This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
patch_mono-296.83 3597.44 1095.01 16299.05 3985.39 28796.98 16598.77 694.70 3897.99 2498.66 1793.61 1999.91 197.67 899.50 3399.72 10
MTAPA97.08 2096.78 3297.97 2199.37 1694.42 3297.24 14398.08 6695.07 2396.11 8298.59 2090.88 6599.90 296.18 4999.50 3399.58 22
DPE-MVScopyleft97.86 497.65 698.47 599.17 3295.78 797.21 14998.35 2195.16 1898.71 1398.80 1395.05 1099.89 396.70 3199.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ZNCC-MVS96.96 2696.67 3797.85 2499.37 1694.12 4398.49 2098.18 4992.64 11496.39 7498.18 6091.61 4899.88 495.59 7599.55 2499.57 23
MP-MVScopyleft96.77 3896.45 4897.72 3699.39 1393.80 5098.41 2598.06 7493.37 8195.54 10598.34 4490.59 6999.88 494.83 9199.54 2699.49 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.86 3296.60 3997.64 4299.40 1193.44 5898.50 1998.09 6593.27 8595.95 9098.33 4791.04 6199.88 495.20 8299.57 2399.60 19
region2R97.07 2196.84 2697.77 3299.46 293.79 5198.52 1698.24 3993.19 8997.14 4298.34 4491.59 5099.87 795.46 7799.59 1799.64 14
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2994.78 3498.93 798.87 896.04 299.86 897.45 1699.58 2199.59 20
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9799.86 897.68 699.67 699.77 1
No_MVS98.86 198.67 5896.94 197.93 9799.86 897.68 699.67 699.77 1
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2999.86 897.52 1299.67 699.75 5
GST-MVS96.85 3496.52 4397.82 2699.36 1894.14 4298.29 3198.13 5792.72 11196.70 5698.06 6791.35 5499.86 894.83 9199.28 5899.47 41
MVS_030497.04 2396.73 3497.96 2297.60 12994.36 3398.01 5694.09 33497.33 196.29 7698.79 1489.73 7899.86 899.36 199.42 4599.67 11
MP-MVS-pluss96.70 4096.27 5297.98 2099.23 3094.71 2796.96 16798.06 7490.67 17195.55 10398.78 1591.07 6099.86 896.58 3499.55 2499.38 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.20 1696.86 2498.23 1199.09 3495.16 2297.60 10598.19 4792.82 10897.93 2698.74 1691.60 4999.86 896.26 4099.52 2899.67 11
ACMMPR97.07 2196.84 2697.79 2999.44 693.88 4998.52 1698.31 2493.21 8697.15 4198.33 4791.35 5499.86 895.63 7099.59 1799.62 16
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3295.13 1999.19 298.89 695.54 599.85 1797.52 1299.66 1099.56 26
test_241102_TWO98.27 3295.13 1998.93 798.89 694.99 1199.85 1797.52 1299.65 1299.74 7
PGM-MVS96.81 3696.53 4297.65 4099.35 2093.53 5797.65 9698.98 292.22 12197.14 4298.44 3491.17 5999.85 1794.35 10399.46 3999.57 23
CP-MVS97.02 2496.81 3097.64 4299.33 2193.54 5698.80 898.28 2992.99 9796.45 7298.30 5291.90 4399.85 1795.61 7299.68 499.54 30
ACMMPcopyleft96.27 5495.93 5697.28 5299.24 2892.62 7898.25 3698.81 492.99 9794.56 12198.39 3888.96 8599.85 1794.57 10297.63 12299.36 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft97.91 397.81 498.22 1299.45 395.36 1398.21 4397.85 10894.92 2598.73 1198.87 895.08 899.84 2297.52 1299.67 699.48 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 3498.73 1198.87 895.87 499.84 2297.45 1699.72 299.77 1
HPM-MVS++copyleft97.34 1496.97 2198.47 599.08 3696.16 497.55 11297.97 9395.59 896.61 6297.89 8092.57 3299.84 2295.95 5699.51 3199.40 49
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 3895.42 1097.94 6698.18 4990.57 18098.85 1098.94 293.33 2199.83 2596.72 3099.68 499.63 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS97.14 1996.92 2397.83 2599.42 794.12 4398.52 1698.32 2393.21 8697.18 4098.29 5392.08 4099.83 2595.63 7099.59 1799.54 30
CANet96.39 5096.02 5597.50 4497.62 12693.38 6097.02 16097.96 9495.42 1194.86 11597.81 8987.38 11099.82 2796.88 2699.20 6799.29 57
QAPM93.45 13692.27 16496.98 6396.77 17092.62 7898.39 2698.12 5984.50 31688.27 27697.77 9282.39 19099.81 2885.40 27698.81 8798.51 123
XVS97.18 1796.96 2297.81 2799.38 1494.03 4798.59 1298.20 4494.85 2796.59 6498.29 5391.70 4699.80 2995.66 6599.40 4899.62 16
X-MVStestdata91.71 20489.67 26397.81 2799.38 1494.03 4798.59 1298.20 4494.85 2796.59 6432.69 38191.70 4699.80 2995.66 6599.40 4899.62 16
test_fmvsm_n_192097.55 997.89 396.53 7398.41 7491.73 10198.01 5699.02 196.37 399.30 198.92 392.39 3599.79 3199.16 299.46 3998.08 155
3Dnovator91.36 595.19 8194.44 9697.44 4696.56 18393.36 6298.65 1198.36 1894.12 5489.25 25498.06 6782.20 19399.77 3293.41 12399.32 5699.18 66
test_fmvsmvis_n_192096.70 4096.84 2696.31 9496.62 17691.73 10197.98 5998.30 2596.19 496.10 8398.95 189.42 7999.76 3398.90 399.08 7697.43 184
CSCG96.05 5795.91 5796.46 8399.24 2890.47 15698.30 3098.57 1389.01 21793.97 13597.57 10992.62 3199.76 3394.66 9799.27 5999.15 69
OpenMVScopyleft89.19 1292.86 16491.68 18396.40 8795.34 24292.73 7698.27 3398.12 5984.86 31185.78 31297.75 9378.89 25399.74 3587.50 24198.65 9296.73 207
PVSNet_Blended_VisFu95.27 7694.91 7996.38 9098.20 9190.86 14397.27 14198.25 3790.21 18594.18 12997.27 12387.48 10899.73 3693.53 11897.77 12098.55 118
DeepC-MVS93.07 396.06 5695.66 6097.29 5197.96 10593.17 6797.30 13998.06 7493.92 5993.38 14898.66 1786.83 11699.73 3695.60 7499.22 6598.96 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D93.57 13292.61 15296.47 8197.59 13091.61 10897.67 9397.72 11985.17 30690.29 21498.34 4484.60 14499.73 3683.85 29698.27 10598.06 156
SF-MVS97.39 1297.13 1398.17 1499.02 4295.28 1998.23 4098.27 3292.37 11998.27 1998.65 1993.33 2199.72 3996.49 3799.52 2899.51 34
CANet_DTU94.37 9993.65 10896.55 7296.46 19192.13 9396.21 23296.67 23294.38 4993.53 14497.03 13779.34 24099.71 4090.76 17398.45 10197.82 167
MCST-MVS97.18 1796.84 2698.20 1399.30 2495.35 1597.12 15698.07 7193.54 7396.08 8497.69 9693.86 1699.71 4096.50 3699.39 5099.55 29
NCCC97.30 1597.03 1998.11 1698.77 5395.06 2497.34 13498.04 8195.96 597.09 4597.88 8293.18 2399.71 4095.84 6199.17 6999.56 26
SteuartSystems-ACMMP97.62 797.53 897.87 2398.39 7794.25 3798.43 2498.27 3295.34 1398.11 2098.56 2194.53 1299.71 4096.57 3599.62 1599.65 13
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+91.43 495.40 7294.48 9498.16 1596.90 16095.34 1698.48 2197.87 10394.65 4288.53 26998.02 7283.69 15799.71 4093.18 12698.96 8299.44 44
DELS-MVS96.61 4596.38 5097.30 5097.79 11693.19 6695.96 24498.18 4995.23 1595.87 9197.65 10191.45 5199.70 4595.87 5799.44 4499.00 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS92.76 16991.51 19196.52 7498.77 5390.99 13797.38 13196.08 26182.38 33589.29 25197.87 8383.77 15699.69 4681.37 31796.69 15098.89 99
PHI-MVS96.77 3896.46 4797.71 3898.40 7594.07 4598.21 4398.45 1789.86 19297.11 4498.01 7392.52 3399.69 4696.03 5499.53 2799.36 54
APDe-MVS97.82 597.73 598.08 1799.15 3394.82 2698.81 798.30 2594.76 3698.30 1898.90 593.77 1799.68 4897.93 499.69 399.75 5
CNVR-MVS97.68 697.44 1098.37 798.90 5095.86 697.27 14198.08 6695.81 797.87 2898.31 5094.26 1399.68 4897.02 2399.49 3699.57 23
新几何197.32 4998.60 6593.59 5597.75 11481.58 34195.75 9697.85 8690.04 7499.67 5086.50 25799.13 7398.69 113
testdata299.67 5085.96 269
ZD-MVS99.05 3994.59 2898.08 6689.22 21197.03 4798.10 6392.52 3399.65 5294.58 10199.31 57
test_241102_ONE99.42 795.30 1798.27 3295.09 2299.19 298.81 1295.54 599.65 52
9.1496.75 3398.93 4797.73 8598.23 4291.28 15197.88 2798.44 3493.00 2499.65 5295.76 6399.47 38
MSP-MVS97.59 897.54 797.73 3599.40 1193.77 5398.53 1598.29 2795.55 998.56 1597.81 8993.90 1599.65 5296.62 3299.21 6699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-MVSNAJ95.37 7395.33 7095.49 14197.35 13690.66 15295.31 27197.48 14793.85 6296.51 6795.70 21488.65 9099.65 5294.80 9498.27 10596.17 221
无先验95.79 25197.87 10383.87 32499.65 5287.68 23598.89 99
EPNet95.20 8094.56 8897.14 5892.80 33592.68 7797.85 7494.87 31996.64 292.46 16497.80 9186.23 12399.65 5293.72 11798.62 9399.10 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS_fast93.89 296.93 2996.64 3897.78 3098.64 6494.30 3497.41 12498.04 8194.81 3296.59 6498.37 3991.24 5699.64 5995.16 8399.52 2899.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3394.15 10693.52 11596.04 11197.81 11590.22 16197.62 10497.58 13695.19 1696.74 5497.45 11483.67 15899.61 6095.85 5979.73 34598.29 144
CHOSEN 1792x268894.15 10693.51 11696.06 10998.27 8389.38 19095.18 27898.48 1685.60 29893.76 13997.11 13283.15 16899.61 6091.33 16498.72 9099.19 65
CPTT-MVS95.57 7095.19 7396.70 6599.27 2691.48 11598.33 2898.11 6287.79 25795.17 11198.03 7087.09 11499.61 6093.51 11999.42 4599.02 80
UGNet94.04 11493.28 12696.31 9496.85 16291.19 13097.88 7097.68 12494.40 4793.00 15696.18 18673.39 30599.61 6091.72 15598.46 10098.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SR-MVS97.01 2596.86 2497.47 4599.09 3493.27 6597.98 5998.07 7193.75 6497.45 3298.48 3191.43 5299.59 6496.22 4399.27 5999.54 30
TEST998.70 5694.19 3996.41 21298.02 8688.17 24596.03 8597.56 11192.74 2899.59 64
train_agg96.30 5395.83 5997.72 3698.70 5694.19 3996.41 21298.02 8688.58 23496.03 8597.56 11192.73 2999.59 6495.04 8599.37 5499.39 50
test_898.67 5894.06 4696.37 21998.01 8988.58 23495.98 8997.55 11392.73 2999.58 67
EI-MVSNet-UG-set96.34 5296.30 5196.47 8198.20 9190.93 14196.86 17397.72 11994.67 4096.16 8198.46 3290.43 7099.58 6796.23 4297.96 11598.90 96
EI-MVSNet-Vis-set96.51 4796.47 4596.63 6898.24 8691.20 12996.89 17197.73 11794.74 3796.49 6898.49 2890.88 6599.58 6796.44 3898.32 10499.13 71
HPM-MVScopyleft96.69 4296.45 4897.40 4799.36 1893.11 6898.87 698.06 7491.17 15696.40 7397.99 7490.99 6299.58 6795.61 7299.61 1699.49 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft96.95 2796.60 3998.01 1899.03 4194.93 2597.72 8898.10 6491.50 14198.01 2398.32 4992.33 3699.58 6794.85 9099.51 3199.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_BlendedMVS94.06 11293.92 10294.47 19298.27 8389.46 18796.73 18498.36 1890.17 18694.36 12495.24 23488.02 9699.58 6793.44 12190.72 24894.36 317
PVSNet_Blended94.87 9194.56 8895.81 12098.27 8389.46 18795.47 26498.36 1888.84 22594.36 12496.09 19488.02 9699.58 6793.44 12198.18 10998.40 137
agg_prior98.67 5893.79 5198.00 9095.68 9999.57 74
SR-MVS-dyc-post96.88 3196.80 3197.11 6099.02 4292.34 8597.98 5998.03 8393.52 7597.43 3598.51 2691.40 5399.56 7596.05 5199.26 6199.43 46
Anonymous2024052991.98 19890.73 21995.73 12698.14 9789.40 18997.99 5897.72 11979.63 35293.54 14397.41 11769.94 32599.56 7591.04 17091.11 24098.22 146
APD-MVS_3200maxsize96.81 3696.71 3697.12 5999.01 4592.31 8797.98 5998.06 7493.11 9497.44 3398.55 2390.93 6399.55 7796.06 5099.25 6399.51 34
PCF-MVS89.48 1191.56 21289.95 25196.36 9296.60 17892.52 8192.51 34397.26 17979.41 35388.90 25896.56 16984.04 15499.55 7777.01 34397.30 13597.01 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
原ACMM196.38 9098.59 6691.09 13697.89 9987.41 26895.22 11097.68 9790.25 7199.54 7987.95 22599.12 7498.49 126
AdaColmapbinary94.34 10093.68 10796.31 9498.59 6691.68 10696.59 20397.81 11289.87 19192.15 17397.06 13583.62 16099.54 7989.34 20098.07 11297.70 171
Anonymous20240521192.07 19590.83 21595.76 12198.19 9388.75 21097.58 10795.00 30986.00 29393.64 14097.45 11466.24 34699.53 8190.68 17692.71 21099.01 83
xiu_mvs_v2_base95.32 7595.29 7195.40 14697.22 13890.50 15595.44 26597.44 16193.70 6796.46 7196.18 18688.59 9399.53 8194.79 9697.81 11896.17 221
VNet95.89 6295.45 6597.21 5698.07 10392.94 7297.50 11598.15 5493.87 6197.52 3197.61 10785.29 13699.53 8195.81 6295.27 17599.16 67
HPM-MVS_fast96.51 4796.27 5297.22 5599.32 2292.74 7598.74 998.06 7490.57 18096.77 5398.35 4190.21 7299.53 8194.80 9499.63 1499.38 52
PLCcopyleft91.00 694.11 11093.43 12196.13 10698.58 6891.15 13596.69 19097.39 16787.29 27191.37 19296.71 15088.39 9499.52 8587.33 24497.13 14197.73 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UA-Net95.95 6195.53 6297.20 5797.67 12192.98 7197.65 9698.13 5794.81 3296.61 6298.35 4188.87 8699.51 8690.36 17997.35 13299.11 75
RPMNet88.98 28287.05 29694.77 18194.45 29187.19 25290.23 35898.03 8377.87 36092.40 16587.55 36380.17 22799.51 8668.84 36693.95 19697.60 178
MAR-MVS94.22 10293.46 11896.51 7798.00 10492.19 9297.67 9397.47 15088.13 24893.00 15695.84 20284.86 14299.51 8687.99 22498.17 11097.83 166
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS95.69 6594.92 7898.01 1898.08 10295.71 995.27 27497.62 13290.43 18395.55 10397.07 13491.72 4499.50 8989.62 19498.94 8398.82 105
F-COLMAP93.58 13192.98 13395.37 14798.40 7588.98 20697.18 15197.29 17887.75 26090.49 20997.10 13385.21 13799.50 8986.70 25496.72 14997.63 173
DP-MVS Recon95.68 6695.12 7697.37 4899.19 3194.19 3997.03 15898.08 6688.35 24195.09 11397.65 10189.97 7599.48 9192.08 14898.59 9498.44 134
CDPH-MVS95.97 6095.38 6897.77 3298.93 4794.44 3196.35 22097.88 10186.98 27696.65 6097.89 8091.99 4299.47 9292.26 13999.46 3999.39 50
test1297.65 4098.46 7094.26 3697.66 12595.52 10690.89 6499.46 9399.25 6399.22 64
ab-mvs93.57 13292.55 15496.64 6697.28 13791.96 9995.40 26697.45 15789.81 19693.22 15496.28 18279.62 23799.46 9390.74 17493.11 20498.50 124
HY-MVS89.66 993.87 12092.95 13496.63 6897.10 14792.49 8295.64 25896.64 23389.05 21693.00 15695.79 20885.77 13299.45 9589.16 20994.35 18997.96 157
xiu_mvs_v1_base_debu95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
xiu_mvs_v1_base95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
xiu_mvs_v1_base_debi95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
test_prior97.23 5498.67 5892.99 7098.00 9099.41 9999.29 57
TSAR-MVS + MP.97.42 1097.33 1297.69 3999.25 2794.24 3898.07 5297.85 10893.72 6598.57 1498.35 4193.69 1899.40 10097.06 2299.46 3999.44 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDD-MVS93.82 12393.08 13096.02 11297.88 11289.96 17097.72 8895.85 26992.43 11795.86 9298.44 3468.42 33299.39 10196.31 3994.85 18198.71 112
WTY-MVS94.71 9694.02 10096.79 6497.71 12092.05 9596.59 20397.35 17390.61 17794.64 11996.93 14086.41 12299.39 10191.20 16894.71 18798.94 91
MVS_111021_HR96.68 4496.58 4196.99 6298.46 7092.31 8796.20 23398.90 394.30 5195.86 9297.74 9492.33 3699.38 10396.04 5399.42 4599.28 59
DeepPCF-MVS93.97 196.61 4597.09 1495.15 15398.09 9986.63 26796.00 24298.15 5495.43 1097.95 2598.56 2193.40 2099.36 10496.77 2899.48 3799.45 42
TSAR-MVS + GP.96.69 4296.49 4497.27 5398.31 8193.39 5996.79 17996.72 22594.17 5397.44 3397.66 10092.76 2699.33 10596.86 2797.76 12199.08 77
114514_t93.95 11693.06 13196.63 6899.07 3791.61 10897.46 12397.96 9477.99 35893.00 15697.57 10986.14 12899.33 10589.22 20599.15 7198.94 91
test_vis1_n_192094.17 10494.58 8792.91 26597.42 13582.02 32597.83 7697.85 10894.68 3998.10 2198.49 2870.15 32399.32 10797.91 598.82 8697.40 185
dcpmvs_296.37 5197.05 1794.31 20198.96 4684.11 30597.56 10997.51 14493.92 5997.43 3598.52 2592.75 2799.32 10797.32 2099.50 3399.51 34
test_yl94.78 9494.23 9896.43 8597.74 11891.22 12596.85 17497.10 18991.23 15395.71 9796.93 14084.30 14999.31 10993.10 12795.12 17798.75 107
DCV-MVSNet94.78 9494.23 9896.43 8597.74 11891.22 12596.85 17497.10 18991.23 15395.71 9796.93 14084.30 14999.31 10993.10 12795.12 17798.75 107
COLMAP_ROBcopyleft87.81 1590.40 26089.28 27193.79 23097.95 10687.13 25596.92 16995.89 26882.83 33386.88 30597.18 12873.77 30299.29 11178.44 33493.62 20094.95 284
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
sss94.51 9793.80 10496.64 6697.07 14891.97 9896.32 22398.06 7488.94 22194.50 12296.78 14784.60 14499.27 11291.90 14996.02 15998.68 114
MG-MVS95.61 6895.38 6896.31 9498.42 7390.53 15496.04 23997.48 14793.47 7795.67 10098.10 6389.17 8299.25 11391.27 16698.77 8899.13 71
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5696.04 299.24 11495.36 7999.59 1799.56 26
MVS_111021_LR96.24 5596.19 5496.39 8998.23 9091.35 12196.24 23198.79 593.99 5795.80 9497.65 10189.92 7699.24 11495.87 5799.20 6798.58 117
FE-MVS92.05 19691.05 20695.08 15796.83 16587.93 23693.91 31495.70 27486.30 28794.15 13094.97 24176.59 27799.21 11684.10 29096.86 14398.09 154
alignmvs95.87 6395.23 7297.78 3097.56 13395.19 2197.86 7197.17 18494.39 4896.47 7096.40 17785.89 12999.20 11796.21 4795.11 17998.95 90
VDDNet93.05 15492.07 16896.02 11296.84 16390.39 16098.08 5195.85 26986.22 29095.79 9598.46 3267.59 33599.19 11894.92 8994.85 18198.47 129
IB-MVS87.33 1789.91 27188.28 28494.79 18095.26 25287.70 24395.12 28093.95 33889.35 20887.03 30092.49 32370.74 31899.19 11889.18 20881.37 33997.49 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
canonicalmvs96.02 5895.45 6597.75 3497.59 13095.15 2398.28 3297.60 13394.52 4496.27 7896.12 19087.65 10399.18 12096.20 4894.82 18398.91 95
API-MVS94.84 9294.49 9395.90 11697.90 11192.00 9797.80 7997.48 14789.19 21294.81 11696.71 15088.84 8799.17 12188.91 21398.76 8996.53 210
LFMVS93.60 12992.63 14996.52 7498.13 9891.27 12497.94 6693.39 34490.57 18096.29 7698.31 5069.00 32899.16 12294.18 10695.87 16399.12 74
AllTest90.23 26488.98 27593.98 21697.94 10786.64 26496.51 20795.54 28485.38 30185.49 31596.77 14870.28 32099.15 12380.02 32492.87 20596.15 223
TestCases93.98 21697.94 10786.64 26495.54 28485.38 30185.49 31596.77 14870.28 32099.15 12380.02 32492.87 20596.15 223
FA-MVS(test-final)93.52 13492.92 13595.31 14896.77 17088.54 21794.82 28296.21 25789.61 19994.20 12895.25 23383.24 16599.14 12590.01 18296.16 15898.25 145
1112_ss93.37 13892.42 16196.21 10497.05 15390.99 13796.31 22496.72 22586.87 27989.83 23396.69 15486.51 12099.14 12588.12 22293.67 19898.50 124
PAPM_NR95.01 8394.59 8696.26 10098.89 5190.68 15197.24 14397.73 11791.80 13592.93 16196.62 16789.13 8399.14 12589.21 20697.78 11998.97 87
PAPR94.18 10393.42 12396.48 8097.64 12591.42 11995.55 26097.71 12388.99 21892.34 17095.82 20489.19 8199.11 12886.14 26397.38 13098.90 96
MVS91.71 20490.44 22895.51 13995.20 25591.59 11096.04 23997.45 15773.44 36687.36 29495.60 21985.42 13599.10 12985.97 26897.46 12595.83 235
thres600view792.49 17591.60 18595.18 15297.91 11089.47 18597.65 9694.66 32192.18 12793.33 14994.91 24578.06 26699.10 12981.61 31194.06 19596.98 198
Test_1112_low_res92.84 16691.84 17795.85 11997.04 15489.97 16995.53 26296.64 23385.38 30189.65 23995.18 23585.86 13099.10 12987.70 23293.58 20398.49 126
CNLPA94.28 10193.53 11396.52 7498.38 7892.55 8096.59 20396.88 21690.13 18891.91 17997.24 12585.21 13799.09 13287.64 23797.83 11797.92 159
OMC-MVS95.09 8294.70 8496.25 10398.46 7091.28 12396.43 21097.57 13792.04 13094.77 11797.96 7787.01 11599.09 13291.31 16596.77 14698.36 141
test_cas_vis1_n_192094.48 9894.55 9194.28 20396.78 16886.45 26997.63 10297.64 12993.32 8497.68 3098.36 4073.75 30399.08 13496.73 2999.05 7797.31 190
thres100view90092.43 17691.58 18694.98 16597.92 10989.37 19197.71 9094.66 32192.20 12393.31 15094.90 24678.06 26699.08 13481.40 31494.08 19296.48 213
tfpn200view992.38 17991.52 18994.95 16897.85 11389.29 19597.41 12494.88 31692.19 12593.27 15294.46 26878.17 26299.08 13481.40 31494.08 19296.48 213
thres40092.42 17791.52 18995.12 15697.85 11389.29 19597.41 12494.88 31692.19 12593.27 15294.46 26878.17 26299.08 13481.40 31494.08 19296.98 198
test250691.60 20890.78 21694.04 21397.66 12383.81 30898.27 3375.53 38493.43 7995.23 10998.21 5767.21 33899.07 13893.01 13498.49 9799.25 62
ECVR-MVScopyleft93.19 14592.73 14694.57 19097.66 12385.41 28598.21 4388.23 36993.43 7994.70 11898.21 5772.57 30799.07 13893.05 13198.49 9799.25 62
tttt051792.96 15892.33 16394.87 17297.11 14687.16 25497.97 6592.09 35490.63 17593.88 13797.01 13876.50 27899.06 14090.29 18195.45 17298.38 139
test111193.19 14592.82 14094.30 20297.58 13284.56 30098.21 4389.02 36893.53 7494.58 12098.21 5772.69 30699.05 14193.06 13098.48 9999.28 59
thisisatest053093.03 15592.21 16695.49 14197.07 14889.11 20497.49 12092.19 35390.16 18794.09 13196.41 17676.43 28199.05 14190.38 17895.68 16998.31 143
PVSNet86.66 1892.24 18991.74 18193.73 23297.77 11783.69 31292.88 33896.72 22587.91 25293.00 15694.86 24878.51 25799.05 14186.53 25597.45 12998.47 129
thres20092.23 19091.39 19294.75 18397.61 12789.03 20596.60 20295.09 30692.08 12993.28 15194.00 29178.39 26099.04 14481.26 31894.18 19196.19 220
thisisatest051592.29 18691.30 19795.25 15096.60 17888.90 20894.36 29792.32 35287.92 25193.43 14794.57 26277.28 27399.00 14589.42 19895.86 16497.86 163
PatchMatch-RL92.90 16292.02 17195.56 13598.19 9390.80 14695.27 27497.18 18287.96 25091.86 18195.68 21580.44 22198.99 14684.01 29297.54 12496.89 203
MSDG91.42 21990.24 23894.96 16797.15 14488.91 20793.69 32196.32 25085.72 29786.93 30396.47 17380.24 22598.98 14780.57 32095.05 18096.98 198
EIA-MVS95.53 7195.47 6495.71 12897.06 15189.63 17697.82 7797.87 10393.57 6993.92 13695.04 24090.61 6898.95 14894.62 9998.68 9198.54 119
MSLP-MVS++96.94 2897.06 1596.59 7198.72 5591.86 10097.67 9398.49 1494.66 4197.24 3998.41 3792.31 3898.94 14996.61 3399.46 3998.96 88
SDMVSNet94.17 10493.61 10995.86 11898.09 9991.37 12097.35 13398.20 4493.18 9091.79 18297.28 12179.13 24498.93 15094.61 10092.84 20797.28 191
ETV-MVS96.02 5895.89 5896.40 8797.16 14292.44 8397.47 12197.77 11394.55 4396.48 6994.51 26391.23 5898.92 15195.65 6898.19 10897.82 167
Vis-MVSNetpermissive95.23 7894.81 8096.51 7797.18 14191.58 11198.26 3598.12 5994.38 4994.90 11498.15 6282.28 19198.92 15191.45 16398.58 9599.01 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS90.10 792.30 18591.22 20295.56 13598.33 8089.60 17896.79 17997.65 12781.83 33991.52 18897.23 12687.94 9898.91 15371.31 36198.37 10398.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XVG-OURS-SEG-HR93.86 12193.55 11194.81 17697.06 15188.53 21895.28 27297.45 15791.68 13894.08 13297.68 9782.41 18998.90 15493.84 11592.47 21396.98 198
XVG-OURS93.72 12793.35 12494.80 17997.07 14888.61 21394.79 28397.46 15291.97 13393.99 13397.86 8581.74 20298.88 15592.64 13892.67 21296.92 202
testdata95.46 14598.18 9588.90 20897.66 12582.73 33497.03 4798.07 6690.06 7398.85 15689.67 19298.98 8198.64 116
lupinMVS94.99 8794.56 8896.29 9896.34 19791.21 12795.83 24996.27 25288.93 22296.22 7996.88 14586.20 12698.85 15695.27 8199.05 7798.82 105
旧先验295.94 24581.66 34097.34 3898.82 15892.26 139
EPP-MVSNet95.22 7995.04 7795.76 12197.49 13489.56 18098.67 1097.00 20390.69 16994.24 12797.62 10689.79 7798.81 15993.39 12496.49 15498.92 94
131492.81 16892.03 17095.14 15495.33 24589.52 18496.04 23997.44 16187.72 26186.25 30995.33 22983.84 15598.79 16089.26 20397.05 14297.11 196
Effi-MVS+94.93 8894.45 9596.36 9296.61 17791.47 11696.41 21297.41 16691.02 16194.50 12295.92 19887.53 10698.78 16193.89 11396.81 14598.84 104
casdiffmvs_mvgpermissive95.81 6495.57 6196.51 7796.87 16191.49 11497.50 11597.56 14093.99 5795.13 11297.92 7987.89 9998.78 16195.97 5597.33 13399.26 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF90.75 25090.86 21190.42 32296.84 16376.29 36095.61 25996.34 24983.89 32291.38 19197.87 8376.45 27998.78 16187.16 24992.23 21696.20 219
jason94.84 9294.39 9796.18 10595.52 23090.93 14196.09 23796.52 24189.28 20996.01 8897.32 11984.70 14398.77 16495.15 8498.91 8598.85 102
jason: jason.
MVS_Test94.89 9094.62 8595.68 12996.83 16589.55 18196.70 18897.17 18491.17 15695.60 10296.11 19387.87 10098.76 16593.01 13497.17 14098.72 110
CS-MVS-test96.89 3097.04 1896.45 8498.29 8291.66 10799.03 497.85 10895.84 696.90 4997.97 7691.24 5698.75 16696.92 2599.33 5598.94 91
ACMM89.79 892.96 15892.50 15894.35 19896.30 19988.71 21197.58 10797.36 17291.40 14790.53 20896.65 15779.77 23498.75 16691.24 16791.64 22695.59 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
casdiffmvspermissive95.64 6795.49 6396.08 10796.76 17390.45 15797.29 14097.44 16194.00 5695.46 10797.98 7587.52 10798.73 16895.64 6997.33 13399.08 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.94 16092.56 15394.10 20996.16 20688.26 22597.65 9697.46 15291.29 14890.12 22297.16 12979.05 24698.73 16892.25 14191.89 22495.31 269
LGP-MVS_train94.10 20996.16 20688.26 22597.46 15291.29 14890.12 22297.16 12979.05 24698.73 16892.25 14191.89 22495.31 269
ACMP89.59 1092.62 17292.14 16794.05 21296.40 19488.20 22897.36 13297.25 18191.52 14088.30 27496.64 15878.46 25898.72 17191.86 15291.48 23195.23 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS96.86 3297.06 1596.26 10098.16 9691.16 13499.09 397.87 10395.30 1497.06 4698.03 7091.72 4498.71 17297.10 2199.17 6998.90 96
baseline291.63 20790.86 21193.94 22294.33 29586.32 27195.92 24691.64 35889.37 20786.94 30294.69 25681.62 20498.69 17388.64 21894.57 18896.81 205
baseline95.58 6995.42 6796.08 10796.78 16890.41 15997.16 15397.45 15793.69 6895.65 10197.85 8687.29 11198.68 17495.66 6597.25 13799.13 71
diffmvspermissive95.25 7795.13 7595.63 13196.43 19389.34 19295.99 24397.35 17392.83 10796.31 7597.37 11886.44 12198.67 17596.26 4097.19 13998.87 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test93.66 12892.92 13595.87 11798.24 8689.88 17194.58 28898.49 1485.06 30893.78 13895.78 20982.86 17798.67 17591.77 15495.71 16899.07 79
sd_testset93.10 15092.45 16095.05 15898.09 9989.21 19996.89 17197.64 12993.18 9091.79 18297.28 12175.35 29198.65 17788.99 21192.84 20797.28 191
gm-plane-assit93.22 32878.89 35584.82 31293.52 30898.64 17887.72 229
OPM-MVS93.28 14192.76 14294.82 17494.63 28590.77 14896.65 19497.18 18293.72 6591.68 18497.26 12479.33 24198.63 17992.13 14592.28 21595.07 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Fast-Effi-MVS+93.46 13592.75 14495.59 13496.77 17090.03 16396.81 17897.13 18688.19 24491.30 19694.27 27986.21 12598.63 17987.66 23696.46 15698.12 150
ACMH87.59 1690.53 25789.42 26893.87 22696.21 20187.92 23797.24 14396.94 20788.45 23883.91 33396.27 18371.92 30998.62 18184.43 28789.43 26295.05 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS93.78 12593.43 12194.82 17496.21 20189.99 16697.74 8397.51 14494.85 2791.34 19396.64 15881.32 20798.60 18293.02 13292.23 21695.86 231
plane_prior597.51 14498.60 18293.02 13292.23 21695.86 231
XVG-ACMP-BASELINE90.93 24590.21 24293.09 25994.31 29785.89 27895.33 26997.26 17991.06 16089.38 24795.44 22768.61 33098.60 18289.46 19791.05 24194.79 302
EC-MVSNet96.42 4996.47 4596.26 10097.01 15691.52 11398.89 597.75 11494.42 4696.64 6197.68 9789.32 8098.60 18297.45 1699.11 7598.67 115
BH-RMVSNet92.72 17191.97 17394.97 16697.16 14287.99 23596.15 23595.60 28190.62 17691.87 18097.15 13178.41 25998.57 18683.16 29897.60 12398.36 141
LTVRE_ROB88.41 1390.99 24189.92 25394.19 20596.18 20489.55 18196.31 22497.09 19187.88 25385.67 31395.91 19978.79 25498.57 18681.50 31289.98 25694.44 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+87.92 1490.20 26689.18 27393.25 25396.48 19086.45 26996.99 16496.68 23088.83 22684.79 32296.22 18570.16 32298.53 18884.42 28888.04 27494.77 305
tpmvs89.83 27589.15 27491.89 29194.92 26880.30 34293.11 33495.46 28886.28 28888.08 28192.65 31980.44 22198.52 18981.47 31389.92 25796.84 204
AUN-MVS91.76 20390.75 21894.81 17697.00 15788.57 21596.65 19496.49 24389.63 19892.15 17396.12 19078.66 25598.50 19090.83 17179.18 34897.36 186
HQP4-MVS90.14 21698.50 19095.78 240
HQP-MVS93.19 14592.74 14594.54 19195.86 21689.33 19396.65 19497.39 16793.55 7090.14 21695.87 20080.95 21098.50 19092.13 14592.10 22195.78 240
hse-mvs293.45 13692.99 13294.81 17697.02 15588.59 21496.69 19096.47 24495.19 1696.74 5496.16 18983.67 15898.48 19395.85 5979.13 34997.35 188
test_fmvs1_n92.73 17092.88 13792.29 28296.08 21381.05 33397.98 5997.08 19290.72 16896.79 5298.18 6063.07 35498.45 19497.62 1098.42 10297.36 186
IS-MVSNet94.90 8994.52 9296.05 11097.67 12190.56 15398.44 2396.22 25593.21 8693.99 13397.74 9485.55 13498.45 19489.98 18397.86 11699.14 70
CHOSEN 280x42093.12 14992.72 14794.34 19996.71 17487.27 24890.29 35797.72 11986.61 28391.34 19395.29 23084.29 15198.41 19693.25 12598.94 8397.35 188
test_fmvs193.21 14393.53 11392.25 28496.55 18581.20 33297.40 12896.96 20590.68 17096.80 5198.04 6969.25 32798.40 19797.58 1198.50 9697.16 195
VPA-MVSNet93.24 14292.48 15995.51 13995.70 22392.39 8497.86 7198.66 1192.30 12092.09 17795.37 22880.49 22098.40 19793.95 11085.86 29395.75 245
PMMVS92.86 16492.34 16294.42 19594.92 26886.73 26394.53 29096.38 24884.78 31394.27 12695.12 23983.13 16998.40 19791.47 16296.49 15498.12 150
CLD-MVS92.98 15792.53 15694.32 20096.12 21089.20 20095.28 27297.47 15092.66 11289.90 23095.62 21880.58 21898.40 19792.73 13792.40 21495.38 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE93.89 11993.28 12695.72 12796.96 15989.75 17498.24 3996.92 21289.47 20492.12 17597.21 12784.42 14798.39 20187.71 23196.50 15399.01 83
tt080591.09 23690.07 24894.16 20795.61 22588.31 22297.56 10996.51 24289.56 20089.17 25595.64 21767.08 34298.38 20291.07 16988.44 27295.80 238
cascas91.20 23290.08 24594.58 18994.97 26389.16 20393.65 32397.59 13579.90 35189.40 24692.92 31775.36 29098.36 20392.14 14494.75 18596.23 217
PC_three_145290.77 16598.89 998.28 5596.24 198.35 20495.76 6399.58 2199.59 20
BH-untuned92.94 16092.62 15193.92 22597.22 13886.16 27796.40 21696.25 25490.06 18989.79 23496.17 18883.19 16698.35 20487.19 24797.27 13697.24 193
TR-MVS91.48 21790.59 22494.16 20796.40 19487.33 24695.67 25595.34 29587.68 26291.46 19095.52 22476.77 27698.35 20482.85 30293.61 20196.79 206
TDRefinement86.53 30484.76 31591.85 29282.23 37584.25 30296.38 21895.35 29284.97 31084.09 33094.94 24365.76 34998.34 20784.60 28674.52 35992.97 337
Effi-MVS+-dtu93.08 15293.21 12892.68 27596.02 21483.25 31597.14 15596.72 22593.85 6291.20 20393.44 31183.08 17098.30 20891.69 15895.73 16796.50 212
test_vis1_n92.37 18092.26 16592.72 27294.75 27982.64 31798.02 5596.80 22291.18 15597.77 2997.93 7858.02 36198.29 20997.63 998.21 10797.23 194
tpmrst91.44 21891.32 19591.79 29695.15 25679.20 35293.42 32895.37 29188.55 23793.49 14593.67 30482.49 18798.27 21090.41 17789.34 26397.90 160
XXY-MVS92.16 19291.23 20194.95 16894.75 27990.94 14097.47 12197.43 16489.14 21388.90 25896.43 17579.71 23598.24 21189.56 19587.68 27795.67 251
UniMVSNet_ETH3D91.34 22690.22 24194.68 18494.86 27387.86 24097.23 14797.46 15287.99 24989.90 23096.92 14366.35 34498.23 21290.30 18090.99 24397.96 157
nrg03094.05 11393.31 12596.27 9995.22 25394.59 2898.34 2797.46 15292.93 10591.21 20296.64 15887.23 11398.22 21394.99 8885.80 29495.98 230
baseline192.82 16791.90 17595.55 13797.20 14090.77 14897.19 15094.58 32492.20 12392.36 16896.34 18084.16 15298.21 21489.20 20783.90 32597.68 172
VPNet92.23 19091.31 19694.99 16395.56 22890.96 13997.22 14897.86 10792.96 10490.96 20496.62 16775.06 29298.20 21591.90 14983.65 32795.80 238
CostFormer91.18 23590.70 22092.62 27694.84 27481.76 32794.09 30794.43 32684.15 31992.72 16393.77 29979.43 23998.20 21590.70 17592.18 21997.90 160
USDC88.94 28387.83 28892.27 28394.66 28384.96 29593.86 31595.90 26687.34 27083.40 33595.56 22167.43 33698.19 21782.64 30789.67 26093.66 329
PS-MVSNAJss93.74 12693.51 11694.44 19393.91 30789.28 19797.75 8297.56 14092.50 11689.94 22996.54 17088.65 9098.18 21893.83 11690.90 24595.86 231
tpm cat188.36 29187.21 29491.81 29595.13 25880.55 33892.58 34295.70 27474.97 36387.45 29091.96 33378.01 26898.17 21980.39 32288.74 26996.72 208
PAPM91.52 21590.30 23495.20 15195.30 24889.83 17293.38 32996.85 21986.26 28988.59 26795.80 20584.88 14198.15 22075.67 34795.93 16297.63 173
mvsmamba93.83 12293.46 11894.93 17194.88 27290.85 14498.55 1495.49 28794.24 5291.29 19996.97 13983.04 17298.14 22195.56 7691.17 23895.78 240
iter_conf_final93.60 12993.11 12995.04 15997.13 14591.30 12297.92 6895.65 28092.98 10291.60 18596.64 15879.28 24298.13 22295.34 8091.49 23095.70 248
Anonymous2023121190.63 25589.42 26894.27 20498.24 8689.19 20298.05 5397.89 9979.95 35088.25 27794.96 24272.56 30898.13 22289.70 19185.14 30495.49 253
iter_conf0593.18 14892.63 14994.83 17396.64 17590.69 15097.60 10595.53 28692.52 11591.58 18696.64 15876.35 28298.13 22295.43 7891.42 23395.68 250
PatchmatchNetpermissive91.91 19991.35 19393.59 24095.38 23784.11 30593.15 33395.39 28989.54 20192.10 17693.68 30382.82 17998.13 22284.81 28295.32 17498.52 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap86.82 30385.35 30991.21 30994.91 27082.99 31693.94 31194.02 33783.58 32781.56 34394.68 25762.34 35798.13 22275.78 34587.35 28392.52 345
dp88.90 28588.26 28590.81 31594.58 28876.62 35892.85 33994.93 31385.12 30790.07 22793.07 31575.81 28598.12 22780.53 32187.42 28197.71 170
jajsoiax92.42 17791.89 17694.03 21493.33 32788.50 21997.73 8597.53 14292.00 13288.85 26196.50 17275.62 28998.11 22893.88 11491.56 22995.48 254
patchmatchnet-post90.45 34482.65 18498.10 229
SCA91.84 20191.18 20493.83 22795.59 22684.95 29694.72 28495.58 28390.82 16392.25 17193.69 30175.80 28698.10 22986.20 26195.98 16098.45 131
v7n90.76 24989.86 25493.45 24793.54 31887.60 24597.70 9297.37 17088.85 22487.65 28894.08 28981.08 20998.10 22984.68 28483.79 32694.66 309
mvs_tets92.31 18491.76 17893.94 22293.41 32488.29 22397.63 10297.53 14292.04 13088.76 26496.45 17474.62 29598.09 23293.91 11291.48 23195.45 259
mvsany_test193.93 11893.98 10193.78 23194.94 26786.80 26094.62 28692.55 35188.77 23196.85 5098.49 2888.98 8498.08 23395.03 8695.62 17096.46 215
Fast-Effi-MVS+-dtu92.29 18691.99 17293.21 25695.27 24985.52 28397.03 15896.63 23692.09 12889.11 25795.14 23780.33 22498.08 23387.54 24094.74 18696.03 229
test_post17.58 38481.76 20198.08 233
MDTV_nov1_ep1390.76 21795.22 25380.33 34193.03 33695.28 29688.14 24792.84 16293.83 29581.34 20698.08 23382.86 30194.34 190
test-LLR91.42 21991.19 20392.12 28694.59 28680.66 33594.29 30192.98 34691.11 15890.76 20692.37 32579.02 24898.07 23788.81 21496.74 14797.63 173
test-mter90.19 26789.54 26692.12 28694.59 28680.66 33594.29 30192.98 34687.68 26290.76 20692.37 32567.67 33498.07 23788.81 21496.74 14797.63 173
BH-w/o92.14 19491.75 17993.31 25196.99 15885.73 28095.67 25595.69 27688.73 23289.26 25394.82 25182.97 17598.07 23785.26 27896.32 15796.13 225
tfpnnormal89.70 27788.40 28293.60 23995.15 25690.10 16297.56 10998.16 5387.28 27286.16 31094.63 26077.57 27198.05 24074.48 34984.59 31492.65 343
V4291.58 21190.87 21093.73 23294.05 30488.50 21997.32 13796.97 20488.80 23089.71 23594.33 27482.54 18598.05 24089.01 21085.07 30694.64 310
EI-MVSNet93.03 15592.88 13793.48 24595.77 22186.98 25796.44 20897.12 18790.66 17391.30 19697.64 10486.56 11898.05 24089.91 18590.55 25095.41 260
MVSTER93.20 14492.81 14194.37 19796.56 18389.59 17997.06 15797.12 18791.24 15291.30 19695.96 19682.02 19698.05 24093.48 12090.55 25095.47 257
UniMVSNet (Re)93.31 14092.55 15495.61 13395.39 23693.34 6397.39 12998.71 793.14 9390.10 22494.83 25087.71 10198.03 24491.67 15983.99 32195.46 258
v2v48291.59 20990.85 21393.80 22993.87 30988.17 23096.94 16896.88 21689.54 20189.53 24394.90 24681.70 20398.02 24589.25 20485.04 30895.20 277
v891.29 22990.53 22793.57 24294.15 30088.12 23297.34 13497.06 19688.99 21888.32 27394.26 28183.08 17098.01 24687.62 23883.92 32494.57 311
v14419291.06 23890.28 23593.39 24893.66 31687.23 25196.83 17797.07 19487.43 26789.69 23794.28 27881.48 20598.00 24787.18 24884.92 31094.93 288
v114491.37 22390.60 22393.68 23793.89 30888.23 22796.84 17697.03 20188.37 24089.69 23794.39 27082.04 19597.98 24887.80 22885.37 29994.84 294
v124090.70 25389.85 25593.23 25493.51 32086.80 26096.61 20097.02 20287.16 27489.58 24094.31 27779.55 23897.98 24885.52 27485.44 29894.90 291
OurMVSNet-221017-090.51 25890.19 24391.44 30593.41 32481.25 33096.98 16596.28 25191.68 13886.55 30796.30 18174.20 29897.98 24888.96 21287.40 28295.09 279
bld_raw_dy_0_6492.37 18091.69 18294.39 19694.28 29989.73 17597.71 9093.65 34192.78 11090.46 21096.67 15675.88 28497.97 25192.92 13690.89 24695.48 254
v192192090.85 24790.03 25093.29 25293.55 31786.96 25996.74 18397.04 19987.36 26989.52 24494.34 27380.23 22697.97 25186.27 25985.21 30394.94 286
v119291.07 23790.23 23993.58 24193.70 31387.82 24196.73 18497.07 19487.77 25889.58 24094.32 27680.90 21497.97 25186.52 25685.48 29794.95 284
v1091.04 23990.23 23993.49 24494.12 30188.16 23197.32 13797.08 19288.26 24388.29 27594.22 28482.17 19497.97 25186.45 25884.12 32094.33 318
PVSNet_082.17 1985.46 31783.64 32090.92 31395.27 24979.49 34990.55 35695.60 28183.76 32583.00 33989.95 34871.09 31597.97 25182.75 30560.79 37695.31 269
GA-MVS91.38 22190.31 23394.59 18594.65 28487.62 24494.34 29896.19 25890.73 16790.35 21393.83 29571.84 31097.96 25687.22 24693.61 20198.21 147
ITE_SJBPF92.43 27895.34 24285.37 28895.92 26491.47 14287.75 28796.39 17871.00 31697.96 25682.36 30889.86 25893.97 326
D2MVS91.30 22890.95 20892.35 27994.71 28285.52 28396.18 23498.21 4388.89 22386.60 30693.82 29779.92 23297.95 25889.29 20290.95 24493.56 330
FIs94.09 11193.70 10695.27 14995.70 22392.03 9698.10 4998.68 993.36 8390.39 21296.70 15287.63 10497.94 25992.25 14190.50 25295.84 234
tpm289.96 27089.21 27292.23 28594.91 27081.25 33093.78 31794.42 32780.62 34891.56 18793.44 31176.44 28097.94 25985.60 27392.08 22397.49 182
TAMVS94.01 11593.46 11895.64 13096.16 20690.45 15796.71 18796.89 21589.27 21093.46 14696.92 14387.29 11197.94 25988.70 21795.74 16698.53 120
RRT_MVS93.10 15092.83 13993.93 22494.76 27788.04 23398.47 2296.55 24093.44 7890.01 22897.04 13680.64 21797.93 26294.33 10490.21 25595.83 235
MVSFormer95.37 7395.16 7495.99 11496.34 19791.21 12798.22 4197.57 13791.42 14596.22 7997.32 11986.20 12697.92 26394.07 10799.05 7798.85 102
test_djsdf93.07 15392.76 14294.00 21593.49 32188.70 21298.22 4197.57 13791.42 14590.08 22695.55 22282.85 17897.92 26394.07 10791.58 22895.40 263
JIA-IIPM88.26 29387.04 29791.91 29093.52 31981.42 32989.38 36394.38 32880.84 34590.93 20580.74 37079.22 24397.92 26382.76 30491.62 22796.38 216
Vis-MVSNet (Re-imp)94.15 10693.88 10394.95 16897.61 12787.92 23798.10 4995.80 27192.22 12193.02 15597.45 11484.53 14697.91 26688.24 22197.97 11499.02 80
CDS-MVSNet94.14 10993.54 11295.93 11596.18 20491.46 11796.33 22297.04 19988.97 22093.56 14196.51 17187.55 10597.89 26789.80 18895.95 16198.44 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp92.16 19291.55 18793.97 21892.58 33989.55 18197.51 11497.42 16589.42 20688.40 27194.84 24980.66 21697.88 26891.87 15191.28 23694.48 312
FC-MVSNet-test93.94 11793.57 11095.04 15995.48 23291.45 11898.12 4898.71 793.37 8190.23 21596.70 15287.66 10297.85 26991.49 16190.39 25395.83 235
ADS-MVSNet89.89 27288.68 27993.53 24395.86 21684.89 29790.93 35395.07 30783.23 33191.28 20091.81 33579.01 25097.85 26979.52 32691.39 23497.84 164
UniMVSNet_NR-MVSNet93.37 13892.67 14895.47 14495.34 24292.83 7397.17 15298.58 1292.98 10290.13 22095.80 20588.37 9597.85 26991.71 15683.93 32295.73 247
DU-MVS92.90 16292.04 16995.49 14194.95 26592.83 7397.16 15398.24 3993.02 9690.13 22095.71 21283.47 16197.85 26991.71 15683.93 32295.78 240
v14890.99 24190.38 23092.81 27093.83 31085.80 27996.78 18196.68 23089.45 20588.75 26593.93 29482.96 17697.82 27387.83 22783.25 32994.80 300
MS-PatchMatch90.27 26289.77 25991.78 29794.33 29584.72 29995.55 26096.73 22486.17 29186.36 30895.28 23271.28 31497.80 27484.09 29198.14 11192.81 340
WR-MVS92.34 18291.53 18894.77 18195.13 25890.83 14596.40 21697.98 9291.88 13489.29 25195.54 22382.50 18697.80 27489.79 18985.27 30295.69 249
pm-mvs190.72 25289.65 26593.96 21994.29 29889.63 17697.79 8096.82 22189.07 21486.12 31195.48 22678.61 25697.78 27686.97 25281.67 33794.46 313
EPMVS90.70 25389.81 25793.37 24994.73 28184.21 30393.67 32288.02 37089.50 20392.38 16793.49 30977.82 27097.78 27686.03 26792.68 21198.11 153
NR-MVSNet92.34 18291.27 19995.53 13894.95 26593.05 6997.39 12998.07 7192.65 11384.46 32395.71 21285.00 14097.77 27889.71 19083.52 32895.78 240
MVP-Stereo90.74 25190.08 24592.71 27393.19 32988.20 22895.86 24896.27 25286.07 29284.86 32194.76 25377.84 26997.75 27983.88 29598.01 11392.17 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous93.82 12393.74 10594.06 21196.44 19285.41 28595.81 25097.05 19789.85 19490.09 22596.36 17987.44 10997.75 27993.97 10996.69 15099.02 80
EG-PatchMatch MVS87.02 30285.44 30691.76 29992.67 33785.00 29496.08 23896.45 24583.41 33079.52 35393.49 30957.10 36397.72 28179.34 33190.87 24792.56 344
SixPastTwentyTwo89.15 28188.54 28190.98 31293.49 32180.28 34396.70 18894.70 32090.78 16484.15 32895.57 22071.78 31197.71 28284.63 28585.07 30694.94 286
test_post192.81 34016.58 38580.53 21997.68 28386.20 261
pmmvs687.81 29786.19 30192.69 27491.32 34986.30 27297.34 13496.41 24780.59 34984.05 33294.37 27267.37 33797.67 28484.75 28379.51 34794.09 325
TESTMET0.1,190.06 26989.42 26891.97 28994.41 29380.62 33794.29 30191.97 35687.28 27290.44 21192.47 32468.79 32997.67 28488.50 22096.60 15297.61 177
LF4IMVS87.94 29587.25 29289.98 32692.38 34480.05 34694.38 29695.25 29987.59 26484.34 32494.74 25564.31 35197.66 28684.83 28187.45 27992.23 348
miper_enhance_ethall91.54 21491.01 20793.15 25795.35 24187.07 25693.97 30996.90 21386.79 28089.17 25593.43 31386.55 11997.64 28789.97 18486.93 28494.74 306
IterMVS-LS92.29 18691.94 17493.34 25096.25 20086.97 25896.57 20697.05 19790.67 17189.50 24594.80 25286.59 11797.64 28789.91 18586.11 29295.40 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVS_ROBcopyleft81.14 2084.42 32282.28 32890.83 31490.06 35684.05 30795.73 25394.04 33673.89 36580.17 35291.53 33859.15 35997.64 28766.92 36889.05 26590.80 361
cl2291.21 23190.56 22693.14 25896.09 21286.80 26094.41 29596.58 23987.80 25688.58 26893.99 29280.85 21597.62 29089.87 18786.93 28494.99 283
CMPMVSbinary62.92 2185.62 31684.92 31387.74 33889.14 36273.12 36694.17 30496.80 22273.98 36473.65 36594.93 24466.36 34397.61 29183.95 29491.28 23692.48 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth91.02 24090.59 22492.34 28195.33 24584.35 30194.10 30696.90 21388.56 23688.84 26294.33 27484.08 15397.60 29288.77 21684.37 31895.06 281
TranMVSNet+NR-MVSNet92.50 17391.63 18495.14 15494.76 27792.07 9497.53 11398.11 6292.90 10689.56 24296.12 19083.16 16797.60 29289.30 20183.20 33195.75 245
WR-MVS_H92.00 19791.35 19393.95 22095.09 26089.47 18598.04 5498.68 991.46 14388.34 27294.68 25785.86 13097.56 29485.77 27184.24 31994.82 297
lessismore_v090.45 32191.96 34779.09 35487.19 37380.32 35094.39 27066.31 34597.55 29584.00 29376.84 35494.70 307
miper_ehance_all_eth91.59 20991.13 20592.97 26395.55 22986.57 26894.47 29196.88 21687.77 25888.88 26094.01 29086.22 12497.54 29689.49 19686.93 28494.79 302
cl____90.96 24490.32 23292.89 26695.37 23986.21 27594.46 29396.64 23387.82 25488.15 28094.18 28582.98 17497.54 29687.70 23285.59 29594.92 290
DIV-MVS_self_test90.97 24390.33 23192.88 26795.36 24086.19 27694.46 29396.63 23687.82 25488.18 27994.23 28282.99 17397.53 29887.72 22985.57 29694.93 288
gg-mvs-nofinetune87.82 29685.61 30594.44 19394.46 29089.27 19891.21 35284.61 37880.88 34489.89 23274.98 37271.50 31297.53 29885.75 27297.21 13896.51 211
CP-MVSNet91.89 20091.24 20093.82 22895.05 26188.57 21597.82 7798.19 4791.70 13788.21 27895.76 21081.96 19797.52 30087.86 22684.65 31195.37 266
Patchmatch-test89.42 27987.99 28693.70 23595.27 24985.11 29288.98 36494.37 32981.11 34287.10 29993.69 30182.28 19197.50 30174.37 35194.76 18498.48 128
PS-CasMVS91.55 21390.84 21493.69 23694.96 26488.28 22497.84 7598.24 3991.46 14388.04 28295.80 20579.67 23697.48 30287.02 25184.54 31695.31 269
c3_l91.38 22190.89 20992.88 26795.58 22786.30 27294.68 28596.84 22088.17 24588.83 26394.23 28285.65 13397.47 30389.36 19984.63 31294.89 292
FMVSNet391.78 20290.69 22195.03 16196.53 18692.27 8997.02 16096.93 20889.79 19789.35 24894.65 25977.01 27497.47 30386.12 26488.82 26695.35 267
pmmvs490.93 24589.85 25594.17 20693.34 32690.79 14794.60 28796.02 26284.62 31487.45 29095.15 23681.88 20097.45 30587.70 23287.87 27694.27 322
Baseline_NR-MVSNet91.20 23290.62 22292.95 26493.83 31088.03 23497.01 16395.12 30588.42 23989.70 23695.13 23883.47 16197.44 30689.66 19383.24 33093.37 334
tpm90.25 26389.74 26291.76 29993.92 30679.73 34893.98 30893.54 34288.28 24291.99 17893.25 31477.51 27297.44 30687.30 24587.94 27598.12 150
FMVSNet291.31 22790.08 24594.99 16396.51 18792.21 9097.41 12496.95 20688.82 22788.62 26694.75 25473.87 29997.42 30885.20 27988.55 27195.35 267
SD-MVS97.41 1197.53 897.06 6198.57 6994.46 3097.92 6898.14 5694.82 3199.01 498.55 2394.18 1497.41 30996.94 2499.64 1399.32 56
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS-HIRNet82.47 32881.21 33186.26 34495.38 23769.21 37088.96 36589.49 36766.28 36980.79 34674.08 37468.48 33197.39 31071.93 35995.47 17192.18 350
EPNet_dtu91.71 20491.28 19892.99 26293.76 31283.71 31196.69 19095.28 29693.15 9287.02 30195.95 19783.37 16497.38 31179.46 32996.84 14497.88 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs589.86 27488.87 27792.82 26992.86 33386.23 27496.26 22795.39 28984.24 31887.12 29794.51 26374.27 29797.36 31287.61 23987.57 27894.86 293
PEN-MVS91.20 23290.44 22893.48 24594.49 28987.91 23997.76 8198.18 4991.29 14887.78 28695.74 21180.35 22397.33 31385.46 27582.96 33295.19 278
TransMVSNet (Re)88.94 28387.56 28993.08 26094.35 29488.45 22197.73 8595.23 30087.47 26684.26 32695.29 23079.86 23397.33 31379.44 33074.44 36093.45 333
GBi-Net91.35 22490.27 23694.59 18596.51 18791.18 13197.50 11596.93 20888.82 22789.35 24894.51 26373.87 29997.29 31586.12 26488.82 26695.31 269
test191.35 22490.27 23694.59 18596.51 18791.18 13197.50 11596.93 20888.82 22789.35 24894.51 26373.87 29997.29 31586.12 26488.82 26695.31 269
FMVSNet189.88 27388.31 28394.59 18595.41 23591.18 13197.50 11596.93 20886.62 28287.41 29294.51 26365.94 34897.29 31583.04 30087.43 28095.31 269
test_040286.46 30584.79 31491.45 30495.02 26285.55 28296.29 22694.89 31580.90 34382.21 34193.97 29368.21 33397.29 31562.98 37088.68 27091.51 355
test_fmvs289.77 27689.93 25289.31 33293.68 31576.37 35997.64 10095.90 26689.84 19591.49 18996.26 18458.77 36097.10 31994.65 9891.13 23994.46 313
test_vis1_rt86.16 31085.06 31189.46 33093.47 32380.46 33996.41 21286.61 37585.22 30479.15 35588.64 35452.41 36797.06 32093.08 12990.57 24990.87 360
CR-MVSNet90.82 24889.77 25993.95 22094.45 29187.19 25290.23 35895.68 27886.89 27892.40 16592.36 32880.91 21297.05 32181.09 31993.95 19697.60 178
LCM-MVSNet-Re92.50 17392.52 15792.44 27796.82 16781.89 32696.92 16993.71 34092.41 11884.30 32594.60 26185.08 13997.03 32291.51 16097.36 13198.40 137
Patchmtry88.64 28987.25 29292.78 27194.09 30286.64 26489.82 36195.68 27880.81 34687.63 28992.36 32880.91 21297.03 32278.86 33285.12 30594.67 308
PatchT88.87 28687.42 29093.22 25594.08 30385.10 29389.51 36294.64 32381.92 33892.36 16888.15 35980.05 22997.01 32472.43 35793.65 19997.54 181
DTE-MVSNet90.56 25689.75 26193.01 26193.95 30587.25 24997.64 10097.65 12790.74 16687.12 29795.68 21579.97 23197.00 32583.33 29781.66 33894.78 304
ppachtmachnet_test88.35 29287.29 29191.53 30292.45 34283.57 31393.75 31895.97 26384.28 31785.32 31894.18 28579.00 25296.93 32675.71 34684.99 30994.10 323
miper_lstm_enhance90.50 25990.06 24991.83 29395.33 24583.74 30993.86 31596.70 22987.56 26587.79 28593.81 29883.45 16396.92 32787.39 24284.62 31394.82 297
GG-mvs-BLEND93.62 23893.69 31489.20 20092.39 34583.33 38087.98 28489.84 35071.00 31696.87 32882.08 31095.40 17394.80 300
ambc86.56 34383.60 37270.00 36985.69 37094.97 31180.60 34888.45 35537.42 37496.84 32982.69 30675.44 35892.86 339
ET-MVSNet_ETH3D91.49 21690.11 24495.63 13196.40 19491.57 11295.34 26893.48 34390.60 17975.58 36295.49 22580.08 22896.79 33094.25 10589.76 25998.52 121
our_test_388.78 28787.98 28791.20 31092.45 34282.53 31993.61 32595.69 27685.77 29684.88 32093.71 30079.99 23096.78 33179.47 32886.24 28994.28 321
K. test v387.64 29886.75 29990.32 32393.02 33279.48 35096.61 20092.08 35590.66 17380.25 35194.09 28867.21 33896.65 33285.96 26980.83 34194.83 295
IterMVS-SCA-FT90.31 26189.81 25791.82 29495.52 23084.20 30494.30 30096.15 25990.61 17787.39 29394.27 27975.80 28696.44 33387.34 24386.88 28894.82 297
N_pmnet78.73 33478.71 33578.79 35292.80 33546.50 38694.14 30543.71 38978.61 35680.83 34591.66 33774.94 29396.36 33467.24 36784.45 31793.50 331
UnsupCasMVSNet_bld82.13 32979.46 33490.14 32588.00 36782.47 32090.89 35596.62 23878.94 35575.61 36184.40 36856.63 36496.31 33577.30 34066.77 37291.63 353
IterMVS90.15 26889.67 26391.61 30195.48 23283.72 31094.33 29996.12 26089.99 19087.31 29694.15 28775.78 28896.27 33686.97 25286.89 28794.83 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052186.42 30685.44 30689.34 33190.33 35479.79 34796.73 18495.92 26483.71 32683.25 33691.36 33963.92 35296.01 33778.39 33585.36 30092.22 349
ADS-MVSNet289.45 27888.59 28092.03 28895.86 21682.26 32390.93 35394.32 33283.23 33191.28 20091.81 33579.01 25095.99 33879.52 32691.39 23497.84 164
KD-MVS_2432*160084.81 32082.64 32491.31 30791.07 35185.34 28991.22 35095.75 27285.56 29983.09 33790.21 34667.21 33895.89 33977.18 34162.48 37492.69 341
miper_refine_blended84.81 32082.64 32491.31 30791.07 35185.34 28991.22 35095.75 27285.56 29983.09 33790.21 34667.21 33895.89 33977.18 34162.48 37492.69 341
MDA-MVSNet-bldmvs85.00 31882.95 32391.17 31193.13 33183.33 31494.56 28995.00 30984.57 31565.13 37192.65 31970.45 31995.85 34173.57 35477.49 35294.33 318
PM-MVS83.48 32481.86 33088.31 33587.83 36877.59 35793.43 32791.75 35786.91 27780.63 34789.91 34944.42 37195.84 34285.17 28076.73 35691.50 356
MIMVSNet88.50 29086.76 29893.72 23494.84 27487.77 24291.39 34894.05 33586.41 28687.99 28392.59 32263.27 35395.82 34377.44 33792.84 20797.57 180
mvsany_test383.59 32382.44 32787.03 34183.80 37173.82 36493.70 31990.92 36486.42 28582.51 34090.26 34546.76 37095.71 34490.82 17276.76 35591.57 354
pmmvs-eth3d86.22 30984.45 31691.53 30288.34 36687.25 24994.47 29195.01 30883.47 32979.51 35489.61 35169.75 32695.71 34483.13 29976.73 35691.64 352
dmvs_re90.21 26589.50 26792.35 27995.47 23485.15 29195.70 25494.37 32990.94 16288.42 27093.57 30774.63 29495.67 34682.80 30389.57 26196.22 218
Anonymous2023120687.09 30186.14 30289.93 32791.22 35080.35 34096.11 23695.35 29283.57 32884.16 32793.02 31673.54 30495.61 34772.16 35886.14 29193.84 328
Patchmatch-RL test87.38 29986.24 30090.81 31588.74 36578.40 35688.12 36893.17 34587.11 27582.17 34289.29 35381.95 19895.60 34888.64 21877.02 35398.41 136
CVMVSNet91.23 23091.75 17989.67 32995.77 22174.69 36296.44 20894.88 31685.81 29592.18 17297.64 10479.07 24595.58 34988.06 22395.86 16498.74 109
MDA-MVSNet_test_wron85.87 31484.23 31890.80 31792.38 34482.57 31893.17 33195.15 30382.15 33667.65 36792.33 33178.20 26195.51 35077.33 33879.74 34494.31 320
YYNet185.87 31484.23 31890.78 31892.38 34482.46 32193.17 33195.14 30482.12 33767.69 36692.36 32878.16 26495.50 35177.31 33979.73 34594.39 316
test_vis3_rt72.73 33570.55 33879.27 35180.02 37668.13 37393.92 31374.30 38676.90 36158.99 37573.58 37520.29 38495.37 35284.16 28972.80 36474.31 374
UnsupCasMVSNet_eth85.99 31284.45 31690.62 31989.97 35782.40 32293.62 32497.37 17089.86 19278.59 35792.37 32565.25 35095.35 35382.27 30970.75 36694.10 323
EU-MVSNet88.72 28888.90 27688.20 33693.15 33074.21 36396.63 19994.22 33385.18 30587.32 29595.97 19576.16 28394.98 35485.27 27786.17 29095.41 260
KD-MVS_self_test85.95 31384.95 31288.96 33389.55 36179.11 35395.13 27996.42 24685.91 29484.07 33190.48 34370.03 32494.82 35580.04 32372.94 36392.94 338
CL-MVSNet_self_test86.31 30885.15 31089.80 32888.83 36481.74 32893.93 31296.22 25586.67 28185.03 31990.80 34278.09 26594.50 35674.92 34871.86 36593.15 336
new_pmnet82.89 32781.12 33288.18 33789.63 35980.18 34491.77 34792.57 35076.79 36275.56 36388.23 35861.22 35894.48 35771.43 36082.92 33389.87 364
testgi87.97 29487.21 29490.24 32492.86 33380.76 33496.67 19394.97 31191.74 13685.52 31495.83 20362.66 35694.47 35876.25 34488.36 27395.48 254
APD_test179.31 33377.70 33684.14 34689.11 36369.07 37192.36 34691.50 35969.07 36873.87 36492.63 32139.93 37394.32 35970.54 36580.25 34389.02 366
FMVSNet587.29 30085.79 30491.78 29794.80 27687.28 24795.49 26395.28 29684.09 32083.85 33491.82 33462.95 35594.17 36078.48 33385.34 30193.91 327
DSMNet-mixed86.34 30786.12 30387.00 34289.88 35870.43 36794.93 28190.08 36677.97 35985.42 31792.78 31874.44 29693.96 36174.43 35095.14 17696.62 209
new-patchmatchnet83.18 32681.87 32987.11 34086.88 36975.99 36193.70 31995.18 30285.02 30977.30 36088.40 35665.99 34793.88 36274.19 35370.18 36791.47 357
EGC-MVSNET68.77 34163.01 34686.07 34592.49 34082.24 32493.96 31090.96 3630.71 3862.62 38790.89 34153.66 36593.46 36357.25 37484.55 31582.51 369
pmmvs379.97 33277.50 33787.39 33982.80 37479.38 35192.70 34190.75 36570.69 36778.66 35687.47 36451.34 36893.40 36473.39 35569.65 36889.38 365
MIMVSNet184.93 31983.05 32190.56 32089.56 36084.84 29895.40 26695.35 29283.91 32180.38 34992.21 33257.23 36293.34 36570.69 36482.75 33593.50 331
test0.0.03 189.37 28088.70 27891.41 30692.47 34185.63 28195.22 27792.70 34991.11 15886.91 30493.65 30579.02 24893.19 36678.00 33689.18 26495.41 260
test20.0386.14 31185.40 30888.35 33490.12 35580.06 34595.90 24795.20 30188.59 23381.29 34493.62 30671.43 31392.65 36771.26 36281.17 34092.34 347
test_f80.57 33179.62 33383.41 34883.38 37367.80 37493.57 32693.72 33980.80 34777.91 35987.63 36233.40 37692.08 36887.14 25079.04 35090.34 363
test_fmvs383.21 32583.02 32283.78 34786.77 37068.34 37296.76 18294.91 31486.49 28484.14 32989.48 35236.04 37591.73 36991.86 15280.77 34291.26 359
LCM-MVSNet72.55 33669.39 34082.03 34970.81 38565.42 37790.12 36094.36 33155.02 37565.88 36981.72 36924.16 38389.96 37074.32 35268.10 37190.71 362
testf169.31 33966.76 34276.94 35578.61 37761.93 37988.27 36686.11 37655.62 37359.69 37385.31 36620.19 38589.32 37157.62 37269.44 36979.58 371
APD_test269.31 33966.76 34276.94 35578.61 37761.93 37988.27 36686.11 37655.62 37359.69 37385.31 36620.19 38589.32 37157.62 37269.44 36979.58 371
Gipumacopyleft67.86 34265.41 34475.18 35892.66 33873.45 36566.50 37794.52 32553.33 37657.80 37766.07 37730.81 37789.20 37348.15 37878.88 35162.90 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
dmvs_testset81.38 33082.60 32677.73 35391.74 34851.49 38393.03 33684.21 37989.07 21478.28 35891.25 34076.97 27588.53 37456.57 37582.24 33693.16 335
PMMVS270.19 33866.92 34180.01 35076.35 37965.67 37686.22 36987.58 37264.83 37162.38 37280.29 37126.78 38188.49 37563.79 36954.07 37785.88 367
PMVScopyleft53.92 2258.58 34555.40 34868.12 36151.00 38848.64 38478.86 37487.10 37446.77 37735.84 38374.28 3738.76 38786.34 37642.07 37973.91 36169.38 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS71.27 33769.85 33975.50 35774.64 38059.03 38191.30 34991.50 35958.80 37257.92 37688.28 35729.98 37985.53 37753.43 37682.84 33481.95 370
test_method66.11 34364.89 34569.79 36072.62 38335.23 39065.19 37892.83 34820.35 38165.20 37088.08 36043.14 37282.70 37873.12 35663.46 37391.45 358
ANet_high63.94 34459.58 34777.02 35461.24 38766.06 37585.66 37187.93 37178.53 35742.94 37971.04 37625.42 38280.71 37952.60 37730.83 38084.28 368
DeepMVS_CXcopyleft74.68 35990.84 35364.34 37881.61 38265.34 37067.47 36888.01 36148.60 36980.13 38062.33 37173.68 36279.58 371
E-PMN53.28 34652.56 35055.43 36374.43 38147.13 38583.63 37376.30 38342.23 37842.59 38062.22 37928.57 38074.40 38131.53 38131.51 37944.78 378
EMVS52.08 34851.31 35154.39 36472.62 38345.39 38783.84 37275.51 38541.13 37940.77 38159.65 38030.08 37873.60 38228.31 38229.90 38144.18 379
MVEpermissive50.73 2353.25 34748.81 35266.58 36265.34 38657.50 38272.49 37670.94 38740.15 38039.28 38263.51 3786.89 38973.48 38338.29 38042.38 37868.76 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 34953.82 34946.29 36533.73 38945.30 38878.32 37567.24 38818.02 38250.93 37887.05 36552.99 36653.11 38470.76 36325.29 38240.46 380
wuyk23d25.11 35024.57 35426.74 36673.98 38239.89 38957.88 3799.80 39012.27 38310.39 3846.97 3867.03 38836.44 38525.43 38317.39 3833.89 383
testmvs13.36 35216.33 3554.48 3685.04 3902.26 39293.18 3303.28 3912.70 3848.24 38521.66 3822.29 3912.19 3867.58 3842.96 3849.00 382
test12313.04 35315.66 3565.18 3674.51 3913.45 39192.50 3441.81 3922.50 3857.58 38620.15 3833.67 3902.18 3877.13 3851.07 3859.90 381
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.24 35130.99 3530.00 3690.00 3920.00 3930.00 38097.63 1310.00 3870.00 38896.88 14584.38 1480.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.39 3559.85 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38788.65 900.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.06 35410.74 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38896.69 1540.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.55 193.34 6399.29 198.35 2194.98 2498.49 16
test_one_060199.32 2295.20 2098.25 3795.13 1998.48 1798.87 895.16 7
eth-test20.00 392
eth-test0.00 392
RE-MVS-def96.72 3599.02 4292.34 8597.98 5998.03 8393.52 7597.43 3598.51 2690.71 6796.05 5199.26 6199.43 46
IU-MVS99.42 795.39 1197.94 9690.40 18498.94 697.41 1999.66 1099.74 7
save fliter98.91 4994.28 3597.02 16098.02 8695.35 12
test072699.45 395.36 1398.31 2998.29 2794.92 2598.99 598.92 395.08 8
GSMVS98.45 131
test_part299.28 2595.74 898.10 21
sam_mvs182.76 18098.45 131
sam_mvs81.94 199
MTGPAbinary98.08 66
MTMP97.86 7182.03 381
test9_res94.81 9399.38 5199.45 42
agg_prior293.94 11199.38 5199.50 37
test_prior493.66 5496.42 211
test_prior296.35 22092.80 10996.03 8597.59 10892.01 4195.01 8799.38 51
新几何295.79 251
旧先验198.38 7893.38 6097.75 11498.09 6592.30 3999.01 8099.16 67
原ACMM295.67 255
test22298.24 8692.21 9095.33 26997.60 13379.22 35495.25 10897.84 8888.80 8899.15 7198.72 110
segment_acmp92.89 25
testdata195.26 27693.10 95
plane_prior796.21 20189.98 168
plane_prior696.10 21190.00 16481.32 207
plane_prior496.64 158
plane_prior390.00 16494.46 4591.34 193
plane_prior297.74 8394.85 27
plane_prior196.14 209
plane_prior89.99 16697.24 14394.06 5592.16 220
n20.00 393
nn0.00 393
door-mid91.06 362
test1197.88 101
door91.13 361
HQP5-MVS89.33 193
HQP-NCC95.86 21696.65 19493.55 7090.14 216
ACMP_Plane95.86 21696.65 19493.55 7090.14 216
BP-MVS92.13 145
HQP3-MVS97.39 16792.10 221
HQP2-MVS80.95 210
NP-MVS95.99 21589.81 17395.87 200
MDTV_nov1_ep13_2view70.35 36893.10 33583.88 32393.55 14282.47 18886.25 26098.38 139
ACMMP++_ref90.30 254
ACMMP++91.02 242
Test By Simon88.73 89