This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 11
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 37
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 16
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 35
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 21
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5173.19 177.08 3091.21 1557.23 3190.73 1083.35 188.12 3589.22 5
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 16
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5390.06 1378.42 1989.02 2387.69 33
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6390.25 3257.68 2789.96 1474.62 4389.03 2287.89 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1889.76 1578.70 1388.32 3186.79 61
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3489.70 1679.85 591.48 188.19 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_030478.73 1678.75 1578.66 3080.82 10157.62 8385.31 3081.31 11270.51 274.17 5891.24 1454.99 4589.56 1782.29 288.13 3488.80 7
PC_three_145255.09 20184.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 11
3Dnovator+66.72 475.84 4574.57 5379.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 15789.24 5142.03 19789.38 1964.07 11686.50 5589.69 2
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5189.38 4955.30 4289.18 2174.19 4687.34 4386.38 72
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2089.13 2278.67 1489.73 1687.03 53
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 7888.88 5553.72 6289.06 2368.27 7888.04 3887.42 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 20
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7467.78 370.09 10986.34 10154.92 4788.90 2572.68 5784.55 6587.76 32
ZD-MVS86.64 2160.38 4382.70 8657.95 14478.10 2490.06 3656.12 3888.84 2674.05 4787.00 48
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4090.47 2653.96 5788.68 2776.48 2889.63 2087.16 51
PHI-MVS75.87 4475.36 4577.41 4680.62 10755.91 11384.28 3985.78 2056.08 17873.41 6786.58 9450.94 10188.54 2870.79 6889.71 1787.79 31
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5790.03 3852.56 7488.53 2974.79 4288.34 2986.63 68
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7588.39 3079.34 890.52 1386.78 62
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6190.50 2453.20 6888.35 3174.02 4887.05 4486.13 87
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4188.32 3273.48 5387.03 4584.83 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6690.56 2249.80 10988.24 3374.02 4887.03 4586.32 80
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 6890.58 2149.90 10788.21 3473.78 5087.03 4586.29 83
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6061.71 7672.45 9190.34 2948.48 12588.13 3572.32 5886.85 5085.78 99
DP-MVS Recon72.15 8770.73 9976.40 5886.57 2457.99 7981.15 8982.96 8157.03 15666.78 17585.56 12344.50 17688.11 3651.77 21580.23 11083.10 195
test1277.76 4384.52 5858.41 7583.36 7272.93 8154.61 5188.05 3788.12 3586.81 60
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9290.01 4047.95 12988.01 3871.55 6586.74 5286.37 74
X-MVStestdata70.21 11967.28 17179.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 926.49 40347.95 12988.01 3871.55 6586.74 5286.37 74
EC-MVSNet75.84 4575.87 4275.74 6978.86 14252.65 16883.73 5086.08 1763.47 4272.77 8487.25 8053.13 6987.93 4071.97 6185.57 6086.66 66
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8784.02 4856.32 17274.05 5988.98 5453.34 6787.92 4169.23 7688.42 2887.59 38
ETV-MVS74.46 5873.84 6176.33 6079.27 13255.24 12979.22 11585.00 3664.97 2172.65 8679.46 24853.65 6687.87 4267.45 9082.91 8185.89 96
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10285.71 2256.59 16772.46 8986.76 8556.89 3287.86 4366.36 9788.91 2583.64 181
API-MVS72.17 8471.41 8574.45 10081.95 8357.22 8984.03 4580.38 13259.89 10968.40 13982.33 18849.64 11087.83 4451.87 21384.16 7178.30 271
MG-MVS73.96 6273.89 6074.16 10785.65 4249.69 21781.59 8481.29 11461.45 7871.05 10188.11 6351.77 8987.73 4561.05 14683.09 7685.05 133
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 15974.91 4588.19 6259.15 2287.68 4673.67 5187.45 4286.57 69
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 5959.34 11779.37 1989.76 4559.84 1687.62 4776.69 2786.74 5287.68 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvsmamba71.15 9969.54 11875.99 6377.61 18953.46 15281.95 7875.11 22557.73 14966.95 17385.96 11437.14 25287.56 4867.94 8375.49 17686.97 54
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7789.97 4150.90 10287.48 4975.30 3686.85 5087.33 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 6862.44 6472.68 8590.50 2448.18 12787.34 5073.59 5285.71 5884.76 143
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6165.37 1378.78 2290.64 1958.63 2487.24 5179.00 1290.37 1485.26 127
TSAR-MVS + GP.74.90 5074.15 5777.17 4982.00 8158.77 7281.80 7978.57 16258.58 13074.32 5684.51 14355.94 3987.22 5267.11 9284.48 6785.52 112
HQP_MVS74.31 5973.73 6276.06 6281.41 9056.31 10284.22 4084.01 4964.52 2569.27 12786.10 10845.26 17087.21 5368.16 8180.58 10384.65 144
plane_prior584.01 4987.21 5368.16 8180.58 10384.65 144
iter_conf_final69.82 12768.02 15075.23 8179.38 12952.91 16380.11 9973.96 24354.99 20768.04 14983.59 16129.05 32887.16 5565.41 10877.62 14585.63 109
iter_conf0569.40 14567.62 15674.73 8777.84 17751.13 19079.28 11473.71 24654.62 21268.17 14483.59 16128.68 33387.16 5565.74 10576.95 15885.91 94
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 11989.74 4645.43 16687.16 5572.01 6082.87 8385.14 129
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CLD-MVS73.33 6672.68 7075.29 8078.82 14453.33 15678.23 12884.79 3961.30 8170.41 10681.04 21652.41 7887.12 5864.61 11582.49 8885.41 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t70.83 10669.56 11774.64 9386.21 3154.63 13682.34 7081.81 9748.22 29163.01 24385.83 11940.92 21487.10 5957.91 16479.79 11282.18 212
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2587.09 6077.08 2690.18 1587.87 26
AdaColmapbinary69.99 12368.66 13673.97 11184.94 5457.83 8082.63 6578.71 15856.28 17464.34 22484.14 14841.57 20487.06 6146.45 25878.88 12877.02 290
HQP4-MVS67.85 15286.93 6284.32 151
HQP-MVS73.45 6572.80 6975.40 7680.66 10354.94 13182.31 7183.90 5462.10 6867.85 15285.54 12645.46 16486.93 6267.04 9380.35 10784.32 151
9.1478.75 1583.10 6984.15 4388.26 159.90 10678.57 2390.36 2757.51 3086.86 6477.39 2389.52 21
RRT_MVS69.42 14367.49 16375.21 8278.01 17252.56 17282.23 7578.15 17655.84 18265.65 19885.07 13030.86 31386.83 6561.56 14470.00 25086.24 85
DELS-MVS74.76 5274.46 5475.65 7277.84 17752.25 17875.59 19284.17 4663.76 3873.15 7382.79 17459.58 1986.80 6667.24 9186.04 5787.89 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3391.51 1152.47 7786.78 6780.66 489.64 1987.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6563.89 3773.60 6590.60 2054.85 4886.72 6877.20 2588.06 3785.74 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS71.78 9070.60 10075.30 7979.85 12053.54 15077.27 15783.26 7757.92 14566.49 18179.39 24952.07 8486.69 6960.05 15279.14 12685.66 107
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 20880.97 12365.13 1575.77 3590.88 1748.63 12286.66 7077.23 2488.17 3384.81 140
LPG-MVS_test72.74 7471.74 7975.76 6780.22 11157.51 8682.55 6783.40 7061.32 7966.67 17987.33 7739.15 22986.59 7167.70 8677.30 15383.19 191
LGP-MVS_train75.76 6780.22 11157.51 8683.40 7061.32 7966.67 17987.33 7739.15 22986.59 7167.70 8677.30 15383.19 191
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3784.83 13360.76 1586.56 7367.86 8487.87 4186.06 89
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9062.90 5271.77 9590.26 3146.61 15386.55 7471.71 6385.66 5984.97 136
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9159.99 10575.10 3990.35 2847.66 13486.52 7571.64 6482.99 7884.47 149
原ACMM174.69 8985.39 4759.40 5483.42 6951.47 25070.27 10886.61 9248.61 12386.51 7653.85 19787.96 3978.16 273
QAPM70.05 12168.81 13273.78 11576.54 21553.43 15383.23 5483.48 6652.89 23565.90 19386.29 10241.55 20686.49 7751.01 22078.40 13881.42 223
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7886.38 72
FE-MVS65.91 21263.33 23073.63 12677.36 19751.95 18572.62 24575.81 20953.70 22765.31 20478.96 25528.81 33286.39 7943.93 28273.48 19882.55 203
EPP-MVSNet72.16 8671.31 8974.71 8878.68 14849.70 21582.10 7681.65 9960.40 9365.94 19185.84 11851.74 9086.37 8055.93 17679.55 11888.07 23
CS-MVS-test75.62 4775.31 4776.56 5780.63 10655.13 13083.88 4885.22 2862.05 7171.49 9986.03 11153.83 5986.36 8167.74 8586.91 4988.19 18
IB-MVS56.42 1265.40 22062.73 23973.40 13674.89 23752.78 16773.09 23975.13 22455.69 18758.48 29873.73 32132.86 29486.32 8250.63 22370.11 24781.10 235
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CS-MVS76.25 4075.98 3977.06 5080.15 11655.63 12084.51 3583.90 5463.24 4573.30 6887.27 7955.06 4486.30 8371.78 6284.58 6489.25 4
PAPM_NR72.63 7671.80 7875.13 8381.72 8553.42 15479.91 10483.28 7659.14 11966.31 18685.90 11651.86 8786.06 8457.45 16780.62 10185.91 94
PAPR71.72 9370.82 9774.41 10181.20 9751.17 18979.55 11283.33 7355.81 18466.93 17484.61 13950.95 10086.06 8455.79 17979.20 12486.00 90
ACMP63.53 672.30 8171.20 9175.59 7580.28 10957.54 8482.74 6382.84 8560.58 9065.24 21086.18 10539.25 22786.03 8666.95 9576.79 16183.22 189
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD-MVS_3200maxsize74.96 4974.39 5576.67 5482.20 7858.24 7783.67 5183.29 7558.41 13373.71 6490.14 3345.62 15985.99 8769.64 7282.85 8485.78 99
Effi-MVS+73.31 6772.54 7275.62 7377.87 17553.64 14779.62 11179.61 14161.63 7772.02 9482.61 17956.44 3585.97 8863.99 11979.07 12787.25 50
DP-MVS65.68 21463.66 22571.75 16884.93 5556.87 9980.74 9373.16 25153.06 23259.09 29082.35 18736.79 25885.94 8932.82 35069.96 25272.45 334
OPM-MVS74.73 5374.25 5676.19 6180.81 10259.01 6782.60 6683.64 6263.74 3972.52 8887.49 7447.18 14485.88 9069.47 7480.78 9983.66 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SR-MVS-dyc-post74.57 5673.90 5976.58 5683.49 6559.87 4984.29 3781.36 10758.07 13973.14 7490.07 3444.74 17385.84 9168.20 7981.76 9484.03 159
cascas65.98 21163.42 22873.64 12577.26 19952.58 17172.26 25277.21 19348.56 28561.21 26774.60 31632.57 30485.82 9250.38 22576.75 16282.52 205
h-mvs3372.71 7571.49 8376.40 5881.99 8259.58 5276.92 16676.74 20060.40 9374.81 4785.95 11545.54 16285.76 9370.41 7070.61 23783.86 168
FA-MVS(test-final)69.82 12768.48 13973.84 11378.44 15450.04 21075.58 19478.99 15258.16 13767.59 16182.14 19542.66 19085.63 9456.60 17176.19 16785.84 97
IS-MVSNet71.57 9471.00 9573.27 13978.86 14245.63 26580.22 9778.69 15964.14 3566.46 18287.36 7649.30 11385.60 9550.26 22683.71 7488.59 9
HPM-MVS_fast74.30 6073.46 6576.80 5284.45 6059.04 6683.65 5281.05 12060.15 10270.43 10589.84 4341.09 21385.59 9667.61 8882.90 8285.77 102
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4685.58 9776.12 3184.94 6286.33 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator64.47 572.49 7871.39 8675.79 6677.70 18058.99 6880.66 9483.15 7962.24 6665.46 20286.59 9342.38 19585.52 9859.59 15884.72 6382.85 200
MAR-MVS71.51 9570.15 11075.60 7481.84 8459.39 5581.38 8682.90 8354.90 20968.08 14878.70 25747.73 13285.51 9951.68 21784.17 7081.88 219
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053067.92 17665.78 20174.33 10376.29 21851.03 19176.89 16774.25 23953.67 22865.59 20081.76 20335.15 26885.50 10055.94 17572.47 21486.47 71
tttt051767.83 17865.66 20374.33 10376.69 21050.82 19677.86 13973.99 24254.54 21664.64 22282.53 18435.06 26985.50 10055.71 18069.91 25386.67 65
MVS67.37 18566.33 19170.51 20175.46 23150.94 19273.95 22581.85 9641.57 35262.54 25178.57 26247.98 12885.47 10252.97 20482.05 9075.14 307
EPNet73.09 6972.16 7575.90 6575.95 22356.28 10483.05 5672.39 25666.53 1065.27 20687.00 8150.40 10485.47 10262.48 13386.32 5685.94 92
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet61.53 26458.42 27870.86 19369.96 31852.07 18165.31 31981.36 10743.20 34259.36 28670.15 34735.37 26685.47 10236.42 33464.65 30575.06 308
v1070.21 11969.02 12873.81 11473.51 26150.92 19478.74 11981.39 10560.05 10466.39 18481.83 20247.58 13685.41 10562.80 13068.86 27385.09 132
v119269.97 12468.68 13573.85 11273.19 26350.94 19277.68 14481.36 10757.51 15168.95 13380.85 22345.28 16985.33 10662.97 12970.37 24185.27 126
v114470.42 11569.31 12373.76 11773.22 26250.64 19977.83 14181.43 10458.58 13069.40 12581.16 21347.53 13785.29 10764.01 11870.64 23585.34 122
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7176.46 21751.83 18679.67 10985.08 3165.02 1975.84 3488.58 6059.42 2185.08 10872.75 5683.93 7290.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v124069.24 14967.91 15173.25 14173.02 26849.82 21377.21 15880.54 12956.43 17068.34 14180.51 22743.33 18684.99 10962.03 13869.77 25884.95 137
PAPM67.92 17666.69 18171.63 17378.09 16849.02 22577.09 16181.24 11751.04 25860.91 26983.98 15347.71 13384.99 10940.81 30579.32 12280.90 239
v192192069.47 14168.17 14773.36 13773.06 26650.10 20977.39 15180.56 12856.58 16868.59 13580.37 22844.72 17484.98 11162.47 13469.82 25585.00 134
v870.33 11769.28 12473.49 13173.15 26450.22 20678.62 12280.78 12660.79 8666.45 18382.11 19749.35 11284.98 11163.58 12468.71 27485.28 125
v14419269.71 13068.51 13873.33 13873.10 26550.13 20877.54 14880.64 12756.65 16168.57 13780.55 22646.87 15184.96 11362.98 12869.66 26084.89 138
EI-MVSNet-Vis-set72.42 8071.59 8074.91 8478.47 15354.02 14177.05 16279.33 14765.03 1871.68 9779.35 25152.75 7284.89 11466.46 9674.23 18485.83 98
PCF-MVS61.88 870.95 10469.49 12075.35 7777.63 18455.71 11776.04 18581.81 9750.30 26669.66 12085.40 12952.51 7584.89 11451.82 21480.24 10985.45 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48270.50 11369.45 12273.66 12372.62 27450.03 21177.58 14580.51 13059.90 10669.52 12182.14 19547.53 13784.88 11665.07 11170.17 24686.09 88
thisisatest051565.83 21363.50 22772.82 14873.75 25949.50 22071.32 26373.12 25249.39 27563.82 23276.50 29734.95 27184.84 11753.20 20375.49 17684.13 158
TEST985.58 4361.59 2481.62 8281.26 11555.65 18974.93 4388.81 5653.70 6384.68 118
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8281.26 11555.86 18074.93 4388.81 5653.70 6384.68 11875.24 3888.33 3083.65 180
EI-MVSNet-UG-set71.92 8871.06 9474.52 9977.98 17353.56 14976.62 17179.16 14864.40 2771.18 10078.95 25652.19 8284.66 12065.47 10773.57 19585.32 123
v7n69.01 15267.36 16873.98 11072.51 27852.65 16878.54 12581.30 11360.26 10162.67 24781.62 20543.61 18384.49 12157.01 16968.70 27584.79 141
test_885.40 4660.96 3481.54 8581.18 11855.86 18074.81 4788.80 5853.70 6384.45 122
test_040263.25 24561.01 26069.96 20880.00 11854.37 13976.86 16972.02 26054.58 21558.71 29380.79 22535.00 27084.36 12326.41 38264.71 30471.15 352
PS-MVSNAJss72.24 8271.21 9075.31 7878.50 15155.93 11281.63 8182.12 9256.24 17570.02 11385.68 12247.05 14684.34 12465.27 10974.41 18385.67 106
ACMH+57.40 1166.12 21064.06 21772.30 15977.79 17952.83 16680.39 9578.03 17857.30 15257.47 30482.55 18127.68 34084.17 12545.54 26869.78 25679.90 254
OpenMVScopyleft61.03 968.85 15367.56 15772.70 15074.26 25653.99 14281.21 8881.34 11152.70 23662.75 24685.55 12538.86 23284.14 12648.41 24283.01 7779.97 253
Fast-Effi-MVS+70.28 11869.12 12773.73 12078.50 15151.50 18875.01 20579.46 14556.16 17768.59 13579.55 24653.97 5684.05 12753.34 20177.53 14785.65 108
agg_prior85.04 5059.96 4781.04 12174.68 5084.04 128
EG-PatchMatch MVS64.71 22862.87 23670.22 20377.68 18153.48 15177.99 13678.82 15453.37 23156.03 31577.41 28224.75 36084.04 12846.37 25973.42 20073.14 326
Effi-MVS+-dtu69.64 13567.53 16075.95 6476.10 22162.29 1580.20 9876.06 20859.83 11065.26 20977.09 28441.56 20584.02 13060.60 14971.09 23381.53 222
MVS_111021_HR74.02 6173.46 6575.69 7083.01 7260.63 4077.29 15678.40 17361.18 8270.58 10485.97 11354.18 5584.00 13167.52 8982.98 8082.45 207
VDDNet71.81 8971.33 8873.26 14082.80 7547.60 24578.74 11975.27 21959.59 11472.94 8089.40 4841.51 20783.91 13258.75 16282.99 7888.26 14
BH-RMVSNet68.81 15467.42 16572.97 14380.11 11752.53 17374.26 21976.29 20358.48 13268.38 14084.20 14642.59 19183.83 13346.53 25775.91 16982.56 202
baseline74.61 5574.70 5274.34 10275.70 22549.99 21277.54 14884.63 4062.73 5973.98 6087.79 7357.67 2883.82 13469.49 7382.74 8689.20 6
LFMVS71.78 9071.59 8072.32 15883.40 6746.38 25479.75 10771.08 26564.18 3272.80 8388.64 5942.58 19283.72 13557.41 16884.49 6686.86 58
TR-MVS66.59 20665.07 21171.17 18879.18 13549.63 21973.48 23475.20 22352.95 23367.90 15080.33 23139.81 22183.68 13643.20 29073.56 19680.20 249
MSLP-MVS++73.77 6473.47 6474.66 9183.02 7159.29 5882.30 7481.88 9559.34 11771.59 9886.83 8345.94 15783.65 13765.09 11085.22 6181.06 236
casdiffmvspermissive74.80 5174.89 5174.53 9875.59 22950.37 20478.17 13185.06 3362.80 5874.40 5487.86 7057.88 2683.61 13869.46 7582.79 8589.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet69.54 13868.85 13071.59 17478.05 17043.81 28174.20 22080.86 12565.18 1462.76 24584.52 14152.35 8083.59 13950.96 22270.78 23487.37 46
BH-untuned68.27 16767.29 17071.21 18579.74 12153.22 15876.06 18377.46 18957.19 15466.10 18881.61 20645.37 16883.50 14045.42 27376.68 16376.91 294
UniMVSNet (Re)70.63 11070.20 10871.89 16378.55 15045.29 26875.94 18782.92 8263.68 4068.16 14583.59 16153.89 5883.49 14153.97 19571.12 23286.89 57
VDD-MVS72.50 7772.09 7673.75 11981.58 8649.69 21777.76 14377.63 18563.21 4773.21 7189.02 5342.14 19683.32 14261.72 14082.50 8788.25 15
UA-Net73.13 6872.93 6873.76 11783.58 6451.66 18778.75 11877.66 18467.75 472.61 8789.42 4749.82 10883.29 14353.61 19983.14 7586.32 80
MVSFormer71.50 9670.38 10574.88 8578.76 14557.15 9482.79 6178.48 16651.26 25469.49 12283.22 16843.99 18183.24 14466.06 9979.37 11984.23 154
test_djsdf69.45 14267.74 15274.58 9674.57 24954.92 13382.79 6178.48 16651.26 25465.41 20383.49 16638.37 23683.24 14466.06 9969.25 26685.56 111
ACMM61.98 770.80 10869.73 11574.02 10980.59 10858.59 7482.68 6482.02 9455.46 19367.18 16884.39 14538.51 23483.17 14660.65 14876.10 16880.30 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TranMVSNet+NR-MVSNet70.36 11670.10 11271.17 18878.64 14942.97 28976.53 17381.16 11966.95 668.53 13885.42 12851.61 9283.07 14752.32 20769.70 25987.46 41
V4268.65 15867.35 16972.56 15168.93 33150.18 20772.90 24179.47 14456.92 15869.45 12480.26 23246.29 15582.99 14864.07 11667.82 28184.53 146
SixPastTwentyTwo61.65 26358.80 27570.20 20575.80 22447.22 24875.59 19269.68 27654.61 21354.11 33579.26 25227.07 34682.96 14943.27 28849.79 37380.41 246
BH-w/o66.85 19865.83 20069.90 21279.29 13052.46 17574.66 21476.65 20154.51 21764.85 21978.12 26445.59 16182.95 15043.26 28975.54 17574.27 320
hse-mvs271.04 10169.86 11374.60 9579.58 12457.12 9673.96 22475.25 22060.40 9374.81 4781.95 19945.54 16282.90 15170.41 7066.83 28983.77 173
AUN-MVS68.45 16566.41 18874.57 9779.53 12657.08 9773.93 22775.23 22154.44 21866.69 17881.85 20137.10 25482.89 15262.07 13666.84 28883.75 174
eth_miper_zixun_eth67.63 18166.28 19471.67 17171.60 29148.33 23573.68 23377.88 17955.80 18565.91 19278.62 26147.35 14382.88 15359.45 15966.25 29383.81 169
test_yl69.69 13169.13 12571.36 18178.37 15845.74 26174.71 21280.20 13457.91 14670.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DCV-MVSNet69.69 13169.13 12571.36 18178.37 15845.74 26174.71 21280.20 13457.91 14670.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
PVSNet_BlendedMVS68.56 16367.72 15371.07 19177.03 20550.57 20074.50 21681.52 10053.66 22964.22 23079.72 24249.13 11782.87 15455.82 17773.92 18879.77 259
PVSNet_Blended68.59 15967.72 15371.19 18677.03 20550.57 20072.51 24881.52 10051.91 24364.22 23077.77 27749.13 11782.87 15455.82 17779.58 11680.14 251
UniMVSNet_NR-MVSNet71.11 10071.00 9571.44 17779.20 13444.13 27776.02 18682.60 8766.48 1168.20 14284.60 14056.82 3382.82 15854.62 19070.43 23987.36 48
DU-MVS70.01 12269.53 11971.44 17778.05 17044.13 27775.01 20581.51 10264.37 2868.20 14284.52 14149.12 11982.82 15854.62 19070.43 23987.37 46
GeoE71.01 10270.15 11073.60 12879.57 12552.17 17978.93 11778.12 17758.02 14167.76 16083.87 15552.36 7982.72 16056.90 17075.79 17185.92 93
MVP-Stereo65.41 21963.80 22270.22 20377.62 18855.53 12476.30 17778.53 16450.59 26456.47 31378.65 25939.84 22082.68 16144.10 28172.12 22272.44 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNetpermissive72.18 8371.37 8774.61 9481.29 9355.41 12680.90 9078.28 17560.73 8869.23 13088.09 6444.36 17882.65 16257.68 16581.75 9685.77 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D67.96 17565.72 20274.68 9076.67 21155.62 12275.11 20274.74 23052.91 23460.03 27680.12 23433.68 28582.64 16361.86 13976.34 16585.78 99
PVSNet_Blended_VisFu71.45 9770.39 10474.65 9282.01 8058.82 7179.93 10380.35 13355.09 20165.82 19782.16 19449.17 11682.64 16360.34 15078.62 13582.50 206
tt080567.77 17967.24 17569.34 22274.87 23940.08 31077.36 15281.37 10655.31 19566.33 18584.65 13737.35 24782.55 16555.65 18272.28 22085.39 121
EI-MVSNet69.27 14868.44 14371.73 16974.47 25049.39 22275.20 20078.45 16959.60 11169.16 13176.51 29551.29 9482.50 16659.86 15771.45 22983.30 186
MVSTER67.16 19265.58 20571.88 16470.37 31249.70 21570.25 28078.45 16951.52 24869.16 13180.37 22838.45 23582.50 16660.19 15171.46 22883.44 184
gm-plane-assit71.40 29741.72 30148.85 28373.31 32382.48 16848.90 238
Anonymous2023121169.28 14768.47 14171.73 16980.28 10947.18 24979.98 10182.37 8954.61 21367.24 16684.01 15239.43 22482.41 16955.45 18472.83 20985.62 110
LS3D64.71 22862.50 24171.34 18379.72 12355.71 11779.82 10574.72 23148.50 28856.62 30984.62 13833.59 28782.34 17029.65 37175.23 17875.97 298
PS-MVSNAJ70.51 11269.70 11672.93 14481.52 8755.79 11674.92 20879.00 15155.04 20669.88 11778.66 25847.05 14682.19 17161.61 14179.58 11680.83 240
Anonymous2024052969.91 12569.02 12872.56 15180.19 11447.65 24377.56 14780.99 12255.45 19469.88 11786.76 8539.24 22882.18 17254.04 19477.10 15787.85 27
xiu_mvs_v2_base70.52 11169.75 11472.84 14681.21 9655.63 12075.11 20278.92 15354.92 20869.96 11679.68 24347.00 15082.09 17361.60 14279.37 11980.81 241
canonicalmvs74.67 5474.98 5073.71 12178.94 14150.56 20280.23 9683.87 5760.30 10077.15 2986.56 9559.65 1782.00 17466.01 10182.12 8988.58 10
v14868.24 16967.19 17771.40 18070.43 31047.77 24275.76 19077.03 19558.91 12267.36 16480.10 23548.60 12481.89 17560.01 15366.52 29284.53 146
CPTT-MVS72.78 7372.08 7774.87 8684.88 5761.41 2684.15 4377.86 18055.27 19667.51 16388.08 6541.93 19981.85 17669.04 7780.01 11181.35 229
mvs_tets68.18 17066.36 19073.63 12675.61 22855.35 12880.77 9278.56 16352.48 23964.27 22784.10 15027.45 34281.84 17763.45 12670.56 23883.69 176
jajsoiax68.25 16866.45 18473.66 12375.62 22755.49 12580.82 9178.51 16552.33 24064.33 22584.11 14928.28 33681.81 17863.48 12570.62 23683.67 177
FIs70.82 10771.43 8468.98 22778.33 16038.14 32976.96 16483.59 6461.02 8367.33 16586.73 8755.07 4381.64 17954.61 19279.22 12387.14 52
HyFIR lowres test65.67 21563.01 23573.67 12279.97 11955.65 11969.07 29075.52 21542.68 34663.53 23577.95 26840.43 21681.64 17946.01 26271.91 22383.73 175
K. test v360.47 27157.11 28670.56 19973.74 26048.22 23675.10 20462.55 32958.27 13653.62 34176.31 29827.81 33981.59 18147.42 24839.18 38681.88 219
IterMVS-LS69.22 15068.48 13971.43 17974.44 25249.40 22176.23 17977.55 18659.60 11165.85 19681.59 20851.28 9581.58 18259.87 15669.90 25483.30 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB55.42 1663.15 24761.23 25868.92 22876.57 21447.80 24059.92 34876.39 20254.35 21958.67 29482.46 18629.44 32681.49 18342.12 29871.14 23177.46 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
c3_l68.33 16667.56 15770.62 19870.87 30546.21 25774.47 21778.80 15656.22 17666.19 18778.53 26351.88 8681.40 18462.08 13569.04 26984.25 153
ECVR-MVScopyleft67.72 18067.51 16168.35 23579.46 12736.29 35274.79 21166.93 29858.72 12567.19 16788.05 6636.10 26081.38 18552.07 21084.25 6887.39 44
lessismore_v069.91 21171.42 29647.80 24050.90 37650.39 35775.56 30727.43 34381.33 18645.91 26334.10 39280.59 243
miper_ehance_all_eth68.03 17267.24 17570.40 20270.54 30846.21 25773.98 22378.68 16055.07 20466.05 18977.80 27452.16 8381.31 18761.53 14569.32 26383.67 177
miper_enhance_ethall67.11 19366.09 19770.17 20669.21 32845.98 25972.85 24278.41 17251.38 25165.65 19875.98 30351.17 9781.25 18860.82 14769.32 26383.29 188
OurMVSNet-221017-061.37 26758.63 27769.61 21672.05 28648.06 23873.93 22772.51 25547.23 30754.74 32880.92 22021.49 37181.24 18948.57 24156.22 35579.53 261
alignmvs73.86 6373.99 5873.45 13378.20 16350.50 20378.57 12382.43 8859.40 11576.57 3186.71 8956.42 3681.23 19065.84 10381.79 9388.62 8
MVS_Test72.45 7972.46 7372.42 15774.88 23848.50 23376.28 17883.14 8059.40 11572.46 8984.68 13555.66 4081.12 19165.98 10279.66 11587.63 36
cl2267.47 18466.45 18470.54 20069.85 32146.49 25373.85 23077.35 19155.07 20465.51 20177.92 27047.64 13581.10 19261.58 14369.32 26384.01 161
GA-MVS65.53 21763.70 22471.02 19270.87 30548.10 23770.48 27674.40 23556.69 16064.70 22176.77 28933.66 28681.10 19255.42 18570.32 24383.87 167
MSDG61.81 26259.23 27069.55 22072.64 27352.63 17070.45 27775.81 20951.38 25153.70 33876.11 29929.52 32481.08 19437.70 32065.79 29774.93 312
baseline263.42 24161.26 25769.89 21372.55 27647.62 24471.54 26068.38 28950.11 26754.82 32775.55 30843.06 18880.96 19548.13 24567.16 28781.11 234
ambc65.13 27963.72 36237.07 34147.66 38278.78 15754.37 33471.42 33611.24 38980.94 19645.64 26653.85 36377.38 284
ACMH55.70 1565.20 22363.57 22670.07 20778.07 16952.01 18479.48 11379.69 13855.75 18656.59 31080.98 21827.12 34580.94 19642.90 29471.58 22777.25 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test250665.33 22164.61 21467.50 24279.46 12734.19 36474.43 21851.92 37158.72 12566.75 17788.05 6625.99 35380.92 19851.94 21284.25 6887.39 44
UGNet68.81 15467.39 16673.06 14278.33 16054.47 13779.77 10675.40 21760.45 9263.22 23784.40 14432.71 29980.91 19951.71 21680.56 10583.81 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
nrg03072.96 7173.01 6772.84 14675.41 23250.24 20580.02 10082.89 8458.36 13574.44 5386.73 8758.90 2380.83 20065.84 10374.46 18087.44 42
tpm262.07 25860.10 26667.99 23872.79 27143.86 28071.05 27166.85 29943.14 34362.77 24475.39 31038.32 23780.80 20141.69 30168.88 27179.32 263
无先验79.66 11074.30 23848.40 29080.78 20253.62 19879.03 267
FC-MVSNet-test69.80 12970.58 10267.46 24377.61 18934.73 36076.05 18483.19 7860.84 8565.88 19586.46 9854.52 5280.76 20352.52 20678.12 14086.91 56
OMC-MVS71.40 9870.60 10073.78 11576.60 21353.15 15979.74 10879.78 13758.37 13468.75 13486.45 9945.43 16680.60 20462.58 13177.73 14487.58 39
test111167.21 18767.14 17867.42 24479.24 13334.76 35973.89 22965.65 30758.71 12766.96 17287.95 6936.09 26180.53 20552.03 21183.79 7386.97 54
cl____67.18 19066.26 19569.94 20970.20 31345.74 26173.30 23576.83 19855.10 19965.27 20679.57 24547.39 14180.53 20559.41 16169.22 26783.53 183
DIV-MVS_self_test67.18 19066.26 19569.94 20970.20 31345.74 26173.29 23676.83 19855.10 19965.27 20679.58 24447.38 14280.53 20559.43 16069.22 26783.54 182
Fast-Effi-MVS+-dtu67.37 18565.33 20873.48 13272.94 26957.78 8277.47 15076.88 19657.60 15061.97 25876.85 28839.31 22580.49 20854.72 18970.28 24482.17 214
anonymousdsp67.00 19664.82 21373.57 12970.09 31656.13 10776.35 17677.35 19148.43 28964.99 21880.84 22433.01 29280.34 20964.66 11367.64 28384.23 154
GBi-Net67.21 18766.55 18269.19 22377.63 18443.33 28477.31 15377.83 18156.62 16465.04 21582.70 17541.85 20080.33 21047.18 25272.76 21083.92 164
test167.21 18766.55 18269.19 22377.63 18443.33 28477.31 15377.83 18156.62 16465.04 21582.70 17541.85 20080.33 21047.18 25272.76 21083.92 164
FMVSNet166.70 20265.87 19969.19 22377.49 19343.33 28477.31 15377.83 18156.45 16964.60 22382.70 17538.08 24180.33 21046.08 26172.31 21983.92 164
test_fmvsmconf0.01_n72.17 8471.50 8274.16 10767.96 33755.58 12378.06 13574.67 23254.19 22174.54 5288.23 6150.35 10680.24 21378.07 2177.46 14986.65 67
test_fmvsmconf0.1_n72.81 7272.33 7474.24 10669.89 32055.81 11578.22 12975.40 21754.17 22275.00 4288.03 6853.82 6080.23 21478.08 2078.34 13986.69 64
test_fmvsmconf_n73.01 7072.59 7174.27 10571.28 30055.88 11478.21 13075.56 21454.31 22074.86 4687.80 7254.72 4980.23 21478.07 2178.48 13686.70 63
FMVSNet266.93 19766.31 19368.79 23077.63 18442.98 28876.11 18177.47 18756.62 16465.22 21282.17 19341.85 20080.18 21647.05 25572.72 21383.20 190
FMVSNet366.32 20965.61 20468.46 23376.48 21642.34 29274.98 20777.15 19455.83 18365.04 21581.16 21339.91 21880.14 21747.18 25272.76 21082.90 199
PLCcopyleft56.13 1465.09 22463.21 23370.72 19781.04 9954.87 13478.57 12377.47 18748.51 28755.71 31681.89 20033.71 28479.71 21841.66 30270.37 24177.58 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous20240521166.84 19965.99 19869.40 22180.19 11442.21 29571.11 26971.31 26458.80 12467.90 15086.39 10029.83 32279.65 21949.60 23378.78 13186.33 78
OpenMVS_ROBcopyleft52.78 1860.03 27358.14 28265.69 27170.47 30944.82 27075.33 19670.86 26845.04 32456.06 31476.00 30026.89 34879.65 21935.36 33967.29 28572.60 331
CostFormer64.04 23662.51 24068.61 23271.88 28845.77 26071.30 26470.60 27047.55 30164.31 22676.61 29341.63 20379.62 22149.74 22969.00 27080.42 245
WR-MVS_H67.02 19566.92 18067.33 24777.95 17437.75 33377.57 14682.11 9362.03 7362.65 24882.48 18550.57 10379.46 22242.91 29364.01 31084.79 141
COLMAP_ROBcopyleft52.97 1761.27 26858.81 27368.64 23174.63 24752.51 17478.42 12673.30 24949.92 27150.96 35181.51 20923.06 36479.40 22331.63 36065.85 29574.01 323
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
131464.61 23063.21 23368.80 22971.87 28947.46 24673.95 22578.39 17442.88 34559.97 27776.60 29438.11 24079.39 22454.84 18872.32 21879.55 260
XVG-ACMP-BASELINE64.36 23462.23 24470.74 19672.35 28152.45 17670.80 27378.45 16953.84 22659.87 27981.10 21516.24 37879.32 22555.64 18371.76 22480.47 244
lupinMVS69.57 13768.28 14673.44 13478.76 14557.15 9476.57 17273.29 25046.19 31569.49 12282.18 19143.99 18179.23 22664.66 11379.37 11983.93 163
jason69.65 13468.39 14573.43 13578.27 16256.88 9877.12 16073.71 24646.53 31269.34 12683.22 16843.37 18579.18 22764.77 11279.20 12484.23 154
jason: jason.
thres100view90063.28 24462.41 24265.89 26877.31 19838.66 32472.65 24369.11 28557.07 15562.45 25481.03 21737.01 25679.17 22831.84 35673.25 20379.83 256
tfpn200view963.18 24662.18 24566.21 26076.85 20839.62 31671.96 25769.44 28156.63 16262.61 24979.83 23837.18 24979.17 22831.84 35673.25 20379.83 256
thres40063.31 24262.18 24566.72 25076.85 20839.62 31671.96 25769.44 28156.63 16262.61 24979.83 23837.18 24979.17 22831.84 35673.25 20381.36 227
DTE-MVSNet65.58 21665.34 20766.31 25776.06 22234.79 35776.43 17579.38 14662.55 6161.66 26383.83 15645.60 16079.15 23141.64 30460.88 33585.00 134
WR-MVS68.47 16468.47 14168.44 23480.20 11339.84 31373.75 23276.07 20764.68 2268.11 14783.63 16050.39 10579.14 23249.78 22769.66 26086.34 76
PEN-MVS66.60 20466.45 18467.04 24877.11 20336.56 34677.03 16380.42 13162.95 5062.51 25384.03 15146.69 15279.07 23344.22 27763.08 32085.51 113
xiu_mvs_v1_base_debu68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
xiu_mvs_v1_base68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
xiu_mvs_v1_base_debi68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
thres600view763.30 24362.27 24366.41 25577.18 20038.87 32272.35 25069.11 28556.98 15762.37 25680.96 21937.01 25679.00 23731.43 36373.05 20781.36 227
thres20062.20 25761.16 25965.34 27675.38 23339.99 31269.60 28569.29 28355.64 19061.87 26076.99 28537.07 25578.96 23831.28 36473.28 20277.06 289
UniMVSNet_ETH3D67.60 18267.07 17969.18 22677.39 19642.29 29374.18 22175.59 21360.37 9666.77 17686.06 11037.64 24378.93 23952.16 20973.49 19786.32 80
TAPA-MVS59.36 1066.60 20465.20 21070.81 19476.63 21248.75 22976.52 17480.04 13650.64 26365.24 21084.93 13239.15 22978.54 24036.77 32776.88 16085.14 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS66.42 20866.32 19266.70 25277.60 19136.30 35176.94 16579.61 14162.36 6562.43 25583.66 15945.69 15878.37 24145.35 27463.26 31885.42 119
CP-MVSNet66.49 20766.41 18866.72 25077.67 18236.33 34976.83 17079.52 14362.45 6362.54 25183.47 16746.32 15478.37 24145.47 27263.43 31785.45 116
XVG-OURS68.76 15767.37 16772.90 14574.32 25557.22 8970.09 28178.81 15555.24 19767.79 15885.81 12136.54 25978.28 24362.04 13775.74 17283.19 191
XVG-OURS-SEG-HR68.81 15467.47 16472.82 14874.40 25356.87 9970.59 27479.04 15054.77 21066.99 17186.01 11239.57 22378.21 24462.54 13273.33 20183.37 185
F-COLMAP63.05 24860.87 26369.58 21976.99 20753.63 14878.12 13376.16 20447.97 29652.41 34681.61 20627.87 33878.11 24540.07 30866.66 29077.00 291
TransMVSNet (Re)64.72 22764.33 21665.87 26975.22 23438.56 32574.66 21475.08 22958.90 12361.79 26182.63 17851.18 9678.07 24643.63 28655.87 35680.99 238
mvs_anonymous68.03 17267.51 16169.59 21772.08 28544.57 27571.99 25575.23 22151.67 24467.06 17082.57 18054.68 5077.94 24756.56 17275.71 17386.26 84
diffmvspermissive70.69 10970.43 10371.46 17669.45 32548.95 22772.93 24078.46 16857.27 15371.69 9683.97 15451.48 9377.92 24870.70 6977.95 14387.53 40
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GG-mvs-BLEND62.34 29771.36 29837.04 34269.20 28957.33 35654.73 32965.48 37130.37 31677.82 24934.82 34074.93 17972.17 340
CHOSEN 1792x268865.08 22562.84 23771.82 16681.49 8956.26 10566.32 30774.20 24040.53 35763.16 24078.65 25941.30 20877.80 25045.80 26474.09 18581.40 226
dcpmvs_274.55 5775.23 4872.48 15382.34 7753.34 15577.87 13881.46 10357.80 14875.49 3686.81 8462.22 1377.75 25171.09 6782.02 9186.34 76
D2MVS62.30 25560.29 26568.34 23666.46 34848.42 23465.70 31073.42 24847.71 29958.16 30075.02 31230.51 31577.71 25253.96 19671.68 22678.90 269
VPA-MVSNet69.02 15169.47 12167.69 24177.42 19541.00 30774.04 22279.68 13960.06 10369.26 12984.81 13451.06 9977.58 25354.44 19374.43 18284.48 148
MS-PatchMatch62.42 25361.46 25365.31 27775.21 23552.10 18072.05 25474.05 24146.41 31357.42 30674.36 31734.35 27777.57 25445.62 26773.67 19266.26 369
test_fmvsm_n_192071.73 9271.14 9273.50 13072.52 27756.53 10175.60 19176.16 20448.11 29377.22 2885.56 12353.10 7077.43 25574.86 4077.14 15586.55 70
CANet_DTU68.18 17067.71 15569.59 21774.83 24046.24 25678.66 12176.85 19759.60 11163.45 23682.09 19835.25 26777.41 25659.88 15578.76 13285.14 129
TAMVS66.78 20165.27 20971.33 18479.16 13753.67 14673.84 23169.59 27852.32 24165.28 20581.72 20444.49 17777.40 25742.32 29778.66 13482.92 197
test_fmvsmvis_n_192070.84 10570.38 10572.22 16071.16 30155.39 12775.86 18872.21 25849.03 28073.28 7086.17 10651.83 8877.29 25875.80 3278.05 14183.98 162
Baseline_NR-MVSNet67.05 19467.56 15765.50 27375.65 22637.70 33575.42 19574.65 23359.90 10668.14 14683.15 17149.12 11977.20 25952.23 20869.78 25681.60 221
CDS-MVSNet66.80 20065.37 20671.10 19078.98 14053.13 16173.27 23771.07 26652.15 24264.72 22080.23 23343.56 18477.10 26045.48 27178.88 12883.05 196
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VNet69.68 13370.19 10968.16 23779.73 12241.63 30270.53 27577.38 19060.37 9670.69 10386.63 9151.08 9877.09 26153.61 19981.69 9885.75 104
pmmvs663.69 23962.82 23866.27 25970.63 30739.27 32073.13 23875.47 21652.69 23759.75 28382.30 18939.71 22277.03 26247.40 24964.35 30982.53 204
testing9164.46 23263.80 22266.47 25478.43 15540.06 31167.63 29869.59 27859.06 12063.18 23978.05 26634.05 27976.99 26348.30 24375.87 17082.37 209
tfpnnormal62.47 25261.63 25164.99 28074.81 24139.01 32171.22 26573.72 24555.22 19860.21 27280.09 23641.26 21176.98 26430.02 36968.09 27978.97 268
testing9964.05 23563.29 23166.34 25678.17 16739.76 31567.33 30368.00 29158.60 12963.03 24278.10 26532.57 30476.94 26548.22 24475.58 17482.34 210
fmvsm_l_conf0.5_n70.99 10370.82 9771.48 17571.45 29354.40 13877.18 15970.46 27148.67 28475.17 3886.86 8253.77 6176.86 26676.33 3077.51 14883.17 194
LCM-MVSNet-Re61.88 26161.35 25463.46 28874.58 24831.48 37761.42 33958.14 35058.71 12753.02 34579.55 24643.07 18776.80 26745.69 26577.96 14282.11 215
testing1162.81 24961.90 24865.54 27278.38 15640.76 30867.59 30066.78 30055.48 19260.13 27477.11 28331.67 31076.79 26845.53 26974.45 18179.06 265
fmvsm_s_conf0.1_n_a69.32 14668.44 14371.96 16170.91 30453.78 14578.12 13362.30 33349.35 27673.20 7286.55 9651.99 8576.79 26874.83 4168.68 27685.32 123
fmvsm_s_conf0.5_n_a69.54 13868.74 13471.93 16272.47 27953.82 14478.25 12762.26 33449.78 27273.12 7686.21 10452.66 7376.79 26875.02 3968.88 27185.18 128
fmvsm_l_conf0.5_n_a70.50 11370.27 10771.18 18771.30 29954.09 14076.89 16769.87 27447.90 29774.37 5586.49 9753.07 7176.69 27175.41 3577.11 15682.76 201
HY-MVS56.14 1364.55 23163.89 21966.55 25374.73 24441.02 30469.96 28274.43 23449.29 27761.66 26380.92 22047.43 14076.68 27244.91 27671.69 22581.94 217
VPNet67.52 18368.11 14865.74 27079.18 13536.80 34472.17 25372.83 25362.04 7267.79 15885.83 11948.88 12176.60 27351.30 21872.97 20883.81 169
fmvsm_s_conf0.5_n69.58 13668.84 13171.79 16772.31 28352.90 16477.90 13762.43 33249.97 27072.85 8285.90 11652.21 8176.49 27475.75 3370.26 24585.97 91
fmvsm_s_conf0.1_n69.41 14468.60 13771.83 16571.07 30252.88 16577.85 14062.44 33149.58 27472.97 7986.22 10351.68 9176.48 27575.53 3470.10 24886.14 86
pm-mvs165.24 22264.97 21266.04 26572.38 28039.40 31972.62 24575.63 21255.53 19162.35 25783.18 17047.45 13976.47 27649.06 23766.54 29182.24 211
gg-mvs-nofinetune57.86 28956.43 29562.18 29872.62 27435.35 35566.57 30456.33 36050.65 26257.64 30357.10 38330.65 31476.36 27737.38 32278.88 12874.82 314
MVS_111021_LR69.50 14068.78 13371.65 17278.38 15659.33 5674.82 21070.11 27358.08 13867.83 15684.68 13541.96 19876.34 27865.62 10677.54 14679.30 264
tpmvs58.47 28356.95 28963.03 29470.20 31341.21 30367.90 29767.23 29649.62 27354.73 32970.84 34034.14 27876.24 27936.64 33161.29 33371.64 344
ab-mvs66.65 20366.42 18767.37 24576.17 22041.73 29970.41 27876.14 20653.99 22465.98 19083.51 16549.48 11176.24 27948.60 24073.46 19984.14 157
testing22262.29 25661.31 25565.25 27877.87 17538.53 32668.34 29366.31 30456.37 17163.15 24177.58 28028.47 33476.18 28137.04 32576.65 16481.05 237
Vis-MVSNet (Re-imp)63.69 23963.88 22063.14 29274.75 24331.04 37871.16 26763.64 32256.32 17259.80 28184.99 13144.51 17575.46 28239.12 31480.62 10182.92 197
新几何170.76 19585.66 4161.13 3066.43 30244.68 32770.29 10786.64 9041.29 20975.23 28349.72 23081.75 9675.93 299
USDC56.35 30154.24 31462.69 29564.74 35640.31 30965.05 32173.83 24443.93 33647.58 36377.71 27815.36 38075.05 28438.19 31961.81 33072.70 330
pmmvs461.48 26659.39 26967.76 24071.57 29253.86 14371.42 26165.34 30944.20 33259.46 28577.92 27035.90 26274.71 28543.87 28464.87 30374.71 316
tpm cat159.25 28056.95 28966.15 26272.19 28446.96 25068.09 29565.76 30640.03 36157.81 30270.56 34238.32 23774.51 28638.26 31861.50 33277.00 291
baseline163.81 23863.87 22163.62 28776.29 21836.36 34771.78 25967.29 29556.05 17964.23 22982.95 17347.11 14574.41 28747.30 25161.85 32980.10 252
patchmatchnet-post64.03 37334.50 27474.27 288
SCA60.49 27058.38 27966.80 24974.14 25848.06 23863.35 32963.23 32549.13 27959.33 28972.10 33037.45 24574.27 28844.17 27862.57 32378.05 275
bld_raw_dy_0_6464.87 22663.22 23269.83 21474.79 24253.32 15778.15 13262.02 33751.20 25660.17 27383.12 17224.15 36274.20 29063.08 12772.33 21781.96 216
SDMVSNet68.03 17268.10 14967.84 23977.13 20148.72 23165.32 31879.10 14958.02 14165.08 21382.55 18147.83 13173.40 29163.92 12073.92 18881.41 224
1112_ss64.00 23763.36 22965.93 26779.28 13142.58 29171.35 26272.36 25746.41 31360.55 27177.89 27246.27 15673.28 29246.18 26069.97 25181.92 218
TinyColmap54.14 31451.72 32561.40 30466.84 34441.97 29666.52 30568.51 28844.81 32542.69 37975.77 30511.66 38672.94 29331.96 35456.77 35369.27 365
pmmvs-eth3d58.81 28256.31 29666.30 25867.61 33952.42 17772.30 25164.76 31343.55 33854.94 32674.19 31928.95 32972.60 29443.31 28757.21 35073.88 324
IterMVS62.79 25061.27 25667.35 24669.37 32652.04 18371.17 26668.24 29052.63 23859.82 28076.91 28737.32 24872.36 29552.80 20563.19 31977.66 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test58.06 28855.38 30366.10 26469.51 32348.99 22668.01 29666.13 30544.50 32954.05 33670.74 34132.09 30872.34 29636.68 33056.71 35476.99 293
Patchmatch-RL test58.16 28655.49 30266.15 26267.92 33848.89 22860.66 34651.07 37547.86 29859.36 28662.71 37734.02 28172.27 29756.41 17359.40 34277.30 285
CL-MVSNet_self_test61.53 26460.94 26163.30 29068.95 33036.93 34367.60 29972.80 25455.67 18859.95 27876.63 29145.01 17272.22 29839.74 31262.09 32880.74 242
testdata272.18 29946.95 256
ETVMVS59.51 27958.81 27361.58 30277.46 19434.87 35664.94 32359.35 34554.06 22361.08 26876.67 29029.54 32371.87 30032.16 35274.07 18678.01 279
testing356.54 29755.92 29958.41 31977.52 19227.93 38669.72 28456.36 35954.75 21158.63 29677.80 27420.88 37271.75 30125.31 38462.25 32675.53 304
CMPMVSbinary42.80 2157.81 29055.97 29863.32 28960.98 37547.38 24764.66 32469.50 28032.06 37346.83 36777.80 27429.50 32571.36 30248.68 23973.75 19171.21 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Test_1112_low_res62.32 25461.77 24964.00 28679.08 13939.53 31868.17 29470.17 27243.25 34159.03 29179.90 23744.08 17971.24 30343.79 28568.42 27781.25 230
CNLPA65.43 21864.02 21869.68 21578.73 14758.07 7877.82 14270.71 26951.49 24961.57 26583.58 16438.23 23970.82 30443.90 28370.10 24880.16 250
CR-MVSNet59.91 27457.90 28465.96 26669.96 31852.07 18165.31 31963.15 32642.48 34759.36 28674.84 31335.83 26370.75 30545.50 27064.65 30575.06 308
MDTV_nov1_ep1357.00 28872.73 27238.26 32865.02 32264.73 31444.74 32655.46 31872.48 32632.61 30370.47 30637.47 32167.75 282
KD-MVS_2432*160053.45 31951.50 32759.30 31062.82 36437.14 33955.33 36571.79 26247.34 30555.09 32470.52 34321.91 36870.45 30735.72 33742.97 38170.31 357
miper_refine_blended53.45 31951.50 32759.30 31062.82 36437.14 33955.33 36571.79 26247.34 30555.09 32470.52 34321.91 36870.45 30735.72 33742.97 38170.31 357
UWE-MVS60.18 27259.78 26761.39 30577.67 18233.92 36769.04 29163.82 32048.56 28564.27 22777.64 27927.20 34470.40 30933.56 34776.24 16679.83 256
KD-MVS_self_test55.22 31053.89 31759.21 31357.80 38327.47 38857.75 35874.32 23647.38 30350.90 35270.00 34828.45 33570.30 31040.44 30757.92 34779.87 255
JIA-IIPM51.56 32847.68 34263.21 29164.61 35750.73 19847.71 38158.77 34842.90 34448.46 36251.72 38724.97 35870.24 31136.06 33653.89 36268.64 367
sd_testset64.46 23264.45 21564.51 28377.13 20142.25 29462.67 33272.11 25958.02 14165.08 21382.55 18141.22 21269.88 31247.32 25073.92 18881.41 224
test_post168.67 2923.64 40432.39 30669.49 31344.17 278
PatchmatchNetpermissive59.84 27558.24 28064.65 28273.05 26746.70 25269.42 28762.18 33547.55 30158.88 29271.96 33234.49 27569.16 31442.99 29263.60 31478.07 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet55.61 30754.41 31159.19 31465.41 35433.42 36972.44 24971.91 26128.81 37651.27 34973.87 32024.76 35969.08 31543.04 29158.20 34675.06 308
Patchmtry57.16 29356.47 29459.23 31269.17 32934.58 36162.98 33063.15 32644.53 32856.83 30874.84 31335.83 26368.71 31640.03 30960.91 33474.39 319
CVMVSNet59.63 27859.14 27161.08 30774.47 25038.84 32375.20 20068.74 28731.15 37458.24 29976.51 29532.39 30668.58 31749.77 22865.84 29675.81 300
our_test_356.49 29854.42 31062.68 29669.51 32345.48 26666.08 30861.49 33944.11 33550.73 35569.60 35233.05 29168.15 31838.38 31756.86 35174.40 318
Syy-MVS56.00 30456.23 29755.32 33674.69 24526.44 39265.52 31357.49 35450.97 25956.52 31172.18 32839.89 21968.09 31924.20 38564.59 30771.44 348
myMVS_eth3d54.86 31354.61 30855.61 33574.69 24527.31 38965.52 31357.49 35450.97 25956.52 31172.18 32821.87 37068.09 31927.70 37764.59 30771.44 348
miper_lstm_enhance62.03 25960.88 26265.49 27466.71 34546.25 25556.29 36475.70 21150.68 26161.27 26675.48 30940.21 21768.03 32156.31 17465.25 30082.18 212
MDA-MVSNet-bldmvs53.87 31750.81 32963.05 29366.25 34948.58 23256.93 36263.82 32048.09 29441.22 38070.48 34530.34 31768.00 32234.24 34245.92 37872.57 332
AllTest57.08 29454.65 30764.39 28471.44 29449.03 22369.92 28367.30 29345.97 31847.16 36579.77 24017.47 37467.56 32333.65 34459.16 34376.57 295
TestCases64.39 28471.44 29449.03 22367.30 29345.97 31847.16 36579.77 24017.47 37467.56 32333.65 34459.16 34376.57 295
pmmvs556.47 29955.68 30158.86 31661.41 37236.71 34566.37 30662.75 32840.38 35853.70 33876.62 29234.56 27367.05 32540.02 31065.27 29972.83 329
EPNet_dtu61.90 26061.97 24761.68 30072.89 27039.78 31475.85 18965.62 30855.09 20154.56 33179.36 25037.59 24467.02 32639.80 31176.95 15878.25 272
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL56.25 30254.55 30961.32 30677.06 20456.07 10965.57 31254.10 36844.13 33453.49 34471.27 33925.20 35766.78 32736.52 33363.66 31361.12 373
test_post3.55 40533.90 28366.52 328
EGC-MVSNET42.47 34838.48 35654.46 34274.33 25448.73 23070.33 27951.10 3740.03 4060.18 40767.78 36013.28 38366.49 32918.91 39150.36 37148.15 388
TDRefinement53.44 32150.72 33061.60 30164.31 35946.96 25070.89 27265.27 31141.78 34844.61 37477.98 26711.52 38866.36 33028.57 37551.59 36771.49 347
testdata64.66 28181.52 8752.93 16265.29 31046.09 31673.88 6287.46 7538.08 24166.26 33153.31 20278.48 13674.78 315
IterMVS-SCA-FT62.49 25161.52 25265.40 27571.99 28750.80 19771.15 26869.63 27745.71 32160.61 27077.93 26937.45 24565.99 33255.67 18163.50 31679.42 262
PM-MVS52.33 32550.19 33358.75 31762.10 36945.14 26965.75 30940.38 39443.60 33753.52 34272.65 3259.16 39465.87 33350.41 22454.18 36165.24 371
旧先验276.08 18245.32 32376.55 3265.56 33458.75 162
WB-MVSnew59.66 27759.69 26859.56 30975.19 23635.78 35469.34 28864.28 31746.88 31061.76 26275.79 30440.61 21565.20 33532.16 35271.21 23077.70 280
PVSNet50.76 1958.40 28457.39 28561.42 30375.53 23044.04 27961.43 33863.45 32347.04 30956.91 30773.61 32227.00 34764.76 33639.12 31472.40 21575.47 305
MVS-HIRNet45.52 34344.48 34648.65 36168.49 33434.05 36559.41 35144.50 38927.03 38137.96 38850.47 39126.16 35264.10 33726.74 38159.52 34147.82 390
FMVSNet555.86 30554.93 30558.66 31871.05 30336.35 34864.18 32762.48 33046.76 31150.66 35674.73 31525.80 35464.04 33833.11 34865.57 29875.59 303
MIMVSNet155.17 31154.31 31357.77 32670.03 31732.01 37565.68 31164.81 31249.19 27846.75 36876.00 30025.53 35664.04 33828.65 37462.13 32777.26 287
patch_mono-269.85 12671.09 9366.16 26179.11 13854.80 13571.97 25674.31 23753.50 23070.90 10284.17 14757.63 2963.31 34066.17 9882.02 9180.38 247
ADS-MVSNet251.33 33048.76 33759.07 31566.02 35244.60 27450.90 37559.76 34436.90 36550.74 35366.18 36926.38 34963.11 34127.17 37854.76 35969.50 363
Gipumacopyleft34.77 35931.91 36343.33 36962.05 37037.87 33020.39 39867.03 29723.23 38618.41 39925.84 3994.24 40062.73 34214.71 39451.32 36829.38 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ITE_SJBPF62.09 29966.16 35044.55 27664.32 31647.36 30455.31 32180.34 23019.27 37362.68 34336.29 33562.39 32579.04 266
ANet_high41.38 35137.47 35853.11 35039.73 40224.45 39756.94 36169.69 27547.65 30026.04 39452.32 38612.44 38462.38 34421.80 38810.61 40372.49 333
MIMVSNet57.35 29157.07 28758.22 32174.21 25737.18 33862.46 33360.88 34248.88 28255.29 32275.99 30231.68 30962.04 34531.87 35572.35 21675.43 306
LCM-MVSNet40.30 35335.88 35953.57 34742.24 39729.15 38245.21 38760.53 34322.23 39028.02 39250.98 3903.72 40361.78 34631.22 36538.76 38769.78 362
PatchT53.17 32353.44 32052.33 35468.29 33625.34 39658.21 35454.41 36644.46 33054.56 33169.05 35533.32 28960.94 34736.93 32661.76 33170.73 355
WTY-MVS59.75 27660.39 26457.85 32572.32 28237.83 33261.05 34464.18 31845.95 32061.91 25979.11 25447.01 14960.88 34842.50 29669.49 26274.83 313
XXY-MVS60.68 26961.67 25057.70 32770.43 31038.45 32764.19 32666.47 30148.05 29563.22 23780.86 22249.28 11460.47 34945.25 27567.28 28674.19 321
tpmrst58.24 28558.70 27656.84 32966.97 34234.32 36269.57 28661.14 34147.17 30858.58 29771.60 33541.28 21060.41 35049.20 23562.84 32175.78 301
dmvs_testset50.16 33451.90 32444.94 36766.49 34711.78 40561.01 34551.50 37251.17 25750.30 35967.44 36139.28 22660.29 35122.38 38757.49 34962.76 372
PMVScopyleft28.69 2236.22 35833.29 36245.02 36636.82 40435.98 35354.68 36848.74 37926.31 38221.02 39751.61 3882.88 40660.10 3529.99 40347.58 37638.99 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS53.96 31553.26 32156.04 33262.60 36750.92 19461.17 34256.09 36232.81 37253.51 34366.84 36634.04 28059.93 35344.14 28068.18 27857.27 381
test_vis1_n_192058.86 28159.06 27258.25 32063.76 36043.14 28767.49 30166.36 30340.22 35965.89 19471.95 33331.04 31159.75 35459.94 15464.90 30271.85 343
UnsupCasMVSNet_bld50.07 33548.87 33653.66 34660.97 37633.67 36857.62 35964.56 31539.47 36347.38 36464.02 37527.47 34159.32 35534.69 34143.68 38067.98 368
Anonymous2024052155.30 30854.41 31157.96 32460.92 37741.73 29971.09 27071.06 26741.18 35348.65 36173.31 32316.93 37659.25 35642.54 29564.01 31072.90 328
WB-MVS43.26 34643.41 34742.83 37163.32 36310.32 40758.17 35545.20 38745.42 32240.44 38367.26 36434.01 28258.98 35711.96 39924.88 39459.20 375
dmvs_re56.77 29656.83 29156.61 33069.23 32741.02 30458.37 35364.18 31850.59 26457.45 30571.42 33635.54 26558.94 35837.23 32367.45 28469.87 361
PVSNet_043.31 2047.46 34245.64 34552.92 35167.60 34044.65 27354.06 36954.64 36441.59 35146.15 37058.75 38030.99 31258.66 35932.18 35124.81 39555.46 383
test20.0353.87 31754.02 31653.41 34961.47 37128.11 38561.30 34059.21 34651.34 25352.09 34777.43 28133.29 29058.55 36029.76 37060.27 34073.58 325
SSC-MVS41.96 35041.99 35041.90 37262.46 3689.28 40957.41 36044.32 39043.38 33938.30 38766.45 36732.67 30058.42 36110.98 40021.91 39757.99 379
UnsupCasMVSNet_eth53.16 32452.47 32255.23 33759.45 37933.39 37059.43 35069.13 28445.98 31750.35 35872.32 32729.30 32758.26 36242.02 30044.30 37974.05 322
pmmvs344.92 34441.95 35153.86 34452.58 38843.55 28362.11 33646.90 38626.05 38340.63 38160.19 37911.08 39157.91 36331.83 35946.15 37760.11 374
test-LLR58.15 28758.13 28358.22 32168.57 33244.80 27165.46 31557.92 35150.08 26855.44 31969.82 34932.62 30157.44 36449.66 23173.62 19372.41 336
test-mter56.42 30055.82 30058.22 32168.57 33244.80 27165.46 31557.92 35139.94 36255.44 31969.82 34921.92 36757.44 36449.66 23173.62 19372.41 336
new-patchmatchnet47.56 34147.73 34147.06 36258.81 3819.37 40848.78 37959.21 34643.28 34044.22 37568.66 35625.67 35557.20 36631.57 36249.35 37474.62 317
EPMVS53.96 31553.69 31854.79 34066.12 35131.96 37662.34 33549.05 37844.42 33155.54 31771.33 33830.22 31856.70 36741.65 30362.54 32475.71 302
test_cas_vis1_n_192056.91 29556.71 29257.51 32859.13 38045.40 26763.58 32861.29 34036.24 36867.14 16971.85 33429.89 32156.69 36857.65 16663.58 31570.46 356
dp51.89 32751.60 32652.77 35268.44 33532.45 37462.36 33454.57 36544.16 33349.31 36067.91 35728.87 33156.61 36933.89 34354.89 35869.24 366
Anonymous2023120655.10 31255.30 30454.48 34169.81 32233.94 36662.91 33162.13 33641.08 35455.18 32375.65 30632.75 29856.59 37030.32 36867.86 28072.91 327
sss56.17 30356.57 29354.96 33866.93 34336.32 35057.94 35661.69 33841.67 35058.64 29575.32 31138.72 23356.25 37142.04 29966.19 29472.31 339
RPSCF55.80 30654.22 31560.53 30865.13 35542.91 29064.30 32557.62 35336.84 36758.05 30182.28 19028.01 33756.24 37237.14 32458.61 34582.44 208
test0.0.03 153.32 32253.59 31952.50 35362.81 36629.45 38159.51 34954.11 36750.08 26854.40 33374.31 31832.62 30155.92 37330.50 36763.95 31272.15 341
testgi51.90 32652.37 32350.51 35960.39 37823.55 39958.42 35258.15 34949.03 28051.83 34879.21 25322.39 36555.59 37429.24 37362.64 32272.40 338
TESTMET0.1,155.28 30954.90 30656.42 33166.56 34643.67 28265.46 31556.27 36139.18 36453.83 33767.44 36124.21 36155.46 37548.04 24673.11 20670.13 359
YYNet150.73 33248.96 33456.03 33361.10 37441.78 29851.94 37356.44 35840.94 35644.84 37267.80 35930.08 31955.08 37636.77 32750.71 36971.22 350
MDA-MVSNet_test_wron50.71 33348.95 33556.00 33461.17 37341.84 29751.90 37456.45 35740.96 35544.79 37367.84 35830.04 32055.07 37736.71 32950.69 37071.11 353
test_fmvs1_n51.37 32950.35 33254.42 34352.85 38637.71 33461.16 34351.93 37028.15 37863.81 23369.73 35113.72 38153.95 37851.16 21960.65 33871.59 345
test_fmvs151.32 33150.48 33153.81 34553.57 38537.51 33660.63 34751.16 37328.02 38063.62 23469.23 35416.41 37753.93 37951.01 22060.70 33769.99 360
tpm57.34 29258.16 28154.86 33971.80 29034.77 35867.47 30256.04 36348.20 29260.10 27576.92 28637.17 25153.41 38040.76 30665.01 30176.40 297
APD_test137.39 35734.94 36044.72 36848.88 39133.19 37152.95 37244.00 39119.49 39227.28 39358.59 3813.18 40552.84 38118.92 39041.17 38448.14 389
ADS-MVSNet48.48 33947.77 34050.63 35866.02 35229.92 38050.90 37550.87 37736.90 36550.74 35366.18 36926.38 34952.47 38227.17 37854.76 35969.50 363
test_vis1_n49.89 33648.69 33853.50 34853.97 38437.38 33761.53 33747.33 38428.54 37759.62 28467.10 36513.52 38252.27 38349.07 23657.52 34870.84 354
test_fmvs248.69 33847.49 34352.29 35548.63 39233.06 37257.76 35748.05 38225.71 38459.76 28269.60 35211.57 38752.23 38449.45 23456.86 35171.58 346
FPMVS42.18 34941.11 35245.39 36458.03 38241.01 30649.50 37753.81 36930.07 37533.71 38964.03 37311.69 38552.08 38514.01 39555.11 35743.09 392
test_fmvs344.30 34542.55 34849.55 36042.83 39627.15 39153.03 37144.93 38822.03 39153.69 34064.94 3724.21 40149.63 38647.47 24749.82 37271.88 342
CHOSEN 280x42047.83 34046.36 34452.24 35667.37 34149.78 21438.91 39343.11 39235.00 37043.27 37863.30 37628.95 32949.19 38736.53 33260.80 33657.76 380
testf131.46 36428.89 36739.16 37441.99 39928.78 38346.45 38337.56 39614.28 39921.10 39548.96 3921.48 40947.11 38813.63 39634.56 39041.60 393
APD_test231.46 36428.89 36739.16 37441.99 39928.78 38346.45 38337.56 39614.28 39921.10 39548.96 3921.48 40947.11 38813.63 39634.56 39041.60 393
Patchmatch-test49.08 33748.28 33951.50 35764.40 35830.85 37945.68 38548.46 38135.60 36946.10 37172.10 33034.47 27646.37 39027.08 38060.65 33877.27 286
DSMNet-mixed39.30 35638.72 35541.03 37351.22 38919.66 40245.53 38631.35 40115.83 39839.80 38567.42 36322.19 36645.13 39122.43 38652.69 36558.31 378
test_vis1_rt41.35 35239.45 35447.03 36346.65 39537.86 33147.76 38038.65 39523.10 38744.21 37651.22 38911.20 39044.08 39239.27 31353.02 36459.14 376
LF4IMVS42.95 34742.26 34945.04 36548.30 39332.50 37354.80 36748.49 38028.03 37940.51 38270.16 3469.24 39343.89 39331.63 36049.18 37558.72 377
N_pmnet39.35 35540.28 35336.54 37863.76 3601.62 41349.37 3780.76 41234.62 37143.61 37766.38 36826.25 35142.57 39426.02 38351.77 36665.44 370
E-PMN23.77 36722.73 37126.90 38342.02 39820.67 40142.66 39035.70 39817.43 39410.28 40425.05 4006.42 39642.39 39510.28 40214.71 40017.63 399
EMVS22.97 36821.84 37226.36 38440.20 40119.53 40341.95 39134.64 39917.09 3959.73 40522.83 4017.29 39542.22 3969.18 40413.66 40117.32 400
mvsany_test139.38 35438.16 35743.02 37049.05 39034.28 36344.16 38925.94 40522.74 38946.57 36962.21 37823.85 36341.16 39733.01 34935.91 38953.63 384
PMMVS227.40 36625.91 36931.87 38239.46 4036.57 41031.17 39628.52 40323.96 38520.45 39848.94 3944.20 40237.94 39816.51 39219.97 39851.09 385
test_vis3_rt32.09 36230.20 36637.76 37735.36 40627.48 38740.60 39228.29 40416.69 39632.52 39040.53 3951.96 40737.40 39933.64 34642.21 38348.39 387
mvsany_test332.62 36130.57 36538.77 37636.16 40524.20 39838.10 39420.63 40719.14 39340.36 38457.43 3825.06 39836.63 40029.59 37228.66 39355.49 382
new_pmnet34.13 36034.29 36133.64 38052.63 38718.23 40444.43 38833.90 40022.81 38830.89 39153.18 38510.48 39235.72 40120.77 38939.51 38546.98 391
test_f31.86 36331.05 36434.28 37932.33 40821.86 40032.34 39530.46 40216.02 39739.78 38655.45 3844.80 39932.36 40230.61 36637.66 38848.64 386
MVEpermissive17.77 2321.41 36917.77 37432.34 38134.34 40725.44 39516.11 39924.11 40611.19 40113.22 40131.92 3971.58 40830.95 40310.47 40117.03 39940.62 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.68 37018.10 37324.41 38513.68 4103.11 41212.06 40142.37 3932.00 40411.97 40236.38 3965.77 39729.35 40415.06 39323.65 39640.76 395
wuyk23d13.32 37212.52 37515.71 38647.54 39426.27 39331.06 3971.98 4114.93 4035.18 4061.94 4060.45 41118.54 4056.81 40612.83 4022.33 403
DeepMVS_CXcopyleft12.03 38717.97 40910.91 40610.60 4107.46 40211.07 40328.36 3983.28 40411.29 4068.01 4059.74 40513.89 401
tmp_tt9.43 37311.14 3764.30 3882.38 4114.40 41113.62 40016.08 4090.39 40515.89 40013.06 40215.80 3795.54 40712.63 39810.46 4042.95 402
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
cdsmvs_eth3d_5k17.50 37123.34 3700.00 3910.00 4140.00 4150.00 40278.63 1610.00 4090.00 41082.18 19149.25 1150.00 4080.00 4090.00 4060.00 406
pcd_1.5k_mvsjas3.92 3775.23 3800.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 40947.05 1460.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
testmvs4.52 3766.03 3790.01 3900.01 4120.00 41553.86 3700.00 4130.01 4070.04 4080.27 4070.00 4130.00 4080.04 4070.00 4060.03 405
test1234.73 3756.30 3780.02 3890.01 4120.01 41456.36 3630.00 4130.01 4070.04 4080.21 4080.01 4120.00 4080.03 4080.00 4060.04 404
ab-mvs-re6.49 3748.65 3770.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 41077.89 2720.00 4130.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
WAC-MVS27.31 38927.77 376
FOURS186.12 3660.82 3788.18 183.61 6360.87 8481.50 16
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 414
eth-test0.00 414
RE-MVS-def73.71 6383.49 6559.87 4984.29 3781.36 10758.07 13973.14 7490.07 3443.06 18868.20 7981.76 9484.03 159
IU-MVS87.77 459.15 6085.53 2553.93 22584.64 379.07 1190.87 588.37 13
save fliter86.17 3361.30 2883.98 4779.66 14059.00 121
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 275
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27278.05 275
sam_mvs33.43 288
MTGPAbinary80.97 123
MTMP86.03 1917.08 408
test9_res75.28 3788.31 3283.81 169
agg_prior273.09 5587.93 4084.33 150
test_prior462.51 1482.08 77
test_prior281.75 8060.37 9675.01 4189.06 5256.22 3772.19 5988.96 24
新几何276.12 180
旧先验183.04 7053.15 15967.52 29287.85 7144.08 17980.76 10078.03 278
原ACMM279.02 116
test22283.14 6858.68 7372.57 24763.45 32341.78 34867.56 16286.12 10737.13 25378.73 13374.98 311
segment_acmp54.23 54
testdata172.65 24360.50 91
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 170
plane_prior486.10 108
plane_prior356.09 10863.92 3669.27 127
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 106
n20.00 413
nn0.00 413
door-mid47.19 385
test1183.47 67
door47.60 383
HQP5-MVS54.94 131
HQP-NCC80.66 10382.31 7162.10 6867.85 152
ACMP_Plane80.66 10382.31 7162.10 6867.85 152
BP-MVS67.04 93
HQP3-MVS83.90 5480.35 107
HQP2-MVS45.46 164
NP-MVS80.98 10056.05 11085.54 126
MDTV_nov1_ep13_2view25.89 39461.22 34140.10 36051.10 35032.97 29338.49 31678.61 270
ACMMP++_ref74.07 186
ACMMP++72.16 221
Test By Simon48.33 126