test_fmvsmvis_n_1920 | | | 99.65 3 | 99.61 3 | 99.77 46 | 99.38 203 | 99.37 91 | 99.58 107 | 99.62 36 | 99.41 4 | 99.87 18 | 99.92 11 | 98.81 44 | 100.00 1 | 99.97 1 | 99.93 14 | 99.94 5 |
|
test_fmvsm_n_1920 | | | 99.69 1 | 99.66 1 | 99.78 43 | 99.84 31 | 99.44 85 | 99.58 107 | 99.69 18 | 99.43 2 | 99.98 4 | 99.91 13 | 98.62 68 | 100.00 1 | 99.97 1 | 99.95 9 | 99.90 7 |
|
test_vis1_n_1920 | | | 98.63 150 | 98.40 157 | 99.31 133 | 99.86 20 | 97.94 235 | 99.67 62 | 99.62 36 | 99.43 2 | 99.99 2 | 99.91 13 | 87.29 350 | 100.00 1 | 99.92 4 | 99.92 16 | 99.98 2 |
|
patch_mono-2 | | | 99.26 61 | 99.62 2 | 98.16 278 | 99.81 42 | 94.59 339 | 99.52 141 | 99.64 34 | 99.33 7 | 99.73 52 | 99.90 19 | 99.00 22 | 99.99 4 | 99.69 9 | 99.98 2 | 99.89 10 |
|
h-mvs33 | | | 97.70 258 | 97.28 277 | 98.97 180 | 99.70 96 | 97.27 257 | 99.36 217 | 99.45 184 | 98.94 46 | 99.66 73 | 99.64 182 | 94.93 196 | 99.99 4 | 99.48 31 | 84.36 368 | 99.65 119 |
|
xiu_mvs_v1_base_debu | | | 99.29 56 | 99.27 51 | 99.34 126 | 99.63 124 | 98.97 143 | 99.12 274 | 99.51 107 | 98.86 52 | 99.84 21 | 99.47 245 | 98.18 93 | 99.99 4 | 99.50 26 | 99.31 147 | 99.08 208 |
|
xiu_mvs_v1_base | | | 99.29 56 | 99.27 51 | 99.34 126 | 99.63 124 | 98.97 143 | 99.12 274 | 99.51 107 | 98.86 52 | 99.84 21 | 99.47 245 | 98.18 93 | 99.99 4 | 99.50 26 | 99.31 147 | 99.08 208 |
|
xiu_mvs_v1_base_debi | | | 99.29 56 | 99.27 51 | 99.34 126 | 99.63 124 | 98.97 143 | 99.12 274 | 99.51 107 | 98.86 52 | 99.84 21 | 99.47 245 | 98.18 93 | 99.99 4 | 99.50 26 | 99.31 147 | 99.08 208 |
|
EPNet | | | 98.86 118 | 98.71 122 | 99.30 138 | 97.20 363 | 98.18 218 | 99.62 86 | 98.91 318 | 99.28 10 | 98.63 283 | 99.81 81 | 95.96 160 | 99.99 4 | 99.24 58 | 99.72 108 | 99.73 87 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_cas_vis1_n_1920 | | | 99.16 73 | 99.01 85 | 99.61 74 | 99.81 42 | 98.86 165 | 99.65 73 | 99.64 34 | 99.39 5 | 99.97 7 | 99.94 4 | 93.20 259 | 99.98 10 | 99.55 19 | 99.91 21 | 99.99 1 |
|
test_vis1_n | | | 97.92 221 | 97.44 255 | 99.34 126 | 99.53 156 | 98.08 224 | 99.74 43 | 99.49 134 | 99.15 14 | 100.00 1 | 99.94 4 | 79.51 369 | 99.98 10 | 99.88 5 | 99.76 100 | 99.97 3 |
|
xiu_mvs_v2_base | | | 99.26 61 | 99.25 55 | 99.29 141 | 99.53 156 | 98.91 159 | 99.02 297 | 99.45 184 | 98.80 61 | 99.71 58 | 99.26 299 | 98.94 29 | 99.98 10 | 99.34 45 | 99.23 151 | 98.98 222 |
|
PS-MVSNAJ | | | 99.32 52 | 99.32 34 | 99.30 138 | 99.57 145 | 98.94 155 | 98.97 310 | 99.46 173 | 98.92 49 | 99.71 58 | 99.24 301 | 99.01 18 | 99.98 10 | 99.35 41 | 99.66 118 | 98.97 223 |
|
QAPM | | | 98.67 146 | 98.30 164 | 99.80 38 | 99.20 246 | 99.67 51 | 99.77 34 | 99.72 11 | 94.74 335 | 98.73 264 | 99.90 19 | 95.78 170 | 99.98 10 | 96.96 275 | 99.88 41 | 99.76 77 |
|
3Dnovator | | 97.25 9 | 99.24 65 | 99.05 74 | 99.81 36 | 99.12 264 | 99.66 53 | 99.84 13 | 99.74 10 | 99.09 24 | 98.92 239 | 99.90 19 | 95.94 163 | 99.98 10 | 98.95 83 | 99.92 16 | 99.79 64 |
|
OpenMVS |  | 96.50 16 | 98.47 156 | 98.12 176 | 99.52 101 | 99.04 282 | 99.53 74 | 99.82 17 | 99.72 11 | 94.56 338 | 98.08 312 | 99.88 29 | 94.73 212 | 99.98 10 | 97.47 245 | 99.76 100 | 99.06 214 |
|
test_fmvs1_n | | | 98.41 162 | 98.14 173 | 99.21 152 | 99.82 38 | 97.71 247 | 99.74 43 | 99.49 134 | 99.32 8 | 99.99 2 | 99.95 2 | 85.32 357 | 99.97 17 | 99.82 6 | 99.84 67 | 99.96 4 |
|
CANet_DTU | | | 98.97 108 | 98.87 105 | 99.25 147 | 99.33 215 | 98.42 210 | 99.08 283 | 99.30 263 | 99.16 13 | 99.43 130 | 99.75 128 | 95.27 187 | 99.97 17 | 98.56 148 | 99.95 9 | 99.36 187 |
|
MTAPA | | | 99.52 12 | 99.39 21 | 99.89 4 | 99.90 4 | 99.86 13 | 99.66 67 | 99.47 164 | 98.79 62 | 99.68 64 | 99.81 81 | 98.43 80 | 99.97 17 | 98.88 92 | 99.90 29 | 99.83 39 |
|
PGM-MVS | | | 99.45 27 | 99.31 41 | 99.86 20 | 99.87 15 | 99.78 36 | 99.58 107 | 99.65 32 | 97.84 161 | 99.71 58 | 99.80 94 | 99.12 13 | 99.97 17 | 98.33 169 | 99.87 44 | 99.83 39 |
|
mPP-MVS | | | 99.44 31 | 99.30 43 | 99.86 20 | 99.88 11 | 99.79 30 | 99.69 53 | 99.48 146 | 98.12 128 | 99.50 116 | 99.75 128 | 98.78 48 | 99.97 17 | 98.57 145 | 99.89 38 | 99.83 39 |
|
CP-MVS | | | 99.45 27 | 99.32 34 | 99.85 25 | 99.83 36 | 99.75 39 | 99.69 53 | 99.52 93 | 98.07 138 | 99.53 111 | 99.63 188 | 98.93 33 | 99.97 17 | 98.74 117 | 99.91 21 | 99.83 39 |
|
SteuartSystems-ACMMP | | | 99.54 10 | 99.42 17 | 99.87 11 | 99.82 38 | 99.81 25 | 99.59 99 | 99.51 107 | 98.62 73 | 99.79 34 | 99.83 61 | 99.28 4 | 99.97 17 | 98.48 155 | 99.90 29 | 99.84 30 |
Skip Steuart: Steuart Systems R&D Blog. |
3Dnovator+ | | 97.12 13 | 99.18 69 | 98.97 91 | 99.82 33 | 99.17 257 | 99.68 48 | 99.81 20 | 99.51 107 | 99.20 12 | 98.72 265 | 99.89 23 | 95.68 175 | 99.97 17 | 98.86 100 | 99.86 52 | 99.81 51 |
|
mvsany_test1 | | | 99.50 14 | 99.46 16 | 99.62 73 | 99.61 134 | 99.09 126 | 98.94 316 | 99.48 146 | 99.10 20 | 99.96 8 | 99.91 13 | 98.85 39 | 99.96 25 | 99.72 8 | 99.58 127 | 99.82 44 |
|
test_fmvs1 | | | 98.88 114 | 98.79 116 | 99.16 157 | 99.69 100 | 97.61 249 | 99.55 130 | 99.49 134 | 99.32 8 | 99.98 4 | 99.91 13 | 91.41 306 | 99.96 25 | 99.82 6 | 99.92 16 | 99.90 7 |
|
DVP-MVS++ | | | 99.59 5 | 99.50 10 | 99.88 5 | 99.51 162 | 99.88 8 | 99.87 9 | 99.51 107 | 98.99 37 | 99.88 13 | 99.81 81 | 99.27 5 | 99.96 25 | 98.85 102 | 99.80 87 | 99.81 51 |
|
MSC_two_6792asdad | | | | | 99.87 11 | 99.51 162 | 99.76 37 | | 99.33 245 | | | | | 99.96 25 | 98.87 95 | 99.84 67 | 99.89 10 |
|
No_MVS | | | | | 99.87 11 | 99.51 162 | 99.76 37 | | 99.33 245 | | | | | 99.96 25 | 98.87 95 | 99.84 67 | 99.89 10 |
|
ZD-MVS | | | | | | 99.71 91 | 99.79 30 | | 99.61 41 | 96.84 256 | 99.56 104 | 99.54 221 | 98.58 69 | 99.96 25 | 96.93 278 | 99.75 102 | |
|
SED-MVS | | | 99.61 4 | 99.52 8 | 99.88 5 | 99.84 31 | 99.90 2 | 99.60 93 | 99.48 146 | 99.08 25 | 99.91 9 | 99.81 81 | 99.20 7 | 99.96 25 | 98.91 89 | 99.85 59 | 99.79 64 |
|
test_241102_TWO | | | | | | | | | 99.48 146 | 99.08 25 | 99.88 13 | 99.81 81 | 98.94 29 | 99.96 25 | 98.91 89 | 99.84 67 | 99.88 16 |
|
ZNCC-MVS | | | 99.47 23 | 99.33 32 | 99.87 11 | 99.87 15 | 99.81 25 | 99.64 76 | 99.67 23 | 98.08 137 | 99.55 108 | 99.64 182 | 98.91 34 | 99.96 25 | 98.72 120 | 99.90 29 | 99.82 44 |
|
DVP-MVS |  | | 99.57 9 | 99.47 14 | 99.88 5 | 99.85 25 | 99.89 4 | 99.57 114 | 99.37 228 | 99.10 20 | 99.81 29 | 99.80 94 | 98.94 29 | 99.96 25 | 98.93 86 | 99.86 52 | 99.81 51 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 98.99 37 | 99.81 29 | 99.80 94 | 99.09 14 | 99.96 25 | 98.85 102 | 99.90 29 | 99.88 16 |
|
test_0728_SECOND | | | | | 99.91 2 | 99.84 31 | 99.89 4 | 99.57 114 | 99.51 107 | | | | | 99.96 25 | 98.93 86 | 99.86 52 | 99.88 16 |
|
SR-MVS | | | 99.43 34 | 99.29 47 | 99.86 20 | 99.75 68 | 99.83 16 | 99.59 99 | 99.62 36 | 98.21 114 | 99.73 52 | 99.79 105 | 98.68 62 | 99.96 25 | 98.44 160 | 99.77 97 | 99.79 64 |
|
DPE-MVS |  | | 99.46 25 | 99.32 34 | 99.91 2 | 99.78 51 | 99.88 8 | 99.36 217 | 99.51 107 | 98.73 67 | 99.88 13 | 99.84 57 | 98.72 59 | 99.96 25 | 98.16 182 | 99.87 44 | 99.88 16 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MVS_0304 | | | 99.42 36 | 99.32 34 | 99.72 55 | 99.70 96 | 99.27 103 | 99.52 141 | 97.57 366 | 99.51 1 | 99.82 27 | 99.78 111 | 98.09 97 | 99.96 25 | 99.97 1 | 99.97 5 | 99.94 5 |
|
UA-Net | | | 99.42 36 | 99.29 47 | 99.80 38 | 99.62 130 | 99.55 69 | 99.50 153 | 99.70 15 | 98.79 62 | 99.77 42 | 99.96 1 | 97.45 112 | 99.96 25 | 98.92 88 | 99.90 29 | 99.89 10 |
|
HFP-MVS | | | 99.49 16 | 99.37 24 | 99.86 20 | 99.87 15 | 99.80 27 | 99.66 67 | 99.67 23 | 98.15 123 | 99.68 64 | 99.69 158 | 99.06 16 | 99.96 25 | 98.69 125 | 99.87 44 | 99.84 30 |
|
region2R | | | 99.48 20 | 99.35 28 | 99.87 11 | 99.88 11 | 99.80 27 | 99.65 73 | 99.66 27 | 98.13 127 | 99.66 73 | 99.68 164 | 98.96 24 | 99.96 25 | 98.62 133 | 99.87 44 | 99.84 30 |
|
HPM-MVS++ |  | | 99.39 45 | 99.23 58 | 99.87 11 | 99.75 68 | 99.84 15 | 99.43 185 | 99.51 107 | 98.68 71 | 99.27 174 | 99.53 225 | 98.64 67 | 99.96 25 | 98.44 160 | 99.80 87 | 99.79 64 |
|
APDe-MVS | | | 99.66 2 | 99.57 5 | 99.92 1 | 99.77 57 | 99.89 4 | 99.75 40 | 99.56 61 | 99.02 30 | 99.88 13 | 99.85 47 | 99.18 10 | 99.96 25 | 99.22 59 | 99.92 16 | 99.90 7 |
|
ACMMPR | | | 99.49 16 | 99.36 26 | 99.86 20 | 99.87 15 | 99.79 30 | 99.66 67 | 99.67 23 | 98.15 123 | 99.67 68 | 99.69 158 | 98.95 27 | 99.96 25 | 98.69 125 | 99.87 44 | 99.84 30 |
|
MP-MVS |  | | 99.33 51 | 99.15 64 | 99.87 11 | 99.88 11 | 99.82 22 | 99.66 67 | 99.46 173 | 98.09 133 | 99.48 120 | 99.74 133 | 98.29 88 | 99.96 25 | 97.93 198 | 99.87 44 | 99.82 44 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CPTT-MVS | | | 99.11 89 | 98.90 100 | 99.74 52 | 99.80 48 | 99.46 83 | 99.59 99 | 99.49 134 | 97.03 243 | 99.63 86 | 99.69 158 | 97.27 119 | 99.96 25 | 97.82 208 | 99.84 67 | 99.81 51 |
|
PVSNet_Blended_VisFu | | | 99.36 48 | 99.28 49 | 99.61 74 | 99.86 20 | 99.07 131 | 99.47 172 | 99.93 2 | 97.66 182 | 99.71 58 | 99.86 42 | 97.73 107 | 99.96 25 | 99.47 33 | 99.82 80 | 99.79 64 |
|
UGNet | | | 98.87 115 | 98.69 124 | 99.40 120 | 99.22 243 | 98.72 178 | 99.44 181 | 99.68 20 | 99.24 11 | 99.18 197 | 99.42 255 | 92.74 269 | 99.96 25 | 99.34 45 | 99.94 13 | 99.53 155 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CSCG | | | 99.32 52 | 99.32 34 | 99.32 132 | 99.85 25 | 98.29 213 | 99.71 49 | 99.66 27 | 98.11 130 | 99.41 137 | 99.80 94 | 98.37 85 | 99.96 25 | 98.99 79 | 99.96 8 | 99.72 93 |
|
ACMMP |  | | 99.45 27 | 99.32 34 | 99.82 33 | 99.89 8 | 99.67 51 | 99.62 86 | 99.69 18 | 98.12 128 | 99.63 86 | 99.84 57 | 98.73 58 | 99.96 25 | 98.55 151 | 99.83 76 | 99.81 51 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SR-MVS-dyc-post | | | 99.45 27 | 99.31 41 | 99.85 25 | 99.76 60 | 99.82 22 | 99.63 80 | 99.52 93 | 98.38 92 | 99.76 47 | 99.82 68 | 98.53 73 | 99.95 52 | 98.61 136 | 99.81 83 | 99.77 72 |
|
GST-MVS | | | 99.40 44 | 99.24 56 | 99.85 25 | 99.86 20 | 99.79 30 | 99.60 93 | 99.67 23 | 97.97 149 | 99.63 86 | 99.68 164 | 98.52 74 | 99.95 52 | 98.38 163 | 99.86 52 | 99.81 51 |
|
CANet | | | 99.25 64 | 99.14 65 | 99.59 77 | 99.41 194 | 99.16 115 | 99.35 222 | 99.57 56 | 98.82 57 | 99.51 115 | 99.61 197 | 96.46 145 | 99.95 52 | 99.59 15 | 99.98 2 | 99.65 119 |
|
MP-MVS-pluss | | | 99.37 47 | 99.20 60 | 99.88 5 | 99.90 4 | 99.87 12 | 99.30 232 | 99.52 93 | 97.18 227 | 99.60 96 | 99.79 105 | 98.79 47 | 99.95 52 | 98.83 108 | 99.91 21 | 99.83 39 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MSP-MVS | | | 99.42 36 | 99.27 51 | 99.88 5 | 99.89 8 | 99.80 27 | 99.67 62 | 99.50 126 | 98.70 69 | 99.77 42 | 99.49 237 | 98.21 91 | 99.95 52 | 98.46 159 | 99.77 97 | 99.88 16 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
testdata2 | | | | | | | | | | | | | | 99.95 52 | 96.67 290 | | |
|
APD-MVS_3200maxsize | | | 99.48 20 | 99.35 28 | 99.85 25 | 99.76 60 | 99.83 16 | 99.63 80 | 99.54 77 | 98.36 96 | 99.79 34 | 99.82 68 | 98.86 38 | 99.95 52 | 98.62 133 | 99.81 83 | 99.78 70 |
|
RPMNet | | | 96.72 295 | 95.90 307 | 99.19 154 | 99.18 251 | 98.49 202 | 99.22 260 | 99.52 93 | 88.72 368 | 99.56 104 | 97.38 362 | 94.08 238 | 99.95 52 | 86.87 373 | 98.58 195 | 99.14 200 |
|
sss | | | 99.17 71 | 99.05 74 | 99.53 95 | 99.62 130 | 98.97 143 | 99.36 217 | 99.62 36 | 97.83 162 | 99.67 68 | 99.65 176 | 97.37 116 | 99.95 52 | 99.19 61 | 99.19 154 | 99.68 109 |
|
TSAR-MVS + MP. | | | 99.58 6 | 99.50 10 | 99.81 36 | 99.91 1 | 99.66 53 | 99.63 80 | 99.39 214 | 98.91 50 | 99.78 39 | 99.85 47 | 99.36 2 | 99.94 61 | 98.84 105 | 99.88 41 | 99.82 44 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
XVS | | | 99.53 11 | 99.42 17 | 99.87 11 | 99.85 25 | 99.83 16 | 99.69 53 | 99.68 20 | 98.98 40 | 99.37 150 | 99.74 133 | 98.81 44 | 99.94 61 | 98.79 113 | 99.86 52 | 99.84 30 |
|
X-MVStestdata | | | 96.55 297 | 95.45 315 | 99.87 11 | 99.85 25 | 99.83 16 | 99.69 53 | 99.68 20 | 98.98 40 | 99.37 150 | 64.01 385 | 98.81 44 | 99.94 61 | 98.79 113 | 99.86 52 | 99.84 30 |
|
旧先验2 | | | | | | | | 98.96 311 | | 96.70 263 | 99.47 121 | | | 99.94 61 | 98.19 178 | | |
|
æ–°å‡ ä½•1 | | | | | 99.75 49 | 99.75 68 | 99.59 62 | | 99.54 77 | 96.76 259 | 99.29 169 | 99.64 182 | 98.43 80 | 99.94 61 | 96.92 280 | 99.66 118 | 99.72 93 |
|
testdata | | | | | 99.54 87 | 99.75 68 | 98.95 152 | | 99.51 107 | 97.07 239 | 99.43 130 | 99.70 148 | 98.87 37 | 99.94 61 | 97.76 215 | 99.64 121 | 99.72 93 |
|
HPM-MVS |  | | 99.42 36 | 99.28 49 | 99.83 32 | 99.90 4 | 99.72 42 | 99.81 20 | 99.54 77 | 97.59 186 | 99.68 64 | 99.63 188 | 98.91 34 | 99.94 61 | 98.58 142 | 99.91 21 | 99.84 30 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CHOSEN 1792x2688 | | | 99.19 67 | 99.10 69 | 99.45 113 | 99.89 8 | 98.52 198 | 99.39 206 | 99.94 1 | 98.73 67 | 99.11 206 | 99.89 23 | 95.50 179 | 99.94 61 | 99.50 26 | 99.97 5 | 99.89 10 |
|
APD-MVS |  | | 99.27 59 | 99.08 72 | 99.84 31 | 99.75 68 | 99.79 30 | 99.50 153 | 99.50 126 | 97.16 229 | 99.77 42 | 99.82 68 | 98.78 48 | 99.94 61 | 97.56 236 | 99.86 52 | 99.80 60 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DELS-MVS | | | 99.48 20 | 99.42 17 | 99.65 63 | 99.72 86 | 99.40 90 | 99.05 289 | 99.66 27 | 99.14 15 | 99.57 103 | 99.80 94 | 98.46 78 | 99.94 61 | 99.57 17 | 99.84 67 | 99.60 136 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
WTY-MVS | | | 99.06 97 | 98.88 104 | 99.61 74 | 99.62 130 | 99.16 115 | 99.37 213 | 99.56 61 | 98.04 144 | 99.53 111 | 99.62 193 | 96.84 133 | 99.94 61 | 98.85 102 | 98.49 202 | 99.72 93 |
|
DeepC-MVS | | 98.35 2 | 99.30 54 | 99.19 61 | 99.64 68 | 99.82 38 | 99.23 108 | 99.62 86 | 99.55 69 | 98.94 46 | 99.63 86 | 99.95 2 | 95.82 169 | 99.94 61 | 99.37 40 | 99.97 5 | 99.73 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LS3D | | | 99.27 59 | 99.12 67 | 99.74 52 | 99.18 251 | 99.75 39 | 99.56 120 | 99.57 56 | 98.45 86 | 99.49 119 | 99.85 47 | 97.77 106 | 99.94 61 | 98.33 169 | 99.84 67 | 99.52 156 |
|
SDMVSNet | | | 99.11 89 | 98.90 100 | 99.75 49 | 99.81 42 | 99.59 62 | 99.81 20 | 99.65 32 | 98.78 65 | 99.64 83 | 99.88 29 | 94.56 220 | 99.93 74 | 99.67 11 | 98.26 211 | 99.72 93 |
|
FE-MVS | | | 98.48 155 | 98.17 169 | 99.40 120 | 99.54 155 | 98.96 147 | 99.68 59 | 98.81 329 | 95.54 321 | 99.62 90 | 99.70 148 | 93.82 246 | 99.93 74 | 97.35 252 | 99.46 134 | 99.32 192 |
|
SF-MVS | | | 99.38 46 | 99.24 56 | 99.79 41 | 99.79 49 | 99.68 48 | 99.57 114 | 99.54 77 | 97.82 166 | 99.71 58 | 99.80 94 | 98.95 27 | 99.93 74 | 98.19 178 | 99.84 67 | 99.74 82 |
|
dcpmvs_2 | | | 99.23 66 | 99.58 4 | 98.16 278 | 99.83 36 | 94.68 337 | 99.76 37 | 99.52 93 | 99.07 27 | 99.98 4 | 99.88 29 | 98.56 71 | 99.93 74 | 99.67 11 | 99.98 2 | 99.87 21 |
|
Anonymous20240529 | | | 98.09 191 | 97.68 227 | 99.34 126 | 99.66 113 | 98.44 207 | 99.40 202 | 99.43 198 | 93.67 345 | 99.22 185 | 99.89 23 | 90.23 322 | 99.93 74 | 99.26 57 | 98.33 205 | 99.66 115 |
|
ACMMP_NAP | | | 99.47 23 | 99.34 30 | 99.88 5 | 99.87 15 | 99.86 13 | 99.47 172 | 99.48 146 | 98.05 143 | 99.76 47 | 99.86 42 | 98.82 43 | 99.93 74 | 98.82 112 | 99.91 21 | 99.84 30 |
|
EI-MVSNet-UG-set | | | 99.58 6 | 99.57 5 | 99.64 68 | 99.78 51 | 99.14 121 | 99.60 93 | 99.45 184 | 99.01 32 | 99.90 11 | 99.83 61 | 98.98 23 | 99.93 74 | 99.59 15 | 99.95 9 | 99.86 23 |
|
æ— å…ˆéªŒ | | | | | | | | 98.99 304 | 99.51 107 | 96.89 253 | | | | 99.93 74 | 97.53 239 | | 99.72 93 |
|
VDDNet | | | 97.55 270 | 97.02 287 | 99.16 157 | 99.49 173 | 98.12 223 | 99.38 211 | 99.30 263 | 95.35 323 | 99.68 64 | 99.90 19 | 82.62 365 | 99.93 74 | 99.31 48 | 98.13 222 | 99.42 180 |
|
ab-mvs | | | 98.86 118 | 98.63 132 | 99.54 87 | 99.64 121 | 99.19 110 | 99.44 181 | 99.54 77 | 97.77 169 | 99.30 166 | 99.81 81 | 94.20 232 | 99.93 74 | 99.17 64 | 98.82 186 | 99.49 166 |
|
F-COLMAP | | | 99.19 67 | 99.04 76 | 99.64 68 | 99.78 51 | 99.27 103 | 99.42 192 | 99.54 77 | 97.29 218 | 99.41 137 | 99.59 202 | 98.42 82 | 99.93 74 | 98.19 178 | 99.69 113 | 99.73 87 |
|
Anonymous202405211 | | | 98.30 172 | 97.98 193 | 99.26 146 | 99.57 145 | 98.16 219 | 99.41 194 | 98.55 348 | 96.03 315 | 99.19 194 | 99.74 133 | 91.87 293 | 99.92 85 | 99.16 65 | 98.29 210 | 99.70 103 |
|
EI-MVSNet-Vis-set | | | 99.58 6 | 99.56 7 | 99.64 68 | 99.78 51 | 99.15 120 | 99.61 92 | 99.45 184 | 99.01 32 | 99.89 12 | 99.82 68 | 99.01 18 | 99.92 85 | 99.56 18 | 99.95 9 | 99.85 26 |
|
VDD-MVS | | | 97.73 252 | 97.35 267 | 98.88 199 | 99.47 182 | 97.12 263 | 99.34 225 | 98.85 325 | 98.19 117 | 99.67 68 | 99.85 47 | 82.98 363 | 99.92 85 | 99.49 30 | 98.32 209 | 99.60 136 |
|
VNet | | | 99.11 89 | 98.90 100 | 99.73 54 | 99.52 160 | 99.56 67 | 99.41 194 | 99.39 214 | 99.01 32 | 99.74 51 | 99.78 111 | 95.56 177 | 99.92 85 | 99.52 24 | 98.18 218 | 99.72 93 |
|
XVG-OURS-SEG-HR | | | 98.69 143 | 98.62 137 | 98.89 197 | 99.71 91 | 97.74 242 | 99.12 274 | 99.54 77 | 98.44 89 | 99.42 133 | 99.71 144 | 94.20 232 | 99.92 85 | 98.54 152 | 98.90 180 | 99.00 219 |
|
HPM-MVS_fast | | | 99.51 13 | 99.40 20 | 99.85 25 | 99.91 1 | 99.79 30 | 99.76 37 | 99.56 61 | 97.72 175 | 99.76 47 | 99.75 128 | 99.13 12 | 99.92 85 | 99.07 73 | 99.92 16 | 99.85 26 |
|
HY-MVS | | 97.30 7 | 98.85 125 | 98.64 131 | 99.47 110 | 99.42 191 | 99.08 129 | 99.62 86 | 99.36 229 | 97.39 211 | 99.28 170 | 99.68 164 | 96.44 147 | 99.92 85 | 98.37 165 | 98.22 213 | 99.40 184 |
|
DP-MVS | | | 99.16 73 | 98.95 95 | 99.78 43 | 99.77 57 | 99.53 74 | 99.41 194 | 99.50 126 | 97.03 243 | 99.04 221 | 99.88 29 | 97.39 113 | 99.92 85 | 98.66 129 | 99.90 29 | 99.87 21 |
|
IB-MVS | | 95.67 18 | 96.22 303 | 95.44 316 | 98.57 235 | 99.21 244 | 96.70 289 | 98.65 344 | 97.74 364 | 96.71 262 | 97.27 333 | 98.54 347 | 86.03 353 | 99.92 85 | 98.47 158 | 86.30 366 | 99.10 203 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
DeepC-MVS_fast | | 98.69 1 | 99.49 16 | 99.39 21 | 99.77 46 | 99.63 124 | 99.59 62 | 99.36 217 | 99.46 173 | 99.07 27 | 99.79 34 | 99.82 68 | 98.85 39 | 99.92 85 | 98.68 127 | 99.87 44 | 99.82 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
9.14 | | | | 99.10 69 | | 99.72 86 | | 99.40 202 | 99.51 107 | 97.53 195 | 99.64 83 | 99.78 111 | 98.84 41 | 99.91 95 | 97.63 227 | 99.82 80 | |
|
SMA-MVS |  | | 99.44 31 | 99.30 43 | 99.85 25 | 99.73 82 | 99.83 16 | 99.56 120 | 99.47 164 | 97.45 203 | 99.78 39 | 99.82 68 | 99.18 10 | 99.91 95 | 98.79 113 | 99.89 38 | 99.81 51 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
TEST9 | | | | | | 99.67 105 | 99.65 56 | 99.05 289 | 99.41 203 | 96.22 300 | 98.95 234 | 99.49 237 | 98.77 51 | 99.91 95 | | | |
|
train_agg | | | 99.02 102 | 98.77 117 | 99.77 46 | 99.67 105 | 99.65 56 | 99.05 289 | 99.41 203 | 96.28 294 | 98.95 234 | 99.49 237 | 98.76 52 | 99.91 95 | 97.63 227 | 99.72 108 | 99.75 78 |
|
test_8 | | | | | | 99.67 105 | 99.61 60 | 99.03 294 | 99.41 203 | 96.28 294 | 98.93 238 | 99.48 242 | 98.76 52 | 99.91 95 | | | |
|
agg_prior | | | | | | 99.67 105 | 99.62 59 | | 99.40 211 | | 98.87 248 | | | 99.91 95 | | | |
|
原ACMM1 | | | | | 99.65 63 | 99.73 82 | 99.33 94 | | 99.47 164 | 97.46 200 | 99.12 204 | 99.66 175 | 98.67 64 | 99.91 95 | 97.70 224 | 99.69 113 | 99.71 102 |
|
LFMVS | | | 97.90 224 | 97.35 267 | 99.54 87 | 99.52 160 | 99.01 138 | 99.39 206 | 98.24 354 | 97.10 237 | 99.65 79 | 99.79 105 | 84.79 359 | 99.91 95 | 99.28 53 | 98.38 204 | 99.69 105 |
|
XVG-OURS | | | 98.73 139 | 98.68 125 | 98.88 199 | 99.70 96 | 97.73 243 | 98.92 318 | 99.55 69 | 98.52 81 | 99.45 124 | 99.84 57 | 95.27 187 | 99.91 95 | 98.08 189 | 98.84 184 | 99.00 219 |
|
PLC |  | 97.94 4 | 99.02 102 | 98.85 109 | 99.53 95 | 99.66 113 | 99.01 138 | 99.24 255 | 99.52 93 | 96.85 255 | 99.27 174 | 99.48 242 | 98.25 90 | 99.91 95 | 97.76 215 | 99.62 124 | 99.65 119 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PCF-MVS | | 97.08 14 | 97.66 265 | 97.06 286 | 99.47 110 | 99.61 134 | 99.09 126 | 98.04 369 | 99.25 274 | 91.24 360 | 98.51 292 | 99.70 148 | 94.55 222 | 99.91 95 | 92.76 351 | 99.85 59 | 99.42 180 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test_vis1_rt | | | 95.81 312 | 95.65 312 | 96.32 338 | 99.67 105 | 91.35 364 | 99.49 163 | 96.74 373 | 98.25 107 | 95.24 353 | 98.10 356 | 74.96 370 | 99.90 106 | 99.53 22 | 98.85 183 | 97.70 358 |
|
FA-MVS(test-final) | | | 98.75 136 | 98.53 150 | 99.41 119 | 99.55 153 | 99.05 134 | 99.80 25 | 99.01 304 | 96.59 276 | 99.58 100 | 99.59 202 | 95.39 182 | 99.90 106 | 97.78 211 | 99.49 133 | 99.28 195 |
|
MCST-MVS | | | 99.43 34 | 99.30 43 | 99.82 33 | 99.79 49 | 99.74 41 | 99.29 236 | 99.40 211 | 98.79 62 | 99.52 113 | 99.62 193 | 98.91 34 | 99.90 106 | 98.64 131 | 99.75 102 | 99.82 44 |
|
CDPH-MVS | | | 99.13 79 | 98.91 99 | 99.80 38 | 99.75 68 | 99.71 44 | 99.15 269 | 99.41 203 | 96.60 274 | 99.60 96 | 99.55 216 | 98.83 42 | 99.90 106 | 97.48 243 | 99.83 76 | 99.78 70 |
|
NCCC | | | 99.34 50 | 99.19 61 | 99.79 41 | 99.61 134 | 99.65 56 | 99.30 232 | 99.48 146 | 98.86 52 | 99.21 188 | 99.63 188 | 98.72 59 | 99.90 106 | 98.25 174 | 99.63 123 | 99.80 60 |
|
114514_t | | | 98.93 110 | 98.67 126 | 99.72 55 | 99.85 25 | 99.53 74 | 99.62 86 | 99.59 49 | 92.65 355 | 99.71 58 | 99.78 111 | 98.06 99 | 99.90 106 | 98.84 105 | 99.91 21 | 99.74 82 |
|
1112_ss | | | 98.98 106 | 98.77 117 | 99.59 77 | 99.68 104 | 99.02 136 | 99.25 253 | 99.48 146 | 97.23 224 | 99.13 202 | 99.58 206 | 96.93 132 | 99.90 106 | 98.87 95 | 98.78 189 | 99.84 30 |
|
PHI-MVS | | | 99.30 54 | 99.17 63 | 99.70 57 | 99.56 149 | 99.52 77 | 99.58 107 | 99.80 8 | 97.12 233 | 99.62 90 | 99.73 139 | 98.58 69 | 99.90 106 | 98.61 136 | 99.91 21 | 99.68 109 |
|
AdaColmap |  | | 99.01 105 | 98.80 113 | 99.66 59 | 99.56 149 | 99.54 71 | 99.18 264 | 99.70 15 | 98.18 121 | 99.35 157 | 99.63 188 | 96.32 150 | 99.90 106 | 97.48 243 | 99.77 97 | 99.55 148 |
|
COLMAP_ROB |  | 97.56 6 | 98.86 118 | 98.75 119 | 99.17 156 | 99.88 11 | 98.53 194 | 99.34 225 | 99.59 49 | 97.55 191 | 98.70 272 | 99.89 23 | 95.83 168 | 99.90 106 | 98.10 184 | 99.90 29 | 99.08 208 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
thisisatest0530 | | | 98.35 168 | 98.03 188 | 99.31 133 | 99.63 124 | 98.56 191 | 99.54 134 | 96.75 372 | 97.53 195 | 99.73 52 | 99.65 176 | 91.25 310 | 99.89 116 | 98.62 133 | 99.56 128 | 99.48 167 |
|
tttt0517 | | | 98.42 160 | 98.14 173 | 99.28 144 | 99.66 113 | 98.38 211 | 99.74 43 | 96.85 370 | 97.68 179 | 99.79 34 | 99.74 133 | 91.39 307 | 99.89 116 | 98.83 108 | 99.56 128 | 99.57 145 |
|
test12 | | | | | 99.75 49 | 99.64 121 | 99.61 60 | | 99.29 267 | | 99.21 188 | | 98.38 84 | 99.89 116 | | 99.74 105 | 99.74 82 |
|
Test_1112_low_res | | | 98.89 113 | 98.66 129 | 99.57 82 | 99.69 100 | 98.95 152 | 99.03 294 | 99.47 164 | 96.98 245 | 99.15 200 | 99.23 302 | 96.77 136 | 99.89 116 | 98.83 108 | 98.78 189 | 99.86 23 |
|
CNLPA | | | 99.14 77 | 98.99 87 | 99.59 77 | 99.58 143 | 99.41 89 | 99.16 266 | 99.44 192 | 98.45 86 | 99.19 194 | 99.49 237 | 98.08 98 | 99.89 116 | 97.73 219 | 99.75 102 | 99.48 167 |
|
sd_testset | | | 98.75 136 | 98.57 146 | 99.29 141 | 99.81 42 | 98.26 215 | 99.56 120 | 99.62 36 | 98.78 65 | 99.64 83 | 99.88 29 | 92.02 290 | 99.88 121 | 99.54 20 | 98.26 211 | 99.72 93 |
|
APD_test1 | | | 95.87 310 | 96.49 295 | 94.00 344 | 99.53 156 | 84.01 371 | 99.54 134 | 99.32 255 | 95.91 317 | 97.99 317 | 99.85 47 | 85.49 356 | 99.88 121 | 91.96 354 | 98.84 184 | 98.12 340 |
|
diffmvs |  | | 99.14 77 | 99.02 81 | 99.51 103 | 99.61 134 | 98.96 147 | 99.28 238 | 99.49 134 | 98.46 85 | 99.72 57 | 99.71 144 | 96.50 144 | 99.88 121 | 99.31 48 | 99.11 161 | 99.67 112 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_BlendedMVS | | | 98.86 118 | 98.80 113 | 99.03 170 | 99.76 60 | 98.79 174 | 99.28 238 | 99.91 3 | 97.42 208 | 99.67 68 | 99.37 270 | 97.53 110 | 99.88 121 | 98.98 80 | 97.29 263 | 98.42 323 |
|
PVSNet_Blended | | | 99.08 95 | 98.97 91 | 99.42 118 | 99.76 60 | 98.79 174 | 98.78 332 | 99.91 3 | 96.74 260 | 99.67 68 | 99.49 237 | 97.53 110 | 99.88 121 | 98.98 80 | 99.85 59 | 99.60 136 |
|
MVS | | | 97.28 284 | 96.55 294 | 99.48 107 | 98.78 315 | 98.95 152 | 99.27 243 | 99.39 214 | 83.53 372 | 98.08 312 | 99.54 221 | 96.97 130 | 99.87 126 | 94.23 334 | 99.16 155 | 99.63 130 |
|
MG-MVS | | | 99.13 79 | 99.02 81 | 99.45 113 | 99.57 145 | 98.63 185 | 99.07 284 | 99.34 238 | 98.99 37 | 99.61 93 | 99.82 68 | 97.98 101 | 99.87 126 | 97.00 271 | 99.80 87 | 99.85 26 |
|
MSDG | | | 98.98 106 | 98.80 113 | 99.53 95 | 99.76 60 | 99.19 110 | 98.75 335 | 99.55 69 | 97.25 221 | 99.47 121 | 99.77 119 | 97.82 104 | 99.87 126 | 96.93 278 | 99.90 29 | 99.54 150 |
|
ETV-MVS | | | 99.26 61 | 99.21 59 | 99.40 120 | 99.46 183 | 99.30 99 | 99.56 120 | 99.52 93 | 98.52 81 | 99.44 129 | 99.27 297 | 98.41 83 | 99.86 129 | 99.10 69 | 99.59 126 | 99.04 215 |
|
thisisatest0515 | | | 98.14 186 | 97.79 211 | 99.19 154 | 99.50 171 | 98.50 201 | 98.61 346 | 96.82 371 | 96.95 249 | 99.54 109 | 99.43 253 | 91.66 302 | 99.86 129 | 98.08 189 | 99.51 132 | 99.22 198 |
|
thres600view7 | | | 97.86 229 | 97.51 243 | 98.92 188 | 99.72 86 | 97.95 233 | 99.59 99 | 98.74 336 | 97.94 151 | 99.27 174 | 98.62 344 | 91.75 296 | 99.86 129 | 93.73 339 | 98.19 217 | 98.96 225 |
|
lupinMVS | | | 99.13 79 | 99.01 85 | 99.46 112 | 99.51 162 | 98.94 155 | 99.05 289 | 99.16 287 | 97.86 157 | 99.80 32 | 99.56 213 | 97.39 113 | 99.86 129 | 98.94 84 | 99.85 59 | 99.58 144 |
|
PVSNet | | 96.02 17 | 98.85 125 | 98.84 110 | 98.89 197 | 99.73 82 | 97.28 256 | 98.32 362 | 99.60 46 | 97.86 157 | 99.50 116 | 99.57 210 | 96.75 137 | 99.86 129 | 98.56 148 | 99.70 112 | 99.54 150 |
|
MAR-MVS | | | 98.86 118 | 98.63 132 | 99.54 87 | 99.37 206 | 99.66 53 | 99.45 176 | 99.54 77 | 96.61 272 | 99.01 224 | 99.40 262 | 97.09 124 | 99.86 129 | 97.68 226 | 99.53 131 | 99.10 203 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
test2506 | | | 96.81 294 | 96.65 292 | 97.29 320 | 99.74 75 | 92.21 361 | 99.60 93 | 85.06 389 | 99.13 16 | 99.77 42 | 99.93 7 | 87.82 348 | 99.85 135 | 99.38 38 | 99.38 139 | 99.80 60 |
|
AllTest | | | 98.87 115 | 98.72 120 | 99.31 133 | 99.86 20 | 98.48 204 | 99.56 120 | 99.61 41 | 97.85 159 | 99.36 154 | 99.85 47 | 95.95 161 | 99.85 135 | 96.66 291 | 99.83 76 | 99.59 140 |
|
TestCases | | | | | 99.31 133 | 99.86 20 | 98.48 204 | | 99.61 41 | 97.85 159 | 99.36 154 | 99.85 47 | 95.95 161 | 99.85 135 | 96.66 291 | 99.83 76 | 99.59 140 |
|
jason | | | 99.13 79 | 99.03 78 | 99.45 113 | 99.46 183 | 98.87 162 | 99.12 274 | 99.26 272 | 98.03 146 | 99.79 34 | 99.65 176 | 97.02 127 | 99.85 135 | 99.02 77 | 99.90 29 | 99.65 119 |
jason: jason. |
CNVR-MVS | | | 99.42 36 | 99.30 43 | 99.78 43 | 99.62 130 | 99.71 44 | 99.26 251 | 99.52 93 | 98.82 57 | 99.39 145 | 99.71 144 | 98.96 24 | 99.85 135 | 98.59 141 | 99.80 87 | 99.77 72 |
|
PAPM_NR | | | 99.04 99 | 98.84 110 | 99.66 59 | 99.74 75 | 99.44 85 | 99.39 206 | 99.38 220 | 97.70 177 | 99.28 170 | 99.28 294 | 98.34 86 | 99.85 135 | 96.96 275 | 99.45 135 | 99.69 105 |
|
test1111 | | | 98.04 201 | 98.11 177 | 97.83 301 | 99.74 75 | 93.82 347 | 99.58 107 | 95.40 378 | 99.12 18 | 99.65 79 | 99.93 7 | 90.73 315 | 99.84 141 | 99.43 36 | 99.38 139 | 99.82 44 |
|
ECVR-MVS |  | | 98.04 201 | 98.05 186 | 98.00 290 | 99.74 75 | 94.37 342 | 99.59 99 | 94.98 379 | 99.13 16 | 99.66 73 | 99.93 7 | 90.67 316 | 99.84 141 | 99.40 37 | 99.38 139 | 99.80 60 |
|
test_yl | | | 98.86 118 | 98.63 132 | 99.54 87 | 99.49 173 | 99.18 112 | 99.50 153 | 99.07 299 | 98.22 112 | 99.61 93 | 99.51 231 | 95.37 183 | 99.84 141 | 98.60 139 | 98.33 205 | 99.59 140 |
|
DCV-MVSNet | | | 98.86 118 | 98.63 132 | 99.54 87 | 99.49 173 | 99.18 112 | 99.50 153 | 99.07 299 | 98.22 112 | 99.61 93 | 99.51 231 | 95.37 183 | 99.84 141 | 98.60 139 | 98.33 205 | 99.59 140 |
|
Fast-Effi-MVS+ | | | 98.70 141 | 98.43 154 | 99.51 103 | 99.51 162 | 99.28 101 | 99.52 141 | 99.47 164 | 96.11 310 | 99.01 224 | 99.34 280 | 96.20 154 | 99.84 141 | 97.88 201 | 98.82 186 | 99.39 185 |
|
TSAR-MVS + GP. | | | 99.36 48 | 99.36 26 | 99.36 125 | 99.67 105 | 98.61 188 | 99.07 284 | 99.33 245 | 99.00 35 | 99.82 27 | 99.81 81 | 99.06 16 | 99.84 141 | 99.09 70 | 99.42 137 | 99.65 119 |
|
tpmrst | | | 98.33 169 | 98.48 152 | 97.90 296 | 99.16 259 | 94.78 335 | 99.31 230 | 99.11 292 | 97.27 219 | 99.45 124 | 99.59 202 | 95.33 185 | 99.84 141 | 98.48 155 | 98.61 192 | 99.09 207 |
|
Vis-MVSNet |  | | 99.12 85 | 98.97 91 | 99.56 84 | 99.78 51 | 99.10 125 | 99.68 59 | 99.66 27 | 98.49 83 | 99.86 19 | 99.87 37 | 94.77 209 | 99.84 141 | 99.19 61 | 99.41 138 | 99.74 82 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PAPR | | | 98.63 150 | 98.34 160 | 99.51 103 | 99.40 199 | 99.03 135 | 98.80 330 | 99.36 229 | 96.33 291 | 99.00 228 | 99.12 316 | 98.46 78 | 99.84 141 | 95.23 321 | 99.37 146 | 99.66 115 |
|
PatchMatch-RL | | | 98.84 128 | 98.62 137 | 99.52 101 | 99.71 91 | 99.28 101 | 99.06 287 | 99.77 9 | 97.74 174 | 99.50 116 | 99.53 225 | 95.41 181 | 99.84 141 | 97.17 265 | 99.64 121 | 99.44 178 |
|
EPP-MVSNet | | | 99.13 79 | 98.99 87 | 99.53 95 | 99.65 119 | 99.06 132 | 99.81 20 | 99.33 245 | 97.43 206 | 99.60 96 | 99.88 29 | 97.14 121 | 99.84 141 | 99.13 66 | 98.94 175 | 99.69 105 |
|
thres100view900 | | | 97.76 245 | 97.45 250 | 98.69 226 | 99.72 86 | 97.86 239 | 99.59 99 | 98.74 336 | 97.93 152 | 99.26 178 | 98.62 344 | 91.75 296 | 99.83 152 | 93.22 344 | 98.18 218 | 98.37 329 |
|
tfpn200view9 | | | 97.72 254 | 97.38 263 | 98.72 224 | 99.69 100 | 97.96 231 | 99.50 153 | 98.73 341 | 97.83 162 | 99.17 198 | 98.45 349 | 91.67 300 | 99.83 152 | 93.22 344 | 98.18 218 | 98.37 329 |
|
test_prior | | | | | 99.68 58 | 99.67 105 | 99.48 81 | | 99.56 61 | | | | | 99.83 152 | | | 99.74 82 |
|
1314 | | | 98.68 145 | 98.54 149 | 99.11 162 | 98.89 299 | 98.65 183 | 99.27 243 | 99.49 134 | 96.89 253 | 97.99 317 | 99.56 213 | 97.72 108 | 99.83 152 | 97.74 218 | 99.27 150 | 98.84 231 |
|
thres400 | | | 97.77 244 | 97.38 263 | 98.92 188 | 99.69 100 | 97.96 231 | 99.50 153 | 98.73 341 | 97.83 162 | 99.17 198 | 98.45 349 | 91.67 300 | 99.83 152 | 93.22 344 | 98.18 218 | 98.96 225 |
|
casdiffmvs |  | | 99.13 79 | 98.98 90 | 99.56 84 | 99.65 119 | 99.16 115 | 99.56 120 | 99.50 126 | 98.33 100 | 99.41 137 | 99.86 42 | 95.92 164 | 99.83 152 | 99.45 35 | 99.16 155 | 99.70 103 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CS-MVS-test | | | 99.49 16 | 99.48 12 | 99.54 87 | 99.78 51 | 99.30 99 | 99.89 2 | 99.58 53 | 98.56 77 | 99.73 52 | 99.69 158 | 98.55 72 | 99.82 158 | 99.69 9 | 99.85 59 | 99.48 167 |
|
MVS_Test | | | 99.10 93 | 98.97 91 | 99.48 107 | 99.49 173 | 99.14 121 | 99.67 62 | 99.34 238 | 97.31 216 | 99.58 100 | 99.76 125 | 97.65 109 | 99.82 158 | 98.87 95 | 99.07 167 | 99.46 175 |
|
dp | | | 97.75 249 | 97.80 210 | 97.59 312 | 99.10 269 | 93.71 350 | 99.32 228 | 98.88 322 | 96.48 283 | 99.08 213 | 99.55 216 | 92.67 275 | 99.82 158 | 96.52 294 | 98.58 195 | 99.24 197 |
|
RPSCF | | | 98.22 176 | 98.62 137 | 96.99 326 | 99.82 38 | 91.58 363 | 99.72 47 | 99.44 192 | 96.61 272 | 99.66 73 | 99.89 23 | 95.92 164 | 99.82 158 | 97.46 246 | 99.10 164 | 99.57 145 |
|
PMMVS | | | 98.80 132 | 98.62 137 | 99.34 126 | 99.27 232 | 98.70 179 | 98.76 334 | 99.31 259 | 97.34 213 | 99.21 188 | 99.07 318 | 97.20 120 | 99.82 158 | 98.56 148 | 98.87 181 | 99.52 156 |
|
EIA-MVS | | | 99.18 69 | 99.09 71 | 99.45 113 | 99.49 173 | 99.18 112 | 99.67 62 | 99.53 88 | 97.66 182 | 99.40 142 | 99.44 251 | 98.10 96 | 99.81 163 | 98.94 84 | 99.62 124 | 99.35 188 |
|
Effi-MVS+ | | | 98.81 129 | 98.59 144 | 99.48 107 | 99.46 183 | 99.12 124 | 98.08 368 | 99.50 126 | 97.50 198 | 99.38 148 | 99.41 259 | 96.37 149 | 99.81 163 | 99.11 68 | 98.54 199 | 99.51 162 |
|
thres200 | | | 97.61 268 | 97.28 277 | 98.62 229 | 99.64 121 | 98.03 225 | 99.26 251 | 98.74 336 | 97.68 179 | 99.09 212 | 98.32 353 | 91.66 302 | 99.81 163 | 92.88 348 | 98.22 213 | 98.03 345 |
|
tpmvs | | | 97.98 212 | 98.02 190 | 97.84 300 | 99.04 282 | 94.73 336 | 99.31 230 | 99.20 282 | 96.10 314 | 98.76 262 | 99.42 255 | 94.94 195 | 99.81 163 | 96.97 274 | 98.45 203 | 98.97 223 |
|
casdiffmvs_mvg |  | | 99.15 75 | 99.02 81 | 99.55 86 | 99.66 113 | 99.09 126 | 99.64 76 | 99.56 61 | 98.26 106 | 99.45 124 | 99.87 37 | 96.03 158 | 99.81 163 | 99.54 20 | 99.15 158 | 99.73 87 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DeepPCF-MVS | | 98.18 3 | 98.81 129 | 99.37 24 | 97.12 324 | 99.60 139 | 91.75 362 | 98.61 346 | 99.44 192 | 99.35 6 | 99.83 26 | 99.85 47 | 98.70 61 | 99.81 163 | 99.02 77 | 99.91 21 | 99.81 51 |
|
DPM-MVS | | | 98.95 109 | 98.71 122 | 99.66 59 | 99.63 124 | 99.55 69 | 98.64 345 | 99.10 293 | 97.93 152 | 99.42 133 | 99.55 216 | 98.67 64 | 99.80 169 | 95.80 308 | 99.68 116 | 99.61 134 |
|
DP-MVS Recon | | | 99.12 85 | 98.95 95 | 99.65 63 | 99.74 75 | 99.70 46 | 99.27 243 | 99.57 56 | 96.40 290 | 99.42 133 | 99.68 164 | 98.75 55 | 99.80 169 | 97.98 195 | 99.72 108 | 99.44 178 |
|
MVS_111021_LR | | | 99.41 41 | 99.33 32 | 99.65 63 | 99.77 57 | 99.51 78 | 98.94 316 | 99.85 6 | 98.82 57 | 99.65 79 | 99.74 133 | 98.51 75 | 99.80 169 | 98.83 108 | 99.89 38 | 99.64 126 |
|
CS-MVS | | | 99.50 14 | 99.48 12 | 99.54 87 | 99.76 60 | 99.42 87 | 99.90 1 | 99.55 69 | 98.56 77 | 99.78 39 | 99.70 148 | 98.65 66 | 99.79 172 | 99.65 13 | 99.78 94 | 99.41 182 |
|
Fast-Effi-MVS+-dtu | | | 98.77 135 | 98.83 112 | 98.60 230 | 99.41 194 | 96.99 277 | 99.52 141 | 99.49 134 | 98.11 130 | 99.24 180 | 99.34 280 | 96.96 131 | 99.79 172 | 97.95 197 | 99.45 135 | 99.02 218 |
|
baseline1 | | | 98.31 170 | 97.95 197 | 99.38 124 | 99.50 171 | 98.74 176 | 99.59 99 | 98.93 312 | 98.41 90 | 99.14 201 | 99.60 200 | 94.59 218 | 99.79 172 | 98.48 155 | 93.29 339 | 99.61 134 |
|
baseline | | | 99.15 75 | 99.02 81 | 99.53 95 | 99.66 113 | 99.14 121 | 99.72 47 | 99.48 146 | 98.35 97 | 99.42 133 | 99.84 57 | 96.07 156 | 99.79 172 | 99.51 25 | 99.14 159 | 99.67 112 |
|
PVSNet_0 | | 94.43 19 | 96.09 308 | 95.47 314 | 97.94 293 | 99.31 222 | 94.34 344 | 97.81 370 | 99.70 15 | 97.12 233 | 97.46 329 | 98.75 341 | 89.71 326 | 99.79 172 | 97.69 225 | 81.69 372 | 99.68 109 |
|
API-MVS | | | 99.04 99 | 99.03 78 | 99.06 166 | 99.40 199 | 99.31 98 | 99.55 130 | 99.56 61 | 98.54 79 | 99.33 161 | 99.39 266 | 98.76 52 | 99.78 177 | 96.98 273 | 99.78 94 | 98.07 342 |
|
OMC-MVS | | | 99.08 95 | 99.04 76 | 99.20 153 | 99.67 105 | 98.22 217 | 99.28 238 | 99.52 93 | 98.07 138 | 99.66 73 | 99.81 81 | 97.79 105 | 99.78 177 | 97.79 210 | 99.81 83 | 99.60 136 |
|
GeoE | | | 98.85 125 | 98.62 137 | 99.53 95 | 99.61 134 | 99.08 129 | 99.80 25 | 99.51 107 | 97.10 237 | 99.31 164 | 99.78 111 | 95.23 191 | 99.77 179 | 98.21 176 | 99.03 170 | 99.75 78 |
|
alignmvs | | | 98.81 129 | 98.56 148 | 99.58 80 | 99.43 189 | 99.42 87 | 99.51 147 | 98.96 310 | 98.61 74 | 99.35 157 | 98.92 334 | 94.78 206 | 99.77 179 | 99.35 41 | 98.11 223 | 99.54 150 |
|
tpm cat1 | | | 97.39 281 | 97.36 265 | 97.50 315 | 99.17 257 | 93.73 349 | 99.43 185 | 99.31 259 | 91.27 359 | 98.71 266 | 99.08 317 | 94.31 230 | 99.77 179 | 96.41 298 | 98.50 201 | 99.00 219 |
|
CostFormer | | | 97.72 254 | 97.73 223 | 97.71 308 | 99.15 262 | 94.02 346 | 99.54 134 | 99.02 303 | 94.67 336 | 99.04 221 | 99.35 276 | 92.35 287 | 99.77 179 | 98.50 154 | 97.94 226 | 99.34 190 |
|
test_241102_ONE | | | | | | 99.84 31 | 99.90 2 | | 99.48 146 | 99.07 27 | 99.91 9 | 99.74 133 | 99.20 7 | 99.76 183 | | | |
|
MDTV_nov1_ep13 | | | | 98.32 162 | | 99.11 266 | 94.44 341 | 99.27 243 | 98.74 336 | 97.51 197 | 99.40 142 | 99.62 193 | 94.78 206 | 99.76 183 | 97.59 230 | 98.81 188 | |
|
canonicalmvs | | | 99.02 102 | 98.86 108 | 99.51 103 | 99.42 191 | 99.32 95 | 99.80 25 | 99.48 146 | 98.63 72 | 99.31 164 | 98.81 338 | 97.09 124 | 99.75 185 | 99.27 56 | 97.90 227 | 99.47 173 |
|
Effi-MVS+-dtu | | | 98.78 133 | 98.89 103 | 98.47 250 | 99.33 215 | 96.91 283 | 99.57 114 | 99.30 263 | 98.47 84 | 99.41 137 | 98.99 327 | 96.78 135 | 99.74 186 | 98.73 119 | 99.38 139 | 98.74 245 |
|
patchmatchnet-post | | | | | | | | | | | | 98.70 342 | 94.79 205 | 99.74 186 | | | |
|
SCA | | | 98.19 180 | 98.16 170 | 98.27 273 | 99.30 223 | 95.55 318 | 99.07 284 | 98.97 308 | 97.57 189 | 99.43 130 | 99.57 210 | 92.72 270 | 99.74 186 | 97.58 231 | 99.20 153 | 99.52 156 |
|
BH-untuned | | | 98.42 160 | 98.36 158 | 98.59 231 | 99.49 173 | 96.70 289 | 99.27 243 | 99.13 291 | 97.24 223 | 98.80 257 | 99.38 267 | 95.75 171 | 99.74 186 | 97.07 269 | 99.16 155 | 99.33 191 |
|
BH-RMVSNet | | | 98.41 162 | 98.08 182 | 99.40 120 | 99.41 194 | 98.83 170 | 99.30 232 | 98.77 332 | 97.70 177 | 98.94 236 | 99.65 176 | 92.91 265 | 99.74 186 | 96.52 294 | 99.55 130 | 99.64 126 |
|
MVS_111021_HR | | | 99.41 41 | 99.32 34 | 99.66 59 | 99.72 86 | 99.47 82 | 98.95 314 | 99.85 6 | 98.82 57 | 99.54 109 | 99.73 139 | 98.51 75 | 99.74 186 | 98.91 89 | 99.88 41 | 99.77 72 |
|
test_post | | | | | | | | | | | | 65.99 383 | 94.65 217 | 99.73 192 | | | |
|
XVG-ACMP-BASELINE | | | 97.83 235 | 97.71 225 | 98.20 275 | 99.11 266 | 96.33 303 | 99.41 194 | 99.52 93 | 98.06 142 | 99.05 220 | 99.50 234 | 89.64 328 | 99.73 192 | 97.73 219 | 97.38 261 | 98.53 311 |
|
HyFIR lowres test | | | 99.11 89 | 98.92 97 | 99.65 63 | 99.90 4 | 99.37 91 | 99.02 297 | 99.91 3 | 97.67 181 | 99.59 99 | 99.75 128 | 95.90 166 | 99.73 192 | 99.53 22 | 99.02 172 | 99.86 23 |
|
DeepMVS_CX |  | | | | 93.34 347 | 99.29 227 | 82.27 374 | | 99.22 278 | 85.15 370 | 96.33 346 | 99.05 321 | 90.97 313 | 99.73 192 | 93.57 341 | 97.77 230 | 98.01 346 |
|
Patchmatch-test | | | 97.93 218 | 97.65 230 | 98.77 221 | 99.18 251 | 97.07 268 | 99.03 294 | 99.14 290 | 96.16 305 | 98.74 263 | 99.57 210 | 94.56 220 | 99.72 196 | 93.36 343 | 99.11 161 | 99.52 156 |
|
LPG-MVS_test | | | 98.22 176 | 98.13 175 | 98.49 244 | 99.33 215 | 97.05 270 | 99.58 107 | 99.55 69 | 97.46 200 | 99.24 180 | 99.83 61 | 92.58 277 | 99.72 196 | 98.09 185 | 97.51 245 | 98.68 264 |
|
LGP-MVS_train | | | | | 98.49 244 | 99.33 215 | 97.05 270 | | 99.55 69 | 97.46 200 | 99.24 180 | 99.83 61 | 92.58 277 | 99.72 196 | 98.09 185 | 97.51 245 | 98.68 264 |
|
BH-w/o | | | 98.00 210 | 97.89 206 | 98.32 266 | 99.35 209 | 96.20 307 | 99.01 302 | 98.90 320 | 96.42 288 | 98.38 299 | 99.00 326 | 95.26 189 | 99.72 196 | 96.06 302 | 98.61 192 | 99.03 216 |
|
ACMP | | 97.20 11 | 98.06 195 | 97.94 199 | 98.45 252 | 99.37 206 | 97.01 275 | 99.44 181 | 99.49 134 | 97.54 194 | 98.45 296 | 99.79 105 | 91.95 292 | 99.72 196 | 97.91 199 | 97.49 250 | 98.62 294 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LTVRE_ROB | | 97.16 12 | 98.02 205 | 97.90 202 | 98.40 259 | 99.23 240 | 96.80 287 | 99.70 50 | 99.60 46 | 97.12 233 | 98.18 309 | 99.70 148 | 91.73 298 | 99.72 196 | 98.39 162 | 97.45 253 | 98.68 264 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test_post1 | | | | | | | | 99.23 256 | | | | 65.14 384 | 94.18 235 | 99.71 202 | 97.58 231 | | |
|
ADS-MVSNet | | | 98.20 179 | 98.08 182 | 98.56 238 | 99.33 215 | 96.48 298 | 99.23 256 | 99.15 288 | 96.24 298 | 99.10 209 | 99.67 170 | 94.11 236 | 99.71 202 | 96.81 283 | 99.05 168 | 99.48 167 |
|
JIA-IIPM | | | 97.50 275 | 97.02 287 | 98.93 186 | 98.73 321 | 97.80 241 | 99.30 232 | 98.97 308 | 91.73 358 | 98.91 240 | 94.86 372 | 95.10 193 | 99.71 202 | 97.58 231 | 97.98 225 | 99.28 195 |
|
EPMVS | | | 97.82 238 | 97.65 230 | 98.35 263 | 98.88 300 | 95.98 310 | 99.49 163 | 94.71 381 | 97.57 189 | 99.26 178 | 99.48 242 | 92.46 284 | 99.71 202 | 97.87 203 | 99.08 166 | 99.35 188 |
|
TDRefinement | | | 95.42 316 | 94.57 323 | 97.97 292 | 89.83 382 | 96.11 309 | 99.48 167 | 98.75 333 | 96.74 260 | 96.68 343 | 99.88 29 | 88.65 337 | 99.71 202 | 98.37 165 | 82.74 371 | 98.09 341 |
|
ACMM | | 97.58 5 | 98.37 167 | 98.34 160 | 98.48 246 | 99.41 194 | 97.10 264 | 99.56 120 | 99.45 184 | 98.53 80 | 99.04 221 | 99.85 47 | 93.00 261 | 99.71 202 | 98.74 117 | 97.45 253 | 98.64 283 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tt0805 | | | 97.97 215 | 97.77 216 | 98.57 235 | 99.59 141 | 96.61 294 | 99.45 176 | 99.08 296 | 98.21 114 | 98.88 245 | 99.80 94 | 88.66 336 | 99.70 208 | 98.58 142 | 97.72 231 | 99.39 185 |
|
CHOSEN 280x420 | | | 99.12 85 | 99.13 66 | 99.08 163 | 99.66 113 | 97.89 236 | 98.43 356 | 99.71 13 | 98.88 51 | 99.62 90 | 99.76 125 | 96.63 140 | 99.70 208 | 99.46 34 | 99.99 1 | 99.66 115 |
|
EC-MVSNet | | | 99.44 31 | 99.39 21 | 99.58 80 | 99.56 149 | 99.49 79 | 99.88 4 | 99.58 53 | 98.38 92 | 99.73 52 | 99.69 158 | 98.20 92 | 99.70 208 | 99.64 14 | 99.82 80 | 99.54 150 |
|
PatchmatchNet |  | | 98.31 170 | 98.36 158 | 98.19 276 | 99.16 259 | 95.32 326 | 99.27 243 | 98.92 314 | 97.37 212 | 99.37 150 | 99.58 206 | 94.90 199 | 99.70 208 | 97.43 249 | 99.21 152 | 99.54 150 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ACMH | | 97.28 8 | 98.10 190 | 97.99 192 | 98.44 255 | 99.41 194 | 96.96 281 | 99.60 93 | 99.56 61 | 98.09 133 | 98.15 310 | 99.91 13 | 90.87 314 | 99.70 208 | 98.88 92 | 97.45 253 | 98.67 271 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HQP_MVS | | | 98.27 175 | 98.22 168 | 98.44 255 | 99.29 227 | 96.97 279 | 99.39 206 | 99.47 164 | 98.97 43 | 99.11 206 | 99.61 197 | 92.71 272 | 99.69 213 | 97.78 211 | 97.63 233 | 98.67 271 |
|
plane_prior5 | | | | | | | | | 99.47 164 | | | | | 99.69 213 | 97.78 211 | 97.63 233 | 98.67 271 |
|
D2MVS | | | 98.41 162 | 98.50 151 | 98.15 281 | 99.26 234 | 96.62 293 | 99.40 202 | 99.61 41 | 97.71 176 | 98.98 230 | 99.36 273 | 96.04 157 | 99.67 215 | 98.70 122 | 97.41 258 | 98.15 339 |
|
IS-MVSNet | | | 99.05 98 | 98.87 105 | 99.57 82 | 99.73 82 | 99.32 95 | 99.75 40 | 99.20 282 | 98.02 147 | 99.56 104 | 99.86 42 | 96.54 143 | 99.67 215 | 98.09 185 | 99.13 160 | 99.73 87 |
|
CLD-MVS | | | 98.16 184 | 98.10 178 | 98.33 264 | 99.29 227 | 96.82 286 | 98.75 335 | 99.44 192 | 97.83 162 | 99.13 202 | 99.55 216 | 92.92 263 | 99.67 215 | 98.32 171 | 97.69 232 | 98.48 315 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_fmvs2 | | | 97.25 285 | 97.30 275 | 97.09 325 | 99.43 189 | 93.31 355 | 99.73 46 | 98.87 324 | 98.83 56 | 99.28 170 | 99.80 94 | 84.45 360 | 99.66 218 | 97.88 201 | 97.45 253 | 98.30 331 |
|
AUN-MVS | | | 96.88 292 | 96.31 298 | 98.59 231 | 99.48 181 | 97.04 273 | 99.27 243 | 99.22 278 | 97.44 205 | 98.51 292 | 99.41 259 | 91.97 291 | 99.66 218 | 97.71 222 | 83.83 369 | 99.07 213 |
|
UniMVSNet_ETH3D | | | 97.32 283 | 96.81 290 | 98.87 203 | 99.40 199 | 97.46 252 | 99.51 147 | 99.53 88 | 95.86 318 | 98.54 291 | 99.77 119 | 82.44 366 | 99.66 218 | 98.68 127 | 97.52 243 | 99.50 165 |
|
OPM-MVS | | | 98.19 180 | 98.10 178 | 98.45 252 | 98.88 300 | 97.07 268 | 99.28 238 | 99.38 220 | 98.57 76 | 99.22 185 | 99.81 81 | 92.12 288 | 99.66 218 | 98.08 189 | 97.54 242 | 98.61 303 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
ACMH+ | | 97.24 10 | 97.92 221 | 97.78 214 | 98.32 266 | 99.46 183 | 96.68 291 | 99.56 120 | 99.54 77 | 98.41 90 | 97.79 325 | 99.87 37 | 90.18 323 | 99.66 218 | 98.05 193 | 97.18 269 | 98.62 294 |
|
hse-mvs2 | | | 97.50 275 | 97.14 283 | 98.59 231 | 99.49 173 | 97.05 270 | 99.28 238 | 99.22 278 | 98.94 46 | 99.66 73 | 99.42 255 | 94.93 196 | 99.65 223 | 99.48 31 | 83.80 370 | 99.08 208 |
|
VPA-MVSNet | | | 98.29 173 | 97.95 197 | 99.30 138 | 99.16 259 | 99.54 71 | 99.50 153 | 99.58 53 | 98.27 105 | 99.35 157 | 99.37 270 | 92.53 279 | 99.65 223 | 99.35 41 | 94.46 324 | 98.72 248 |
|
TR-MVS | | | 97.76 245 | 97.41 261 | 98.82 214 | 99.06 278 | 97.87 237 | 98.87 324 | 98.56 347 | 96.63 271 | 98.68 274 | 99.22 303 | 92.49 280 | 99.65 223 | 95.40 318 | 97.79 229 | 98.95 227 |
|
gm-plane-assit | | | | | | 98.54 340 | 92.96 357 | | | 94.65 337 | | 99.15 311 | | 99.64 226 | 97.56 236 | | |
|
HQP4-MVS | | | | | | | | | | | 98.66 275 | | | 99.64 226 | | | 98.64 283 |
|
HQP-MVS | | | 98.02 205 | 97.90 202 | 98.37 262 | 99.19 248 | 96.83 284 | 98.98 307 | 99.39 214 | 98.24 108 | 98.66 275 | 99.40 262 | 92.47 281 | 99.64 226 | 97.19 262 | 97.58 238 | 98.64 283 |
|
PAPM | | | 97.59 269 | 97.09 285 | 99.07 165 | 99.06 278 | 98.26 215 | 98.30 363 | 99.10 293 | 94.88 332 | 98.08 312 | 99.34 280 | 96.27 152 | 99.64 226 | 89.87 361 | 98.92 178 | 99.31 193 |
|
TAPA-MVS | | 97.07 15 | 97.74 251 | 97.34 270 | 98.94 184 | 99.70 96 | 97.53 250 | 99.25 253 | 99.51 107 | 91.90 357 | 99.30 166 | 99.63 188 | 98.78 48 | 99.64 226 | 88.09 368 | 99.87 44 | 99.65 119 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
XXY-MVS | | | 98.38 166 | 98.09 181 | 99.24 149 | 99.26 234 | 99.32 95 | 99.56 120 | 99.55 69 | 97.45 203 | 98.71 266 | 99.83 61 | 93.23 256 | 99.63 231 | 98.88 92 | 96.32 284 | 98.76 240 |
|
ITE_SJBPF | | | | | 98.08 283 | 99.29 227 | 96.37 301 | | 98.92 314 | 98.34 98 | 98.83 253 | 99.75 128 | 91.09 311 | 99.62 232 | 95.82 306 | 97.40 259 | 98.25 335 |
|
LF4IMVS | | | 97.52 272 | 97.46 249 | 97.70 309 | 98.98 290 | 95.55 318 | 99.29 236 | 98.82 328 | 98.07 138 | 98.66 275 | 99.64 182 | 89.97 324 | 99.61 233 | 97.01 270 | 96.68 274 | 97.94 352 |
|
tpm | | | 97.67 264 | 97.55 237 | 98.03 285 | 99.02 284 | 95.01 332 | 99.43 185 | 98.54 349 | 96.44 286 | 99.12 204 | 99.34 280 | 91.83 295 | 99.60 234 | 97.75 217 | 96.46 280 | 99.48 167 |
|
tpm2 | | | 97.44 280 | 97.34 270 | 97.74 307 | 99.15 262 | 94.36 343 | 99.45 176 | 98.94 311 | 93.45 350 | 98.90 242 | 99.44 251 | 91.35 308 | 99.59 235 | 97.31 253 | 98.07 224 | 99.29 194 |
|
baseline2 | | | 97.87 227 | 97.55 237 | 98.82 214 | 99.18 251 | 98.02 226 | 99.41 194 | 96.58 375 | 96.97 246 | 96.51 344 | 99.17 308 | 93.43 253 | 99.57 236 | 97.71 222 | 99.03 170 | 98.86 229 |
|
MS-PatchMatch | | | 97.24 287 | 97.32 273 | 96.99 326 | 98.45 343 | 93.51 354 | 98.82 328 | 99.32 255 | 97.41 209 | 98.13 311 | 99.30 290 | 88.99 332 | 99.56 237 | 95.68 312 | 99.80 87 | 97.90 355 |
|
TinyColmap | | | 97.12 289 | 96.89 289 | 97.83 301 | 99.07 275 | 95.52 321 | 98.57 349 | 98.74 336 | 97.58 188 | 97.81 324 | 99.79 105 | 88.16 343 | 99.56 237 | 95.10 322 | 97.21 267 | 98.39 327 |
|
USDC | | | 97.34 282 | 97.20 281 | 97.75 306 | 99.07 275 | 95.20 328 | 98.51 353 | 99.04 302 | 97.99 148 | 98.31 303 | 99.86 42 | 89.02 331 | 99.55 239 | 95.67 313 | 97.36 262 | 98.49 314 |
|
MSLP-MVS++ | | | 99.46 25 | 99.47 14 | 99.44 117 | 99.60 139 | 99.16 115 | 99.41 194 | 99.71 13 | 98.98 40 | 99.45 124 | 99.78 111 | 99.19 9 | 99.54 240 | 99.28 53 | 99.84 67 | 99.63 130 |
|
TAMVS | | | 99.12 85 | 99.08 72 | 99.24 149 | 99.46 183 | 98.55 192 | 99.51 147 | 99.46 173 | 98.09 133 | 99.45 124 | 99.82 68 | 98.34 86 | 99.51 241 | 98.70 122 | 98.93 176 | 99.67 112 |
|
EPNet_dtu | | | 98.03 203 | 97.96 195 | 98.23 274 | 98.27 345 | 95.54 320 | 99.23 256 | 98.75 333 | 99.02 30 | 97.82 323 | 99.71 144 | 96.11 155 | 99.48 242 | 93.04 347 | 99.65 120 | 99.69 105 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EG-PatchMatch MVS | | | 95.97 309 | 95.69 311 | 96.81 332 | 97.78 352 | 92.79 358 | 99.16 266 | 98.93 312 | 96.16 305 | 94.08 361 | 99.22 303 | 82.72 364 | 99.47 243 | 95.67 313 | 97.50 247 | 98.17 338 |
|
MVP-Stereo | | | 97.81 240 | 97.75 221 | 97.99 291 | 97.53 356 | 96.60 295 | 98.96 311 | 98.85 325 | 97.22 225 | 97.23 334 | 99.36 273 | 95.28 186 | 99.46 244 | 95.51 315 | 99.78 94 | 97.92 354 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CVMVSNet | | | 98.57 152 | 98.67 126 | 98.30 268 | 99.35 209 | 95.59 317 | 99.50 153 | 99.55 69 | 98.60 75 | 99.39 145 | 99.83 61 | 94.48 224 | 99.45 245 | 98.75 116 | 98.56 198 | 99.85 26 |
|
test-LLR | | | 98.06 195 | 97.90 202 | 98.55 240 | 98.79 312 | 97.10 264 | 98.67 341 | 97.75 362 | 97.34 213 | 98.61 286 | 98.85 335 | 94.45 225 | 99.45 245 | 97.25 256 | 99.38 139 | 99.10 203 |
|
TESTMET0.1,1 | | | 97.55 270 | 97.27 280 | 98.40 259 | 98.93 295 | 96.53 296 | 98.67 341 | 97.61 365 | 96.96 247 | 98.64 282 | 99.28 294 | 88.63 338 | 99.45 245 | 97.30 254 | 99.38 139 | 99.21 199 |
|
test-mter | | | 97.49 278 | 97.13 284 | 98.55 240 | 98.79 312 | 97.10 264 | 98.67 341 | 97.75 362 | 96.65 267 | 98.61 286 | 98.85 335 | 88.23 342 | 99.45 245 | 97.25 256 | 99.38 139 | 99.10 203 |
|
mvs_anonymous | | | 99.03 101 | 98.99 87 | 99.16 157 | 99.38 203 | 98.52 198 | 99.51 147 | 99.38 220 | 97.79 167 | 99.38 148 | 99.81 81 | 97.30 117 | 99.45 245 | 99.35 41 | 98.99 173 | 99.51 162 |
|
tfpnnormal | | | 97.84 233 | 97.47 247 | 98.98 178 | 99.20 246 | 99.22 109 | 99.64 76 | 99.61 41 | 96.32 292 | 98.27 306 | 99.70 148 | 93.35 255 | 99.44 250 | 95.69 311 | 95.40 307 | 98.27 333 |
|
v7n | | | 97.87 227 | 97.52 241 | 98.92 188 | 98.76 319 | 98.58 190 | 99.84 13 | 99.46 173 | 96.20 301 | 98.91 240 | 99.70 148 | 94.89 200 | 99.44 250 | 96.03 303 | 93.89 334 | 98.75 242 |
|
jajsoiax | | | 98.43 159 | 98.28 165 | 98.88 199 | 98.60 336 | 98.43 208 | 99.82 17 | 99.53 88 | 98.19 117 | 98.63 283 | 99.80 94 | 93.22 258 | 99.44 250 | 99.22 59 | 97.50 247 | 98.77 238 |
|
mvs_tets | | | 98.40 165 | 98.23 167 | 98.91 192 | 98.67 329 | 98.51 200 | 99.66 67 | 99.53 88 | 98.19 117 | 98.65 281 | 99.81 81 | 92.75 267 | 99.44 250 | 99.31 48 | 97.48 251 | 98.77 238 |
|
Vis-MVSNet (Re-imp) | | | 98.87 115 | 98.72 120 | 99.31 133 | 99.71 91 | 98.88 161 | 99.80 25 | 99.44 192 | 97.91 154 | 99.36 154 | 99.78 111 | 95.49 180 | 99.43 254 | 97.91 199 | 99.11 161 | 99.62 132 |
|
OPU-MVS | | | | | 99.64 68 | 99.56 149 | 99.72 42 | 99.60 93 | | | | 99.70 148 | 99.27 5 | 99.42 255 | 98.24 175 | 99.80 87 | 99.79 64 |
|
Anonymous20231211 | | | 97.88 225 | 97.54 240 | 98.90 194 | 99.71 91 | 98.53 194 | 99.48 167 | 99.57 56 | 94.16 341 | 98.81 255 | 99.68 164 | 93.23 256 | 99.42 255 | 98.84 105 | 94.42 326 | 98.76 240 |
|
VPNet | | | 97.84 233 | 97.44 255 | 99.01 172 | 99.21 244 | 98.94 155 | 99.48 167 | 99.57 56 | 98.38 92 | 99.28 170 | 99.73 139 | 88.89 333 | 99.39 257 | 99.19 61 | 93.27 340 | 98.71 250 |
|
iter_conf_final | | | 98.71 140 | 98.61 143 | 98.99 176 | 99.49 173 | 98.96 147 | 99.63 80 | 99.41 203 | 98.19 117 | 99.39 145 | 99.77 119 | 94.82 202 | 99.38 258 | 99.30 51 | 97.52 243 | 98.64 283 |
|
nrg030 | | | 98.64 149 | 98.42 155 | 99.28 144 | 99.05 281 | 99.69 47 | 99.81 20 | 99.46 173 | 98.04 144 | 99.01 224 | 99.82 68 | 96.69 139 | 99.38 258 | 99.34 45 | 94.59 323 | 98.78 235 |
|
iter_conf05 | | | 98.55 153 | 98.44 153 | 98.87 203 | 99.34 213 | 98.60 189 | 99.55 130 | 99.42 200 | 98.21 114 | 99.37 150 | 99.77 119 | 93.55 252 | 99.38 258 | 99.30 51 | 97.48 251 | 98.63 291 |
|
GA-MVS | | | 97.85 230 | 97.47 247 | 99.00 174 | 99.38 203 | 97.99 228 | 98.57 349 | 99.15 288 | 97.04 242 | 98.90 242 | 99.30 290 | 89.83 325 | 99.38 258 | 96.70 288 | 98.33 205 | 99.62 132 |
|
UniMVSNet (Re) | | | 98.29 173 | 98.00 191 | 99.13 161 | 99.00 286 | 99.36 93 | 99.49 163 | 99.51 107 | 97.95 150 | 98.97 232 | 99.13 313 | 96.30 151 | 99.38 258 | 98.36 167 | 93.34 338 | 98.66 279 |
|
FIs | | | 98.78 133 | 98.63 132 | 99.23 151 | 99.18 251 | 99.54 71 | 99.83 16 | 99.59 49 | 98.28 103 | 98.79 259 | 99.81 81 | 96.75 137 | 99.37 263 | 99.08 72 | 96.38 282 | 98.78 235 |
|
PS-MVSNAJss | | | 98.92 111 | 98.92 97 | 98.90 194 | 98.78 315 | 98.53 194 | 99.78 32 | 99.54 77 | 98.07 138 | 99.00 228 | 99.76 125 | 99.01 18 | 99.37 263 | 99.13 66 | 97.23 266 | 98.81 232 |
|
CDS-MVSNet | | | 99.09 94 | 99.03 78 | 99.25 147 | 99.42 191 | 98.73 177 | 99.45 176 | 99.46 173 | 98.11 130 | 99.46 123 | 99.77 119 | 98.01 100 | 99.37 263 | 98.70 122 | 98.92 178 | 99.66 115 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVS-HIRNet | | | 95.75 313 | 95.16 318 | 97.51 314 | 99.30 223 | 93.69 351 | 98.88 322 | 95.78 376 | 85.09 371 | 98.78 260 | 92.65 374 | 91.29 309 | 99.37 263 | 94.85 326 | 99.85 59 | 99.46 175 |
|
v1192 | | | 97.81 240 | 97.44 255 | 98.91 192 | 98.88 300 | 98.68 180 | 99.51 147 | 99.34 238 | 96.18 303 | 99.20 191 | 99.34 280 | 94.03 239 | 99.36 267 | 95.32 320 | 95.18 311 | 98.69 259 |
|
EI-MVSNet | | | 98.67 146 | 98.67 126 | 98.68 227 | 99.35 209 | 97.97 229 | 99.50 153 | 99.38 220 | 96.93 252 | 99.20 191 | 99.83 61 | 97.87 102 | 99.36 267 | 98.38 163 | 97.56 240 | 98.71 250 |
|
MVSTER | | | 98.49 154 | 98.32 162 | 99.00 174 | 99.35 209 | 99.02 136 | 99.54 134 | 99.38 220 | 97.41 209 | 99.20 191 | 99.73 139 | 93.86 245 | 99.36 267 | 98.87 95 | 97.56 240 | 98.62 294 |
|
gg-mvs-nofinetune | | | 96.17 306 | 95.32 317 | 98.73 223 | 98.79 312 | 98.14 221 | 99.38 211 | 94.09 382 | 91.07 362 | 98.07 315 | 91.04 378 | 89.62 329 | 99.35 270 | 96.75 285 | 99.09 165 | 98.68 264 |
|
pm-mvs1 | | | 97.68 261 | 97.28 277 | 98.88 199 | 99.06 278 | 98.62 186 | 99.50 153 | 99.45 184 | 96.32 292 | 97.87 321 | 99.79 105 | 92.47 281 | 99.35 270 | 97.54 238 | 93.54 337 | 98.67 271 |
|
OurMVSNet-221017-0 | | | 97.88 225 | 97.77 216 | 98.19 276 | 98.71 325 | 96.53 296 | 99.88 4 | 99.00 305 | 97.79 167 | 98.78 260 | 99.94 4 | 91.68 299 | 99.35 270 | 97.21 258 | 96.99 273 | 98.69 259 |
|
EGC-MVSNET | | | 82.80 343 | 77.86 349 | 97.62 310 | 97.91 349 | 96.12 308 | 99.33 227 | 99.28 269 | 8.40 386 | 25.05 387 | 99.27 297 | 84.11 361 | 99.33 273 | 89.20 363 | 98.22 213 | 97.42 363 |
|
pmmvs6 | | | 96.53 298 | 96.09 303 | 97.82 303 | 98.69 327 | 95.47 322 | 99.37 213 | 99.47 164 | 93.46 349 | 97.41 330 | 99.78 111 | 87.06 351 | 99.33 273 | 96.92 280 | 92.70 347 | 98.65 281 |
|
mvsmamba | | | 98.92 111 | 98.87 105 | 99.08 163 | 99.07 275 | 99.16 115 | 99.88 4 | 99.51 107 | 98.15 123 | 99.40 142 | 99.89 23 | 97.12 122 | 99.33 273 | 99.38 38 | 97.40 259 | 98.73 247 |
|
V42 | | | 98.06 195 | 97.79 211 | 98.86 207 | 98.98 290 | 98.84 167 | 99.69 53 | 99.34 238 | 96.53 278 | 99.30 166 | 99.37 270 | 94.67 215 | 99.32 276 | 97.57 235 | 94.66 321 | 98.42 323 |
|
lessismore_v0 | | | | | 97.79 305 | 98.69 327 | 95.44 324 | | 94.75 380 | | 95.71 352 | 99.87 37 | 88.69 335 | 99.32 276 | 95.89 305 | 94.93 318 | 98.62 294 |
|
OpenMVS_ROB |  | 92.34 20 | 94.38 327 | 93.70 331 | 96.41 337 | 97.38 358 | 93.17 356 | 99.06 287 | 98.75 333 | 86.58 369 | 94.84 359 | 98.26 354 | 81.53 367 | 99.32 276 | 89.01 364 | 97.87 228 | 96.76 366 |
|
bld_raw_dy_0_64 | | | 98.69 143 | 98.58 145 | 98.99 176 | 98.88 300 | 98.96 147 | 99.80 25 | 99.41 203 | 97.91 154 | 99.32 162 | 99.87 37 | 95.70 174 | 99.31 279 | 99.09 70 | 97.27 264 | 98.71 250 |
|
v8 | | | 97.95 217 | 97.63 233 | 98.93 186 | 98.95 294 | 98.81 173 | 99.80 25 | 99.41 203 | 96.03 315 | 99.10 209 | 99.42 255 | 94.92 198 | 99.30 280 | 96.94 277 | 94.08 332 | 98.66 279 |
|
v1921920 | | | 97.80 242 | 97.45 250 | 98.84 211 | 98.80 311 | 98.53 194 | 99.52 141 | 99.34 238 | 96.15 307 | 99.24 180 | 99.47 245 | 93.98 241 | 99.29 281 | 95.40 318 | 95.13 313 | 98.69 259 |
|
anonymousdsp | | | 98.44 158 | 98.28 165 | 98.94 184 | 98.50 341 | 98.96 147 | 99.77 34 | 99.50 126 | 97.07 239 | 98.87 248 | 99.77 119 | 94.76 210 | 99.28 282 | 98.66 129 | 97.60 236 | 98.57 309 |
|
MVSFormer | | | 99.17 71 | 99.12 67 | 99.29 141 | 99.51 162 | 98.94 155 | 99.88 4 | 99.46 173 | 97.55 191 | 99.80 32 | 99.65 176 | 97.39 113 | 99.28 282 | 99.03 75 | 99.85 59 | 99.65 119 |
|
test_djsdf | | | 98.67 146 | 98.57 146 | 98.98 178 | 98.70 326 | 98.91 159 | 99.88 4 | 99.46 173 | 97.55 191 | 99.22 185 | 99.88 29 | 95.73 172 | 99.28 282 | 99.03 75 | 97.62 235 | 98.75 242 |
|
cascas | | | 97.69 259 | 97.43 259 | 98.48 246 | 98.60 336 | 97.30 255 | 98.18 367 | 99.39 214 | 92.96 353 | 98.41 297 | 98.78 340 | 93.77 248 | 99.27 285 | 98.16 182 | 98.61 192 | 98.86 229 |
|
v144192 | | | 97.92 221 | 97.60 235 | 98.87 203 | 98.83 310 | 98.65 183 | 99.55 130 | 99.34 238 | 96.20 301 | 99.32 162 | 99.40 262 | 94.36 227 | 99.26 286 | 96.37 299 | 95.03 315 | 98.70 255 |
|
dmvs_re | | | 98.08 193 | 98.16 170 | 97.85 298 | 99.55 153 | 94.67 338 | 99.70 50 | 98.92 314 | 98.15 123 | 99.06 218 | 99.35 276 | 93.67 251 | 99.25 287 | 97.77 214 | 97.25 265 | 99.64 126 |
|
RRT_MVS | | | 98.70 141 | 98.66 129 | 98.83 213 | 98.90 297 | 98.45 206 | 99.89 2 | 99.28 269 | 97.76 170 | 98.94 236 | 99.92 11 | 96.98 129 | 99.25 287 | 99.28 53 | 97.00 272 | 98.80 233 |
|
v2v482 | | | 98.06 195 | 97.77 216 | 98.92 188 | 98.90 297 | 98.82 171 | 99.57 114 | 99.36 229 | 96.65 267 | 99.19 194 | 99.35 276 | 94.20 232 | 99.25 287 | 97.72 221 | 94.97 316 | 98.69 259 |
|
v1240 | | | 97.69 259 | 97.32 273 | 98.79 219 | 98.85 308 | 98.43 208 | 99.48 167 | 99.36 229 | 96.11 310 | 99.27 174 | 99.36 273 | 93.76 249 | 99.24 290 | 94.46 330 | 95.23 310 | 98.70 255 |
|
v1144 | | | 97.98 212 | 97.69 226 | 98.85 210 | 98.87 304 | 98.66 182 | 99.54 134 | 99.35 234 | 96.27 296 | 99.23 184 | 99.35 276 | 94.67 215 | 99.23 291 | 96.73 286 | 95.16 312 | 98.68 264 |
|
v10 | | | 97.85 230 | 97.52 241 | 98.86 207 | 98.99 287 | 98.67 181 | 99.75 40 | 99.41 203 | 95.70 319 | 98.98 230 | 99.41 259 | 94.75 211 | 99.23 291 | 96.01 304 | 94.63 322 | 98.67 271 |
|
WR-MVS_H | | | 98.13 187 | 97.87 207 | 98.90 194 | 99.02 284 | 98.84 167 | 99.70 50 | 99.59 49 | 97.27 219 | 98.40 298 | 99.19 307 | 95.53 178 | 99.23 291 | 98.34 168 | 93.78 335 | 98.61 303 |
|
miper_enhance_ethall | | | 98.16 184 | 98.08 182 | 98.41 257 | 98.96 293 | 97.72 244 | 98.45 355 | 99.32 255 | 96.95 249 | 98.97 232 | 99.17 308 | 97.06 126 | 99.22 294 | 97.86 204 | 95.99 291 | 98.29 332 |
|
GG-mvs-BLEND | | | | | 98.45 252 | 98.55 339 | 98.16 219 | 99.43 185 | 93.68 383 | | 97.23 334 | 98.46 348 | 89.30 330 | 99.22 294 | 95.43 317 | 98.22 213 | 97.98 350 |
|
FC-MVSNet-test | | | 98.75 136 | 98.62 137 | 99.15 160 | 99.08 274 | 99.45 84 | 99.86 12 | 99.60 46 | 98.23 111 | 98.70 272 | 99.82 68 | 96.80 134 | 99.22 294 | 99.07 73 | 96.38 282 | 98.79 234 |
|
UniMVSNet_NR-MVSNet | | | 98.22 176 | 97.97 194 | 98.96 181 | 98.92 296 | 98.98 140 | 99.48 167 | 99.53 88 | 97.76 170 | 98.71 266 | 99.46 249 | 96.43 148 | 99.22 294 | 98.57 145 | 92.87 345 | 98.69 259 |
|
DU-MVS | | | 98.08 193 | 97.79 211 | 98.96 181 | 98.87 304 | 98.98 140 | 99.41 194 | 99.45 184 | 97.87 156 | 98.71 266 | 99.50 234 | 94.82 202 | 99.22 294 | 98.57 145 | 92.87 345 | 98.68 264 |
|
cl____ | | | 98.01 208 | 97.84 209 | 98.55 240 | 99.25 238 | 97.97 229 | 98.71 339 | 99.34 238 | 96.47 285 | 98.59 289 | 99.54 221 | 95.65 176 | 99.21 299 | 97.21 258 | 95.77 297 | 98.46 320 |
|
WR-MVS | | | 98.06 195 | 97.73 223 | 99.06 166 | 98.86 307 | 99.25 106 | 99.19 263 | 99.35 234 | 97.30 217 | 98.66 275 | 99.43 253 | 93.94 242 | 99.21 299 | 98.58 142 | 94.28 328 | 98.71 250 |
|
test_0402 | | | 96.64 296 | 96.24 299 | 97.85 298 | 98.85 308 | 96.43 300 | 99.44 181 | 99.26 272 | 93.52 347 | 96.98 341 | 99.52 228 | 88.52 339 | 99.20 301 | 92.58 353 | 97.50 247 | 97.93 353 |
|
SixPastTwentyTwo | | | 97.50 275 | 97.33 272 | 98.03 285 | 98.65 330 | 96.23 306 | 99.77 34 | 98.68 344 | 97.14 230 | 97.90 320 | 99.93 7 | 90.45 317 | 99.18 302 | 97.00 271 | 96.43 281 | 98.67 271 |
|
cl22 | | | 97.85 230 | 97.64 232 | 98.48 246 | 99.09 272 | 97.87 237 | 98.60 348 | 99.33 245 | 97.11 236 | 98.87 248 | 99.22 303 | 92.38 286 | 99.17 303 | 98.21 176 | 95.99 291 | 98.42 323 |
|
IterMVS-SCA-FT | | | 97.82 238 | 97.75 221 | 98.06 284 | 99.57 145 | 96.36 302 | 99.02 297 | 99.49 134 | 97.18 227 | 98.71 266 | 99.72 143 | 92.72 270 | 99.14 304 | 97.44 248 | 95.86 296 | 98.67 271 |
|
pmmvs5 | | | 97.52 272 | 97.30 275 | 98.16 278 | 98.57 338 | 96.73 288 | 99.27 243 | 98.90 320 | 96.14 308 | 98.37 300 | 99.53 225 | 91.54 305 | 99.14 304 | 97.51 240 | 95.87 295 | 98.63 291 |
|
v148 | | | 97.79 243 | 97.55 237 | 98.50 243 | 98.74 320 | 97.72 244 | 99.54 134 | 99.33 245 | 96.26 297 | 98.90 242 | 99.51 231 | 94.68 214 | 99.14 304 | 97.83 207 | 93.15 342 | 98.63 291 |
|
miper_ehance_all_eth | | | 98.18 182 | 98.10 178 | 98.41 257 | 99.23 240 | 97.72 244 | 98.72 338 | 99.31 259 | 96.60 274 | 98.88 245 | 99.29 292 | 97.29 118 | 99.13 307 | 97.60 229 | 95.99 291 | 98.38 328 |
|
NR-MVSNet | | | 97.97 215 | 97.61 234 | 99.02 171 | 98.87 304 | 99.26 105 | 99.47 172 | 99.42 200 | 97.63 184 | 97.08 339 | 99.50 234 | 95.07 194 | 99.13 307 | 97.86 204 | 93.59 336 | 98.68 264 |
|
IterMVS | | | 97.83 235 | 97.77 216 | 98.02 287 | 99.58 143 | 96.27 305 | 99.02 297 | 99.48 146 | 97.22 225 | 98.71 266 | 99.70 148 | 92.75 267 | 99.13 307 | 97.46 246 | 96.00 290 | 98.67 271 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CMPMVS |  | 69.68 23 | 94.13 328 | 94.90 320 | 91.84 351 | 97.24 362 | 80.01 378 | 98.52 352 | 99.48 146 | 89.01 366 | 91.99 367 | 99.67 170 | 85.67 355 | 99.13 307 | 95.44 316 | 97.03 271 | 96.39 368 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
eth_miper_zixun_eth | | | 98.05 200 | 97.96 195 | 98.33 264 | 99.26 234 | 97.38 254 | 98.56 351 | 99.31 259 | 96.65 267 | 98.88 245 | 99.52 228 | 96.58 141 | 99.12 311 | 97.39 251 | 95.53 305 | 98.47 317 |
|
pmmvs4 | | | 98.13 187 | 97.90 202 | 98.81 216 | 98.61 335 | 98.87 162 | 98.99 304 | 99.21 281 | 96.44 286 | 99.06 218 | 99.58 206 | 95.90 166 | 99.11 312 | 97.18 264 | 96.11 288 | 98.46 320 |
|
TransMVSNet (Re) | | | 97.15 288 | 96.58 293 | 98.86 207 | 99.12 264 | 98.85 166 | 99.49 163 | 98.91 318 | 95.48 322 | 97.16 337 | 99.80 94 | 93.38 254 | 99.11 312 | 94.16 336 | 91.73 350 | 98.62 294 |
|
ambc | | | | | 93.06 349 | 92.68 378 | 82.36 373 | 98.47 354 | 98.73 341 | | 95.09 357 | 97.41 361 | 55.55 379 | 99.10 314 | 96.42 297 | 91.32 351 | 97.71 356 |
|
Baseline_NR-MVSNet | | | 97.76 245 | 97.45 250 | 98.68 227 | 99.09 272 | 98.29 213 | 99.41 194 | 98.85 325 | 95.65 320 | 98.63 283 | 99.67 170 | 94.82 202 | 99.10 314 | 98.07 192 | 92.89 344 | 98.64 283 |
|
test_vis3_rt | | | 87.04 339 | 85.81 342 | 90.73 355 | 93.99 377 | 81.96 375 | 99.76 37 | 90.23 388 | 92.81 354 | 81.35 376 | 91.56 376 | 40.06 385 | 99.07 316 | 94.27 333 | 88.23 363 | 91.15 376 |
|
CP-MVSNet | | | 98.09 191 | 97.78 214 | 99.01 172 | 98.97 292 | 99.24 107 | 99.67 62 | 99.46 173 | 97.25 221 | 98.48 295 | 99.64 182 | 93.79 247 | 99.06 317 | 98.63 132 | 94.10 331 | 98.74 245 |
|
PS-CasMVS | | | 97.93 218 | 97.59 236 | 98.95 183 | 98.99 287 | 99.06 132 | 99.68 59 | 99.52 93 | 97.13 231 | 98.31 303 | 99.68 164 | 92.44 285 | 99.05 318 | 98.51 153 | 94.08 332 | 98.75 242 |
|
K. test v3 | | | 97.10 290 | 96.79 291 | 98.01 288 | 98.72 323 | 96.33 303 | 99.87 9 | 97.05 369 | 97.59 186 | 96.16 348 | 99.80 94 | 88.71 334 | 99.04 319 | 96.69 289 | 96.55 279 | 98.65 281 |
|
new_pmnet | | | 96.38 302 | 96.03 304 | 97.41 316 | 98.13 348 | 95.16 331 | 99.05 289 | 99.20 282 | 93.94 342 | 97.39 331 | 98.79 339 | 91.61 304 | 99.04 319 | 90.43 359 | 95.77 297 | 98.05 344 |
|
DIV-MVS_self_test | | | 98.01 208 | 97.85 208 | 98.48 246 | 99.24 239 | 97.95 233 | 98.71 339 | 99.35 234 | 96.50 279 | 98.60 288 | 99.54 221 | 95.72 173 | 99.03 321 | 97.21 258 | 95.77 297 | 98.46 320 |
|
IterMVS-LS | | | 98.46 157 | 98.42 155 | 98.58 234 | 99.59 141 | 98.00 227 | 99.37 213 | 99.43 198 | 96.94 251 | 99.07 214 | 99.59 202 | 97.87 102 | 99.03 321 | 98.32 171 | 95.62 302 | 98.71 250 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
our_test_3 | | | 97.65 266 | 97.68 227 | 97.55 313 | 98.62 333 | 94.97 333 | 98.84 326 | 99.30 263 | 96.83 258 | 98.19 308 | 99.34 280 | 97.01 128 | 99.02 323 | 95.00 325 | 96.01 289 | 98.64 283 |
|
Patchmtry | | | 97.75 249 | 97.40 262 | 98.81 216 | 99.10 269 | 98.87 162 | 99.11 280 | 99.33 245 | 94.83 333 | 98.81 255 | 99.38 267 | 94.33 228 | 99.02 323 | 96.10 301 | 95.57 303 | 98.53 311 |
|
N_pmnet | | | 94.95 322 | 95.83 309 | 92.31 350 | 98.47 342 | 79.33 379 | 99.12 274 | 92.81 386 | 93.87 343 | 97.68 326 | 99.13 313 | 93.87 244 | 99.01 325 | 91.38 356 | 96.19 286 | 98.59 307 |
|
CR-MVSNet | | | 98.17 183 | 97.93 200 | 98.87 203 | 99.18 251 | 98.49 202 | 99.22 260 | 99.33 245 | 96.96 247 | 99.56 104 | 99.38 267 | 94.33 228 | 99.00 326 | 94.83 327 | 98.58 195 | 99.14 200 |
|
c3_l | | | 98.12 189 | 98.04 187 | 98.38 261 | 99.30 223 | 97.69 248 | 98.81 329 | 99.33 245 | 96.67 265 | 98.83 253 | 99.34 280 | 97.11 123 | 98.99 327 | 97.58 231 | 95.34 308 | 98.48 315 |
|
test0.0.03 1 | | | 97.71 257 | 97.42 260 | 98.56 238 | 98.41 344 | 97.82 240 | 98.78 332 | 98.63 345 | 97.34 213 | 98.05 316 | 98.98 329 | 94.45 225 | 98.98 328 | 95.04 324 | 97.15 270 | 98.89 228 |
|
PatchT | | | 97.03 291 | 96.44 296 | 98.79 219 | 98.99 287 | 98.34 212 | 99.16 266 | 99.07 299 | 92.13 356 | 99.52 113 | 97.31 365 | 94.54 223 | 98.98 328 | 88.54 366 | 98.73 191 | 99.03 216 |
|
GBi-Net | | | 97.68 261 | 97.48 245 | 98.29 269 | 99.51 162 | 97.26 259 | 99.43 185 | 99.48 146 | 96.49 280 | 99.07 214 | 99.32 287 | 90.26 319 | 98.98 328 | 97.10 266 | 96.65 275 | 98.62 294 |
|
test1 | | | 97.68 261 | 97.48 245 | 98.29 269 | 99.51 162 | 97.26 259 | 99.43 185 | 99.48 146 | 96.49 280 | 99.07 214 | 99.32 287 | 90.26 319 | 98.98 328 | 97.10 266 | 96.65 275 | 98.62 294 |
|
FMVSNet3 | | | 98.03 203 | 97.76 220 | 98.84 211 | 99.39 202 | 98.98 140 | 99.40 202 | 99.38 220 | 96.67 265 | 99.07 214 | 99.28 294 | 92.93 262 | 98.98 328 | 97.10 266 | 96.65 275 | 98.56 310 |
|
FMVSNet2 | | | 97.72 254 | 97.36 265 | 98.80 218 | 99.51 162 | 98.84 167 | 99.45 176 | 99.42 200 | 96.49 280 | 98.86 252 | 99.29 292 | 90.26 319 | 98.98 328 | 96.44 296 | 96.56 278 | 98.58 308 |
|
FMVSNet1 | | | 96.84 293 | 96.36 297 | 98.29 269 | 99.32 221 | 97.26 259 | 99.43 185 | 99.48 146 | 95.11 327 | 98.55 290 | 99.32 287 | 83.95 362 | 98.98 328 | 95.81 307 | 96.26 285 | 98.62 294 |
|
ppachtmachnet_test | | | 97.49 278 | 97.45 250 | 97.61 311 | 98.62 333 | 95.24 327 | 98.80 330 | 99.46 173 | 96.11 310 | 98.22 307 | 99.62 193 | 96.45 146 | 98.97 335 | 93.77 338 | 95.97 294 | 98.61 303 |
|
TranMVSNet+NR-MVSNet | | | 97.93 218 | 97.66 229 | 98.76 222 | 98.78 315 | 98.62 186 | 99.65 73 | 99.49 134 | 97.76 170 | 98.49 294 | 99.60 200 | 94.23 231 | 98.97 335 | 98.00 194 | 92.90 343 | 98.70 255 |
|
test_method | | | 91.10 335 | 91.36 337 | 90.31 356 | 95.85 369 | 73.72 386 | 94.89 375 | 99.25 274 | 68.39 378 | 95.82 351 | 99.02 325 | 80.50 368 | 98.95 337 | 93.64 340 | 94.89 320 | 98.25 335 |
|
ADS-MVSNet2 | | | 98.02 205 | 98.07 185 | 97.87 297 | 99.33 215 | 95.19 329 | 99.23 256 | 99.08 296 | 96.24 298 | 99.10 209 | 99.67 170 | 94.11 236 | 98.93 338 | 96.81 283 | 99.05 168 | 99.48 167 |
|
ET-MVSNet_ETH3D | | | 96.49 299 | 95.64 313 | 99.05 168 | 99.53 156 | 98.82 171 | 98.84 326 | 97.51 367 | 97.63 184 | 84.77 372 | 99.21 306 | 92.09 289 | 98.91 339 | 98.98 80 | 92.21 349 | 99.41 182 |
|
miper_lstm_enhance | | | 98.00 210 | 97.91 201 | 98.28 272 | 99.34 213 | 97.43 253 | 98.88 322 | 99.36 229 | 96.48 283 | 98.80 257 | 99.55 216 | 95.98 159 | 98.91 339 | 97.27 255 | 95.50 306 | 98.51 313 |
|
PEN-MVS | | | 97.76 245 | 97.44 255 | 98.72 224 | 98.77 318 | 98.54 193 | 99.78 32 | 99.51 107 | 97.06 241 | 98.29 305 | 99.64 182 | 92.63 276 | 98.89 341 | 98.09 185 | 93.16 341 | 98.72 248 |
|
testgi | | | 97.65 266 | 97.50 244 | 98.13 282 | 99.36 208 | 96.45 299 | 99.42 192 | 99.48 146 | 97.76 170 | 97.87 321 | 99.45 250 | 91.09 311 | 98.81 342 | 94.53 329 | 98.52 200 | 99.13 202 |
|
testf1 | | | 90.42 337 | 90.68 339 | 89.65 357 | 97.78 352 | 73.97 384 | 99.13 272 | 98.81 329 | 89.62 364 | 91.80 368 | 98.93 332 | 62.23 377 | 98.80 343 | 86.61 374 | 91.17 352 | 96.19 369 |
|
APD_test2 | | | 90.42 337 | 90.68 339 | 89.65 357 | 97.78 352 | 73.97 384 | 99.13 272 | 98.81 329 | 89.62 364 | 91.80 368 | 98.93 332 | 62.23 377 | 98.80 343 | 86.61 374 | 91.17 352 | 96.19 369 |
|
MIMVSNet | | | 97.73 252 | 97.45 250 | 98.57 235 | 99.45 188 | 97.50 251 | 99.02 297 | 98.98 307 | 96.11 310 | 99.41 137 | 99.14 312 | 90.28 318 | 98.74 345 | 95.74 309 | 98.93 176 | 99.47 173 |
|
LCM-MVSNet-Re | | | 97.83 235 | 98.15 172 | 96.87 331 | 99.30 223 | 92.25 360 | 99.59 99 | 98.26 352 | 97.43 206 | 96.20 347 | 99.13 313 | 96.27 152 | 98.73 346 | 98.17 181 | 98.99 173 | 99.64 126 |
|
DTE-MVSNet | | | 97.51 274 | 97.19 282 | 98.46 251 | 98.63 332 | 98.13 222 | 99.84 13 | 99.48 146 | 96.68 264 | 97.97 319 | 99.67 170 | 92.92 263 | 98.56 347 | 96.88 282 | 92.60 348 | 98.70 255 |
|
PC_three_1452 | | | | | | | | | | 98.18 121 | 99.84 21 | 99.70 148 | 99.31 3 | 98.52 348 | 98.30 173 | 99.80 87 | 99.81 51 |
|
mvsany_test3 | | | 93.77 330 | 93.45 332 | 94.74 343 | 95.78 370 | 88.01 368 | 99.64 76 | 98.25 353 | 98.28 103 | 94.31 360 | 97.97 358 | 68.89 373 | 98.51 349 | 97.50 241 | 90.37 357 | 97.71 356 |
|
UnsupCasMVSNet_bld | | | 93.53 331 | 92.51 334 | 96.58 336 | 97.38 358 | 93.82 347 | 98.24 364 | 99.48 146 | 91.10 361 | 93.10 365 | 96.66 367 | 74.89 371 | 98.37 350 | 94.03 337 | 87.71 364 | 97.56 361 |
|
Anonymous20240521 | | | 96.20 305 | 95.89 308 | 97.13 323 | 97.72 355 | 94.96 334 | 99.79 31 | 99.29 267 | 93.01 352 | 97.20 336 | 99.03 323 | 89.69 327 | 98.36 351 | 91.16 357 | 96.13 287 | 98.07 342 |
|
test_f | | | 91.90 334 | 91.26 338 | 93.84 345 | 95.52 374 | 85.92 370 | 99.69 53 | 98.53 350 | 95.31 324 | 93.87 362 | 96.37 369 | 55.33 380 | 98.27 352 | 95.70 310 | 90.98 355 | 97.32 364 |
|
MDA-MVSNet_test_wron | | | 95.45 315 | 94.60 322 | 98.01 288 | 98.16 347 | 97.21 262 | 99.11 280 | 99.24 276 | 93.49 348 | 80.73 378 | 98.98 329 | 93.02 260 | 98.18 353 | 94.22 335 | 94.45 325 | 98.64 283 |
|
UnsupCasMVSNet_eth | | | 96.44 300 | 96.12 301 | 97.40 317 | 98.65 330 | 95.65 315 | 99.36 217 | 99.51 107 | 97.13 231 | 96.04 350 | 98.99 327 | 88.40 340 | 98.17 354 | 96.71 287 | 90.27 358 | 98.40 326 |
|
KD-MVS_2432*1600 | | | 94.62 323 | 93.72 329 | 97.31 318 | 97.19 364 | 95.82 313 | 98.34 359 | 99.20 282 | 95.00 330 | 97.57 327 | 98.35 351 | 87.95 345 | 98.10 355 | 92.87 349 | 77.00 376 | 98.01 346 |
|
miper_refine_blended | | | 94.62 323 | 93.72 329 | 97.31 318 | 97.19 364 | 95.82 313 | 98.34 359 | 99.20 282 | 95.00 330 | 97.57 327 | 98.35 351 | 87.95 345 | 98.10 355 | 92.87 349 | 77.00 376 | 98.01 346 |
|
YYNet1 | | | 95.36 317 | 94.51 324 | 97.92 294 | 97.89 350 | 97.10 264 | 99.10 282 | 99.23 277 | 93.26 351 | 80.77 377 | 99.04 322 | 92.81 266 | 98.02 357 | 94.30 331 | 94.18 330 | 98.64 283 |
|
EU-MVSNet | | | 97.98 212 | 98.03 188 | 97.81 304 | 98.72 323 | 96.65 292 | 99.66 67 | 99.66 27 | 98.09 133 | 98.35 301 | 99.82 68 | 95.25 190 | 98.01 358 | 97.41 250 | 95.30 309 | 98.78 235 |
|
Gipuma |  | | 90.99 336 | 90.15 341 | 93.51 346 | 98.73 321 | 90.12 366 | 93.98 376 | 99.45 184 | 79.32 374 | 92.28 366 | 94.91 371 | 69.61 372 | 97.98 359 | 87.42 370 | 95.67 301 | 92.45 374 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
pmmvs-eth3d | | | 95.34 318 | 94.73 321 | 97.15 321 | 95.53 373 | 95.94 311 | 99.35 222 | 99.10 293 | 95.13 325 | 93.55 363 | 97.54 360 | 88.15 344 | 97.91 360 | 94.58 328 | 89.69 361 | 97.61 359 |
|
PM-MVS | | | 92.96 332 | 92.23 335 | 95.14 342 | 95.61 371 | 89.98 367 | 99.37 213 | 98.21 355 | 94.80 334 | 95.04 358 | 97.69 359 | 65.06 374 | 97.90 361 | 94.30 331 | 89.98 360 | 97.54 362 |
|
MDA-MVSNet-bldmvs | | | 94.96 321 | 93.98 327 | 97.92 294 | 98.24 346 | 97.27 257 | 99.15 269 | 99.33 245 | 93.80 344 | 80.09 379 | 99.03 323 | 88.31 341 | 97.86 362 | 93.49 342 | 94.36 327 | 98.62 294 |
|
Patchmatch-RL test | | | 95.84 311 | 95.81 310 | 95.95 340 | 95.61 371 | 90.57 365 | 98.24 364 | 98.39 351 | 95.10 329 | 95.20 355 | 98.67 343 | 94.78 206 | 97.77 363 | 96.28 300 | 90.02 359 | 99.51 162 |
|
Anonymous20231206 | | | 96.22 303 | 96.03 304 | 96.79 333 | 97.31 361 | 94.14 345 | 99.63 80 | 99.08 296 | 96.17 304 | 97.04 340 | 99.06 320 | 93.94 242 | 97.76 364 | 86.96 372 | 95.06 314 | 98.47 317 |
|
SD-MVS | | | 99.41 41 | 99.52 8 | 99.05 168 | 99.74 75 | 99.68 48 | 99.46 175 | 99.52 93 | 99.11 19 | 99.88 13 | 99.91 13 | 99.43 1 | 97.70 365 | 98.72 120 | 99.93 14 | 99.77 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DSMNet-mixed | | | 97.25 285 | 97.35 267 | 96.95 329 | 97.84 351 | 93.61 353 | 99.57 114 | 96.63 374 | 96.13 309 | 98.87 248 | 98.61 346 | 94.59 218 | 97.70 365 | 95.08 323 | 98.86 182 | 99.55 148 |
|
pmmvs3 | | | 94.09 329 | 93.25 333 | 96.60 335 | 94.76 376 | 94.49 340 | 98.92 318 | 98.18 357 | 89.66 363 | 96.48 345 | 98.06 357 | 86.28 352 | 97.33 367 | 89.68 362 | 87.20 365 | 97.97 351 |
|
KD-MVS_self_test | | | 95.00 320 | 94.34 325 | 96.96 328 | 97.07 366 | 95.39 325 | 99.56 120 | 99.44 192 | 95.11 327 | 97.13 338 | 97.32 364 | 91.86 294 | 97.27 368 | 90.35 360 | 81.23 373 | 98.23 337 |
|
FMVSNet5 | | | 96.43 301 | 96.19 300 | 97.15 321 | 99.11 266 | 95.89 312 | 99.32 228 | 99.52 93 | 94.47 340 | 98.34 302 | 99.07 318 | 87.54 349 | 97.07 369 | 92.61 352 | 95.72 300 | 98.47 317 |
|
new-patchmatchnet | | | 94.48 326 | 94.08 326 | 95.67 341 | 95.08 375 | 92.41 359 | 99.18 264 | 99.28 269 | 94.55 339 | 93.49 364 | 97.37 363 | 87.86 347 | 97.01 370 | 91.57 355 | 88.36 362 | 97.61 359 |
|
LCM-MVSNet | | | 86.80 341 | 85.22 345 | 91.53 353 | 87.81 383 | 80.96 376 | 98.23 366 | 98.99 306 | 71.05 376 | 90.13 371 | 96.51 368 | 48.45 384 | 96.88 371 | 90.51 358 | 85.30 367 | 96.76 366 |
|
CL-MVSNet_self_test | | | 94.49 325 | 93.97 328 | 96.08 339 | 96.16 368 | 93.67 352 | 98.33 361 | 99.38 220 | 95.13 325 | 97.33 332 | 98.15 355 | 92.69 274 | 96.57 372 | 88.67 365 | 79.87 374 | 97.99 349 |
|
MIMVSNet1 | | | 95.51 314 | 95.04 319 | 96.92 330 | 97.38 358 | 95.60 316 | 99.52 141 | 99.50 126 | 93.65 346 | 96.97 342 | 99.17 308 | 85.28 358 | 96.56 373 | 88.36 367 | 95.55 304 | 98.60 306 |
|
test20.03 | | | 96.12 307 | 95.96 306 | 96.63 334 | 97.44 357 | 95.45 323 | 99.51 147 | 99.38 220 | 96.55 277 | 96.16 348 | 99.25 300 | 93.76 249 | 96.17 374 | 87.35 371 | 94.22 329 | 98.27 333 |
|
tmp_tt | | | 82.80 343 | 81.52 346 | 86.66 359 | 66.61 389 | 68.44 387 | 92.79 378 | 97.92 359 | 68.96 377 | 80.04 380 | 99.85 47 | 85.77 354 | 96.15 375 | 97.86 204 | 43.89 382 | 95.39 372 |
|
test_fmvs3 | | | 92.10 333 | 91.77 336 | 93.08 348 | 96.19 367 | 86.25 369 | 99.82 17 | 98.62 346 | 96.65 267 | 95.19 356 | 96.90 366 | 55.05 381 | 95.93 376 | 96.63 293 | 90.92 356 | 97.06 365 |
|
dmvs_testset | | | 95.02 319 | 96.12 301 | 91.72 352 | 99.10 269 | 80.43 377 | 99.58 107 | 97.87 361 | 97.47 199 | 95.22 354 | 98.82 337 | 93.99 240 | 95.18 377 | 88.09 368 | 94.91 319 | 99.56 147 |
|
PMMVS2 | | | 86.87 340 | 85.37 344 | 91.35 354 | 90.21 381 | 83.80 372 | 98.89 321 | 97.45 368 | 83.13 373 | 91.67 370 | 95.03 370 | 48.49 383 | 94.70 378 | 85.86 376 | 77.62 375 | 95.54 371 |
|
PMVS |  | 70.75 22 | 75.98 349 | 74.97 350 | 79.01 365 | 70.98 388 | 55.18 389 | 93.37 377 | 98.21 355 | 65.08 382 | 61.78 383 | 93.83 373 | 21.74 390 | 92.53 379 | 78.59 378 | 91.12 354 | 89.34 378 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
FPMVS | | | 84.93 342 | 85.65 343 | 82.75 363 | 86.77 384 | 63.39 388 | 98.35 358 | 98.92 314 | 74.11 375 | 83.39 374 | 98.98 329 | 50.85 382 | 92.40 380 | 84.54 377 | 94.97 316 | 92.46 373 |
|
MVE |  | 76.82 21 | 76.91 348 | 74.31 352 | 84.70 360 | 85.38 386 | 76.05 383 | 96.88 374 | 93.17 384 | 67.39 379 | 71.28 381 | 89.01 380 | 21.66 391 | 87.69 381 | 71.74 380 | 72.29 378 | 90.35 377 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 80.61 345 | 79.88 347 | 82.81 362 | 90.75 380 | 76.38 382 | 97.69 371 | 95.76 377 | 66.44 380 | 83.52 373 | 92.25 375 | 62.54 376 | 87.16 382 | 68.53 381 | 61.40 379 | 84.89 380 |
|
EMVS | | | 80.02 346 | 79.22 348 | 82.43 364 | 91.19 379 | 76.40 381 | 97.55 373 | 92.49 387 | 66.36 381 | 83.01 375 | 91.27 377 | 64.63 375 | 85.79 383 | 65.82 382 | 60.65 380 | 85.08 379 |
|
ANet_high | | | 77.30 347 | 74.86 351 | 84.62 361 | 75.88 387 | 77.61 380 | 97.63 372 | 93.15 385 | 88.81 367 | 64.27 382 | 89.29 379 | 36.51 386 | 83.93 384 | 75.89 379 | 52.31 381 | 92.33 375 |
|
wuyk23d | | | 40.18 350 | 41.29 355 | 36.84 366 | 86.18 385 | 49.12 390 | 79.73 379 | 22.81 391 | 27.64 383 | 25.46 386 | 28.45 386 | 21.98 389 | 48.89 385 | 55.80 383 | 23.56 385 | 12.51 383 |
|
test123 | | | 39.01 352 | 42.50 354 | 28.53 367 | 39.17 390 | 20.91 391 | 98.75 335 | 19.17 392 | 19.83 385 | 38.57 384 | 66.67 382 | 33.16 387 | 15.42 386 | 37.50 385 | 29.66 384 | 49.26 381 |
|
testmvs | | | 39.17 351 | 43.78 353 | 25.37 368 | 36.04 391 | 16.84 392 | 98.36 357 | 26.56 390 | 20.06 384 | 38.51 385 | 67.32 381 | 29.64 388 | 15.30 387 | 37.59 384 | 39.90 383 | 43.98 382 |
|
test_blank | | | 0.13 356 | 0.17 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 1.57 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.02 357 | 0.03 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.27 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.02 357 | 0.03 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.27 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
cdsmvs_eth3d_5k | | | 24.64 353 | 32.85 356 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 99.51 107 | 0.00 387 | 0.00 388 | 99.56 213 | 96.58 141 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 8.27 355 | 11.03 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.27 388 | 99.01 18 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.02 357 | 0.03 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.27 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.02 357 | 0.03 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.27 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.02 357 | 0.03 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.27 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.02 357 | 0.03 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.27 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 8.30 354 | 11.06 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 99.58 206 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.02 357 | 0.03 360 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.27 388 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 99.91 1 | 99.93 1 | 99.87 9 | 99.56 61 | 99.10 20 | 99.81 29 | | | | | | |
|
test_one_0601 | | | | | | 99.81 42 | 99.88 8 | | 99.49 134 | 98.97 43 | 99.65 79 | 99.81 81 | 99.09 14 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
RE-MVS-def | | | | 99.34 30 | | 99.76 60 | 99.82 22 | 99.63 80 | 99.52 93 | 98.38 92 | 99.76 47 | 99.82 68 | 98.75 55 | | 98.61 136 | 99.81 83 | 99.77 72 |
|
IU-MVS | | | | | | 99.84 31 | 99.88 8 | | 99.32 255 | 98.30 102 | 99.84 21 | | | | 98.86 100 | 99.85 59 | 99.89 10 |
|
save fliter | | | | | | 99.76 60 | 99.59 62 | 99.14 271 | 99.40 211 | 99.00 35 | | | | | | | |
|
test0726 | | | | | | 99.85 25 | 99.89 4 | 99.62 86 | 99.50 126 | 99.10 20 | 99.86 19 | 99.82 68 | 98.94 29 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.52 156 |
|
test_part2 | | | | | | 99.81 42 | 99.83 16 | | | | 99.77 42 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.86 201 | | | | 99.52 156 |
|
sam_mvs | | | | | | | | | | | | | 94.72 213 | | | | |
|
MTGPA |  | | | | | | | | 99.47 164 | | | | | | | | |
|
MTMP | | | | | | | | 99.54 134 | 98.88 322 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 97.49 242 | 99.72 108 | 99.75 78 |
|
agg_prior2 | | | | | | | | | | | | | | | 97.21 258 | 99.73 107 | 99.75 78 |
|
test_prior4 | | | | | | | 99.56 67 | 98.99 304 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.96 311 | | 98.34 98 | 99.01 224 | 99.52 228 | 98.68 62 | | 97.96 196 | 99.74 105 | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.01 302 | | | | | | | | | |
|
旧先验1 | | | | | | 99.74 75 | 99.59 62 | | 99.54 77 | | | 99.69 158 | 98.47 77 | | | 99.68 116 | 99.73 87 |
|
原ACMM2 | | | | | | | | 98.95 314 | | | | | | | | | |
|
test222 | | | | | | 99.75 68 | 99.49 79 | 98.91 320 | 99.49 134 | 96.42 288 | 99.34 160 | 99.65 176 | 98.28 89 | | | 99.69 113 | 99.72 93 |
|
segment_acmp | | | | | | | | | | | | | 98.96 24 | | | | |
|
testdata1 | | | | | | | | 98.85 325 | | 98.32 101 | | | | | | | |
|
plane_prior7 | | | | | | 99.29 227 | 97.03 274 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.27 232 | 96.98 278 | | | | | | 92.71 272 | | | | |
|
plane_prior4 | | | | | | | | | | | | 99.61 197 | | | | | |
|
plane_prior3 | | | | | | | 97.00 276 | | | 98.69 70 | 99.11 206 | | | | | | |
|
plane_prior2 | | | | | | | | 99.39 206 | | 98.97 43 | | | | | | | |
|
plane_prior1 | | | | | | 99.26 234 | | | | | | | | | | | |
|
plane_prior | | | | | | | 96.97 279 | 99.21 262 | | 98.45 86 | | | | | | 97.60 236 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 98.05 358 | | | | | | | | |
|
test11 | | | | | | | | | 99.35 234 | | | | | | | | |
|
door | | | | | | | | | 97.92 359 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.83 284 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.19 248 | | 98.98 307 | | 98.24 108 | 98.66 275 | | | | | | |
|
ACMP_Plane | | | | | | 99.19 248 | | 98.98 307 | | 98.24 108 | 98.66 275 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.19 262 | | |
|
HQP3-MVS | | | | | | | | | 99.39 214 | | | | | | | 97.58 238 | |
|
HQP2-MVS | | | | | | | | | | | | | 92.47 281 | | | | |
|
NP-MVS | | | | | | 99.23 240 | 96.92 282 | | | | | 99.40 262 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 95.18 330 | 99.35 222 | | 96.84 256 | 99.58 100 | | 95.19 192 | | 97.82 208 | | 99.46 175 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 97.19 268 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.43 257 | |
|
Test By Simon | | | | | | | | | | | | | 98.75 55 | | | | |
|