patch_mono-2 | | | 99.26 58 | 99.62 1 | 98.16 271 | 99.81 40 | 94.59 332 | 99.52 133 | 99.64 32 | 99.33 2 | 99.73 47 | 99.90 15 | 99.00 22 | 99.99 1 | 99.69 5 | 99.98 2 | 99.89 5 |
|
h-mvs33 | | | 97.70 250 | 97.28 269 | 98.97 173 | 99.70 91 | 97.27 250 | 99.36 208 | 99.45 179 | 98.94 41 | 99.66 68 | 99.64 175 | 94.93 193 | 99.99 1 | 99.48 24 | 84.36 360 | 99.65 112 |
|
xiu_mvs_v1_base_debu | | | 99.29 53 | 99.27 48 | 99.34 121 | 99.63 118 | 98.97 139 | 99.12 265 | 99.51 102 | 98.86 47 | 99.84 17 | 99.47 238 | 98.18 91 | 99.99 1 | 99.50 19 | 99.31 142 | 99.08 199 |
|
xiu_mvs_v1_base | | | 99.29 53 | 99.27 48 | 99.34 121 | 99.63 118 | 98.97 139 | 99.12 265 | 99.51 102 | 98.86 47 | 99.84 17 | 99.47 238 | 98.18 91 | 99.99 1 | 99.50 19 | 99.31 142 | 99.08 199 |
|
xiu_mvs_v1_base_debi | | | 99.29 53 | 99.27 48 | 99.34 121 | 99.63 118 | 98.97 139 | 99.12 265 | 99.51 102 | 98.86 47 | 99.84 17 | 99.47 238 | 98.18 91 | 99.99 1 | 99.50 19 | 99.31 142 | 99.08 199 |
|
EPNet | | | 98.86 113 | 98.71 117 | 99.30 132 | 97.20 355 | 98.18 212 | 99.62 82 | 98.91 312 | 99.28 5 | 98.63 275 | 99.81 75 | 95.96 157 | 99.99 1 | 99.24 51 | 99.72 103 | 99.73 82 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_vis1_n | | | 97.92 213 | 97.44 247 | 99.34 121 | 99.53 149 | 98.08 218 | 99.74 42 | 99.49 129 | 99.15 9 | 100.00 1 | 99.94 4 | 79.51 361 | 99.98 7 | 99.88 1 | 99.76 95 | 99.97 1 |
|
xiu_mvs_v2_base | | | 99.26 58 | 99.25 52 | 99.29 135 | 99.53 149 | 98.91 155 | 99.02 289 | 99.45 179 | 98.80 56 | 99.71 53 | 99.26 291 | 98.94 29 | 99.98 7 | 99.34 38 | 99.23 147 | 98.98 213 |
|
PS-MVSNAJ | | | 99.32 49 | 99.32 32 | 99.30 132 | 99.57 139 | 98.94 151 | 98.97 302 | 99.46 168 | 98.92 44 | 99.71 53 | 99.24 293 | 99.01 18 | 99.98 7 | 99.35 34 | 99.66 113 | 98.97 214 |
|
QAPM | | | 98.67 140 | 98.30 157 | 99.80 38 | 99.20 239 | 99.67 51 | 99.77 33 | 99.72 11 | 94.74 327 | 98.73 256 | 99.90 15 | 95.78 167 | 99.98 7 | 96.96 268 | 99.88 36 | 99.76 72 |
|
3Dnovator | | 97.25 9 | 99.24 62 | 99.05 71 | 99.81 36 | 99.12 257 | 99.66 53 | 99.84 13 | 99.74 10 | 99.09 19 | 98.92 231 | 99.90 15 | 95.94 160 | 99.98 7 | 98.95 76 | 99.92 13 | 99.79 59 |
|
OpenMVS |  | 96.50 16 | 98.47 149 | 98.12 168 | 99.52 96 | 99.04 274 | 99.53 73 | 99.82 17 | 99.72 11 | 94.56 330 | 98.08 305 | 99.88 25 | 94.73 209 | 99.98 7 | 97.47 237 | 99.76 95 | 99.06 205 |
|
test_fmvs1_n | | | 98.41 155 | 98.14 165 | 99.21 145 | 99.82 36 | 97.71 240 | 99.74 42 | 99.49 129 | 99.32 3 | 99.99 2 | 99.95 2 | 85.32 348 | 99.97 13 | 99.82 2 | 99.84 62 | 99.96 2 |
|
CANet_DTU | | | 98.97 103 | 98.87 100 | 99.25 140 | 99.33 207 | 98.42 205 | 99.08 274 | 99.30 258 | 99.16 8 | 99.43 123 | 99.75 121 | 95.27 184 | 99.97 13 | 98.56 141 | 99.95 8 | 99.36 178 |
|
MTAPA | | | 99.52 10 | 99.39 19 | 99.89 4 | 99.90 4 | 99.86 13 | 99.66 64 | 99.47 159 | 98.79 57 | 99.68 59 | 99.81 75 | 98.43 78 | 99.97 13 | 98.88 85 | 99.90 24 | 99.83 34 |
|
PGM-MVS | | | 99.45 25 | 99.31 38 | 99.86 20 | 99.87 15 | 99.78 36 | 99.58 103 | 99.65 31 | 97.84 153 | 99.71 53 | 99.80 88 | 99.12 13 | 99.97 13 | 98.33 162 | 99.87 39 | 99.83 34 |
|
mPP-MVS | | | 99.44 29 | 99.30 40 | 99.86 20 | 99.88 11 | 99.79 30 | 99.69 51 | 99.48 141 | 98.12 120 | 99.50 109 | 99.75 121 | 98.78 47 | 99.97 13 | 98.57 138 | 99.89 33 | 99.83 34 |
|
CP-MVS | | | 99.45 25 | 99.32 32 | 99.85 25 | 99.83 34 | 99.75 39 | 99.69 51 | 99.52 88 | 98.07 130 | 99.53 104 | 99.63 181 | 98.93 33 | 99.97 13 | 98.74 110 | 99.91 17 | 99.83 34 |
|
SteuartSystems-ACMMP | | | 99.54 8 | 99.42 15 | 99.87 11 | 99.82 36 | 99.81 25 | 99.59 95 | 99.51 102 | 98.62 66 | 99.79 29 | 99.83 55 | 99.28 4 | 99.97 13 | 98.48 148 | 99.90 24 | 99.84 25 |
Skip Steuart: Steuart Systems R&D Blog. |
3Dnovator+ | | 97.12 13 | 99.18 66 | 98.97 87 | 99.82 33 | 99.17 250 | 99.68 48 | 99.81 20 | 99.51 102 | 99.20 7 | 98.72 257 | 99.89 19 | 95.68 172 | 99.97 13 | 98.86 93 | 99.86 47 | 99.81 46 |
|
mvsany_test1 | | | 99.50 12 | 99.46 14 | 99.62 69 | 99.61 128 | 99.09 122 | 98.94 308 | 99.48 141 | 99.10 15 | 99.96 5 | 99.91 11 | 98.85 39 | 99.96 21 | 99.72 4 | 99.58 122 | 99.82 39 |
|
test_fmvs1 | | | 98.88 109 | 98.79 111 | 99.16 150 | 99.69 94 | 97.61 242 | 99.55 122 | 99.49 129 | 99.32 3 | 99.98 3 | 99.91 11 | 91.41 298 | 99.96 21 | 99.82 2 | 99.92 13 | 99.90 3 |
|
DVP-MVS++ | | | 99.59 3 | 99.50 8 | 99.88 5 | 99.51 155 | 99.88 8 | 99.87 9 | 99.51 102 | 98.99 32 | 99.88 10 | 99.81 75 | 99.27 5 | 99.96 21 | 98.85 95 | 99.80 82 | 99.81 46 |
|
MSC_two_6792asdad | | | | | 99.87 11 | 99.51 155 | 99.76 37 | | 99.33 240 | | | | | 99.96 21 | 98.87 88 | 99.84 62 | 99.89 5 |
|
No_MVS | | | | | 99.87 11 | 99.51 155 | 99.76 37 | | 99.33 240 | | | | | 99.96 21 | 98.87 88 | 99.84 62 | 99.89 5 |
|
ZD-MVS | | | | | | 99.71 86 | 99.79 30 | | 99.61 35 | 96.84 247 | 99.56 97 | 99.54 214 | 98.58 67 | 99.96 21 | 96.93 271 | 99.75 97 | |
|
SED-MVS | | | 99.61 2 | 99.52 6 | 99.88 5 | 99.84 30 | 99.90 2 | 99.60 89 | 99.48 141 | 99.08 20 | 99.91 6 | 99.81 75 | 99.20 7 | 99.96 21 | 98.91 82 | 99.85 54 | 99.79 59 |
|
test_241102_TWO | | | | | | | | | 99.48 141 | 99.08 20 | 99.88 10 | 99.81 75 | 98.94 29 | 99.96 21 | 98.91 82 | 99.84 62 | 99.88 11 |
|
ZNCC-MVS | | | 99.47 21 | 99.33 30 | 99.87 11 | 99.87 15 | 99.81 25 | 99.64 72 | 99.67 22 | 98.08 129 | 99.55 101 | 99.64 175 | 98.91 34 | 99.96 21 | 98.72 113 | 99.90 24 | 99.82 39 |
|
DVP-MVS |  | | 99.57 7 | 99.47 12 | 99.88 5 | 99.85 24 | 99.89 4 | 99.57 107 | 99.37 223 | 99.10 15 | 99.81 24 | 99.80 88 | 98.94 29 | 99.96 21 | 98.93 79 | 99.86 47 | 99.81 46 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 98.99 32 | 99.81 24 | 99.80 88 | 99.09 14 | 99.96 21 | 98.85 95 | 99.90 24 | 99.88 11 |
|
test_0728_SECOND | | | | | 99.91 2 | 99.84 30 | 99.89 4 | 99.57 107 | 99.51 102 | | | | | 99.96 21 | 98.93 79 | 99.86 47 | 99.88 11 |
|
SR-MVS | | | 99.43 32 | 99.29 44 | 99.86 20 | 99.75 63 | 99.83 16 | 99.59 95 | 99.62 33 | 98.21 107 | 99.73 47 | 99.79 99 | 98.68 61 | 99.96 21 | 98.44 153 | 99.77 92 | 99.79 59 |
|
DPE-MVS |  | | 99.46 23 | 99.32 32 | 99.91 2 | 99.78 46 | 99.88 8 | 99.36 208 | 99.51 102 | 98.73 60 | 99.88 10 | 99.84 51 | 98.72 58 | 99.96 21 | 98.16 175 | 99.87 39 | 99.88 11 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
UA-Net | | | 99.42 34 | 99.29 44 | 99.80 38 | 99.62 124 | 99.55 68 | 99.50 144 | 99.70 15 | 98.79 57 | 99.77 37 | 99.96 1 | 97.45 109 | 99.96 21 | 98.92 81 | 99.90 24 | 99.89 5 |
|
HFP-MVS | | | 99.49 14 | 99.37 22 | 99.86 20 | 99.87 15 | 99.80 27 | 99.66 64 | 99.67 22 | 98.15 116 | 99.68 59 | 99.69 151 | 99.06 16 | 99.96 21 | 98.69 118 | 99.87 39 | 99.84 25 |
|
region2R | | | 99.48 18 | 99.35 26 | 99.87 11 | 99.88 11 | 99.80 27 | 99.65 70 | 99.66 26 | 98.13 119 | 99.66 68 | 99.68 157 | 98.96 24 | 99.96 21 | 98.62 126 | 99.87 39 | 99.84 25 |
|
HPM-MVS++ |  | | 99.39 42 | 99.23 55 | 99.87 11 | 99.75 63 | 99.84 15 | 99.43 176 | 99.51 102 | 98.68 64 | 99.27 167 | 99.53 218 | 98.64 66 | 99.96 21 | 98.44 153 | 99.80 82 | 99.79 59 |
|
APDe-MVS | | | 99.66 1 | 99.57 3 | 99.92 1 | 99.77 52 | 99.89 4 | 99.75 39 | 99.56 56 | 99.02 25 | 99.88 10 | 99.85 41 | 99.18 10 | 99.96 21 | 99.22 52 | 99.92 13 | 99.90 3 |
|
ACMMPR | | | 99.49 14 | 99.36 24 | 99.86 20 | 99.87 15 | 99.79 30 | 99.66 64 | 99.67 22 | 98.15 116 | 99.67 63 | 99.69 151 | 98.95 27 | 99.96 21 | 98.69 118 | 99.87 39 | 99.84 25 |
|
MP-MVS |  | | 99.33 48 | 99.15 61 | 99.87 11 | 99.88 11 | 99.82 22 | 99.66 64 | 99.46 168 | 98.09 125 | 99.48 113 | 99.74 126 | 98.29 86 | 99.96 21 | 97.93 191 | 99.87 39 | 99.82 39 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CPTT-MVS | | | 99.11 85 | 98.90 96 | 99.74 49 | 99.80 43 | 99.46 82 | 99.59 95 | 99.49 129 | 97.03 234 | 99.63 79 | 99.69 151 | 97.27 116 | 99.96 21 | 97.82 201 | 99.84 62 | 99.81 46 |
|
PVSNet_Blended_VisFu | | | 99.36 45 | 99.28 46 | 99.61 70 | 99.86 20 | 99.07 127 | 99.47 163 | 99.93 2 | 97.66 174 | 99.71 53 | 99.86 36 | 97.73 104 | 99.96 21 | 99.47 26 | 99.82 75 | 99.79 59 |
|
UGNet | | | 98.87 110 | 98.69 119 | 99.40 115 | 99.22 235 | 98.72 173 | 99.44 172 | 99.68 19 | 99.24 6 | 99.18 190 | 99.42 248 | 92.74 262 | 99.96 21 | 99.34 38 | 99.94 11 | 99.53 146 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CSCG | | | 99.32 49 | 99.32 32 | 99.32 127 | 99.85 24 | 98.29 208 | 99.71 48 | 99.66 26 | 98.11 122 | 99.41 130 | 99.80 88 | 98.37 83 | 99.96 21 | 98.99 72 | 99.96 7 | 99.72 88 |
|
ACMMP |  | | 99.45 25 | 99.32 32 | 99.82 33 | 99.89 8 | 99.67 51 | 99.62 82 | 99.69 18 | 98.12 120 | 99.63 79 | 99.84 51 | 98.73 57 | 99.96 21 | 98.55 144 | 99.83 71 | 99.81 46 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SR-MVS-dyc-post | | | 99.45 25 | 99.31 38 | 99.85 25 | 99.76 55 | 99.82 22 | 99.63 76 | 99.52 88 | 98.38 85 | 99.76 42 | 99.82 62 | 98.53 71 | 99.95 47 | 98.61 129 | 99.81 78 | 99.77 67 |
|
GST-MVS | | | 99.40 41 | 99.24 53 | 99.85 25 | 99.86 20 | 99.79 30 | 99.60 89 | 99.67 22 | 97.97 141 | 99.63 79 | 99.68 157 | 98.52 72 | 99.95 47 | 98.38 156 | 99.86 47 | 99.81 46 |
|
CANet | | | 99.25 61 | 99.14 62 | 99.59 72 | 99.41 187 | 99.16 111 | 99.35 213 | 99.57 51 | 98.82 52 | 99.51 108 | 99.61 190 | 96.46 142 | 99.95 47 | 99.59 10 | 99.98 2 | 99.65 112 |
|
MP-MVS-pluss | | | 99.37 44 | 99.20 57 | 99.88 5 | 99.90 4 | 99.87 12 | 99.30 223 | 99.52 88 | 97.18 218 | 99.60 89 | 99.79 99 | 98.79 46 | 99.95 47 | 98.83 101 | 99.91 17 | 99.83 34 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MSP-MVS | | | 99.42 34 | 99.27 48 | 99.88 5 | 99.89 8 | 99.80 27 | 99.67 60 | 99.50 121 | 98.70 62 | 99.77 37 | 99.49 230 | 98.21 89 | 99.95 47 | 98.46 152 | 99.77 92 | 99.88 11 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
testdata2 | | | | | | | | | | | | | | 99.95 47 | 96.67 283 | | |
|
APD-MVS_3200maxsize | | | 99.48 18 | 99.35 26 | 99.85 25 | 99.76 55 | 99.83 16 | 99.63 76 | 99.54 72 | 98.36 89 | 99.79 29 | 99.82 62 | 98.86 38 | 99.95 47 | 98.62 126 | 99.81 78 | 99.78 65 |
|
RPMNet | | | 96.72 288 | 95.90 299 | 99.19 147 | 99.18 244 | 98.49 197 | 99.22 251 | 99.52 88 | 88.72 360 | 99.56 97 | 97.38 354 | 94.08 234 | 99.95 47 | 86.87 365 | 98.58 191 | 99.14 191 |
|
sss | | | 99.17 68 | 99.05 71 | 99.53 90 | 99.62 124 | 98.97 139 | 99.36 208 | 99.62 33 | 97.83 154 | 99.67 63 | 99.65 169 | 97.37 113 | 99.95 47 | 99.19 54 | 99.19 150 | 99.68 102 |
|
TSAR-MVS + MP. | | | 99.58 4 | 99.50 8 | 99.81 36 | 99.91 1 | 99.66 53 | 99.63 76 | 99.39 209 | 98.91 45 | 99.78 34 | 99.85 41 | 99.36 2 | 99.94 56 | 98.84 98 | 99.88 36 | 99.82 39 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
XVS | | | 99.53 9 | 99.42 15 | 99.87 11 | 99.85 24 | 99.83 16 | 99.69 51 | 99.68 19 | 98.98 35 | 99.37 143 | 99.74 126 | 98.81 44 | 99.94 56 | 98.79 106 | 99.86 47 | 99.84 25 |
|
X-MVStestdata | | | 96.55 290 | 95.45 307 | 99.87 11 | 99.85 24 | 99.83 16 | 99.69 51 | 99.68 19 | 98.98 35 | 99.37 143 | 64.01 377 | 98.81 44 | 99.94 56 | 98.79 106 | 99.86 47 | 99.84 25 |
|
旧先验2 | | | | | | | | 98.96 303 | | 96.70 254 | 99.47 114 | | | 99.94 56 | 98.19 171 | | |
|
æ–°å‡ ä½•1 | | | | | 99.75 47 | 99.75 63 | 99.59 62 | | 99.54 72 | 96.76 250 | 99.29 162 | 99.64 175 | 98.43 78 | 99.94 56 | 96.92 273 | 99.66 113 | 99.72 88 |
|
testdata | | | | | 99.54 82 | 99.75 63 | 98.95 148 | | 99.51 102 | 97.07 230 | 99.43 123 | 99.70 141 | 98.87 37 | 99.94 56 | 97.76 207 | 99.64 116 | 99.72 88 |
|
HPM-MVS |  | | 99.42 34 | 99.28 46 | 99.83 32 | 99.90 4 | 99.72 42 | 99.81 20 | 99.54 72 | 97.59 178 | 99.68 59 | 99.63 181 | 98.91 34 | 99.94 56 | 98.58 135 | 99.91 17 | 99.84 25 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CHOSEN 1792x2688 | | | 99.19 64 | 99.10 66 | 99.45 108 | 99.89 8 | 98.52 193 | 99.39 197 | 99.94 1 | 98.73 60 | 99.11 199 | 99.89 19 | 95.50 176 | 99.94 56 | 99.50 19 | 99.97 5 | 99.89 5 |
|
APD-MVS |  | | 99.27 56 | 99.08 69 | 99.84 31 | 99.75 63 | 99.79 30 | 99.50 144 | 99.50 121 | 97.16 220 | 99.77 37 | 99.82 62 | 98.78 47 | 99.94 56 | 97.56 228 | 99.86 47 | 99.80 55 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DELS-MVS | | | 99.48 18 | 99.42 15 | 99.65 59 | 99.72 81 | 99.40 88 | 99.05 280 | 99.66 26 | 99.14 10 | 99.57 96 | 99.80 88 | 98.46 76 | 99.94 56 | 99.57 12 | 99.84 62 | 99.60 128 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
WTY-MVS | | | 99.06 92 | 98.88 99 | 99.61 70 | 99.62 124 | 99.16 111 | 99.37 204 | 99.56 56 | 98.04 136 | 99.53 104 | 99.62 186 | 96.84 130 | 99.94 56 | 98.85 95 | 98.49 198 | 99.72 88 |
|
DeepC-MVS | | 98.35 2 | 99.30 51 | 99.19 58 | 99.64 64 | 99.82 36 | 99.23 104 | 99.62 82 | 99.55 64 | 98.94 41 | 99.63 79 | 99.95 2 | 95.82 166 | 99.94 56 | 99.37 33 | 99.97 5 | 99.73 82 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LS3D | | | 99.27 56 | 99.12 64 | 99.74 49 | 99.18 244 | 99.75 39 | 99.56 113 | 99.57 51 | 98.45 79 | 99.49 112 | 99.85 41 | 97.77 103 | 99.94 56 | 98.33 162 | 99.84 62 | 99.52 147 |
|
FE-MVS | | | 98.48 148 | 98.17 162 | 99.40 115 | 99.54 148 | 98.96 143 | 99.68 57 | 98.81 323 | 95.54 313 | 99.62 83 | 99.70 141 | 93.82 241 | 99.93 69 | 97.35 244 | 99.46 129 | 99.32 183 |
|
SF-MVS | | | 99.38 43 | 99.24 53 | 99.79 41 | 99.79 44 | 99.68 48 | 99.57 107 | 99.54 72 | 97.82 158 | 99.71 53 | 99.80 88 | 98.95 27 | 99.93 69 | 98.19 171 | 99.84 62 | 99.74 77 |
|
dcpmvs_2 | | | 99.23 63 | 99.58 2 | 98.16 271 | 99.83 34 | 94.68 331 | 99.76 36 | 99.52 88 | 99.07 22 | 99.98 3 | 99.88 25 | 98.56 69 | 99.93 69 | 99.67 7 | 99.98 2 | 99.87 16 |
|
Anonymous20240529 | | | 98.09 184 | 97.68 219 | 99.34 121 | 99.66 107 | 98.44 202 | 99.40 193 | 99.43 193 | 93.67 337 | 99.22 178 | 99.89 19 | 90.23 314 | 99.93 69 | 99.26 50 | 98.33 201 | 99.66 108 |
|
ACMMP_NAP | | | 99.47 21 | 99.34 28 | 99.88 5 | 99.87 15 | 99.86 13 | 99.47 163 | 99.48 141 | 98.05 135 | 99.76 42 | 99.86 36 | 98.82 43 | 99.93 69 | 98.82 105 | 99.91 17 | 99.84 25 |
|
EI-MVSNet-UG-set | | | 99.58 4 | 99.57 3 | 99.64 64 | 99.78 46 | 99.14 117 | 99.60 89 | 99.45 179 | 99.01 27 | 99.90 8 | 99.83 55 | 98.98 23 | 99.93 69 | 99.59 10 | 99.95 8 | 99.86 18 |
|
æ— å…ˆéªŒ | | | | | | | | 98.99 296 | 99.51 102 | 96.89 244 | | | | 99.93 69 | 97.53 231 | | 99.72 88 |
|
VDDNet | | | 97.55 262 | 97.02 279 | 99.16 150 | 99.49 166 | 98.12 217 | 99.38 202 | 99.30 258 | 95.35 315 | 99.68 59 | 99.90 15 | 82.62 356 | 99.93 69 | 99.31 41 | 98.13 216 | 99.42 171 |
|
ab-mvs | | | 98.86 113 | 98.63 127 | 99.54 82 | 99.64 115 | 99.19 106 | 99.44 172 | 99.54 72 | 97.77 161 | 99.30 159 | 99.81 75 | 94.20 228 | 99.93 69 | 99.17 57 | 98.82 182 | 99.49 157 |
|
F-COLMAP | | | 99.19 64 | 99.04 73 | 99.64 64 | 99.78 46 | 99.27 100 | 99.42 183 | 99.54 72 | 97.29 209 | 99.41 130 | 99.59 195 | 98.42 80 | 99.93 69 | 98.19 171 | 99.69 108 | 99.73 82 |
|
Anonymous202405211 | | | 98.30 165 | 97.98 185 | 99.26 139 | 99.57 139 | 98.16 213 | 99.41 185 | 98.55 342 | 96.03 307 | 99.19 187 | 99.74 126 | 91.87 285 | 99.92 79 | 99.16 58 | 98.29 206 | 99.70 96 |
|
EI-MVSNet-Vis-set | | | 99.58 4 | 99.56 5 | 99.64 64 | 99.78 46 | 99.15 116 | 99.61 88 | 99.45 179 | 99.01 27 | 99.89 9 | 99.82 62 | 99.01 18 | 99.92 79 | 99.56 13 | 99.95 8 | 99.85 21 |
|
VDD-MVS | | | 97.73 244 | 97.35 259 | 98.88 192 | 99.47 175 | 97.12 256 | 99.34 216 | 98.85 319 | 98.19 110 | 99.67 63 | 99.85 41 | 82.98 354 | 99.92 79 | 99.49 23 | 98.32 205 | 99.60 128 |
|
VNet | | | 99.11 85 | 98.90 96 | 99.73 51 | 99.52 153 | 99.56 66 | 99.41 185 | 99.39 209 | 99.01 27 | 99.74 46 | 99.78 105 | 95.56 174 | 99.92 79 | 99.52 17 | 98.18 212 | 99.72 88 |
|
XVG-OURS-SEG-HR | | | 98.69 137 | 98.62 132 | 98.89 190 | 99.71 86 | 97.74 235 | 99.12 265 | 99.54 72 | 98.44 82 | 99.42 126 | 99.71 137 | 94.20 228 | 99.92 79 | 98.54 145 | 98.90 176 | 99.00 210 |
|
HPM-MVS_fast | | | 99.51 11 | 99.40 18 | 99.85 25 | 99.91 1 | 99.79 30 | 99.76 36 | 99.56 56 | 97.72 167 | 99.76 42 | 99.75 121 | 99.13 12 | 99.92 79 | 99.07 66 | 99.92 13 | 99.85 21 |
|
HY-MVS | | 97.30 7 | 98.85 120 | 98.64 126 | 99.47 105 | 99.42 184 | 99.08 125 | 99.62 82 | 99.36 224 | 97.39 202 | 99.28 163 | 99.68 157 | 96.44 144 | 99.92 79 | 98.37 158 | 98.22 207 | 99.40 175 |
|
DP-MVS | | | 99.16 70 | 98.95 91 | 99.78 43 | 99.77 52 | 99.53 73 | 99.41 185 | 99.50 121 | 97.03 234 | 99.04 213 | 99.88 25 | 97.39 110 | 99.92 79 | 98.66 122 | 99.90 24 | 99.87 16 |
|
IB-MVS | | 95.67 18 | 96.22 296 | 95.44 308 | 98.57 228 | 99.21 237 | 96.70 282 | 98.65 336 | 97.74 357 | 96.71 253 | 97.27 326 | 98.54 339 | 86.03 344 | 99.92 79 | 98.47 151 | 86.30 358 | 99.10 194 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
DeepC-MVS_fast | | 98.69 1 | 99.49 14 | 99.39 19 | 99.77 45 | 99.63 118 | 99.59 62 | 99.36 208 | 99.46 168 | 99.07 22 | 99.79 29 | 99.82 62 | 98.85 39 | 99.92 79 | 98.68 120 | 99.87 39 | 99.82 39 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
9.14 | | | | 99.10 66 | | 99.72 81 | | 99.40 193 | 99.51 102 | 97.53 187 | 99.64 78 | 99.78 105 | 98.84 41 | 99.91 89 | 97.63 219 | 99.82 75 | |
|
SMA-MVS |  | | 99.44 29 | 99.30 40 | 99.85 25 | 99.73 77 | 99.83 16 | 99.56 113 | 99.47 159 | 97.45 194 | 99.78 34 | 99.82 62 | 99.18 10 | 99.91 89 | 98.79 106 | 99.89 33 | 99.81 46 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
TEST9 | | | | | | 99.67 99 | 99.65 56 | 99.05 280 | 99.41 198 | 96.22 292 | 98.95 226 | 99.49 230 | 98.77 50 | 99.91 89 | | | |
|
train_agg | | | 99.02 97 | 98.77 112 | 99.77 45 | 99.67 99 | 99.65 56 | 99.05 280 | 99.41 198 | 96.28 286 | 98.95 226 | 99.49 230 | 98.76 51 | 99.91 89 | 97.63 219 | 99.72 103 | 99.75 73 |
|
test_8 | | | | | | 99.67 99 | 99.61 60 | 99.03 286 | 99.41 198 | 96.28 286 | 98.93 230 | 99.48 235 | 98.76 51 | 99.91 89 | | | |
|
agg_prior | | | | | | 99.67 99 | 99.62 59 | | 99.40 206 | | 98.87 240 | | | 99.91 89 | | | |
|
原ACMM1 | | | | | 99.65 59 | 99.73 77 | 99.33 91 | | 99.47 159 | 97.46 191 | 99.12 197 | 99.66 168 | 98.67 63 | 99.91 89 | 97.70 216 | 99.69 108 | 99.71 95 |
|
LFMVS | | | 97.90 216 | 97.35 259 | 99.54 82 | 99.52 153 | 99.01 134 | 99.39 197 | 98.24 348 | 97.10 228 | 99.65 74 | 99.79 99 | 84.79 350 | 99.91 89 | 99.28 46 | 98.38 200 | 99.69 98 |
|
XVG-OURS | | | 98.73 133 | 98.68 120 | 98.88 192 | 99.70 91 | 97.73 236 | 98.92 310 | 99.55 64 | 98.52 74 | 99.45 117 | 99.84 51 | 95.27 184 | 99.91 89 | 98.08 182 | 98.84 180 | 99.00 210 |
|
PLC |  | 97.94 4 | 99.02 97 | 98.85 104 | 99.53 90 | 99.66 107 | 99.01 134 | 99.24 246 | 99.52 88 | 96.85 246 | 99.27 167 | 99.48 235 | 98.25 88 | 99.91 89 | 97.76 207 | 99.62 119 | 99.65 112 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PCF-MVS | | 97.08 14 | 97.66 257 | 97.06 278 | 99.47 105 | 99.61 128 | 99.09 122 | 98.04 361 | 99.25 269 | 91.24 352 | 98.51 284 | 99.70 141 | 94.55 218 | 99.91 89 | 92.76 344 | 99.85 54 | 99.42 171 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test_vis1_rt | | | 95.81 305 | 95.65 304 | 96.32 331 | 99.67 99 | 91.35 357 | 99.49 154 | 96.74 365 | 98.25 100 | 95.24 346 | 98.10 348 | 74.96 362 | 99.90 100 | 99.53 15 | 98.85 179 | 97.70 350 |
|
FA-MVS(test-final) | | | 98.75 131 | 98.53 144 | 99.41 114 | 99.55 147 | 99.05 130 | 99.80 24 | 99.01 299 | 96.59 267 | 99.58 93 | 99.59 195 | 95.39 179 | 99.90 100 | 97.78 204 | 99.49 128 | 99.28 186 |
|
MCST-MVS | | | 99.43 32 | 99.30 40 | 99.82 33 | 99.79 44 | 99.74 41 | 99.29 227 | 99.40 206 | 98.79 57 | 99.52 106 | 99.62 186 | 98.91 34 | 99.90 100 | 98.64 124 | 99.75 97 | 99.82 39 |
|
CDPH-MVS | | | 99.13 75 | 98.91 95 | 99.80 38 | 99.75 63 | 99.71 44 | 99.15 260 | 99.41 198 | 96.60 265 | 99.60 89 | 99.55 209 | 98.83 42 | 99.90 100 | 97.48 235 | 99.83 71 | 99.78 65 |
|
NCCC | | | 99.34 47 | 99.19 58 | 99.79 41 | 99.61 128 | 99.65 56 | 99.30 223 | 99.48 141 | 98.86 47 | 99.21 181 | 99.63 181 | 98.72 58 | 99.90 100 | 98.25 167 | 99.63 118 | 99.80 55 |
|
114514_t | | | 98.93 105 | 98.67 121 | 99.72 52 | 99.85 24 | 99.53 73 | 99.62 82 | 99.59 43 | 92.65 347 | 99.71 53 | 99.78 105 | 98.06 96 | 99.90 100 | 98.84 98 | 99.91 17 | 99.74 77 |
|
1112_ss | | | 98.98 101 | 98.77 112 | 99.59 72 | 99.68 98 | 99.02 132 | 99.25 244 | 99.48 141 | 97.23 215 | 99.13 195 | 99.58 199 | 96.93 129 | 99.90 100 | 98.87 88 | 98.78 185 | 99.84 25 |
|
PHI-MVS | | | 99.30 51 | 99.17 60 | 99.70 53 | 99.56 143 | 99.52 76 | 99.58 103 | 99.80 8 | 97.12 224 | 99.62 83 | 99.73 132 | 98.58 67 | 99.90 100 | 98.61 129 | 99.91 17 | 99.68 102 |
|
AdaColmap |  | | 99.01 100 | 98.80 108 | 99.66 55 | 99.56 143 | 99.54 70 | 99.18 255 | 99.70 15 | 98.18 114 | 99.35 150 | 99.63 181 | 96.32 147 | 99.90 100 | 97.48 235 | 99.77 92 | 99.55 139 |
|
COLMAP_ROB |  | 97.56 6 | 98.86 113 | 98.75 114 | 99.17 149 | 99.88 11 | 98.53 189 | 99.34 216 | 99.59 43 | 97.55 183 | 98.70 264 | 99.89 19 | 95.83 165 | 99.90 100 | 98.10 177 | 99.90 24 | 99.08 199 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
thisisatest0530 | | | 98.35 161 | 98.03 180 | 99.31 128 | 99.63 118 | 98.56 186 | 99.54 126 | 96.75 364 | 97.53 187 | 99.73 47 | 99.65 169 | 91.25 302 | 99.89 110 | 98.62 126 | 99.56 123 | 99.48 158 |
|
tttt0517 | | | 98.42 153 | 98.14 165 | 99.28 137 | 99.66 107 | 98.38 206 | 99.74 42 | 96.85 362 | 97.68 171 | 99.79 29 | 99.74 126 | 91.39 299 | 99.89 110 | 98.83 101 | 99.56 123 | 99.57 137 |
|
test12 | | | | | 99.75 47 | 99.64 115 | 99.61 60 | | 99.29 262 | | 99.21 181 | | 98.38 82 | 99.89 110 | | 99.74 100 | 99.74 77 |
|
Test_1112_low_res | | | 98.89 108 | 98.66 124 | 99.57 77 | 99.69 94 | 98.95 148 | 99.03 286 | 99.47 159 | 96.98 236 | 99.15 193 | 99.23 294 | 96.77 133 | 99.89 110 | 98.83 101 | 98.78 185 | 99.86 18 |
|
CNLPA | | | 99.14 73 | 98.99 83 | 99.59 72 | 99.58 137 | 99.41 87 | 99.16 257 | 99.44 187 | 98.45 79 | 99.19 187 | 99.49 230 | 98.08 95 | 99.89 110 | 97.73 211 | 99.75 97 | 99.48 158 |
|
APD_test1 | | | 95.87 303 | 96.49 288 | 94.00 337 | 99.53 149 | 84.01 364 | 99.54 126 | 99.32 250 | 95.91 309 | 97.99 310 | 99.85 41 | 85.49 347 | 99.88 115 | 91.96 347 | 98.84 180 | 98.12 332 |
|
diffmvs |  | | 99.14 73 | 99.02 78 | 99.51 98 | 99.61 128 | 98.96 143 | 99.28 229 | 99.49 129 | 98.46 78 | 99.72 52 | 99.71 137 | 96.50 141 | 99.88 115 | 99.31 41 | 99.11 157 | 99.67 105 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_BlendedMVS | | | 98.86 113 | 98.80 108 | 99.03 163 | 99.76 55 | 98.79 169 | 99.28 229 | 99.91 3 | 97.42 199 | 99.67 63 | 99.37 263 | 97.53 107 | 99.88 115 | 98.98 73 | 97.29 257 | 98.42 315 |
|
PVSNet_Blended | | | 99.08 90 | 98.97 87 | 99.42 113 | 99.76 55 | 98.79 169 | 98.78 324 | 99.91 3 | 96.74 251 | 99.67 63 | 99.49 230 | 97.53 107 | 99.88 115 | 98.98 73 | 99.85 54 | 99.60 128 |
|
MVS | | | 97.28 276 | 96.55 286 | 99.48 102 | 98.78 307 | 98.95 148 | 99.27 234 | 99.39 209 | 83.53 364 | 98.08 305 | 99.54 214 | 96.97 127 | 99.87 119 | 94.23 327 | 99.16 151 | 99.63 122 |
|
MG-MVS | | | 99.13 75 | 99.02 78 | 99.45 108 | 99.57 139 | 98.63 180 | 99.07 275 | 99.34 233 | 98.99 32 | 99.61 86 | 99.82 62 | 97.98 98 | 99.87 119 | 97.00 264 | 99.80 82 | 99.85 21 |
|
MSDG | | | 98.98 101 | 98.80 108 | 99.53 90 | 99.76 55 | 99.19 106 | 98.75 327 | 99.55 64 | 97.25 212 | 99.47 114 | 99.77 112 | 97.82 101 | 99.87 119 | 96.93 271 | 99.90 24 | 99.54 141 |
|
ETV-MVS | | | 99.26 58 | 99.21 56 | 99.40 115 | 99.46 176 | 99.30 96 | 99.56 113 | 99.52 88 | 98.52 74 | 99.44 122 | 99.27 289 | 98.41 81 | 99.86 122 | 99.10 62 | 99.59 121 | 99.04 206 |
|
thisisatest0515 | | | 98.14 179 | 97.79 203 | 99.19 147 | 99.50 164 | 98.50 196 | 98.61 338 | 96.82 363 | 96.95 240 | 99.54 102 | 99.43 246 | 91.66 294 | 99.86 122 | 98.08 182 | 99.51 127 | 99.22 189 |
|
thres600view7 | | | 97.86 221 | 97.51 235 | 98.92 181 | 99.72 81 | 97.95 227 | 99.59 95 | 98.74 330 | 97.94 143 | 99.27 167 | 98.62 336 | 91.75 288 | 99.86 122 | 93.73 332 | 98.19 211 | 98.96 216 |
|
lupinMVS | | | 99.13 75 | 99.01 82 | 99.46 107 | 99.51 155 | 98.94 151 | 99.05 280 | 99.16 282 | 97.86 149 | 99.80 27 | 99.56 206 | 97.39 110 | 99.86 122 | 98.94 77 | 99.85 54 | 99.58 136 |
|
PVSNet | | 96.02 17 | 98.85 120 | 98.84 105 | 98.89 190 | 99.73 77 | 97.28 249 | 98.32 354 | 99.60 40 | 97.86 149 | 99.50 109 | 99.57 203 | 96.75 134 | 99.86 122 | 98.56 141 | 99.70 107 | 99.54 141 |
|
MAR-MVS | | | 98.86 113 | 98.63 127 | 99.54 82 | 99.37 198 | 99.66 53 | 99.45 167 | 99.54 72 | 96.61 263 | 99.01 216 | 99.40 255 | 97.09 121 | 99.86 122 | 97.68 218 | 99.53 126 | 99.10 194 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
test2506 | | | 96.81 286 | 96.65 284 | 97.29 313 | 99.74 70 | 92.21 354 | 99.60 89 | 85.06 381 | 99.13 11 | 99.77 37 | 99.93 6 | 87.82 340 | 99.85 128 | 99.38 31 | 99.38 134 | 99.80 55 |
|
AllTest | | | 98.87 110 | 98.72 115 | 99.31 128 | 99.86 20 | 98.48 199 | 99.56 113 | 99.61 35 | 97.85 151 | 99.36 147 | 99.85 41 | 95.95 158 | 99.85 128 | 96.66 284 | 99.83 71 | 99.59 132 |
|
TestCases | | | | | 99.31 128 | 99.86 20 | 98.48 199 | | 99.61 35 | 97.85 151 | 99.36 147 | 99.85 41 | 95.95 158 | 99.85 128 | 96.66 284 | 99.83 71 | 99.59 132 |
|
jason | | | 99.13 75 | 99.03 75 | 99.45 108 | 99.46 176 | 98.87 158 | 99.12 265 | 99.26 267 | 98.03 138 | 99.79 29 | 99.65 169 | 97.02 124 | 99.85 128 | 99.02 70 | 99.90 24 | 99.65 112 |
jason: jason. |
CNVR-MVS | | | 99.42 34 | 99.30 40 | 99.78 43 | 99.62 124 | 99.71 44 | 99.26 242 | 99.52 88 | 98.82 52 | 99.39 138 | 99.71 137 | 98.96 24 | 99.85 128 | 98.59 134 | 99.80 82 | 99.77 67 |
|
PAPM_NR | | | 99.04 94 | 98.84 105 | 99.66 55 | 99.74 70 | 99.44 84 | 99.39 197 | 99.38 215 | 97.70 169 | 99.28 163 | 99.28 286 | 98.34 84 | 99.85 128 | 96.96 268 | 99.45 130 | 99.69 98 |
|
test1111 | | | 98.04 193 | 98.11 169 | 97.83 293 | 99.74 70 | 93.82 340 | 99.58 103 | 95.40 370 | 99.12 13 | 99.65 74 | 99.93 6 | 90.73 307 | 99.84 134 | 99.43 29 | 99.38 134 | 99.82 39 |
|
ECVR-MVS |  | | 98.04 193 | 98.05 178 | 98.00 283 | 99.74 70 | 94.37 335 | 99.59 95 | 94.98 371 | 99.13 11 | 99.66 68 | 99.93 6 | 90.67 308 | 99.84 134 | 99.40 30 | 99.38 134 | 99.80 55 |
|
test_yl | | | 98.86 113 | 98.63 127 | 99.54 82 | 99.49 166 | 99.18 108 | 99.50 144 | 99.07 294 | 98.22 105 | 99.61 86 | 99.51 224 | 95.37 180 | 99.84 134 | 98.60 132 | 98.33 201 | 99.59 132 |
|
DCV-MVSNet | | | 98.86 113 | 98.63 127 | 99.54 82 | 99.49 166 | 99.18 108 | 99.50 144 | 99.07 294 | 98.22 105 | 99.61 86 | 99.51 224 | 95.37 180 | 99.84 134 | 98.60 132 | 98.33 201 | 99.59 132 |
|
Fast-Effi-MVS+ | | | 98.70 135 | 98.43 148 | 99.51 98 | 99.51 155 | 99.28 98 | 99.52 133 | 99.47 159 | 96.11 302 | 99.01 216 | 99.34 272 | 96.20 151 | 99.84 134 | 97.88 194 | 98.82 182 | 99.39 176 |
|
TSAR-MVS + GP. | | | 99.36 45 | 99.36 24 | 99.36 120 | 99.67 99 | 98.61 183 | 99.07 275 | 99.33 240 | 99.00 30 | 99.82 23 | 99.81 75 | 99.06 16 | 99.84 134 | 99.09 63 | 99.42 132 | 99.65 112 |
|
tpmrst | | | 98.33 162 | 98.48 146 | 97.90 289 | 99.16 252 | 94.78 329 | 99.31 221 | 99.11 287 | 97.27 210 | 99.45 117 | 99.59 195 | 95.33 182 | 99.84 134 | 98.48 148 | 98.61 188 | 99.09 198 |
|
Vis-MVSNet |  | | 99.12 81 | 98.97 87 | 99.56 79 | 99.78 46 | 99.10 121 | 99.68 57 | 99.66 26 | 98.49 76 | 99.86 15 | 99.87 31 | 94.77 206 | 99.84 134 | 99.19 54 | 99.41 133 | 99.74 77 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PAPR | | | 98.63 144 | 98.34 153 | 99.51 98 | 99.40 192 | 99.03 131 | 98.80 322 | 99.36 224 | 96.33 283 | 99.00 220 | 99.12 308 | 98.46 76 | 99.84 134 | 95.23 314 | 99.37 141 | 99.66 108 |
|
PatchMatch-RL | | | 98.84 123 | 98.62 132 | 99.52 96 | 99.71 86 | 99.28 98 | 99.06 278 | 99.77 9 | 97.74 166 | 99.50 109 | 99.53 218 | 95.41 178 | 99.84 134 | 97.17 257 | 99.64 116 | 99.44 169 |
|
EPP-MVSNet | | | 99.13 75 | 98.99 83 | 99.53 90 | 99.65 113 | 99.06 128 | 99.81 20 | 99.33 240 | 97.43 197 | 99.60 89 | 99.88 25 | 97.14 118 | 99.84 134 | 99.13 59 | 98.94 171 | 99.69 98 |
|
thres100view900 | | | 97.76 237 | 97.45 242 | 98.69 219 | 99.72 81 | 97.86 232 | 99.59 95 | 98.74 330 | 97.93 144 | 99.26 171 | 98.62 336 | 91.75 288 | 99.83 145 | 93.22 337 | 98.18 212 | 98.37 321 |
|
tfpn200view9 | | | 97.72 246 | 97.38 255 | 98.72 217 | 99.69 94 | 97.96 225 | 99.50 144 | 98.73 335 | 97.83 154 | 99.17 191 | 98.45 341 | 91.67 292 | 99.83 145 | 93.22 337 | 98.18 212 | 98.37 321 |
|
test_prior | | | | | 99.68 54 | 99.67 99 | 99.48 80 | | 99.56 56 | | | | | 99.83 145 | | | 99.74 77 |
|
1314 | | | 98.68 139 | 98.54 143 | 99.11 155 | 98.89 291 | 98.65 178 | 99.27 234 | 99.49 129 | 96.89 244 | 97.99 310 | 99.56 206 | 97.72 105 | 99.83 145 | 97.74 210 | 99.27 145 | 98.84 222 |
|
thres400 | | | 97.77 236 | 97.38 255 | 98.92 181 | 99.69 94 | 97.96 225 | 99.50 144 | 98.73 335 | 97.83 154 | 99.17 191 | 98.45 341 | 91.67 292 | 99.83 145 | 93.22 337 | 98.18 212 | 98.96 216 |
|
casdiffmvs |  | | 99.13 75 | 98.98 86 | 99.56 79 | 99.65 113 | 99.16 111 | 99.56 113 | 99.50 121 | 98.33 93 | 99.41 130 | 99.86 36 | 95.92 161 | 99.83 145 | 99.45 28 | 99.16 151 | 99.70 96 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CS-MVS-test | | | 99.49 14 | 99.48 10 | 99.54 82 | 99.78 46 | 99.30 96 | 99.89 2 | 99.58 48 | 98.56 70 | 99.73 47 | 99.69 151 | 98.55 70 | 99.82 151 | 99.69 5 | 99.85 54 | 99.48 158 |
|
MVS_Test | | | 99.10 88 | 98.97 87 | 99.48 102 | 99.49 166 | 99.14 117 | 99.67 60 | 99.34 233 | 97.31 207 | 99.58 93 | 99.76 118 | 97.65 106 | 99.82 151 | 98.87 88 | 99.07 163 | 99.46 166 |
|
dp | | | 97.75 241 | 97.80 202 | 97.59 304 | 99.10 262 | 93.71 343 | 99.32 219 | 98.88 316 | 96.48 275 | 99.08 206 | 99.55 209 | 92.67 268 | 99.82 151 | 96.52 287 | 98.58 191 | 99.24 188 |
|
RPSCF | | | 98.22 169 | 98.62 132 | 96.99 319 | 99.82 36 | 91.58 356 | 99.72 46 | 99.44 187 | 96.61 263 | 99.66 68 | 99.89 19 | 95.92 161 | 99.82 151 | 97.46 238 | 99.10 160 | 99.57 137 |
|
PMMVS | | | 98.80 127 | 98.62 132 | 99.34 121 | 99.27 224 | 98.70 174 | 98.76 326 | 99.31 254 | 97.34 204 | 99.21 181 | 99.07 310 | 97.20 117 | 99.82 151 | 98.56 141 | 98.87 177 | 99.52 147 |
|
EIA-MVS | | | 99.18 66 | 99.09 68 | 99.45 108 | 99.49 166 | 99.18 108 | 99.67 60 | 99.53 83 | 97.66 174 | 99.40 135 | 99.44 244 | 98.10 94 | 99.81 156 | 98.94 77 | 99.62 119 | 99.35 179 |
|
Effi-MVS+ | | | 98.81 124 | 98.59 139 | 99.48 102 | 99.46 176 | 99.12 120 | 98.08 360 | 99.50 121 | 97.50 190 | 99.38 141 | 99.41 252 | 96.37 146 | 99.81 156 | 99.11 61 | 98.54 195 | 99.51 153 |
|
thres200 | | | 97.61 260 | 97.28 269 | 98.62 222 | 99.64 115 | 98.03 219 | 99.26 242 | 98.74 330 | 97.68 171 | 99.09 205 | 98.32 345 | 91.66 294 | 99.81 156 | 92.88 341 | 98.22 207 | 98.03 337 |
|
tpmvs | | | 97.98 204 | 98.02 182 | 97.84 292 | 99.04 274 | 94.73 330 | 99.31 221 | 99.20 277 | 96.10 306 | 98.76 254 | 99.42 248 | 94.94 192 | 99.81 156 | 96.97 267 | 98.45 199 | 98.97 214 |
|
casdiffmvs_mvg |  | | 99.15 71 | 99.02 78 | 99.55 81 | 99.66 107 | 99.09 122 | 99.64 72 | 99.56 56 | 98.26 99 | 99.45 117 | 99.87 31 | 96.03 155 | 99.81 156 | 99.54 14 | 99.15 154 | 99.73 82 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DeepPCF-MVS | | 98.18 3 | 98.81 124 | 99.37 22 | 97.12 317 | 99.60 133 | 91.75 355 | 98.61 338 | 99.44 187 | 99.35 1 | 99.83 22 | 99.85 41 | 98.70 60 | 99.81 156 | 99.02 70 | 99.91 17 | 99.81 46 |
|
DPM-MVS | | | 98.95 104 | 98.71 117 | 99.66 55 | 99.63 118 | 99.55 68 | 98.64 337 | 99.10 288 | 97.93 144 | 99.42 126 | 99.55 209 | 98.67 63 | 99.80 162 | 95.80 301 | 99.68 111 | 99.61 126 |
|
DP-MVS Recon | | | 99.12 81 | 98.95 91 | 99.65 59 | 99.74 70 | 99.70 46 | 99.27 234 | 99.57 51 | 96.40 282 | 99.42 126 | 99.68 157 | 98.75 54 | 99.80 162 | 97.98 188 | 99.72 103 | 99.44 169 |
|
MVS_111021_LR | | | 99.41 38 | 99.33 30 | 99.65 59 | 99.77 52 | 99.51 77 | 98.94 308 | 99.85 6 | 98.82 52 | 99.65 74 | 99.74 126 | 98.51 73 | 99.80 162 | 98.83 101 | 99.89 33 | 99.64 119 |
|
CS-MVS | | | 99.50 12 | 99.48 10 | 99.54 82 | 99.76 55 | 99.42 85 | 99.90 1 | 99.55 64 | 98.56 70 | 99.78 34 | 99.70 141 | 98.65 65 | 99.79 165 | 99.65 8 | 99.78 89 | 99.41 173 |
|
Fast-Effi-MVS+-dtu | | | 98.77 130 | 98.83 107 | 98.60 223 | 99.41 187 | 96.99 270 | 99.52 133 | 99.49 129 | 98.11 122 | 99.24 173 | 99.34 272 | 96.96 128 | 99.79 165 | 97.95 190 | 99.45 130 | 99.02 209 |
|
baseline1 | | | 98.31 163 | 97.95 189 | 99.38 119 | 99.50 164 | 98.74 171 | 99.59 95 | 98.93 307 | 98.41 83 | 99.14 194 | 99.60 193 | 94.59 215 | 99.79 165 | 98.48 148 | 93.29 331 | 99.61 126 |
|
baseline | | | 99.15 71 | 99.02 78 | 99.53 90 | 99.66 107 | 99.14 117 | 99.72 46 | 99.48 141 | 98.35 90 | 99.42 126 | 99.84 51 | 96.07 153 | 99.79 165 | 99.51 18 | 99.14 155 | 99.67 105 |
|
PVSNet_0 | | 94.43 19 | 96.09 301 | 95.47 306 | 97.94 286 | 99.31 214 | 94.34 337 | 97.81 362 | 99.70 15 | 97.12 224 | 97.46 322 | 98.75 333 | 89.71 318 | 99.79 165 | 97.69 217 | 81.69 364 | 99.68 102 |
|
API-MVS | | | 99.04 94 | 99.03 75 | 99.06 159 | 99.40 192 | 99.31 95 | 99.55 122 | 99.56 56 | 98.54 72 | 99.33 154 | 99.39 259 | 98.76 51 | 99.78 170 | 96.98 266 | 99.78 89 | 98.07 334 |
|
OMC-MVS | | | 99.08 90 | 99.04 73 | 99.20 146 | 99.67 99 | 98.22 211 | 99.28 229 | 99.52 88 | 98.07 130 | 99.66 68 | 99.81 75 | 97.79 102 | 99.78 170 | 97.79 203 | 99.81 78 | 99.60 128 |
|
GeoE | | | 98.85 120 | 98.62 132 | 99.53 90 | 99.61 128 | 99.08 125 | 99.80 24 | 99.51 102 | 97.10 228 | 99.31 157 | 99.78 105 | 95.23 188 | 99.77 172 | 98.21 169 | 99.03 166 | 99.75 73 |
|
alignmvs | | | 98.81 124 | 98.56 142 | 99.58 75 | 99.43 182 | 99.42 85 | 99.51 138 | 98.96 305 | 98.61 67 | 99.35 150 | 98.92 327 | 94.78 203 | 99.77 172 | 99.35 34 | 98.11 217 | 99.54 141 |
|
tpm cat1 | | | 97.39 273 | 97.36 257 | 97.50 308 | 99.17 250 | 93.73 342 | 99.43 176 | 99.31 254 | 91.27 351 | 98.71 258 | 99.08 309 | 94.31 226 | 99.77 172 | 96.41 291 | 98.50 197 | 99.00 210 |
|
CostFormer | | | 97.72 246 | 97.73 215 | 97.71 300 | 99.15 255 | 94.02 339 | 99.54 126 | 99.02 298 | 94.67 328 | 99.04 213 | 99.35 269 | 92.35 280 | 99.77 172 | 98.50 147 | 97.94 220 | 99.34 181 |
|
test_241102_ONE | | | | | | 99.84 30 | 99.90 2 | | 99.48 141 | 99.07 22 | 99.91 6 | 99.74 126 | 99.20 7 | 99.76 176 | | | |
|
MDTV_nov1_ep13 | | | | 98.32 155 | | 99.11 259 | 94.44 334 | 99.27 234 | 98.74 330 | 97.51 189 | 99.40 135 | 99.62 186 | 94.78 203 | 99.76 176 | 97.59 222 | 98.81 184 | |
|
canonicalmvs | | | 99.02 97 | 98.86 103 | 99.51 98 | 99.42 184 | 99.32 92 | 99.80 24 | 99.48 141 | 98.63 65 | 99.31 157 | 98.81 330 | 97.09 121 | 99.75 178 | 99.27 49 | 97.90 221 | 99.47 164 |
|
Effi-MVS+-dtu | | | 98.78 128 | 98.89 98 | 98.47 243 | 99.33 207 | 96.91 276 | 99.57 107 | 99.30 258 | 98.47 77 | 99.41 130 | 98.99 319 | 96.78 132 | 99.74 179 | 98.73 112 | 99.38 134 | 98.74 236 |
|
patchmatchnet-post | | | | | | | | | | | | 98.70 334 | 94.79 202 | 99.74 179 | | | |
|
SCA | | | 98.19 173 | 98.16 163 | 98.27 266 | 99.30 215 | 95.55 311 | 99.07 275 | 98.97 303 | 97.57 181 | 99.43 123 | 99.57 203 | 92.72 263 | 99.74 179 | 97.58 223 | 99.20 149 | 99.52 147 |
|
BH-untuned | | | 98.42 153 | 98.36 151 | 98.59 224 | 99.49 166 | 96.70 282 | 99.27 234 | 99.13 286 | 97.24 214 | 98.80 249 | 99.38 260 | 95.75 168 | 99.74 179 | 97.07 262 | 99.16 151 | 99.33 182 |
|
BH-RMVSNet | | | 98.41 155 | 98.08 174 | 99.40 115 | 99.41 187 | 98.83 165 | 99.30 223 | 98.77 326 | 97.70 169 | 98.94 228 | 99.65 169 | 92.91 258 | 99.74 179 | 96.52 287 | 99.55 125 | 99.64 119 |
|
MVS_111021_HR | | | 99.41 38 | 99.32 32 | 99.66 55 | 99.72 81 | 99.47 81 | 98.95 306 | 99.85 6 | 98.82 52 | 99.54 102 | 99.73 132 | 98.51 73 | 99.74 179 | 98.91 82 | 99.88 36 | 99.77 67 |
|
test_post | | | | | | | | | | | | 65.99 375 | 94.65 214 | 99.73 185 | | | |
|
XVG-ACMP-BASELINE | | | 97.83 227 | 97.71 217 | 98.20 268 | 99.11 259 | 96.33 296 | 99.41 185 | 99.52 88 | 98.06 134 | 99.05 212 | 99.50 227 | 89.64 320 | 99.73 185 | 97.73 211 | 97.38 255 | 98.53 302 |
|
HyFIR lowres test | | | 99.11 85 | 98.92 93 | 99.65 59 | 99.90 4 | 99.37 89 | 99.02 289 | 99.91 3 | 97.67 173 | 99.59 92 | 99.75 121 | 95.90 163 | 99.73 185 | 99.53 15 | 99.02 168 | 99.86 18 |
|
DeepMVS_CX |  | | | | 93.34 340 | 99.29 219 | 82.27 367 | | 99.22 273 | 85.15 362 | 96.33 339 | 99.05 313 | 90.97 305 | 99.73 185 | 93.57 334 | 97.77 224 | 98.01 338 |
|
Patchmatch-test | | | 97.93 210 | 97.65 222 | 98.77 214 | 99.18 244 | 97.07 261 | 99.03 286 | 99.14 285 | 96.16 297 | 98.74 255 | 99.57 203 | 94.56 217 | 99.72 189 | 93.36 336 | 99.11 157 | 99.52 147 |
|
LPG-MVS_test | | | 98.22 169 | 98.13 167 | 98.49 237 | 99.33 207 | 97.05 263 | 99.58 103 | 99.55 64 | 97.46 191 | 99.24 173 | 99.83 55 | 92.58 270 | 99.72 189 | 98.09 178 | 97.51 239 | 98.68 255 |
|
LGP-MVS_train | | | | | 98.49 237 | 99.33 207 | 97.05 263 | | 99.55 64 | 97.46 191 | 99.24 173 | 99.83 55 | 92.58 270 | 99.72 189 | 98.09 178 | 97.51 239 | 98.68 255 |
|
BH-w/o | | | 98.00 202 | 97.89 198 | 98.32 259 | 99.35 201 | 96.20 300 | 99.01 294 | 98.90 314 | 96.42 280 | 98.38 292 | 99.00 318 | 95.26 186 | 99.72 189 | 96.06 295 | 98.61 188 | 99.03 207 |
|
ACMP | | 97.20 11 | 98.06 187 | 97.94 191 | 98.45 245 | 99.37 198 | 97.01 268 | 99.44 172 | 99.49 129 | 97.54 186 | 98.45 288 | 99.79 99 | 91.95 284 | 99.72 189 | 97.91 192 | 97.49 244 | 98.62 285 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LTVRE_ROB | | 97.16 12 | 98.02 197 | 97.90 194 | 98.40 252 | 99.23 232 | 96.80 280 | 99.70 49 | 99.60 40 | 97.12 224 | 98.18 302 | 99.70 141 | 91.73 290 | 99.72 189 | 98.39 155 | 97.45 247 | 98.68 255 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test_post1 | | | | | | | | 99.23 247 | | | | 65.14 376 | 94.18 231 | 99.71 195 | 97.58 223 | | |
|
ADS-MVSNet | | | 98.20 172 | 98.08 174 | 98.56 231 | 99.33 207 | 96.48 291 | 99.23 247 | 99.15 283 | 96.24 290 | 99.10 202 | 99.67 163 | 94.11 232 | 99.71 195 | 96.81 276 | 99.05 164 | 99.48 158 |
|
JIA-IIPM | | | 97.50 267 | 97.02 279 | 98.93 179 | 98.73 313 | 97.80 234 | 99.30 223 | 98.97 303 | 91.73 350 | 98.91 232 | 94.86 364 | 95.10 190 | 99.71 195 | 97.58 223 | 97.98 219 | 99.28 186 |
|
EPMVS | | | 97.82 230 | 97.65 222 | 98.35 256 | 98.88 292 | 95.98 303 | 99.49 154 | 94.71 373 | 97.57 181 | 99.26 171 | 99.48 235 | 92.46 277 | 99.71 195 | 97.87 196 | 99.08 162 | 99.35 179 |
|
TDRefinement | | | 95.42 309 | 94.57 315 | 97.97 285 | 89.83 374 | 96.11 302 | 99.48 158 | 98.75 327 | 96.74 251 | 96.68 336 | 99.88 25 | 88.65 329 | 99.71 195 | 98.37 158 | 82.74 363 | 98.09 333 |
|
ACMM | | 97.58 5 | 98.37 160 | 98.34 153 | 98.48 239 | 99.41 187 | 97.10 257 | 99.56 113 | 99.45 179 | 98.53 73 | 99.04 213 | 99.85 41 | 93.00 254 | 99.71 195 | 98.74 110 | 97.45 247 | 98.64 274 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tt0805 | | | 97.97 207 | 97.77 208 | 98.57 228 | 99.59 135 | 96.61 287 | 99.45 167 | 99.08 291 | 98.21 107 | 98.88 237 | 99.80 88 | 88.66 328 | 99.70 201 | 98.58 135 | 97.72 225 | 99.39 176 |
|
CHOSEN 280x420 | | | 99.12 81 | 99.13 63 | 99.08 156 | 99.66 107 | 97.89 229 | 98.43 348 | 99.71 13 | 98.88 46 | 99.62 83 | 99.76 118 | 96.63 137 | 99.70 201 | 99.46 27 | 99.99 1 | 99.66 108 |
|
DROMVSNet | | | 99.44 29 | 99.39 19 | 99.58 75 | 99.56 143 | 99.49 78 | 99.88 4 | 99.58 48 | 98.38 85 | 99.73 47 | 99.69 151 | 98.20 90 | 99.70 201 | 99.64 9 | 99.82 75 | 99.54 141 |
|
PatchmatchNet |  | | 98.31 163 | 98.36 151 | 98.19 269 | 99.16 252 | 95.32 319 | 99.27 234 | 98.92 309 | 97.37 203 | 99.37 143 | 99.58 199 | 94.90 196 | 99.70 201 | 97.43 241 | 99.21 148 | 99.54 141 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ACMH | | 97.28 8 | 98.10 183 | 97.99 184 | 98.44 248 | 99.41 187 | 96.96 274 | 99.60 89 | 99.56 56 | 98.09 125 | 98.15 303 | 99.91 11 | 90.87 306 | 99.70 201 | 98.88 85 | 97.45 247 | 98.67 262 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HQP_MVS | | | 98.27 168 | 98.22 161 | 98.44 248 | 99.29 219 | 96.97 272 | 99.39 197 | 99.47 159 | 98.97 38 | 99.11 199 | 99.61 190 | 92.71 265 | 99.69 206 | 97.78 204 | 97.63 227 | 98.67 262 |
|
plane_prior5 | | | | | | | | | 99.47 159 | | | | | 99.69 206 | 97.78 204 | 97.63 227 | 98.67 262 |
|
D2MVS | | | 98.41 155 | 98.50 145 | 98.15 274 | 99.26 226 | 96.62 286 | 99.40 193 | 99.61 35 | 97.71 168 | 98.98 222 | 99.36 266 | 96.04 154 | 99.67 208 | 98.70 115 | 97.41 252 | 98.15 331 |
|
IS-MVSNet | | | 99.05 93 | 98.87 100 | 99.57 77 | 99.73 77 | 99.32 92 | 99.75 39 | 99.20 277 | 98.02 139 | 99.56 97 | 99.86 36 | 96.54 140 | 99.67 208 | 98.09 178 | 99.13 156 | 99.73 82 |
|
CLD-MVS | | | 98.16 177 | 98.10 170 | 98.33 257 | 99.29 219 | 96.82 279 | 98.75 327 | 99.44 187 | 97.83 154 | 99.13 195 | 99.55 209 | 92.92 256 | 99.67 208 | 98.32 164 | 97.69 226 | 98.48 306 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_fmvs2 | | | 97.25 277 | 97.30 267 | 97.09 318 | 99.43 182 | 93.31 348 | 99.73 45 | 98.87 318 | 98.83 51 | 99.28 163 | 99.80 88 | 84.45 351 | 99.66 211 | 97.88 194 | 97.45 247 | 98.30 323 |
|
AUN-MVS | | | 96.88 284 | 96.31 291 | 98.59 224 | 99.48 174 | 97.04 266 | 99.27 234 | 99.22 273 | 97.44 196 | 98.51 284 | 99.41 252 | 91.97 283 | 99.66 211 | 97.71 214 | 83.83 361 | 99.07 204 |
|
UniMVSNet_ETH3D | | | 97.32 275 | 96.81 282 | 98.87 196 | 99.40 192 | 97.46 245 | 99.51 138 | 99.53 83 | 95.86 310 | 98.54 283 | 99.77 112 | 82.44 357 | 99.66 211 | 98.68 120 | 97.52 237 | 99.50 156 |
|
OPM-MVS | | | 98.19 173 | 98.10 170 | 98.45 245 | 98.88 292 | 97.07 261 | 99.28 229 | 99.38 215 | 98.57 69 | 99.22 178 | 99.81 75 | 92.12 281 | 99.66 211 | 98.08 182 | 97.54 236 | 98.61 294 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
ACMH+ | | 97.24 10 | 97.92 213 | 97.78 206 | 98.32 259 | 99.46 176 | 96.68 284 | 99.56 113 | 99.54 72 | 98.41 83 | 97.79 318 | 99.87 31 | 90.18 315 | 99.66 211 | 98.05 186 | 97.18 262 | 98.62 285 |
|
hse-mvs2 | | | 97.50 267 | 97.14 275 | 98.59 224 | 99.49 166 | 97.05 263 | 99.28 229 | 99.22 273 | 98.94 41 | 99.66 68 | 99.42 248 | 94.93 193 | 99.65 216 | 99.48 24 | 83.80 362 | 99.08 199 |
|
VPA-MVSNet | | | 98.29 166 | 97.95 189 | 99.30 132 | 99.16 252 | 99.54 70 | 99.50 144 | 99.58 48 | 98.27 98 | 99.35 150 | 99.37 263 | 92.53 272 | 99.65 216 | 99.35 34 | 94.46 316 | 98.72 239 |
|
TR-MVS | | | 97.76 237 | 97.41 253 | 98.82 207 | 99.06 270 | 97.87 230 | 98.87 316 | 98.56 341 | 96.63 262 | 98.68 266 | 99.22 295 | 92.49 273 | 99.65 216 | 95.40 311 | 97.79 223 | 98.95 218 |
|
gm-plane-assit | | | | | | 98.54 332 | 92.96 350 | | | 94.65 329 | | 99.15 303 | | 99.64 219 | 97.56 228 | | |
|
HQP4-MVS | | | | | | | | | | | 98.66 267 | | | 99.64 219 | | | 98.64 274 |
|
HQP-MVS | | | 98.02 197 | 97.90 194 | 98.37 255 | 99.19 241 | 96.83 277 | 98.98 299 | 99.39 209 | 98.24 101 | 98.66 267 | 99.40 255 | 92.47 274 | 99.64 219 | 97.19 254 | 97.58 232 | 98.64 274 |
|
PAPM | | | 97.59 261 | 97.09 277 | 99.07 158 | 99.06 270 | 98.26 210 | 98.30 355 | 99.10 288 | 94.88 324 | 98.08 305 | 99.34 272 | 96.27 149 | 99.64 219 | 89.87 354 | 98.92 174 | 99.31 184 |
|
TAPA-MVS | | 97.07 15 | 97.74 243 | 97.34 262 | 98.94 177 | 99.70 91 | 97.53 243 | 99.25 244 | 99.51 102 | 91.90 349 | 99.30 159 | 99.63 181 | 98.78 47 | 99.64 219 | 88.09 361 | 99.87 39 | 99.65 112 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
XXY-MVS | | | 98.38 159 | 98.09 173 | 99.24 142 | 99.26 226 | 99.32 92 | 99.56 113 | 99.55 64 | 97.45 194 | 98.71 258 | 99.83 55 | 93.23 250 | 99.63 224 | 98.88 85 | 96.32 277 | 98.76 231 |
|
ITE_SJBPF | | | | | 98.08 276 | 99.29 219 | 96.37 294 | | 98.92 309 | 98.34 91 | 98.83 245 | 99.75 121 | 91.09 303 | 99.62 225 | 95.82 299 | 97.40 253 | 98.25 327 |
|
LF4IMVS | | | 97.52 264 | 97.46 241 | 97.70 301 | 98.98 282 | 95.55 311 | 99.29 227 | 98.82 322 | 98.07 130 | 98.66 267 | 99.64 175 | 89.97 316 | 99.61 226 | 97.01 263 | 96.68 267 | 97.94 344 |
|
tpm | | | 97.67 256 | 97.55 229 | 98.03 278 | 99.02 276 | 95.01 325 | 99.43 176 | 98.54 343 | 96.44 278 | 99.12 197 | 99.34 272 | 91.83 287 | 99.60 227 | 97.75 209 | 96.46 273 | 99.48 158 |
|
tpm2 | | | 97.44 272 | 97.34 262 | 97.74 299 | 99.15 255 | 94.36 336 | 99.45 167 | 98.94 306 | 93.45 342 | 98.90 234 | 99.44 244 | 91.35 300 | 99.59 228 | 97.31 245 | 98.07 218 | 99.29 185 |
|
baseline2 | | | 97.87 219 | 97.55 229 | 98.82 207 | 99.18 244 | 98.02 220 | 99.41 185 | 96.58 367 | 96.97 237 | 96.51 337 | 99.17 300 | 93.43 247 | 99.57 229 | 97.71 214 | 99.03 166 | 98.86 220 |
|
MS-PatchMatch | | | 97.24 279 | 97.32 265 | 96.99 319 | 98.45 335 | 93.51 347 | 98.82 320 | 99.32 250 | 97.41 200 | 98.13 304 | 99.30 282 | 88.99 324 | 99.56 230 | 95.68 305 | 99.80 82 | 97.90 347 |
|
TinyColmap | | | 97.12 281 | 96.89 281 | 97.83 293 | 99.07 267 | 95.52 314 | 98.57 341 | 98.74 330 | 97.58 180 | 97.81 317 | 99.79 99 | 88.16 335 | 99.56 230 | 95.10 315 | 97.21 260 | 98.39 319 |
|
USDC | | | 97.34 274 | 97.20 273 | 97.75 298 | 99.07 267 | 95.20 321 | 98.51 345 | 99.04 297 | 97.99 140 | 98.31 296 | 99.86 36 | 89.02 323 | 99.55 232 | 95.67 306 | 97.36 256 | 98.49 305 |
|
MSLP-MVS++ | | | 99.46 23 | 99.47 12 | 99.44 112 | 99.60 133 | 99.16 111 | 99.41 185 | 99.71 13 | 98.98 35 | 99.45 117 | 99.78 105 | 99.19 9 | 99.54 233 | 99.28 46 | 99.84 62 | 99.63 122 |
|
TAMVS | | | 99.12 81 | 99.08 69 | 99.24 142 | 99.46 176 | 98.55 187 | 99.51 138 | 99.46 168 | 98.09 125 | 99.45 117 | 99.82 62 | 98.34 84 | 99.51 234 | 98.70 115 | 98.93 172 | 99.67 105 |
|
EPNet_dtu | | | 98.03 195 | 97.96 187 | 98.23 267 | 98.27 337 | 95.54 313 | 99.23 247 | 98.75 327 | 99.02 25 | 97.82 316 | 99.71 137 | 96.11 152 | 99.48 235 | 93.04 340 | 99.65 115 | 99.69 98 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EG-PatchMatch MVS | | | 95.97 302 | 95.69 303 | 96.81 325 | 97.78 344 | 92.79 351 | 99.16 257 | 98.93 307 | 96.16 297 | 94.08 353 | 99.22 295 | 82.72 355 | 99.47 236 | 95.67 306 | 97.50 241 | 98.17 330 |
|
MVP-Stereo | | | 97.81 232 | 97.75 213 | 97.99 284 | 97.53 348 | 96.60 288 | 98.96 303 | 98.85 319 | 97.22 216 | 97.23 327 | 99.36 266 | 95.28 183 | 99.46 237 | 95.51 308 | 99.78 89 | 97.92 346 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CVMVSNet | | | 98.57 145 | 98.67 121 | 98.30 261 | 99.35 201 | 95.59 310 | 99.50 144 | 99.55 64 | 98.60 68 | 99.39 138 | 99.83 55 | 94.48 220 | 99.45 238 | 98.75 109 | 98.56 194 | 99.85 21 |
|
test-LLR | | | 98.06 187 | 97.90 194 | 98.55 233 | 98.79 304 | 97.10 257 | 98.67 333 | 97.75 355 | 97.34 204 | 98.61 278 | 98.85 328 | 94.45 221 | 99.45 238 | 97.25 248 | 99.38 134 | 99.10 194 |
|
TESTMET0.1,1 | | | 97.55 262 | 97.27 272 | 98.40 252 | 98.93 287 | 96.53 289 | 98.67 333 | 97.61 358 | 96.96 238 | 98.64 274 | 99.28 286 | 88.63 330 | 99.45 238 | 97.30 246 | 99.38 134 | 99.21 190 |
|
test-mter | | | 97.49 270 | 97.13 276 | 98.55 233 | 98.79 304 | 97.10 257 | 98.67 333 | 97.75 355 | 96.65 258 | 98.61 278 | 98.85 328 | 88.23 334 | 99.45 238 | 97.25 248 | 99.38 134 | 99.10 194 |
|
mvs_anonymous | | | 99.03 96 | 98.99 83 | 99.16 150 | 99.38 196 | 98.52 193 | 99.51 138 | 99.38 215 | 97.79 159 | 99.38 141 | 99.81 75 | 97.30 114 | 99.45 238 | 99.35 34 | 98.99 169 | 99.51 153 |
|
tfpnnormal | | | 97.84 225 | 97.47 239 | 98.98 171 | 99.20 239 | 99.22 105 | 99.64 72 | 99.61 35 | 96.32 284 | 98.27 299 | 99.70 141 | 93.35 249 | 99.44 243 | 95.69 304 | 95.40 300 | 98.27 325 |
|
v7n | | | 97.87 219 | 97.52 233 | 98.92 181 | 98.76 311 | 98.58 185 | 99.84 13 | 99.46 168 | 96.20 293 | 98.91 232 | 99.70 141 | 94.89 197 | 99.44 243 | 96.03 296 | 93.89 326 | 98.75 233 |
|
jajsoiax | | | 98.43 152 | 98.28 158 | 98.88 192 | 98.60 328 | 98.43 203 | 99.82 17 | 99.53 83 | 98.19 110 | 98.63 275 | 99.80 88 | 93.22 252 | 99.44 243 | 99.22 52 | 97.50 241 | 98.77 229 |
|
mvs_tets | | | 98.40 158 | 98.23 160 | 98.91 185 | 98.67 321 | 98.51 195 | 99.66 64 | 99.53 83 | 98.19 110 | 98.65 273 | 99.81 75 | 92.75 260 | 99.44 243 | 99.31 41 | 97.48 245 | 98.77 229 |
|
Vis-MVSNet (Re-imp) | | | 98.87 110 | 98.72 115 | 99.31 128 | 99.71 86 | 98.88 157 | 99.80 24 | 99.44 187 | 97.91 146 | 99.36 147 | 99.78 105 | 95.49 177 | 99.43 247 | 97.91 192 | 99.11 157 | 99.62 124 |
|
OPU-MVS | | | | | 99.64 64 | 99.56 143 | 99.72 42 | 99.60 89 | | | | 99.70 141 | 99.27 5 | 99.42 248 | 98.24 168 | 99.80 82 | 99.79 59 |
|
Anonymous20231211 | | | 97.88 217 | 97.54 232 | 98.90 187 | 99.71 86 | 98.53 189 | 99.48 158 | 99.57 51 | 94.16 333 | 98.81 247 | 99.68 157 | 93.23 250 | 99.42 248 | 98.84 98 | 94.42 318 | 98.76 231 |
|
MVS_0304 | | | 96.79 287 | 96.52 287 | 97.59 304 | 99.22 235 | 94.92 328 | 99.04 285 | 99.59 43 | 96.49 271 | 98.43 289 | 98.99 319 | 80.48 360 | 99.39 250 | 97.15 258 | 99.27 145 | 98.47 308 |
|
VPNet | | | 97.84 225 | 97.44 247 | 99.01 165 | 99.21 237 | 98.94 151 | 99.48 158 | 99.57 51 | 98.38 85 | 99.28 163 | 99.73 132 | 88.89 325 | 99.39 250 | 99.19 54 | 93.27 332 | 98.71 241 |
|
iter_conf_final | | | 98.71 134 | 98.61 138 | 98.99 169 | 99.49 166 | 98.96 143 | 99.63 76 | 99.41 198 | 98.19 110 | 99.39 138 | 99.77 112 | 94.82 199 | 99.38 252 | 99.30 44 | 97.52 237 | 98.64 274 |
|
nrg030 | | | 98.64 143 | 98.42 149 | 99.28 137 | 99.05 273 | 99.69 47 | 99.81 20 | 99.46 168 | 98.04 136 | 99.01 216 | 99.82 62 | 96.69 136 | 99.38 252 | 99.34 38 | 94.59 315 | 98.78 226 |
|
iter_conf05 | | | 98.55 146 | 98.44 147 | 98.87 196 | 99.34 205 | 98.60 184 | 99.55 122 | 99.42 195 | 98.21 107 | 99.37 143 | 99.77 112 | 93.55 246 | 99.38 252 | 99.30 44 | 97.48 245 | 98.63 282 |
|
GA-MVS | | | 97.85 222 | 97.47 239 | 99.00 167 | 99.38 196 | 97.99 222 | 98.57 341 | 99.15 283 | 97.04 233 | 98.90 234 | 99.30 282 | 89.83 317 | 99.38 252 | 96.70 281 | 98.33 201 | 99.62 124 |
|
UniMVSNet (Re) | | | 98.29 166 | 98.00 183 | 99.13 154 | 99.00 278 | 99.36 90 | 99.49 154 | 99.51 102 | 97.95 142 | 98.97 224 | 99.13 305 | 96.30 148 | 99.38 252 | 98.36 160 | 93.34 330 | 98.66 270 |
|
FIs | | | 98.78 128 | 98.63 127 | 99.23 144 | 99.18 244 | 99.54 70 | 99.83 16 | 99.59 43 | 98.28 96 | 98.79 251 | 99.81 75 | 96.75 134 | 99.37 257 | 99.08 65 | 96.38 275 | 98.78 226 |
|
PS-MVSNAJss | | | 98.92 106 | 98.92 93 | 98.90 187 | 98.78 307 | 98.53 189 | 99.78 31 | 99.54 72 | 98.07 130 | 99.00 220 | 99.76 118 | 99.01 18 | 99.37 257 | 99.13 59 | 97.23 259 | 98.81 223 |
|
CDS-MVSNet | | | 99.09 89 | 99.03 75 | 99.25 140 | 99.42 184 | 98.73 172 | 99.45 167 | 99.46 168 | 98.11 122 | 99.46 116 | 99.77 112 | 98.01 97 | 99.37 257 | 98.70 115 | 98.92 174 | 99.66 108 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVS-HIRNet | | | 95.75 306 | 95.16 310 | 97.51 307 | 99.30 215 | 93.69 344 | 98.88 314 | 95.78 368 | 85.09 363 | 98.78 252 | 92.65 366 | 91.29 301 | 99.37 257 | 94.85 319 | 99.85 54 | 99.46 166 |
|
v1192 | | | 97.81 232 | 97.44 247 | 98.91 185 | 98.88 292 | 98.68 175 | 99.51 138 | 99.34 233 | 96.18 295 | 99.20 184 | 99.34 272 | 94.03 235 | 99.36 261 | 95.32 313 | 95.18 304 | 98.69 250 |
|
EI-MVSNet | | | 98.67 140 | 98.67 121 | 98.68 220 | 99.35 201 | 97.97 223 | 99.50 144 | 99.38 215 | 96.93 243 | 99.20 184 | 99.83 55 | 97.87 99 | 99.36 261 | 98.38 156 | 97.56 234 | 98.71 241 |
|
MVSTER | | | 98.49 147 | 98.32 155 | 99.00 167 | 99.35 201 | 99.02 132 | 99.54 126 | 99.38 215 | 97.41 200 | 99.20 184 | 99.73 132 | 93.86 240 | 99.36 261 | 98.87 88 | 97.56 234 | 98.62 285 |
|
gg-mvs-nofinetune | | | 96.17 299 | 95.32 309 | 98.73 216 | 98.79 304 | 98.14 215 | 99.38 202 | 94.09 374 | 91.07 354 | 98.07 308 | 91.04 370 | 89.62 321 | 99.35 264 | 96.75 278 | 99.09 161 | 98.68 255 |
|
pm-mvs1 | | | 97.68 253 | 97.28 269 | 98.88 192 | 99.06 270 | 98.62 181 | 99.50 144 | 99.45 179 | 96.32 284 | 97.87 314 | 99.79 99 | 92.47 274 | 99.35 264 | 97.54 230 | 93.54 329 | 98.67 262 |
|
OurMVSNet-221017-0 | | | 97.88 217 | 97.77 208 | 98.19 269 | 98.71 317 | 96.53 289 | 99.88 4 | 99.00 300 | 97.79 159 | 98.78 252 | 99.94 4 | 91.68 291 | 99.35 264 | 97.21 250 | 96.99 266 | 98.69 250 |
|
EGC-MVSNET | | | 82.80 335 | 77.86 341 | 97.62 302 | 97.91 341 | 96.12 301 | 99.33 218 | 99.28 264 | 8.40 378 | 25.05 379 | 99.27 289 | 84.11 352 | 99.33 267 | 89.20 356 | 98.22 207 | 97.42 355 |
|
pmmvs6 | | | 96.53 291 | 96.09 295 | 97.82 295 | 98.69 319 | 95.47 315 | 99.37 204 | 99.47 159 | 93.46 341 | 97.41 323 | 99.78 105 | 87.06 342 | 99.33 267 | 96.92 273 | 92.70 339 | 98.65 272 |
|
mvsmamba | | | 98.92 106 | 98.87 100 | 99.08 156 | 99.07 267 | 99.16 111 | 99.88 4 | 99.51 102 | 98.15 116 | 99.40 135 | 99.89 19 | 97.12 119 | 99.33 267 | 99.38 31 | 97.40 253 | 98.73 238 |
|
V42 | | | 98.06 187 | 97.79 203 | 98.86 200 | 98.98 282 | 98.84 162 | 99.69 51 | 99.34 233 | 96.53 269 | 99.30 159 | 99.37 263 | 94.67 212 | 99.32 270 | 97.57 227 | 94.66 313 | 98.42 315 |
|
lessismore_v0 | | | | | 97.79 297 | 98.69 319 | 95.44 317 | | 94.75 372 | | 95.71 345 | 99.87 31 | 88.69 327 | 99.32 270 | 95.89 298 | 94.93 311 | 98.62 285 |
|
OpenMVS_ROB |  | 92.34 20 | 94.38 319 | 93.70 323 | 96.41 330 | 97.38 350 | 93.17 349 | 99.06 278 | 98.75 327 | 86.58 361 | 94.84 351 | 98.26 346 | 81.53 358 | 99.32 270 | 89.01 357 | 97.87 222 | 96.76 358 |
|
bld_raw_dy_0_64 | | | 98.69 137 | 98.58 140 | 98.99 169 | 98.88 292 | 98.96 143 | 99.80 24 | 99.41 198 | 97.91 146 | 99.32 155 | 99.87 31 | 95.70 171 | 99.31 273 | 99.09 63 | 97.27 258 | 98.71 241 |
|
v8 | | | 97.95 209 | 97.63 225 | 98.93 179 | 98.95 286 | 98.81 168 | 99.80 24 | 99.41 198 | 96.03 307 | 99.10 202 | 99.42 248 | 94.92 195 | 99.30 274 | 96.94 270 | 94.08 324 | 98.66 270 |
|
v1921920 | | | 97.80 234 | 97.45 242 | 98.84 204 | 98.80 303 | 98.53 189 | 99.52 133 | 99.34 233 | 96.15 299 | 99.24 173 | 99.47 238 | 93.98 236 | 99.29 275 | 95.40 311 | 95.13 306 | 98.69 250 |
|
anonymousdsp | | | 98.44 151 | 98.28 158 | 98.94 177 | 98.50 333 | 98.96 143 | 99.77 33 | 99.50 121 | 97.07 230 | 98.87 240 | 99.77 112 | 94.76 207 | 99.28 276 | 98.66 122 | 97.60 230 | 98.57 300 |
|
MVSFormer | | | 99.17 68 | 99.12 64 | 99.29 135 | 99.51 155 | 98.94 151 | 99.88 4 | 99.46 168 | 97.55 183 | 99.80 27 | 99.65 169 | 97.39 110 | 99.28 276 | 99.03 68 | 99.85 54 | 99.65 112 |
|
test_djsdf | | | 98.67 140 | 98.57 141 | 98.98 171 | 98.70 318 | 98.91 155 | 99.88 4 | 99.46 168 | 97.55 183 | 99.22 178 | 99.88 25 | 95.73 169 | 99.28 276 | 99.03 68 | 97.62 229 | 98.75 233 |
|
cascas | | | 97.69 251 | 97.43 251 | 98.48 239 | 98.60 328 | 97.30 248 | 98.18 359 | 99.39 209 | 92.96 345 | 98.41 290 | 98.78 332 | 93.77 243 | 99.27 279 | 98.16 175 | 98.61 188 | 98.86 220 |
|
v144192 | | | 97.92 213 | 97.60 227 | 98.87 196 | 98.83 302 | 98.65 178 | 99.55 122 | 99.34 233 | 96.20 293 | 99.32 155 | 99.40 255 | 94.36 223 | 99.26 280 | 96.37 292 | 95.03 308 | 98.70 246 |
|
RRT_MVS | | | 98.70 135 | 98.66 124 | 98.83 206 | 98.90 289 | 98.45 201 | 99.89 2 | 99.28 264 | 97.76 162 | 98.94 228 | 99.92 10 | 96.98 126 | 99.25 281 | 99.28 46 | 97.00 265 | 98.80 224 |
|
v2v482 | | | 98.06 187 | 97.77 208 | 98.92 181 | 98.90 289 | 98.82 166 | 99.57 107 | 99.36 224 | 96.65 258 | 99.19 187 | 99.35 269 | 94.20 228 | 99.25 281 | 97.72 213 | 94.97 309 | 98.69 250 |
|
v1240 | | | 97.69 251 | 97.32 265 | 98.79 212 | 98.85 300 | 98.43 203 | 99.48 158 | 99.36 224 | 96.11 302 | 99.27 167 | 99.36 266 | 93.76 244 | 99.24 283 | 94.46 323 | 95.23 303 | 98.70 246 |
|
v1144 | | | 97.98 204 | 97.69 218 | 98.85 203 | 98.87 296 | 98.66 177 | 99.54 126 | 99.35 229 | 96.27 288 | 99.23 177 | 99.35 269 | 94.67 212 | 99.23 284 | 96.73 279 | 95.16 305 | 98.68 255 |
|
v10 | | | 97.85 222 | 97.52 233 | 98.86 200 | 98.99 279 | 98.67 176 | 99.75 39 | 99.41 198 | 95.70 311 | 98.98 222 | 99.41 252 | 94.75 208 | 99.23 284 | 96.01 297 | 94.63 314 | 98.67 262 |
|
WR-MVS_H | | | 98.13 180 | 97.87 199 | 98.90 187 | 99.02 276 | 98.84 162 | 99.70 49 | 99.59 43 | 97.27 210 | 98.40 291 | 99.19 299 | 95.53 175 | 99.23 284 | 98.34 161 | 93.78 327 | 98.61 294 |
|
miper_enhance_ethall | | | 98.16 177 | 98.08 174 | 98.41 250 | 98.96 285 | 97.72 237 | 98.45 347 | 99.32 250 | 96.95 240 | 98.97 224 | 99.17 300 | 97.06 123 | 99.22 287 | 97.86 197 | 95.99 284 | 98.29 324 |
|
GG-mvs-BLEND | | | | | 98.45 245 | 98.55 331 | 98.16 213 | 99.43 176 | 93.68 375 | | 97.23 327 | 98.46 340 | 89.30 322 | 99.22 287 | 95.43 310 | 98.22 207 | 97.98 342 |
|
FC-MVSNet-test | | | 98.75 131 | 98.62 132 | 99.15 153 | 99.08 266 | 99.45 83 | 99.86 12 | 99.60 40 | 98.23 104 | 98.70 264 | 99.82 62 | 96.80 131 | 99.22 287 | 99.07 66 | 96.38 275 | 98.79 225 |
|
UniMVSNet_NR-MVSNet | | | 98.22 169 | 97.97 186 | 98.96 174 | 98.92 288 | 98.98 136 | 99.48 158 | 99.53 83 | 97.76 162 | 98.71 258 | 99.46 242 | 96.43 145 | 99.22 287 | 98.57 138 | 92.87 337 | 98.69 250 |
|
DU-MVS | | | 98.08 186 | 97.79 203 | 98.96 174 | 98.87 296 | 98.98 136 | 99.41 185 | 99.45 179 | 97.87 148 | 98.71 258 | 99.50 227 | 94.82 199 | 99.22 287 | 98.57 138 | 92.87 337 | 98.68 255 |
|
cl____ | | | 98.01 200 | 97.84 201 | 98.55 233 | 99.25 230 | 97.97 223 | 98.71 331 | 99.34 233 | 96.47 277 | 98.59 281 | 99.54 214 | 95.65 173 | 99.21 292 | 97.21 250 | 95.77 290 | 98.46 312 |
|
WR-MVS | | | 98.06 187 | 97.73 215 | 99.06 159 | 98.86 299 | 99.25 102 | 99.19 254 | 99.35 229 | 97.30 208 | 98.66 267 | 99.43 246 | 93.94 237 | 99.21 292 | 98.58 135 | 94.28 320 | 98.71 241 |
|
test_0402 | | | 96.64 289 | 96.24 292 | 97.85 291 | 98.85 300 | 96.43 293 | 99.44 172 | 99.26 267 | 93.52 339 | 96.98 334 | 99.52 221 | 88.52 331 | 99.20 294 | 92.58 346 | 97.50 241 | 97.93 345 |
|
SixPastTwentyTwo | | | 97.50 267 | 97.33 264 | 98.03 278 | 98.65 322 | 96.23 299 | 99.77 33 | 98.68 338 | 97.14 221 | 97.90 313 | 99.93 6 | 90.45 309 | 99.18 295 | 97.00 264 | 96.43 274 | 98.67 262 |
|
cl22 | | | 97.85 222 | 97.64 224 | 98.48 239 | 99.09 264 | 97.87 230 | 98.60 340 | 99.33 240 | 97.11 227 | 98.87 240 | 99.22 295 | 92.38 279 | 99.17 296 | 98.21 169 | 95.99 284 | 98.42 315 |
|
IterMVS-SCA-FT | | | 97.82 230 | 97.75 213 | 98.06 277 | 99.57 139 | 96.36 295 | 99.02 289 | 99.49 129 | 97.18 218 | 98.71 258 | 99.72 136 | 92.72 263 | 99.14 297 | 97.44 240 | 95.86 289 | 98.67 262 |
|
pmmvs5 | | | 97.52 264 | 97.30 267 | 98.16 271 | 98.57 330 | 96.73 281 | 99.27 234 | 98.90 314 | 96.14 300 | 98.37 293 | 99.53 218 | 91.54 297 | 99.14 297 | 97.51 232 | 95.87 288 | 98.63 282 |
|
v148 | | | 97.79 235 | 97.55 229 | 98.50 236 | 98.74 312 | 97.72 237 | 99.54 126 | 99.33 240 | 96.26 289 | 98.90 234 | 99.51 224 | 94.68 211 | 99.14 297 | 97.83 200 | 93.15 334 | 98.63 282 |
|
miper_ehance_all_eth | | | 98.18 175 | 98.10 170 | 98.41 250 | 99.23 232 | 97.72 237 | 98.72 330 | 99.31 254 | 96.60 265 | 98.88 237 | 99.29 284 | 97.29 115 | 99.13 300 | 97.60 221 | 95.99 284 | 98.38 320 |
|
NR-MVSNet | | | 97.97 207 | 97.61 226 | 99.02 164 | 98.87 296 | 99.26 101 | 99.47 163 | 99.42 195 | 97.63 176 | 97.08 332 | 99.50 227 | 95.07 191 | 99.13 300 | 97.86 197 | 93.59 328 | 98.68 255 |
|
IterMVS | | | 97.83 227 | 97.77 208 | 98.02 280 | 99.58 137 | 96.27 298 | 99.02 289 | 99.48 141 | 97.22 216 | 98.71 258 | 99.70 141 | 92.75 260 | 99.13 300 | 97.46 238 | 96.00 283 | 98.67 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CMPMVS |  | 69.68 23 | 94.13 320 | 94.90 312 | 91.84 344 | 97.24 354 | 80.01 370 | 98.52 344 | 99.48 141 | 89.01 358 | 91.99 359 | 99.67 163 | 85.67 346 | 99.13 300 | 95.44 309 | 97.03 264 | 96.39 360 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
eth_miper_zixun_eth | | | 98.05 192 | 97.96 187 | 98.33 257 | 99.26 226 | 97.38 247 | 98.56 343 | 99.31 254 | 96.65 258 | 98.88 237 | 99.52 221 | 96.58 138 | 99.12 304 | 97.39 243 | 95.53 298 | 98.47 308 |
|
pmmvs4 | | | 98.13 180 | 97.90 194 | 98.81 209 | 98.61 327 | 98.87 158 | 98.99 296 | 99.21 276 | 96.44 278 | 99.06 211 | 99.58 199 | 95.90 163 | 99.11 305 | 97.18 256 | 96.11 281 | 98.46 312 |
|
TransMVSNet (Re) | | | 97.15 280 | 96.58 285 | 98.86 200 | 99.12 257 | 98.85 161 | 99.49 154 | 98.91 312 | 95.48 314 | 97.16 330 | 99.80 88 | 93.38 248 | 99.11 305 | 94.16 329 | 91.73 342 | 98.62 285 |
|
ambc | | | | | 93.06 342 | 92.68 370 | 82.36 366 | 98.47 346 | 98.73 335 | | 95.09 349 | 97.41 353 | 55.55 371 | 99.10 307 | 96.42 290 | 91.32 343 | 97.71 348 |
|
Baseline_NR-MVSNet | | | 97.76 237 | 97.45 242 | 98.68 220 | 99.09 264 | 98.29 208 | 99.41 185 | 98.85 319 | 95.65 312 | 98.63 275 | 99.67 163 | 94.82 199 | 99.10 307 | 98.07 185 | 92.89 336 | 98.64 274 |
|
test_vis3_rt | | | 87.04 331 | 85.81 334 | 90.73 347 | 93.99 369 | 81.96 368 | 99.76 36 | 90.23 380 | 92.81 346 | 81.35 368 | 91.56 368 | 40.06 377 | 99.07 309 | 94.27 326 | 88.23 355 | 91.15 368 |
|
CP-MVSNet | | | 98.09 184 | 97.78 206 | 99.01 165 | 98.97 284 | 99.24 103 | 99.67 60 | 99.46 168 | 97.25 212 | 98.48 287 | 99.64 175 | 93.79 242 | 99.06 310 | 98.63 125 | 94.10 323 | 98.74 236 |
|
PS-CasMVS | | | 97.93 210 | 97.59 228 | 98.95 176 | 98.99 279 | 99.06 128 | 99.68 57 | 99.52 88 | 97.13 222 | 98.31 296 | 99.68 157 | 92.44 278 | 99.05 311 | 98.51 146 | 94.08 324 | 98.75 233 |
|
K. test v3 | | | 97.10 282 | 96.79 283 | 98.01 281 | 98.72 315 | 96.33 296 | 99.87 9 | 97.05 361 | 97.59 178 | 96.16 341 | 99.80 88 | 88.71 326 | 99.04 312 | 96.69 282 | 96.55 272 | 98.65 272 |
|
new_pmnet | | | 96.38 295 | 96.03 296 | 97.41 309 | 98.13 340 | 95.16 324 | 99.05 280 | 99.20 277 | 93.94 334 | 97.39 324 | 98.79 331 | 91.61 296 | 99.04 312 | 90.43 352 | 95.77 290 | 98.05 336 |
|
DIV-MVS_self_test | | | 98.01 200 | 97.85 200 | 98.48 239 | 99.24 231 | 97.95 227 | 98.71 331 | 99.35 229 | 96.50 270 | 98.60 280 | 99.54 214 | 95.72 170 | 99.03 314 | 97.21 250 | 95.77 290 | 98.46 312 |
|
IterMVS-LS | | | 98.46 150 | 98.42 149 | 98.58 227 | 99.59 135 | 98.00 221 | 99.37 204 | 99.43 193 | 96.94 242 | 99.07 207 | 99.59 195 | 97.87 99 | 99.03 314 | 98.32 164 | 95.62 295 | 98.71 241 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
our_test_3 | | | 97.65 258 | 97.68 219 | 97.55 306 | 98.62 325 | 94.97 326 | 98.84 318 | 99.30 258 | 96.83 249 | 98.19 301 | 99.34 272 | 97.01 125 | 99.02 316 | 95.00 318 | 96.01 282 | 98.64 274 |
|
Patchmtry | | | 97.75 241 | 97.40 254 | 98.81 209 | 99.10 262 | 98.87 158 | 99.11 271 | 99.33 240 | 94.83 325 | 98.81 247 | 99.38 260 | 94.33 224 | 99.02 316 | 96.10 294 | 95.57 296 | 98.53 302 |
|
N_pmnet | | | 94.95 314 | 95.83 301 | 92.31 343 | 98.47 334 | 79.33 371 | 99.12 265 | 92.81 378 | 93.87 335 | 97.68 319 | 99.13 305 | 93.87 239 | 99.01 318 | 91.38 349 | 96.19 279 | 98.59 298 |
|
CR-MVSNet | | | 98.17 176 | 97.93 192 | 98.87 196 | 99.18 244 | 98.49 197 | 99.22 251 | 99.33 240 | 96.96 238 | 99.56 97 | 99.38 260 | 94.33 224 | 99.00 319 | 94.83 320 | 98.58 191 | 99.14 191 |
|
c3_l | | | 98.12 182 | 98.04 179 | 98.38 254 | 99.30 215 | 97.69 241 | 98.81 321 | 99.33 240 | 96.67 256 | 98.83 245 | 99.34 272 | 97.11 120 | 98.99 320 | 97.58 223 | 95.34 301 | 98.48 306 |
|
test0.0.03 1 | | | 97.71 249 | 97.42 252 | 98.56 231 | 98.41 336 | 97.82 233 | 98.78 324 | 98.63 339 | 97.34 204 | 98.05 309 | 98.98 322 | 94.45 221 | 98.98 321 | 95.04 317 | 97.15 263 | 98.89 219 |
|
PatchT | | | 97.03 283 | 96.44 289 | 98.79 212 | 98.99 279 | 98.34 207 | 99.16 257 | 99.07 294 | 92.13 348 | 99.52 106 | 97.31 357 | 94.54 219 | 98.98 321 | 88.54 359 | 98.73 187 | 99.03 207 |
|
GBi-Net | | | 97.68 253 | 97.48 237 | 98.29 262 | 99.51 155 | 97.26 252 | 99.43 176 | 99.48 141 | 96.49 271 | 99.07 207 | 99.32 279 | 90.26 311 | 98.98 321 | 97.10 259 | 96.65 268 | 98.62 285 |
|
test1 | | | 97.68 253 | 97.48 237 | 98.29 262 | 99.51 155 | 97.26 252 | 99.43 176 | 99.48 141 | 96.49 271 | 99.07 207 | 99.32 279 | 90.26 311 | 98.98 321 | 97.10 259 | 96.65 268 | 98.62 285 |
|
FMVSNet3 | | | 98.03 195 | 97.76 212 | 98.84 204 | 99.39 195 | 98.98 136 | 99.40 193 | 99.38 215 | 96.67 256 | 99.07 207 | 99.28 286 | 92.93 255 | 98.98 321 | 97.10 259 | 96.65 268 | 98.56 301 |
|
FMVSNet2 | | | 97.72 246 | 97.36 257 | 98.80 211 | 99.51 155 | 98.84 162 | 99.45 167 | 99.42 195 | 96.49 271 | 98.86 244 | 99.29 284 | 90.26 311 | 98.98 321 | 96.44 289 | 96.56 271 | 98.58 299 |
|
FMVSNet1 | | | 96.84 285 | 96.36 290 | 98.29 262 | 99.32 213 | 97.26 252 | 99.43 176 | 99.48 141 | 95.11 319 | 98.55 282 | 99.32 279 | 83.95 353 | 98.98 321 | 95.81 300 | 96.26 278 | 98.62 285 |
|
ppachtmachnet_test | | | 97.49 270 | 97.45 242 | 97.61 303 | 98.62 325 | 95.24 320 | 98.80 322 | 99.46 168 | 96.11 302 | 98.22 300 | 99.62 186 | 96.45 143 | 98.97 328 | 93.77 331 | 95.97 287 | 98.61 294 |
|
TranMVSNet+NR-MVSNet | | | 97.93 210 | 97.66 221 | 98.76 215 | 98.78 307 | 98.62 181 | 99.65 70 | 99.49 129 | 97.76 162 | 98.49 286 | 99.60 193 | 94.23 227 | 98.97 328 | 98.00 187 | 92.90 335 | 98.70 246 |
|
test_method | | | 91.10 327 | 91.36 329 | 90.31 348 | 95.85 361 | 73.72 378 | 94.89 367 | 99.25 269 | 68.39 370 | 95.82 344 | 99.02 317 | 80.50 359 | 98.95 330 | 93.64 333 | 94.89 312 | 98.25 327 |
|
ADS-MVSNet2 | | | 98.02 197 | 98.07 177 | 97.87 290 | 99.33 207 | 95.19 322 | 99.23 247 | 99.08 291 | 96.24 290 | 99.10 202 | 99.67 163 | 94.11 232 | 98.93 331 | 96.81 276 | 99.05 164 | 99.48 158 |
|
ET-MVSNet_ETH3D | | | 96.49 292 | 95.64 305 | 99.05 161 | 99.53 149 | 98.82 166 | 98.84 318 | 97.51 359 | 97.63 176 | 84.77 364 | 99.21 298 | 92.09 282 | 98.91 332 | 98.98 73 | 92.21 341 | 99.41 173 |
|
miper_lstm_enhance | | | 98.00 202 | 97.91 193 | 98.28 265 | 99.34 205 | 97.43 246 | 98.88 314 | 99.36 224 | 96.48 275 | 98.80 249 | 99.55 209 | 95.98 156 | 98.91 332 | 97.27 247 | 95.50 299 | 98.51 304 |
|
PEN-MVS | | | 97.76 237 | 97.44 247 | 98.72 217 | 98.77 310 | 98.54 188 | 99.78 31 | 99.51 102 | 97.06 232 | 98.29 298 | 99.64 175 | 92.63 269 | 98.89 334 | 98.09 178 | 93.16 333 | 98.72 239 |
|
testgi | | | 97.65 258 | 97.50 236 | 98.13 275 | 99.36 200 | 96.45 292 | 99.42 183 | 99.48 141 | 97.76 162 | 97.87 314 | 99.45 243 | 91.09 303 | 98.81 335 | 94.53 322 | 98.52 196 | 99.13 193 |
|
testf1 | | | 90.42 329 | 90.68 331 | 89.65 349 | 97.78 344 | 73.97 376 | 99.13 263 | 98.81 323 | 89.62 356 | 91.80 360 | 98.93 325 | 62.23 369 | 98.80 336 | 86.61 366 | 91.17 344 | 96.19 361 |
|
APD_test2 | | | 90.42 329 | 90.68 331 | 89.65 349 | 97.78 344 | 73.97 376 | 99.13 263 | 98.81 323 | 89.62 356 | 91.80 360 | 98.93 325 | 62.23 369 | 98.80 336 | 86.61 366 | 91.17 344 | 96.19 361 |
|
MIMVSNet | | | 97.73 244 | 97.45 242 | 98.57 228 | 99.45 181 | 97.50 244 | 99.02 289 | 98.98 302 | 96.11 302 | 99.41 130 | 99.14 304 | 90.28 310 | 98.74 338 | 95.74 302 | 98.93 172 | 99.47 164 |
|
LCM-MVSNet-Re | | | 97.83 227 | 98.15 164 | 96.87 324 | 99.30 215 | 92.25 353 | 99.59 95 | 98.26 346 | 97.43 197 | 96.20 340 | 99.13 305 | 96.27 149 | 98.73 339 | 98.17 174 | 98.99 169 | 99.64 119 |
|
DTE-MVSNet | | | 97.51 266 | 97.19 274 | 98.46 244 | 98.63 324 | 98.13 216 | 99.84 13 | 99.48 141 | 96.68 255 | 97.97 312 | 99.67 163 | 92.92 256 | 98.56 340 | 96.88 275 | 92.60 340 | 98.70 246 |
|
PC_three_1452 | | | | | | | | | | 98.18 114 | 99.84 17 | 99.70 141 | 99.31 3 | 98.52 341 | 98.30 166 | 99.80 82 | 99.81 46 |
|
mvsany_test3 | | | 93.77 322 | 93.45 324 | 94.74 336 | 95.78 362 | 88.01 361 | 99.64 72 | 98.25 347 | 98.28 96 | 94.31 352 | 97.97 350 | 68.89 365 | 98.51 342 | 97.50 233 | 90.37 349 | 97.71 348 |
|
UnsupCasMVSNet_bld | | | 93.53 323 | 92.51 326 | 96.58 329 | 97.38 350 | 93.82 340 | 98.24 356 | 99.48 141 | 91.10 353 | 93.10 357 | 96.66 359 | 74.89 363 | 98.37 343 | 94.03 330 | 87.71 356 | 97.56 353 |
|
Anonymous20240521 | | | 96.20 298 | 95.89 300 | 97.13 316 | 97.72 347 | 94.96 327 | 99.79 30 | 99.29 262 | 93.01 344 | 97.20 329 | 99.03 315 | 89.69 319 | 98.36 344 | 91.16 350 | 96.13 280 | 98.07 334 |
|
test_f | | | 91.90 326 | 91.26 330 | 93.84 338 | 95.52 366 | 85.92 363 | 99.69 51 | 98.53 344 | 95.31 316 | 93.87 354 | 96.37 361 | 55.33 372 | 98.27 345 | 95.70 303 | 90.98 347 | 97.32 356 |
|
MDA-MVSNet_test_wron | | | 95.45 308 | 94.60 314 | 98.01 281 | 98.16 339 | 97.21 255 | 99.11 271 | 99.24 271 | 93.49 340 | 80.73 370 | 98.98 322 | 93.02 253 | 98.18 346 | 94.22 328 | 94.45 317 | 98.64 274 |
|
UnsupCasMVSNet_eth | | | 96.44 293 | 96.12 294 | 97.40 310 | 98.65 322 | 95.65 308 | 99.36 208 | 99.51 102 | 97.13 222 | 96.04 343 | 98.99 319 | 88.40 332 | 98.17 347 | 96.71 280 | 90.27 350 | 98.40 318 |
|
KD-MVS_2432*1600 | | | 94.62 315 | 93.72 321 | 97.31 311 | 97.19 356 | 95.82 306 | 98.34 351 | 99.20 277 | 95.00 322 | 97.57 320 | 98.35 343 | 87.95 337 | 98.10 348 | 92.87 342 | 77.00 368 | 98.01 338 |
|
miper_refine_blended | | | 94.62 315 | 93.72 321 | 97.31 311 | 97.19 356 | 95.82 306 | 98.34 351 | 99.20 277 | 95.00 322 | 97.57 320 | 98.35 343 | 87.95 337 | 98.10 348 | 92.87 342 | 77.00 368 | 98.01 338 |
|
YYNet1 | | | 95.36 310 | 94.51 316 | 97.92 287 | 97.89 342 | 97.10 257 | 99.10 273 | 99.23 272 | 93.26 343 | 80.77 369 | 99.04 314 | 92.81 259 | 98.02 350 | 94.30 324 | 94.18 322 | 98.64 274 |
|
EU-MVSNet | | | 97.98 204 | 98.03 180 | 97.81 296 | 98.72 315 | 96.65 285 | 99.66 64 | 99.66 26 | 98.09 125 | 98.35 294 | 99.82 62 | 95.25 187 | 98.01 351 | 97.41 242 | 95.30 302 | 98.78 226 |
|
Gipuma |  | | 90.99 328 | 90.15 333 | 93.51 339 | 98.73 313 | 90.12 359 | 93.98 368 | 99.45 179 | 79.32 366 | 92.28 358 | 94.91 363 | 69.61 364 | 97.98 352 | 87.42 362 | 95.67 294 | 92.45 366 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
pmmvs-eth3d | | | 95.34 311 | 94.73 313 | 97.15 314 | 95.53 365 | 95.94 304 | 99.35 213 | 99.10 288 | 95.13 317 | 93.55 355 | 97.54 352 | 88.15 336 | 97.91 353 | 94.58 321 | 89.69 353 | 97.61 351 |
|
PM-MVS | | | 92.96 324 | 92.23 327 | 95.14 335 | 95.61 363 | 89.98 360 | 99.37 204 | 98.21 349 | 94.80 326 | 95.04 350 | 97.69 351 | 65.06 366 | 97.90 354 | 94.30 324 | 89.98 352 | 97.54 354 |
|
MDA-MVSNet-bldmvs | | | 94.96 313 | 93.98 319 | 97.92 287 | 98.24 338 | 97.27 250 | 99.15 260 | 99.33 240 | 93.80 336 | 80.09 371 | 99.03 315 | 88.31 333 | 97.86 355 | 93.49 335 | 94.36 319 | 98.62 285 |
|
Patchmatch-RL test | | | 95.84 304 | 95.81 302 | 95.95 333 | 95.61 363 | 90.57 358 | 98.24 356 | 98.39 345 | 95.10 321 | 95.20 347 | 98.67 335 | 94.78 203 | 97.77 356 | 96.28 293 | 90.02 351 | 99.51 153 |
|
Anonymous20231206 | | | 96.22 296 | 96.03 296 | 96.79 326 | 97.31 353 | 94.14 338 | 99.63 76 | 99.08 291 | 96.17 296 | 97.04 333 | 99.06 312 | 93.94 237 | 97.76 357 | 86.96 364 | 95.06 307 | 98.47 308 |
|
SD-MVS | | | 99.41 38 | 99.52 6 | 99.05 161 | 99.74 70 | 99.68 48 | 99.46 166 | 99.52 88 | 99.11 14 | 99.88 10 | 99.91 11 | 99.43 1 | 97.70 358 | 98.72 113 | 99.93 12 | 99.77 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DSMNet-mixed | | | 97.25 277 | 97.35 259 | 96.95 322 | 97.84 343 | 93.61 346 | 99.57 107 | 96.63 366 | 96.13 301 | 98.87 240 | 98.61 338 | 94.59 215 | 97.70 358 | 95.08 316 | 98.86 178 | 99.55 139 |
|
pmmvs3 | | | 94.09 321 | 93.25 325 | 96.60 328 | 94.76 368 | 94.49 333 | 98.92 310 | 98.18 351 | 89.66 355 | 96.48 338 | 98.06 349 | 86.28 343 | 97.33 360 | 89.68 355 | 87.20 357 | 97.97 343 |
|
KD-MVS_self_test | | | 95.00 312 | 94.34 317 | 96.96 321 | 97.07 358 | 95.39 318 | 99.56 113 | 99.44 187 | 95.11 319 | 97.13 331 | 97.32 356 | 91.86 286 | 97.27 361 | 90.35 353 | 81.23 365 | 98.23 329 |
|
FMVSNet5 | | | 96.43 294 | 96.19 293 | 97.15 314 | 99.11 259 | 95.89 305 | 99.32 219 | 99.52 88 | 94.47 332 | 98.34 295 | 99.07 310 | 87.54 341 | 97.07 362 | 92.61 345 | 95.72 293 | 98.47 308 |
|
new-patchmatchnet | | | 94.48 318 | 94.08 318 | 95.67 334 | 95.08 367 | 92.41 352 | 99.18 255 | 99.28 264 | 94.55 331 | 93.49 356 | 97.37 355 | 87.86 339 | 97.01 363 | 91.57 348 | 88.36 354 | 97.61 351 |
|
LCM-MVSNet | | | 86.80 333 | 85.22 337 | 91.53 345 | 87.81 375 | 80.96 369 | 98.23 358 | 98.99 301 | 71.05 368 | 90.13 363 | 96.51 360 | 48.45 376 | 96.88 364 | 90.51 351 | 85.30 359 | 96.76 358 |
|
CL-MVSNet_self_test | | | 94.49 317 | 93.97 320 | 96.08 332 | 96.16 360 | 93.67 345 | 98.33 353 | 99.38 215 | 95.13 317 | 97.33 325 | 98.15 347 | 92.69 267 | 96.57 365 | 88.67 358 | 79.87 366 | 97.99 341 |
|
MIMVSNet1 | | | 95.51 307 | 95.04 311 | 96.92 323 | 97.38 350 | 95.60 309 | 99.52 133 | 99.50 121 | 93.65 338 | 96.97 335 | 99.17 300 | 85.28 349 | 96.56 366 | 88.36 360 | 95.55 297 | 98.60 297 |
|
test20.03 | | | 96.12 300 | 95.96 298 | 96.63 327 | 97.44 349 | 95.45 316 | 99.51 138 | 99.38 215 | 96.55 268 | 96.16 341 | 99.25 292 | 93.76 244 | 96.17 367 | 87.35 363 | 94.22 321 | 98.27 325 |
|
tmp_tt | | | 82.80 335 | 81.52 338 | 86.66 351 | 66.61 381 | 68.44 379 | 92.79 370 | 97.92 353 | 68.96 369 | 80.04 372 | 99.85 41 | 85.77 345 | 96.15 368 | 97.86 197 | 43.89 374 | 95.39 364 |
|
test_fmvs3 | | | 92.10 325 | 91.77 328 | 93.08 341 | 96.19 359 | 86.25 362 | 99.82 17 | 98.62 340 | 96.65 258 | 95.19 348 | 96.90 358 | 55.05 373 | 95.93 369 | 96.63 286 | 90.92 348 | 97.06 357 |
|
PMMVS2 | | | 86.87 332 | 85.37 336 | 91.35 346 | 90.21 373 | 83.80 365 | 98.89 313 | 97.45 360 | 83.13 365 | 91.67 362 | 95.03 362 | 48.49 375 | 94.70 370 | 85.86 368 | 77.62 367 | 95.54 363 |
|
PMVS |  | 70.75 22 | 75.98 341 | 74.97 342 | 79.01 357 | 70.98 380 | 55.18 381 | 93.37 369 | 98.21 349 | 65.08 374 | 61.78 375 | 93.83 365 | 21.74 382 | 92.53 371 | 78.59 370 | 91.12 346 | 89.34 370 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
FPMVS | | | 84.93 334 | 85.65 335 | 82.75 355 | 86.77 376 | 63.39 380 | 98.35 350 | 98.92 309 | 74.11 367 | 83.39 366 | 98.98 322 | 50.85 374 | 92.40 372 | 84.54 369 | 94.97 309 | 92.46 365 |
|
MVE |  | 76.82 21 | 76.91 340 | 74.31 344 | 84.70 352 | 85.38 378 | 76.05 375 | 96.88 366 | 93.17 376 | 67.39 371 | 71.28 373 | 89.01 372 | 21.66 383 | 87.69 373 | 71.74 372 | 72.29 370 | 90.35 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 80.61 337 | 79.88 339 | 82.81 354 | 90.75 372 | 76.38 374 | 97.69 363 | 95.76 369 | 66.44 372 | 83.52 365 | 92.25 367 | 62.54 368 | 87.16 374 | 68.53 373 | 61.40 371 | 84.89 372 |
|
EMVS | | | 80.02 338 | 79.22 340 | 82.43 356 | 91.19 371 | 76.40 373 | 97.55 365 | 92.49 379 | 66.36 373 | 83.01 367 | 91.27 369 | 64.63 367 | 85.79 375 | 65.82 374 | 60.65 372 | 85.08 371 |
|
ANet_high | | | 77.30 339 | 74.86 343 | 84.62 353 | 75.88 379 | 77.61 372 | 97.63 364 | 93.15 377 | 88.81 359 | 64.27 374 | 89.29 371 | 36.51 378 | 83.93 376 | 75.89 371 | 52.31 373 | 92.33 367 |
|
wuyk23d | | | 40.18 342 | 41.29 347 | 36.84 358 | 86.18 377 | 49.12 382 | 79.73 371 | 22.81 383 | 27.64 375 | 25.46 378 | 28.45 378 | 21.98 381 | 48.89 377 | 55.80 375 | 23.56 377 | 12.51 375 |
|
test123 | | | 39.01 344 | 42.50 346 | 28.53 359 | 39.17 382 | 20.91 383 | 98.75 327 | 19.17 384 | 19.83 377 | 38.57 376 | 66.67 374 | 33.16 379 | 15.42 378 | 37.50 377 | 29.66 376 | 49.26 373 |
|
testmvs | | | 39.17 343 | 43.78 345 | 25.37 360 | 36.04 383 | 16.84 384 | 98.36 349 | 26.56 382 | 20.06 376 | 38.51 377 | 67.32 373 | 29.64 380 | 15.30 379 | 37.59 376 | 39.90 375 | 43.98 374 |
|
test_blank | | | 0.13 348 | 0.17 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 1.57 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.02 349 | 0.03 352 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.27 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.02 349 | 0.03 352 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.27 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 24.64 345 | 32.85 348 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 99.51 102 | 0.00 379 | 0.00 380 | 99.56 206 | 96.58 138 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 8.27 347 | 11.03 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.27 380 | 99.01 18 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.02 349 | 0.03 352 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.27 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.02 349 | 0.03 352 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.27 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.02 349 | 0.03 352 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.27 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.02 349 | 0.03 352 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.27 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 8.30 346 | 11.06 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 99.58 199 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.02 349 | 0.03 352 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.27 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
FOURS1 | | | | | | 99.91 1 | 99.93 1 | 99.87 9 | 99.56 56 | 99.10 15 | 99.81 24 | | | | | | |
|
test_one_0601 | | | | | | 99.81 40 | 99.88 8 | | 99.49 129 | 98.97 38 | 99.65 74 | 99.81 75 | 99.09 14 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
RE-MVS-def | | | | 99.34 28 | | 99.76 55 | 99.82 22 | 99.63 76 | 99.52 88 | 98.38 85 | 99.76 42 | 99.82 62 | 98.75 54 | | 98.61 129 | 99.81 78 | 99.77 67 |
|
IU-MVS | | | | | | 99.84 30 | 99.88 8 | | 99.32 250 | 98.30 95 | 99.84 17 | | | | 98.86 93 | 99.85 54 | 99.89 5 |
|
save fliter | | | | | | 99.76 55 | 99.59 62 | 99.14 262 | 99.40 206 | 99.00 30 | | | | | | | |
|
test0726 | | | | | | 99.85 24 | 99.89 4 | 99.62 82 | 99.50 121 | 99.10 15 | 99.86 15 | 99.82 62 | 98.94 29 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.52 147 |
|
test_part2 | | | | | | 99.81 40 | 99.83 16 | | | | 99.77 37 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.86 198 | | | | 99.52 147 |
|
sam_mvs | | | | | | | | | | | | | 94.72 210 | | | | |
|
MTGPA |  | | | | | | | | 99.47 159 | | | | | | | | |
|
MTMP | | | | | | | | 99.54 126 | 98.88 316 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 97.49 234 | 99.72 103 | 99.75 73 |
|
agg_prior2 | | | | | | | | | | | | | | | 97.21 250 | 99.73 102 | 99.75 73 |
|
test_prior4 | | | | | | | 99.56 66 | 98.99 296 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.96 303 | | 98.34 91 | 99.01 216 | 99.52 221 | 98.68 61 | | 97.96 189 | 99.74 100 | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.01 294 | | | | | | | | | |
|
旧先验1 | | | | | | 99.74 70 | 99.59 62 | | 99.54 72 | | | 99.69 151 | 98.47 75 | | | 99.68 111 | 99.73 82 |
|
原ACMM2 | | | | | | | | 98.95 306 | | | | | | | | | |
|
test222 | | | | | | 99.75 63 | 99.49 78 | 98.91 312 | 99.49 129 | 96.42 280 | 99.34 153 | 99.65 169 | 98.28 87 | | | 99.69 108 | 99.72 88 |
|
segment_acmp | | | | | | | | | | | | | 98.96 24 | | | | |
|
testdata1 | | | | | | | | 98.85 317 | | 98.32 94 | | | | | | | |
|
plane_prior7 | | | | | | 99.29 219 | 97.03 267 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.27 224 | 96.98 271 | | | | | | 92.71 265 | | | | |
|
plane_prior4 | | | | | | | | | | | | 99.61 190 | | | | | |
|
plane_prior3 | | | | | | | 97.00 269 | | | 98.69 63 | 99.11 199 | | | | | | |
|
plane_prior2 | | | | | | | | 99.39 197 | | 98.97 38 | | | | | | | |
|
plane_prior1 | | | | | | 99.26 226 | | | | | | | | | | | |
|
plane_prior | | | | | | | 96.97 272 | 99.21 253 | | 98.45 79 | | | | | | 97.60 230 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 98.05 352 | | | | | | | | |
|
test11 | | | | | | | | | 99.35 229 | | | | | | | | |
|
door | | | | | | | | | 97.92 353 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.83 277 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.19 241 | | 98.98 299 | | 98.24 101 | 98.66 267 | | | | | | |
|
ACMP_Plane | | | | | | 99.19 241 | | 98.98 299 | | 98.24 101 | 98.66 267 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.19 254 | | |
|
HQP3-MVS | | | | | | | | | 99.39 209 | | | | | | | 97.58 232 | |
|
HQP2-MVS | | | | | | | | | | | | | 92.47 274 | | | | |
|
NP-MVS | | | | | | 99.23 232 | 96.92 275 | | | | | 99.40 255 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 95.18 323 | 99.35 213 | | 96.84 247 | 99.58 93 | | 95.19 189 | | 97.82 201 | | 99.46 166 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 97.19 261 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.43 251 | |
|
Test By Simon | | | | | | | | | | | | | 98.75 54 | | | | |
|