This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
patch_mono-296.83 4397.44 995.01 17399.05 4385.39 29696.98 16498.77 594.70 4197.99 2398.66 1493.61 1999.91 197.67 499.50 3699.72 10
zzz-MVS97.07 2396.77 3797.97 2599.37 1794.42 3697.15 15098.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
MTAPA97.08 2296.78 3697.97 2599.37 1794.42 3697.24 13798.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 14498.35 2095.16 1898.71 1298.80 1195.05 1099.89 496.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ZNCC-MVS96.96 3196.67 4397.85 2899.37 1794.12 4898.49 2098.18 5092.64 11796.39 7998.18 6691.61 5899.88 595.59 7399.55 2599.57 24
MP-MVScopyleft96.77 4696.45 5597.72 4299.39 1493.80 5798.41 2598.06 7793.37 8495.54 11298.34 4590.59 8299.88 594.83 9499.54 2799.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.86 3996.60 4597.64 4999.40 1293.44 6898.50 1998.09 6793.27 8895.95 9598.33 4891.04 7399.88 595.20 8199.57 2499.60 19
region2R97.07 2396.84 3097.77 3899.46 293.79 5898.52 1698.24 3893.19 9297.14 4798.34 4591.59 6099.87 895.46 7699.59 1799.64 13
DVP-MVS++98.06 197.99 198.28 998.67 6695.39 1199.29 198.28 2894.78 3798.93 698.87 696.04 299.86 997.45 999.58 2299.59 20
MSC_two_6792asdad98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
No_MVS98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
testtj96.93 3496.56 4898.05 2099.10 3694.66 3197.78 7998.22 4392.74 11397.59 2998.20 6591.96 4999.86 994.21 10799.25 7299.63 14
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2899.86 997.52 599.67 699.75 5
GST-MVS96.85 4196.52 5097.82 3299.36 2094.14 4798.29 3198.13 5892.72 11496.70 6098.06 7291.35 6599.86 994.83 9499.28 6699.47 50
MP-MVS-pluss96.70 4896.27 5997.98 2499.23 3294.71 3096.96 16698.06 7790.67 17295.55 11098.78 1291.07 7299.86 996.58 3099.55 2599.38 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.20 1696.86 2798.23 1199.09 3895.16 2497.60 10398.19 4892.82 10997.93 2598.74 1391.60 5999.86 996.26 3899.52 2999.67 11
ACMMPR97.07 2396.84 3097.79 3599.44 693.88 5598.52 1698.31 2493.21 8997.15 4698.33 4891.35 6599.86 995.63 6899.59 1799.62 16
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3698.27 3195.13 1999.19 198.89 495.54 599.85 1897.52 599.66 1099.56 27
test_241102_TWO98.27 3195.13 1998.93 698.89 494.99 1199.85 1897.52 599.65 1299.74 7
PGM-MVS96.81 4496.53 4997.65 4799.35 2293.53 6697.65 9698.98 192.22 12597.14 4798.44 3291.17 7199.85 1894.35 10499.46 4499.57 24
CP-MVS97.02 2796.81 3397.64 4999.33 2393.54 6598.80 898.28 2892.99 9896.45 7798.30 5391.90 5099.85 1895.61 7099.68 499.54 34
ACMMPcopyleft96.27 6495.93 6697.28 6299.24 3092.62 9198.25 3698.81 392.99 9894.56 12798.39 3988.96 9699.85 1894.57 10397.63 13099.36 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4397.85 11894.92 2898.73 1098.87 695.08 899.84 2397.52 599.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 3798.73 1098.87 695.87 499.84 2397.45 999.72 299.77 1
HPM-MVS++copyleft97.34 1496.97 2298.47 599.08 4096.16 497.55 10997.97 10395.59 596.61 6797.89 8292.57 3599.84 2395.95 5499.51 3399.40 59
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 4295.42 1097.94 6498.18 5090.57 18198.85 998.94 193.33 2199.83 2696.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS97.14 2096.92 2597.83 2999.42 794.12 4898.52 1698.32 2293.21 8997.18 4498.29 5492.08 4499.83 2695.63 6899.59 1799.54 34
#test#97.02 2796.75 3897.83 2999.42 794.12 4898.15 4898.32 2292.57 11897.18 4498.29 5492.08 4499.83 2695.12 8499.59 1799.54 34
CANet96.39 6096.02 6597.50 5397.62 14093.38 7097.02 15797.96 10495.42 894.86 12197.81 9287.38 12199.82 2996.88 2099.20 7799.29 68
QAPM93.45 14592.27 17096.98 7796.77 18092.62 9198.39 2698.12 6084.50 31588.27 27997.77 9582.39 20299.81 3085.40 27698.81 9898.51 137
XVS97.18 1796.96 2397.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6998.29 5491.70 5699.80 3195.66 6399.40 5199.62 16
X-MVStestdata91.71 21089.67 26797.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6932.69 37691.70 5699.80 3195.66 6399.40 5199.62 16
3Dnovator91.36 595.19 9294.44 10597.44 5596.56 19293.36 7298.65 1198.36 1794.12 5689.25 25898.06 7282.20 20599.77 3393.41 12599.32 6099.18 78
CSCG96.05 6995.91 6796.46 9699.24 3090.47 16898.30 3098.57 1289.01 21793.97 14197.57 11492.62 3399.76 3494.66 10099.27 6899.15 81
OpenMVScopyleft89.19 1292.86 17191.68 18896.40 10095.34 24892.73 8798.27 3398.12 6084.86 31085.78 31697.75 9678.89 26499.74 3587.50 24298.65 10396.73 213
PVSNet_Blended_VisFu95.27 8794.91 9096.38 10398.20 10690.86 15597.27 13598.25 3690.21 18694.18 13597.27 12787.48 11999.73 3693.53 12097.77 12898.55 132
DeepC-MVS93.07 396.06 6895.66 7197.29 6197.96 11893.17 7797.30 13398.06 7793.92 6093.38 15498.66 1486.83 12799.73 3695.60 7299.22 7598.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D93.57 14192.61 15996.47 9497.59 14391.61 12297.67 9397.72 13085.17 30590.29 21898.34 4584.60 15599.73 3683.85 29698.27 11498.06 169
xxxxxxxxxxxxxcwj97.36 1297.20 1297.83 2998.91 5394.28 3997.02 15797.22 19195.35 998.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
SF-MVS97.39 1197.13 1398.17 1499.02 4695.28 2098.23 4098.27 3192.37 12398.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
abl_696.40 5996.21 6196.98 7798.89 5892.20 10697.89 6898.03 8893.34 8797.22 4398.42 3587.93 11099.72 3995.10 8599.07 8999.02 92
CANet_DTU94.37 11093.65 11896.55 8796.46 19992.13 10896.21 23596.67 24194.38 5193.53 15097.03 14179.34 25299.71 4290.76 17498.45 11197.82 180
MCST-MVS97.18 1796.84 3098.20 1399.30 2695.35 1597.12 15298.07 7493.54 7696.08 8897.69 10093.86 1699.71 4296.50 3299.39 5399.55 31
NCCC97.30 1597.03 1998.11 1798.77 6195.06 2697.34 12898.04 8595.96 297.09 5197.88 8493.18 2499.71 4295.84 5999.17 7999.56 27
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8794.25 4298.43 2498.27 3195.34 1198.11 2098.56 2094.53 1299.71 4296.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+91.43 495.40 8394.48 10398.16 1596.90 17295.34 1698.48 2197.87 11394.65 4488.53 27398.02 7683.69 16899.71 4293.18 12898.96 9499.44 53
DELS-MVS96.61 5296.38 5797.30 6097.79 13093.19 7695.96 24898.18 5095.23 1495.87 9697.65 10591.45 6199.70 4795.87 5599.44 4899.00 99
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3D cwj APD-0.1696.56 5496.06 6498.05 2098.26 10095.19 2296.99 16298.05 8489.85 19597.26 4198.22 6191.80 5299.69 4894.84 9399.28 6699.27 73
DP-MVS92.76 17691.51 19696.52 8898.77 6190.99 14997.38 12696.08 26982.38 33489.29 25597.87 8583.77 16799.69 4881.37 31696.69 15798.89 112
PHI-MVS96.77 4696.46 5497.71 4498.40 8594.07 5198.21 4398.45 1689.86 19397.11 5098.01 7792.52 3799.69 4896.03 5399.53 2899.36 64
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 798.30 2594.76 3998.30 1798.90 393.77 1799.68 5197.93 199.69 399.75 5
CNVR-MVS97.68 697.44 998.37 798.90 5595.86 697.27 13598.08 6895.81 497.87 2898.31 5194.26 1399.68 5197.02 1699.49 4099.57 24
ETH3 D test640096.16 6795.52 7398.07 1998.90 5595.06 2697.03 15498.21 4488.16 24796.64 6597.70 9991.18 7099.67 5392.44 14099.47 4299.48 47
新几何197.32 5998.60 7593.59 6497.75 12481.58 34095.75 10197.85 8890.04 8899.67 5386.50 25799.13 8398.69 127
testdata299.67 5385.96 269
ETH3D-3000-0.197.07 2396.71 4198.14 1698.90 5595.33 1797.68 9298.24 3891.57 14497.90 2698.37 4092.61 3499.66 5695.59 7399.51 3399.43 55
ZD-MVS99.05 4394.59 3298.08 6889.22 21297.03 5498.10 6892.52 3799.65 5794.58 10299.31 62
test_241102_ONE99.42 795.30 1898.27 3195.09 2399.19 198.81 1095.54 599.65 57
9.1496.75 3898.93 5197.73 8498.23 4291.28 15697.88 2798.44 3293.00 2599.65 5795.76 6199.47 42
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6198.53 1598.29 2695.55 698.56 1497.81 9293.90 1599.65 5796.62 2899.21 7699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-MVSNAJ95.37 8495.33 8195.49 15397.35 14890.66 16495.31 27497.48 15693.85 6396.51 7295.70 21988.65 10199.65 5794.80 9798.27 11496.17 225
无先验95.79 25597.87 11383.87 32399.65 5787.68 23598.89 112
112194.71 10793.83 11297.34 5898.57 7993.64 6396.04 24297.73 12781.56 34195.68 10497.85 8890.23 8599.65 5787.68 23599.12 8698.73 123
EPNet95.20 9194.56 9897.14 7192.80 33892.68 8897.85 7394.87 32596.64 192.46 17097.80 9486.23 13499.65 5793.72 11998.62 10499.10 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS_fast93.89 296.93 3496.64 4497.78 3698.64 7494.30 3897.41 12098.04 8594.81 3596.59 6998.37 4091.24 6799.64 6595.16 8299.52 2999.42 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3394.15 11593.52 12396.04 12397.81 12890.22 17397.62 10297.58 14695.19 1696.74 5897.45 12083.67 16999.61 6695.85 5779.73 34598.29 158
Regformer-496.97 3096.87 2697.25 6498.34 9092.66 8996.96 16698.01 9595.12 2297.14 4798.42 3591.82 5199.61 6696.90 1999.13 8399.50 43
Regformer-297.16 1996.99 2197.67 4698.32 9393.84 5696.83 17798.10 6595.24 1397.49 3198.25 5992.57 3599.61 6696.80 2299.29 6499.56 27
CHOSEN 1792x268894.15 11593.51 12496.06 12198.27 9789.38 20295.18 28198.48 1585.60 29893.76 14597.11 13683.15 17999.61 6691.33 16698.72 10199.19 77
CPTT-MVS95.57 8195.19 8496.70 8099.27 2891.48 12898.33 2898.11 6387.79 25895.17 11898.03 7487.09 12599.61 6693.51 12199.42 4999.02 92
UGNet94.04 12393.28 13496.31 10796.85 17391.19 14297.88 6997.68 13594.40 4993.00 16296.18 18973.39 31399.61 6691.72 15698.46 11098.13 163
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SR-MVS97.01 2996.86 2797.47 5499.09 3893.27 7597.98 5898.07 7493.75 6797.45 3398.48 2991.43 6299.59 7296.22 4199.27 6899.54 34
TEST998.70 6494.19 4496.41 21398.02 9288.17 24596.03 8997.56 11692.74 2999.59 72
train_agg96.30 6395.83 6997.72 4298.70 6494.19 4496.41 21398.02 9288.58 23496.03 8997.56 11692.73 3099.59 7295.04 8699.37 5899.39 60
test_898.67 6694.06 5296.37 22098.01 9588.58 23495.98 9497.55 11892.73 3099.58 75
EI-MVSNet-UG-set96.34 6296.30 5896.47 9498.20 10690.93 15396.86 17397.72 13094.67 4296.16 8598.46 3090.43 8399.58 7596.23 4097.96 12398.90 109
EI-MVSNet-Vis-set96.51 5596.47 5296.63 8398.24 10191.20 14196.89 17297.73 12794.74 4096.49 7398.49 2890.88 7799.58 7596.44 3598.32 11399.13 83
Regformer-197.10 2196.96 2397.54 5298.32 9393.48 6796.83 17797.99 10195.20 1597.46 3298.25 5992.48 3999.58 7596.79 2499.29 6499.55 31
HPM-MVScopyleft96.69 4996.45 5597.40 5699.36 2093.11 7898.87 698.06 7791.17 16096.40 7897.99 7890.99 7499.58 7595.61 7099.61 1699.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft96.95 3296.60 4598.01 2299.03 4594.93 2897.72 8798.10 6591.50 14698.01 2298.32 5092.33 4099.58 7594.85 9299.51 3399.53 38
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_BlendedMVS94.06 12193.92 11094.47 20398.27 9789.46 19996.73 18598.36 1790.17 18794.36 13095.24 23888.02 10799.58 7593.44 12390.72 25394.36 320
PVSNet_Blended94.87 10294.56 9895.81 13198.27 9789.46 19995.47 26798.36 1788.84 22594.36 13096.09 19788.02 10799.58 7593.44 12398.18 11798.40 151
agg_prior196.22 6695.77 7097.56 5198.67 6693.79 5896.28 22998.00 9788.76 23195.68 10497.55 11892.70 3299.57 8395.01 8799.32 6099.32 66
agg_prior98.67 6693.79 5898.00 9795.68 10499.57 83
test117296.93 3496.86 2797.15 7099.10 3692.34 9897.96 6398.04 8593.79 6697.35 3998.53 2491.40 6399.56 8596.30 3799.30 6399.55 31
SR-MVS-dyc-post96.88 3896.80 3497.11 7399.02 4692.34 9897.98 5898.03 8893.52 7897.43 3698.51 2691.40 6399.56 8596.05 5099.26 7099.43 55
Anonymous2024052991.98 20490.73 22595.73 13798.14 11289.40 20197.99 5797.72 13079.63 35193.54 14997.41 12369.94 33299.56 8591.04 17191.11 24598.22 160
APD-MVS_3200maxsize96.81 4496.71 4197.12 7299.01 4992.31 10197.98 5898.06 7793.11 9597.44 3498.55 2290.93 7599.55 8896.06 4999.25 7299.51 39
PCF-MVS89.48 1191.56 21889.95 25696.36 10596.60 18792.52 9492.51 34197.26 18879.41 35288.90 26196.56 17384.04 16599.55 8877.01 34297.30 14297.01 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Regformer-396.85 4196.80 3497.01 7598.34 9092.02 11296.96 16697.76 12395.01 2697.08 5298.42 3591.71 5599.54 9096.80 2299.13 8399.48 47
原ACMM196.38 10398.59 7691.09 14897.89 10987.41 26995.22 11797.68 10190.25 8499.54 9087.95 22599.12 8698.49 140
AdaColmapbinary94.34 11193.68 11796.31 10798.59 7691.68 12096.59 20497.81 12189.87 19292.15 18097.06 13983.62 17199.54 9089.34 20198.07 12097.70 184
Anonymous20240521192.07 20190.83 22195.76 13298.19 10888.75 22197.58 10595.00 31686.00 29393.64 14697.45 12066.24 35199.53 9390.68 17792.71 21599.01 96
xiu_mvs_v2_base95.32 8695.29 8295.40 15897.22 15090.50 16795.44 26897.44 17093.70 7096.46 7696.18 18988.59 10499.53 9394.79 9997.81 12696.17 225
VNet95.89 7495.45 7697.21 6898.07 11692.94 8397.50 11298.15 5593.87 6297.52 3097.61 11185.29 14799.53 9395.81 6095.27 18299.16 79
HPM-MVS_fast96.51 5596.27 5997.22 6799.32 2492.74 8698.74 998.06 7790.57 18196.77 5798.35 4290.21 8699.53 9394.80 9799.63 1499.38 62
PLCcopyleft91.00 694.11 11993.43 12996.13 11898.58 7891.15 14796.69 19197.39 17687.29 27291.37 19696.71 15488.39 10599.52 9787.33 24597.13 14897.73 182
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UA-Net95.95 7395.53 7297.20 6997.67 13592.98 8297.65 9698.13 5894.81 3596.61 6798.35 4288.87 9799.51 9890.36 18097.35 14099.11 87
RPMNet88.98 28587.05 30094.77 19294.45 29687.19 26290.23 35598.03 8877.87 35992.40 17187.55 36180.17 23999.51 9868.84 36493.95 20397.60 191
MAR-MVS94.22 11393.46 12696.51 9198.00 11792.19 10797.67 9397.47 15988.13 24993.00 16295.84 20684.86 15399.51 9887.99 22498.17 11897.83 179
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS95.69 7694.92 8998.01 2298.08 11595.71 995.27 27797.62 14290.43 18495.55 11097.07 13891.72 5399.50 10189.62 19598.94 9598.82 118
F-COLMAP93.58 14092.98 14195.37 15998.40 8588.98 21797.18 14697.29 18787.75 26190.49 21397.10 13785.21 14899.50 10186.70 25496.72 15697.63 186
DP-MVS Recon95.68 7795.12 8797.37 5799.19 3394.19 4497.03 15498.08 6888.35 24195.09 11997.65 10589.97 8999.48 10392.08 15098.59 10598.44 148
CDPH-MVS95.97 7295.38 7997.77 3898.93 5194.44 3596.35 22197.88 11186.98 27796.65 6497.89 8291.99 4899.47 10492.26 14199.46 4499.39 60
test1297.65 4798.46 8194.26 4197.66 13795.52 11390.89 7699.46 10599.25 7299.22 76
ab-mvs93.57 14192.55 16196.64 8197.28 14991.96 11595.40 26997.45 16689.81 19793.22 16096.28 18679.62 24999.46 10590.74 17593.11 21198.50 138
HY-MVS89.66 993.87 12892.95 14296.63 8397.10 15992.49 9595.64 26196.64 24289.05 21693.00 16295.79 21285.77 14399.45 10789.16 21094.35 19697.96 170
xiu_mvs_v1_base_debu95.01 9494.76 9295.75 13496.58 18991.71 11796.25 23197.35 18292.99 9896.70 6096.63 16882.67 19399.44 10896.22 4197.46 13396.11 230
xiu_mvs_v1_base95.01 9494.76 9295.75 13496.58 18991.71 11796.25 23197.35 18292.99 9896.70 6096.63 16882.67 19399.44 10896.22 4197.46 13396.11 230
xiu_mvs_v1_base_debi95.01 9494.76 9295.75 13496.58 18991.71 11796.25 23197.35 18292.99 9896.70 6096.63 16882.67 19399.44 10896.22 4197.46 13396.11 230
test_prior396.46 5796.20 6297.23 6598.67 6692.99 8096.35 22198.00 9792.80 11096.03 8997.59 11292.01 4699.41 11195.01 8799.38 5499.29 68
test_prior97.23 6598.67 6692.99 8098.00 9799.41 11199.29 68
TSAR-MVS + MP.97.42 997.33 1197.69 4599.25 2994.24 4398.07 5397.85 11893.72 6898.57 1398.35 4293.69 1899.40 11397.06 1599.46 4499.44 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDD-MVS93.82 13193.08 13896.02 12497.88 12589.96 18297.72 8795.85 27692.43 12195.86 9798.44 3268.42 33899.39 11496.31 3694.85 18898.71 126
WTY-MVS94.71 10794.02 10996.79 7997.71 13492.05 11096.59 20497.35 18290.61 17894.64 12596.93 14486.41 13399.39 11491.20 17094.71 19498.94 104
MVS_111021_HR96.68 5196.58 4796.99 7698.46 8192.31 10196.20 23698.90 294.30 5395.86 9797.74 9792.33 4099.38 11696.04 5299.42 4999.28 71
DeepPCF-MVS93.97 196.61 5297.09 1495.15 16598.09 11486.63 27696.00 24698.15 5595.43 797.95 2498.56 2093.40 2099.36 11796.77 2599.48 4199.45 51
TSAR-MVS + GP.96.69 4996.49 5197.27 6398.31 9593.39 6996.79 18196.72 23394.17 5597.44 3497.66 10492.76 2799.33 11896.86 2197.76 12999.08 89
114514_t93.95 12593.06 13996.63 8399.07 4191.61 12297.46 11997.96 10477.99 35793.00 16297.57 11486.14 13999.33 11889.22 20699.15 8198.94 104
dcpmvs_296.37 6197.05 1794.31 21298.96 5084.11 31497.56 10797.51 15393.92 6097.43 3698.52 2592.75 2899.32 12097.32 1399.50 3699.51 39
test_yl94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17497.10 20091.23 15895.71 10296.93 14484.30 16099.31 12193.10 12995.12 18498.75 120
DCV-MVSNet94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17497.10 20091.23 15895.71 10296.93 14484.30 16099.31 12193.10 12995.12 18498.75 120
COLMAP_ROBcopyleft87.81 1590.40 26589.28 27493.79 23997.95 11987.13 26596.92 17095.89 27582.83 33286.88 30997.18 13273.77 31199.29 12378.44 33393.62 20794.95 288
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
sss94.51 10993.80 11396.64 8197.07 16091.97 11496.32 22598.06 7788.94 22194.50 12896.78 15184.60 15599.27 12491.90 15196.02 16798.68 128
MG-MVS95.61 7995.38 7996.31 10798.42 8490.53 16696.04 24297.48 15693.47 8095.67 10798.10 6889.17 9499.25 12591.27 16898.77 9999.13 83
OPU-MVS98.55 398.82 6096.86 398.25 3698.26 5896.04 299.24 12695.36 7899.59 1799.56 27
MVS_111021_LR96.24 6596.19 6396.39 10298.23 10591.35 13396.24 23498.79 493.99 5995.80 9997.65 10589.92 9099.24 12695.87 5599.20 7798.58 131
FE-MVS92.05 20291.05 21295.08 16996.83 17687.93 24693.91 31595.70 28186.30 28794.15 13694.97 24576.59 28899.21 12884.10 29096.86 15098.09 168
alignmvs95.87 7595.23 8397.78 3697.56 14695.19 2297.86 7097.17 19494.39 5096.47 7596.40 18185.89 14099.20 12996.21 4595.11 18698.95 103
VDDNet93.05 16192.07 17396.02 12496.84 17490.39 17298.08 5295.85 27686.22 29095.79 10098.46 3067.59 34199.19 13094.92 9194.85 18898.47 143
IB-MVS87.33 1789.91 27588.28 28794.79 19195.26 25887.70 25395.12 28393.95 34289.35 20987.03 30492.49 32570.74 32699.19 13089.18 20981.37 34197.49 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
canonicalmvs96.02 7095.45 7697.75 4097.59 14395.15 2598.28 3297.60 14394.52 4696.27 8296.12 19387.65 11499.18 13296.20 4694.82 19098.91 108
API-MVS94.84 10394.49 10295.90 12897.90 12492.00 11397.80 7797.48 15689.19 21394.81 12296.71 15488.84 9899.17 13388.91 21398.76 10096.53 216
LFMVS93.60 13892.63 15696.52 8898.13 11391.27 13697.94 6493.39 34790.57 18196.29 8198.31 5169.00 33499.16 13494.18 10895.87 17199.12 86
AllTest90.23 26988.98 27893.98 22597.94 12086.64 27396.51 20895.54 29185.38 30185.49 31996.77 15270.28 32899.15 13580.02 32392.87 21296.15 227
TestCases93.98 22597.94 12086.64 27395.54 29185.38 30185.49 31996.77 15270.28 32899.15 13580.02 32392.87 21296.15 227
FA-MVS(test-final)93.52 14392.92 14395.31 16096.77 18088.54 22894.82 28596.21 26589.61 20194.20 13495.25 23783.24 17699.14 13790.01 18396.16 16698.25 159
1112_ss93.37 14792.42 16796.21 11697.05 16590.99 14996.31 22696.72 23386.87 28089.83 23796.69 15886.51 13199.14 13788.12 22293.67 20598.50 138
PAPM_NR95.01 9494.59 9796.26 11298.89 5890.68 16397.24 13797.73 12791.80 13992.93 16796.62 17189.13 9599.14 13789.21 20797.78 12798.97 100
PAPR94.18 11493.42 13196.48 9397.64 13991.42 13295.55 26397.71 13488.99 21892.34 17695.82 20889.19 9399.11 14086.14 26397.38 13898.90 109
MVS91.71 21090.44 23495.51 15095.20 26191.59 12496.04 24297.45 16673.44 36487.36 29895.60 22385.42 14699.10 14185.97 26897.46 13395.83 239
thres600view792.49 18191.60 19095.18 16497.91 12389.47 19797.65 9694.66 32792.18 13193.33 15594.91 24978.06 27799.10 14181.61 31094.06 20296.98 203
Test_1112_low_res92.84 17391.84 18295.85 13097.04 16689.97 18195.53 26596.64 24285.38 30189.65 24395.18 23985.86 14199.10 14187.70 23293.58 21098.49 140
CNLPA94.28 11293.53 12296.52 8898.38 8892.55 9396.59 20496.88 22590.13 18991.91 18697.24 12985.21 14899.09 14487.64 23897.83 12597.92 172
OMC-MVS95.09 9394.70 9596.25 11598.46 8191.28 13596.43 21197.57 14792.04 13494.77 12397.96 8187.01 12699.09 14491.31 16796.77 15398.36 155
thres100view90092.43 18291.58 19194.98 17697.92 12289.37 20397.71 8994.66 32792.20 12793.31 15694.90 25078.06 27799.08 14681.40 31394.08 19996.48 219
tfpn200view992.38 18591.52 19494.95 17997.85 12689.29 20797.41 12094.88 32292.19 12993.27 15894.46 27278.17 27399.08 14681.40 31394.08 19996.48 219
thres40092.42 18391.52 19495.12 16897.85 12689.29 20797.41 12094.88 32292.19 12993.27 15894.46 27278.17 27399.08 14681.40 31394.08 19996.98 203
test250691.60 21490.78 22294.04 22297.66 13783.81 31798.27 3375.53 38093.43 8295.23 11698.21 6267.21 34499.07 14993.01 13598.49 10799.25 74
ECVR-MVScopyleft93.19 15392.73 15394.57 20197.66 13785.41 29498.21 4388.23 36993.43 8294.70 12498.21 6272.57 31599.07 14993.05 13298.49 10799.25 74
tttt051792.96 16592.33 16994.87 18397.11 15887.16 26497.97 6292.09 35690.63 17693.88 14397.01 14276.50 28999.06 15190.29 18295.45 17998.38 153
test111193.19 15392.82 14794.30 21397.58 14584.56 30998.21 4389.02 36893.53 7794.58 12698.21 6272.69 31499.05 15293.06 13198.48 10999.28 71
thisisatest053093.03 16292.21 17195.49 15397.07 16089.11 21597.49 11692.19 35590.16 18894.09 13796.41 18076.43 29299.05 15290.38 17995.68 17798.31 157
PVSNet86.66 1892.24 19491.74 18693.73 24097.77 13183.69 32192.88 33696.72 23387.91 25393.00 16294.86 25278.51 26899.05 15286.53 25597.45 13798.47 143
thres20092.23 19591.39 19794.75 19497.61 14189.03 21696.60 20395.09 31392.08 13393.28 15794.00 29578.39 27199.04 15581.26 31794.18 19896.19 224
thisisatest051592.29 19191.30 20295.25 16296.60 18788.90 21994.36 29992.32 35487.92 25293.43 15394.57 26677.28 28499.00 15689.42 19995.86 17297.86 176
PatchMatch-RL92.90 16992.02 17695.56 14698.19 10890.80 15895.27 27797.18 19287.96 25191.86 18895.68 22080.44 23398.99 15784.01 29297.54 13296.89 208
MSDG91.42 22590.24 24494.96 17897.15 15688.91 21893.69 32196.32 25885.72 29786.93 30796.47 17780.24 23798.98 15880.57 31995.05 18796.98 203
EIA-MVS95.53 8295.47 7595.71 13997.06 16389.63 18897.82 7597.87 11393.57 7293.92 14295.04 24490.61 8198.95 15994.62 10198.68 10298.54 133
MSLP-MVS++96.94 3397.06 1596.59 8698.72 6391.86 11697.67 9398.49 1394.66 4397.24 4298.41 3892.31 4298.94 16096.61 2999.46 4498.96 101
ETV-MVS96.02 7095.89 6896.40 10097.16 15492.44 9697.47 11797.77 12294.55 4596.48 7494.51 26791.23 6998.92 16195.65 6698.19 11697.82 180
Vis-MVSNetpermissive95.23 8994.81 9196.51 9197.18 15391.58 12598.26 3598.12 6094.38 5194.90 12098.15 6782.28 20398.92 16191.45 16598.58 10699.01 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS90.10 792.30 19091.22 20795.56 14698.33 9289.60 19096.79 18197.65 13981.83 33891.52 19397.23 13087.94 10998.91 16371.31 36098.37 11298.17 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XVG-OURS-SEG-HR93.86 12993.55 12094.81 18797.06 16388.53 22995.28 27597.45 16691.68 14294.08 13897.68 10182.41 20198.90 16493.84 11792.47 21996.98 203
mvs-test193.63 13793.69 11693.46 25596.02 22184.61 30897.24 13796.72 23393.85 6392.30 17795.76 21483.08 18198.89 16591.69 15996.54 16096.87 209
XVG-OURS93.72 13593.35 13294.80 19097.07 16088.61 22494.79 28697.46 16191.97 13793.99 13997.86 8781.74 21498.88 16692.64 13992.67 21796.92 207
testdata95.46 15798.18 11088.90 21997.66 13782.73 33397.03 5498.07 7190.06 8798.85 16789.67 19398.98 9398.64 130
lupinMVS94.99 9894.56 9896.29 11096.34 20591.21 13995.83 25396.27 26088.93 22296.22 8396.88 14986.20 13798.85 16795.27 8099.05 9098.82 118
旧先验295.94 24981.66 33997.34 4098.82 16992.26 141
EPP-MVSNet95.22 9095.04 8895.76 13297.49 14789.56 19298.67 1097.00 21390.69 17194.24 13397.62 11089.79 9198.81 17093.39 12696.49 16298.92 107
131492.81 17592.03 17595.14 16695.33 25189.52 19696.04 24297.44 17087.72 26286.25 31395.33 23383.84 16698.79 17189.26 20497.05 14997.11 201
Effi-MVS+94.93 9994.45 10496.36 10596.61 18691.47 12996.41 21397.41 17591.02 16594.50 12895.92 20287.53 11798.78 17293.89 11596.81 15298.84 117
RPSCF90.75 25590.86 21790.42 32796.84 17476.29 36395.61 26296.34 25783.89 32191.38 19597.87 8576.45 29098.78 17287.16 25092.23 22296.20 223
jason94.84 10394.39 10696.18 11795.52 23790.93 15396.09 24096.52 25089.28 21096.01 9397.32 12584.70 15498.77 17495.15 8398.91 9798.85 115
jason: jason.
MVS_Test94.89 10194.62 9695.68 14096.83 17689.55 19396.70 18997.17 19491.17 16095.60 10996.11 19687.87 11198.76 17593.01 13597.17 14798.72 124
CS-MVS-test96.89 3797.04 1896.45 9798.29 9691.66 12199.03 497.85 11895.84 396.90 5697.97 8091.24 6798.75 17696.92 1899.33 5998.94 104
ACMM89.79 892.96 16592.50 16594.35 20996.30 20788.71 22297.58 10597.36 18191.40 15290.53 21296.65 16179.77 24698.75 17691.24 16991.64 23295.59 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
casdiffmvs95.64 7895.49 7496.08 11996.76 18390.45 16997.29 13497.44 17094.00 5895.46 11497.98 7987.52 11898.73 17895.64 6797.33 14199.08 89
LPG-MVS_test92.94 16792.56 16094.10 21896.16 21488.26 23597.65 9697.46 16191.29 15390.12 22697.16 13379.05 25798.73 17892.25 14391.89 23095.31 273
LGP-MVS_train94.10 21896.16 21488.26 23597.46 16191.29 15390.12 22697.16 13379.05 25798.73 17892.25 14391.89 23095.31 273
ACMP89.59 1092.62 17892.14 17294.05 22196.40 20288.20 23897.36 12797.25 19091.52 14588.30 27796.64 16278.46 26998.72 18191.86 15491.48 23795.23 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS96.86 3997.06 1596.26 11298.16 11191.16 14699.09 397.87 11395.30 1297.06 5398.03 7491.72 5398.71 18297.10 1499.17 7998.90 109
baseline291.63 21390.86 21793.94 23194.33 30086.32 27995.92 25091.64 36089.37 20886.94 30694.69 26081.62 21698.69 18388.64 21894.57 19596.81 211
baseline95.58 8095.42 7896.08 11996.78 17990.41 17197.16 14897.45 16693.69 7195.65 10897.85 8887.29 12298.68 18495.66 6397.25 14499.13 83
diffmvs95.25 8895.13 8695.63 14296.43 20189.34 20495.99 24797.35 18292.83 10896.31 8097.37 12486.44 13298.67 18596.26 3897.19 14698.87 114
HyFIR lowres test93.66 13692.92 14395.87 12998.24 10189.88 18394.58 29098.49 1385.06 30793.78 14495.78 21382.86 18998.67 18591.77 15595.71 17699.07 91
gm-plane-assit93.22 33178.89 35984.82 31193.52 31198.64 18787.72 229
OPM-MVS93.28 15092.76 14994.82 18594.63 29090.77 16096.65 19597.18 19293.72 6891.68 18997.26 12879.33 25398.63 18892.13 14792.28 22195.07 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Fast-Effi-MVS+93.46 14492.75 15195.59 14596.77 18090.03 17596.81 18097.13 19788.19 24491.30 20094.27 28386.21 13698.63 18887.66 23796.46 16498.12 164
ACMH87.59 1690.53 26289.42 27193.87 23596.21 20987.92 24797.24 13796.94 21688.45 23883.91 33696.27 18771.92 31798.62 19084.43 28889.43 26595.05 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS93.78 13393.43 12994.82 18596.21 20989.99 17897.74 8297.51 15394.85 3091.34 19796.64 16281.32 21998.60 19193.02 13392.23 22295.86 235
plane_prior597.51 15398.60 19193.02 13392.23 22295.86 235
XVG-ACMP-BASELINE90.93 25090.21 24893.09 26894.31 30285.89 28795.33 27297.26 18891.06 16489.38 25195.44 23168.61 33698.60 19189.46 19891.05 24694.79 306
DROMVSNet96.42 5896.47 5296.26 11297.01 16891.52 12798.89 597.75 12494.42 4896.64 6597.68 10189.32 9298.60 19197.45 999.11 8898.67 129
BH-RMVSNet92.72 17791.97 17894.97 17797.16 15487.99 24596.15 23895.60 28890.62 17791.87 18797.15 13578.41 27098.57 19583.16 29897.60 13198.36 155
LTVRE_ROB88.41 1390.99 24689.92 25794.19 21596.18 21289.55 19396.31 22697.09 20287.88 25485.67 31795.91 20378.79 26598.57 19581.50 31189.98 26094.44 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+87.92 1490.20 27089.18 27693.25 26296.48 19886.45 27896.99 16296.68 23988.83 22684.79 32696.22 18870.16 33098.53 19784.42 28988.04 27694.77 309
tpmvs89.83 27989.15 27791.89 29694.92 27380.30 34693.11 33395.46 29586.28 28888.08 28492.65 32280.44 23398.52 19881.47 31289.92 26196.84 210
AUN-MVS91.76 20990.75 22494.81 18797.00 16988.57 22696.65 19596.49 25189.63 20092.15 18096.12 19378.66 26698.50 19990.83 17379.18 34897.36 197
HQP4-MVS90.14 22098.50 19995.78 243
HQP-MVS93.19 15392.74 15294.54 20295.86 22489.33 20596.65 19597.39 17693.55 7390.14 22095.87 20480.95 22298.50 19992.13 14792.10 22795.78 243
hse-mvs293.45 14592.99 14094.81 18797.02 16788.59 22596.69 19196.47 25295.19 1696.74 5896.16 19283.67 16998.48 20295.85 5779.13 34997.35 198
IS-MVSNet94.90 10094.52 10196.05 12297.67 13590.56 16598.44 2396.22 26393.21 8993.99 13997.74 9785.55 14598.45 20389.98 18497.86 12499.14 82
CHOSEN 280x42093.12 15792.72 15494.34 21096.71 18487.27 25890.29 35497.72 13086.61 28491.34 19795.29 23484.29 16298.41 20493.25 12798.94 9597.35 198
VPA-MVSNet93.24 15192.48 16695.51 15095.70 23192.39 9797.86 7098.66 1092.30 12492.09 18495.37 23280.49 23298.40 20593.95 11285.86 29595.75 248
PMMVS92.86 17192.34 16894.42 20694.92 27386.73 27294.53 29296.38 25684.78 31294.27 13295.12 24383.13 18098.40 20591.47 16496.49 16298.12 164
CLD-MVS92.98 16492.53 16394.32 21196.12 21889.20 21195.28 27597.47 15992.66 11589.90 23495.62 22280.58 23098.40 20592.73 13892.40 22095.38 269
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE93.89 12793.28 13495.72 13896.96 17189.75 18698.24 3996.92 22189.47 20592.12 18297.21 13184.42 15898.39 20887.71 23196.50 16199.01 96
cascas91.20 23890.08 25194.58 20094.97 26989.16 21493.65 32397.59 14579.90 35089.40 25092.92 32075.36 30198.36 20992.14 14694.75 19296.23 222
PC_three_145290.77 16898.89 898.28 5796.24 198.35 21095.76 6199.58 2299.59 20
BH-untuned92.94 16792.62 15893.92 23497.22 15086.16 28596.40 21696.25 26290.06 19089.79 23896.17 19183.19 17798.35 21087.19 24897.27 14397.24 200
TR-MVS91.48 22390.59 23094.16 21796.40 20287.33 25695.67 25895.34 30287.68 26391.46 19495.52 22876.77 28798.35 21082.85 30293.61 20896.79 212
TDRefinement86.53 30884.76 31891.85 29782.23 37384.25 31196.38 21995.35 29984.97 30984.09 33394.94 24765.76 35498.34 21384.60 28674.52 35792.97 340
Effi-MVS+-dtu93.08 15993.21 13692.68 28296.02 22183.25 32497.14 15196.72 23393.85 6391.20 20793.44 31483.08 18198.30 21491.69 15995.73 17596.50 218
tpmrst91.44 22491.32 20091.79 30195.15 26279.20 35693.42 32795.37 29888.55 23793.49 15193.67 30882.49 19998.27 21590.41 17889.34 26697.90 173
XXY-MVS92.16 19891.23 20694.95 17994.75 28490.94 15297.47 11797.43 17389.14 21488.90 26196.43 17979.71 24798.24 21689.56 19687.68 27995.67 255
UniMVSNet_ETH3D91.34 23290.22 24794.68 19594.86 27887.86 25097.23 14297.46 16187.99 25089.90 23496.92 14766.35 34998.23 21790.30 18190.99 24897.96 170
nrg03094.05 12293.31 13396.27 11195.22 25994.59 3298.34 2797.46 16192.93 10691.21 20696.64 16287.23 12498.22 21894.99 9085.80 29695.98 234
baseline192.82 17491.90 18095.55 14897.20 15290.77 16097.19 14594.58 33092.20 12792.36 17496.34 18484.16 16398.21 21989.20 20883.90 32897.68 185
VPNet92.23 19591.31 20194.99 17495.56 23590.96 15197.22 14397.86 11792.96 10590.96 20896.62 17175.06 30298.20 22091.90 15183.65 33095.80 242
CostFormer91.18 24190.70 22692.62 28394.84 27981.76 33494.09 30994.43 33284.15 31892.72 16993.77 30379.43 25198.20 22090.70 17692.18 22597.90 173
USDC88.94 28687.83 29192.27 28994.66 28784.96 30393.86 31695.90 27487.34 27183.40 33895.56 22567.43 34298.19 22282.64 30689.67 26493.66 333
test_part192.21 19791.10 21195.51 15097.80 12992.66 8998.02 5697.68 13589.79 19888.80 26796.02 19876.85 28698.18 22390.86 17284.11 32395.69 252
PS-MVSNAJss93.74 13493.51 12494.44 20493.91 31289.28 20997.75 8197.56 15092.50 12089.94 23396.54 17488.65 10198.18 22393.83 11890.90 25095.86 235
tpm cat188.36 29587.21 29891.81 30095.13 26480.55 34392.58 34095.70 28174.97 36187.45 29491.96 33578.01 27998.17 22580.39 32188.74 27296.72 214
PAPM91.52 22190.30 24095.20 16395.30 25489.83 18493.38 32896.85 22886.26 28988.59 27195.80 20984.88 15298.15 22675.67 34695.93 17097.63 186
mvsmamba93.83 13093.46 12694.93 18294.88 27790.85 15698.55 1495.49 29494.24 5491.29 20396.97 14383.04 18498.14 22795.56 7591.17 24495.78 243
iter_conf_final93.60 13893.11 13795.04 17097.13 15791.30 13497.92 6695.65 28792.98 10391.60 19096.64 16279.28 25498.13 22895.34 7991.49 23695.70 251
Anonymous2023121190.63 26089.42 27194.27 21498.24 10189.19 21398.05 5497.89 10979.95 34988.25 28094.96 24672.56 31698.13 22889.70 19285.14 30695.49 257
iter_conf0593.18 15692.63 15694.83 18496.64 18590.69 16297.60 10395.53 29392.52 11991.58 19196.64 16276.35 29398.13 22895.43 7791.42 23995.68 254
PatchmatchNetpermissive91.91 20591.35 19893.59 24895.38 24384.11 31493.15 33295.39 29689.54 20292.10 18393.68 30782.82 19198.13 22884.81 28295.32 18198.52 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap86.82 30785.35 31391.21 31494.91 27582.99 32593.94 31394.02 34183.58 32681.56 34594.68 26162.34 36198.13 22875.78 34487.35 28592.52 348
dp88.90 28888.26 28890.81 32094.58 29376.62 36292.85 33794.93 32085.12 30690.07 23193.07 31875.81 29698.12 23380.53 32087.42 28397.71 183
jajsoiax92.42 18391.89 18194.03 22393.33 33088.50 23097.73 8497.53 15192.00 13688.85 26496.50 17675.62 30098.11 23493.88 11691.56 23595.48 258
patchmatchnet-post90.45 34682.65 19698.10 235
SCA91.84 20791.18 20993.83 23695.59 23384.95 30494.72 28795.58 29090.82 16692.25 17893.69 30575.80 29798.10 23586.20 26195.98 16898.45 145
v7n90.76 25489.86 25893.45 25693.54 32287.60 25597.70 9197.37 17988.85 22487.65 29294.08 29381.08 22198.10 23584.68 28483.79 32994.66 313
mvs_tets92.31 18991.76 18393.94 23193.41 32788.29 23397.63 10197.53 15192.04 13488.76 26896.45 17874.62 30498.09 23893.91 11491.48 23795.45 263
Fast-Effi-MVS+-dtu92.29 19191.99 17793.21 26595.27 25585.52 29297.03 15496.63 24592.09 13289.11 26095.14 24180.33 23698.08 23987.54 24194.74 19396.03 233
test_post17.58 37981.76 21398.08 239
MDTV_nov1_ep1390.76 22395.22 25980.33 34593.03 33595.28 30388.14 24892.84 16893.83 29981.34 21898.08 23982.86 30194.34 197
test-LLR91.42 22591.19 20892.12 29194.59 29180.66 34094.29 30392.98 34991.11 16290.76 21092.37 32779.02 25998.07 24288.81 21496.74 15497.63 186
test-mter90.19 27189.54 27092.12 29194.59 29180.66 34094.29 30392.98 34987.68 26390.76 21092.37 32767.67 34098.07 24288.81 21496.74 15497.63 186
BH-w/o92.14 20091.75 18493.31 26096.99 17085.73 28995.67 25895.69 28388.73 23289.26 25794.82 25582.97 18798.07 24285.26 27896.32 16596.13 229
tfpnnormal89.70 28088.40 28593.60 24795.15 26290.10 17497.56 10798.16 5487.28 27386.16 31494.63 26477.57 28298.05 24574.48 34884.59 31692.65 346
V4291.58 21790.87 21693.73 24094.05 30988.50 23097.32 13196.97 21488.80 23089.71 23994.33 27882.54 19798.05 24589.01 21185.07 30894.64 314
EI-MVSNet93.03 16292.88 14593.48 25395.77 22986.98 26796.44 20997.12 19890.66 17491.30 20097.64 10886.56 12998.05 24589.91 18690.55 25495.41 264
MVSTER93.20 15292.81 14894.37 20896.56 19289.59 19197.06 15397.12 19891.24 15791.30 20095.96 20082.02 20898.05 24593.48 12290.55 25495.47 261
UniMVSNet (Re)93.31 14992.55 16195.61 14495.39 24293.34 7397.39 12498.71 693.14 9490.10 22894.83 25487.71 11298.03 24991.67 16183.99 32495.46 262
v2v48291.59 21590.85 21993.80 23893.87 31488.17 24096.94 16996.88 22589.54 20289.53 24794.90 25081.70 21598.02 25089.25 20585.04 31095.20 281
v891.29 23590.53 23393.57 25094.15 30588.12 24297.34 12897.06 20688.99 21888.32 27694.26 28583.08 18198.01 25187.62 23983.92 32794.57 315
v14419291.06 24390.28 24193.39 25793.66 32087.23 26196.83 17797.07 20487.43 26889.69 24194.28 28281.48 21798.00 25287.18 24984.92 31294.93 292
v114491.37 22990.60 22993.68 24593.89 31388.23 23796.84 17697.03 21188.37 24089.69 24194.39 27482.04 20797.98 25387.80 22885.37 30194.84 298
v124090.70 25889.85 25993.23 26393.51 32486.80 27096.61 20197.02 21287.16 27589.58 24494.31 28179.55 25097.98 25385.52 27485.44 30094.90 295
OurMVSNet-221017-090.51 26390.19 24991.44 31093.41 32781.25 33796.98 16496.28 25991.68 14286.55 31196.30 18574.20 30797.98 25388.96 21287.40 28495.09 283
bld_raw_dy_0_6492.37 18691.69 18794.39 20794.28 30489.73 18797.71 8993.65 34492.78 11290.46 21496.67 16075.88 29597.97 25692.92 13790.89 25195.48 258
v192192090.85 25290.03 25593.29 26193.55 32186.96 26996.74 18497.04 20987.36 27089.52 24894.34 27780.23 23897.97 25686.27 25985.21 30594.94 290
v119291.07 24290.23 24593.58 24993.70 31887.82 25196.73 18597.07 20487.77 25989.58 24494.32 28080.90 22697.97 25686.52 25685.48 29994.95 288
v1091.04 24490.23 24593.49 25294.12 30688.16 24197.32 13197.08 20388.26 24388.29 27894.22 28882.17 20697.97 25686.45 25884.12 32294.33 321
PVSNet_082.17 1985.46 32083.64 32390.92 31895.27 25579.49 35390.55 35395.60 28883.76 32483.00 34289.95 34971.09 32397.97 25682.75 30460.79 37195.31 273
GA-MVS91.38 22790.31 23994.59 19694.65 28887.62 25494.34 30096.19 26690.73 17090.35 21793.83 29971.84 31897.96 26187.22 24793.61 20898.21 161
ITE_SJBPF92.43 28695.34 24885.37 29795.92 27291.47 14787.75 29196.39 18271.00 32497.96 26182.36 30789.86 26293.97 330
D2MVS91.30 23490.95 21492.35 28794.71 28685.52 29296.18 23798.21 4488.89 22386.60 31093.82 30179.92 24497.95 26389.29 20390.95 24993.56 334
FIs94.09 12093.70 11595.27 16195.70 23192.03 11198.10 5098.68 893.36 8690.39 21696.70 15687.63 11597.94 26492.25 14390.50 25695.84 238
tpm289.96 27489.21 27592.23 29094.91 27581.25 33793.78 31894.42 33380.62 34791.56 19293.44 31476.44 29197.94 26485.60 27392.08 22997.49 195
TAMVS94.01 12493.46 12695.64 14196.16 21490.45 16996.71 18896.89 22489.27 21193.46 15296.92 14787.29 12297.94 26488.70 21795.74 17498.53 134
RRT_MVS93.10 15892.83 14693.93 23394.76 28288.04 24398.47 2296.55 24993.44 8190.01 23297.04 14080.64 22997.93 26794.33 10590.21 25995.83 239
MVSFormer95.37 8495.16 8595.99 12696.34 20591.21 13998.22 4197.57 14791.42 15096.22 8397.32 12586.20 13797.92 26894.07 10999.05 9098.85 115
test_djsdf93.07 16092.76 14994.00 22493.49 32588.70 22398.22 4197.57 14791.42 15090.08 23095.55 22682.85 19097.92 26894.07 10991.58 23495.40 267
JIA-IIPM88.26 29787.04 30191.91 29593.52 32381.42 33689.38 36094.38 33480.84 34590.93 20980.74 36679.22 25597.92 26882.76 30391.62 23396.38 221
Vis-MVSNet (Re-imp)94.15 11593.88 11194.95 17997.61 14187.92 24798.10 5095.80 27892.22 12593.02 16197.45 12084.53 15797.91 27188.24 22197.97 12299.02 92
CDS-MVSNet94.14 11893.54 12195.93 12796.18 21291.46 13096.33 22497.04 20988.97 22093.56 14796.51 17587.55 11697.89 27289.80 18995.95 16998.44 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp92.16 19891.55 19293.97 22792.58 34289.55 19397.51 11197.42 17489.42 20788.40 27494.84 25380.66 22897.88 27391.87 15391.28 24294.48 316
FC-MVSNet-test93.94 12693.57 11995.04 17095.48 23991.45 13198.12 4998.71 693.37 8490.23 21996.70 15687.66 11397.85 27491.49 16390.39 25795.83 239
ADS-MVSNet89.89 27688.68 28293.53 25195.86 22484.89 30590.93 35095.07 31483.23 33091.28 20491.81 33779.01 26197.85 27479.52 32591.39 24097.84 177
UniMVSNet_NR-MVSNet93.37 14792.67 15595.47 15695.34 24892.83 8497.17 14798.58 1192.98 10390.13 22495.80 20988.37 10697.85 27491.71 15783.93 32595.73 250
DU-MVS92.90 16992.04 17495.49 15394.95 27192.83 8497.16 14898.24 3893.02 9790.13 22495.71 21783.47 17297.85 27491.71 15783.93 32595.78 243
v14890.99 24690.38 23692.81 27893.83 31585.80 28896.78 18396.68 23989.45 20688.75 26993.93 29882.96 18897.82 27887.83 22783.25 33294.80 304
MS-PatchMatch90.27 26789.77 26391.78 30294.33 30084.72 30795.55 26396.73 23286.17 29186.36 31295.28 23671.28 32297.80 27984.09 29198.14 11992.81 343
WR-MVS92.34 18791.53 19394.77 19295.13 26490.83 15796.40 21697.98 10291.88 13889.29 25595.54 22782.50 19897.80 27989.79 19085.27 30495.69 252
pm-mvs190.72 25789.65 26993.96 22894.29 30389.63 18897.79 7896.82 23089.07 21586.12 31595.48 23078.61 26797.78 28186.97 25281.67 33994.46 317
EPMVS90.70 25889.81 26193.37 25894.73 28584.21 31293.67 32288.02 37089.50 20492.38 17393.49 31277.82 28197.78 28186.03 26792.68 21698.11 167
NR-MVSNet92.34 18791.27 20495.53 14994.95 27193.05 7997.39 12498.07 7492.65 11684.46 32795.71 21785.00 15197.77 28389.71 19183.52 33195.78 243
MVP-Stereo90.74 25690.08 25192.71 28093.19 33288.20 23895.86 25296.27 26086.07 29284.86 32594.76 25777.84 28097.75 28483.88 29598.01 12192.17 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous93.82 13193.74 11494.06 22096.44 20085.41 29495.81 25497.05 20789.85 19590.09 22996.36 18387.44 12097.75 28493.97 11196.69 15799.02 92
EG-PatchMatch MVS87.02 30685.44 31091.76 30492.67 34085.00 30296.08 24196.45 25383.41 32979.52 35593.49 31257.10 36597.72 28679.34 33090.87 25292.56 347
SixPastTwentyTwo89.15 28488.54 28490.98 31793.49 32580.28 34796.70 18994.70 32690.78 16784.15 33295.57 22471.78 31997.71 28784.63 28585.07 30894.94 290
test_post192.81 33816.58 38080.53 23197.68 28886.20 261
pmmvs687.81 30186.19 30592.69 28191.32 35186.30 28097.34 12896.41 25580.59 34884.05 33594.37 27667.37 34397.67 28984.75 28379.51 34794.09 329
TESTMET0.1,190.06 27389.42 27191.97 29494.41 29880.62 34294.29 30391.97 35887.28 27390.44 21592.47 32668.79 33597.67 28988.50 22096.60 15997.61 190
LF4IMVS87.94 29987.25 29689.98 33192.38 34780.05 35094.38 29895.25 30687.59 26584.34 32894.74 25964.31 35697.66 29184.83 28187.45 28192.23 351
miper_enhance_ethall91.54 22091.01 21393.15 26695.35 24787.07 26693.97 31196.90 22286.79 28189.17 25993.43 31686.55 13097.64 29289.97 18586.93 28694.74 310
IterMVS-LS92.29 19191.94 17993.34 25996.25 20886.97 26896.57 20797.05 20790.67 17289.50 24994.80 25686.59 12897.64 29289.91 18686.11 29495.40 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVS_ROBcopyleft81.14 2084.42 32582.28 32890.83 31990.06 35884.05 31695.73 25794.04 34073.89 36380.17 35491.53 34159.15 36397.64 29266.92 36689.05 26890.80 361
cl2291.21 23790.56 23293.14 26796.09 22086.80 27094.41 29796.58 24887.80 25788.58 27293.99 29680.85 22797.62 29589.87 18886.93 28694.99 287
CMPMVSbinary62.92 2185.62 31984.92 31687.74 34189.14 36473.12 36894.17 30696.80 23173.98 36273.65 36394.93 24866.36 34897.61 29683.95 29491.28 24292.48 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth91.02 24590.59 23092.34 28895.33 25184.35 31094.10 30896.90 22288.56 23688.84 26594.33 27884.08 16497.60 29788.77 21684.37 32095.06 285
TranMVSNet+NR-MVSNet92.50 17991.63 18995.14 16694.76 28292.07 10997.53 11098.11 6392.90 10789.56 24696.12 19383.16 17897.60 29789.30 20283.20 33495.75 248
WR-MVS_H92.00 20391.35 19893.95 22995.09 26689.47 19798.04 5598.68 891.46 14888.34 27594.68 26185.86 14197.56 29985.77 27184.24 32194.82 301
lessismore_v090.45 32691.96 35079.09 35887.19 37380.32 35294.39 27466.31 35097.55 30084.00 29376.84 35394.70 311
miper_ehance_all_eth91.59 21591.13 21092.97 27295.55 23686.57 27794.47 29396.88 22587.77 25988.88 26394.01 29486.22 13597.54 30189.49 19786.93 28694.79 306
cl____90.96 24990.32 23892.89 27495.37 24586.21 28394.46 29596.64 24287.82 25588.15 28394.18 28982.98 18697.54 30187.70 23285.59 29794.92 294
DIV-MVS_self_test90.97 24890.33 23792.88 27595.36 24686.19 28494.46 29596.63 24587.82 25588.18 28294.23 28682.99 18597.53 30387.72 22985.57 29894.93 292
gg-mvs-nofinetune87.82 30085.61 30994.44 20494.46 29589.27 21091.21 34984.61 37580.88 34489.89 23674.98 36871.50 32097.53 30385.75 27297.21 14596.51 217
CP-MVSNet91.89 20691.24 20593.82 23795.05 26788.57 22697.82 7598.19 4891.70 14188.21 28195.76 21481.96 20997.52 30587.86 22684.65 31395.37 270
Patchmatch-test89.42 28287.99 28993.70 24395.27 25585.11 30088.98 36194.37 33581.11 34287.10 30393.69 30582.28 20397.50 30674.37 35094.76 19198.48 142
PS-CasMVS91.55 21990.84 22093.69 24494.96 27088.28 23497.84 7498.24 3891.46 14888.04 28595.80 20979.67 24897.48 30787.02 25184.54 31895.31 273
c3_l91.38 22790.89 21592.88 27595.58 23486.30 28094.68 28896.84 22988.17 24588.83 26694.23 28685.65 14497.47 30889.36 20084.63 31494.89 296
FMVSNet391.78 20890.69 22795.03 17296.53 19492.27 10397.02 15796.93 21789.79 19889.35 25294.65 26377.01 28597.47 30886.12 26488.82 26995.35 271
pmmvs490.93 25089.85 25994.17 21693.34 32990.79 15994.60 28996.02 27084.62 31387.45 29495.15 24081.88 21297.45 31087.70 23287.87 27894.27 325
Baseline_NR-MVSNet91.20 23890.62 22892.95 27393.83 31588.03 24497.01 16195.12 31288.42 23989.70 24095.13 24283.47 17297.44 31189.66 19483.24 33393.37 338
tpm90.25 26889.74 26691.76 30493.92 31179.73 35293.98 31093.54 34588.28 24291.99 18593.25 31777.51 28397.44 31187.30 24687.94 27798.12 164
FMVSNet291.31 23390.08 25194.99 17496.51 19592.21 10497.41 12096.95 21588.82 22788.62 27094.75 25873.87 30897.42 31385.20 27988.55 27495.35 271
SD-MVS97.41 1097.53 797.06 7498.57 7994.46 3497.92 6698.14 5794.82 3499.01 398.55 2294.18 1497.41 31496.94 1799.64 1399.32 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS-HIRNet82.47 32981.21 33186.26 34695.38 24369.21 37288.96 36289.49 36766.28 36680.79 34874.08 37068.48 33797.39 31571.93 35895.47 17892.18 353
EPNet_dtu91.71 21091.28 20392.99 27193.76 31783.71 32096.69 19195.28 30393.15 9387.02 30595.95 20183.37 17597.38 31679.46 32896.84 15197.88 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs589.86 27888.87 28092.82 27792.86 33686.23 28296.26 23095.39 29684.24 31787.12 30194.51 26774.27 30697.36 31787.61 24087.57 28094.86 297
PEN-MVS91.20 23890.44 23493.48 25394.49 29487.91 24997.76 8098.18 5091.29 15387.78 29095.74 21680.35 23597.33 31885.46 27582.96 33595.19 282
TransMVSNet (Re)88.94 28687.56 29393.08 26994.35 29988.45 23297.73 8495.23 30787.47 26784.26 33095.29 23479.86 24597.33 31879.44 32974.44 35893.45 337
GBi-Net91.35 23090.27 24294.59 19696.51 19591.18 14397.50 11296.93 21788.82 22789.35 25294.51 26773.87 30897.29 32086.12 26488.82 26995.31 273
test191.35 23090.27 24294.59 19696.51 19591.18 14397.50 11296.93 21788.82 22789.35 25294.51 26773.87 30897.29 32086.12 26488.82 26995.31 273
FMVSNet189.88 27788.31 28694.59 19695.41 24191.18 14397.50 11296.93 21786.62 28387.41 29694.51 26765.94 35397.29 32083.04 30087.43 28295.31 273
test_040286.46 30984.79 31791.45 30995.02 26885.55 29196.29 22894.89 32180.90 34382.21 34393.97 29768.21 33997.29 32062.98 36888.68 27391.51 357
CR-MVSNet90.82 25389.77 26393.95 22994.45 29687.19 26290.23 35595.68 28586.89 27992.40 17192.36 33080.91 22497.05 32481.09 31893.95 20397.60 191
MVS_030488.79 29087.57 29292.46 28494.65 28886.15 28696.40 21697.17 19486.44 28588.02 28691.71 33956.68 36697.03 32584.47 28792.58 21894.19 326
LCM-MVSNet-Re92.50 17992.52 16492.44 28596.82 17881.89 33396.92 17093.71 34392.41 12284.30 32994.60 26585.08 15097.03 32591.51 16297.36 13998.40 151
Patchmtry88.64 29387.25 29692.78 27994.09 30786.64 27389.82 35895.68 28580.81 34687.63 29392.36 33080.91 22497.03 32578.86 33185.12 30794.67 312
PatchT88.87 28987.42 29493.22 26494.08 30885.10 30189.51 35994.64 32981.92 33792.36 17488.15 35880.05 24197.01 32872.43 35693.65 20697.54 194
DTE-MVSNet90.56 26189.75 26593.01 27093.95 31087.25 25997.64 10097.65 13990.74 16987.12 30195.68 22079.97 24397.00 32983.33 29781.66 34094.78 308
ppachtmachnet_test88.35 29687.29 29591.53 30792.45 34583.57 32293.75 31995.97 27184.28 31685.32 32294.18 28979.00 26396.93 33075.71 34584.99 31194.10 327
miper_lstm_enhance90.50 26490.06 25491.83 29895.33 25183.74 31893.86 31696.70 23887.56 26687.79 28993.81 30283.45 17496.92 33187.39 24384.62 31594.82 301
GG-mvs-BLEND93.62 24693.69 31989.20 21192.39 34383.33 37687.98 28889.84 35171.00 32496.87 33282.08 30995.40 18094.80 304
ambc86.56 34583.60 37170.00 37185.69 36594.97 31880.60 35088.45 35437.42 37496.84 33382.69 30575.44 35692.86 342
ET-MVSNet_ETH3D91.49 22290.11 25095.63 14296.40 20291.57 12695.34 27193.48 34690.60 18075.58 36195.49 22980.08 24096.79 33494.25 10689.76 26398.52 135
our_test_388.78 29187.98 29091.20 31592.45 34582.53 32793.61 32595.69 28385.77 29684.88 32493.71 30479.99 24296.78 33579.47 32786.24 29194.28 324
K. test v387.64 30286.75 30390.32 32893.02 33579.48 35496.61 20192.08 35790.66 17480.25 35394.09 29267.21 34496.65 33685.96 26980.83 34394.83 299
IterMVS-SCA-FT90.31 26689.81 26191.82 29995.52 23784.20 31394.30 30296.15 26790.61 17887.39 29794.27 28375.80 29796.44 33787.34 24486.88 29094.82 301
N_pmnet78.73 33278.71 33478.79 35092.80 33846.50 38194.14 30743.71 38478.61 35580.83 34791.66 34074.94 30396.36 33867.24 36584.45 31993.50 335
UnsupCasMVSNet_bld82.13 33079.46 33390.14 33088.00 36882.47 32890.89 35296.62 24778.94 35475.61 36084.40 36456.63 36796.31 33977.30 33966.77 36791.63 356
IterMVS90.15 27289.67 26791.61 30695.48 23983.72 31994.33 30196.12 26889.99 19187.31 30094.15 29175.78 29996.27 34086.97 25286.89 28994.83 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052186.42 31085.44 31089.34 33590.33 35679.79 35196.73 18595.92 27283.71 32583.25 33991.36 34263.92 35796.01 34178.39 33485.36 30292.22 352
ADS-MVSNet289.45 28188.59 28392.03 29395.86 22482.26 33190.93 35094.32 33783.23 33091.28 20491.81 33779.01 26195.99 34279.52 32591.39 24097.84 177
KD-MVS_2432*160084.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
miper_refine_blended84.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
MDA-MVSNet-bldmvs85.00 32182.95 32591.17 31693.13 33483.33 32394.56 29195.00 31684.57 31465.13 36992.65 32270.45 32795.85 34573.57 35377.49 35194.33 321
PM-MVS83.48 32681.86 33088.31 33887.83 36977.59 36193.43 32691.75 35986.91 27880.63 34989.91 35044.42 37295.84 34685.17 28076.73 35491.50 358
MIMVSNet88.50 29486.76 30293.72 24294.84 27987.77 25291.39 34594.05 33986.41 28687.99 28792.59 32463.27 35895.82 34777.44 33692.84 21497.57 193
pmmvs-eth3d86.22 31384.45 31991.53 30788.34 36787.25 25994.47 29395.01 31583.47 32879.51 35689.61 35269.75 33395.71 34883.13 29976.73 35491.64 355
Anonymous2023120687.09 30586.14 30689.93 33291.22 35280.35 34496.11 23995.35 29983.57 32784.16 33193.02 31973.54 31295.61 34972.16 35786.14 29393.84 332
Patchmatch-RL test87.38 30386.24 30490.81 32088.74 36678.40 36088.12 36393.17 34887.11 27682.17 34489.29 35381.95 21095.60 35088.64 21877.02 35298.41 150
CVMVSNet91.23 23691.75 18489.67 33495.77 22974.69 36596.44 20994.88 32285.81 29592.18 17997.64 10879.07 25695.58 35188.06 22395.86 17298.74 122
MDA-MVSNet_test_wron85.87 31784.23 32190.80 32292.38 34782.57 32693.17 33095.15 31082.15 33567.65 36592.33 33378.20 27295.51 35277.33 33779.74 34494.31 323
YYNet185.87 31784.23 32190.78 32392.38 34782.46 32993.17 33095.14 31182.12 33667.69 36492.36 33078.16 27595.50 35377.31 33879.73 34594.39 319
UnsupCasMVSNet_eth85.99 31584.45 31990.62 32489.97 35982.40 33093.62 32497.37 17989.86 19378.59 35892.37 32765.25 35595.35 35482.27 30870.75 36394.10 327
EU-MVSNet88.72 29288.90 27988.20 33993.15 33374.21 36696.63 20094.22 33885.18 30487.32 29995.97 19976.16 29494.98 35585.27 27786.17 29295.41 264
KD-MVS_self_test85.95 31684.95 31588.96 33689.55 36379.11 35795.13 28296.42 25485.91 29484.07 33490.48 34570.03 33194.82 35680.04 32272.94 36192.94 341
CL-MVSNet_self_test86.31 31285.15 31489.80 33388.83 36581.74 33593.93 31496.22 26386.67 28285.03 32390.80 34478.09 27694.50 35774.92 34771.86 36293.15 339
new_pmnet82.89 32881.12 33288.18 34089.63 36180.18 34891.77 34492.57 35376.79 36075.56 36288.23 35761.22 36294.48 35871.43 35982.92 33689.87 363
testgi87.97 29887.21 29890.24 32992.86 33680.76 33996.67 19494.97 31891.74 14085.52 31895.83 20762.66 36094.47 35976.25 34388.36 27595.48 258
FMVSNet587.29 30485.79 30891.78 30294.80 28187.28 25795.49 26695.28 30384.09 31983.85 33791.82 33662.95 35994.17 36078.48 33285.34 30393.91 331
DSMNet-mixed86.34 31186.12 30787.00 34489.88 36070.43 36994.93 28490.08 36677.97 35885.42 32192.78 32174.44 30593.96 36174.43 34995.14 18396.62 215
new-patchmatchnet83.18 32781.87 32987.11 34386.88 37075.99 36493.70 32095.18 30985.02 30877.30 35988.40 35565.99 35293.88 36274.19 35270.18 36491.47 359
EGC-MVSNET68.77 33663.01 34186.07 34792.49 34382.24 33293.96 31290.96 3640.71 3812.62 38290.89 34353.66 36893.46 36357.25 37084.55 31782.51 367
pmmvs379.97 33177.50 33587.39 34282.80 37279.38 35592.70 33990.75 36570.69 36578.66 35787.47 36251.34 37093.40 36473.39 35469.65 36589.38 364
MIMVSNet184.93 32283.05 32490.56 32589.56 36284.84 30695.40 26995.35 29983.91 32080.38 35192.21 33457.23 36493.34 36570.69 36382.75 33893.50 335
test0.0.03 189.37 28388.70 28191.41 31192.47 34485.63 29095.22 28092.70 35291.11 16286.91 30893.65 30979.02 25993.19 36678.00 33589.18 26795.41 264
test20.0386.14 31485.40 31288.35 33790.12 35780.06 34995.90 25195.20 30888.59 23381.29 34693.62 31071.43 32192.65 36771.26 36181.17 34292.34 350
LCM-MVSNet72.55 33369.39 33782.03 34870.81 38065.42 37590.12 35794.36 33655.02 37065.88 36781.72 36524.16 38189.96 36874.32 35168.10 36690.71 362
Gipumacopyleft67.86 33765.41 33975.18 35392.66 34173.45 36766.50 37294.52 33153.33 37157.80 37266.07 37230.81 37589.20 36948.15 37378.88 35062.90 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS270.19 33566.92 33880.01 34976.35 37465.67 37486.22 36487.58 37264.83 36862.38 37080.29 36726.78 37988.49 37063.79 36754.07 37285.88 365
PMVScopyleft53.92 2258.58 34055.40 34368.12 35651.00 38348.64 37978.86 36987.10 37446.77 37235.84 37874.28 3698.76 38286.34 37142.07 37473.91 35969.38 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS71.27 33469.85 33675.50 35274.64 37559.03 37791.30 34691.50 36158.80 36957.92 37188.28 35629.98 37785.53 37253.43 37182.84 33781.95 368
test_method66.11 33864.89 34069.79 35572.62 37835.23 38565.19 37392.83 35120.35 37665.20 36888.08 35943.14 37382.70 37373.12 35563.46 36891.45 360
ANet_high63.94 33959.58 34277.02 35161.24 38266.06 37385.66 36687.93 37178.53 35642.94 37471.04 37125.42 38080.71 37452.60 37230.83 37584.28 366
DeepMVS_CXcopyleft74.68 35490.84 35564.34 37681.61 37865.34 36767.47 36688.01 36048.60 37180.13 37562.33 36973.68 36079.58 369
E-PMN53.28 34152.56 34555.43 35874.43 37647.13 38083.63 36876.30 37942.23 37342.59 37562.22 37428.57 37874.40 37631.53 37631.51 37444.78 373
EMVS52.08 34351.31 34654.39 35972.62 37845.39 38283.84 36775.51 38141.13 37440.77 37659.65 37530.08 37673.60 37728.31 37729.90 37644.18 374
MVEpermissive50.73 2353.25 34248.81 34766.58 35765.34 38157.50 37872.49 37170.94 38240.15 37539.28 37763.51 3736.89 38473.48 37838.29 37542.38 37368.76 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 34453.82 34446.29 36033.73 38445.30 38378.32 37067.24 38318.02 37750.93 37387.05 36352.99 36953.11 37970.76 36225.29 37740.46 375
wuyk23d25.11 34524.57 34926.74 36173.98 37739.89 38457.88 3749.80 38512.27 37810.39 3796.97 3817.03 38336.44 38025.43 37817.39 3783.89 378
testmvs13.36 34716.33 3504.48 3635.04 3852.26 38793.18 3293.28 3862.70 3798.24 38021.66 3772.29 3862.19 3817.58 3792.96 3799.00 377
test12313.04 34815.66 3515.18 3624.51 3863.45 38692.50 3421.81 3872.50 3807.58 38120.15 3783.67 3852.18 3827.13 3801.07 3809.90 376
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.24 34630.99 3480.00 3640.00 3870.00 3880.00 37597.63 1410.00 3820.00 38396.88 14984.38 1590.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.39 3509.85 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38288.65 1010.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.06 34910.74 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38396.69 1580.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.55 193.34 7399.29 198.35 2094.98 2798.49 15
test_one_060199.32 2495.20 2198.25 3695.13 1998.48 1698.87 695.16 7
eth-test20.00 387
eth-test0.00 387
RE-MVS-def96.72 4099.02 4692.34 9897.98 5898.03 8893.52 7897.43 3698.51 2690.71 8096.05 5099.26 7099.43 55
IU-MVS99.42 795.39 1197.94 10690.40 18598.94 597.41 1299.66 1099.74 7
save fliter98.91 5394.28 3997.02 15798.02 9295.35 9
test072699.45 395.36 1398.31 2998.29 2694.92 2898.99 498.92 295.08 8
GSMVS98.45 145
test_part299.28 2795.74 898.10 21
sam_mvs182.76 19298.45 145
sam_mvs81.94 211
MTGPAbinary98.08 68
MTMP97.86 7082.03 377
test9_res94.81 9699.38 5499.45 51
agg_prior293.94 11399.38 5499.50 43
test_prior493.66 6296.42 212
test_prior296.35 22192.80 11096.03 8997.59 11292.01 4695.01 8799.38 54
新几何295.79 255
旧先验198.38 8893.38 7097.75 12498.09 7092.30 4399.01 9299.16 79
原ACMM295.67 258
test22298.24 10192.21 10495.33 27297.60 14379.22 35395.25 11597.84 9188.80 9999.15 8198.72 124
segment_acmp92.89 26
testdata195.26 27993.10 96
plane_prior796.21 20989.98 180
plane_prior696.10 21990.00 17681.32 219
plane_prior496.64 162
plane_prior390.00 17694.46 4791.34 197
plane_prior297.74 8294.85 30
plane_prior196.14 217
plane_prior89.99 17897.24 13794.06 5792.16 226
n20.00 388
nn0.00 388
door-mid91.06 363
test1197.88 111
door91.13 362
HQP5-MVS89.33 205
HQP-NCC95.86 22496.65 19593.55 7390.14 220
ACMP_Plane95.86 22496.65 19593.55 7390.14 220
BP-MVS92.13 147
HQP3-MVS97.39 17692.10 227
HQP2-MVS80.95 222
NP-MVS95.99 22389.81 18595.87 204
MDTV_nov1_ep13_2view70.35 37093.10 33483.88 32293.55 14882.47 20086.25 26098.38 153
ACMMP++_ref90.30 258
ACMMP++91.02 247
Test By Simon88.73 100