 11997.53 22099.64 10299.78 12798.84 4499.91 11297.63 25199.82 96
SMA-MVScopyleft99.44 4299.30 5499.85 3199.73 9099.83 1999.56 12799.47 18197.45 22999.78 5399.82 8199.18 1099.91 11298.79 13099.89 5499.81 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11499.65 6099.05 32199.41 22096.22 33198.95 25599.49 25398.77 5499.91 112
train_agg99.02 11998.77 13599.77 5899.67 11499.65 6099.05 32199.41 22096.28 32598.95 25599.49 25398.76 5599.91 11297.63 25199.72 12499.75 91
test_899.67 11499.61 7099.03 32699.41 22096.28 32598.93 25899.48 25898.76 5599.91 112
agg_prior99.67 11499.62 6899.40 22698.87 26899.91 112
原ACMM199.65 7799.73 9099.33 10999.47 18197.46 22699.12 22399.66 18998.67 6999.91 11297.70 24899.69 12999.71 115
LFMVS97.90 24097.35 28799.54 10299.52 17299.01 15499.39 22798.24 38797.10 26599.65 9799.79 12084.79 38999.91 11299.28 6598.38 22699.69 118
XVG-OURS98.73 15898.68 14498.88 21999.70 10497.73 26098.92 35199.55 7898.52 9799.45 14399.84 6795.27 20299.91 11298.08 21098.84 20299.00 252
PLCcopyleft97.94 499.02 11998.85 12699.53 11099.66 12499.01 15499.24 28399.52 10596.85 28599.27 19299.48 25898.25 9799.91 11297.76 23999.62 14099.65 132
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 28497.06 30999.47 12799.61 14599.09 14298.04 40499.25 29591.24 39598.51 31499.70 16294.55 23999.91 11292.76 38399.85 7599.42 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mmtdpeth96.95 32096.71 31997.67 33999.33 23394.90 36699.89 299.28 28998.15 13999.72 7398.57 37386.56 37899.90 12499.82 1689.02 39798.20 367
UWE-MVS97.58 29097.29 29798.48 26899.09 29896.25 33599.01 33496.61 40897.86 17799.19 21299.01 34588.72 35799.90 12497.38 27698.69 21099.28 224
test_vis1_rt95.81 34495.65 34396.32 37099.67 11491.35 39799.49 18196.74 40698.25 12595.24 38598.10 39174.96 40699.90 12499.53 3698.85 20197.70 391
FA-MVS(test-final)98.75 15598.53 16699.41 13699.55 16499.05 15099.80 2599.01 32996.59 30799.58 11999.59 21695.39 19799.90 12497.78 23599.49 15099.28 224
MCST-MVS99.43 4599.30 5499.82 4499.79 5499.74 4499.29 26099.40 22698.79 7399.52 13299.62 20798.91 3799.90 12498.64 14899.75 11899.82 57
CDPH-MVS99.13 9598.91 11699.80 4999.75 7699.71 4799.15 30099.41 22096.60 30599.60 11599.55 23198.83 4599.90 12497.48 26799.83 9299.78 83
NCCC99.34 6199.19 7399.79 5299.61 14599.65 6099.30 25599.48 16198.86 6399.21 20699.63 20298.72 6499.90 12498.25 19599.63 13999.80 73
114514_t98.93 12998.67 14599.72 6999.85 2699.53 8699.62 9399.59 5892.65 39099.71 7599.78 12798.06 10699.90 12498.84 12299.91 3499.74 95
1112_ss98.98 12598.77 13599.59 9299.68 11299.02 15299.25 28199.48 16197.23 25299.13 22199.58 22096.93 14299.90 12498.87 11298.78 20799.84 42
PHI-MVS99.30 6699.17 7599.70 7099.56 16099.52 8999.58 11499.80 897.12 26199.62 10999.73 15398.58 7599.90 12498.61 15499.91 3499.68 122
AdaColmapbinary99.01 12398.80 13199.66 7399.56 16099.54 8399.18 29599.70 1598.18 13799.35 17499.63 20296.32 16499.90 12497.48 26799.77 11399.55 164
COLMAP_ROBcopyleft97.56 698.86 13798.75 13799.17 17699.88 1198.53 21099.34 24799.59 5897.55 21698.70 29299.89 3295.83 18399.90 12498.10 20599.90 4399.08 241
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 18498.03 20499.31 15299.63 13598.56 20799.54 14596.75 40597.53 22099.73 6899.65 19091.25 33199.89 13698.62 15199.56 14599.48 186
tttt051798.42 17598.14 18999.28 16499.66 12498.38 22799.74 4696.85 40397.68 20299.79 4899.74 14791.39 32899.89 13698.83 12599.56 14599.57 161
test1299.75 6199.64 13299.61 7099.29 28799.21 20698.38 9199.89 13699.74 12199.74 95
Test_1112_low_res98.89 13298.66 14899.57 9799.69 10898.95 16699.03 32699.47 18196.98 27599.15 21999.23 32196.77 14699.89 13698.83 12598.78 20799.86 32
CNLPA99.14 9398.99 10299.59 9299.58 15499.41 10399.16 29799.44 20998.45 10299.19 21299.49 25398.08 10599.89 13697.73 24399.75 11899.48 186
sd_testset98.75 15598.57 16299.29 16099.81 4698.26 23199.56 12799.62 4198.78 7699.64 10299.88 3992.02 31199.88 14199.54 3498.26 23599.72 106
APD_test195.87 34296.49 32494.00 37799.53 16884.01 40699.54 14599.32 27595.91 34897.99 34399.85 5785.49 38499.88 14191.96 38698.84 20298.12 371
diffmvspermissive99.14 9399.02 9699.51 11899.61 14598.96 16399.28 26599.49 14998.46 10199.72 7399.71 15896.50 15799.88 14199.31 6199.11 17999.67 125
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13798.80 13199.03 19199.76 6698.79 18899.28 26599.91 397.42 23599.67 8599.37 28997.53 11899.88 14198.98 9697.29 29398.42 352
PVSNet_Blended99.08 11198.97 10699.42 13599.76 6698.79 18898.78 36599.91 396.74 29099.67 8599.49 25397.53 11899.88 14198.98 9699.85 7599.60 150
MVS97.28 30996.55 32299.48 12498.78 34398.95 16699.27 27099.39 22983.53 40898.08 33899.54 23696.97 14099.87 14694.23 36599.16 17399.63 143
MG-MVS99.13 9599.02 9699.45 13099.57 15698.63 20199.07 31699.34 25898.99 4899.61 11299.82 8197.98 10999.87 14697.00 29799.80 10399.85 36
MSDG98.98 12598.80 13199.53 11099.76 6699.19 12798.75 36899.55 7897.25 24999.47 14099.77 13597.82 11299.87 14696.93 30499.90 4399.54 166
ETV-MVS99.26 7499.21 7199.40 13799.46 19699.30 11699.56 12799.52 10598.52 9799.44 14899.27 31698.41 9099.86 14999.10 8499.59 14399.04 248
thisisatest051598.14 20297.79 22799.19 17499.50 18498.50 21798.61 38096.82 40496.95 27999.54 12899.43 27091.66 32399.86 14998.08 21099.51 14999.22 230
thres600view797.86 24597.51 26198.92 20899.72 9497.95 25099.59 10698.74 36697.94 16999.27 19298.62 37091.75 31799.86 14993.73 37098.19 24198.96 258
lupinMVS99.13 9599.01 10099.46 12999.51 17598.94 16999.05 32199.16 30997.86 17799.80 4699.56 22897.39 12199.86 14998.94 10099.85 7599.58 158
PVSNet96.02 1798.85 14498.84 12898.89 21799.73 9097.28 27898.32 39699.60 5497.86 17799.50 13599.57 22596.75 14799.86 14998.56 16699.70 12899.54 166
MAR-MVS98.86 13798.63 15099.54 10299.37 22499.66 5699.45 19599.54 8796.61 30299.01 24499.40 28097.09 13399.86 14997.68 25099.53 14899.10 236
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9197.44 30397.02 31098.71 24599.18 27496.89 30999.19 29399.04 32597.78 19098.31 32598.29 38385.41 38599.85 15598.01 21697.95 25199.39 210
test250696.81 32496.65 32097.29 35199.74 8392.21 39499.60 10085.06 42599.13 2399.77 5799.93 987.82 37399.85 15599.38 5299.38 15699.80 73
AllTest98.87 13498.72 13999.31 15299.86 2098.48 22099.56 12799.61 4897.85 18099.36 17199.85 5795.95 17699.85 15596.66 31799.83 9299.59 154
TestCases99.31 15299.86 2098.48 22099.61 4897.85 18099.36 17199.85 5795.95 17699.85 15596.66 31799.83 9299.59 154
jason99.13 9599.03 9299.45 13099.46 19698.87 17699.12 30699.26 29398.03 16499.79 4899.65 19097.02 13899.85 15599.02 9399.90 4399.65 132
jason: jason.
CNVR-MVS99.42 4799.30 5499.78 5599.62 14199.71 4799.26 27999.52 10598.82 6899.39 16499.71 15898.96 2599.85 15598.59 15999.80 10399.77 85
PAPM_NR99.04 11698.84 12899.66 7399.74 8399.44 9999.39 22799.38 23797.70 20099.28 18799.28 31398.34 9399.85 15596.96 30199.45 15299.69 118
testing9997.36 30696.94 31398.63 25099.18 27496.70 31599.30 25598.93 33797.71 19798.23 33098.26 38484.92 38899.84 16298.04 21597.85 25899.35 216
testing22297.16 31496.50 32399.16 17799.16 28498.47 22299.27 27098.66 37697.71 19798.23 33098.15 38782.28 40199.84 16297.36 27797.66 26499.18 232
test111198.04 21798.11 19397.83 33099.74 8393.82 37999.58 11495.40 41299.12 2899.65 9799.93 990.73 33699.84 16299.43 5099.38 15699.82 57
ECVR-MVScopyleft98.04 21798.05 20298.00 31799.74 8394.37 37499.59 10694.98 41399.13 2399.66 9099.93 990.67 33799.84 16299.40 5199.38 15699.80 73
test_yl98.86 13798.63 15099.54 10299.49 18699.18 12999.50 17099.07 32198.22 13099.61 11299.51 24795.37 19899.84 16298.60 15798.33 22999.59 154
DCV-MVSNet98.86 13798.63 15099.54 10299.49 18699.18 12999.50 17099.07 32198.22 13099.61 11299.51 24795.37 19899.84 16298.60 15798.33 22999.59 154
Fast-Effi-MVS+98.70 15998.43 17099.51 11899.51 17599.28 11899.52 15499.47 18196.11 34199.01 24499.34 29996.20 16899.84 16297.88 22498.82 20499.39 210
TSAR-MVS + GP.99.36 5999.36 3899.36 14399.67 11498.61 20499.07 31699.33 26599.00 4699.82 4199.81 9599.06 1699.84 16299.09 8599.42 15499.65 132
tpmrst98.33 18598.48 16897.90 32499.16 28494.78 36799.31 25399.11 31497.27 24799.45 14399.59 21695.33 20099.84 16298.48 17398.61 21299.09 240
Vis-MVSNetpermissive99.12 10198.97 10699.56 9999.78 5699.10 14199.68 6699.66 2898.49 9999.86 3399.87 4894.77 22499.84 16299.19 7399.41 15599.74 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 16698.34 17699.51 11899.40 21699.03 15198.80 36399.36 24696.33 32299.00 24899.12 33598.46 8499.84 16295.23 35199.37 16399.66 128
PatchMatch-RL98.84 14798.62 15599.52 11699.71 9999.28 11899.06 31999.77 997.74 19599.50 13599.53 24095.41 19699.84 16297.17 29199.64 13799.44 202
EPP-MVSNet99.13 9598.99 10299.53 11099.65 13099.06 14899.81 2099.33 26597.43 23399.60 11599.88 3997.14 13199.84 16299.13 7998.94 19399.69 118
testing1197.50 29697.10 30798.71 24599.20 26896.91 30799.29 26098.82 35697.89 17498.21 33398.40 37885.63 38399.83 17598.45 17898.04 24999.37 214
thres100view90097.76 26397.45 27098.69 24799.72 9497.86 25699.59 10698.74 36697.93 17099.26 19698.62 37091.75 31799.83 17593.22 37598.18 24298.37 358
tfpn200view997.72 27397.38 28398.72 24399.69 10897.96 24899.50 17098.73 37297.83 18399.17 21798.45 37691.67 32199.83 17593.22 37598.18 24298.37 358
test_prior99.68 7199.67 11499.48 9499.56 7099.83 17599.74 95
131498.68 16198.54 16599.11 18398.89 32898.65 19899.27 27099.49 14996.89 28397.99 34399.56 22897.72 11699.83 17597.74 24299.27 16798.84 264
thres40097.77 26297.38 28398.92 20899.69 10897.96 24899.50 17098.73 37297.83 18399.17 21798.45 37691.67 32199.83 17593.22 37598.18 24298.96 258
casdiffmvspermissive99.13 9598.98 10599.56 9999.65 13099.16 13299.56 12799.50 13998.33 11799.41 15799.86 5295.92 17999.83 17599.45 4999.16 17399.70 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 2599.48 1899.54 10299.78 5699.30 11699.89 299.58 6298.56 9399.73 6899.69 17298.55 7899.82 18299.69 2199.85 7599.48 186
MVS_Test99.10 10998.97 10699.48 12499.49 18699.14 13799.67 6999.34 25897.31 24499.58 11999.76 13997.65 11799.82 18298.87 11299.07 18599.46 197
dp97.75 26797.80 22697.59 34399.10 29593.71 38299.32 25098.88 34996.48 31499.08 23299.55 23192.67 29599.82 18296.52 32198.58 21599.24 229
RPSCF98.22 19298.62 15596.99 35799.82 4291.58 39699.72 5299.44 20996.61 30299.66 9099.89 3295.92 17999.82 18297.46 27099.10 18299.57 161
PMMVS98.80 15198.62 15599.34 14599.27 25198.70 19498.76 36799.31 27997.34 24199.21 20699.07 33797.20 13099.82 18298.56 16698.87 19999.52 173
UBG97.85 24697.48 26498.95 20299.25 25797.64 26799.24 28398.74 36697.90 17398.64 30298.20 38688.65 36199.81 18798.27 19498.40 22599.42 204
EIA-MVS99.18 8499.09 8499.45 13099.49 18699.18 12999.67 6999.53 10097.66 20599.40 16299.44 26898.10 10399.81 18798.94 10099.62 14099.35 216
Effi-MVS+98.81 14898.59 16199.48 12499.46 19699.12 14098.08 40399.50 13997.50 22499.38 16699.41 27696.37 16399.81 18799.11 8198.54 22099.51 180
thres20097.61 28897.28 29898.62 25199.64 13298.03 24299.26 27998.74 36697.68 20299.09 23198.32 38291.66 32399.81 18792.88 38098.22 23798.03 377
tpmvs97.98 22898.02 20697.84 32999.04 30894.73 36899.31 25399.20 30496.10 34598.76 28299.42 27294.94 21099.81 18796.97 30098.45 22498.97 256
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10199.66 12499.09 14299.64 8399.56 7098.26 12499.45 14399.87 4896.03 17399.81 18799.54 3499.15 17699.73 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 14899.37 3697.12 35599.60 15091.75 39598.61 38099.44 20999.35 1299.83 4099.85 5798.70 6699.81 18799.02 9399.91 3499.81 64
DPM-MVS98.95 12898.71 14199.66 7399.63 13599.55 8198.64 37999.10 31597.93 17099.42 15399.55 23198.67 6999.80 19495.80 33699.68 13299.61 147
DP-MVS Recon99.12 10198.95 11299.65 7799.74 8399.70 4999.27 27099.57 6596.40 32199.42 15399.68 17898.75 5899.80 19497.98 21899.72 12499.44 202
MVS_111021_LR99.41 5199.33 4499.65 7799.77 6399.51 9098.94 34999.85 698.82 6899.65 9799.74 14798.51 8199.80 19498.83 12599.89 5499.64 139
CS-MVS99.50 2399.48 1899.54 10299.76 6699.42 10199.90 199.55 7898.56 9399.78 5399.70 16298.65 7199.79 19799.65 2599.78 11099.41 207
Fast-Effi-MVS+-dtu98.77 15498.83 13098.60 25299.41 21196.99 30199.52 15499.49 14998.11 14799.24 19899.34 29996.96 14199.79 19797.95 22099.45 15299.02 251
baseline198.31 18697.95 21399.38 14299.50 18498.74 19199.59 10698.93 33798.41 10799.14 22099.60 21494.59 23599.79 19798.48 17393.29 37399.61 147
baseline99.15 9099.02 9699.53 11099.66 12499.14 13799.72 5299.48 16198.35 11499.42 15399.84 6796.07 17199.79 19799.51 3999.14 17799.67 125
PVSNet_094.43 1996.09 33995.47 34697.94 32199.31 24194.34 37697.81 40599.70 1597.12 26197.46 35698.75 36789.71 34899.79 19797.69 24981.69 40899.68 122
API-MVS99.04 11699.03 9299.06 18799.40 21699.31 11499.55 14199.56 7098.54 9599.33 17899.39 28498.76 5599.78 20296.98 29999.78 11098.07 374
OMC-MVS99.08 11199.04 9099.20 17399.67 11498.22 23399.28 26599.52 10598.07 15599.66 9099.81 9597.79 11399.78 20297.79 23499.81 9999.60 150
GeoE98.85 14498.62 15599.53 11099.61 14599.08 14599.80 2599.51 11997.10 26599.31 18099.78 12795.23 20699.77 20498.21 19799.03 18899.75 91
alignmvs98.81 14898.56 16499.58 9599.43 20499.42 10199.51 16398.96 33598.61 8999.35 17498.92 35794.78 22199.77 20499.35 5498.11 24799.54 166
tpm cat197.39 30597.36 28597.50 34699.17 28293.73 38199.43 20599.31 27991.27 39498.71 28699.08 33694.31 24999.77 20496.41 32598.50 22299.00 252
CostFormer97.72 27397.73 23997.71 33799.15 28894.02 37899.54 14599.02 32894.67 36999.04 24199.35 29592.35 30799.77 20498.50 17297.94 25299.34 219
MGCFI-Net99.01 12398.85 12699.50 12399.42 20699.26 12199.82 1699.48 16198.60 9099.28 18798.81 36297.04 13799.76 20899.29 6497.87 25699.47 192
test_241102_ONE99.84 3299.90 299.48 16199.07 3899.91 1799.74 14799.20 799.76 208
MDTV_nov1_ep1398.32 17899.11 29294.44 37399.27 27098.74 36697.51 22399.40 16299.62 20794.78 22199.76 20897.59 25498.81 206
sasdasda99.02 11998.86 12499.51 11899.42 20699.32 11099.80 2599.48 16198.63 8699.31 18098.81 36297.09 13399.75 21199.27 6797.90 25399.47 192
canonicalmvs99.02 11998.86 12499.51 11899.42 20699.32 11099.80 2599.48 16198.63 8699.31 18098.81 36297.09 13399.75 21199.27 6797.90 25399.47 192
Effi-MVS+-dtu98.78 15298.89 12098.47 27399.33 23396.91 30799.57 12199.30 28398.47 10099.41 15798.99 34796.78 14599.74 21398.73 13699.38 15698.74 277
patchmatchnet-post98.70 36894.79 22099.74 213
SCA98.19 19698.16 18698.27 29999.30 24295.55 34999.07 31698.97 33397.57 21399.43 15099.57 22592.72 29099.74 21397.58 25599.20 17199.52 173
BH-untuned98.42 17598.36 17498.59 25399.49 18696.70 31599.27 27099.13 31397.24 25198.80 27799.38 28695.75 18699.74 21397.07 29599.16 17399.33 220
BH-RMVSNet98.41 17798.08 19899.40 13799.41 21198.83 18499.30 25598.77 36297.70 20098.94 25799.65 19092.91 28599.74 21396.52 32199.55 14799.64 139
MVS_111021_HR99.41 5199.32 4699.66 7399.72 9499.47 9698.95 34799.85 698.82 6899.54 12899.73 15398.51 8199.74 21398.91 10699.88 5799.77 85
test_post65.99 41994.65 23499.73 219
XVG-ACMP-BASELINE97.83 25297.71 24198.20 30199.11 29296.33 33199.41 21599.52 10598.06 15999.05 24099.50 25089.64 35099.73 21997.73 24397.38 29198.53 340
HyFIR lowres test99.11 10598.92 11499.65 7799.90 499.37 10599.02 32999.91 397.67 20499.59 11899.75 14295.90 18199.73 21999.53 3699.02 19099.86 32
DeepMVS_CXcopyleft93.34 38099.29 24682.27 40999.22 30085.15 40696.33 37799.05 34090.97 33499.73 21993.57 37297.77 26198.01 378
Patchmatch-test97.93 23497.65 24698.77 24099.18 27497.07 29299.03 32699.14 31296.16 33698.74 28399.57 22594.56 23799.72 22393.36 37499.11 17999.52 173
LPG-MVS_test98.22 19298.13 19198.49 26699.33 23397.05 29499.58 11499.55 7897.46 22699.24 19899.83 7292.58 29799.72 22398.09 20697.51 27798.68 295
LGP-MVS_train98.49 26699.33 23397.05 29499.55 7897.46 22699.24 19899.83 7292.58 29799.72 22398.09 20697.51 27798.68 295
BH-w/o98.00 22697.89 22298.32 29199.35 22896.20 33799.01 33498.90 34696.42 31998.38 32199.00 34695.26 20499.72 22396.06 32998.61 21299.03 249
ACMP97.20 1198.06 21197.94 21598.45 27699.37 22497.01 29999.44 20199.49 14997.54 21998.45 31899.79 12091.95 31399.72 22397.91 22297.49 28298.62 323
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 22197.90 21898.40 28499.23 26196.80 31399.70 5699.60 5497.12 26198.18 33599.70 16291.73 31999.72 22398.39 18197.45 28498.68 295
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 28565.14 42094.18 25499.71 22997.58 255
ADS-MVSNet98.20 19598.08 19898.56 26099.33 23396.48 32699.23 28599.15 31096.24 32999.10 22899.67 18494.11 25599.71 22996.81 30999.05 18699.48 186
JIA-IIPM97.50 29697.02 31098.93 20698.73 35297.80 25899.30 25598.97 33391.73 39398.91 26094.86 40895.10 20899.71 22997.58 25597.98 25099.28 224
EPMVS97.82 25597.65 24698.35 28898.88 32995.98 34199.49 18194.71 41597.57 21399.26 19699.48 25892.46 30499.71 22997.87 22699.08 18499.35 216
TDRefinement95.42 34894.57 35597.97 31989.83 41896.11 34099.48 18598.75 36396.74 29096.68 37499.88 3988.65 36199.71 22998.37 18482.74 40798.09 373
ACMM97.58 598.37 18398.34 17698.48 26899.41 21197.10 28899.56 12799.45 20198.53 9699.04 24199.85 5793.00 28199.71 22998.74 13497.45 28498.64 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 23197.77 23298.57 25799.59 15296.61 32299.45 19599.08 31898.21 13298.88 26599.80 10888.66 36099.70 23598.58 16097.72 26299.39 210
CHOSEN 280x42099.12 10199.13 7899.08 18499.66 12497.89 25398.43 39099.71 1398.88 6299.62 10999.76 13996.63 15199.70 23599.46 4899.99 199.66 128
EC-MVSNet99.44 4299.39 3299.58 9599.56 16099.49 9299.88 499.58 6298.38 10999.73 6899.69 17298.20 9999.70 23599.64 2799.82 9699.54 166
PatchmatchNetpermissive98.31 18698.36 17498.19 30299.16 28495.32 35799.27 27098.92 34097.37 23999.37 16899.58 22094.90 21499.70 23597.43 27399.21 17099.54 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 20697.99 20898.44 27999.41 21196.96 30599.60 10099.56 7098.09 15098.15 33699.91 2090.87 33599.70 23598.88 10997.45 28498.67 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS97.50 29696.90 31499.29 16099.23 26198.78 19099.32 25098.90 34697.52 22298.56 31198.09 39284.72 39099.69 24097.86 22797.88 25599.39 210
HQP_MVS98.27 19198.22 18498.44 27999.29 24696.97 30399.39 22799.47 18198.97 5499.11 22599.61 21192.71 29299.69 24097.78 23597.63 26598.67 302
plane_prior599.47 18199.69 24097.78 23597.63 26598.67 302
D2MVS98.41 17798.50 16798.15 30799.26 25396.62 32199.40 22399.61 4897.71 19798.98 25099.36 29296.04 17299.67 24398.70 13997.41 28998.15 370
IS-MVSNet99.05 11598.87 12299.57 9799.73 9099.32 11099.75 4299.20 30498.02 16599.56 12399.86 5296.54 15599.67 24398.09 20699.13 17899.73 100
CLD-MVS98.16 20098.10 19498.33 28999.29 24696.82 31298.75 36899.44 20997.83 18399.13 22199.55 23192.92 28399.67 24398.32 19197.69 26398.48 344
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 31197.30 29597.09 35699.43 20493.31 38799.73 5098.87 35198.83 6799.28 18799.80 10884.45 39199.66 24697.88 22497.45 28498.30 360
AUN-MVS96.88 32296.31 32898.59 25399.48 19397.04 29799.27 27099.22 30097.44 23298.51 31499.41 27691.97 31299.66 24697.71 24683.83 40599.07 246
UniMVSNet_ETH3D97.32 30896.81 31698.87 22399.40 21697.46 27299.51 16399.53 10095.86 34998.54 31399.77 13582.44 39999.66 24698.68 14497.52 27699.50 184
OPM-MVS98.19 19698.10 19498.45 27698.88 32997.07 29299.28 26599.38 23798.57 9299.22 20399.81 9592.12 30999.66 24698.08 21097.54 27498.61 332
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 23797.78 23098.32 29199.46 19696.68 31999.56 12799.54 8798.41 10797.79 35299.87 4890.18 34499.66 24698.05 21497.18 29898.62 323
hse-mvs297.50 29697.14 30498.59 25399.49 18697.05 29499.28 26599.22 30098.94 5799.66 9099.42 27294.93 21199.65 25199.48 4583.80 40699.08 241
VPA-MVSNet98.29 18997.95 21399.30 15799.16 28499.54 8399.50 17099.58 6298.27 12299.35 17499.37 28992.53 29999.65 25199.35 5494.46 35598.72 279
TR-MVS97.76 26397.41 28198.82 23299.06 30497.87 25498.87 35798.56 37996.63 30198.68 29499.22 32292.49 30099.65 25195.40 34797.79 26098.95 260
gm-plane-assit98.54 37292.96 38994.65 37099.15 33099.64 25497.56 260
HQP4-MVS98.66 29599.64 25498.64 314
HQP-MVS98.02 22197.90 21898.37 28799.19 27196.83 31098.98 34099.39 22998.24 12698.66 29599.40 28092.47 30199.64 25497.19 28897.58 27098.64 314
PAPM97.59 28997.09 30899.07 18599.06 30498.26 23198.30 39799.10 31594.88 36498.08 33899.34 29996.27 16699.64 25489.87 39498.92 19699.31 222
TAPA-MVS97.07 1597.74 26997.34 29098.94 20499.70 10497.53 27099.25 28199.51 11991.90 39299.30 18399.63 20298.78 5199.64 25488.09 40199.87 6099.65 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 18198.09 19799.24 16999.26 25399.32 11099.56 12799.55 7897.45 22998.71 28699.83 7293.23 27699.63 25998.88 10996.32 31398.76 272
ITE_SJBPF98.08 31099.29 24696.37 32998.92 34098.34 11598.83 27399.75 14291.09 33299.62 26095.82 33497.40 29098.25 364
LF4IMVS97.52 29397.46 26997.70 33898.98 31895.55 34999.29 26098.82 35698.07 15598.66 29599.64 19689.97 34599.61 26197.01 29696.68 30397.94 385
tpm97.67 28397.55 25598.03 31299.02 31095.01 36399.43 20598.54 38196.44 31799.12 22399.34 29991.83 31699.60 26297.75 24196.46 30999.48 186
tpm297.44 30397.34 29097.74 33699.15 28894.36 37599.45 19598.94 33693.45 38398.90 26299.44 26891.35 32999.59 26397.31 27998.07 24899.29 223
baseline297.87 24397.55 25598.82 23299.18 27498.02 24399.41 21596.58 40996.97 27696.51 37599.17 32793.43 27399.57 26497.71 24699.03 18898.86 262
MS-PatchMatch97.24 31397.32 29396.99 35798.45 37593.51 38698.82 36199.32 27597.41 23698.13 33799.30 30988.99 35499.56 26595.68 34099.80 10397.90 388
TinyColmap97.12 31696.89 31597.83 33099.07 30295.52 35298.57 38398.74 36697.58 21297.81 35199.79 12088.16 36899.56 26595.10 35297.21 29698.39 356
USDC97.34 30797.20 30297.75 33599.07 30295.20 35998.51 38799.04 32597.99 16698.31 32599.86 5289.02 35399.55 26795.67 34197.36 29298.49 343
MSLP-MVS++99.46 3499.47 2099.44 13499.60 15099.16 13299.41 21599.71 1398.98 5199.45 14399.78 12799.19 999.54 26899.28 6599.84 8399.63 143
TAMVS99.12 10199.08 8599.24 16999.46 19698.55 20899.51 16399.46 19098.09 15099.45 14399.82 8198.34 9399.51 26998.70 13998.93 19499.67 125
EPNet_dtu98.03 21997.96 21198.23 30098.27 37895.54 35199.23 28598.75 36399.02 4197.82 35099.71 15896.11 17099.48 27093.04 37899.65 13699.69 118
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs5depth96.66 32696.22 33097.97 31997.00 40096.28 33398.66 37799.03 32796.61 30296.93 37299.79 12087.20 37699.47 27196.65 31994.13 36298.16 369
EG-PatchMatch MVS95.97 34195.69 34296.81 36497.78 38592.79 39099.16 29798.93 33796.16 33694.08 39399.22 32282.72 39799.47 27195.67 34197.50 27998.17 368
MVP-Stereo97.81 25797.75 23797.99 31897.53 38996.60 32398.96 34498.85 35397.22 25397.23 36399.36 29295.28 20199.46 27395.51 34399.78 11097.92 387
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 16898.67 14598.30 29399.35 22895.59 34899.50 17099.55 7898.60 9099.39 16499.83 7294.48 24299.45 27498.75 13398.56 21899.85 36
test-LLR98.06 21197.90 21898.55 26298.79 34097.10 28898.67 37497.75 39597.34 24198.61 30798.85 35994.45 24499.45 27497.25 28299.38 15699.10 236
TESTMET0.1,197.55 29197.27 30198.40 28498.93 32396.53 32498.67 37497.61 39896.96 27798.64 30299.28 31388.63 36399.45 27497.30 28099.38 15699.21 231
test-mter97.49 30197.13 30698.55 26298.79 34097.10 28898.67 37497.75 39596.65 29798.61 30798.85 35988.23 36799.45 27497.25 28299.38 15699.10 236
mvs_anonymous99.03 11898.99 10299.16 17799.38 22198.52 21499.51 16399.38 23797.79 18899.38 16699.81 9597.30 12799.45 27499.35 5498.99 19199.51 180
tfpnnormal97.84 25097.47 26798.98 19799.20 26899.22 12699.64 8399.61 4896.32 32398.27 32999.70 16293.35 27599.44 27995.69 33995.40 33898.27 362
v7n97.87 24397.52 25998.92 20898.76 35098.58 20699.84 1299.46 19096.20 33298.91 26099.70 16294.89 21599.44 27996.03 33093.89 36798.75 274
jajsoiax98.43 17498.28 18198.88 21998.60 36798.43 22499.82 1699.53 10098.19 13498.63 30499.80 10893.22 27899.44 27999.22 7197.50 27998.77 270
mvs_tets98.40 18098.23 18398.91 21298.67 36098.51 21699.66 7499.53 10098.19 13498.65 30199.81 9592.75 28799.44 27999.31 6197.48 28398.77 270
Vis-MVSNet (Re-imp)98.87 13498.72 13999.31 15299.71 9998.88 17599.80 2599.44 20997.91 17299.36 17199.78 12795.49 19599.43 28397.91 22299.11 17999.62 145
OPU-MVS99.64 8299.56 16099.72 4599.60 10099.70 16299.27 599.42 28498.24 19699.80 10399.79 77
Anonymous2023121197.88 24197.54 25898.90 21499.71 9998.53 21099.48 18599.57 6594.16 37498.81 27599.68 17893.23 27699.42 28498.84 12294.42 35798.76 272
ttmdpeth97.80 25997.63 25098.29 29498.77 34897.38 27599.64 8399.36 24698.78 7696.30 37899.58 22092.34 30899.39 28698.36 18695.58 33398.10 372
VPNet97.84 25097.44 27599.01 19399.21 26698.94 16999.48 18599.57 6598.38 10999.28 18799.73 15388.89 35599.39 28699.19 7393.27 37498.71 281
nrg03098.64 16598.42 17199.28 16499.05 30799.69 5099.81 2099.46 19098.04 16299.01 24499.82 8196.69 14999.38 28899.34 5894.59 35498.78 267
GA-MVS97.85 24697.47 26799.00 19599.38 22197.99 24598.57 38399.15 31097.04 27298.90 26299.30 30989.83 34799.38 28896.70 31498.33 22999.62 145
UniMVSNet (Re)98.29 18998.00 20799.13 18299.00 31299.36 10899.49 18199.51 11997.95 16898.97 25299.13 33296.30 16599.38 28898.36 18693.34 37298.66 310
FIs98.78 15298.63 15099.23 17199.18 27499.54 8399.83 1599.59 5898.28 12098.79 27999.81 9596.75 14799.37 29199.08 8696.38 31198.78 267
PS-MVSNAJss98.92 13098.92 11498.90 21498.78 34398.53 21099.78 3299.54 8798.07 15599.00 24899.76 13999.01 1899.37 29199.13 7997.23 29598.81 265
CDS-MVSNet99.09 11099.03 9299.25 16799.42 20698.73 19299.45 19599.46 19098.11 14799.46 14299.77 13598.01 10899.37 29198.70 13998.92 19699.66 128
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 34595.16 35097.51 34599.30 24293.69 38398.88 35595.78 41085.09 40798.78 28092.65 41091.29 33099.37 29194.85 35799.85 7599.46 197
v119297.81 25797.44 27598.91 21298.88 32998.68 19599.51 16399.34 25896.18 33499.20 20999.34 29994.03 25899.36 29595.32 34995.18 34298.69 290
EI-MVSNet98.67 16298.67 14598.68 24899.35 22897.97 24699.50 17099.38 23796.93 28299.20 20999.83 7297.87 11099.36 29598.38 18297.56 27298.71 281
MVSTER98.49 16998.32 17899.00 19599.35 22899.02 15299.54 14599.38 23797.41 23699.20 20999.73 15393.86 26699.36 29598.87 11297.56 27298.62 323
gg-mvs-nofinetune96.17 33795.32 34998.73 24298.79 34098.14 23799.38 23294.09 41691.07 39798.07 34191.04 41489.62 35199.35 29896.75 31199.09 18398.68 295
pm-mvs197.68 28097.28 29898.88 21999.06 30498.62 20299.50 17099.45 20196.32 32397.87 34899.79 12092.47 30199.35 29897.54 26293.54 37198.67 302
OurMVSNet-221017-097.88 24197.77 23298.19 30298.71 35696.53 32499.88 499.00 33097.79 18898.78 28099.94 691.68 32099.35 29897.21 28496.99 30298.69 290
EGC-MVSNET82.80 37977.86 38597.62 34197.91 38296.12 33999.33 24999.28 2898.40 42225.05 42399.27 31684.11 39299.33 30189.20 39698.22 23797.42 396
pmmvs696.53 32996.09 33497.82 33298.69 35895.47 35399.37 23499.47 18193.46 38297.41 35799.78 12787.06 37799.33 30196.92 30692.70 38198.65 312
V4298.06 21197.79 22798.86 22698.98 31898.84 18199.69 6099.34 25896.53 30999.30 18399.37 28994.67 23299.32 30397.57 25994.66 35298.42 352
lessismore_v097.79 33498.69 35895.44 35594.75 41495.71 38499.87 4888.69 35999.32 30395.89 33394.93 34998.62 323
OpenMVS_ROBcopyleft92.34 2094.38 35993.70 36596.41 36997.38 39193.17 38899.06 31998.75 36386.58 40594.84 39198.26 38481.53 40299.32 30389.01 39797.87 25696.76 399
v897.95 23397.63 25098.93 20698.95 32298.81 18799.80 2599.41 22096.03 34699.10 22899.42 27294.92 21399.30 30696.94 30394.08 36498.66 310
v192192097.80 25997.45 27098.84 23098.80 33998.53 21099.52 15499.34 25896.15 33899.24 19899.47 26193.98 26099.29 30795.40 34795.13 34498.69 290
anonymousdsp98.44 17398.28 18198.94 20498.50 37398.96 16399.77 3499.50 13997.07 26798.87 26899.77 13594.76 22599.28 30898.66 14697.60 26898.57 338
MVSFormer99.17 8699.12 7999.29 16099.51 17598.94 16999.88 499.46 19097.55 21699.80 4699.65 19097.39 12199.28 30899.03 9199.85 7599.65 132
test_djsdf98.67 16298.57 16298.98 19798.70 35798.91 17399.88 499.46 19097.55 21699.22 20399.88 3995.73 18799.28 30899.03 9197.62 26798.75 274
cascas97.69 27897.43 27998.48 26898.60 36797.30 27798.18 40199.39 22992.96 38698.41 31998.78 36693.77 26999.27 31198.16 20398.61 21298.86 262
v14419297.92 23797.60 25398.87 22398.83 33898.65 19899.55 14199.34 25896.20 33299.32 17999.40 28094.36 24699.26 31296.37 32695.03 34698.70 286
dmvs_re98.08 20998.16 18697.85 32799.55 16494.67 37099.70 5698.92 34098.15 13999.06 23899.35 29593.67 27299.25 31397.77 23897.25 29499.64 139
v2v48298.06 21197.77 23298.92 20898.90 32798.82 18599.57 12199.36 24696.65 29799.19 21299.35 29594.20 25199.25 31397.72 24594.97 34798.69 290
v124097.69 27897.32 29398.79 23898.85 33698.43 22499.48 18599.36 24696.11 34199.27 19299.36 29293.76 27099.24 31594.46 36195.23 34198.70 286
WBMVS97.74 26997.50 26298.46 27499.24 25997.43 27399.21 29199.42 21797.45 22998.96 25499.41 27688.83 35699.23 31698.94 10096.02 31898.71 281
v114497.98 22897.69 24298.85 22998.87 33298.66 19799.54 14599.35 25396.27 32799.23 20299.35 29594.67 23299.23 31696.73 31295.16 34398.68 295
v1097.85 24697.52 25998.86 22698.99 31598.67 19699.75 4299.41 22095.70 35098.98 25099.41 27694.75 22699.23 31696.01 33294.63 35398.67 302
WR-MVS_H98.13 20397.87 22398.90 21499.02 31098.84 18199.70 5699.59 5897.27 24798.40 32099.19 32695.53 19399.23 31698.34 18893.78 36998.61 332
miper_enhance_ethall98.16 20098.08 19898.41 28298.96 32197.72 26298.45 38999.32 27596.95 27998.97 25299.17 32797.06 13699.22 32097.86 22795.99 32198.29 361
GG-mvs-BLEND98.45 27698.55 37198.16 23599.43 20593.68 41797.23 36398.46 37589.30 35299.22 32095.43 34698.22 23797.98 383
FC-MVSNet-test98.75 15598.62 15599.15 18199.08 30199.45 9899.86 1199.60 5498.23 12998.70 29299.82 8196.80 14499.22 32099.07 8796.38 31198.79 266
UniMVSNet_NR-MVSNet98.22 19297.97 21098.96 20098.92 32598.98 15699.48 18599.53 10097.76 19298.71 28699.46 26596.43 16299.22 32098.57 16392.87 37998.69 290
DU-MVS98.08 20997.79 22798.96 20098.87 33298.98 15699.41 21599.45 20197.87 17698.71 28699.50 25094.82 21799.22 32098.57 16392.87 37998.68 295
cl____98.01 22497.84 22598.55 26299.25 25797.97 24698.71 37299.34 25896.47 31698.59 31099.54 23695.65 19099.21 32597.21 28495.77 32798.46 349
WR-MVS98.06 21197.73 23999.06 18798.86 33599.25 12399.19 29399.35 25397.30 24598.66 29599.43 27093.94 26199.21 32598.58 16094.28 35998.71 281
test_040296.64 32796.24 32997.85 32798.85 33696.43 32899.44 20199.26 29393.52 38096.98 37099.52 24388.52 36499.20 32792.58 38597.50 27997.93 386
SixPastTwentyTwo97.50 29697.33 29298.03 31298.65 36196.23 33699.77 3498.68 37597.14 25897.90 34699.93 990.45 33899.18 32897.00 29796.43 31098.67 302
cl2297.85 24697.64 24998.48 26899.09 29897.87 25498.60 38299.33 26597.11 26498.87 26899.22 32292.38 30699.17 32998.21 19795.99 32198.42 352
WB-MVSnew97.65 28597.65 24697.63 34098.78 34397.62 26899.13 30398.33 38497.36 24099.07 23398.94 35395.64 19199.15 33092.95 37998.68 21196.12 406
IterMVS-SCA-FT97.82 25597.75 23798.06 31199.57 15696.36 33099.02 32999.49 14997.18 25598.71 28699.72 15792.72 29099.14 33197.44 27295.86 32698.67 302
pmmvs597.52 29397.30 29598.16 30498.57 37096.73 31499.27 27098.90 34696.14 33998.37 32299.53 24091.54 32699.14 33197.51 26495.87 32598.63 321
v14897.79 26197.55 25598.50 26598.74 35197.72 26299.54 14599.33 26596.26 32898.90 26299.51 24794.68 23199.14 33197.83 23193.15 37698.63 321
miper_ehance_all_eth98.18 19898.10 19498.41 28299.23 26197.72 26298.72 37199.31 27996.60 30598.88 26599.29 31197.29 12899.13 33497.60 25395.99 32198.38 357
NR-MVSNet97.97 23197.61 25299.02 19298.87 33299.26 12199.47 19199.42 21797.63 20797.08 36899.50 25095.07 20999.13 33497.86 22793.59 37098.68 295
IterMVS97.83 25297.77 23298.02 31499.58 15496.27 33499.02 32999.48 16197.22 25398.71 28699.70 16292.75 28799.13 33497.46 27096.00 32098.67 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 36094.90 35291.84 38597.24 39580.01 41598.52 38699.48 16189.01 40291.99 40299.67 18485.67 38299.13 33495.44 34597.03 30196.39 403
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 21697.96 21198.33 28999.26 25397.38 27598.56 38599.31 27996.65 29798.88 26599.52 24396.58 15399.12 33897.39 27595.53 33698.47 346
pmmvs498.13 20397.90 21898.81 23598.61 36698.87 17698.99 33799.21 30396.44 31799.06 23899.58 22095.90 18199.11 33997.18 29096.11 31798.46 349
TransMVSNet (Re)97.15 31596.58 32198.86 22699.12 29098.85 18099.49 18198.91 34495.48 35397.16 36699.80 10893.38 27499.11 33994.16 36791.73 38598.62 323
ambc93.06 38392.68 41482.36 40898.47 38898.73 37295.09 38997.41 39755.55 41599.10 34196.42 32491.32 38697.71 389
Baseline_NR-MVSNet97.76 26397.45 27098.68 24899.09 29898.29 22999.41 21598.85 35395.65 35198.63 30499.67 18494.82 21799.10 34198.07 21392.89 37898.64 314
test_vis3_rt87.04 37585.81 37890.73 38993.99 41381.96 41099.76 3790.23 42492.81 38881.35 41291.56 41240.06 42199.07 34394.27 36488.23 39991.15 412
CP-MVSNet98.09 20797.78 23099.01 19398.97 32099.24 12499.67 6999.46 19097.25 24998.48 31799.64 19693.79 26899.06 34498.63 15094.10 36398.74 277
PS-CasMVS97.93 23497.59 25498.95 20298.99 31599.06 14899.68 6699.52 10597.13 25998.31 32599.68 17892.44 30599.05 34598.51 17194.08 36498.75 274
K. test v397.10 31796.79 31798.01 31598.72 35496.33 33199.87 897.05 40197.59 21096.16 38099.80 10888.71 35899.04 34696.69 31596.55 30898.65 312
new_pmnet96.38 33396.03 33597.41 34798.13 38195.16 36299.05 32199.20 30493.94 37597.39 36098.79 36591.61 32599.04 34690.43 39295.77 32798.05 376
DIV-MVS_self_test98.01 22497.85 22498.48 26899.24 25997.95 25098.71 37299.35 25396.50 31098.60 30999.54 23695.72 18899.03 34897.21 28495.77 32798.46 349
IterMVS-LS98.46 17298.42 17198.58 25699.59 15298.00 24499.37 23499.43 21596.94 28199.07 23399.59 21697.87 11099.03 34898.32 19195.62 33298.71 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 28597.68 24397.55 34498.62 36494.97 36498.84 35999.30 28396.83 28898.19 33499.34 29997.01 13999.02 35095.00 35596.01 31998.64 314
Patchmtry97.75 26797.40 28298.81 23599.10 29598.87 17699.11 31299.33 26594.83 36698.81 27599.38 28694.33 24799.02 35096.10 32895.57 33498.53 340
N_pmnet94.95 35495.83 34092.31 38498.47 37479.33 41699.12 30692.81 42293.87 37697.68 35399.13 33293.87 26599.01 35291.38 38996.19 31598.59 336
CR-MVSNet98.17 19997.93 21698.87 22399.18 27498.49 21899.22 28999.33 26596.96 27799.56 12399.38 28694.33 24799.00 35394.83 35898.58 21599.14 233
c3_l98.12 20598.04 20398.38 28699.30 24297.69 26698.81 36299.33 26596.67 29598.83 27399.34 29997.11 13298.99 35497.58 25595.34 33998.48 344
test0.0.03 197.71 27697.42 28098.56 26098.41 37797.82 25798.78 36598.63 37797.34 24198.05 34298.98 34994.45 24498.98 35595.04 35497.15 29998.89 261
PatchT97.03 31996.44 32598.79 23898.99 31598.34 22899.16 29799.07 32192.13 39199.52 13297.31 40194.54 24098.98 35588.54 39998.73 20999.03 249
GBi-Net97.68 28097.48 26498.29 29499.51 17597.26 28199.43 20599.48 16196.49 31199.07 23399.32 30690.26 34098.98 35597.10 29296.65 30498.62 323
test197.68 28097.48 26498.29 29499.51 17597.26 28199.43 20599.48 16196.49 31199.07 23399.32 30690.26 34098.98 35597.10 29296.65 30498.62 323
FMVSNet398.03 21997.76 23698.84 23099.39 21998.98 15699.40 22399.38 23796.67 29599.07 23399.28 31392.93 28298.98 35597.10 29296.65 30498.56 339
FMVSNet297.72 27397.36 28598.80 23799.51 17598.84 18199.45 19599.42 21796.49 31198.86 27299.29 31190.26 34098.98 35596.44 32396.56 30798.58 337
FMVSNet196.84 32396.36 32798.29 29499.32 24097.26 28199.43 20599.48 16195.11 35898.55 31299.32 30683.95 39398.98 35595.81 33596.26 31498.62 323
ppachtmachnet_test97.49 30197.45 27097.61 34298.62 36495.24 35898.80 36399.46 19096.11 34198.22 33299.62 20796.45 16098.97 36293.77 36995.97 32498.61 332
TranMVSNet+NR-MVSNet97.93 23497.66 24598.76 24198.78 34398.62 20299.65 8099.49 14997.76 19298.49 31699.60 21494.23 25098.97 36298.00 21792.90 37798.70 286
MVStest196.08 34095.48 34597.89 32598.93 32396.70 31599.56 12799.35 25392.69 38991.81 40399.46 26589.90 34698.96 36495.00 35592.61 38298.00 381
test_method91.10 37091.36 37290.31 39095.85 40373.72 42394.89 41199.25 29568.39 41495.82 38399.02 34480.50 40498.95 36593.64 37194.89 35198.25 364
ADS-MVSNet298.02 22198.07 20197.87 32699.33 23395.19 36099.23 28599.08 31896.24 32999.10 22899.67 18494.11 25598.93 36696.81 30999.05 18699.48 186
ET-MVSNet_ETH3D96.49 33095.64 34499.05 18999.53 16898.82 18598.84 35997.51 39997.63 20784.77 40899.21 32592.09 31098.91 36798.98 9692.21 38499.41 207
miper_lstm_enhance98.00 22697.91 21798.28 29899.34 23297.43 27398.88 35599.36 24696.48 31498.80 27799.55 23195.98 17498.91 36797.27 28195.50 33798.51 342
MonoMVSNet98.38 18198.47 16998.12 30998.59 36996.19 33899.72 5298.79 36197.89 17499.44 14899.52 24396.13 16998.90 36998.64 14897.54 27499.28 224
PEN-MVS97.76 26397.44 27598.72 24398.77 34898.54 20999.78 3299.51 11997.06 26998.29 32899.64 19692.63 29698.89 37098.09 20693.16 37598.72 279
testing397.28 30996.76 31898.82 23299.37 22498.07 24199.45 19599.36 24697.56 21597.89 34798.95 35283.70 39498.82 37196.03 33098.56 21899.58 158
testgi97.65 28597.50 26298.13 30899.36 22796.45 32799.42 21299.48 16197.76 19297.87 34899.45 26791.09 33298.81 37294.53 36098.52 22199.13 235
testf190.42 37390.68 37489.65 39397.78 38573.97 42199.13 30398.81 35889.62 39991.80 40498.93 35462.23 41398.80 37386.61 40791.17 38796.19 404
APD_test290.42 37390.68 37489.65 39397.78 38573.97 42199.13 30398.81 35889.62 39991.80 40498.93 35462.23 41398.80 37386.61 40791.17 38796.19 404
MIMVSNet97.73 27197.45 27098.57 25799.45 20297.50 27199.02 32998.98 33296.11 34199.41 15799.14 33190.28 33998.74 37595.74 33798.93 19499.47 192
LCM-MVSNet-Re97.83 25298.15 18896.87 36399.30 24292.25 39399.59 10698.26 38597.43 23396.20 37999.13 33296.27 16698.73 37698.17 20298.99 19199.64 139
Syy-MVS97.09 31897.14 30496.95 36099.00 31292.73 39199.29 26099.39 22997.06 26997.41 35798.15 38793.92 26398.68 37791.71 38798.34 22799.45 200
myMVS_eth3d96.89 32196.37 32698.43 28199.00 31297.16 28599.29 26099.39 22997.06 26997.41 35798.15 38783.46 39598.68 37795.27 35098.34 22799.45 200
DTE-MVSNet97.51 29597.19 30398.46 27498.63 36398.13 23899.84 1299.48 16196.68 29497.97 34599.67 18492.92 28398.56 37996.88 30892.60 38398.70 286
PC_three_145298.18 13799.84 3599.70 16299.31 398.52 38098.30 19399.80 10399.81 64
mvsany_test393.77 36293.45 36694.74 37595.78 40488.01 40199.64 8398.25 38698.28 12094.31 39297.97 39468.89 40998.51 38197.50 26590.37 39297.71 389
UnsupCasMVSNet_bld93.53 36392.51 36996.58 36897.38 39193.82 37998.24 39899.48 16191.10 39693.10 39796.66 40374.89 40798.37 38294.03 36887.71 40097.56 394
Anonymous2024052196.20 33695.89 33997.13 35497.72 38894.96 36599.79 3199.29 28793.01 38597.20 36599.03 34289.69 34998.36 38391.16 39096.13 31698.07 374
test_f91.90 36991.26 37393.84 37895.52 40885.92 40399.69 6098.53 38295.31 35593.87 39496.37 40555.33 41698.27 38495.70 33890.98 39097.32 397
MDA-MVSNet_test_wron95.45 34794.60 35498.01 31598.16 38097.21 28499.11 31299.24 29793.49 38180.73 41498.98 34993.02 28098.18 38594.22 36694.45 35698.64 314
UnsupCasMVSNet_eth96.44 33196.12 33297.40 34898.65 36195.65 34699.36 23999.51 11997.13 25996.04 38298.99 34788.40 36598.17 38696.71 31390.27 39398.40 355
KD-MVS_2432*160094.62 35593.72 36397.31 34997.19 39795.82 34498.34 39399.20 30495.00 36297.57 35498.35 38087.95 37098.10 38792.87 38177.00 41298.01 378
miper_refine_blended94.62 35593.72 36397.31 34997.19 39795.82 34498.34 39399.20 30495.00 36297.57 35498.35 38087.95 37098.10 38792.87 38177.00 41298.01 378
YYNet195.36 34994.51 35697.92 32297.89 38397.10 28899.10 31499.23 29893.26 38480.77 41399.04 34192.81 28698.02 38994.30 36294.18 36198.64 314
EU-MVSNet97.98 22898.03 20497.81 33398.72 35496.65 32099.66 7499.66 2898.09 15098.35 32399.82 8195.25 20598.01 39097.41 27495.30 34098.78 267
Gipumacopyleft90.99 37190.15 37693.51 37998.73 35290.12 39993.98 41299.45 20179.32 41092.28 40094.91 40769.61 40897.98 39187.42 40395.67 33192.45 410
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 35094.73 35397.15 35295.53 40795.94 34299.35 24499.10 31595.13 35693.55 39597.54 39688.15 36997.91 39294.58 35989.69 39697.61 392
PM-MVS92.96 36692.23 37095.14 37495.61 40589.98 40099.37 23498.21 38894.80 36795.04 39097.69 39565.06 41097.90 39394.30 36289.98 39597.54 395
MDA-MVSNet-bldmvs94.96 35393.98 36097.92 32298.24 37997.27 27999.15 30099.33 26593.80 37780.09 41599.03 34288.31 36697.86 39493.49 37394.36 35898.62 323
Patchmatch-RL test95.84 34395.81 34195.95 37295.61 40590.57 39898.24 39898.39 38395.10 36095.20 38798.67 36994.78 22197.77 39596.28 32790.02 39499.51 180
Anonymous2023120696.22 33496.03 33596.79 36597.31 39494.14 37799.63 8899.08 31896.17 33597.04 36999.06 33993.94 26197.76 39686.96 40595.06 34598.47 346
SD-MVS99.41 5199.52 1299.05 18999.74 8399.68 5199.46 19499.52 10599.11 2999.88 2499.91 2099.43 197.70 39798.72 13799.93 2599.77 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 31197.35 28796.95 36097.84 38493.61 38599.57 12196.63 40796.13 34098.87 26898.61 37294.59 23597.70 39795.08 35398.86 20099.55 164
dongtai93.26 36492.93 36894.25 37699.39 21985.68 40497.68 40793.27 41892.87 38796.85 37399.39 28482.33 40097.48 39976.78 41297.80 25999.58 158
pmmvs394.09 36193.25 36796.60 36794.76 41294.49 37298.92 35198.18 39089.66 39896.48 37698.06 39386.28 37997.33 40089.68 39587.20 40197.97 384
KD-MVS_self_test95.00 35294.34 35796.96 35997.07 39995.39 35699.56 12799.44 20995.11 35897.13 36797.32 40091.86 31597.27 40190.35 39381.23 40998.23 366
FMVSNet596.43 33296.19 33197.15 35299.11 29295.89 34399.32 25099.52 10594.47 37398.34 32499.07 33787.54 37497.07 40292.61 38495.72 33098.47 346
new-patchmatchnet94.48 35894.08 35995.67 37395.08 41092.41 39299.18 29599.28 28994.55 37293.49 39697.37 39987.86 37297.01 40391.57 38888.36 39897.61 392
LCM-MVSNet86.80 37785.22 38191.53 38787.81 41980.96 41398.23 40098.99 33171.05 41290.13 40796.51 40448.45 42096.88 40490.51 39185.30 40396.76 399
CL-MVSNet_self_test94.49 35793.97 36196.08 37196.16 40293.67 38498.33 39599.38 23795.13 35697.33 36198.15 38792.69 29496.57 40588.67 39879.87 41097.99 382
MIMVSNet195.51 34695.04 35196.92 36297.38 39195.60 34799.52 15499.50 13993.65 37996.97 37199.17 32785.28 38796.56 40688.36 40095.55 33598.60 335
test20.0396.12 33895.96 33796.63 36697.44 39095.45 35499.51 16399.38 23796.55 30896.16 38099.25 31993.76 27096.17 40787.35 40494.22 36098.27 362
tmp_tt82.80 37981.52 38286.66 39566.61 42568.44 42492.79 41497.92 39268.96 41380.04 41699.85 5785.77 38196.15 40897.86 22743.89 41895.39 408
test_fmvs392.10 36891.77 37193.08 38296.19 40186.25 40299.82 1698.62 37896.65 29795.19 38896.90 40255.05 41795.93 40996.63 32090.92 39197.06 398
kuosan90.92 37290.11 37793.34 38098.78 34385.59 40598.15 40293.16 42089.37 40192.07 40198.38 37981.48 40395.19 41062.54 41997.04 30099.25 228
dmvs_testset95.02 35196.12 33291.72 38699.10 29580.43 41499.58 11497.87 39497.47 22595.22 38698.82 36193.99 25995.18 41188.09 40194.91 35099.56 163
PMMVS286.87 37685.37 38091.35 38890.21 41783.80 40798.89 35497.45 40083.13 40991.67 40695.03 40648.49 41994.70 41285.86 40977.62 41195.54 407
PMVScopyleft70.75 2275.98 38574.97 38679.01 40170.98 42455.18 42693.37 41398.21 38865.08 41861.78 41993.83 40921.74 42692.53 41378.59 41191.12 38989.34 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 37885.65 37982.75 39986.77 42063.39 42598.35 39298.92 34074.11 41183.39 41098.98 34950.85 41892.40 41484.54 41094.97 34792.46 409
WB-MVS93.10 36594.10 35890.12 39195.51 40981.88 41199.73 5099.27 29295.05 36193.09 39898.91 35894.70 23091.89 41576.62 41394.02 36696.58 401
SSC-MVS92.73 36793.73 36289.72 39295.02 41181.38 41299.76 3799.23 29894.87 36592.80 39998.93 35494.71 22991.37 41674.49 41593.80 36896.42 402
MVEpermissive76.82 2176.91 38474.31 38884.70 39685.38 42276.05 42096.88 41093.17 41967.39 41571.28 41789.01 41621.66 42787.69 41771.74 41672.29 41490.35 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 38179.88 38382.81 39890.75 41676.38 41997.69 40695.76 41166.44 41683.52 40992.25 41162.54 41287.16 41868.53 41761.40 41584.89 416
EMVS80.02 38279.22 38482.43 40091.19 41576.40 41897.55 40992.49 42366.36 41783.01 41191.27 41364.63 41185.79 41965.82 41860.65 41685.08 415
ANet_high77.30 38374.86 38784.62 39775.88 42377.61 41797.63 40893.15 42188.81 40364.27 41889.29 41536.51 42283.93 42075.89 41452.31 41792.33 411
wuyk23d40.18 38641.29 39136.84 40286.18 42149.12 42779.73 41522.81 42727.64 41925.46 42228.45 42221.98 42548.89 42155.80 42023.56 42112.51 419
test12339.01 38842.50 39028.53 40339.17 42620.91 42898.75 36819.17 42819.83 42138.57 42066.67 41833.16 42315.42 42237.50 42229.66 42049.26 417
testmvs39.17 38743.78 38925.37 40436.04 42716.84 42998.36 39126.56 42620.06 42038.51 42167.32 41729.64 42415.30 42337.59 42139.90 41943.98 418
mmdepth0.02 3930.03 3960.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.27 4240.00 4280.00 4240.00 4230.00 4220.00 420
monomultidepth0.02 3930.03 3960.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.27 4240.00 4280.00 4240.00 4230.00 4220.00 420
test_blank0.13 3920.17 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4241.57 4230.00 4280.00 4240.00 4230.00 4220.00 420
uanet_test0.02 3930.03 3960.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.27 4240.00 4280.00 4240.00 4230.00 4220.00 420
DCPMVS0.02 3930.03 3960.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.27 4240.00 4280.00 4240.00 4230.00 4220.00 420
cdsmvs_eth3d_5k24.64 38932.85 3920.00 4050.00 4280.00 4300.00 41699.51 1190.00 4230.00 42499.56 22896.58 1530.00 4240.00 4230.00 4220.00 420
pcd_1.5k_mvsjas8.27 39111.03 3940.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.27 42499.01 180.00 4240.00 4230.00 4220.00 420
sosnet-low-res0.02 3930.03 3960.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.27 4240.00 4280.00 4240.00 4230.00 4220.00 420
sosnet0.02 3930.03 3960.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.27 4240.00 4280.00 4240.00 4230.00 4220.00 420
uncertanet0.02 3930.03 3960.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.27 4240.00 4280.00 4240.00 4230.00 4220.00 420
Regformer0.02 3930.03 3960.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.27 4240.00 4280.00 4240.00 4230.00 4220.00 420
ab-mvs-re8.30 39011.06 3930.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 42499.58 2200.00 4280.00 4240.00 4230.00 4220.00 420
uanet0.02 3930.03 3960.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.27 4240.00 4280.00 4240.00 4230.00 4220.00 420
WAC-MVS97.16 28595.47 344
FOURS199.91 199.93 199.87 899.56 7099.10 3099.81 42
test_one_060199.81 4699.88 899.49 14998.97 5499.65 9799.81 9599.09 14
eth-test20.00 428
eth-test0.00 428
RE-MVS-def99.34 4299.76 6699.82 2599.63 8899.52 10598.38 10999.76 6299.82 8198.75 5898.61 15499.81 9999.77 85
IU-MVS99.84 3299.88 899.32 27598.30 11999.84 3598.86 11799.85 7599.89 19
save fliter99.76 6699.59 7399.14 30299.40 22699.00 46
test072699.85 2699.89 499.62 9399.50 13999.10 3099.86 3399.82 8198.94 32
GSMVS99.52 173
test_part299.81 4699.83 1999.77 57
sam_mvs194.86 21699.52 173
sam_mvs94.72 228
MTGPAbinary99.47 181
MTMP99.54 14598.88 349
test9_res97.49 26699.72 12499.75 91
agg_prior297.21 28499.73 12399.75 91
test_prior499.56 7998.99 337
test_prior298.96 34498.34 11599.01 24499.52 24398.68 6797.96 21999.74 121
新几何299.01 334
旧先验199.74 8399.59 7399.54 8799.69 17298.47 8399.68 13299.73 100
原ACMM298.95 347
test22299.75 7699.49 9298.91 35399.49 14996.42 31999.34 17799.65 19098.28 9699.69 12999.72 106
segment_acmp98.96 25
testdata198.85 35898.32 118
plane_prior799.29 24697.03 298
plane_prior699.27 25196.98 30292.71 292
plane_prior499.61 211
plane_prior397.00 30098.69 8399.11 225
plane_prior299.39 22798.97 54
plane_prior199.26 253
plane_prior96.97 30399.21 29198.45 10297.60 268
n20.00 429
nn0.00 429
door-mid98.05 391
test1199.35 253
door97.92 392
HQP5-MVS96.83 310
HQP-NCC99.19 27198.98 34098.24 12698.66 295
ACMP_Plane99.19 27198.98 34098.24 12698.66 295
BP-MVS97.19 288
HQP3-MVS99.39 22997.58 270
HQP2-MVS92.47 301
NP-MVS99.23 26196.92 30699.40 280
MDTV_nov1_ep13_2view95.18 36199.35 24496.84 28699.58 11995.19 20797.82 23299.46 197
ACMMP++_ref97.19 297
ACMMP++97.43 288
Test By Simon98.75 58