This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21299.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test_vis1_n_192098.63 16098.40 16799.31 14399.86 2097.94 24899.67 6499.62 4199.43 799.99 299.91 2087.29 364100.00 199.92 1299.92 2499.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
patch_mono-299.26 6999.62 598.16 29299.81 4694.59 35599.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
h-mvs3397.70 26897.28 28898.97 19299.70 10197.27 27199.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 38699.65 129
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29299.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 223
xiu_mvs_v1_base99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29299.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 223
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29299.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 223
EPNet98.86 12898.71 13299.30 14897.20 37998.18 23099.62 8898.91 33299.28 1698.63 29499.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.40 5099.28 5599.74 6199.67 11199.31 10799.52 14898.87 33999.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
test_vis1_n97.92 23197.44 26699.34 13699.53 16398.08 23699.74 4499.49 14399.15 20100.00 199.94 679.51 38799.98 1399.88 1499.76 11099.97 4
xiu_mvs_v2_base99.26 6999.25 6299.29 15199.53 16398.91 16999.02 31599.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 237
PS-MVSNAJ99.32 5999.32 4099.30 14899.57 15298.94 16598.97 32899.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 238
QAPM98.67 15698.30 17499.80 4699.20 25799.67 5199.77 3499.72 1194.74 35398.73 27599.90 2695.78 17799.98 1396.96 28799.88 5199.76 87
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 27699.66 5399.84 1399.74 1099.09 3298.92 25099.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 29499.53 8299.82 1799.72 1194.56 35698.08 32599.88 3694.73 22199.98 1397.47 25699.76 11099.06 229
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_fmvs1_n98.41 17298.14 18399.21 16399.82 4297.71 26099.74 4499.49 14399.32 1499.99 299.95 385.32 37199.97 2199.82 1699.84 7799.96 7
CANet_DTU98.97 11898.87 11599.25 15899.33 22598.42 22299.08 30199.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 201
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17199.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 26899.68 4899.81 2099.51 11599.20 1898.72 27699.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13698.94 33499.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
test_fmvs198.88 12498.79 12699.16 16899.69 10697.61 26399.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
ZD-MVS99.71 9699.79 3099.61 4896.84 27299.56 11499.54 23198.58 7299.96 3096.93 29099.75 112
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38499.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20899.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10199.49 14397.03 25999.63 9699.69 16897.27 12499.96 3097.82 21999.84 7799.81 61
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19399.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
UGNet98.87 12598.69 13499.40 13099.22 25498.72 18999.44 19499.68 2099.24 1799.18 20799.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 5999.32 4099.32 14299.85 2698.29 22599.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 35999.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
CANet99.25 7399.14 7299.59 8799.41 20399.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24699.52 10197.18 24199.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 5996.67 302
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
RPMNet96.72 31195.90 32399.19 16599.18 26298.49 21399.22 27799.52 10188.72 38699.56 11497.38 38094.08 25199.95 5986.87 39098.58 20699.14 215
sss99.17 8199.05 8399.53 10599.62 13798.97 15399.36 23099.62 4197.83 17299.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 31395.45 33199.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40398.81 4499.94 6998.79 12399.86 6299.84 40
旧先验298.96 32996.70 27999.47 13199.94 6998.19 188
新几何199.75 5899.75 7399.59 7099.54 8596.76 27599.29 17999.64 19298.43 8399.94 6996.92 29299.66 12899.72 103
testdata99.54 9799.75 7398.95 16299.51 11597.07 25399.43 14099.70 15898.87 3799.94 6997.76 22699.64 13199.72 103
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19799.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 7799.10 7699.45 12399.89 898.52 20999.39 21999.94 198.73 7699.11 21699.89 3095.50 18799.94 6999.50 3699.97 799.89 20
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16399.50 13597.16 24399.77 5199.82 7698.78 4899.94 6997.56 24799.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30799.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21499.72 103
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6799.12 7499.74 6199.18 26299.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22599.72 103
FE-MVS98.48 16598.17 17999.40 13099.54 16298.96 15799.68 6198.81 34595.54 33799.62 10099.70 15893.82 26099.93 8497.35 26499.46 14499.32 206
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11699.54 8597.82 17699.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
dcpmvs_299.23 7599.58 798.16 29299.83 3994.68 35399.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
Anonymous2024052998.09 20197.68 23799.34 13699.66 12098.44 21999.40 21599.43 20793.67 36399.22 19599.89 3090.23 33699.93 8499.26 6798.33 21999.66 125
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
无先验98.99 32299.51 11596.89 26999.93 8497.53 25099.72 103
VDDNet97.55 28197.02 29999.16 16899.49 18198.12 23599.38 22499.30 27595.35 33999.68 7499.90 2682.62 38299.93 8499.31 5898.13 23699.42 193
ab-mvs98.86 12898.63 14299.54 9799.64 12899.19 12099.44 19499.54 8597.77 17999.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11399.42 20599.54 8597.29 23299.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
Anonymous20240521198.30 18297.98 20399.26 15799.57 15298.16 23199.41 20798.55 36596.03 33199.19 20499.74 14391.87 30799.92 9599.16 7598.29 22499.70 113
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
VDD-MVS97.73 26297.35 27898.88 21199.47 19097.12 27999.34 23898.85 34198.19 12799.67 7899.85 5482.98 38099.92 9599.49 4098.32 22399.60 146
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23299.72 103
XVG-OURS-SEG-HR98.69 15398.62 14798.89 20999.71 9697.74 25599.12 29299.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 234
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18599.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
HY-MVS97.30 798.85 13598.64 14199.47 12099.42 20099.08 13999.62 8899.36 24097.39 22499.28 18099.68 17496.44 15499.92 9598.37 17598.22 22799.40 197
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20799.50 13597.03 25999.04 23299.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
IB-MVS95.67 1896.22 31995.44 33298.57 24899.21 25596.70 30598.65 36297.74 38296.71 27897.27 34998.54 36186.03 36799.92 9598.47 16886.30 38499.10 218
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 7699.72 9199.40 21599.51 11597.53 20799.64 9399.78 12198.84 4199.91 10597.63 23899.82 90
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21699.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11199.65 5799.05 30799.41 21296.22 31698.95 24599.49 24798.77 5199.91 105
train_agg99.02 11298.77 12799.77 5599.67 11199.65 5799.05 30799.41 21296.28 31098.95 24599.49 24798.76 5299.91 10597.63 23899.72 11899.75 88
test_899.67 11199.61 6799.03 31299.41 21296.28 31098.93 24999.48 25298.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22098.87 25999.91 105
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21399.12 21499.66 18598.67 6699.91 10597.70 23599.69 12399.71 112
LFMVS97.90 23497.35 27899.54 9799.52 16799.01 14899.39 21998.24 37297.10 25199.65 8999.79 11584.79 37399.91 10599.28 6398.38 21699.69 115
XVG-OURS98.73 14998.68 13598.88 21199.70 10197.73 25698.92 33699.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 19998.84 19499.00 234
PLCcopyleft97.94 499.02 11298.85 11999.53 10599.66 12099.01 14899.24 27299.52 10196.85 27199.27 18499.48 25298.25 9399.91 10597.76 22699.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 27597.06 29899.47 12099.61 14199.09 13698.04 38799.25 28791.24 37898.51 30499.70 15894.55 23399.91 10592.76 36799.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_rt95.81 32895.65 32896.32 35499.67 11191.35 38199.49 17496.74 39198.25 11795.24 36998.10 37374.96 38899.90 11699.53 3298.85 19397.70 373
FA-MVS(test-final)98.75 14698.53 16099.41 12999.55 16099.05 14499.80 2599.01 31896.59 29299.58 11099.59 21295.39 19099.90 11697.78 22299.49 14399.28 209
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25099.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28699.41 21296.60 29099.60 10699.55 22698.83 4299.90 11697.48 25499.83 8699.78 80
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24699.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
114514_t98.93 12098.67 13699.72 6599.85 2699.53 8299.62 8899.59 5792.65 37399.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
1112_ss98.98 11698.77 12799.59 8799.68 11099.02 14699.25 27099.48 15597.23 23899.13 21299.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10999.80 897.12 24799.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
AdaColmapbinary99.01 11598.80 12399.66 6999.56 15699.54 7999.18 28199.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25499.77 10799.55 159
COLMAP_ROBcopyleft97.56 698.86 12898.75 12999.17 16799.88 1198.53 20599.34 23899.59 5797.55 20398.70 28399.89 3095.83 17599.90 11698.10 19499.90 3999.08 223
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 17898.03 19899.31 14399.63 13198.56 20299.54 13996.75 39097.53 20799.73 6299.65 18691.25 32499.89 12698.62 14399.56 13899.48 178
tttt051798.42 17098.14 18399.28 15599.66 12098.38 22399.74 4496.85 38897.68 19099.79 4299.74 14391.39 32199.89 12698.83 11899.56 13899.57 156
test1299.75 5899.64 12899.61 6799.29 27999.21 19898.38 8799.89 12699.74 11599.74 92
Test_1112_low_res98.89 12398.66 13999.57 9299.69 10698.95 16299.03 31299.47 17396.98 26199.15 21099.23 31296.77 14199.89 12698.83 11898.78 19999.86 33
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28399.44 20198.45 9699.19 20499.49 24798.08 10199.89 12697.73 23099.75 11299.48 178
sd_testset98.75 14698.57 15699.29 15199.81 4698.26 22799.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13199.54 3098.26 22599.72 103
APD_test195.87 32696.49 31094.00 36099.53 16384.01 38899.54 13999.32 26795.91 33397.99 33099.85 5485.49 37099.88 13191.96 37098.84 19498.12 355
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 15799.28 25499.49 14398.46 9599.72 6799.71 15496.50 15099.88 13199.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 12898.80 12399.03 18299.76 6598.79 18499.28 25499.91 397.42 22199.67 7899.37 28097.53 11399.88 13198.98 9097.29 27998.42 338
PVSNet_Blended99.08 10598.97 10199.42 12899.76 6598.79 18498.78 35099.91 396.74 27699.67 7899.49 24797.53 11399.88 13198.98 9099.85 6999.60 146
MVS97.28 29696.55 30899.48 11798.78 32998.95 16299.27 25999.39 22383.53 39098.08 32599.54 23196.97 13599.87 13694.23 34999.16 16599.63 140
MG-MVS99.13 8999.02 9199.45 12399.57 15298.63 19699.07 30299.34 25098.99 4599.61 10399.82 7697.98 10499.87 13697.00 28399.80 9799.85 36
MSDG98.98 11698.80 12399.53 10599.76 6599.19 12098.75 35399.55 7797.25 23599.47 13199.77 12997.82 10799.87 13696.93 29099.90 3999.54 161
ETV-MVS99.26 6999.21 6699.40 13099.46 19199.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 13999.10 7999.59 13699.04 230
thisisatest051598.14 19697.79 22199.19 16599.50 17998.50 21298.61 36496.82 38996.95 26599.54 11999.43 26391.66 31699.86 13998.08 19999.51 14299.22 212
thres600view797.86 23997.51 25498.92 20099.72 9197.95 24699.59 10198.74 35297.94 16199.27 18498.62 35891.75 31099.86 13993.73 35498.19 23198.96 240
lupinMVS99.13 8999.01 9599.46 12299.51 17098.94 16599.05 30799.16 30197.86 16799.80 4099.56 22397.39 11699.86 13998.94 9499.85 6999.58 154
PVSNet96.02 1798.85 13598.84 12098.89 20999.73 8797.28 27098.32 38099.60 5497.86 16799.50 12699.57 22096.75 14299.86 13998.56 15899.70 12299.54 161
MAR-MVS98.86 12898.63 14299.54 9799.37 21599.66 5399.45 18899.54 8596.61 28899.01 23599.40 27297.09 12999.86 13997.68 23799.53 14199.10 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250696.81 31096.65 30697.29 33599.74 8092.21 37899.60 9585.06 40799.13 2299.77 5199.93 987.82 36299.85 14599.38 4899.38 14999.80 70
AllTest98.87 12598.72 13099.31 14399.86 2098.48 21599.56 12299.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30399.83 8699.59 150
TestCases99.31 14399.86 2098.48 21599.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30399.83 8699.59 150
jason99.13 8999.03 8799.45 12399.46 19198.87 17299.12 29299.26 28598.03 15699.79 4299.65 18697.02 13299.85 14599.02 8799.90 3999.65 129
jason: jason.
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 26899.52 10198.82 6599.39 15599.71 15498.96 2499.85 14598.59 15199.80 9799.77 82
PAPM_NR99.04 10998.84 12099.66 6999.74 8099.44 9499.39 21999.38 23197.70 18899.28 18099.28 30498.34 8999.85 14596.96 28799.45 14599.69 115
testing22297.16 30196.50 30999.16 16899.16 27098.47 21799.27 25998.66 36197.71 18698.23 31998.15 36982.28 38499.84 15197.36 26397.66 24899.18 214
test111198.04 21198.11 18797.83 31599.74 8093.82 36399.58 10995.40 39699.12 2599.65 8999.93 990.73 32999.84 15199.43 4699.38 14999.82 54
ECVR-MVScopyleft98.04 21198.05 19698.00 30499.74 8094.37 35899.59 10194.98 39799.13 2299.66 8399.93 990.67 33099.84 15199.40 4799.38 14999.80 70
test_yl98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15198.60 14998.33 21999.59 150
DCV-MVSNet98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15198.60 14998.33 21999.59 150
Fast-Effi-MVS+98.70 15198.43 16499.51 11399.51 17099.28 11199.52 14899.47 17396.11 32699.01 23599.34 29096.20 16199.84 15197.88 21198.82 19699.39 198
TSAR-MVS + GP.99.36 5599.36 3299.36 13599.67 11198.61 19999.07 30299.33 25799.00 4399.82 3599.81 9099.06 1699.84 15199.09 8099.42 14799.65 129
tpmrst98.33 17998.48 16297.90 31099.16 27094.78 35199.31 24499.11 30697.27 23399.45 13499.59 21295.33 19399.84 15198.48 16598.61 20399.09 222
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15199.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 16098.34 17099.51 11399.40 20899.03 14598.80 34899.36 24096.33 30799.00 23999.12 32698.46 8199.84 15195.23 33699.37 15699.66 125
PatchMatch-RL98.84 13898.62 14799.52 11199.71 9699.28 11199.06 30599.77 997.74 18499.50 12699.53 23595.41 18999.84 15197.17 27799.64 13199.44 191
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14299.81 2099.33 25797.43 21999.60 10699.88 3697.14 12699.84 15199.13 7698.94 18599.69 115
thres100view90097.76 25597.45 26198.69 23999.72 9197.86 25299.59 10198.74 35297.93 16299.26 18898.62 35891.75 31099.83 16393.22 35998.18 23298.37 344
tfpn200view997.72 26497.38 27498.72 23799.69 10697.96 24499.50 16398.73 35797.83 17299.17 20898.45 36391.67 31499.83 16393.22 35998.18 23298.37 344
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16399.74 92
131498.68 15598.54 15999.11 17498.89 31398.65 19499.27 25999.49 14396.89 26997.99 33099.56 22397.72 11199.83 16397.74 22999.27 16098.84 246
thres40097.77 25497.38 27498.92 20099.69 10697.96 24499.50 16398.73 35797.83 17299.17 20898.45 36391.67 31499.83 16393.22 35998.18 23298.96 240
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16399.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 16999.69 1999.85 6999.48 178
MVS_Test99.10 10398.97 10199.48 11799.49 18199.14 13199.67 6499.34 25097.31 23099.58 11099.76 13597.65 11299.82 16998.87 10599.07 17799.46 186
dp97.75 25997.80 22097.59 32799.10 28193.71 36699.32 24198.88 33796.48 29999.08 22399.55 22692.67 28999.82 16996.52 30698.58 20699.24 211
RPSCF98.22 18698.62 14796.99 34199.82 4291.58 38099.72 4999.44 20196.61 28899.66 8399.89 3095.92 17199.82 16997.46 25799.10 17499.57 156
PMMVS98.80 14298.62 14799.34 13699.27 24298.70 19098.76 35299.31 27197.34 22799.21 19899.07 32897.20 12599.82 16998.56 15898.87 19199.52 167
EIA-MVS99.18 7999.09 7999.45 12399.49 18199.18 12299.67 6499.53 9697.66 19399.40 15299.44 26198.10 9999.81 17498.94 9499.62 13499.35 202
Effi-MVS+98.81 13998.59 15499.48 11799.46 19199.12 13498.08 38699.50 13597.50 21199.38 15899.41 26996.37 15699.81 17499.11 7898.54 21199.51 173
thres20097.61 27997.28 28898.62 24299.64 12898.03 23899.26 26898.74 35297.68 19099.09 22298.32 36791.66 31699.81 17492.88 36498.22 22798.03 360
tpmvs97.98 22298.02 20097.84 31499.04 29494.73 35299.31 24499.20 29696.10 33098.76 27399.42 26594.94 20399.81 17496.97 28698.45 21598.97 238
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17499.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 13999.37 3097.12 33999.60 14691.75 37998.61 36499.44 20199.35 1299.83 3499.85 5498.70 6399.81 17499.02 8799.91 3199.81 61
DPM-MVS98.95 11998.71 13299.66 6999.63 13199.55 7798.64 36399.10 30797.93 16299.42 14399.55 22698.67 6699.80 18095.80 32199.68 12699.61 144
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 25999.57 6496.40 30699.42 14399.68 17498.75 5599.80 18097.98 20599.72 11899.44 191
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33499.85 698.82 6599.65 8999.74 14398.51 7899.80 18098.83 11899.89 4899.64 136
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18399.65 2399.78 10499.41 195
Fast-Effi-MVS+-dtu98.77 14598.83 12298.60 24399.41 20396.99 29399.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18397.95 20799.45 14599.02 233
baseline198.31 18097.95 20799.38 13499.50 17998.74 18799.59 10198.93 32698.41 10099.14 21199.60 21094.59 22999.79 18398.48 16593.29 35799.61 144
baseline99.15 8599.02 9199.53 10599.66 12099.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18399.51 3599.14 16999.67 122
PVSNet_094.43 1996.09 32495.47 33097.94 30799.31 23294.34 36097.81 38899.70 1597.12 24797.46 34398.75 35589.71 34099.79 18397.69 23681.69 39099.68 119
API-MVS99.04 10999.03 8799.06 17899.40 20899.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 18896.98 28599.78 10498.07 357
OMC-MVS99.08 10599.04 8599.20 16499.67 11198.22 22999.28 25499.52 10198.07 14899.66 8399.81 9097.79 10899.78 18897.79 22199.81 9399.60 146
GeoE98.85 13598.62 14799.53 10599.61 14199.08 13999.80 2599.51 11597.10 25199.31 17499.78 12195.23 19999.77 19098.21 18699.03 18099.75 88
alignmvs98.81 13998.56 15899.58 9099.43 19899.42 9699.51 15698.96 32498.61 8499.35 16798.92 34794.78 21599.77 19099.35 5198.11 23799.54 161
tpm cat197.39 29397.36 27697.50 33099.17 26893.73 36599.43 19899.31 27191.27 37798.71 27799.08 32794.31 24399.77 19096.41 31098.50 21399.00 234
CostFormer97.72 26497.73 23397.71 32299.15 27494.02 36299.54 13999.02 31794.67 35499.04 23299.35 28692.35 30199.77 19098.50 16497.94 24099.34 204
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 194
MDTV_nov1_ep1398.32 17299.11 27894.44 35799.27 25998.74 35297.51 21099.40 15299.62 20394.78 21599.76 19497.59 24198.81 198
canonicalmvs99.02 11298.86 11899.51 11399.42 20099.32 10499.80 2599.48 15598.63 8299.31 17498.81 35297.09 12999.75 19699.27 6697.90 24199.47 184
Effi-MVS+-dtu98.78 14398.89 11398.47 26399.33 22596.91 29999.57 11699.30 27598.47 9499.41 14798.99 33796.78 14099.74 19798.73 12999.38 14998.74 260
patchmatchnet-post98.70 35694.79 21499.74 197
SCA98.19 19098.16 18098.27 28799.30 23395.55 33499.07 30298.97 32297.57 20099.43 14099.57 22092.72 28499.74 19797.58 24299.20 16399.52 167
BH-untuned98.42 17098.36 16898.59 24499.49 18196.70 30599.27 25999.13 30597.24 23798.80 26899.38 27795.75 17899.74 19797.07 28199.16 16599.33 205
BH-RMVSNet98.41 17298.08 19299.40 13099.41 20398.83 18099.30 24698.77 34897.70 18898.94 24799.65 18692.91 27999.74 19796.52 30699.55 14099.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33299.85 698.82 6599.54 11999.73 14998.51 7899.74 19798.91 9999.88 5199.77 82
test_post65.99 40194.65 22899.73 203
XVG-ACMP-BASELINE97.83 24597.71 23598.20 28999.11 27896.33 31999.41 20799.52 10198.06 15299.05 23199.50 24489.64 34299.73 20397.73 23097.38 27798.53 326
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31599.91 397.67 19299.59 10999.75 13895.90 17399.73 20399.53 3299.02 18299.86 33
DeepMVS_CXcopyleft93.34 36399.29 23782.27 39199.22 29285.15 38896.33 36299.05 33190.97 32799.73 20393.57 35697.77 24598.01 361
Patchmatch-test97.93 22897.65 24098.77 23499.18 26297.07 28499.03 31299.14 30496.16 32198.74 27499.57 22094.56 23199.72 20793.36 35899.11 17199.52 167
LPG-MVS_test98.22 18698.13 18598.49 25799.33 22597.05 28699.58 10999.55 7797.46 21399.24 19099.83 6892.58 29199.72 20798.09 19597.51 26198.68 279
LGP-MVS_train98.49 25799.33 22597.05 28699.55 7797.46 21399.24 19099.83 6892.58 29199.72 20798.09 19597.51 26198.68 279
BH-w/o98.00 22097.89 21698.32 28099.35 21996.20 32399.01 32098.90 33496.42 30498.38 31199.00 33695.26 19799.72 20796.06 31498.61 20399.03 231
ACMP97.20 1198.06 20597.94 20998.45 26599.37 21597.01 29199.44 19499.49 14397.54 20698.45 30899.79 11591.95 30699.72 20797.91 20997.49 26698.62 309
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 21597.90 21298.40 27399.23 25096.80 30399.70 5299.60 5497.12 24798.18 32299.70 15891.73 31299.72 20798.39 17297.45 26998.68 279
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 27365.14 40294.18 24899.71 21397.58 242
ADS-MVSNet98.20 18998.08 19298.56 25199.33 22596.48 31499.23 27399.15 30296.24 31499.10 21999.67 18094.11 24999.71 21396.81 29599.05 17899.48 178
JIA-IIPM97.50 28697.02 29998.93 19898.73 33697.80 25499.30 24698.97 32291.73 37698.91 25194.86 39095.10 20199.71 21397.58 24297.98 23999.28 209
EPMVS97.82 24897.65 24098.35 27798.88 31495.98 32699.49 17494.71 39997.57 20099.26 18899.48 25292.46 29899.71 21397.87 21399.08 17699.35 202
TDRefinement95.42 33294.57 33997.97 30689.83 40096.11 32599.48 17898.75 34996.74 27696.68 35999.88 3688.65 35199.71 21398.37 17582.74 38998.09 356
ACMM97.58 598.37 17798.34 17098.48 25999.41 20397.10 28099.56 12299.45 19398.53 9099.04 23299.85 5493.00 27599.71 21398.74 12797.45 26998.64 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 22597.77 22698.57 24899.59 14896.61 31099.45 18899.08 31098.21 12498.88 25699.80 10388.66 35099.70 21998.58 15297.72 24699.39 198
CHOSEN 280x42099.12 9599.13 7399.08 17599.66 12097.89 24998.43 37499.71 1398.88 5999.62 10099.76 13596.63 14599.70 21999.46 4499.99 199.66 125
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 21999.64 2499.82 9099.54 161
PatchmatchNetpermissive98.31 18098.36 16898.19 29099.16 27095.32 34299.27 25998.92 32897.37 22599.37 16099.58 21694.90 20799.70 21997.43 26099.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 20097.99 20298.44 26899.41 20396.96 29799.60 9599.56 6998.09 14398.15 32399.91 2090.87 32899.70 21998.88 10297.45 26998.67 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS97.50 28696.90 30199.29 15199.23 25098.78 18699.32 24198.90 33497.52 20998.56 30198.09 37484.72 37499.69 22497.86 21497.88 24299.39 198
HQP_MVS98.27 18598.22 17898.44 26899.29 23796.97 29599.39 21999.47 17398.97 5199.11 21699.61 20792.71 28699.69 22497.78 22297.63 24998.67 286
plane_prior599.47 17399.69 22497.78 22297.63 24998.67 286
D2MVS98.41 17298.50 16198.15 29599.26 24496.62 30999.40 21599.61 4897.71 18698.98 24199.36 28396.04 16499.67 22798.70 13297.41 27498.15 354
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22798.09 19599.13 17099.73 97
CLD-MVS98.16 19498.10 18898.33 27899.29 23796.82 30298.75 35399.44 20197.83 17299.13 21299.55 22692.92 27799.67 22798.32 18197.69 24798.48 330
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 29897.30 28697.09 34099.43 19893.31 37199.73 4798.87 33998.83 6499.28 18099.80 10384.45 37599.66 23097.88 21197.45 26998.30 346
AUN-MVS96.88 30896.31 31498.59 24499.48 18997.04 28999.27 25999.22 29297.44 21898.51 30499.41 26991.97 30599.66 23097.71 23383.83 38799.07 228
UniMVSNet_ETH3D97.32 29596.81 30398.87 21599.40 20897.46 26699.51 15699.53 9695.86 33498.54 30399.77 12982.44 38399.66 23098.68 13797.52 25999.50 176
OPM-MVS98.19 19098.10 18898.45 26598.88 31497.07 28499.28 25499.38 23198.57 8699.22 19599.81 9092.12 30299.66 23098.08 19997.54 25898.61 318
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 23197.78 22498.32 28099.46 19196.68 30799.56 12299.54 8598.41 10097.79 33999.87 4490.18 33799.66 23098.05 20397.18 28598.62 309
hse-mvs297.50 28697.14 29498.59 24499.49 18197.05 28699.28 25499.22 29298.94 5499.66 8399.42 26594.93 20499.65 23599.48 4183.80 38899.08 223
VPA-MVSNet98.29 18397.95 20799.30 14899.16 27099.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23599.35 5194.46 34098.72 263
TR-MVS97.76 25597.41 27298.82 22699.06 29097.87 25098.87 34298.56 36496.63 28798.68 28599.22 31392.49 29499.65 23595.40 33297.79 24498.95 242
gm-plane-assit98.54 35592.96 37394.65 35599.15 32199.64 23897.56 247
HQP4-MVS98.66 28699.64 23898.64 298
HQP-MVS98.02 21597.90 21298.37 27699.19 25996.83 30098.98 32599.39 22398.24 11898.66 28699.40 27292.47 29599.64 23897.19 27497.58 25498.64 298
PAPM97.59 28097.09 29799.07 17799.06 29098.26 22798.30 38199.10 30794.88 34998.08 32599.34 29096.27 15999.64 23889.87 37898.92 18899.31 207
TAPA-MVS97.07 1597.74 26197.34 28198.94 19699.70 10197.53 26499.25 27099.51 11591.90 37599.30 17699.63 19898.78 4899.64 23888.09 38599.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 17698.09 19199.24 16099.26 24499.32 10499.56 12299.55 7797.45 21698.71 27799.83 6893.23 27099.63 24398.88 10296.32 30098.76 255
ITE_SJBPF98.08 29799.29 23796.37 31798.92 32898.34 10898.83 26499.75 13891.09 32599.62 24495.82 31997.40 27598.25 350
LF4IMVS97.52 28397.46 26097.70 32398.98 30495.55 33499.29 25098.82 34498.07 14898.66 28699.64 19289.97 33899.61 24597.01 28296.68 29097.94 367
tpm97.67 27497.55 24898.03 29999.02 29695.01 34899.43 19898.54 36696.44 30299.12 21499.34 29091.83 30999.60 24697.75 22896.46 29699.48 178
tpm297.44 29297.34 28197.74 32199.15 27494.36 35999.45 18898.94 32593.45 36898.90 25399.44 26191.35 32299.59 24797.31 26598.07 23899.29 208
baseline297.87 23797.55 24898.82 22699.18 26298.02 23999.41 20796.58 39396.97 26296.51 36099.17 31893.43 26799.57 24897.71 23399.03 18098.86 244
MS-PatchMatch97.24 30097.32 28496.99 34198.45 35893.51 37098.82 34699.32 26797.41 22298.13 32499.30 30088.99 34699.56 24995.68 32599.80 9797.90 370
TinyColmap97.12 30396.89 30297.83 31599.07 28795.52 33798.57 36798.74 35297.58 19997.81 33899.79 11588.16 35799.56 24995.10 33797.21 28398.39 342
USDC97.34 29497.20 29297.75 32099.07 28795.20 34498.51 37199.04 31697.99 15898.31 31599.86 4989.02 34599.55 25195.67 32697.36 27898.49 329
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14699.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25299.28 6399.84 7799.63 140
TAMVS99.12 9599.08 8099.24 16099.46 19198.55 20399.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25398.70 13298.93 18699.67 122
EPNet_dtu98.03 21397.96 20598.23 28898.27 36195.54 33699.23 27398.75 34999.02 3897.82 33799.71 15496.11 16299.48 25493.04 36299.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 32595.69 32796.81 34897.78 36892.79 37499.16 28398.93 32696.16 32194.08 37799.22 31382.72 38199.47 25595.67 32697.50 26398.17 353
MVP-Stereo97.81 25097.75 23197.99 30597.53 37296.60 31198.96 32998.85 34197.22 23997.23 35099.36 28395.28 19499.46 25695.51 32899.78 10497.92 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 16298.67 13698.30 28299.35 21995.59 33399.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 25798.75 12698.56 20999.85 36
test-LLR98.06 20597.90 21298.55 25398.79 32697.10 28098.67 35997.75 38097.34 22798.61 29798.85 34994.45 23899.45 25797.25 26899.38 14999.10 218
TESTMET0.1,197.55 28197.27 29198.40 27398.93 30996.53 31298.67 35997.61 38396.96 26398.64 29399.28 30488.63 35299.45 25797.30 26699.38 14999.21 213
test-mter97.49 29097.13 29698.55 25398.79 32697.10 28098.67 35997.75 38096.65 28398.61 29798.85 34988.23 35699.45 25797.25 26899.38 14999.10 218
mvs_anonymous99.03 11198.99 9799.16 16899.38 21298.52 20999.51 15699.38 23197.79 17799.38 15899.81 9097.30 12299.45 25799.35 5198.99 18399.51 173
tfpnnormal97.84 24397.47 25898.98 19099.20 25799.22 11999.64 7899.61 4896.32 30898.27 31899.70 15893.35 26999.44 26295.69 32495.40 32398.27 348
v7n97.87 23797.52 25298.92 20098.76 33498.58 20199.84 1399.46 18296.20 31798.91 25199.70 15894.89 20899.44 26296.03 31593.89 35198.75 257
jajsoiax98.43 16998.28 17598.88 21198.60 35198.43 22099.82 1799.53 9698.19 12798.63 29499.80 10393.22 27299.44 26299.22 6997.50 26398.77 253
mvs_tets98.40 17598.23 17798.91 20498.67 34498.51 21199.66 6999.53 9698.19 12798.65 29299.81 9092.75 28199.44 26299.31 5897.48 26798.77 253
Vis-MVSNet (Re-imp)98.87 12598.72 13099.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 26697.91 20999.11 17199.62 142
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 26798.24 18599.80 9799.79 74
Anonymous2023121197.88 23597.54 25198.90 20699.71 9698.53 20599.48 17899.57 6494.16 35998.81 26699.68 17493.23 27099.42 26798.84 11594.42 34298.76 255
VPNet97.84 24397.44 26699.01 18499.21 25598.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 26999.19 7193.27 35898.71 265
iter_conf_final98.71 15098.61 15398.99 18899.49 18198.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 27099.30 6197.52 25998.64 298
nrg03098.64 15998.42 16599.28 15599.05 29399.69 4799.81 2099.46 18298.04 15499.01 23599.82 7696.69 14499.38 27099.34 5594.59 33998.78 250
iter_conf0598.55 16398.44 16398.87 21599.34 22398.60 20099.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 27099.30 6197.48 26798.63 306
GA-MVS97.85 24097.47 25899.00 18699.38 21297.99 24198.57 36799.15 30297.04 25898.90 25399.30 30089.83 33999.38 27096.70 30098.33 21999.62 142
UniMVSNet (Re)98.29 18398.00 20199.13 17399.00 29899.36 10299.49 17499.51 11597.95 16098.97 24399.13 32396.30 15899.38 27098.36 17793.34 35698.66 294
FIs98.78 14398.63 14299.23 16299.18 26299.54 7999.83 1699.59 5798.28 11398.79 27099.81 9096.75 14299.37 27599.08 8296.38 29898.78 250
PS-MVSNAJss98.92 12198.92 10798.90 20698.78 32998.53 20599.78 3299.54 8598.07 14899.00 23999.76 13599.01 1899.37 27599.13 7697.23 28298.81 247
CDS-MVSNet99.09 10499.03 8799.25 15899.42 20098.73 18899.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27598.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 32995.16 33497.51 32999.30 23393.69 36798.88 34095.78 39485.09 38998.78 27192.65 39291.29 32399.37 27594.85 34199.85 6999.46 186
v119297.81 25097.44 26698.91 20498.88 31498.68 19199.51 15699.34 25096.18 31999.20 20199.34 29094.03 25299.36 27995.32 33495.18 32798.69 274
EI-MVSNet98.67 15698.67 13698.68 24099.35 21997.97 24299.50 16399.38 23196.93 26899.20 20199.83 6897.87 10599.36 27998.38 17397.56 25698.71 265
MVSTER98.49 16498.32 17299.00 18699.35 21999.02 14699.54 13999.38 23197.41 22299.20 20199.73 14993.86 25999.36 27998.87 10597.56 25698.62 309
gg-mvs-nofinetune96.17 32295.32 33398.73 23698.79 32698.14 23399.38 22494.09 40091.07 38098.07 32891.04 39689.62 34399.35 28296.75 29799.09 17598.68 279
pm-mvs197.68 27197.28 28898.88 21199.06 29098.62 19799.50 16399.45 19396.32 30897.87 33599.79 11592.47 29599.35 28297.54 24993.54 35598.67 286
OurMVSNet-221017-097.88 23597.77 22698.19 29098.71 34096.53 31299.88 499.00 31997.79 17798.78 27199.94 691.68 31399.35 28297.21 27096.99 28998.69 274
EGC-MVSNET82.80 36177.86 36797.62 32597.91 36596.12 32499.33 24099.28 2818.40 40425.05 40599.27 30784.11 37699.33 28589.20 38098.22 22797.42 378
pmmvs696.53 31496.09 31997.82 31798.69 34295.47 33899.37 22699.47 17393.46 36797.41 34499.78 12187.06 36599.33 28596.92 29292.70 36598.65 296
mvsmamba98.92 12198.87 11599.08 17599.07 28799.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28599.38 4897.40 27598.73 262
V4298.06 20597.79 22198.86 21998.98 30498.84 17799.69 5599.34 25096.53 29499.30 17699.37 28094.67 22699.32 28897.57 24694.66 33798.42 338
lessismore_v097.79 31998.69 34295.44 34094.75 39895.71 36899.87 4488.69 34999.32 28895.89 31894.93 33498.62 309
OpenMVS_ROBcopyleft92.34 2094.38 34393.70 34996.41 35397.38 37493.17 37299.06 30598.75 34986.58 38794.84 37598.26 36881.53 38599.32 28889.01 38197.87 24396.76 381
bld_raw_dy_0_6498.69 15398.58 15598.99 18898.88 31498.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29199.09 8097.27 28098.71 265
v897.95 22797.63 24498.93 19898.95 30898.81 18399.80 2599.41 21296.03 33199.10 21999.42 26594.92 20699.30 29296.94 28994.08 34898.66 294
v192192097.80 25297.45 26198.84 22398.80 32598.53 20599.52 14899.34 25096.15 32399.24 19099.47 25593.98 25499.29 29395.40 33295.13 32998.69 274
anonymousdsp98.44 16898.28 17598.94 19698.50 35698.96 15799.77 3499.50 13597.07 25398.87 25999.77 12994.76 21999.28 29498.66 13997.60 25298.57 324
MVSFormer99.17 8199.12 7499.29 15199.51 17098.94 16599.88 499.46 18297.55 20399.80 4099.65 18697.39 11699.28 29499.03 8599.85 6999.65 129
test_djsdf98.67 15698.57 15698.98 19098.70 34198.91 16999.88 499.46 18297.55 20399.22 19599.88 3695.73 17999.28 29499.03 8597.62 25198.75 257
cascas97.69 26997.43 27098.48 25998.60 35197.30 26998.18 38599.39 22392.96 37198.41 30998.78 35493.77 26299.27 29798.16 19298.61 20398.86 244
v14419297.92 23197.60 24698.87 21598.83 32498.65 19499.55 13499.34 25096.20 31799.32 17299.40 27294.36 24099.26 29896.37 31195.03 33198.70 270
dmvs_re98.08 20398.16 18097.85 31299.55 16094.67 35499.70 5298.92 32898.15 13399.06 22999.35 28693.67 26599.25 29997.77 22597.25 28199.64 136
RRT_MVS98.70 15198.66 13998.83 22598.90 31198.45 21899.89 299.28 28197.76 18098.94 24799.92 1496.98 13499.25 29999.28 6397.00 28898.80 248
v2v48298.06 20597.77 22698.92 20098.90 31198.82 18199.57 11699.36 24096.65 28399.19 20499.35 28694.20 24599.25 29997.72 23294.97 33298.69 274
v124097.69 26997.32 28498.79 23298.85 32298.43 22099.48 17899.36 24096.11 32699.27 18499.36 28393.76 26399.24 30294.46 34595.23 32698.70 270
v114497.98 22297.69 23698.85 22298.87 31898.66 19399.54 13999.35 24696.27 31299.23 19499.35 28694.67 22699.23 30396.73 29895.16 32898.68 279
v1097.85 24097.52 25298.86 21998.99 30198.67 19299.75 4199.41 21295.70 33598.98 24199.41 26994.75 22099.23 30396.01 31794.63 33898.67 286
WR-MVS_H98.13 19797.87 21798.90 20699.02 29698.84 17799.70 5299.59 5797.27 23398.40 31099.19 31795.53 18699.23 30398.34 17893.78 35398.61 318
miper_enhance_ethall98.16 19498.08 19298.41 27198.96 30797.72 25798.45 37399.32 26796.95 26598.97 24399.17 31897.06 13199.22 30697.86 21495.99 30798.29 347
GG-mvs-BLEND98.45 26598.55 35498.16 23199.43 19893.68 40197.23 35098.46 36289.30 34499.22 30695.43 33198.22 22797.98 365
FC-MVSNet-test98.75 14698.62 14799.15 17299.08 28699.45 9399.86 1299.60 5498.23 12198.70 28399.82 7696.80 13999.22 30699.07 8396.38 29898.79 249
UniMVSNet_NR-MVSNet98.22 18697.97 20498.96 19398.92 31098.98 15099.48 17899.53 9697.76 18098.71 27799.46 25996.43 15599.22 30698.57 15592.87 36398.69 274
DU-MVS98.08 20397.79 22198.96 19398.87 31898.98 15099.41 20799.45 19397.87 16698.71 27799.50 24494.82 21099.22 30698.57 15592.87 36398.68 279
cl____98.01 21897.84 21998.55 25399.25 24897.97 24298.71 35799.34 25096.47 30198.59 30099.54 23195.65 18399.21 31197.21 27095.77 31398.46 335
WR-MVS98.06 20597.73 23399.06 17898.86 32199.25 11699.19 28099.35 24697.30 23198.66 28699.43 26393.94 25599.21 31198.58 15294.28 34498.71 265
test_040296.64 31296.24 31597.85 31298.85 32296.43 31699.44 19499.26 28593.52 36596.98 35799.52 23888.52 35399.20 31392.58 36997.50 26397.93 368
SixPastTwentyTwo97.50 28697.33 28398.03 29998.65 34596.23 32299.77 3498.68 36097.14 24497.90 33399.93 990.45 33199.18 31497.00 28396.43 29798.67 286
cl2297.85 24097.64 24398.48 25999.09 28497.87 25098.60 36699.33 25797.11 25098.87 25999.22 31392.38 30099.17 31598.21 18695.99 30798.42 338
WB-MVSnew97.65 27697.65 24097.63 32498.78 32997.62 26299.13 28998.33 36997.36 22699.07 22498.94 34395.64 18499.15 31692.95 36398.68 20296.12 388
IterMVS-SCA-FT97.82 24897.75 23198.06 29899.57 15296.36 31899.02 31599.49 14397.18 24198.71 27799.72 15392.72 28499.14 31797.44 25995.86 31298.67 286
pmmvs597.52 28397.30 28698.16 29298.57 35396.73 30499.27 25998.90 33496.14 32498.37 31299.53 23591.54 31999.14 31797.51 25195.87 31198.63 306
v14897.79 25397.55 24898.50 25698.74 33597.72 25799.54 13999.33 25796.26 31398.90 25399.51 24194.68 22599.14 31797.83 21893.15 36098.63 306
miper_ehance_all_eth98.18 19298.10 18898.41 27199.23 25097.72 25798.72 35699.31 27196.60 29098.88 25699.29 30297.29 12399.13 32097.60 24095.99 30798.38 343
NR-MVSNet97.97 22597.61 24599.02 18398.87 31899.26 11599.47 18499.42 20997.63 19597.08 35599.50 24495.07 20299.13 32097.86 21493.59 35498.68 279
IterMVS97.83 24597.77 22698.02 30199.58 15096.27 32199.02 31599.48 15597.22 23998.71 27799.70 15892.75 28199.13 32097.46 25796.00 30698.67 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 34494.90 33691.84 36797.24 37880.01 39798.52 37099.48 15589.01 38491.99 38599.67 18085.67 36999.13 32095.44 33097.03 28796.39 385
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 21097.96 20598.33 27899.26 24497.38 26898.56 36999.31 27196.65 28398.88 25699.52 23896.58 14799.12 32497.39 26295.53 32198.47 332
pmmvs498.13 19797.90 21298.81 22998.61 35098.87 17298.99 32299.21 29596.44 30299.06 22999.58 21695.90 17399.11 32597.18 27696.11 30498.46 335
TransMVSNet (Re)97.15 30296.58 30798.86 21999.12 27698.85 17699.49 17498.91 33295.48 33897.16 35399.80 10393.38 26899.11 32594.16 35191.73 36898.62 309
ambc93.06 36592.68 39682.36 39098.47 37298.73 35795.09 37397.41 37955.55 39799.10 32796.42 30991.32 36997.71 371
Baseline_NR-MVSNet97.76 25597.45 26198.68 24099.09 28498.29 22599.41 20798.85 34195.65 33698.63 29499.67 18094.82 21099.10 32798.07 20292.89 36298.64 298
test_vis3_rt87.04 35785.81 36090.73 37193.99 39581.96 39299.76 3790.23 40692.81 37281.35 39491.56 39440.06 40399.07 32994.27 34888.23 38191.15 394
CP-MVSNet98.09 20197.78 22499.01 18498.97 30699.24 11799.67 6499.46 18297.25 23598.48 30799.64 19293.79 26199.06 33098.63 14294.10 34798.74 260
PS-CasMVS97.93 22897.59 24798.95 19598.99 30199.06 14299.68 6199.52 10197.13 24598.31 31599.68 17492.44 29999.05 33198.51 16394.08 34898.75 257
K. test v397.10 30496.79 30498.01 30298.72 33896.33 31999.87 997.05 38797.59 19796.16 36499.80 10388.71 34899.04 33296.69 30196.55 29598.65 296
new_pmnet96.38 31896.03 32097.41 33198.13 36495.16 34799.05 30799.20 29693.94 36097.39 34798.79 35391.61 31899.04 33290.43 37695.77 31398.05 359
DIV-MVS_self_test98.01 21897.85 21898.48 25999.24 24997.95 24698.71 35799.35 24696.50 29598.60 29999.54 23195.72 18099.03 33497.21 27095.77 31398.46 335
IterMVS-LS98.46 16798.42 16598.58 24799.59 14898.00 24099.37 22699.43 20796.94 26799.07 22499.59 21297.87 10599.03 33498.32 18195.62 31898.71 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 27697.68 23797.55 32898.62 34894.97 34998.84 34499.30 27596.83 27498.19 32199.34 29097.01 13399.02 33695.00 34096.01 30598.64 298
Patchmtry97.75 25997.40 27398.81 22999.10 28198.87 17299.11 29899.33 25794.83 35198.81 26699.38 27794.33 24199.02 33696.10 31395.57 31998.53 326
N_pmnet94.95 33895.83 32592.31 36698.47 35779.33 39899.12 29292.81 40493.87 36197.68 34099.13 32393.87 25899.01 33891.38 37396.19 30298.59 322
CR-MVSNet98.17 19397.93 21098.87 21599.18 26298.49 21399.22 27799.33 25796.96 26399.56 11499.38 27794.33 24199.00 33994.83 34298.58 20699.14 215
c3_l98.12 19998.04 19798.38 27599.30 23397.69 26198.81 34799.33 25796.67 28198.83 26499.34 29097.11 12898.99 34097.58 24295.34 32498.48 330
test0.0.03 197.71 26797.42 27198.56 25198.41 36097.82 25398.78 35098.63 36297.34 22798.05 32998.98 33994.45 23898.98 34195.04 33997.15 28698.89 243
PatchT97.03 30696.44 31198.79 23298.99 30198.34 22499.16 28399.07 31392.13 37499.52 12397.31 38394.54 23498.98 34188.54 38398.73 20199.03 231
GBi-Net97.68 27197.48 25698.29 28399.51 17097.26 27399.43 19899.48 15596.49 29699.07 22499.32 29790.26 33398.98 34197.10 27896.65 29198.62 309
test197.68 27197.48 25698.29 28399.51 17097.26 27399.43 19899.48 15596.49 29699.07 22499.32 29790.26 33398.98 34197.10 27896.65 29198.62 309
FMVSNet398.03 21397.76 23098.84 22399.39 21198.98 15099.40 21599.38 23196.67 28199.07 22499.28 30492.93 27698.98 34197.10 27896.65 29198.56 325
FMVSNet297.72 26497.36 27698.80 23199.51 17098.84 17799.45 18899.42 20996.49 29698.86 26399.29 30290.26 33398.98 34196.44 30896.56 29498.58 323
FMVSNet196.84 30996.36 31398.29 28399.32 23197.26 27399.43 19899.48 15595.11 34398.55 30299.32 29783.95 37798.98 34195.81 32096.26 30198.62 309
ppachtmachnet_test97.49 29097.45 26197.61 32698.62 34895.24 34398.80 34899.46 18296.11 32698.22 32099.62 20396.45 15398.97 34893.77 35395.97 31098.61 318
TranMVSNet+NR-MVSNet97.93 22897.66 23998.76 23598.78 32998.62 19799.65 7599.49 14397.76 18098.49 30699.60 21094.23 24498.97 34898.00 20492.90 36198.70 270
test_method91.10 35391.36 35590.31 37295.85 38573.72 40594.89 39399.25 28768.39 39695.82 36799.02 33580.50 38698.95 35093.64 35594.89 33698.25 350
ADS-MVSNet298.02 21598.07 19597.87 31199.33 22595.19 34599.23 27399.08 31096.24 31499.10 21999.67 18094.11 24998.93 35196.81 29599.05 17899.48 178
ET-MVSNet_ETH3D96.49 31595.64 32999.05 18099.53 16398.82 18198.84 34497.51 38597.63 19584.77 39099.21 31692.09 30398.91 35298.98 9092.21 36799.41 195
miper_lstm_enhance98.00 22097.91 21198.28 28699.34 22397.43 26798.88 34099.36 24096.48 29998.80 26899.55 22695.98 16698.91 35297.27 26795.50 32298.51 328
PEN-MVS97.76 25597.44 26698.72 23798.77 33398.54 20499.78 3299.51 11597.06 25598.29 31799.64 19292.63 29098.89 35498.09 19593.16 35998.72 263
testing397.28 29696.76 30598.82 22699.37 21598.07 23799.45 18899.36 24097.56 20297.89 33498.95 34283.70 37898.82 35596.03 31598.56 20999.58 154
testgi97.65 27697.50 25598.13 29699.36 21896.45 31599.42 20599.48 15597.76 18097.87 33599.45 26091.09 32598.81 35694.53 34498.52 21299.13 217
testf190.42 35590.68 35789.65 37597.78 36873.97 40399.13 28998.81 34589.62 38291.80 38698.93 34462.23 39598.80 35786.61 39191.17 37096.19 386
APD_test290.42 35590.68 35789.65 37597.78 36873.97 40399.13 28998.81 34589.62 38291.80 38698.93 34462.23 39598.80 35786.61 39191.17 37096.19 386
MIMVSNet97.73 26297.45 26198.57 24899.45 19697.50 26599.02 31598.98 32196.11 32699.41 14799.14 32290.28 33298.74 35995.74 32298.93 18699.47 184
LCM-MVSNet-Re97.83 24598.15 18296.87 34799.30 23392.25 37799.59 10198.26 37097.43 21996.20 36399.13 32396.27 15998.73 36098.17 19198.99 18399.64 136
Syy-MVS97.09 30597.14 29496.95 34499.00 29892.73 37599.29 25099.39 22397.06 25597.41 34498.15 36993.92 25798.68 36191.71 37198.34 21799.45 189
myMVS_eth3d96.89 30796.37 31298.43 27099.00 29897.16 27799.29 25099.39 22397.06 25597.41 34498.15 36983.46 37998.68 36195.27 33598.34 21799.45 189
DTE-MVSNet97.51 28597.19 29398.46 26498.63 34798.13 23499.84 1399.48 15596.68 28097.97 33299.67 18092.92 27798.56 36396.88 29492.60 36698.70 270
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36498.30 18399.80 9799.81 61
mvsany_test393.77 34693.45 35094.74 35995.78 38688.01 38599.64 7898.25 37198.28 11394.31 37697.97 37668.89 39198.51 36597.50 25290.37 37597.71 371
UnsupCasMVSNet_bld93.53 34792.51 35296.58 35297.38 37493.82 36398.24 38299.48 15591.10 37993.10 38196.66 38574.89 38998.37 36694.03 35287.71 38297.56 376
Anonymous2024052196.20 32195.89 32497.13 33897.72 37194.96 35099.79 3199.29 27993.01 37097.20 35299.03 33389.69 34198.36 36791.16 37496.13 30398.07 357
test_f91.90 35291.26 35693.84 36195.52 39085.92 38799.69 5598.53 36795.31 34093.87 37896.37 38755.33 39898.27 36895.70 32390.98 37397.32 379
MDA-MVSNet_test_wron95.45 33194.60 33898.01 30298.16 36397.21 27699.11 29899.24 28993.49 36680.73 39698.98 33993.02 27498.18 36994.22 35094.45 34198.64 298
UnsupCasMVSNet_eth96.44 31696.12 31797.40 33298.65 34595.65 33199.36 23099.51 11597.13 24596.04 36698.99 33788.40 35498.17 37096.71 29990.27 37698.40 341
KD-MVS_2432*160094.62 33993.72 34797.31 33397.19 38095.82 32998.34 37799.20 29695.00 34797.57 34198.35 36587.95 35998.10 37192.87 36577.00 39498.01 361
miper_refine_blended94.62 33993.72 34797.31 33397.19 38095.82 32998.34 37799.20 29695.00 34797.57 34198.35 36587.95 35998.10 37192.87 36577.00 39498.01 361
YYNet195.36 33394.51 34097.92 30897.89 36697.10 28099.10 30099.23 29093.26 36980.77 39599.04 33292.81 28098.02 37394.30 34694.18 34698.64 298
EU-MVSNet97.98 22298.03 19897.81 31898.72 33896.65 30899.66 6999.66 2898.09 14398.35 31399.82 7695.25 19898.01 37497.41 26195.30 32598.78 250
Gipumacopyleft90.99 35490.15 35993.51 36298.73 33690.12 38393.98 39499.45 19379.32 39292.28 38494.91 38969.61 39097.98 37587.42 38795.67 31792.45 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 33494.73 33797.15 33695.53 38995.94 32799.35 23599.10 30795.13 34193.55 37997.54 37888.15 35897.91 37694.58 34389.69 37997.61 374
PM-MVS92.96 34992.23 35395.14 35895.61 38789.98 38499.37 22698.21 37394.80 35295.04 37497.69 37765.06 39297.90 37794.30 34689.98 37897.54 377
MDA-MVSNet-bldmvs94.96 33793.98 34497.92 30898.24 36297.27 27199.15 28699.33 25793.80 36280.09 39799.03 33388.31 35597.86 37893.49 35794.36 34398.62 309
Patchmatch-RL test95.84 32795.81 32695.95 35695.61 38790.57 38298.24 38298.39 36895.10 34595.20 37198.67 35794.78 21597.77 37996.28 31290.02 37799.51 173
Anonymous2023120696.22 31996.03 32096.79 34997.31 37794.14 36199.63 8299.08 31096.17 32097.04 35699.06 33093.94 25597.76 38086.96 38995.06 33098.47 332
SD-MVS99.41 4799.52 1199.05 18099.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38198.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 29897.35 27896.95 34497.84 36793.61 36999.57 11696.63 39296.13 32598.87 25998.61 36094.59 22997.70 38195.08 33898.86 19299.55 159
pmmvs394.09 34593.25 35196.60 35194.76 39494.49 35698.92 33698.18 37589.66 38196.48 36198.06 37586.28 36697.33 38389.68 37987.20 38397.97 366
KD-MVS_self_test95.00 33694.34 34196.96 34397.07 38295.39 34199.56 12299.44 20195.11 34397.13 35497.32 38291.86 30897.27 38490.35 37781.23 39198.23 352
FMVSNet596.43 31796.19 31697.15 33699.11 27895.89 32899.32 24199.52 10194.47 35898.34 31499.07 32887.54 36397.07 38592.61 36895.72 31698.47 332
new-patchmatchnet94.48 34294.08 34395.67 35795.08 39292.41 37699.18 28199.28 28194.55 35793.49 38097.37 38187.86 36197.01 38691.57 37288.36 38097.61 374
LCM-MVSNet86.80 35985.22 36391.53 36987.81 40180.96 39598.23 38498.99 32071.05 39490.13 38996.51 38648.45 40296.88 38790.51 37585.30 38596.76 381
CL-MVSNet_self_test94.49 34193.97 34596.08 35596.16 38493.67 36898.33 37999.38 23195.13 34197.33 34898.15 36992.69 28896.57 38888.67 38279.87 39297.99 364
MIMVSNet195.51 33095.04 33596.92 34697.38 37495.60 33299.52 14899.50 13593.65 36496.97 35899.17 31885.28 37296.56 38988.36 38495.55 32098.60 321
test20.0396.12 32395.96 32296.63 35097.44 37395.45 33999.51 15699.38 23196.55 29396.16 36499.25 31093.76 26396.17 39087.35 38894.22 34598.27 348
tmp_tt82.80 36181.52 36486.66 37766.61 40768.44 40692.79 39697.92 37768.96 39580.04 39899.85 5485.77 36896.15 39197.86 21443.89 40095.39 390
test_fmvs392.10 35191.77 35493.08 36496.19 38386.25 38699.82 1798.62 36396.65 28395.19 37296.90 38455.05 39995.93 39296.63 30590.92 37497.06 380
dmvs_testset95.02 33596.12 31791.72 36899.10 28180.43 39699.58 10997.87 37997.47 21295.22 37098.82 35193.99 25395.18 39388.09 38594.91 33599.56 158
PMMVS286.87 35885.37 36291.35 37090.21 39983.80 38998.89 33997.45 38683.13 39191.67 38895.03 38848.49 40194.70 39485.86 39377.62 39395.54 389
PMVScopyleft70.75 2275.98 36774.97 36879.01 38370.98 40655.18 40893.37 39598.21 37365.08 40061.78 40193.83 39121.74 40892.53 39578.59 39591.12 37289.34 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 36085.65 36182.75 38186.77 40263.39 40798.35 37698.92 32874.11 39383.39 39298.98 33950.85 40092.40 39684.54 39494.97 33292.46 391
WB-MVS93.10 34894.10 34290.12 37395.51 39181.88 39399.73 4799.27 28495.05 34693.09 38298.91 34894.70 22491.89 39776.62 39694.02 35096.58 383
SSC-MVS92.73 35093.73 34689.72 37495.02 39381.38 39499.76 3799.23 29094.87 35092.80 38398.93 34494.71 22391.37 39874.49 39893.80 35296.42 384
MVEpermissive76.82 2176.91 36674.31 37084.70 37885.38 40476.05 40296.88 39293.17 40267.39 39771.28 39989.01 39821.66 40987.69 39971.74 39972.29 39690.35 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 36379.88 36582.81 38090.75 39876.38 40197.69 38995.76 39566.44 39883.52 39192.25 39362.54 39487.16 40068.53 40061.40 39784.89 398
EMVS80.02 36479.22 36682.43 38291.19 39776.40 40097.55 39192.49 40566.36 39983.01 39391.27 39564.63 39385.79 40165.82 40160.65 39885.08 397
ANet_high77.30 36574.86 36984.62 37975.88 40577.61 39997.63 39093.15 40388.81 38564.27 40089.29 39736.51 40483.93 40275.89 39752.31 39992.33 393
wuyk23d40.18 36841.29 37336.84 38486.18 40349.12 40979.73 39722.81 40927.64 40125.46 40428.45 40421.98 40748.89 40355.80 40223.56 40312.51 401
test12339.01 37042.50 37228.53 38539.17 40820.91 41098.75 35319.17 41019.83 40338.57 40266.67 40033.16 40515.42 40437.50 40429.66 40249.26 399
testmvs39.17 36943.78 37125.37 38636.04 40916.84 41198.36 37526.56 40820.06 40238.51 40367.32 39929.64 40615.30 40537.59 40339.90 40143.98 400
test_blank0.13 3740.17 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4061.57 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
cdsmvs_eth3d_5k24.64 37132.85 3740.00 3870.00 4100.00 4120.00 39899.51 1150.00 4050.00 40699.56 22396.58 1470.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas8.27 37311.03 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 40699.01 180.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
ab-mvs-re8.30 37211.06 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40699.58 2160.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS97.16 27795.47 329
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 410
eth-test0.00 410
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
save fliter99.76 6599.59 7099.14 28899.40 22099.00 43
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20999.52 167
sam_mvs94.72 222
MTGPAbinary99.47 173
MTMP99.54 13998.88 337
test9_res97.49 25399.72 11899.75 88
agg_prior297.21 27099.73 11799.75 88
test_prior499.56 7598.99 322
test_prior298.96 32998.34 10899.01 23599.52 23898.68 6497.96 20699.74 115
新几何299.01 320
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
原ACMM298.95 332
test22299.75 7399.49 8798.91 33899.49 14396.42 30499.34 17099.65 18698.28 9299.69 12399.72 103
segment_acmp98.96 24
testdata198.85 34398.32 111
plane_prior799.29 23797.03 290
plane_prior699.27 24296.98 29492.71 286
plane_prior499.61 207
plane_prior397.00 29298.69 7999.11 216
plane_prior299.39 21998.97 51
plane_prior199.26 244
plane_prior96.97 29599.21 27998.45 9697.60 252
n20.00 411
nn0.00 411
door-mid98.05 376
test1199.35 246
door97.92 377
HQP5-MVS96.83 300
HQP-NCC99.19 25998.98 32598.24 11898.66 286
ACMP_Plane99.19 25998.98 32598.24 11898.66 286
BP-MVS97.19 274
HQP3-MVS99.39 22397.58 254
HQP2-MVS92.47 295
NP-MVS99.23 25096.92 29899.40 272
MDTV_nov1_ep13_2view95.18 34699.35 23596.84 27299.58 11095.19 20097.82 21999.46 186
ACMMP++_ref97.19 284
ACMMP++97.43 273
Test By Simon98.75 55