This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
fmvsm_s_conf0.1_n_a93.19 7093.26 6392.97 9792.49 26483.62 11696.02 6895.72 16786.78 14196.04 2298.19 182.30 9998.43 13396.38 1395.42 13096.86 141
fmvsm_s_conf0.1_n93.46 5793.66 5792.85 10493.75 22783.13 13296.02 6895.74 16487.68 12295.89 2598.17 282.78 9198.46 12596.71 1096.17 11496.98 133
reproduce_model94.76 1894.92 1594.29 5497.92 4385.18 7495.95 7597.19 3589.67 5495.27 3498.16 386.53 4399.36 3595.42 2498.15 6498.33 44
test_fmvsmconf0.01_n93.19 7093.02 6993.71 7289.25 36084.42 9796.06 6496.29 11389.06 7194.68 4098.13 479.22 13698.98 7797.22 497.24 9097.74 95
test072698.78 385.93 5597.19 1197.47 1190.27 3297.64 498.13 491.47 8
test_fmvsmconf0.1_n94.20 3694.31 3093.88 6292.46 26684.80 8096.18 5196.82 7189.29 6495.68 2898.11 685.10 6098.99 7397.38 397.75 8297.86 88
test_fmvsmconf_n94.60 2194.81 1993.98 5894.62 17884.96 7796.15 5497.35 2289.37 6196.03 2398.11 686.36 4499.01 6697.45 297.83 7897.96 80
reproduce-ours94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7997.15 4189.82 4495.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
our_new_method94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7997.15 4189.82 4495.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4697.28 3185.90 16297.67 398.10 888.41 2099.56 1294.66 3299.19 198.71 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 7596.20 1998.10 889.39 1699.34 3795.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2997.71 198.07 1292.31 499.58 1095.66 1799.13 398.84 14
test_241102_TWO97.44 1590.31 2997.62 598.07 1291.46 1099.58 1095.66 1799.12 698.98 10
DVP-MVS++95.98 196.36 194.82 3197.78 5486.00 5098.29 197.49 690.75 1997.62 598.06 1492.59 299.61 495.64 1999.02 1298.86 11
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1491.45 11
fmvsm_s_conf0.5_n_a93.57 5493.76 5393.00 9595.02 15383.67 11396.19 4996.10 13487.27 12995.98 2498.05 1683.07 8798.45 12996.68 1195.51 12496.88 140
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 8290.27 3297.04 1198.05 1691.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1997.04 1198.05 1692.09 699.55 1695.64 1999.13 399.13 2
fmvsm_s_conf0.5_n93.76 5094.06 4492.86 10395.62 13083.17 13096.14 5696.12 13288.13 10695.82 2698.04 1983.43 8098.48 12196.97 996.23 11396.92 137
test_241102_ONE98.77 585.99 5297.44 1590.26 3497.71 197.96 2092.31 499.38 31
DPE-MVScopyleft95.57 495.67 495.25 1198.36 2587.28 1895.56 10197.51 589.13 7097.14 997.91 2191.64 799.62 294.61 3399.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsm_n_192094.71 2095.11 1093.50 7695.79 12084.62 8496.15 5497.64 289.85 4397.19 897.89 2286.28 4698.71 10297.11 698.08 7097.17 120
MP-MVS-pluss94.21 3494.00 4594.85 2598.17 3386.65 3194.82 14297.17 4086.26 15492.83 7997.87 2385.57 5499.56 1294.37 3698.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_l_conf0.5_n_a94.20 3694.40 2693.60 7495.29 14084.98 7695.61 9796.28 11686.31 15296.75 1697.86 2487.40 3398.74 9997.07 797.02 9597.07 126
fmvsm_l_conf0.5_n94.29 3094.46 2493.79 6895.28 14185.43 7095.68 9096.43 10386.56 14696.84 1497.81 2587.56 3298.77 9697.14 596.82 10297.16 124
MM95.10 1194.91 1695.68 596.09 10688.34 996.68 3394.37 24495.08 194.68 4097.72 2682.94 8899.64 197.85 198.76 2999.06 7
SF-MVS94.97 1294.90 1895.20 1297.84 5087.76 1096.65 3497.48 1087.76 12095.71 2797.70 2788.28 2399.35 3693.89 4198.78 2698.48 30
ACMMP_NAP94.74 1994.56 2295.28 1098.02 4187.70 1195.68 9097.34 2388.28 9995.30 3397.67 2885.90 5099.54 2093.91 4098.95 1598.60 23
MTAPA94.42 2894.22 3595.00 1898.42 2186.95 2194.36 17796.97 5391.07 1393.14 7097.56 2984.30 7399.56 1293.43 4698.75 3098.47 33
test_fmvsmvis_n_192093.44 5993.55 5993.10 8893.67 23184.26 10095.83 8396.14 12889.00 7792.43 9497.50 3083.37 8398.72 10096.61 1297.44 8696.32 159
APD-MVS_3200maxsize93.78 4993.77 5293.80 6797.92 4384.19 10196.30 4196.87 6586.96 13593.92 5597.47 3183.88 7898.96 8092.71 6197.87 7698.26 60
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7586.33 4297.33 797.30 2991.38 1295.39 3197.46 3288.98 1999.40 3094.12 3798.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS-dyc-post93.82 4893.82 4893.82 6597.92 4384.57 8696.28 4396.76 7887.46 12593.75 5797.43 3384.24 7499.01 6692.73 5897.80 7997.88 86
RE-MVS-def93.68 5697.92 4384.57 8696.28 4396.76 7887.46 12593.75 5797.43 3382.94 8892.73 5897.80 7997.88 86
9.1494.47 2397.79 5296.08 6097.44 1586.13 16095.10 3797.40 3588.34 2299.22 4793.25 5098.70 34
SR-MVS94.23 3394.17 4094.43 4798.21 3285.78 6396.40 3896.90 6288.20 10394.33 4497.40 3584.75 6999.03 6193.35 4997.99 7298.48 30
DeepC-MVS88.79 393.31 6592.99 7094.26 5596.07 10885.83 6194.89 13696.99 5189.02 7689.56 14297.37 3782.51 9499.38 3192.20 7598.30 5797.57 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS93.96 4693.72 5494.68 3898.43 2086.22 4795.30 10997.78 187.45 12793.26 6697.33 3884.62 7099.51 2490.75 10998.57 4998.32 48
DeepPCF-MVS89.96 194.20 3694.77 2092.49 12396.52 9180.00 22594.00 20297.08 4790.05 3695.65 2997.29 3989.66 1398.97 7893.95 3998.71 3298.50 27
region2R94.43 2694.27 3494.92 2098.65 886.67 3096.92 2497.23 3488.60 9093.58 6197.27 4085.22 5899.54 2092.21 7498.74 3198.56 25
SD-MVS94.96 1395.33 893.88 6297.25 7286.69 2896.19 4997.11 4690.42 2796.95 1397.27 4089.53 1496.91 26194.38 3598.85 2098.03 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR94.43 2694.28 3294.91 2198.63 986.69 2896.94 2097.32 2788.63 8793.53 6497.26 4285.04 6299.54 2092.35 7098.78 2698.50 27
CP-MVS94.34 2994.21 3794.74 3798.39 2386.64 3297.60 497.24 3288.53 9292.73 8597.23 4385.20 5999.32 4192.15 7798.83 2298.25 61
patch_mono-293.74 5194.32 2892.01 14097.54 6078.37 26293.40 22797.19 3588.02 10894.99 3997.21 4488.35 2198.44 13194.07 3898.09 6899.23 1
HFP-MVS94.52 2294.40 2694.86 2498.61 1086.81 2596.94 2097.34 2388.63 8793.65 5997.21 4486.10 4899.49 2692.35 7098.77 2898.30 49
MVS_030494.18 3993.80 4995.34 994.91 16387.62 1495.97 7293.01 28492.58 394.22 4597.20 4680.56 11899.59 897.04 898.68 3798.81 17
MP-MVScopyleft94.25 3194.07 4294.77 3598.47 1886.31 4496.71 3196.98 5289.04 7391.98 10297.19 4785.43 5699.56 1292.06 8398.79 2498.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3294.07 4294.75 3698.06 3986.90 2395.88 7896.94 5885.68 16895.05 3897.18 4887.31 3599.07 5691.90 9098.61 4898.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS93.99 4493.78 5194.63 4098.50 1685.90 6096.87 2696.91 6188.70 8591.83 11197.17 4983.96 7799.55 1691.44 9798.64 4598.43 38
XVS94.45 2494.32 2894.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7797.16 5085.02 6399.49 2691.99 8498.56 5098.47 33
HPM-MVS_fast93.40 6493.22 6593.94 6198.36 2584.83 7997.15 1396.80 7485.77 16592.47 9397.13 5182.38 9599.07 5690.51 11298.40 5497.92 84
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 5292.59 298.94 8192.25 7398.99 1498.84 14
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 11196.96 5592.09 695.32 3297.08 5289.49 1599.33 4095.10 2898.85 2098.66 21
PC_three_145282.47 24497.09 1097.07 5492.72 198.04 16992.70 6299.02 1298.86 11
ZNCC-MVS94.47 2394.28 3295.03 1698.52 1586.96 2096.85 2897.32 2788.24 10093.15 6997.04 5586.17 4799.62 292.40 6798.81 2398.52 26
ACMMPcopyleft93.24 6892.88 7294.30 5398.09 3885.33 7296.86 2797.45 1488.33 9690.15 13797.03 5681.44 11299.51 2490.85 10895.74 12098.04 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast89.43 294.04 4193.79 5094.80 3397.48 6486.78 2695.65 9596.89 6389.40 6092.81 8096.97 5785.37 5799.24 4690.87 10798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.94.85 1494.94 1494.58 4298.25 2986.33 4296.11 5996.62 9188.14 10596.10 2096.96 5889.09 1898.94 8194.48 3498.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++93.72 5294.08 4192.65 11597.31 6883.43 12195.79 8597.33 2590.03 3793.58 6196.96 5884.87 6797.76 18492.19 7698.66 4196.76 144
ZD-MVS98.15 3486.62 3397.07 4883.63 21694.19 4796.91 6087.57 3199.26 4591.99 8498.44 53
dcpmvs_293.49 5694.19 3991.38 17497.69 5776.78 29594.25 18096.29 11388.33 9694.46 4296.88 6188.07 2598.64 10893.62 4498.09 6898.73 18
VDDNet89.56 14488.49 16092.76 10895.07 15282.09 16596.30 4193.19 27981.05 28591.88 10796.86 6261.16 34298.33 14188.43 13392.49 19297.84 90
VDD-MVS90.74 11289.92 12493.20 8396.27 9783.02 14095.73 8793.86 26588.42 9592.53 9096.84 6362.09 32698.64 10890.95 10592.62 18897.93 83
GST-MVS94.21 3493.97 4694.90 2398.41 2286.82 2496.54 3697.19 3588.24 10093.26 6696.83 6485.48 5599.59 891.43 9898.40 5498.30 49
HPM-MVS++copyleft95.14 1094.91 1695.83 498.25 2989.65 495.92 7696.96 5591.75 994.02 5396.83 6488.12 2499.55 1693.41 4898.94 1698.28 54
旧先验196.79 7981.81 17195.67 17096.81 6686.69 3997.66 8496.97 134
LFMVS90.08 12889.13 14192.95 9996.71 8082.32 16396.08 6089.91 36386.79 14092.15 9996.81 6662.60 32498.34 13987.18 14993.90 16098.19 64
HPM-MVScopyleft94.02 4293.88 4794.43 4798.39 2385.78 6397.25 1097.07 4886.90 13992.62 8996.80 6884.85 6899.17 5092.43 6598.65 4498.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6989.90 1299.30 4394.70 3198.04 7199.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata90.49 21096.40 9377.89 27495.37 19672.51 37893.63 6096.69 6982.08 10697.65 19283.08 20097.39 8795.94 179
EI-MVSNet-Vis-set93.01 7492.92 7193.29 7895.01 15483.51 12094.48 16195.77 16190.87 1592.52 9196.67 7184.50 7199.00 7191.99 8494.44 15497.36 111
3Dnovator86.66 591.73 9490.82 10694.44 4594.59 17986.37 4197.18 1297.02 5089.20 6784.31 27196.66 7273.74 20899.17 5086.74 15597.96 7397.79 93
test250687.21 22686.28 22490.02 23395.62 13073.64 33496.25 4771.38 41887.89 11490.45 12996.65 7355.29 37298.09 16486.03 16596.94 9698.33 44
test111189.10 15888.64 15390.48 21195.53 13574.97 31896.08 6084.89 39488.13 10690.16 13696.65 7363.29 32098.10 15686.14 16196.90 9898.39 39
ECVR-MVScopyleft89.09 16088.53 15690.77 20195.62 13075.89 30896.16 5284.22 39687.89 11490.20 13496.65 7363.19 32298.10 15685.90 16696.94 9698.33 44
CDPH-MVS92.83 7692.30 8294.44 4597.79 5286.11 4994.06 19696.66 8880.09 29492.77 8296.63 7686.62 4099.04 6087.40 14598.66 4198.17 66
3Dnovator+87.14 492.42 8491.37 9495.55 795.63 12988.73 697.07 1896.77 7790.84 1684.02 27696.62 7775.95 17199.34 3787.77 14097.68 8398.59 24
EI-MVSNet-UG-set92.74 7892.62 7893.12 8794.86 16683.20 12994.40 16995.74 16490.71 2392.05 10096.60 7884.00 7698.99 7391.55 9593.63 16497.17 120
NCCC94.81 1794.69 2195.17 1497.83 5187.46 1795.66 9396.93 5992.34 493.94 5496.58 7987.74 2799.44 2992.83 5798.40 5498.62 22
Vis-MVSNetpermissive91.75 9391.23 9793.29 7895.32 13983.78 11096.14 5695.98 14489.89 4090.45 12996.58 7975.09 18398.31 14484.75 18096.90 9897.78 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n_192089.39 15389.84 12588.04 29692.97 25672.64 34894.71 15096.03 14286.18 15691.94 10696.56 8161.63 33095.74 32593.42 4795.11 13795.74 189
UA-Net92.83 7692.54 7993.68 7396.10 10584.71 8295.66 9396.39 10791.92 793.22 6896.49 8283.16 8498.87 8584.47 18495.47 12797.45 110
MG-MVS91.77 9291.70 9192.00 14397.08 7480.03 22393.60 22095.18 20487.85 11690.89 12596.47 8382.06 10798.36 13685.07 17497.04 9497.62 101
CPTT-MVS91.99 8891.80 8892.55 12098.24 3181.98 16896.76 3096.49 10181.89 26290.24 13296.44 8478.59 14498.61 11389.68 11897.85 7797.06 127
test_prior294.12 18787.67 12392.63 8896.39 8586.62 4091.50 9698.67 40
MCST-MVS94.45 2494.20 3895.19 1398.46 1987.50 1695.00 13097.12 4487.13 13192.51 9296.30 8689.24 1799.34 3793.46 4598.62 4698.73 18
PHI-MVS93.89 4793.65 5894.62 4196.84 7886.43 3996.69 3297.49 685.15 18193.56 6396.28 8785.60 5399.31 4292.45 6498.79 2498.12 71
新几何193.10 8897.30 6984.35 9995.56 17871.09 38691.26 12296.24 8882.87 9098.86 8779.19 27198.10 6796.07 174
CS-MVS94.12 4094.44 2593.17 8496.55 8883.08 13797.63 396.95 5791.71 1193.50 6596.21 8985.61 5298.24 14693.64 4398.17 6298.19 64
TEST997.53 6186.49 3794.07 19496.78 7581.61 27292.77 8296.20 9087.71 2899.12 54
train_agg93.44 5993.08 6794.52 4497.53 6186.49 3794.07 19496.78 7581.86 26392.77 8296.20 9087.63 2999.12 5492.14 7898.69 3597.94 81
test_897.49 6386.30 4594.02 19996.76 7881.86 26392.70 8696.20 9087.63 2999.02 64
QAPM89.51 14588.15 16993.59 7594.92 16184.58 8596.82 2996.70 8678.43 32083.41 29196.19 9373.18 21699.30 4377.11 29296.54 10796.89 139
casdiffmvspermissive92.51 8192.43 8192.74 11094.41 19481.98 16894.54 15996.23 12289.57 5691.96 10496.17 9482.58 9398.01 17190.95 10595.45 12998.23 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test22296.55 8881.70 17392.22 27495.01 21268.36 39390.20 13496.14 9580.26 12297.80 7996.05 177
OMC-MVS91.23 10290.62 10993.08 9096.27 9784.07 10393.52 22295.93 14886.95 13689.51 14396.13 9678.50 14698.35 13885.84 16892.90 18296.83 143
OpenMVScopyleft83.78 1188.74 17187.29 18893.08 9092.70 26185.39 7196.57 3596.43 10378.74 31580.85 32396.07 9769.64 25999.01 6678.01 28396.65 10694.83 224
casdiffmvs_mvgpermissive92.96 7592.83 7393.35 7794.59 17983.40 12395.00 13096.34 11090.30 3192.05 10096.05 9883.43 8098.15 15392.07 8095.67 12198.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_cas_vis1_n_192088.83 17088.85 15188.78 27391.15 31476.72 29693.85 21094.93 21983.23 23092.81 8096.00 9961.17 34194.45 34791.67 9494.84 14195.17 208
baseline92.39 8592.29 8392.69 11494.46 19081.77 17294.14 18696.27 11789.22 6691.88 10796.00 9982.35 9697.99 17391.05 10195.27 13598.30 49
IS-MVSNet91.43 9891.09 10192.46 12495.87 11981.38 18496.95 1993.69 27189.72 5389.50 14595.98 10178.57 14597.77 18383.02 20296.50 10998.22 63
LS3D87.89 19286.32 22292.59 11896.07 10882.92 14495.23 11694.92 22075.66 34682.89 29895.98 10172.48 22499.21 4868.43 35595.23 13695.64 193
BP-MVS192.48 8292.07 8593.72 7194.50 18784.39 9895.90 7794.30 24790.39 2892.67 8795.94 10374.46 19298.65 10693.14 5297.35 8998.13 68
原ACMM192.01 14097.34 6781.05 19296.81 7378.89 31090.45 12995.92 10482.65 9298.84 9180.68 25098.26 5996.14 168
VNet92.24 8691.91 8793.24 8196.59 8583.43 12194.84 14196.44 10289.19 6894.08 5295.90 10577.85 15598.17 15188.90 12793.38 17398.13 68
GDP-MVS92.04 8791.46 9393.75 7094.55 18484.69 8395.60 10096.56 9687.83 11793.07 7395.89 10673.44 21298.65 10690.22 11596.03 11797.91 85
CANet93.54 5593.20 6694.55 4395.65 12885.73 6594.94 13396.69 8791.89 890.69 12795.88 10781.99 10999.54 2093.14 5297.95 7498.39 39
MVS_111021_HR93.45 5893.31 6293.84 6496.99 7584.84 7893.24 23997.24 3288.76 8291.60 11695.85 10886.07 4998.66 10491.91 8898.16 6398.03 77
mvsany_test185.42 27485.30 26085.77 34487.95 37775.41 31587.61 37080.97 40476.82 33688.68 15795.83 10977.44 15690.82 39085.90 16686.51 27591.08 361
DP-MVS Recon91.95 8991.28 9693.96 6098.33 2785.92 5794.66 15396.66 8882.69 24290.03 13995.82 11082.30 9999.03 6184.57 18296.48 11096.91 138
EC-MVSNet93.44 5993.71 5592.63 11695.21 14682.43 15897.27 996.71 8590.57 2692.88 7695.80 11183.16 8498.16 15293.68 4298.14 6597.31 112
EPNet91.79 9191.02 10294.10 5790.10 34785.25 7396.03 6792.05 31092.83 287.39 18495.78 11279.39 13499.01 6688.13 13697.48 8598.05 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SPE-MVS-test94.02 4294.29 3193.24 8196.69 8183.24 12797.49 596.92 6092.14 592.90 7595.77 11385.02 6398.33 14193.03 5498.62 4698.13 68
XVG-OURS89.40 15288.70 15291.52 16794.06 21081.46 18191.27 29996.07 13786.14 15888.89 15595.77 11368.73 27797.26 23487.39 14689.96 22295.83 185
XVG-OURS-SEG-HR89.95 13389.45 13191.47 17194.00 21681.21 18991.87 28396.06 13985.78 16488.55 15995.73 11574.67 19197.27 23288.71 13089.64 23195.91 180
MVS_111021_LR92.47 8392.29 8392.98 9695.99 11484.43 9593.08 24496.09 13588.20 10391.12 12395.72 11681.33 11497.76 18491.74 9297.37 8896.75 145
CSCG93.23 6993.05 6893.76 6998.04 4084.07 10396.22 4897.37 2184.15 20490.05 13895.66 11787.77 2699.15 5389.91 11798.27 5898.07 73
h-mvs3390.80 11090.15 11692.75 10996.01 11082.66 15495.43 10395.53 18289.80 4793.08 7195.64 11875.77 17299.00 7192.07 8078.05 36296.60 150
EPP-MVSNet91.70 9591.56 9292.13 13995.88 11780.50 20897.33 795.25 20086.15 15789.76 14195.60 11983.42 8298.32 14387.37 14793.25 17697.56 106
TSAR-MVS + GP.93.66 5393.41 6194.41 4996.59 8586.78 2694.40 16993.93 26189.77 5194.21 4695.59 12087.35 3498.61 11392.72 6096.15 11597.83 91
MVSMamba_PlusPlus93.44 5993.54 6093.14 8696.58 8783.05 13896.06 6496.50 10084.42 20194.09 4995.56 12185.01 6698.69 10394.96 2998.66 4197.67 99
balanced_conf0393.98 4594.22 3593.26 8096.13 10183.29 12696.27 4596.52 9889.82 4495.56 3095.51 12284.50 7198.79 9494.83 3098.86 1997.72 96
test_fmvs1_n87.03 23487.04 19586.97 32589.74 35571.86 35594.55 15894.43 24178.47 31891.95 10595.50 12351.16 38693.81 36093.02 5594.56 14995.26 205
Anonymous20240521187.68 19886.13 22992.31 13296.66 8280.74 20294.87 13891.49 32980.47 29089.46 14695.44 12454.72 37598.23 14782.19 21989.89 22497.97 79
TAPA-MVS84.62 688.16 18687.01 19691.62 16496.64 8380.65 20394.39 17196.21 12676.38 33986.19 21195.44 12479.75 12798.08 16662.75 38495.29 13396.13 169
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS90.12 12789.56 13091.82 15793.14 24583.90 10794.16 18595.74 16488.96 7887.86 17195.43 12672.48 22497.91 17988.10 13890.18 21993.65 285
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNet (Re-imp)89.59 14389.44 13290.03 23195.74 12275.85 30995.61 9790.80 34787.66 12487.83 17395.40 12776.79 16196.46 28978.37 27696.73 10397.80 92
mamv490.92 10791.78 8988.33 28895.67 12770.75 37192.92 25196.02 14381.90 26088.11 16495.34 12885.88 5196.97 25695.22 2795.01 13897.26 115
test_vis1_n86.56 25086.49 21786.78 33288.51 36672.69 34594.68 15193.78 26979.55 30190.70 12695.31 12948.75 39193.28 36893.15 5193.99 15894.38 247
EI-MVSNet89.10 15888.86 15089.80 24491.84 28678.30 26493.70 21795.01 21285.73 16687.15 18595.28 13079.87 12697.21 23983.81 19387.36 26893.88 268
CVMVSNet84.69 29284.79 27284.37 35791.84 28664.92 39593.70 21791.47 33066.19 39786.16 21295.28 13067.18 28893.33 36780.89 24690.42 21694.88 222
114514_t89.51 14588.50 15892.54 12198.11 3681.99 16795.16 12296.36 10970.19 39085.81 21795.25 13276.70 16398.63 11082.07 22396.86 10197.00 132
test_fmvs187.34 21787.56 18186.68 33390.59 33771.80 35794.01 20094.04 25978.30 32291.97 10395.22 13356.28 36693.71 36292.89 5694.71 14394.52 237
RPSCF85.07 28284.27 27987.48 31192.91 25870.62 37391.69 28992.46 29776.20 34382.67 30195.22 13363.94 31697.29 23177.51 28885.80 27994.53 236
Anonymous2024052988.09 18886.59 21192.58 11996.53 9081.92 17095.99 7095.84 15774.11 36389.06 15395.21 13561.44 33498.81 9283.67 19687.47 26597.01 131
SDMVSNet90.19 12689.61 12991.93 14896.00 11183.09 13692.89 25295.98 14488.73 8386.85 19495.20 13672.09 22897.08 24788.90 12789.85 22695.63 194
sd_testset88.59 17687.85 17690.83 19896.00 11180.42 21092.35 26894.71 23488.73 8386.85 19495.20 13667.31 28496.43 29179.64 26489.85 22695.63 194
LPG-MVS_test89.45 14888.90 14891.12 18394.47 18881.49 17995.30 10996.14 12886.73 14385.45 23295.16 13869.89 25598.10 15687.70 14189.23 23893.77 279
LGP-MVS_train91.12 18394.47 18881.49 17996.14 12886.73 14385.45 23295.16 13869.89 25598.10 15687.70 14189.23 23893.77 279
CNLPA89.07 16187.98 17292.34 13096.87 7784.78 8194.08 19393.24 27781.41 27684.46 26195.13 14075.57 17996.62 27277.21 29093.84 16295.61 196
DELS-MVS93.43 6393.25 6493.97 5995.42 13785.04 7593.06 24697.13 4390.74 2191.84 10995.09 14186.32 4599.21 4891.22 9998.45 5297.65 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DPM-MVS92.58 8091.74 9095.08 1596.19 9989.31 592.66 25896.56 9683.44 22291.68 11595.04 14286.60 4298.99 7385.60 17097.92 7596.93 136
DP-MVS87.25 22285.36 25892.90 10197.65 5883.24 12794.81 14392.00 31274.99 35481.92 31295.00 14372.66 22199.05 5866.92 36792.33 19396.40 157
diffmvspermissive91.37 10091.23 9791.77 16093.09 24880.27 21292.36 26795.52 18387.03 13491.40 12094.93 14480.08 12397.44 21292.13 7994.56 14997.61 102
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer91.68 9691.30 9592.80 10693.86 22183.88 10895.96 7395.90 15284.66 19791.76 11294.91 14577.92 15297.30 22889.64 11997.11 9197.24 116
jason90.80 11090.10 11792.90 10193.04 25283.53 11993.08 24494.15 25480.22 29191.41 11994.91 14576.87 15997.93 17890.28 11496.90 9897.24 116
jason: jason.
RRT-MVS90.85 10990.70 10891.30 17794.25 20176.83 29494.85 14096.13 13189.04 7390.23 13394.88 14770.15 25398.72 10091.86 9194.88 14098.34 42
alignmvs93.08 7292.50 8094.81 3295.62 13087.61 1595.99 7096.07 13789.77 5194.12 4894.87 14880.56 11898.66 10492.42 6693.10 17998.15 67
HQP_MVS90.60 12090.19 11491.82 15794.70 17482.73 15095.85 8196.22 12390.81 1786.91 19094.86 14974.23 19698.12 15488.15 13489.99 22094.63 229
plane_prior494.86 149
nrg03091.08 10690.39 11093.17 8493.07 24986.91 2296.41 3796.26 11888.30 9888.37 16394.85 15182.19 10397.64 19491.09 10082.95 30594.96 217
BH-RMVSNet88.37 18087.48 18391.02 19195.28 14179.45 23792.89 25293.07 28285.45 17486.91 19094.84 15270.35 24997.76 18473.97 32094.59 14895.85 183
PAPM_NR91.22 10390.78 10792.52 12297.60 5981.46 18194.37 17596.24 12186.39 15187.41 18194.80 15382.06 10798.48 12182.80 20895.37 13197.61 102
GeoE90.05 12989.43 13391.90 15395.16 14980.37 21195.80 8494.65 23783.90 20987.55 18094.75 15478.18 15097.62 19681.28 23893.63 16497.71 97
test_yl90.69 11490.02 12292.71 11195.72 12382.41 16194.11 18995.12 20685.63 16991.49 11794.70 15574.75 18798.42 13486.13 16392.53 19097.31 112
DCV-MVSNet90.69 11490.02 12292.71 11195.72 12382.41 16194.11 18995.12 20685.63 16991.49 11794.70 15574.75 18798.42 13486.13 16392.53 19097.31 112
FIs90.51 12190.35 11190.99 19493.99 21780.98 19495.73 8797.54 489.15 6986.72 19794.68 15781.83 11197.24 23685.18 17388.31 25394.76 227
FC-MVSNet-test90.27 12490.18 11590.53 20693.71 22879.85 23095.77 8697.59 389.31 6386.27 20894.67 15881.93 11097.01 25484.26 18688.09 25694.71 228
MGCFI-Net93.03 7392.63 7794.23 5695.62 13085.92 5796.08 6096.33 11189.86 4293.89 5694.66 15982.11 10498.50 11992.33 7292.82 18698.27 56
AdaColmapbinary89.89 13689.07 14292.37 12997.41 6583.03 13994.42 16895.92 14982.81 23986.34 20794.65 16073.89 20499.02 6480.69 24995.51 12495.05 212
F-COLMAP87.95 19186.80 20191.40 17396.35 9680.88 19894.73 14895.45 18879.65 30082.04 31094.61 16171.13 23598.50 11976.24 30291.05 20894.80 226
sasdasda93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10590.00 3894.09 4994.60 16282.33 9798.62 11192.40 6792.86 18398.27 56
canonicalmvs93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10590.00 3894.09 4994.60 16282.33 9798.62 11192.40 6792.86 18398.27 56
tttt051788.61 17487.78 17791.11 18694.96 15877.81 27795.35 10589.69 36785.09 18388.05 16994.59 16466.93 29098.48 12183.27 19992.13 19597.03 130
VPNet88.20 18587.47 18490.39 21693.56 23579.46 23694.04 19795.54 18188.67 8686.96 18794.58 16569.33 26497.15 24184.05 18980.53 34494.56 235
UniMVSNet_ETH3D87.53 20986.37 21991.00 19392.44 26778.96 25094.74 14795.61 17684.07 20685.36 24294.52 16659.78 35097.34 22782.93 20387.88 25996.71 147
PVSNet_Blended_VisFu91.38 9990.91 10492.80 10696.39 9483.17 13094.87 13896.66 8883.29 22789.27 14994.46 16780.29 12199.17 5087.57 14395.37 13196.05 177
ACMM84.12 989.14 15788.48 16191.12 18394.65 17781.22 18895.31 10796.12 13285.31 17785.92 21594.34 16870.19 25298.06 16885.65 16988.86 24394.08 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS84.11 1087.74 19786.08 23392.70 11394.02 21284.43 9589.27 34295.87 15573.62 36884.43 26394.33 16978.48 14798.86 8770.27 34194.45 15394.81 225
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WTY-MVS89.60 14288.92 14691.67 16395.47 13681.15 19092.38 26694.78 23183.11 23189.06 15394.32 17078.67 14396.61 27581.57 23590.89 21097.24 116
ACMP84.23 889.01 16588.35 16290.99 19494.73 17181.27 18595.07 12695.89 15486.48 14783.67 28494.30 17169.33 26497.99 17387.10 15488.55 24593.72 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
cdsmvs_eth3d_5k22.14 38929.52 3920.00 4080.00 4310.00 4330.00 41995.76 1620.00 4260.00 42794.29 17275.66 1780.00 4270.00 4260.00 4250.00 423
PS-MVSNAJss89.97 13289.62 12891.02 19191.90 28480.85 19995.26 11595.98 14486.26 15486.21 21094.29 17279.70 12997.65 19288.87 12988.10 25494.57 234
lupinMVS90.92 10790.21 11393.03 9393.86 22183.88 10892.81 25593.86 26579.84 29791.76 11294.29 17277.92 15298.04 16990.48 11397.11 9197.17 120
mvsmamba90.33 12289.69 12792.25 13795.17 14881.64 17495.27 11493.36 27684.88 18889.51 14394.27 17569.29 26897.42 21489.34 12296.12 11697.68 98
API-MVS90.66 11690.07 11892.45 12596.36 9584.57 8696.06 6495.22 20382.39 24589.13 15094.27 17580.32 12098.46 12580.16 25896.71 10494.33 248
CANet_DTU90.26 12589.41 13492.81 10593.46 23883.01 14193.48 22394.47 24089.43 5987.76 17694.23 17770.54 24899.03 6184.97 17596.39 11196.38 158
PLCcopyleft84.53 789.06 16288.03 17192.15 13897.27 7182.69 15394.29 17895.44 19079.71 29984.01 27794.18 17876.68 16498.75 9777.28 28993.41 17295.02 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
xiu_mvs_v1_base90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
xiu_mvs_v1_base_debi90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
jajsoiax88.24 18487.50 18290.48 21190.89 32780.14 21695.31 10795.65 17484.97 18684.24 27294.02 18265.31 30897.42 21488.56 13188.52 24793.89 265
XXY-MVS87.65 20086.85 19990.03 23192.14 27480.60 20693.76 21395.23 20182.94 23684.60 25694.02 18274.27 19595.49 33581.04 24183.68 29894.01 263
baseline188.10 18787.28 18990.57 20494.96 15880.07 21994.27 17991.29 33486.74 14287.41 18194.00 18476.77 16296.20 30280.77 24779.31 35895.44 198
NP-MVS94.37 19582.42 15993.98 185
HQP-MVS89.80 13889.28 13991.34 17694.17 20581.56 17594.39 17196.04 14088.81 7985.43 23593.97 18673.83 20697.96 17587.11 15289.77 22994.50 240
mvs_tets88.06 19087.28 18990.38 21890.94 32379.88 22895.22 11795.66 17285.10 18284.21 27393.94 18763.53 31897.40 22288.50 13288.40 25193.87 269
CHOSEN 1792x268888.84 16787.69 17892.30 13396.14 10081.42 18390.01 32995.86 15674.52 35987.41 18193.94 18775.46 18098.36 13680.36 25495.53 12397.12 125
UGNet89.95 13388.95 14592.95 9994.51 18683.31 12595.70 8995.23 20189.37 6187.58 17893.94 18764.00 31598.78 9583.92 19196.31 11296.74 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS89.21 15688.29 16691.96 14693.71 22882.62 15693.30 23494.19 25282.22 25087.78 17593.94 18778.83 13996.95 25877.70 28592.98 18196.32 159
sss88.93 16688.26 16890.94 19794.05 21180.78 20191.71 28795.38 19481.55 27488.63 15893.91 19175.04 18495.47 33682.47 21291.61 19896.57 153
1112_ss88.42 17887.33 18791.72 16194.92 16180.98 19492.97 24994.54 23878.16 32683.82 28093.88 19278.78 14197.91 17979.45 26689.41 23396.26 163
ab-mvs-re7.82 39310.43 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42793.88 1920.00 4310.00 4270.00 4260.00 4250.00 423
TranMVSNet+NR-MVSNet88.84 16787.95 17391.49 16992.68 26283.01 14194.92 13596.31 11289.88 4185.53 22693.85 19476.63 16596.96 25781.91 22779.87 35294.50 240
mvs_anonymous89.37 15489.32 13789.51 25793.47 23774.22 32791.65 29094.83 22782.91 23785.45 23293.79 19581.23 11596.36 29686.47 15994.09 15797.94 81
thisisatest053088.67 17287.61 18091.86 15494.87 16580.07 21994.63 15489.90 36484.00 20788.46 16193.78 19666.88 29298.46 12583.30 19892.65 18797.06 127
MVS_Test91.31 10191.11 9991.93 14894.37 19580.14 21693.46 22595.80 15986.46 14991.35 12193.77 19782.21 10298.09 16487.57 14394.95 13997.55 107
COLMAP_ROBcopyleft80.39 1683.96 30082.04 30989.74 24595.28 14179.75 23194.25 18092.28 30375.17 35278.02 35493.77 19758.60 35797.84 18165.06 37685.92 27891.63 345
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PAPR90.02 13089.27 14092.29 13495.78 12180.95 19692.68 25796.22 12381.91 25986.66 19893.75 19982.23 10198.44 13179.40 27094.79 14297.48 108
ab-mvs89.41 15088.35 16292.60 11795.15 15182.65 15592.20 27595.60 17783.97 20888.55 15993.70 20074.16 20098.21 15082.46 21389.37 23496.94 135
hse-mvs289.88 13789.34 13691.51 16894.83 16881.12 19193.94 20593.91 26489.80 4793.08 7193.60 20175.77 17297.66 19192.07 8077.07 36995.74 189
test_fmvs283.98 29984.03 28483.83 36287.16 38067.53 38893.93 20692.89 28677.62 32886.89 19393.53 20247.18 39592.02 38090.54 11086.51 27591.93 340
AUN-MVS87.78 19686.54 21491.48 17094.82 16981.05 19293.91 20993.93 26183.00 23486.93 18893.53 20269.50 26297.67 18986.14 16177.12 36895.73 191
BH-untuned88.60 17588.13 17090.01 23495.24 14578.50 25893.29 23594.15 25484.75 19484.46 26193.40 20475.76 17497.40 22277.59 28694.52 15194.12 255
AllTest83.42 30781.39 31389.52 25595.01 15477.79 27993.12 24190.89 34577.41 33076.12 36693.34 20554.08 37897.51 20368.31 35684.27 29193.26 297
TestCases89.52 25595.01 15477.79 27990.89 34577.41 33076.12 36693.34 20554.08 37897.51 20368.31 35684.27 29193.26 297
UniMVSNet_NR-MVSNet89.92 13589.29 13891.81 15993.39 24083.72 11194.43 16797.12 4489.80 4786.46 20193.32 20783.16 8497.23 23784.92 17681.02 33594.49 242
VPA-MVSNet89.62 14188.96 14491.60 16593.86 22182.89 14595.46 10297.33 2587.91 11188.43 16293.31 20874.17 19997.40 22287.32 14882.86 31094.52 237
ITE_SJBPF88.24 29191.88 28577.05 29192.92 28585.54 17280.13 33493.30 20957.29 36296.20 30272.46 32984.71 28791.49 349
DU-MVS89.34 15588.50 15891.85 15693.04 25283.72 11194.47 16496.59 9389.50 5786.46 20193.29 21077.25 15797.23 23784.92 17681.02 33594.59 232
NR-MVSNet88.58 17787.47 18491.93 14893.04 25284.16 10294.77 14696.25 12089.05 7280.04 33693.29 21079.02 13897.05 25281.71 23480.05 34994.59 232
CDS-MVSNet89.45 14888.51 15792.29 13493.62 23383.61 11893.01 24794.68 23681.95 25787.82 17493.24 21278.69 14296.99 25580.34 25593.23 17796.28 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM86.68 24685.39 25690.53 20693.05 25179.33 24489.79 33294.77 23278.82 31281.95 31193.24 21276.81 16097.30 22866.94 36593.16 17894.95 220
OurMVSNet-221017-085.35 27684.64 27587.49 31090.77 33172.59 35094.01 20094.40 24384.72 19579.62 34393.17 21461.91 32896.72 26681.99 22581.16 32993.16 305
PEN-MVS86.80 24086.27 22588.40 28392.32 27075.71 31295.18 12096.38 10887.97 10982.82 29993.15 21573.39 21495.92 31476.15 30379.03 36093.59 286
xiu_mvs_v2_base91.13 10590.89 10591.86 15494.97 15782.42 15992.24 27395.64 17586.11 16191.74 11493.14 21679.67 13298.89 8489.06 12695.46 12894.28 250
MVSTER88.84 16788.29 16690.51 20992.95 25780.44 20993.73 21495.01 21284.66 19787.15 18593.12 21772.79 22097.21 23987.86 13987.36 26893.87 269
Effi-MVS+91.59 9791.11 9993.01 9494.35 19983.39 12494.60 15595.10 20887.10 13290.57 12893.10 21881.43 11398.07 16789.29 12394.48 15297.59 104
PS-CasMVS87.32 21986.88 19788.63 28092.99 25576.33 30495.33 10696.61 9288.22 10283.30 29593.07 21973.03 21895.79 32378.36 27781.00 33793.75 281
DTE-MVSNet86.11 26185.48 25487.98 29791.65 29674.92 31994.93 13495.75 16387.36 12882.26 30593.04 22072.85 21995.82 32074.04 31977.46 36693.20 303
CP-MVSNet87.63 20387.26 19188.74 27793.12 24676.59 29995.29 11196.58 9488.43 9483.49 29092.98 22175.28 18195.83 31978.97 27281.15 33193.79 274
test_djsdf89.03 16388.64 15390.21 22290.74 33379.28 24595.96 7395.90 15284.66 19785.33 24392.94 22274.02 20297.30 22889.64 11988.53 24694.05 261
MAR-MVS90.30 12389.37 13593.07 9296.61 8484.48 9195.68 9095.67 17082.36 24787.85 17292.85 22376.63 16598.80 9380.01 25996.68 10595.91 180
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi80.94 33480.20 32483.18 36387.96 37666.29 38991.28 29890.70 34983.70 21478.12 35292.84 22451.37 38590.82 39063.34 38182.46 31392.43 328
EU-MVSNet81.32 32880.95 31682.42 37088.50 36863.67 39993.32 23091.33 33264.02 40080.57 32892.83 22561.21 33992.27 37876.34 30080.38 34791.32 352
ACMH+81.04 1485.05 28383.46 29389.82 24194.66 17679.37 23994.44 16694.12 25782.19 25178.04 35392.82 22658.23 35897.54 20073.77 32382.90 30992.54 323
WR-MVS88.38 17987.67 17990.52 20893.30 24280.18 21493.26 23795.96 14788.57 9185.47 23192.81 22776.12 16796.91 26181.24 23982.29 31594.47 245
tt080586.92 23685.74 25090.48 21192.22 27179.98 22695.63 9694.88 22383.83 21284.74 25492.80 22857.61 36197.67 18985.48 17284.42 28993.79 274
HY-MVS83.01 1289.03 16387.94 17492.29 13494.86 16682.77 14692.08 28094.49 23981.52 27586.93 18892.79 22978.32 14998.23 14779.93 26090.55 21395.88 182
LTVRE_ROB82.13 1386.26 26084.90 26990.34 22094.44 19281.50 17792.31 27294.89 22183.03 23379.63 34292.67 23069.69 25897.79 18271.20 33486.26 27791.72 343
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH80.38 1785.36 27583.68 29090.39 21694.45 19180.63 20494.73 14894.85 22582.09 25277.24 35892.65 23160.01 34897.58 19772.25 33084.87 28692.96 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs186.61 24785.54 25289.82 24191.44 29980.18 21495.28 11394.85 22583.84 21181.66 31392.62 23272.45 22696.48 28679.67 26378.06 36192.82 318
FA-MVS(test-final)89.66 14088.91 14791.93 14894.57 18280.27 21291.36 29594.74 23384.87 18989.82 14092.61 23374.72 19098.47 12483.97 19093.53 16797.04 129
PVSNet_Blended90.73 11390.32 11291.98 14496.12 10281.25 18692.55 26296.83 6982.04 25589.10 15192.56 23481.04 11698.85 8986.72 15795.91 11895.84 184
ET-MVSNet_ETH3D87.51 21085.91 24192.32 13193.70 23083.93 10692.33 27090.94 34384.16 20372.09 38692.52 23569.90 25495.85 31889.20 12488.36 25297.17 120
PS-MVSNAJ91.18 10490.92 10391.96 14695.26 14482.60 15792.09 27995.70 16886.27 15391.84 10992.46 23679.70 12998.99 7389.08 12595.86 11994.29 249
CLD-MVS89.47 14788.90 14891.18 18294.22 20382.07 16692.13 27796.09 13587.90 11285.37 24192.45 23774.38 19497.56 19987.15 15090.43 21593.93 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TR-MVS86.78 24185.76 24889.82 24194.37 19578.41 26092.47 26392.83 28881.11 28486.36 20592.40 23868.73 27797.48 20573.75 32489.85 22693.57 287
Test_1112_low_res87.65 20086.51 21591.08 18794.94 16079.28 24591.77 28594.30 24776.04 34483.51 28992.37 23977.86 15497.73 18878.69 27589.13 24096.22 164
EPNet_dtu86.49 25585.94 24088.14 29490.24 34572.82 34394.11 18992.20 30686.66 14579.42 34492.36 24073.52 20995.81 32171.26 33393.66 16395.80 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)89.80 13889.07 14292.01 14093.60 23484.52 8994.78 14597.47 1189.26 6586.44 20492.32 24182.10 10597.39 22584.81 17980.84 33994.12 255
thres600view787.65 20086.67 20690.59 20396.08 10778.72 25194.88 13791.58 32587.06 13388.08 16792.30 24268.91 27498.10 15670.05 34891.10 20394.96 217
thres100view90087.63 20386.71 20490.38 21896.12 10278.55 25595.03 12991.58 32587.15 13088.06 16892.29 24368.91 27498.10 15670.13 34591.10 20394.48 243
PVSNet_BlendedMVS89.98 13189.70 12690.82 19996.12 10281.25 18693.92 20796.83 6983.49 22189.10 15192.26 24481.04 11698.85 8986.72 15787.86 26092.35 332
XVG-ACMP-BASELINE86.00 26284.84 27189.45 25891.20 30978.00 27091.70 28895.55 17985.05 18482.97 29792.25 24554.49 37697.48 20582.93 20387.45 26792.89 315
EIA-MVS91.95 8991.94 8691.98 14495.16 14980.01 22495.36 10496.73 8288.44 9389.34 14792.16 24683.82 7998.45 12989.35 12197.06 9397.48 108
Anonymous2023121186.59 24985.13 26390.98 19696.52 9181.50 17796.14 5696.16 12773.78 36683.65 28592.15 24763.26 32197.37 22682.82 20781.74 32494.06 260
MVS87.44 21386.10 23291.44 17292.61 26383.62 11692.63 25995.66 17267.26 39581.47 31592.15 24777.95 15198.22 14979.71 26295.48 12692.47 326
anonymousdsp87.84 19387.09 19290.12 22789.13 36180.54 20794.67 15295.55 17982.05 25383.82 28092.12 24971.47 23397.15 24187.15 15087.80 26392.67 320
TransMVSNet (Re)84.43 29483.06 30188.54 28191.72 29178.44 25995.18 12092.82 29082.73 24179.67 34192.12 24973.49 21095.96 31271.10 33868.73 39191.21 355
SixPastTwentyTwo83.91 30282.90 30486.92 32790.99 31970.67 37293.48 22391.99 31385.54 17277.62 35792.11 25160.59 34496.87 26376.05 30477.75 36393.20 303
HyFIR lowres test88.09 18886.81 20091.93 14896.00 11180.63 20490.01 32995.79 16073.42 37087.68 17792.10 25273.86 20597.96 17580.75 24891.70 19797.19 119
Baseline_NR-MVSNet87.07 23286.63 20988.40 28391.44 29977.87 27594.23 18392.57 29684.12 20585.74 22092.08 25377.25 15796.04 30782.29 21779.94 35091.30 353
USDC82.76 31081.26 31587.26 31691.17 31174.55 32389.27 34293.39 27578.26 32475.30 37292.08 25354.43 37796.63 27171.64 33185.79 28090.61 365
v2v48287.84 19387.06 19390.17 22390.99 31979.23 24894.00 20295.13 20584.87 18985.53 22692.07 25574.45 19397.45 20984.71 18181.75 32393.85 272
FMVSNet287.19 22885.82 24491.30 17794.01 21383.67 11394.79 14494.94 21583.57 21783.88 27992.05 25666.59 29796.51 28477.56 28785.01 28593.73 282
WR-MVS_H87.80 19587.37 18689.10 26693.23 24378.12 26895.61 9797.30 2987.90 11283.72 28292.01 25779.65 13396.01 31076.36 29980.54 34393.16 305
LCM-MVSNet-Re88.30 18388.32 16588.27 28994.71 17372.41 35393.15 24090.98 34187.77 11979.25 34591.96 25878.35 14895.75 32483.04 20195.62 12296.65 149
reproduce_monomvs86.37 25885.87 24287.87 30193.66 23273.71 33293.44 22695.02 21188.61 8982.64 30291.94 25957.88 36096.68 26989.96 11679.71 35493.22 301
MSDG84.86 28883.09 29990.14 22693.80 22480.05 22189.18 34593.09 28178.89 31078.19 35191.91 26065.86 30697.27 23268.47 35488.45 24993.11 307
IterMVS-LS88.36 18187.91 17589.70 24893.80 22478.29 26593.73 21495.08 21085.73 16684.75 25391.90 26179.88 12596.92 26083.83 19282.51 31193.89 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet387.40 21586.11 23191.30 17793.79 22683.64 11594.20 18494.81 22983.89 21084.37 26491.87 26268.45 28096.56 28078.23 28085.36 28293.70 284
tfpn200view987.58 20786.64 20790.41 21595.99 11478.64 25394.58 15691.98 31486.94 13788.09 16591.77 26369.18 27098.10 15670.13 34591.10 20394.48 243
thres40087.62 20586.64 20790.57 20495.99 11478.64 25394.58 15691.98 31486.94 13788.09 16591.77 26369.18 27098.10 15670.13 34591.10 20394.96 217
pmmvs485.43 27383.86 28890.16 22490.02 35082.97 14390.27 31692.67 29475.93 34580.73 32491.74 26571.05 23695.73 32678.85 27483.46 30291.78 342
ttmdpeth76.55 35874.64 36382.29 37282.25 40267.81 38589.76 33385.69 38970.35 38975.76 36991.69 26646.88 39689.77 39466.16 37063.23 40089.30 378
GBi-Net87.26 22085.98 23791.08 18794.01 21383.10 13395.14 12394.94 21583.57 21784.37 26491.64 26766.59 29796.34 29778.23 28085.36 28293.79 274
test187.26 22085.98 23791.08 18794.01 21383.10 13395.14 12394.94 21583.57 21784.37 26491.64 26766.59 29796.34 29778.23 28085.36 28293.79 274
FMVSNet185.85 26684.11 28391.08 18792.81 25983.10 13395.14 12394.94 21581.64 27082.68 30091.64 26759.01 35596.34 29775.37 30883.78 29593.79 274
MVP-Stereo85.97 26384.86 27089.32 26090.92 32582.19 16492.11 27894.19 25278.76 31478.77 35091.63 27068.38 28196.56 28075.01 31393.95 15989.20 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FE-MVS87.40 21586.02 23591.57 16694.56 18379.69 23390.27 31693.72 27080.57 28888.80 15691.62 27165.32 30798.59 11574.97 31494.33 15696.44 156
131487.51 21086.57 21290.34 22092.42 26879.74 23292.63 25995.35 19878.35 32180.14 33391.62 27174.05 20197.15 24181.05 24093.53 16794.12 255
MS-PatchMatch85.05 28384.16 28187.73 30391.42 30278.51 25791.25 30093.53 27277.50 32980.15 33291.58 27361.99 32795.51 33275.69 30594.35 15589.16 382
TDRefinement79.81 34377.34 34887.22 32079.24 40875.48 31493.12 24192.03 31176.45 33875.01 37391.58 27349.19 39096.44 29070.22 34469.18 38889.75 374
PatchMatch-RL86.77 24485.54 25290.47 21495.88 11782.71 15290.54 31392.31 30279.82 29884.32 26991.57 27568.77 27696.39 29373.16 32693.48 17192.32 333
BH-w/o87.57 20887.05 19489.12 26594.90 16477.90 27392.41 26493.51 27382.89 23883.70 28391.34 27675.75 17597.07 24975.49 30693.49 16992.39 330
v887.50 21286.71 20489.89 23891.37 30479.40 23894.50 16095.38 19484.81 19283.60 28791.33 27776.05 16897.42 21482.84 20680.51 34692.84 317
V4287.68 19886.86 19890.15 22590.58 33880.14 21694.24 18295.28 19983.66 21585.67 22191.33 27774.73 18997.41 22084.43 18581.83 32192.89 315
Fast-Effi-MVS+-dtu87.44 21386.72 20389.63 25292.04 27877.68 28394.03 19893.94 26085.81 16382.42 30391.32 27970.33 25097.06 25080.33 25690.23 21894.14 254
v114487.61 20686.79 20290.06 23091.01 31879.34 24193.95 20495.42 19383.36 22685.66 22291.31 28074.98 18597.42 21483.37 19782.06 31793.42 294
tfpnnormal84.72 29183.23 29789.20 26392.79 26080.05 22194.48 16195.81 15882.38 24681.08 32191.21 28169.01 27396.95 25861.69 38680.59 34290.58 368
ETV-MVS92.74 7892.66 7692.97 9795.20 14784.04 10595.07 12696.51 9990.73 2292.96 7491.19 28284.06 7598.34 13991.72 9396.54 10796.54 155
v1087.25 22286.38 21889.85 23991.19 31079.50 23594.48 16195.45 18883.79 21383.62 28691.19 28275.13 18297.42 21481.94 22680.60 34192.63 322
pmmvs584.21 29682.84 30688.34 28788.95 36376.94 29292.41 26491.91 31875.63 34780.28 33091.18 28464.59 31295.57 32977.09 29383.47 30192.53 324
v119287.25 22286.33 22190.00 23590.76 33279.04 24993.80 21195.48 18482.57 24385.48 23091.18 28473.38 21597.42 21482.30 21682.06 31793.53 288
v124086.78 24185.85 24389.56 25390.45 34277.79 27993.61 21995.37 19681.65 26985.43 23591.15 28671.50 23297.43 21381.47 23782.05 31993.47 292
CMPMVSbinary59.16 2180.52 33579.20 33884.48 35683.98 39567.63 38789.95 33193.84 26764.79 39966.81 39791.14 28757.93 35995.17 33976.25 30188.10 25490.65 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres20087.21 22686.24 22690.12 22795.36 13878.53 25693.26 23792.10 30886.42 15088.00 17091.11 28869.24 26998.00 17269.58 34991.04 20993.83 273
pmmvs683.42 30781.60 31188.87 27288.01 37577.87 27594.96 13294.24 25174.67 35878.80 34991.09 28960.17 34796.49 28577.06 29475.40 37592.23 335
v14419287.19 22886.35 22089.74 24590.64 33678.24 26693.92 20795.43 19181.93 25885.51 22891.05 29074.21 19897.45 20982.86 20581.56 32593.53 288
v192192086.97 23586.06 23489.69 24990.53 34178.11 26993.80 21195.43 19181.90 26085.33 24391.05 29072.66 22197.41 22082.05 22481.80 32293.53 288
baseline286.50 25385.39 25689.84 24091.12 31576.70 29791.88 28288.58 37482.35 24879.95 33790.95 29273.42 21397.63 19580.27 25789.95 22395.19 207
thisisatest051587.33 21885.99 23691.37 17593.49 23679.55 23490.63 31289.56 37180.17 29287.56 17990.86 29367.07 28998.28 14581.50 23693.02 18096.29 161
v7n86.81 23985.76 24889.95 23690.72 33479.25 24795.07 12695.92 14984.45 20082.29 30490.86 29372.60 22397.53 20179.42 26980.52 34593.08 309
testing380.46 33679.59 33383.06 36593.44 23964.64 39693.33 22985.47 39184.34 20279.93 33890.84 29544.35 40192.39 37657.06 39987.56 26492.16 337
DIV-MVS_self_test86.53 25185.78 24588.75 27592.02 28076.45 30190.74 31094.30 24781.83 26583.34 29390.82 29675.75 17596.57 27881.73 23381.52 32793.24 300
v14887.04 23386.32 22289.21 26290.94 32377.26 28893.71 21694.43 24184.84 19184.36 26790.80 29776.04 16997.05 25282.12 22079.60 35593.31 296
cl____86.52 25285.78 24588.75 27592.03 27976.46 30090.74 31094.30 24781.83 26583.34 29390.78 29875.74 17796.57 27881.74 23281.54 32693.22 301
WBMVS84.97 28684.18 28087.34 31394.14 20971.62 36290.20 32392.35 29981.61 27284.06 27490.76 29961.82 32996.52 28378.93 27383.81 29493.89 265
MonoMVSNet86.89 23886.55 21387.92 30089.46 35973.75 33194.12 18793.10 28087.82 11885.10 24690.76 29969.59 26094.94 34586.47 15982.50 31295.07 211
PMMVS85.71 26984.96 26787.95 29888.90 36477.09 29088.68 35290.06 35972.32 38086.47 20090.76 29972.15 22794.40 34981.78 23193.49 16992.36 331
UWE-MVS83.69 30683.09 29985.48 34693.06 25065.27 39490.92 30786.14 38679.90 29686.26 20990.72 30257.17 36395.81 32171.03 33992.62 18895.35 203
Fast-Effi-MVS+89.41 15088.64 15391.71 16294.74 17080.81 20093.54 22195.10 20883.11 23186.82 19690.67 30379.74 12897.75 18780.51 25393.55 16696.57 153
IterMVS-SCA-FT85.45 27284.53 27888.18 29391.71 29276.87 29390.19 32492.65 29585.40 17581.44 31690.54 30466.79 29395.00 34481.04 24181.05 33392.66 321
MVStest172.91 36469.70 36982.54 36878.14 40973.05 34088.21 35886.21 38560.69 40364.70 39890.53 30546.44 39785.70 40658.78 39553.62 40888.87 385
PVSNet78.82 1885.55 27084.65 27488.23 29294.72 17271.93 35487.12 37392.75 29278.80 31384.95 25090.53 30564.43 31396.71 26874.74 31593.86 16196.06 176
eth_miper_zixun_eth86.50 25385.77 24788.68 27891.94 28175.81 31090.47 31494.89 22182.05 25384.05 27590.46 30775.96 17096.77 26582.76 20979.36 35793.46 293
c3_l87.14 23086.50 21689.04 26892.20 27277.26 28891.22 30294.70 23582.01 25684.34 26890.43 30878.81 14096.61 27583.70 19581.09 33293.25 299
IterMVS84.88 28783.98 28787.60 30691.44 29976.03 30690.18 32592.41 29883.24 22981.06 32290.42 30966.60 29694.28 35379.46 26580.98 33892.48 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_040281.30 32979.17 33987.67 30593.19 24478.17 26792.98 24891.71 31975.25 35176.02 36890.31 31059.23 35396.37 29450.22 40483.63 29988.47 389
testing9187.11 23186.18 22789.92 23794.43 19375.38 31791.53 29292.27 30486.48 14786.50 19990.24 31161.19 34097.53 20182.10 22190.88 21196.84 142
testing9986.72 24585.73 25189.69 24994.23 20274.91 32091.35 29690.97 34286.14 15886.36 20590.22 31259.41 35297.48 20582.24 21890.66 21296.69 148
WB-MVSnew83.77 30483.28 29585.26 35191.48 29871.03 36791.89 28187.98 37778.91 30884.78 25290.22 31269.11 27294.02 35664.70 37790.44 21490.71 363
TinyColmap79.76 34477.69 34785.97 34091.71 29273.12 33989.55 33690.36 35375.03 35372.03 38790.19 31446.22 39896.19 30463.11 38281.03 33488.59 388
EG-PatchMatch MVS82.37 31580.34 32188.46 28290.27 34479.35 24092.80 25694.33 24677.14 33473.26 38390.18 31547.47 39496.72 26670.25 34287.32 27089.30 378
cl2286.78 24185.98 23789.18 26492.34 26977.62 28490.84 30994.13 25681.33 27883.97 27890.15 31673.96 20396.60 27784.19 18782.94 30693.33 295
testing1186.44 25685.35 25989.69 24994.29 20075.40 31691.30 29790.53 35084.76 19385.06 24790.13 31758.95 35697.45 20982.08 22291.09 20796.21 166
lessismore_v086.04 33988.46 36968.78 38180.59 40573.01 38490.11 31855.39 36996.43 29175.06 31265.06 39692.90 314
miper_ehance_all_eth87.22 22586.62 21089.02 26992.13 27577.40 28790.91 30894.81 22981.28 27984.32 26990.08 31979.26 13596.62 27283.81 19382.94 30693.04 310
D2MVS85.90 26485.09 26488.35 28590.79 33077.42 28691.83 28495.70 16880.77 28780.08 33590.02 32066.74 29596.37 29481.88 22887.97 25891.26 354
LF4IMVS80.37 33879.07 34284.27 35986.64 38269.87 37889.39 34191.05 33976.38 33974.97 37490.00 32147.85 39394.25 35474.55 31880.82 34088.69 387
CostFormer85.77 26884.94 26888.26 29091.16 31372.58 35189.47 34091.04 34076.26 34286.45 20389.97 32270.74 24296.86 26482.35 21587.07 27395.34 204
test20.0379.95 34279.08 34182.55 36785.79 38867.74 38691.09 30491.08 33781.23 28274.48 37889.96 32361.63 33090.15 39260.08 39076.38 37189.76 373
tpm84.73 29084.02 28586.87 33090.33 34368.90 38089.06 34789.94 36280.85 28685.75 21989.86 32468.54 27995.97 31177.76 28484.05 29395.75 188
miper_lstm_enhance85.27 27984.59 27687.31 31491.28 30874.63 32287.69 36794.09 25881.20 28381.36 31889.85 32574.97 18694.30 35281.03 24379.84 35393.01 311
test0.0.03 182.41 31481.69 31084.59 35588.23 37272.89 34290.24 32087.83 37983.41 22379.86 33989.78 32667.25 28688.99 39965.18 37483.42 30391.90 341
mvs5depth80.98 33279.15 34086.45 33584.57 39473.29 33887.79 36391.67 32280.52 28982.20 30889.72 32755.14 37395.93 31373.93 32266.83 39390.12 371
K. test v381.59 32380.15 32585.91 34389.89 35369.42 37992.57 26187.71 38085.56 17173.44 38289.71 32855.58 36795.52 33177.17 29169.76 38592.78 319
CHOSEN 280x42085.15 28183.99 28688.65 27992.47 26578.40 26179.68 40892.76 29174.90 35681.41 31789.59 32969.85 25795.51 33279.92 26195.29 13392.03 338
GA-MVS86.61 24785.27 26190.66 20291.33 30778.71 25290.40 31593.81 26885.34 17685.12 24589.57 33061.25 33797.11 24680.99 24489.59 23296.15 167
Effi-MVS+-dtu88.65 17388.35 16289.54 25493.33 24176.39 30294.47 16494.36 24587.70 12185.43 23589.56 33173.45 21197.26 23485.57 17191.28 20294.97 214
testing22284.84 28983.32 29489.43 25994.15 20875.94 30791.09 30489.41 37284.90 18785.78 21889.44 33252.70 38396.28 30070.80 34091.57 19996.07 174
tpm284.08 29882.94 30287.48 31191.39 30371.27 36389.23 34490.37 35271.95 38284.64 25589.33 33367.30 28596.55 28275.17 31087.09 27294.63 229
Anonymous2023120681.03 33179.77 33084.82 35487.85 37870.26 37591.42 29492.08 30973.67 36777.75 35589.25 33462.43 32593.08 37161.50 38782.00 32091.12 358
dmvs_re84.20 29783.22 29887.14 32391.83 28877.81 27790.04 32890.19 35584.70 19681.49 31489.17 33564.37 31491.13 38871.58 33285.65 28192.46 327
miper_enhance_ethall86.90 23786.18 22789.06 26791.66 29577.58 28590.22 32294.82 22879.16 30684.48 26089.10 33679.19 13796.66 27084.06 18882.94 30692.94 313
ETVMVS84.43 29482.92 30388.97 27194.37 19574.67 32191.23 30188.35 37683.37 22586.06 21489.04 33755.38 37095.67 32767.12 36391.34 20196.58 152
UBG85.51 27184.57 27788.35 28594.21 20471.78 35890.07 32789.66 36982.28 24985.91 21689.01 33861.30 33597.06 25076.58 29892.06 19696.22 164
ppachtmachnet_test81.84 31880.07 32687.15 32288.46 36974.43 32689.04 34892.16 30775.33 35077.75 35588.99 33966.20 30295.37 33765.12 37577.60 36491.65 344
gm-plane-assit89.60 35868.00 38277.28 33388.99 33997.57 19879.44 267
MDTV_nov1_ep1383.56 29291.69 29469.93 37787.75 36691.54 32778.60 31784.86 25188.90 34169.54 26196.03 30870.25 34288.93 242
SCA86.32 25985.18 26289.73 24792.15 27376.60 29891.12 30391.69 32183.53 22085.50 22988.81 34266.79 29396.48 28676.65 29590.35 21796.12 170
Patchmatch-test81.37 32779.30 33587.58 30790.92 32574.16 32980.99 40387.68 38170.52 38876.63 36388.81 34271.21 23492.76 37460.01 39286.93 27495.83 185
tpmrst85.35 27684.99 26586.43 33690.88 32867.88 38488.71 35191.43 33180.13 29386.08 21388.80 34473.05 21796.02 30982.48 21183.40 30495.40 200
DSMNet-mixed76.94 35776.29 35678.89 37883.10 39956.11 41487.78 36479.77 40660.65 40475.64 37088.71 34561.56 33388.34 40060.07 39189.29 23792.21 336
PatchmatchNetpermissive85.85 26684.70 27389.29 26191.76 29075.54 31388.49 35491.30 33381.63 27185.05 24888.70 34671.71 22996.24 30174.61 31789.05 24196.08 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet82.59 31380.53 31888.76 27491.51 29778.32 26386.57 37790.13 35779.32 30280.70 32588.69 34752.98 38293.07 37266.03 37188.86 24394.90 221
IB-MVS80.51 1585.24 28083.26 29691.19 18192.13 27579.86 22991.75 28691.29 33483.28 22880.66 32688.49 34861.28 33698.46 12580.99 24479.46 35695.25 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 25784.98 26690.80 20092.10 27780.92 19790.24 32095.91 15173.10 37383.57 28888.39 34965.15 30997.46 20884.90 17891.43 20094.03 262
EPMVS83.90 30382.70 30787.51 30890.23 34672.67 34688.62 35381.96 40281.37 27785.01 24988.34 35066.31 30094.45 34775.30 30987.12 27195.43 199
MDA-MVSNet-bldmvs78.85 35076.31 35586.46 33489.76 35473.88 33088.79 35090.42 35179.16 30659.18 40588.33 35160.20 34694.04 35562.00 38568.96 38991.48 350
our_test_381.93 31780.46 32086.33 33888.46 36973.48 33688.46 35591.11 33676.46 33776.69 36288.25 35266.89 29194.36 35068.75 35279.08 35991.14 357
OpenMVS_ROBcopyleft74.94 1979.51 34677.03 35386.93 32687.00 38176.23 30592.33 27090.74 34868.93 39274.52 37788.23 35349.58 38996.62 27257.64 39784.29 29087.94 392
MIMVSNet179.38 34777.28 34985.69 34586.35 38373.67 33391.61 29192.75 29278.11 32772.64 38588.12 35448.16 39291.97 38260.32 38977.49 36591.43 351
UnsupCasMVSNet_eth80.07 34078.27 34685.46 34785.24 39272.63 34988.45 35694.87 22482.99 23571.64 38988.07 35556.34 36591.75 38373.48 32563.36 39992.01 339
test-LLR85.87 26585.41 25587.25 31790.95 32171.67 36089.55 33689.88 36583.41 22384.54 25887.95 35667.25 28695.11 34181.82 22993.37 17494.97 214
test-mter84.54 29383.64 29187.25 31790.95 32171.67 36089.55 33689.88 36579.17 30584.54 25887.95 35655.56 36895.11 34181.82 22993.37 17494.97 214
FMVSNet581.52 32579.60 33287.27 31591.17 31177.95 27191.49 29392.26 30576.87 33576.16 36587.91 35851.67 38492.34 37767.74 36081.16 32991.52 348
CR-MVSNet85.35 27683.76 28990.12 22790.58 33879.34 24185.24 38691.96 31678.27 32385.55 22487.87 35971.03 23795.61 32873.96 32189.36 23595.40 200
Patchmtry82.71 31180.93 31788.06 29590.05 34976.37 30384.74 39191.96 31672.28 38181.32 31987.87 35971.03 23795.50 33468.97 35180.15 34892.32 333
YYNet179.22 34877.20 35085.28 35088.20 37472.66 34785.87 38090.05 36174.33 36162.70 40087.61 36166.09 30492.03 37966.94 36572.97 37891.15 356
MDA-MVSNet_test_wron79.21 34977.19 35185.29 34988.22 37372.77 34485.87 38090.06 35974.34 36062.62 40287.56 36266.14 30391.99 38166.90 36873.01 37791.10 360
Anonymous2024052180.44 33779.21 33784.11 36085.75 38967.89 38392.86 25493.23 27875.61 34875.59 37187.47 36350.03 38794.33 35171.14 33781.21 32890.12 371
TESTMET0.1,183.74 30582.85 30586.42 33789.96 35171.21 36589.55 33687.88 37877.41 33083.37 29287.31 36456.71 36493.65 36480.62 25192.85 18594.40 246
CL-MVSNet_self_test81.74 32080.53 31885.36 34885.96 38672.45 35290.25 31893.07 28281.24 28179.85 34087.29 36570.93 23992.52 37566.95 36469.23 38791.11 359
Syy-MVS80.07 34079.78 32880.94 37491.92 28259.93 40589.75 33487.40 38381.72 26778.82 34787.20 36666.29 30191.29 38647.06 40687.84 26191.60 346
myMVS_eth3d79.67 34578.79 34482.32 37191.92 28264.08 39789.75 33487.40 38381.72 26778.82 34787.20 36645.33 39991.29 38659.09 39487.84 26191.60 346
tpmvs83.35 30982.07 30887.20 32191.07 31771.00 36988.31 35791.70 32078.91 30880.49 32987.18 36869.30 26797.08 24768.12 35983.56 30093.51 291
dp81.47 32680.23 32385.17 35289.92 35265.49 39286.74 37590.10 35876.30 34181.10 32087.12 36962.81 32395.92 31468.13 35879.88 35194.09 258
test_fmvs377.67 35577.16 35279.22 37779.52 40761.14 40392.34 26991.64 32473.98 36478.86 34686.59 37027.38 41387.03 40188.12 13775.97 37389.50 375
mvsany_test374.95 36173.26 36580.02 37674.61 41263.16 40185.53 38478.42 40974.16 36274.89 37586.46 37136.02 40889.09 39882.39 21466.91 39287.82 393
PM-MVS78.11 35376.12 35784.09 36183.54 39770.08 37688.97 34985.27 39379.93 29574.73 37686.43 37234.70 40993.48 36579.43 26872.06 38188.72 386
mmtdpeth85.04 28584.15 28287.72 30493.11 24775.74 31194.37 17592.83 28884.98 18589.31 14886.41 37361.61 33297.14 24492.63 6362.11 40190.29 369
KD-MVS_self_test80.20 33979.24 33683.07 36485.64 39065.29 39391.01 30693.93 26178.71 31676.32 36486.40 37459.20 35492.93 37372.59 32869.35 38691.00 362
tpm cat181.96 31680.27 32287.01 32491.09 31671.02 36887.38 37191.53 32866.25 39680.17 33186.35 37568.22 28296.15 30569.16 35082.29 31593.86 271
pmmvs-eth3d80.97 33378.72 34587.74 30284.99 39379.97 22790.11 32691.65 32375.36 34973.51 38186.03 37659.45 35193.96 35975.17 31072.21 38089.29 380
KD-MVS_2432*160078.50 35176.02 35885.93 34186.22 38474.47 32484.80 38992.33 30079.29 30376.98 36085.92 37753.81 38093.97 35767.39 36157.42 40689.36 376
miper_refine_blended78.50 35176.02 35885.93 34186.22 38474.47 32484.80 38992.33 30079.29 30376.98 36085.92 37753.81 38093.97 35767.39 36157.42 40689.36 376
ADS-MVSNet281.66 32279.71 33187.50 30991.35 30574.19 32883.33 39688.48 37572.90 37582.24 30685.77 37964.98 31093.20 37064.57 37883.74 29695.12 209
ADS-MVSNet81.56 32479.78 32886.90 32891.35 30571.82 35683.33 39689.16 37372.90 37582.24 30685.77 37964.98 31093.76 36164.57 37883.74 29695.12 209
dmvs_testset74.57 36275.81 36070.86 38887.72 37940.47 42387.05 37477.90 41382.75 24071.15 39185.47 38167.98 28384.12 41045.26 40776.98 37088.00 391
N_pmnet68.89 36968.44 37170.23 38989.07 36228.79 42888.06 35919.50 42869.47 39171.86 38884.93 38261.24 33891.75 38354.70 40177.15 36790.15 370
EGC-MVSNET61.97 37556.37 38078.77 37989.63 35773.50 33589.12 34682.79 3990.21 4251.24 42684.80 38339.48 40490.04 39344.13 40875.94 37472.79 407
APD_test169.04 36866.26 37477.36 38380.51 40562.79 40285.46 38583.51 39854.11 40959.14 40684.79 38423.40 41689.61 39555.22 40070.24 38479.68 404
ambc83.06 36579.99 40663.51 40077.47 40992.86 28774.34 37984.45 38528.74 41095.06 34373.06 32768.89 39090.61 365
GG-mvs-BLEND87.94 29989.73 35677.91 27287.80 36278.23 41180.58 32783.86 38659.88 34995.33 33871.20 33492.22 19490.60 367
patchmatchnet-post83.76 38771.53 23196.48 286
PatchT82.68 31281.27 31486.89 32990.09 34870.94 37084.06 39390.15 35674.91 35585.63 22383.57 38869.37 26394.87 34665.19 37388.50 24894.84 223
new-patchmatchnet76.41 35975.17 36180.13 37582.65 40159.61 40687.66 36891.08 33778.23 32569.85 39383.22 38954.76 37491.63 38564.14 38064.89 39789.16 382
test_f71.95 36670.87 36775.21 38474.21 41459.37 40785.07 38885.82 38865.25 39870.42 39283.13 39023.62 41482.93 41278.32 27871.94 38283.33 397
PVSNet_073.20 2077.22 35674.83 36284.37 35790.70 33571.10 36683.09 39889.67 36872.81 37773.93 38083.13 39060.79 34393.70 36368.54 35350.84 41188.30 390
WB-MVS67.92 37067.49 37269.21 39281.09 40341.17 42288.03 36078.00 41273.50 36962.63 40183.11 39263.94 31686.52 40325.66 41851.45 41079.94 403
RPMNet83.95 30181.53 31291.21 18090.58 33879.34 24185.24 38696.76 7871.44 38485.55 22482.97 39370.87 24098.91 8361.01 38889.36 23595.40 200
SSC-MVS67.06 37166.56 37368.56 39480.54 40440.06 42487.77 36577.37 41572.38 37961.75 40382.66 39463.37 31986.45 40424.48 41948.69 41379.16 405
Patchmatch-RL test81.67 32179.96 32786.81 33185.42 39171.23 36482.17 40187.50 38278.47 31877.19 35982.50 39570.81 24193.48 36582.66 21072.89 37995.71 192
FPMVS64.63 37462.55 37670.88 38770.80 41656.71 40984.42 39284.42 39551.78 41049.57 41081.61 39623.49 41581.48 41340.61 41376.25 37274.46 406
test_vis1_rt77.96 35476.46 35482.48 36985.89 38771.74 35990.25 31878.89 40871.03 38771.30 39081.35 39742.49 40391.05 38984.55 18382.37 31484.65 395
pmmvs371.81 36768.71 37081.11 37375.86 41170.42 37486.74 37583.66 39758.95 40668.64 39680.89 39836.93 40789.52 39663.10 38363.59 39883.39 396
new_pmnet72.15 36570.13 36878.20 38082.95 40065.68 39083.91 39482.40 40162.94 40264.47 39979.82 39942.85 40286.26 40557.41 39874.44 37682.65 400
UnsupCasMVSNet_bld76.23 36073.27 36485.09 35383.79 39672.92 34185.65 38393.47 27471.52 38368.84 39579.08 40049.77 38893.21 36966.81 36960.52 40389.13 384
testf159.54 37756.11 38169.85 39069.28 41756.61 41180.37 40576.55 41642.58 41445.68 41375.61 40111.26 42484.18 40843.20 41060.44 40468.75 408
APD_test259.54 37756.11 38169.85 39069.28 41756.61 41180.37 40576.55 41642.58 41445.68 41375.61 40111.26 42484.18 40843.20 41060.44 40468.75 408
DeepMVS_CXcopyleft56.31 40074.23 41351.81 41656.67 42444.85 41248.54 41275.16 40327.87 41258.74 42240.92 41252.22 40958.39 414
test_method50.52 38448.47 38656.66 39952.26 42618.98 43041.51 41881.40 40310.10 42044.59 41575.01 40428.51 41168.16 41753.54 40249.31 41282.83 399
JIA-IIPM81.04 33078.98 34387.25 31788.64 36573.48 33681.75 40289.61 37073.19 37282.05 30973.71 40566.07 30595.87 31771.18 33684.60 28892.41 329
LCM-MVSNet66.00 37262.16 37777.51 38264.51 42258.29 40883.87 39590.90 34448.17 41154.69 40873.31 40616.83 42286.75 40265.47 37261.67 40287.48 394
PMMVS259.60 37656.40 37969.21 39268.83 41946.58 41873.02 41377.48 41455.07 40849.21 41172.95 40717.43 42180.04 41449.32 40544.33 41480.99 402
dongtai58.82 38058.24 37860.56 39783.13 39845.09 42182.32 40048.22 42767.61 39461.70 40469.15 40838.75 40576.05 41632.01 41541.31 41560.55 412
gg-mvs-nofinetune81.77 31979.37 33488.99 27090.85 32977.73 28286.29 37879.63 40774.88 35783.19 29669.05 40960.34 34596.11 30675.46 30794.64 14793.11 307
MVS-HIRNet73.70 36372.20 36678.18 38191.81 28956.42 41382.94 39982.58 40055.24 40768.88 39466.48 41055.32 37195.13 34058.12 39688.42 25083.01 398
PMVScopyleft47.18 2252.22 38348.46 38763.48 39645.72 42746.20 41973.41 41278.31 41041.03 41630.06 41965.68 4116.05 42683.43 41130.04 41665.86 39460.80 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt65.12 37362.60 37572.69 38671.44 41560.71 40487.17 37265.55 41963.80 40153.22 40965.65 41214.54 42389.44 39776.65 29565.38 39567.91 410
ANet_high58.88 37954.22 38472.86 38556.50 42556.67 41080.75 40486.00 38773.09 37437.39 41764.63 41322.17 41779.49 41543.51 40923.96 41982.43 401
kuosan53.51 38253.30 38554.13 40176.06 41045.36 42080.11 40748.36 42659.63 40554.84 40763.43 41437.41 40662.07 42120.73 42139.10 41654.96 415
tmp_tt35.64 38839.24 39024.84 40414.87 42823.90 42962.71 41451.51 4256.58 42236.66 41862.08 41544.37 40030.34 42452.40 40322.00 42120.27 419
MVEpermissive39.65 2343.39 38538.59 39157.77 39856.52 42448.77 41755.38 41558.64 42329.33 41928.96 42052.65 4164.68 42764.62 42028.11 41733.07 41759.93 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft57.99 38154.91 38367.24 39588.51 36665.59 39152.21 41690.33 35443.58 41342.84 41651.18 41720.29 41985.07 40734.77 41470.45 38351.05 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 38642.29 38846.03 40265.58 42137.41 42573.51 41164.62 42033.99 41728.47 42147.87 41819.90 42067.91 41822.23 42024.45 41832.77 417
EMVS42.07 38741.12 38944.92 40363.45 42335.56 42773.65 41063.48 42133.05 41826.88 42245.45 41921.27 41867.14 41919.80 42223.02 42032.06 418
X-MVStestdata88.31 18286.13 22994.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7723.41 42085.02 6399.49 2691.99 8498.56 5098.47 33
test_post10.29 42170.57 24795.91 316
test_post188.00 3619.81 42269.31 26695.53 33076.65 295
testmvs8.92 39111.52 3941.12 4071.06 4290.46 43286.02 3790.65 4300.62 4232.74 4249.52 4230.31 4300.45 4262.38 4240.39 4232.46 422
test1238.76 39211.22 3951.39 4060.85 4300.97 43185.76 3820.35 4310.54 4242.45 4258.14 4240.60 4290.48 4252.16 4250.17 4242.71 421
wuyk23d21.27 39020.48 39323.63 40568.59 42036.41 42649.57 4176.85 4299.37 4217.89 4234.46 4254.03 42831.37 42317.47 42316.07 4223.12 420
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.64 3948.86 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42679.70 1290.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS64.08 39759.14 393
FOURS198.86 185.54 6798.29 197.49 689.79 5096.29 18
MSC_two_6792asdad96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
eth-test20.00 431
eth-test0.00 431
IU-MVS98.77 586.00 5096.84 6881.26 28097.26 795.50 2399.13 399.03 8
save fliter97.85 4985.63 6695.21 11896.82 7189.44 58
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
GSMVS96.12 170
test_part298.55 1287.22 1996.40 17
sam_mvs171.70 23096.12 170
sam_mvs70.60 243
MTGPAbinary96.97 53
MTMP96.16 5260.64 422
test9_res91.91 8898.71 3298.07 73
agg_prior290.54 11098.68 3798.27 56
agg_prior97.38 6685.92 5796.72 8492.16 9898.97 78
test_prior485.96 5494.11 189
test_prior93.82 6597.29 7084.49 9096.88 6498.87 8598.11 72
旧先验293.36 22871.25 38594.37 4397.13 24586.74 155
新几何293.11 243
无先验93.28 23696.26 11873.95 36599.05 5880.56 25296.59 151
原ACMM292.94 250
testdata298.75 9778.30 279
segment_acmp87.16 36
testdata192.15 27687.94 110
test1294.34 5297.13 7386.15 4896.29 11391.04 12485.08 6199.01 6698.13 6697.86 88
plane_prior794.70 17482.74 149
plane_prior694.52 18582.75 14774.23 196
plane_prior596.22 12398.12 15488.15 13489.99 22094.63 229
plane_prior382.75 14790.26 3486.91 190
plane_prior295.85 8190.81 17
plane_prior194.59 179
plane_prior82.73 15095.21 11889.66 5589.88 225
n20.00 432
nn0.00 432
door-mid85.49 390
test1196.57 95
door85.33 392
HQP5-MVS81.56 175
HQP-NCC94.17 20594.39 17188.81 7985.43 235
ACMP_Plane94.17 20594.39 17188.81 7985.43 235
BP-MVS87.11 152
HQP4-MVS85.43 23597.96 17594.51 239
HQP3-MVS96.04 14089.77 229
HQP2-MVS73.83 206
MDTV_nov1_ep13_2view55.91 41587.62 36973.32 37184.59 25770.33 25074.65 31695.50 197
ACMMP++_ref87.47 265
ACMMP++88.01 257
Test By Simon80.02 124