test0726 | | | | | | 98.78 2 | 85.93 59 | 97.19 7 | 97.47 8 | 90.27 29 | 97.64 4 | 98.13 1 | 91.47 7 | | | | |
|
SMA-MVS |  | | 95.20 7 | 95.07 9 | 95.59 4 | 98.14 36 | 88.48 7 | 96.26 41 | 97.28 28 | 85.90 138 | 97.67 3 | 98.10 2 | 88.41 18 | 99.56 8 | 94.66 11 | 99.19 1 | 98.71 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 95.46 4 | 95.64 4 | 94.91 23 | 98.26 28 | 86.29 50 | 97.46 2 | 97.40 17 | 89.03 62 | 96.20 13 | 98.10 2 | 89.39 14 | 99.34 34 | 95.88 2 | 99.03 10 | 99.10 3 |
|
SED-MVS | | | 95.91 1 | 96.28 1 | 94.80 34 | 98.77 4 | 85.99 56 | 97.13 10 | 97.44 12 | 90.31 27 | 97.71 1 | 98.07 4 | 92.31 3 | 99.58 6 | 95.66 3 | 99.13 3 | 98.84 10 |
|
test_241102_TWO | | | | | | | | | 97.44 12 | 90.31 27 | 97.62 5 | 98.07 4 | 91.46 9 | 99.58 6 | 95.66 3 | 99.12 6 | 98.98 7 |
|
DVP-MVS |  | | 95.67 2 | 96.02 2 | 94.64 41 | 98.78 2 | 85.93 59 | 97.09 12 | 96.73 77 | 90.27 29 | 97.04 9 | 98.05 6 | 91.47 7 | 99.55 13 | 95.62 6 | 99.08 7 | 98.45 34 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 9 | 98.05 6 | 92.09 5 | 99.55 13 | 95.64 5 | 99.13 3 | 99.13 1 |
|
test_241102_ONE | | | | | | 98.77 4 | 85.99 56 | | 97.44 12 | 90.26 31 | 97.71 1 | 97.96 8 | 92.31 3 | 99.38 30 | | | |
|
DPE-MVS |  | | 95.57 3 | 95.67 3 | 95.25 8 | 98.36 25 | 87.28 16 | 95.56 77 | 97.51 4 | 89.13 58 | 97.14 7 | 97.91 9 | 91.64 6 | 99.62 1 | 94.61 12 | 99.17 2 | 98.86 8 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 94.21 33 | 94.00 37 | 94.85 28 | 98.17 34 | 86.65 34 | 94.82 122 | 97.17 38 | 86.26 132 | 92.83 65 | 97.87 10 | 85.57 53 | 99.56 8 | 94.37 15 | 98.92 15 | 98.34 40 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
xxxxxxxxxxxxxcwj | | | 94.65 15 | 94.70 14 | 94.48 48 | 97.85 48 | 85.63 69 | 95.21 96 | 95.47 172 | 89.44 47 | 95.71 16 | 97.70 11 | 88.28 20 | 99.35 32 | 93.89 19 | 98.78 23 | 98.48 26 |
|
SF-MVS | | | 94.97 10 | 94.90 12 | 95.20 9 | 97.84 50 | 87.76 9 | 96.65 29 | 97.48 7 | 87.76 98 | 95.71 16 | 97.70 11 | 88.28 20 | 99.35 32 | 93.89 19 | 98.78 23 | 98.48 26 |
|
ACMMP_NAP | | | 94.74 14 | 94.56 16 | 95.28 7 | 98.02 43 | 87.70 11 | 95.68 70 | 97.34 19 | 88.28 82 | 95.30 21 | 97.67 13 | 85.90 50 | 99.54 17 | 93.91 18 | 98.95 13 | 98.60 19 |
|
zzz-MVS | | | 94.47 18 | 94.30 21 | 95.00 17 | 98.42 20 | 86.95 19 | 95.06 108 | 96.97 49 | 91.07 13 | 93.14 57 | 97.56 14 | 84.30 68 | 99.56 8 | 93.43 24 | 98.75 29 | 98.47 30 |
|
MTAPA | | | 94.42 24 | 94.22 25 | 95.00 17 | 98.42 20 | 86.95 19 | 94.36 158 | 96.97 49 | 91.07 13 | 93.14 57 | 97.56 14 | 84.30 68 | 99.56 8 | 93.43 24 | 98.75 29 | 98.47 30 |
|
APD-MVS_3200maxsize | | | 93.78 45 | 93.77 44 | 93.80 69 | 97.92 45 | 84.19 97 | 96.30 37 | 96.87 61 | 86.96 115 | 93.92 38 | 97.47 16 | 83.88 76 | 98.96 84 | 92.71 39 | 97.87 74 | 98.26 51 |
|
SteuartSystems-ACMMP | | | 95.20 7 | 95.32 8 | 94.85 28 | 96.99 77 | 86.33 46 | 97.33 3 | 97.30 26 | 91.38 11 | 95.39 19 | 97.46 17 | 88.98 17 | 99.40 29 | 94.12 16 | 98.89 16 | 98.82 12 |
Skip Steuart: Steuart Systems R&D Blog. |
test1172 | | | 93.97 39 | 94.07 34 | 93.66 72 | 98.11 37 | 83.45 116 | 96.26 41 | 96.84 63 | 88.33 79 | 94.19 31 | 97.43 18 | 84.24 70 | 99.01 71 | 93.26 29 | 97.98 70 | 98.52 22 |
|
SR-MVS-dyc-post | | | 93.82 44 | 93.82 40 | 93.82 65 | 97.92 45 | 84.57 82 | 96.28 39 | 96.76 73 | 87.46 105 | 93.75 41 | 97.43 18 | 84.24 70 | 99.01 71 | 92.73 36 | 97.80 76 | 97.88 79 |
|
RE-MVS-def | | | | 93.68 47 | | 97.92 45 | 84.57 82 | 96.28 39 | 96.76 73 | 87.46 105 | 93.75 41 | 97.43 18 | 82.94 83 | | 92.73 36 | 97.80 76 | 97.88 79 |
|
9.14 | | | | 94.47 17 | | 97.79 52 | | 96.08 51 | 97.44 12 | 86.13 136 | 95.10 23 | 97.40 21 | 88.34 19 | 99.22 47 | 93.25 30 | 98.70 34 | |
|
SR-MVS | | | 94.23 31 | 94.17 30 | 94.43 51 | 98.21 33 | 85.78 66 | 96.40 35 | 96.90 57 | 88.20 86 | 94.33 28 | 97.40 21 | 84.75 65 | 99.03 65 | 93.35 27 | 97.99 69 | 98.48 26 |
|
DeepC-MVS | | 88.79 3 | 93.31 57 | 92.99 61 | 94.26 56 | 96.07 106 | 85.83 65 | 94.89 117 | 96.99 47 | 89.02 63 | 89.56 120 | 97.37 23 | 82.51 88 | 99.38 30 | 92.20 51 | 98.30 59 | 97.57 93 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PGM-MVS | | | 93.96 40 | 93.72 45 | 94.68 39 | 98.43 19 | 86.22 51 | 95.30 87 | 97.78 1 | 87.45 107 | 93.26 52 | 97.33 24 | 84.62 66 | 99.51 22 | 90.75 89 | 98.57 48 | 98.32 42 |
|
ETH3D-3000-0.1 | | | 94.61 16 | 94.44 18 | 95.12 12 | 97.70 56 | 87.71 10 | 95.98 57 | 97.44 12 | 86.67 124 | 95.25 22 | 97.31 25 | 87.73 26 | 99.24 45 | 93.11 33 | 98.76 28 | 98.40 37 |
|
DeepPCF-MVS | | 89.96 1 | 94.20 35 | 94.77 13 | 92.49 112 | 96.52 91 | 80.00 213 | 94.00 182 | 97.08 43 | 90.05 33 | 95.65 18 | 97.29 26 | 89.66 11 | 98.97 81 | 93.95 17 | 98.71 32 | 98.50 24 |
|
region2R | | | 94.43 22 | 94.27 24 | 94.92 21 | 98.65 7 | 86.67 33 | 96.92 20 | 97.23 32 | 88.60 73 | 93.58 48 | 97.27 27 | 85.22 57 | 99.54 17 | 92.21 50 | 98.74 31 | 98.56 21 |
|
SD-MVS | | | 94.96 11 | 95.33 7 | 93.88 63 | 97.25 74 | 86.69 31 | 96.19 44 | 97.11 42 | 90.42 26 | 96.95 11 | 97.27 27 | 89.53 12 | 96.91 241 | 94.38 14 | 98.85 17 | 98.03 69 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMPR | | | 94.43 22 | 94.28 22 | 94.91 23 | 98.63 8 | 86.69 31 | 96.94 16 | 97.32 24 | 88.63 71 | 93.53 51 | 97.26 29 | 85.04 60 | 99.54 17 | 92.35 47 | 98.78 23 | 98.50 24 |
|
CP-MVS | | | 94.34 26 | 94.21 27 | 94.74 38 | 98.39 23 | 86.64 35 | 97.60 1 | 97.24 30 | 88.53 75 | 92.73 70 | 97.23 30 | 85.20 58 | 99.32 38 | 92.15 53 | 98.83 19 | 98.25 52 |
|
abl_6 | | | 93.18 62 | 93.05 59 | 93.57 74 | 97.52 61 | 84.27 96 | 95.53 78 | 96.67 86 | 87.85 95 | 93.20 55 | 97.22 31 | 80.35 110 | 99.18 50 | 91.91 64 | 97.21 87 | 97.26 103 |
|
HFP-MVS | | | 94.52 17 | 94.40 19 | 94.86 26 | 98.61 9 | 86.81 25 | 96.94 16 | 97.34 19 | 88.63 71 | 93.65 44 | 97.21 32 | 86.10 46 | 99.49 24 | 92.35 47 | 98.77 26 | 98.30 43 |
|
#test# | | | 94.32 28 | 94.14 31 | 94.86 26 | 98.61 9 | 86.81 25 | 96.43 32 | 97.34 19 | 87.51 104 | 93.65 44 | 97.21 32 | 86.10 46 | 99.49 24 | 91.68 71 | 98.77 26 | 98.30 43 |
|
MP-MVS |  | | 94.25 29 | 94.07 34 | 94.77 36 | 98.47 17 | 86.31 48 | 96.71 27 | 96.98 48 | 89.04 60 | 91.98 87 | 97.19 34 | 85.43 55 | 99.56 8 | 92.06 58 | 98.79 21 | 98.44 35 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
APD-MVS |  | | 94.24 30 | 94.07 34 | 94.75 37 | 98.06 41 | 86.90 22 | 95.88 61 | 96.94 54 | 85.68 144 | 95.05 24 | 97.18 35 | 87.31 32 | 99.07 59 | 91.90 67 | 98.61 47 | 98.28 47 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
mPP-MVS | | | 93.99 38 | 93.78 43 | 94.63 42 | 98.50 15 | 85.90 64 | 96.87 22 | 96.91 56 | 88.70 69 | 91.83 93 | 97.17 36 | 83.96 75 | 99.55 13 | 91.44 76 | 98.64 45 | 98.43 36 |
|
XVS | | | 94.45 20 | 94.32 20 | 94.85 28 | 98.54 12 | 86.60 37 | 96.93 18 | 97.19 35 | 90.66 23 | 92.85 63 | 97.16 37 | 85.02 61 | 99.49 24 | 91.99 59 | 98.56 49 | 98.47 30 |
|
HPM-MVS_fast | | | 93.40 56 | 93.22 55 | 93.94 62 | 98.36 25 | 84.83 77 | 97.15 9 | 96.80 69 | 85.77 141 | 92.47 78 | 97.13 38 | 82.38 89 | 99.07 59 | 90.51 91 | 98.40 55 | 97.92 77 |
|
ETH3D cwj APD-0.16 | | | 93.91 41 | 93.53 50 | 95.06 14 | 96.76 82 | 87.78 8 | 94.92 115 | 97.21 34 | 84.33 174 | 93.89 39 | 97.09 39 | 87.20 34 | 99.29 42 | 91.90 67 | 98.44 53 | 98.12 61 |
|
OPU-MVS | | | | | 96.21 2 | 98.00 44 | 90.85 2 | 97.13 10 | | | | 97.08 40 | 92.59 2 | 98.94 85 | 92.25 49 | 98.99 12 | 98.84 10 |
|
CNVR-MVS | | | 95.40 6 | 95.37 6 | 95.50 6 | 98.11 37 | 88.51 6 | 95.29 90 | 96.96 52 | 92.09 3 | 95.32 20 | 97.08 40 | 89.49 13 | 99.33 37 | 95.10 9 | 98.85 17 | 98.66 16 |
|
PC_three_1452 | | | | | | | | | | 82.47 213 | 97.09 8 | 97.07 42 | 92.72 1 | 98.04 152 | 92.70 40 | 99.02 11 | 98.86 8 |
|
ZNCC-MVS | | | 94.47 18 | 94.28 22 | 95.03 15 | 98.52 14 | 86.96 18 | 96.85 24 | 97.32 24 | 88.24 83 | 93.15 56 | 97.04 43 | 86.17 45 | 99.62 1 | 92.40 45 | 98.81 20 | 98.52 22 |
|
testtj | | | 94.39 25 | 94.18 29 | 95.00 17 | 98.24 31 | 86.77 29 | 96.16 45 | 97.23 32 | 87.28 109 | 94.85 25 | 97.04 43 | 86.99 38 | 99.52 21 | 91.54 73 | 98.33 58 | 98.71 14 |
|
ACMMP |  | | 93.24 60 | 92.88 64 | 94.30 55 | 98.09 40 | 85.33 73 | 96.86 23 | 97.45 11 | 88.33 79 | 90.15 116 | 97.03 45 | 81.44 103 | 99.51 22 | 90.85 87 | 95.74 110 | 98.04 68 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepC-MVS_fast | | 89.43 2 | 94.04 36 | 93.79 42 | 94.80 34 | 97.48 63 | 86.78 27 | 95.65 74 | 96.89 58 | 89.40 50 | 92.81 66 | 96.97 46 | 85.37 56 | 99.24 45 | 90.87 86 | 98.69 35 | 98.38 39 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + MP. | | | 94.85 12 | 94.94 10 | 94.58 44 | 98.25 29 | 86.33 46 | 96.11 50 | 96.62 90 | 88.14 89 | 96.10 14 | 96.96 47 | 89.09 16 | 98.94 85 | 94.48 13 | 98.68 37 | 98.48 26 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MSLP-MVS++ | | | 93.72 46 | 94.08 33 | 92.65 104 | 97.31 68 | 83.43 117 | 95.79 65 | 97.33 22 | 90.03 34 | 93.58 48 | 96.96 47 | 84.87 63 | 97.76 168 | 92.19 52 | 98.66 42 | 96.76 123 |
|
ZD-MVS | | | | | | 98.15 35 | 86.62 36 | | 97.07 44 | 83.63 187 | 94.19 31 | 96.91 49 | 87.57 30 | 99.26 44 | 91.99 59 | 98.44 53 | |
|
VDDNet | | | 89.56 129 | 88.49 142 | 92.76 97 | 95.07 142 | 82.09 153 | 96.30 37 | 93.19 258 | 81.05 250 | 91.88 89 | 96.86 50 | 61.16 313 | 98.33 128 | 88.43 111 | 92.49 168 | 97.84 82 |
|
VDD-MVS | | | 90.74 99 | 89.92 111 | 93.20 78 | 96.27 97 | 83.02 128 | 95.73 67 | 93.86 246 | 88.42 78 | 92.53 75 | 96.84 51 | 62.09 303 | 98.64 105 | 90.95 84 | 92.62 165 | 97.93 76 |
|
GST-MVS | | | 94.21 33 | 93.97 38 | 94.90 25 | 98.41 22 | 86.82 24 | 96.54 31 | 97.19 35 | 88.24 83 | 93.26 52 | 96.83 52 | 85.48 54 | 99.59 5 | 91.43 77 | 98.40 55 | 98.30 43 |
|
HPM-MVS++ |  | | 95.14 9 | 94.91 11 | 95.83 3 | 98.25 29 | 89.65 3 | 95.92 60 | 96.96 52 | 91.75 7 | 94.02 36 | 96.83 52 | 88.12 22 | 99.55 13 | 93.41 26 | 98.94 14 | 98.28 47 |
|
旧先验1 | | | | | | 96.79 81 | 81.81 159 | | 95.67 156 | | | 96.81 54 | 86.69 39 | | | 97.66 80 | 96.97 117 |
|
LFMVS | | | 90.08 114 | 89.13 127 | 92.95 90 | 96.71 83 | 82.32 151 | 96.08 51 | 89.91 333 | 86.79 120 | 92.15 84 | 96.81 54 | 62.60 300 | 98.34 126 | 87.18 127 | 93.90 139 | 98.19 55 |
|
HPM-MVS |  | | 94.02 37 | 93.88 39 | 94.43 51 | 98.39 23 | 85.78 66 | 97.25 6 | 97.07 44 | 86.90 119 | 92.62 74 | 96.80 56 | 84.85 64 | 99.17 51 | 92.43 43 | 98.65 44 | 98.33 41 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
Regformer-3 | | | 93.68 47 | 93.64 49 | 93.81 68 | 95.36 129 | 84.61 80 | 94.68 130 | 95.83 145 | 91.27 12 | 93.60 47 | 96.71 57 | 85.75 51 | 98.86 92 | 92.87 34 | 96.65 98 | 97.96 73 |
|
Regformer-4 | | | 93.91 41 | 93.81 41 | 94.19 58 | 95.36 129 | 85.47 71 | 94.68 130 | 96.41 102 | 91.60 10 | 93.75 41 | 96.71 57 | 85.95 49 | 99.10 58 | 93.21 31 | 96.65 98 | 98.01 71 |
|
MSP-MVS | | | 95.42 5 | 95.56 5 | 94.98 20 | 98.49 16 | 86.52 39 | 96.91 21 | 97.47 8 | 91.73 8 | 96.10 14 | 96.69 59 | 89.90 10 | 99.30 40 | 94.70 10 | 98.04 68 | 99.13 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
testdata | | | | | 90.49 195 | 96.40 93 | 77.89 259 | | 95.37 184 | 72.51 333 | 93.63 46 | 96.69 59 | 82.08 97 | 97.65 177 | 83.08 172 | 97.39 85 | 95.94 154 |
|
EI-MVSNet-Vis-set | | | 93.01 64 | 92.92 63 | 93.29 75 | 95.01 143 | 83.51 115 | 94.48 142 | 95.77 149 | 90.87 15 | 92.52 76 | 96.67 61 | 84.50 67 | 99.00 76 | 91.99 59 | 94.44 135 | 97.36 99 |
|
3Dnovator | | 86.66 5 | 91.73 83 | 90.82 94 | 94.44 49 | 94.59 167 | 86.37 44 | 97.18 8 | 97.02 46 | 89.20 55 | 84.31 235 | 96.66 62 | 73.74 195 | 99.17 51 | 86.74 133 | 97.96 71 | 97.79 85 |
|
CDPH-MVS | | | 92.83 65 | 92.30 73 | 94.44 49 | 97.79 52 | 86.11 53 | 94.06 177 | 96.66 87 | 80.09 258 | 92.77 67 | 96.63 63 | 86.62 40 | 99.04 64 | 87.40 123 | 98.66 42 | 98.17 56 |
|
3Dnovator+ | | 87.14 4 | 92.42 74 | 91.37 82 | 95.55 5 | 95.63 123 | 88.73 5 | 97.07 14 | 96.77 72 | 90.84 16 | 84.02 240 | 96.62 64 | 75.95 160 | 99.34 34 | 87.77 118 | 97.68 79 | 98.59 20 |
|
EI-MVSNet-UG-set | | | 92.74 67 | 92.62 69 | 93.12 81 | 94.86 155 | 83.20 122 | 94.40 150 | 95.74 152 | 90.71 22 | 92.05 86 | 96.60 65 | 84.00 74 | 98.99 78 | 91.55 72 | 93.63 143 | 97.17 108 |
|
NCCC | | | 94.81 13 | 94.69 15 | 95.17 11 | 97.83 51 | 87.46 15 | 95.66 72 | 96.93 55 | 92.34 2 | 93.94 37 | 96.58 66 | 87.74 25 | 99.44 28 | 92.83 35 | 98.40 55 | 98.62 18 |
|
Vis-MVSNet |  | | 91.75 82 | 91.23 85 | 93.29 75 | 95.32 132 | 83.78 107 | 96.14 47 | 95.98 131 | 89.89 36 | 90.45 112 | 96.58 66 | 75.09 172 | 98.31 130 | 84.75 154 | 96.90 92 | 97.78 86 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Regformer-1 | | | 94.22 32 | 94.13 32 | 94.51 47 | 95.54 125 | 86.36 45 | 94.57 138 | 96.44 99 | 91.69 9 | 94.32 29 | 96.56 68 | 87.05 37 | 99.03 65 | 93.35 27 | 97.65 81 | 98.15 58 |
|
Regformer-2 | | | 94.33 27 | 94.22 25 | 94.68 39 | 95.54 125 | 86.75 30 | 94.57 138 | 96.70 82 | 91.84 6 | 94.41 26 | 96.56 68 | 87.19 35 | 99.13 55 | 93.50 22 | 97.65 81 | 98.16 57 |
|
UA-Net | | | 92.83 65 | 92.54 70 | 93.68 71 | 96.10 104 | 84.71 79 | 95.66 72 | 96.39 104 | 91.92 4 | 93.22 54 | 96.49 70 | 83.16 80 | 98.87 89 | 84.47 157 | 95.47 115 | 97.45 98 |
|
MG-MVS | | | 91.77 81 | 91.70 80 | 92.00 133 | 97.08 76 | 80.03 211 | 93.60 199 | 95.18 192 | 87.85 95 | 90.89 109 | 96.47 71 | 82.06 98 | 98.36 123 | 85.07 148 | 97.04 91 | 97.62 89 |
|
CPTT-MVS | | | 91.99 77 | 91.80 78 | 92.55 109 | 98.24 31 | 81.98 156 | 96.76 26 | 96.49 98 | 81.89 230 | 90.24 114 | 96.44 72 | 78.59 134 | 98.61 108 | 89.68 96 | 97.85 75 | 97.06 112 |
|
test_prior3 | | | 93.60 50 | 93.53 50 | 93.82 65 | 97.29 70 | 84.49 86 | 94.12 168 | 96.88 59 | 87.67 101 | 92.63 72 | 96.39 73 | 86.62 40 | 98.87 89 | 91.50 74 | 98.67 39 | 98.11 63 |
|
test_prior2 | | | | | | | | 94.12 168 | | 87.67 101 | 92.63 72 | 96.39 73 | 86.62 40 | | 91.50 74 | 98.67 39 | |
|
MCST-MVS | | | 94.45 20 | 94.20 28 | 95.19 10 | 98.46 18 | 87.50 14 | 95.00 110 | 97.12 40 | 87.13 111 | 92.51 77 | 96.30 75 | 89.24 15 | 99.34 34 | 93.46 23 | 98.62 46 | 98.73 13 |
|
ETH3 D test6400 | | | 93.64 49 | 93.22 55 | 94.92 21 | 97.79 52 | 86.84 23 | 95.31 84 | 97.26 29 | 82.67 211 | 93.81 40 | 96.29 76 | 87.29 33 | 99.27 43 | 89.87 95 | 98.67 39 | 98.65 17 |
|
PHI-MVS | | | 93.89 43 | 93.65 48 | 94.62 43 | 96.84 80 | 86.43 42 | 96.69 28 | 97.49 5 | 85.15 160 | 93.56 50 | 96.28 77 | 85.60 52 | 99.31 39 | 92.45 42 | 98.79 21 | 98.12 61 |
|
æ–°å‡ ä½•1 | | | | | 93.10 82 | 97.30 69 | 84.35 95 | | 95.56 164 | 71.09 340 | 91.26 104 | 96.24 78 | 82.87 85 | 98.86 92 | 79.19 239 | 98.10 66 | 96.07 150 |
|
agg_prior1 | | | 93.29 58 | 92.97 62 | 94.26 56 | 97.38 65 | 85.92 61 | 93.92 186 | 96.72 79 | 81.96 225 | 92.16 82 | 96.23 79 | 87.85 23 | 98.97 81 | 91.95 63 | 98.55 51 | 97.90 78 |
|
1121 | | | 90.42 109 | 89.49 115 | 93.20 78 | 97.27 72 | 84.46 89 | 92.63 234 | 95.51 170 | 71.01 341 | 91.20 105 | 96.21 80 | 82.92 84 | 99.05 61 | 80.56 220 | 98.07 67 | 96.10 148 |
|
TEST9 | | | | | | 97.53 59 | 86.49 40 | 94.07 175 | 96.78 70 | 81.61 238 | 92.77 67 | 96.20 81 | 87.71 27 | 99.12 56 | | | |
|
train_agg | | | 93.44 53 | 93.08 58 | 94.52 46 | 97.53 59 | 86.49 40 | 94.07 175 | 96.78 70 | 81.86 231 | 92.77 67 | 96.20 81 | 87.63 28 | 99.12 56 | 92.14 54 | 98.69 35 | 97.94 74 |
|
test_8 | | | | | | 97.49 62 | 86.30 49 | 94.02 180 | 96.76 73 | 81.86 231 | 92.70 71 | 96.20 81 | 87.63 28 | 99.02 69 | | | |
|
QAPM | | | 89.51 130 | 88.15 151 | 93.59 73 | 94.92 150 | 84.58 81 | 96.82 25 | 96.70 82 | 78.43 281 | 83.41 256 | 96.19 84 | 73.18 203 | 99.30 40 | 77.11 259 | 96.54 101 | 96.89 121 |
|
casdiffmvs | | | 92.51 72 | 92.43 72 | 92.74 99 | 94.41 176 | 81.98 156 | 94.54 140 | 96.23 114 | 89.57 45 | 91.96 88 | 96.17 85 | 82.58 87 | 98.01 155 | 90.95 84 | 95.45 117 | 98.23 53 |
|
test222 | | | | | | 96.55 89 | 81.70 161 | 92.22 248 | 95.01 199 | 68.36 346 | 90.20 115 | 96.14 86 | 80.26 113 | | | 97.80 76 | 96.05 152 |
|
OMC-MVS | | | 91.23 91 | 90.62 96 | 93.08 83 | 96.27 97 | 84.07 99 | 93.52 201 | 95.93 135 | 86.95 116 | 89.51 121 | 96.13 87 | 78.50 136 | 98.35 125 | 85.84 141 | 92.90 161 | 96.83 122 |
|
OpenMVS |  | 83.78 11 | 88.74 155 | 87.29 170 | 93.08 83 | 92.70 232 | 85.39 72 | 96.57 30 | 96.43 101 | 78.74 277 | 80.85 285 | 96.07 88 | 69.64 245 | 99.01 71 | 78.01 250 | 96.65 98 | 94.83 194 |
|
baseline | | | 92.39 75 | 92.29 74 | 92.69 103 | 94.46 173 | 81.77 160 | 94.14 167 | 96.27 109 | 89.22 54 | 91.88 89 | 96.00 89 | 82.35 90 | 97.99 157 | 91.05 80 | 95.27 122 | 98.30 43 |
|
IS-MVSNet | | | 91.43 87 | 91.09 89 | 92.46 113 | 95.87 116 | 81.38 172 | 96.95 15 | 93.69 251 | 89.72 43 | 89.50 122 | 95.98 90 | 78.57 135 | 97.77 167 | 83.02 174 | 96.50 103 | 98.22 54 |
|
LS3D | | | 87.89 175 | 86.32 202 | 92.59 107 | 96.07 106 | 82.92 132 | 95.23 94 | 94.92 207 | 75.66 304 | 82.89 263 | 95.98 90 | 72.48 211 | 99.21 48 | 68.43 316 | 95.23 123 | 95.64 167 |
|
原ACMM1 | | | | | 92.01 131 | 97.34 67 | 81.05 181 | | 96.81 68 | 78.89 272 | 90.45 112 | 95.92 92 | 82.65 86 | 98.84 97 | 80.68 218 | 98.26 61 | 96.14 143 |
|
VNet | | | 92.24 76 | 91.91 77 | 93.24 77 | 96.59 87 | 83.43 117 | 94.84 121 | 96.44 99 | 89.19 56 | 94.08 35 | 95.90 93 | 77.85 145 | 98.17 136 | 88.90 105 | 93.38 151 | 98.13 60 |
|
CANet | | | 93.54 51 | 93.20 57 | 94.55 45 | 95.65 122 | 85.73 68 | 94.94 113 | 96.69 84 | 91.89 5 | 90.69 110 | 95.88 94 | 81.99 100 | 99.54 17 | 93.14 32 | 97.95 72 | 98.39 38 |
|
MVS_111021_HR | | | 93.45 52 | 93.31 53 | 93.84 64 | 96.99 77 | 84.84 76 | 93.24 216 | 97.24 30 | 88.76 68 | 91.60 98 | 95.85 95 | 86.07 48 | 98.66 103 | 91.91 64 | 98.16 63 | 98.03 69 |
|
DP-MVS Recon | | | 91.95 78 | 91.28 84 | 93.96 61 | 98.33 27 | 85.92 61 | 94.66 133 | 96.66 87 | 82.69 210 | 90.03 118 | 95.82 96 | 82.30 92 | 99.03 65 | 84.57 156 | 96.48 104 | 96.91 120 |
|
DROMVSNet | | | 93.44 53 | 93.71 46 | 92.63 105 | 95.21 137 | 82.43 146 | 97.27 5 | 96.71 81 | 90.57 25 | 92.88 62 | 95.80 97 | 83.16 80 | 98.16 137 | 93.68 21 | 98.14 64 | 97.31 100 |
|
EPNet | | | 91.79 80 | 91.02 90 | 94.10 59 | 90.10 312 | 85.25 74 | 96.03 54 | 92.05 283 | 92.83 1 | 87.39 157 | 95.78 98 | 79.39 125 | 99.01 71 | 88.13 115 | 97.48 83 | 98.05 67 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
XVG-OURS | | | 89.40 138 | 88.70 136 | 91.52 155 | 94.06 186 | 81.46 169 | 91.27 269 | 96.07 125 | 86.14 135 | 88.89 131 | 95.77 99 | 68.73 260 | 97.26 215 | 87.39 124 | 89.96 191 | 95.83 160 |
|
XVG-OURS-SEG-HR | | | 89.95 119 | 89.45 116 | 91.47 159 | 94.00 192 | 81.21 178 | 91.87 256 | 96.06 127 | 85.78 140 | 88.55 133 | 95.73 100 | 74.67 179 | 97.27 213 | 88.71 108 | 89.64 198 | 95.91 155 |
|
MVS_111021_LR | | | 92.47 73 | 92.29 74 | 92.98 88 | 95.99 110 | 84.43 93 | 93.08 221 | 96.09 123 | 88.20 86 | 91.12 106 | 95.72 101 | 81.33 105 | 97.76 168 | 91.74 69 | 97.37 86 | 96.75 124 |
|
CSCG | | | 93.23 61 | 93.05 59 | 93.76 70 | 98.04 42 | 84.07 99 | 96.22 43 | 97.37 18 | 84.15 176 | 90.05 117 | 95.66 102 | 87.77 24 | 99.15 54 | 89.91 94 | 98.27 60 | 98.07 65 |
|
hse-mvs3 | | | 90.80 97 | 90.15 103 | 92.75 98 | 96.01 108 | 82.66 142 | 95.43 80 | 95.53 168 | 89.80 38 | 93.08 59 | 95.64 103 | 75.77 161 | 99.00 76 | 92.07 56 | 78.05 324 | 96.60 129 |
|
EPP-MVSNet | | | 91.70 84 | 91.56 81 | 92.13 128 | 95.88 114 | 80.50 198 | 97.33 3 | 95.25 188 | 86.15 134 | 89.76 119 | 95.60 104 | 83.42 79 | 98.32 129 | 87.37 125 | 93.25 154 | 97.56 94 |
|
TSAR-MVS + GP. | | | 93.66 48 | 93.41 52 | 94.41 53 | 96.59 87 | 86.78 27 | 94.40 150 | 93.93 242 | 89.77 41 | 94.21 30 | 95.59 105 | 87.35 31 | 98.61 108 | 92.72 38 | 96.15 107 | 97.83 83 |
|
Anonymous202405211 | | | 87.68 181 | 86.13 207 | 92.31 122 | 96.66 84 | 80.74 191 | 94.87 119 | 91.49 300 | 80.47 254 | 89.46 123 | 95.44 106 | 54.72 338 | 98.23 132 | 82.19 189 | 89.89 193 | 97.97 72 |
|
TAPA-MVS | | 84.62 6 | 88.16 169 | 87.01 177 | 91.62 152 | 96.64 85 | 80.65 192 | 94.39 152 | 96.21 118 | 76.38 297 | 86.19 180 | 95.44 106 | 79.75 118 | 98.08 148 | 62.75 342 | 95.29 120 | 96.13 144 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
OPM-MVS | | | 90.12 113 | 89.56 114 | 91.82 145 | 93.14 218 | 83.90 103 | 94.16 166 | 95.74 152 | 88.96 64 | 87.86 144 | 95.43 108 | 72.48 211 | 97.91 163 | 88.10 116 | 90.18 188 | 93.65 254 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Vis-MVSNet (Re-imp) | | | 89.59 128 | 89.44 117 | 90.03 215 | 95.74 118 | 75.85 290 | 95.61 75 | 90.80 318 | 87.66 103 | 87.83 146 | 95.40 109 | 76.79 150 | 96.46 267 | 78.37 244 | 96.73 95 | 97.80 84 |
|
EI-MVSNet | | | 89.10 143 | 88.86 135 | 89.80 226 | 91.84 253 | 78.30 249 | 93.70 196 | 95.01 199 | 85.73 142 | 87.15 158 | 95.28 110 | 79.87 117 | 97.21 220 | 83.81 165 | 87.36 233 | 93.88 238 |
|
CVMVSNet | | | 84.69 262 | 84.79 245 | 84.37 322 | 91.84 253 | 64.92 353 | 93.70 196 | 91.47 301 | 66.19 349 | 86.16 181 | 95.28 110 | 67.18 269 | 93.33 335 | 80.89 214 | 90.42 185 | 94.88 192 |
|
114514_t | | | 89.51 130 | 88.50 140 | 92.54 110 | 98.11 37 | 81.99 155 | 95.16 101 | 96.36 106 | 70.19 343 | 85.81 184 | 95.25 112 | 76.70 152 | 98.63 106 | 82.07 191 | 96.86 94 | 97.00 116 |
|
RPSCF | | | 85.07 254 | 84.27 251 | 87.48 285 | 92.91 229 | 70.62 334 | 91.69 263 | 92.46 272 | 76.20 301 | 82.67 266 | 95.22 113 | 63.94 296 | 97.29 212 | 77.51 255 | 85.80 244 | 94.53 208 |
|
Anonymous20240529 | | | 88.09 171 | 86.59 192 | 92.58 108 | 96.53 90 | 81.92 158 | 95.99 55 | 95.84 144 | 74.11 320 | 89.06 129 | 95.21 114 | 61.44 308 | 98.81 98 | 83.67 168 | 87.47 230 | 97.01 115 |
|
LPG-MVS_test | | | 89.45 133 | 88.90 133 | 91.12 169 | 94.47 171 | 81.49 167 | 95.30 87 | 96.14 120 | 86.73 122 | 85.45 200 | 95.16 115 | 69.89 241 | 98.10 140 | 87.70 119 | 89.23 205 | 93.77 248 |
|
LGP-MVS_train | | | | | 91.12 169 | 94.47 171 | 81.49 167 | | 96.14 120 | 86.73 122 | 85.45 200 | 95.16 115 | 69.89 241 | 98.10 140 | 87.70 119 | 89.23 205 | 93.77 248 |
|
CNLPA | | | 89.07 144 | 87.98 155 | 92.34 120 | 96.87 79 | 84.78 78 | 94.08 174 | 93.24 256 | 81.41 241 | 84.46 225 | 95.13 117 | 75.57 168 | 96.62 251 | 77.21 257 | 93.84 141 | 95.61 168 |
|
DELS-MVS | | | 93.43 55 | 93.25 54 | 93.97 60 | 95.42 128 | 85.04 75 | 93.06 223 | 97.13 39 | 90.74 20 | 91.84 91 | 95.09 118 | 86.32 44 | 99.21 48 | 91.22 78 | 98.45 52 | 97.65 88 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DPM-MVS | | | 92.58 69 | 91.74 79 | 95.08 13 | 96.19 99 | 89.31 4 | 92.66 233 | 96.56 96 | 83.44 193 | 91.68 97 | 95.04 119 | 86.60 43 | 98.99 78 | 85.60 144 | 97.92 73 | 96.93 119 |
|
DP-MVS | | | 87.25 203 | 85.36 233 | 92.90 92 | 97.65 57 | 83.24 121 | 94.81 123 | 92.00 285 | 74.99 312 | 81.92 275 | 95.00 120 | 72.66 208 | 99.05 61 | 66.92 327 | 92.33 169 | 96.40 134 |
|
diffmvs | | | 91.37 89 | 91.23 85 | 91.77 148 | 93.09 220 | 80.27 201 | 92.36 243 | 95.52 169 | 87.03 114 | 91.40 102 | 94.93 121 | 80.08 114 | 97.44 194 | 92.13 55 | 94.56 131 | 97.61 90 |
|
MVSFormer | | | 91.68 85 | 91.30 83 | 92.80 95 | 93.86 197 | 83.88 104 | 95.96 58 | 95.90 139 | 84.66 170 | 91.76 94 | 94.91 122 | 77.92 142 | 97.30 209 | 89.64 97 | 97.11 88 | 97.24 104 |
|
jason | | | 90.80 97 | 90.10 104 | 92.90 92 | 93.04 223 | 83.53 114 | 93.08 221 | 94.15 236 | 80.22 255 | 91.41 101 | 94.91 122 | 76.87 148 | 97.93 162 | 90.28 93 | 96.90 92 | 97.24 104 |
jason: jason. |
alignmvs | | | 93.08 63 | 92.50 71 | 94.81 33 | 95.62 124 | 87.61 13 | 95.99 55 | 96.07 125 | 89.77 41 | 94.12 33 | 94.87 124 | 80.56 109 | 98.66 103 | 92.42 44 | 93.10 157 | 98.15 58 |
|
HQP_MVS | | | 90.60 107 | 90.19 101 | 91.82 145 | 94.70 163 | 82.73 138 | 95.85 62 | 96.22 115 | 90.81 17 | 86.91 165 | 94.86 125 | 74.23 183 | 98.12 138 | 88.15 113 | 89.99 189 | 94.63 200 |
|
plane_prior4 | | | | | | | | | | | | 94.86 125 | | | | | |
|
nrg030 | | | 91.08 95 | 90.39 97 | 93.17 80 | 93.07 221 | 86.91 21 | 96.41 34 | 96.26 110 | 88.30 81 | 88.37 137 | 94.85 127 | 82.19 95 | 97.64 179 | 91.09 79 | 82.95 268 | 94.96 187 |
|
BH-RMVSNet | | | 88.37 163 | 87.48 165 | 91.02 177 | 95.28 133 | 79.45 223 | 92.89 228 | 93.07 260 | 85.45 151 | 86.91 165 | 94.84 128 | 70.35 236 | 97.76 168 | 73.97 285 | 94.59 130 | 95.85 158 |
|
PAPM_NR | | | 91.22 92 | 90.78 95 | 92.52 111 | 97.60 58 | 81.46 169 | 94.37 157 | 96.24 113 | 86.39 130 | 87.41 154 | 94.80 129 | 82.06 98 | 98.48 114 | 82.80 180 | 95.37 118 | 97.61 90 |
|
GeoE | | | 90.05 115 | 89.43 118 | 91.90 141 | 95.16 139 | 80.37 200 | 95.80 64 | 94.65 221 | 83.90 181 | 87.55 153 | 94.75 130 | 78.18 140 | 97.62 181 | 81.28 206 | 93.63 143 | 97.71 87 |
|
test_yl | | | 90.69 101 | 90.02 109 | 92.71 100 | 95.72 119 | 82.41 149 | 94.11 170 | 95.12 194 | 85.63 145 | 91.49 99 | 94.70 131 | 74.75 176 | 98.42 121 | 86.13 139 | 92.53 166 | 97.31 100 |
|
DCV-MVSNet | | | 90.69 101 | 90.02 109 | 92.71 100 | 95.72 119 | 82.41 149 | 94.11 170 | 95.12 194 | 85.63 145 | 91.49 99 | 94.70 131 | 74.75 176 | 98.42 121 | 86.13 139 | 92.53 166 | 97.31 100 |
|
FIs | | | 90.51 108 | 90.35 98 | 90.99 180 | 93.99 193 | 80.98 183 | 95.73 67 | 97.54 3 | 89.15 57 | 86.72 169 | 94.68 133 | 81.83 102 | 97.24 217 | 85.18 147 | 88.31 220 | 94.76 197 |
|
FC-MVSNet-test | | | 90.27 111 | 90.18 102 | 90.53 191 | 93.71 203 | 79.85 217 | 95.77 66 | 97.59 2 | 89.31 52 | 86.27 178 | 94.67 134 | 81.93 101 | 97.01 235 | 84.26 159 | 88.09 224 | 94.71 198 |
|
AdaColmap |  | | 89.89 122 | 89.07 128 | 92.37 119 | 97.41 64 | 83.03 127 | 94.42 149 | 95.92 136 | 82.81 208 | 86.34 177 | 94.65 135 | 73.89 191 | 99.02 69 | 80.69 217 | 95.51 113 | 95.05 182 |
|
F-COLMAP | | | 87.95 174 | 86.80 182 | 91.40 161 | 96.35 96 | 80.88 187 | 94.73 128 | 95.45 176 | 79.65 264 | 82.04 273 | 94.61 136 | 71.13 222 | 98.50 113 | 76.24 267 | 91.05 180 | 94.80 196 |
|
canonicalmvs | | | 93.27 59 | 92.75 66 | 94.85 28 | 95.70 121 | 87.66 12 | 96.33 36 | 96.41 102 | 90.00 35 | 94.09 34 | 94.60 137 | 82.33 91 | 98.62 107 | 92.40 45 | 92.86 162 | 98.27 49 |
|
tttt0517 | | | 88.61 158 | 87.78 159 | 91.11 172 | 94.96 147 | 77.81 262 | 95.35 82 | 89.69 337 | 85.09 162 | 88.05 142 | 94.59 138 | 66.93 272 | 98.48 114 | 83.27 171 | 92.13 171 | 97.03 114 |
|
VPNet | | | 88.20 168 | 87.47 166 | 90.39 199 | 93.56 208 | 79.46 222 | 94.04 178 | 95.54 167 | 88.67 70 | 86.96 162 | 94.58 139 | 69.33 249 | 97.15 222 | 84.05 162 | 80.53 307 | 94.56 207 |
|
CS-MVS | | | 92.55 70 | 92.87 65 | 91.58 154 | 94.21 182 | 80.54 196 | 95.30 87 | 96.68 85 | 88.18 88 | 92.09 85 | 94.57 140 | 84.06 72 | 98.05 151 | 92.56 41 | 98.19 62 | 96.15 141 |
|
UniMVSNet_ETH3D | | | 87.53 192 | 86.37 198 | 91.00 179 | 92.44 236 | 78.96 236 | 94.74 127 | 95.61 162 | 84.07 178 | 85.36 210 | 94.52 141 | 59.78 322 | 97.34 208 | 82.93 175 | 87.88 227 | 96.71 126 |
|
PVSNet_Blended_VisFu | | | 91.38 88 | 90.91 92 | 92.80 95 | 96.39 94 | 83.17 123 | 94.87 119 | 96.66 87 | 83.29 197 | 89.27 125 | 94.46 142 | 80.29 112 | 99.17 51 | 87.57 121 | 95.37 118 | 96.05 152 |
|
CS-MVS-test | | | 92.55 70 | 92.72 67 | 92.02 130 | 94.87 153 | 81.34 173 | 96.43 32 | 96.57 94 | 89.04 60 | 91.05 107 | 94.41 143 | 83.85 77 | 98.09 146 | 90.83 88 | 97.47 84 | 96.64 128 |
|
ACMM | | 84.12 9 | 89.14 142 | 88.48 143 | 91.12 169 | 94.65 166 | 81.22 177 | 95.31 84 | 96.12 122 | 85.31 155 | 85.92 183 | 94.34 144 | 70.19 239 | 98.06 150 | 85.65 143 | 88.86 210 | 94.08 229 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PCF-MVS | | 84.11 10 | 87.74 180 | 86.08 211 | 92.70 102 | 94.02 188 | 84.43 93 | 89.27 301 | 95.87 142 | 73.62 324 | 84.43 227 | 94.33 145 | 78.48 137 | 98.86 92 | 70.27 302 | 94.45 134 | 94.81 195 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
WTY-MVS | | | 89.60 127 | 88.92 132 | 91.67 151 | 95.47 127 | 81.15 179 | 92.38 242 | 94.78 217 | 83.11 200 | 89.06 129 | 94.32 146 | 78.67 133 | 96.61 254 | 81.57 203 | 90.89 182 | 97.24 104 |
|
ACMP | | 84.23 8 | 89.01 148 | 88.35 144 | 90.99 180 | 94.73 160 | 81.27 174 | 95.07 105 | 95.89 141 | 86.48 126 | 83.67 249 | 94.30 147 | 69.33 249 | 97.99 157 | 87.10 132 | 88.55 212 | 93.72 252 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
cdsmvs_eth3d_5k | | | 22.14 335 | 29.52 338 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 95.76 150 | 0.00 370 | 0.00 371 | 94.29 148 | 75.66 167 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
PS-MVSNAJss | | | 89.97 118 | 89.62 113 | 91.02 177 | 91.90 251 | 80.85 188 | 95.26 93 | 95.98 131 | 86.26 132 | 86.21 179 | 94.29 148 | 79.70 120 | 97.65 177 | 88.87 106 | 88.10 222 | 94.57 206 |
|
lupinMVS | | | 90.92 96 | 90.21 100 | 93.03 86 | 93.86 197 | 83.88 104 | 92.81 230 | 93.86 246 | 79.84 261 | 91.76 94 | 94.29 148 | 77.92 142 | 98.04 152 | 90.48 92 | 97.11 88 | 97.17 108 |
|
API-MVS | | | 90.66 103 | 90.07 105 | 92.45 114 | 96.36 95 | 84.57 82 | 96.06 53 | 95.22 191 | 82.39 214 | 89.13 126 | 94.27 151 | 80.32 111 | 98.46 116 | 80.16 227 | 96.71 96 | 94.33 218 |
|
CANet_DTU | | | 90.26 112 | 89.41 119 | 92.81 94 | 93.46 211 | 83.01 129 | 93.48 202 | 94.47 224 | 89.43 49 | 87.76 149 | 94.23 152 | 70.54 235 | 99.03 65 | 84.97 149 | 96.39 105 | 96.38 135 |
|
PLC |  | 84.53 7 | 89.06 145 | 88.03 153 | 92.15 127 | 97.27 72 | 82.69 141 | 94.29 160 | 95.44 178 | 79.71 263 | 84.01 241 | 94.18 153 | 76.68 153 | 98.75 101 | 77.28 256 | 93.41 150 | 95.02 183 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
xiu_mvs_v1_base_debu | | | 90.64 104 | 90.05 106 | 92.40 115 | 93.97 194 | 84.46 89 | 93.32 206 | 95.46 173 | 85.17 157 | 92.25 79 | 94.03 154 | 70.59 231 | 98.57 110 | 90.97 81 | 94.67 126 | 94.18 221 |
|
xiu_mvs_v1_base | | | 90.64 104 | 90.05 106 | 92.40 115 | 93.97 194 | 84.46 89 | 93.32 206 | 95.46 173 | 85.17 157 | 92.25 79 | 94.03 154 | 70.59 231 | 98.57 110 | 90.97 81 | 94.67 126 | 94.18 221 |
|
xiu_mvs_v1_base_debi | | | 90.64 104 | 90.05 106 | 92.40 115 | 93.97 194 | 84.46 89 | 93.32 206 | 95.46 173 | 85.17 157 | 92.25 79 | 94.03 154 | 70.59 231 | 98.57 110 | 90.97 81 | 94.67 126 | 94.18 221 |
|
jajsoiax | | | 88.24 167 | 87.50 164 | 90.48 196 | 90.89 292 | 80.14 204 | 95.31 84 | 95.65 160 | 84.97 164 | 84.24 237 | 94.02 157 | 65.31 289 | 97.42 196 | 88.56 109 | 88.52 214 | 93.89 236 |
|
XXY-MVS | | | 87.65 183 | 86.85 180 | 90.03 215 | 92.14 242 | 80.60 195 | 93.76 192 | 95.23 189 | 82.94 205 | 84.60 220 | 94.02 157 | 74.27 182 | 95.49 308 | 81.04 209 | 83.68 261 | 94.01 233 |
|
baseline1 | | | 88.10 170 | 87.28 171 | 90.57 189 | 94.96 147 | 80.07 207 | 94.27 161 | 91.29 305 | 86.74 121 | 87.41 154 | 94.00 159 | 76.77 151 | 96.20 278 | 80.77 215 | 79.31 320 | 95.44 172 |
|
NP-MVS | | | | | | 94.37 177 | 82.42 147 | | | | | 93.98 160 | | | | | |
|
HQP-MVS | | | 89.80 124 | 89.28 124 | 91.34 163 | 94.17 183 | 81.56 163 | 94.39 152 | 96.04 129 | 88.81 65 | 85.43 203 | 93.97 161 | 73.83 193 | 97.96 159 | 87.11 130 | 89.77 196 | 94.50 211 |
|
mvs_tets | | | 88.06 173 | 87.28 171 | 90.38 201 | 90.94 288 | 79.88 215 | 95.22 95 | 95.66 158 | 85.10 161 | 84.21 238 | 93.94 162 | 63.53 297 | 97.40 203 | 88.50 110 | 88.40 218 | 93.87 239 |
|
CHOSEN 1792x2688 | | | 88.84 152 | 87.69 160 | 92.30 123 | 96.14 100 | 81.42 171 | 90.01 291 | 95.86 143 | 74.52 317 | 87.41 154 | 93.94 162 | 75.46 169 | 98.36 123 | 80.36 223 | 95.53 112 | 97.12 111 |
|
UGNet | | | 89.95 119 | 88.95 131 | 92.95 90 | 94.51 170 | 83.31 120 | 95.70 69 | 95.23 189 | 89.37 51 | 87.58 151 | 93.94 162 | 64.00 295 | 98.78 100 | 83.92 163 | 96.31 106 | 96.74 125 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TAMVS | | | 89.21 141 | 88.29 148 | 91.96 136 | 93.71 203 | 82.62 144 | 93.30 210 | 94.19 234 | 82.22 218 | 87.78 148 | 93.94 162 | 78.83 129 | 96.95 238 | 77.70 252 | 92.98 160 | 96.32 136 |
|
sss | | | 88.93 150 | 88.26 150 | 90.94 183 | 94.05 187 | 80.78 190 | 91.71 261 | 95.38 182 | 81.55 239 | 88.63 132 | 93.91 166 | 75.04 173 | 95.47 309 | 82.47 184 | 91.61 173 | 96.57 131 |
|
1112_ss | | | 88.42 161 | 87.33 169 | 91.72 149 | 94.92 150 | 80.98 183 | 92.97 226 | 94.54 222 | 78.16 286 | 83.82 245 | 93.88 167 | 78.78 131 | 97.91 163 | 79.45 234 | 89.41 200 | 96.26 139 |
|
ab-mvs-re | | | 7.82 339 | 10.43 342 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 93.88 167 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
TranMVSNet+NR-MVSNet | | | 88.84 152 | 87.95 156 | 91.49 157 | 92.68 233 | 83.01 129 | 94.92 115 | 96.31 107 | 89.88 37 | 85.53 193 | 93.85 169 | 76.63 154 | 96.96 237 | 81.91 195 | 79.87 315 | 94.50 211 |
|
RRT_MVS | | | 88.86 151 | 87.68 161 | 92.39 118 | 92.02 248 | 86.09 54 | 94.38 156 | 94.94 202 | 85.45 151 | 87.14 160 | 93.84 170 | 65.88 287 | 97.11 226 | 88.73 107 | 86.77 240 | 93.98 234 |
|
mvs_anonymous | | | 89.37 139 | 89.32 122 | 89.51 237 | 93.47 210 | 74.22 301 | 91.65 264 | 94.83 213 | 82.91 206 | 85.45 200 | 93.79 171 | 81.23 106 | 96.36 273 | 86.47 137 | 94.09 137 | 97.94 74 |
|
thisisatest0530 | | | 88.67 156 | 87.61 163 | 91.86 142 | 94.87 153 | 80.07 207 | 94.63 134 | 89.90 334 | 84.00 179 | 88.46 135 | 93.78 172 | 66.88 274 | 98.46 116 | 83.30 170 | 92.65 164 | 97.06 112 |
|
MVS_Test | | | 91.31 90 | 91.11 87 | 91.93 138 | 94.37 177 | 80.14 204 | 93.46 204 | 95.80 147 | 86.46 127 | 91.35 103 | 93.77 173 | 82.21 94 | 98.09 146 | 87.57 121 | 94.95 124 | 97.55 95 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 267 | 82.04 274 | 89.74 227 | 95.28 133 | 79.75 218 | 94.25 162 | 92.28 277 | 75.17 310 | 78.02 313 | 93.77 173 | 58.60 327 | 97.84 165 | 65.06 335 | 85.92 242 | 91.63 311 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PAPR | | | 90.02 116 | 89.27 125 | 92.29 124 | 95.78 117 | 80.95 185 | 92.68 232 | 96.22 115 | 81.91 228 | 86.66 170 | 93.75 175 | 82.23 93 | 98.44 120 | 79.40 238 | 94.79 125 | 97.48 96 |
|
test_part1 | | | 89.00 149 | 87.99 154 | 92.04 129 | 95.94 113 | 83.81 106 | 96.14 47 | 96.05 128 | 86.44 128 | 85.69 187 | 93.73 176 | 71.57 217 | 97.66 175 | 85.80 142 | 80.54 305 | 94.66 199 |
|
ab-mvs | | | 89.41 136 | 88.35 144 | 92.60 106 | 95.15 141 | 82.65 143 | 92.20 249 | 95.60 163 | 83.97 180 | 88.55 133 | 93.70 177 | 74.16 187 | 98.21 135 | 82.46 185 | 89.37 201 | 96.94 118 |
|
hse-mvs2 | | | 89.88 123 | 89.34 121 | 91.51 156 | 94.83 157 | 81.12 180 | 93.94 185 | 93.91 245 | 89.80 38 | 93.08 59 | 93.60 178 | 75.77 161 | 97.66 175 | 92.07 56 | 77.07 331 | 95.74 164 |
|
AUN-MVS | | | 87.78 179 | 86.54 194 | 91.48 158 | 94.82 158 | 81.05 181 | 93.91 189 | 93.93 242 | 83.00 203 | 86.93 163 | 93.53 179 | 69.50 247 | 97.67 174 | 86.14 138 | 77.12 330 | 95.73 165 |
|
BH-untuned | | | 88.60 159 | 88.13 152 | 90.01 217 | 95.24 136 | 78.50 244 | 93.29 211 | 94.15 236 | 84.75 168 | 84.46 225 | 93.40 180 | 75.76 163 | 97.40 203 | 77.59 253 | 94.52 132 | 94.12 225 |
|
AllTest | | | 83.42 273 | 81.39 279 | 89.52 235 | 95.01 143 | 77.79 263 | 93.12 218 | 90.89 316 | 77.41 289 | 76.12 325 | 93.34 181 | 54.08 341 | 97.51 187 | 68.31 317 | 84.27 255 | 93.26 266 |
|
TestCases | | | | | 89.52 235 | 95.01 143 | 77.79 263 | | 90.89 316 | 77.41 289 | 76.12 325 | 93.34 181 | 54.08 341 | 97.51 187 | 68.31 317 | 84.27 255 | 93.26 266 |
|
UniMVSNet_NR-MVSNet | | | 89.92 121 | 89.29 123 | 91.81 147 | 93.39 212 | 83.72 108 | 94.43 148 | 97.12 40 | 89.80 38 | 86.46 172 | 93.32 183 | 83.16 80 | 97.23 218 | 84.92 150 | 81.02 297 | 94.49 213 |
|
VPA-MVSNet | | | 89.62 126 | 88.96 130 | 91.60 153 | 93.86 197 | 82.89 133 | 95.46 79 | 97.33 22 | 87.91 92 | 88.43 136 | 93.31 184 | 74.17 186 | 97.40 203 | 87.32 126 | 82.86 273 | 94.52 209 |
|
ITE_SJBPF | | | | | 88.24 268 | 91.88 252 | 77.05 277 | | 92.92 262 | 85.54 148 | 80.13 297 | 93.30 185 | 57.29 330 | 96.20 278 | 72.46 293 | 84.71 251 | 91.49 313 |
|
DU-MVS | | | 89.34 140 | 88.50 140 | 91.85 144 | 93.04 223 | 83.72 108 | 94.47 145 | 96.59 92 | 89.50 46 | 86.46 172 | 93.29 186 | 77.25 146 | 97.23 218 | 84.92 150 | 81.02 297 | 94.59 204 |
|
NR-MVSNet | | | 88.58 160 | 87.47 166 | 91.93 138 | 93.04 223 | 84.16 98 | 94.77 126 | 96.25 112 | 89.05 59 | 80.04 299 | 93.29 186 | 79.02 128 | 97.05 232 | 81.71 202 | 80.05 312 | 94.59 204 |
|
CDS-MVSNet | | | 89.45 133 | 88.51 139 | 92.29 124 | 93.62 206 | 83.61 113 | 93.01 224 | 94.68 220 | 81.95 226 | 87.82 147 | 93.24 188 | 78.69 132 | 96.99 236 | 80.34 224 | 93.23 155 | 96.28 138 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PAPM | | | 86.68 223 | 85.39 231 | 90.53 191 | 93.05 222 | 79.33 230 | 89.79 294 | 94.77 218 | 78.82 274 | 81.95 274 | 93.24 188 | 76.81 149 | 97.30 209 | 66.94 325 | 93.16 156 | 94.95 190 |
|
OurMVSNet-221017-0 | | | 85.35 248 | 84.64 248 | 87.49 284 | 90.77 296 | 72.59 318 | 94.01 181 | 94.40 226 | 84.72 169 | 79.62 305 | 93.17 190 | 61.91 305 | 96.72 246 | 81.99 193 | 81.16 291 | 93.16 274 |
|
PEN-MVS | | | 86.80 218 | 86.27 204 | 88.40 262 | 92.32 239 | 75.71 292 | 95.18 99 | 96.38 105 | 87.97 90 | 82.82 264 | 93.15 191 | 73.39 201 | 95.92 289 | 76.15 268 | 79.03 322 | 93.59 255 |
|
xiu_mvs_v2_base | | | 91.13 94 | 90.89 93 | 91.86 142 | 94.97 146 | 82.42 147 | 92.24 247 | 95.64 161 | 86.11 137 | 91.74 96 | 93.14 192 | 79.67 123 | 98.89 88 | 89.06 104 | 95.46 116 | 94.28 220 |
|
MVSTER | | | 88.84 152 | 88.29 148 | 90.51 194 | 92.95 228 | 80.44 199 | 93.73 193 | 95.01 199 | 84.66 170 | 87.15 158 | 93.12 193 | 72.79 207 | 97.21 220 | 87.86 117 | 87.36 233 | 93.87 239 |
|
Effi-MVS+ | | | 91.59 86 | 91.11 87 | 93.01 87 | 94.35 180 | 83.39 119 | 94.60 135 | 95.10 196 | 87.10 112 | 90.57 111 | 93.10 194 | 81.43 104 | 98.07 149 | 89.29 101 | 94.48 133 | 97.59 92 |
|
PS-CasMVS | | | 87.32 200 | 86.88 178 | 88.63 258 | 92.99 227 | 76.33 287 | 95.33 83 | 96.61 91 | 88.22 85 | 83.30 260 | 93.07 195 | 73.03 205 | 95.79 297 | 78.36 245 | 81.00 299 | 93.75 250 |
|
DTE-MVSNet | | | 86.11 235 | 85.48 229 | 87.98 274 | 91.65 262 | 74.92 295 | 94.93 114 | 95.75 151 | 87.36 108 | 82.26 269 | 93.04 196 | 72.85 206 | 95.82 295 | 74.04 284 | 77.46 328 | 93.20 272 |
|
CP-MVSNet | | | 87.63 186 | 87.26 173 | 88.74 255 | 93.12 219 | 76.59 282 | 95.29 90 | 96.58 93 | 88.43 77 | 83.49 255 | 92.98 197 | 75.28 170 | 95.83 294 | 78.97 240 | 81.15 293 | 93.79 244 |
|
test_djsdf | | | 89.03 146 | 88.64 137 | 90.21 206 | 90.74 298 | 79.28 231 | 95.96 58 | 95.90 139 | 84.66 170 | 85.33 211 | 92.94 198 | 74.02 189 | 97.30 209 | 89.64 97 | 88.53 213 | 94.05 231 |
|
RRT_test8_iter05 | | | 86.90 214 | 86.36 199 | 88.52 260 | 93.00 226 | 73.27 309 | 94.32 159 | 95.96 133 | 85.50 150 | 84.26 236 | 92.86 199 | 60.76 315 | 97.70 173 | 88.32 112 | 82.29 276 | 94.60 203 |
|
MAR-MVS | | | 90.30 110 | 89.37 120 | 93.07 85 | 96.61 86 | 84.48 88 | 95.68 70 | 95.67 156 | 82.36 216 | 87.85 145 | 92.85 200 | 76.63 154 | 98.80 99 | 80.01 228 | 96.68 97 | 95.91 155 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
testgi | | | 80.94 299 | 80.20 290 | 83.18 327 | 87.96 337 | 66.29 348 | 91.28 268 | 90.70 320 | 83.70 185 | 78.12 311 | 92.84 201 | 51.37 347 | 90.82 351 | 63.34 339 | 82.46 275 | 92.43 296 |
|
EU-MVSNet | | | 81.32 294 | 80.95 282 | 82.42 331 | 88.50 328 | 63.67 354 | 93.32 206 | 91.33 303 | 64.02 351 | 80.57 290 | 92.83 202 | 61.21 312 | 92.27 344 | 76.34 265 | 80.38 310 | 91.32 316 |
|
ACMH+ | | 81.04 14 | 85.05 255 | 83.46 263 | 89.82 223 | 94.66 165 | 79.37 225 | 94.44 147 | 94.12 239 | 82.19 219 | 78.04 312 | 92.82 203 | 58.23 328 | 97.54 185 | 73.77 287 | 82.90 272 | 92.54 292 |
|
mvs-test1 | | | 89.45 133 | 89.14 126 | 90.38 201 | 93.33 213 | 77.63 268 | 94.95 112 | 94.36 227 | 87.70 99 | 87.10 161 | 92.81 204 | 73.45 198 | 98.03 154 | 85.57 145 | 93.04 158 | 95.48 170 |
|
WR-MVS | | | 88.38 162 | 87.67 162 | 90.52 193 | 93.30 215 | 80.18 202 | 93.26 213 | 95.96 133 | 88.57 74 | 85.47 199 | 92.81 204 | 76.12 156 | 96.91 241 | 81.24 207 | 82.29 276 | 94.47 216 |
|
HY-MVS | | 83.01 12 | 89.03 146 | 87.94 157 | 92.29 124 | 94.86 155 | 82.77 134 | 92.08 254 | 94.49 223 | 81.52 240 | 86.93 163 | 92.79 206 | 78.32 139 | 98.23 132 | 79.93 229 | 90.55 183 | 95.88 157 |
|
LTVRE_ROB | | 82.13 13 | 86.26 234 | 84.90 242 | 90.34 204 | 94.44 175 | 81.50 165 | 92.31 246 | 94.89 208 | 83.03 202 | 79.63 304 | 92.67 207 | 69.69 244 | 97.79 166 | 71.20 297 | 86.26 241 | 91.72 309 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ACMH | | 80.38 17 | 85.36 247 | 83.68 259 | 90.39 199 | 94.45 174 | 80.63 193 | 94.73 128 | 94.85 211 | 82.09 220 | 77.24 317 | 92.65 208 | 60.01 320 | 97.58 182 | 72.25 294 | 84.87 250 | 92.96 281 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pm-mvs1 | | | 86.61 224 | 85.54 227 | 89.82 223 | 91.44 264 | 80.18 202 | 95.28 92 | 94.85 211 | 83.84 183 | 81.66 276 | 92.62 209 | 72.45 213 | 96.48 264 | 79.67 232 | 78.06 323 | 92.82 287 |
|
PVSNet_Blended | | | 90.73 100 | 90.32 99 | 91.98 134 | 96.12 101 | 81.25 175 | 92.55 238 | 96.83 65 | 82.04 223 | 89.10 127 | 92.56 210 | 81.04 107 | 98.85 95 | 86.72 135 | 95.91 108 | 95.84 159 |
|
ET-MVSNet_ETH3D | | | 87.51 193 | 85.91 218 | 92.32 121 | 93.70 205 | 83.93 102 | 92.33 244 | 90.94 314 | 84.16 175 | 72.09 343 | 92.52 211 | 69.90 240 | 95.85 293 | 89.20 102 | 88.36 219 | 97.17 108 |
|
PS-MVSNAJ | | | 91.18 93 | 90.92 91 | 91.96 136 | 95.26 135 | 82.60 145 | 92.09 253 | 95.70 154 | 86.27 131 | 91.84 91 | 92.46 212 | 79.70 120 | 98.99 78 | 89.08 103 | 95.86 109 | 94.29 219 |
|
CLD-MVS | | | 89.47 132 | 88.90 133 | 91.18 168 | 94.22 181 | 82.07 154 | 92.13 251 | 96.09 123 | 87.90 93 | 85.37 209 | 92.45 213 | 74.38 181 | 97.56 184 | 87.15 128 | 90.43 184 | 93.93 235 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TR-MVS | | | 86.78 219 | 85.76 224 | 89.82 223 | 94.37 177 | 78.41 246 | 92.47 239 | 92.83 264 | 81.11 249 | 86.36 176 | 92.40 214 | 68.73 260 | 97.48 189 | 73.75 288 | 89.85 195 | 93.57 256 |
|
Test_1112_low_res | | | 87.65 183 | 86.51 195 | 91.08 173 | 94.94 149 | 79.28 231 | 91.77 258 | 94.30 230 | 76.04 302 | 83.51 254 | 92.37 215 | 77.86 144 | 97.73 172 | 78.69 243 | 89.13 207 | 96.22 140 |
|
EPNet_dtu | | | 86.49 231 | 85.94 217 | 88.14 271 | 90.24 310 | 72.82 313 | 94.11 170 | 92.20 279 | 86.66 125 | 79.42 306 | 92.36 216 | 73.52 196 | 95.81 296 | 71.26 296 | 93.66 142 | 95.80 162 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
UniMVSNet (Re) | | | 89.80 124 | 89.07 128 | 92.01 131 | 93.60 207 | 84.52 85 | 94.78 125 | 97.47 8 | 89.26 53 | 86.44 175 | 92.32 217 | 82.10 96 | 97.39 206 | 84.81 153 | 80.84 301 | 94.12 225 |
|
thres600view7 | | | 87.65 183 | 86.67 187 | 90.59 188 | 96.08 105 | 78.72 237 | 94.88 118 | 91.58 296 | 87.06 113 | 88.08 140 | 92.30 218 | 68.91 257 | 98.10 140 | 70.05 309 | 91.10 176 | 94.96 187 |
|
thres100view900 | | | 87.63 186 | 86.71 185 | 90.38 201 | 96.12 101 | 78.55 241 | 95.03 109 | 91.58 296 | 87.15 110 | 88.06 141 | 92.29 219 | 68.91 257 | 98.10 140 | 70.13 306 | 91.10 176 | 94.48 214 |
|
PVSNet_BlendedMVS | | | 89.98 117 | 89.70 112 | 90.82 184 | 96.12 101 | 81.25 175 | 93.92 186 | 96.83 65 | 83.49 192 | 89.10 127 | 92.26 220 | 81.04 107 | 98.85 95 | 86.72 135 | 87.86 228 | 92.35 300 |
|
XVG-ACMP-BASELINE | | | 86.00 236 | 84.84 244 | 89.45 238 | 91.20 275 | 78.00 255 | 91.70 262 | 95.55 165 | 85.05 163 | 82.97 262 | 92.25 221 | 54.49 339 | 97.48 189 | 82.93 175 | 87.45 232 | 92.89 284 |
|
EIA-MVS | | | 91.95 78 | 91.94 76 | 91.98 134 | 95.16 139 | 80.01 212 | 95.36 81 | 96.73 77 | 88.44 76 | 89.34 124 | 92.16 222 | 83.82 78 | 98.45 119 | 89.35 100 | 97.06 90 | 97.48 96 |
|
Anonymous20231211 | | | 86.59 226 | 85.13 236 | 90.98 182 | 96.52 91 | 81.50 165 | 96.14 47 | 96.16 119 | 73.78 322 | 83.65 250 | 92.15 223 | 63.26 298 | 97.37 207 | 82.82 179 | 81.74 286 | 94.06 230 |
|
MVS | | | 87.44 196 | 86.10 210 | 91.44 160 | 92.61 234 | 83.62 112 | 92.63 234 | 95.66 158 | 67.26 347 | 81.47 277 | 92.15 223 | 77.95 141 | 98.22 134 | 79.71 231 | 95.48 114 | 92.47 295 |
|
anonymousdsp | | | 87.84 176 | 87.09 174 | 90.12 211 | 89.13 322 | 80.54 196 | 94.67 132 | 95.55 165 | 82.05 221 | 83.82 245 | 92.12 225 | 71.47 220 | 97.15 222 | 87.15 128 | 87.80 229 | 92.67 289 |
|
TransMVSNet (Re) | | | 84.43 264 | 83.06 267 | 88.54 259 | 91.72 257 | 78.44 245 | 95.18 99 | 92.82 265 | 82.73 209 | 79.67 303 | 92.12 225 | 73.49 197 | 95.96 288 | 71.10 301 | 68.73 348 | 91.21 320 |
|
SixPastTwentyTwo | | | 83.91 269 | 82.90 269 | 86.92 298 | 90.99 284 | 70.67 333 | 93.48 202 | 91.99 286 | 85.54 148 | 77.62 316 | 92.11 227 | 60.59 316 | 96.87 243 | 76.05 269 | 77.75 325 | 93.20 272 |
|
HyFIR lowres test | | | 88.09 171 | 86.81 181 | 91.93 138 | 96.00 109 | 80.63 193 | 90.01 291 | 95.79 148 | 73.42 325 | 87.68 150 | 92.10 228 | 73.86 192 | 97.96 159 | 80.75 216 | 91.70 172 | 97.19 107 |
|
Baseline_NR-MVSNet | | | 87.07 211 | 86.63 190 | 88.40 262 | 91.44 264 | 77.87 260 | 94.23 164 | 92.57 271 | 84.12 177 | 85.74 186 | 92.08 229 | 77.25 146 | 96.04 283 | 82.29 188 | 79.94 313 | 91.30 317 |
|
USDC | | | 82.76 276 | 81.26 281 | 87.26 289 | 91.17 277 | 74.55 297 | 89.27 301 | 93.39 255 | 78.26 284 | 75.30 330 | 92.08 229 | 54.43 340 | 96.63 250 | 71.64 295 | 85.79 245 | 90.61 328 |
|
v2v482 | | | 87.84 176 | 87.06 175 | 90.17 207 | 90.99 284 | 79.23 234 | 94.00 182 | 95.13 193 | 84.87 165 | 85.53 193 | 92.07 231 | 74.45 180 | 97.45 192 | 84.71 155 | 81.75 285 | 93.85 242 |
|
FMVSNet2 | | | 87.19 208 | 85.82 220 | 91.30 164 | 94.01 189 | 83.67 110 | 94.79 124 | 94.94 202 | 83.57 188 | 83.88 243 | 92.05 232 | 66.59 279 | 96.51 262 | 77.56 254 | 85.01 249 | 93.73 251 |
|
WR-MVS_H | | | 87.80 178 | 87.37 168 | 89.10 245 | 93.23 216 | 78.12 253 | 95.61 75 | 97.30 26 | 87.90 93 | 83.72 247 | 92.01 233 | 79.65 124 | 96.01 286 | 76.36 264 | 80.54 305 | 93.16 274 |
|
LCM-MVSNet-Re | | | 88.30 166 | 88.32 147 | 88.27 266 | 94.71 162 | 72.41 321 | 93.15 217 | 90.98 312 | 87.77 97 | 79.25 307 | 91.96 234 | 78.35 138 | 95.75 298 | 83.04 173 | 95.62 111 | 96.65 127 |
|
MSDG | | | 84.86 259 | 83.09 266 | 90.14 210 | 93.80 200 | 80.05 209 | 89.18 304 | 93.09 259 | 78.89 272 | 78.19 310 | 91.91 235 | 65.86 288 | 97.27 213 | 68.47 315 | 88.45 216 | 93.11 276 |
|
IterMVS-LS | | | 88.36 164 | 87.91 158 | 89.70 230 | 93.80 200 | 78.29 250 | 93.73 193 | 95.08 198 | 85.73 142 | 84.75 218 | 91.90 236 | 79.88 116 | 96.92 240 | 83.83 164 | 82.51 274 | 93.89 236 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet3 | | | 87.40 198 | 86.11 209 | 91.30 164 | 93.79 202 | 83.64 111 | 94.20 165 | 94.81 215 | 83.89 182 | 84.37 228 | 91.87 237 | 68.45 263 | 96.56 259 | 78.23 247 | 85.36 246 | 93.70 253 |
|
tfpn200view9 | | | 87.58 190 | 86.64 188 | 90.41 198 | 95.99 110 | 78.64 239 | 94.58 136 | 91.98 287 | 86.94 117 | 88.09 138 | 91.77 238 | 69.18 254 | 98.10 140 | 70.13 306 | 91.10 176 | 94.48 214 |
|
thres400 | | | 87.62 188 | 86.64 188 | 90.57 189 | 95.99 110 | 78.64 239 | 94.58 136 | 91.98 287 | 86.94 117 | 88.09 138 | 91.77 238 | 69.18 254 | 98.10 140 | 70.13 306 | 91.10 176 | 94.96 187 |
|
pmmvs4 | | | 85.43 246 | 83.86 257 | 90.16 208 | 90.02 315 | 82.97 131 | 90.27 283 | 92.67 269 | 75.93 303 | 80.73 286 | 91.74 240 | 71.05 223 | 95.73 299 | 78.85 241 | 83.46 265 | 91.78 308 |
|
GBi-Net | | | 87.26 201 | 85.98 214 | 91.08 173 | 94.01 189 | 83.10 124 | 95.14 102 | 94.94 202 | 83.57 188 | 84.37 228 | 91.64 241 | 66.59 279 | 96.34 274 | 78.23 247 | 85.36 246 | 93.79 244 |
|
test1 | | | 87.26 201 | 85.98 214 | 91.08 173 | 94.01 189 | 83.10 124 | 95.14 102 | 94.94 202 | 83.57 188 | 84.37 228 | 91.64 241 | 66.59 279 | 96.34 274 | 78.23 247 | 85.36 246 | 93.79 244 |
|
FMVSNet1 | | | 85.85 240 | 84.11 253 | 91.08 173 | 92.81 230 | 83.10 124 | 95.14 102 | 94.94 202 | 81.64 236 | 82.68 265 | 91.64 241 | 59.01 326 | 96.34 274 | 75.37 274 | 83.78 258 | 93.79 244 |
|
MVP-Stereo | | | 85.97 237 | 84.86 243 | 89.32 239 | 90.92 290 | 82.19 152 | 92.11 252 | 94.19 234 | 78.76 276 | 78.77 309 | 91.63 244 | 68.38 264 | 96.56 259 | 75.01 279 | 93.95 138 | 89.20 340 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
1314 | | | 87.51 193 | 86.57 193 | 90.34 204 | 92.42 237 | 79.74 219 | 92.63 234 | 95.35 186 | 78.35 282 | 80.14 296 | 91.62 245 | 74.05 188 | 97.15 222 | 81.05 208 | 93.53 146 | 94.12 225 |
|
MS-PatchMatch | | | 85.05 255 | 84.16 252 | 87.73 278 | 91.42 268 | 78.51 243 | 91.25 270 | 93.53 252 | 77.50 288 | 80.15 295 | 91.58 246 | 61.99 304 | 95.51 305 | 75.69 271 | 94.35 136 | 89.16 341 |
|
TDRefinement | | | 79.81 306 | 77.34 310 | 87.22 293 | 79.24 358 | 75.48 294 | 93.12 218 | 92.03 284 | 76.45 296 | 75.01 331 | 91.58 246 | 49.19 351 | 96.44 268 | 70.22 305 | 69.18 345 | 89.75 335 |
|
PatchMatch-RL | | | 86.77 222 | 85.54 227 | 90.47 197 | 95.88 114 | 82.71 140 | 90.54 280 | 92.31 276 | 79.82 262 | 84.32 233 | 91.57 248 | 68.77 259 | 96.39 270 | 73.16 290 | 93.48 149 | 92.32 301 |
|
BH-w/o | | | 87.57 191 | 87.05 176 | 89.12 244 | 94.90 152 | 77.90 258 | 92.41 240 | 93.51 253 | 82.89 207 | 83.70 248 | 91.34 249 | 75.75 164 | 97.07 230 | 75.49 272 | 93.49 147 | 92.39 298 |
|
v8 | | | 87.50 195 | 86.71 185 | 89.89 220 | 91.37 270 | 79.40 224 | 94.50 141 | 95.38 182 | 84.81 167 | 83.60 252 | 91.33 250 | 76.05 157 | 97.42 196 | 82.84 178 | 80.51 309 | 92.84 286 |
|
V42 | | | 87.68 181 | 86.86 179 | 90.15 209 | 90.58 303 | 80.14 204 | 94.24 163 | 95.28 187 | 83.66 186 | 85.67 188 | 91.33 250 | 74.73 178 | 97.41 201 | 84.43 158 | 81.83 283 | 92.89 284 |
|
Fast-Effi-MVS+-dtu | | | 87.44 196 | 86.72 184 | 89.63 232 | 92.04 246 | 77.68 267 | 94.03 179 | 93.94 241 | 85.81 139 | 82.42 267 | 91.32 252 | 70.33 237 | 97.06 231 | 80.33 225 | 90.23 187 | 94.14 224 |
|
v1144 | | | 87.61 189 | 86.79 183 | 90.06 214 | 91.01 283 | 79.34 227 | 93.95 184 | 95.42 181 | 83.36 196 | 85.66 189 | 91.31 253 | 74.98 174 | 97.42 196 | 83.37 169 | 82.06 279 | 93.42 263 |
|
tfpnnormal | | | 84.72 261 | 83.23 265 | 89.20 242 | 92.79 231 | 80.05 209 | 94.48 142 | 95.81 146 | 82.38 215 | 81.08 283 | 91.21 254 | 69.01 256 | 96.95 238 | 61.69 344 | 80.59 304 | 90.58 331 |
|
ETV-MVS | | | 92.74 67 | 92.66 68 | 92.97 89 | 95.20 138 | 84.04 101 | 95.07 105 | 96.51 97 | 90.73 21 | 92.96 61 | 91.19 255 | 84.06 72 | 98.34 126 | 91.72 70 | 96.54 101 | 96.54 133 |
|
v10 | | | 87.25 203 | 86.38 197 | 89.85 221 | 91.19 276 | 79.50 221 | 94.48 142 | 95.45 176 | 83.79 184 | 83.62 251 | 91.19 255 | 75.13 171 | 97.42 196 | 81.94 194 | 80.60 303 | 92.63 291 |
|
pmmvs5 | | | 84.21 265 | 82.84 271 | 88.34 265 | 88.95 324 | 76.94 278 | 92.41 240 | 91.91 291 | 75.63 305 | 80.28 293 | 91.18 257 | 64.59 293 | 95.57 301 | 77.09 260 | 83.47 264 | 92.53 293 |
|
v1192 | | | 87.25 203 | 86.33 201 | 90.00 218 | 90.76 297 | 79.04 235 | 93.80 190 | 95.48 171 | 82.57 212 | 85.48 198 | 91.18 257 | 73.38 202 | 97.42 196 | 82.30 187 | 82.06 279 | 93.53 257 |
|
v1240 | | | 86.78 219 | 85.85 219 | 89.56 233 | 90.45 307 | 77.79 263 | 93.61 198 | 95.37 184 | 81.65 235 | 85.43 203 | 91.15 259 | 71.50 219 | 97.43 195 | 81.47 205 | 82.05 281 | 93.47 261 |
|
CMPMVS |  | 59.16 21 | 80.52 300 | 79.20 302 | 84.48 321 | 83.98 351 | 67.63 347 | 89.95 293 | 93.84 248 | 64.79 350 | 66.81 351 | 91.14 260 | 57.93 329 | 95.17 312 | 76.25 266 | 88.10 222 | 90.65 327 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
thres200 | | | 87.21 207 | 86.24 205 | 90.12 211 | 95.36 129 | 78.53 242 | 93.26 213 | 92.10 281 | 86.42 129 | 88.00 143 | 91.11 261 | 69.24 253 | 98.00 156 | 69.58 310 | 91.04 181 | 93.83 243 |
|
pmmvs6 | | | 83.42 273 | 81.60 277 | 88.87 250 | 88.01 336 | 77.87 260 | 94.96 111 | 94.24 233 | 74.67 316 | 78.80 308 | 91.09 262 | 60.17 319 | 96.49 263 | 77.06 261 | 75.40 334 | 92.23 303 |
|
v144192 | | | 87.19 208 | 86.35 200 | 89.74 227 | 90.64 301 | 78.24 251 | 93.92 186 | 95.43 179 | 81.93 227 | 85.51 195 | 91.05 263 | 74.21 185 | 97.45 192 | 82.86 177 | 81.56 287 | 93.53 257 |
|
v1921920 | | | 86.97 213 | 86.06 212 | 89.69 231 | 90.53 306 | 78.11 254 | 93.80 190 | 95.43 179 | 81.90 229 | 85.33 211 | 91.05 263 | 72.66 208 | 97.41 201 | 82.05 192 | 81.80 284 | 93.53 257 |
|
baseline2 | | | 86.50 229 | 85.39 231 | 89.84 222 | 91.12 280 | 76.70 280 | 91.88 255 | 88.58 342 | 82.35 217 | 79.95 300 | 90.95 265 | 73.42 200 | 97.63 180 | 80.27 226 | 89.95 192 | 95.19 179 |
|
thisisatest0515 | | | 87.33 199 | 85.99 213 | 91.37 162 | 93.49 209 | 79.55 220 | 90.63 279 | 89.56 340 | 80.17 256 | 87.56 152 | 90.86 266 | 67.07 271 | 98.28 131 | 81.50 204 | 93.02 159 | 96.29 137 |
|
v7n | | | 86.81 217 | 85.76 224 | 89.95 219 | 90.72 299 | 79.25 233 | 95.07 105 | 95.92 136 | 84.45 173 | 82.29 268 | 90.86 266 | 72.60 210 | 97.53 186 | 79.42 237 | 80.52 308 | 93.08 278 |
|
cl-mvsnet1 | | | 86.53 227 | 85.78 221 | 88.75 253 | 92.02 248 | 76.45 284 | 90.74 277 | 94.30 230 | 81.83 233 | 83.34 258 | 90.82 268 | 75.75 164 | 96.57 257 | 81.73 201 | 81.52 289 | 93.24 269 |
|
v148 | | | 87.04 212 | 86.32 202 | 89.21 241 | 90.94 288 | 77.26 274 | 93.71 195 | 94.43 225 | 84.84 166 | 84.36 231 | 90.80 269 | 76.04 158 | 97.05 232 | 82.12 190 | 79.60 317 | 93.31 265 |
|
cl-mvsnet____ | | | 86.52 228 | 85.78 221 | 88.75 253 | 92.03 247 | 76.46 283 | 90.74 277 | 94.30 230 | 81.83 233 | 83.34 258 | 90.78 270 | 75.74 166 | 96.57 257 | 81.74 200 | 81.54 288 | 93.22 271 |
|
PMMVS | | | 85.71 243 | 84.96 240 | 87.95 275 | 88.90 325 | 77.09 276 | 88.68 311 | 90.06 329 | 72.32 334 | 86.47 171 | 90.76 271 | 72.15 214 | 94.40 320 | 81.78 199 | 93.49 147 | 92.36 299 |
|
bset_n11_16_dypcd | | | 86.83 216 | 85.55 226 | 90.65 187 | 88.22 333 | 81.70 161 | 88.88 308 | 90.42 321 | 85.26 156 | 85.49 197 | 90.69 272 | 67.11 270 | 97.02 234 | 89.51 99 | 84.39 253 | 93.23 270 |
|
Fast-Effi-MVS+ | | | 89.41 136 | 88.64 137 | 91.71 150 | 94.74 159 | 80.81 189 | 93.54 200 | 95.10 196 | 83.11 200 | 86.82 168 | 90.67 273 | 79.74 119 | 97.75 171 | 80.51 222 | 93.55 145 | 96.57 131 |
|
IterMVS-SCA-FT | | | 85.45 245 | 84.53 250 | 88.18 270 | 91.71 258 | 76.87 279 | 90.19 288 | 92.65 270 | 85.40 153 | 81.44 278 | 90.54 274 | 66.79 275 | 95.00 317 | 81.04 209 | 81.05 295 | 92.66 290 |
|
PVSNet | | 78.82 18 | 85.55 244 | 84.65 247 | 88.23 269 | 94.72 161 | 71.93 322 | 87.12 326 | 92.75 267 | 78.80 275 | 84.95 216 | 90.53 275 | 64.43 294 | 96.71 248 | 74.74 280 | 93.86 140 | 96.06 151 |
|
eth_miper_zixun_eth | | | 86.50 229 | 85.77 223 | 88.68 256 | 91.94 250 | 75.81 291 | 90.47 281 | 94.89 208 | 82.05 221 | 84.05 239 | 90.46 276 | 75.96 159 | 96.77 245 | 82.76 181 | 79.36 319 | 93.46 262 |
|
cl_fuxian | | | 87.14 210 | 86.50 196 | 89.04 247 | 92.20 240 | 77.26 274 | 91.22 271 | 94.70 219 | 82.01 224 | 84.34 232 | 90.43 277 | 78.81 130 | 96.61 254 | 83.70 167 | 81.09 294 | 93.25 268 |
|
IterMVS | | | 84.88 258 | 83.98 256 | 87.60 280 | 91.44 264 | 76.03 289 | 90.18 289 | 92.41 273 | 83.24 199 | 81.06 284 | 90.42 278 | 66.60 278 | 94.28 324 | 79.46 233 | 80.98 300 | 92.48 294 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test_0402 | | | 81.30 295 | 79.17 303 | 87.67 279 | 93.19 217 | 78.17 252 | 92.98 225 | 91.71 292 | 75.25 309 | 76.02 327 | 90.31 279 | 59.23 324 | 96.37 271 | 50.22 357 | 83.63 262 | 88.47 347 |
|
TinyColmap | | | 79.76 307 | 77.69 309 | 85.97 308 | 91.71 258 | 73.12 310 | 89.55 295 | 90.36 324 | 75.03 311 | 72.03 344 | 90.19 280 | 46.22 356 | 96.19 280 | 63.11 340 | 81.03 296 | 88.59 346 |
|
EG-PatchMatch MVS | | | 82.37 281 | 80.34 287 | 88.46 261 | 90.27 309 | 79.35 226 | 92.80 231 | 94.33 229 | 77.14 293 | 73.26 340 | 90.18 281 | 47.47 355 | 96.72 246 | 70.25 303 | 87.32 235 | 89.30 338 |
|
cl-mvsnet2 | | | 86.78 219 | 85.98 214 | 89.18 243 | 92.34 238 | 77.62 269 | 90.84 276 | 94.13 238 | 81.33 243 | 83.97 242 | 90.15 282 | 73.96 190 | 96.60 256 | 84.19 160 | 82.94 269 | 93.33 264 |
|
lessismore_v0 | | | | | 86.04 307 | 88.46 329 | 68.78 342 | | 80.59 359 | | 73.01 341 | 90.11 283 | 55.39 335 | 96.43 269 | 75.06 278 | 65.06 350 | 92.90 283 |
|
miper_ehance_all_eth | | | 87.22 206 | 86.62 191 | 89.02 248 | 92.13 243 | 77.40 273 | 90.91 275 | 94.81 215 | 81.28 244 | 84.32 233 | 90.08 284 | 79.26 126 | 96.62 251 | 83.81 165 | 82.94 269 | 93.04 279 |
|
D2MVS | | | 85.90 238 | 85.09 237 | 88.35 264 | 90.79 295 | 77.42 272 | 91.83 257 | 95.70 154 | 80.77 252 | 80.08 298 | 90.02 285 | 66.74 277 | 96.37 271 | 81.88 196 | 87.97 226 | 91.26 318 |
|
LF4IMVS | | | 80.37 302 | 79.07 305 | 84.27 324 | 86.64 340 | 69.87 339 | 89.39 300 | 91.05 310 | 76.38 297 | 74.97 332 | 90.00 286 | 47.85 354 | 94.25 325 | 74.55 283 | 80.82 302 | 88.69 345 |
|
CostFormer | | | 85.77 242 | 84.94 241 | 88.26 267 | 91.16 279 | 72.58 319 | 89.47 299 | 91.04 311 | 76.26 300 | 86.45 174 | 89.97 287 | 70.74 229 | 96.86 244 | 82.35 186 | 87.07 238 | 95.34 177 |
|
test20.03 | | | 79.95 305 | 79.08 304 | 82.55 330 | 85.79 345 | 67.74 346 | 91.09 273 | 91.08 308 | 81.23 247 | 74.48 335 | 89.96 288 | 61.63 306 | 90.15 352 | 60.08 348 | 76.38 332 | 89.76 334 |
|
tpm | | | 84.73 260 | 84.02 254 | 86.87 301 | 90.33 308 | 68.90 341 | 89.06 305 | 89.94 332 | 80.85 251 | 85.75 185 | 89.86 289 | 68.54 262 | 95.97 287 | 77.76 251 | 84.05 257 | 95.75 163 |
|
miper_lstm_enhance | | | 85.27 251 | 84.59 249 | 87.31 287 | 91.28 274 | 74.63 296 | 87.69 322 | 94.09 240 | 81.20 248 | 81.36 280 | 89.85 290 | 74.97 175 | 94.30 323 | 81.03 211 | 79.84 316 | 93.01 280 |
|
test0.0.03 1 | | | 82.41 280 | 81.69 276 | 84.59 320 | 88.23 332 | 72.89 312 | 90.24 285 | 87.83 345 | 83.41 194 | 79.86 301 | 89.78 291 | 67.25 267 | 88.99 354 | 65.18 333 | 83.42 266 | 91.90 307 |
|
K. test v3 | | | 81.59 289 | 80.15 291 | 85.91 311 | 89.89 318 | 69.42 340 | 92.57 237 | 87.71 346 | 85.56 147 | 73.44 339 | 89.71 292 | 55.58 333 | 95.52 304 | 77.17 258 | 69.76 342 | 92.78 288 |
|
CHOSEN 280x420 | | | 85.15 253 | 83.99 255 | 88.65 257 | 92.47 235 | 78.40 247 | 79.68 353 | 92.76 266 | 74.90 314 | 81.41 279 | 89.59 293 | 69.85 243 | 95.51 305 | 79.92 230 | 95.29 120 | 92.03 305 |
|
GA-MVS | | | 86.61 224 | 85.27 234 | 90.66 186 | 91.33 273 | 78.71 238 | 90.40 282 | 93.81 249 | 85.34 154 | 85.12 213 | 89.57 294 | 61.25 310 | 97.11 226 | 80.99 212 | 89.59 199 | 96.15 141 |
|
Effi-MVS+-dtu | | | 88.65 157 | 88.35 144 | 89.54 234 | 93.33 213 | 76.39 285 | 94.47 145 | 94.36 227 | 87.70 99 | 85.43 203 | 89.56 295 | 73.45 198 | 97.26 215 | 85.57 145 | 91.28 175 | 94.97 184 |
|
tpm2 | | | 84.08 266 | 82.94 268 | 87.48 285 | 91.39 269 | 71.27 326 | 89.23 303 | 90.37 323 | 71.95 336 | 84.64 219 | 89.33 296 | 67.30 266 | 96.55 261 | 75.17 276 | 87.09 237 | 94.63 200 |
|
Anonymous20231206 | | | 81.03 297 | 79.77 295 | 84.82 319 | 87.85 338 | 70.26 336 | 91.42 267 | 92.08 282 | 73.67 323 | 77.75 314 | 89.25 297 | 62.43 302 | 93.08 338 | 61.50 345 | 82.00 282 | 91.12 323 |
|
miper_enhance_ethall | | | 86.90 214 | 86.18 206 | 89.06 246 | 91.66 261 | 77.58 270 | 90.22 287 | 94.82 214 | 79.16 269 | 84.48 224 | 89.10 298 | 79.19 127 | 96.66 249 | 84.06 161 | 82.94 269 | 92.94 282 |
|
ppachtmachnet_test | | | 81.84 284 | 80.07 292 | 87.15 295 | 88.46 329 | 74.43 300 | 89.04 306 | 92.16 280 | 75.33 308 | 77.75 314 | 88.99 299 | 66.20 283 | 95.37 310 | 65.12 334 | 77.60 326 | 91.65 310 |
|
gm-plane-assit | | | | | | 89.60 321 | 68.00 343 | | | 77.28 292 | | 88.99 299 | | 97.57 183 | 79.44 235 | | |
|
MDTV_nov1_ep13 | | | | 83.56 262 | | 91.69 260 | 69.93 338 | 87.75 321 | 91.54 298 | 78.60 279 | 84.86 217 | 88.90 301 | 69.54 246 | 96.03 284 | 70.25 303 | 88.93 209 | |
|
SCA | | | 86.32 233 | 85.18 235 | 89.73 229 | 92.15 241 | 76.60 281 | 91.12 272 | 91.69 294 | 83.53 191 | 85.50 196 | 88.81 302 | 66.79 275 | 96.48 264 | 76.65 262 | 90.35 186 | 96.12 145 |
|
Patchmatch-test | | | 81.37 293 | 79.30 299 | 87.58 281 | 90.92 290 | 74.16 303 | 80.99 351 | 87.68 347 | 70.52 342 | 76.63 322 | 88.81 302 | 71.21 221 | 92.76 341 | 60.01 350 | 86.93 239 | 95.83 160 |
|
tpmrst | | | 85.35 248 | 84.99 238 | 86.43 304 | 90.88 293 | 67.88 345 | 88.71 310 | 91.43 302 | 80.13 257 | 86.08 182 | 88.80 304 | 73.05 204 | 96.02 285 | 82.48 183 | 83.40 267 | 95.40 174 |
|
DSMNet-mixed | | | 76.94 317 | 76.29 316 | 78.89 334 | 83.10 354 | 56.11 361 | 87.78 320 | 79.77 360 | 60.65 353 | 75.64 328 | 88.71 305 | 61.56 307 | 88.34 355 | 60.07 349 | 89.29 204 | 92.21 304 |
|
PatchmatchNet |  | | 85.85 240 | 84.70 246 | 89.29 240 | 91.76 256 | 75.54 293 | 88.49 313 | 91.30 304 | 81.63 237 | 85.05 214 | 88.70 306 | 71.71 215 | 96.24 277 | 74.61 282 | 89.05 208 | 96.08 149 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MIMVSNet | | | 82.59 279 | 80.53 284 | 88.76 252 | 91.51 263 | 78.32 248 | 86.57 329 | 90.13 327 | 79.32 265 | 80.70 287 | 88.69 307 | 52.98 345 | 93.07 339 | 66.03 330 | 88.86 210 | 94.90 191 |
|
IB-MVS | | 80.51 15 | 85.24 252 | 83.26 264 | 91.19 167 | 92.13 243 | 79.86 216 | 91.75 259 | 91.29 305 | 83.28 198 | 80.66 288 | 88.49 308 | 61.28 309 | 98.46 116 | 80.99 212 | 79.46 318 | 95.25 178 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
cascas | | | 86.43 232 | 84.98 239 | 90.80 185 | 92.10 245 | 80.92 186 | 90.24 285 | 95.91 138 | 73.10 328 | 83.57 253 | 88.39 309 | 65.15 290 | 97.46 191 | 84.90 152 | 91.43 174 | 94.03 232 |
|
EPMVS | | | 83.90 270 | 82.70 272 | 87.51 282 | 90.23 311 | 72.67 315 | 88.62 312 | 81.96 357 | 81.37 242 | 85.01 215 | 88.34 310 | 66.31 282 | 94.45 319 | 75.30 275 | 87.12 236 | 95.43 173 |
|
MDA-MVSNet-bldmvs | | | 78.85 312 | 76.31 315 | 86.46 303 | 89.76 319 | 73.88 304 | 88.79 309 | 90.42 321 | 79.16 269 | 59.18 355 | 88.33 311 | 60.20 318 | 94.04 326 | 62.00 343 | 68.96 346 | 91.48 314 |
|
our_test_3 | | | 81.93 283 | 80.46 286 | 86.33 306 | 88.46 329 | 73.48 307 | 88.46 314 | 91.11 307 | 76.46 295 | 76.69 321 | 88.25 312 | 66.89 273 | 94.36 321 | 68.75 313 | 79.08 321 | 91.14 322 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 308 | 77.03 314 | 86.93 297 | 87.00 339 | 76.23 288 | 92.33 244 | 90.74 319 | 68.93 345 | 74.52 334 | 88.23 313 | 49.58 350 | 96.62 251 | 57.64 352 | 84.29 254 | 87.94 349 |
|
MIMVSNet1 | | | 79.38 309 | 77.28 311 | 85.69 312 | 86.35 341 | 73.67 306 | 91.61 265 | 92.75 267 | 78.11 287 | 72.64 342 | 88.12 314 | 48.16 352 | 91.97 347 | 60.32 347 | 77.49 327 | 91.43 315 |
|
UnsupCasMVSNet_eth | | | 80.07 304 | 78.27 308 | 85.46 313 | 85.24 349 | 72.63 317 | 88.45 315 | 94.87 210 | 82.99 204 | 71.64 346 | 88.07 315 | 56.34 332 | 91.75 348 | 73.48 289 | 63.36 353 | 92.01 306 |
|
test-LLR | | | 85.87 239 | 85.41 230 | 87.25 290 | 90.95 286 | 71.67 324 | 89.55 295 | 89.88 335 | 83.41 194 | 84.54 222 | 87.95 316 | 67.25 267 | 95.11 314 | 81.82 197 | 93.37 152 | 94.97 184 |
|
test-mter | | | 84.54 263 | 83.64 261 | 87.25 290 | 90.95 286 | 71.67 324 | 89.55 295 | 89.88 335 | 79.17 268 | 84.54 222 | 87.95 316 | 55.56 334 | 95.11 314 | 81.82 197 | 93.37 152 | 94.97 184 |
|
FMVSNet5 | | | 81.52 291 | 79.60 297 | 87.27 288 | 91.17 277 | 77.95 256 | 91.49 266 | 92.26 278 | 76.87 294 | 76.16 324 | 87.91 318 | 51.67 346 | 92.34 343 | 67.74 321 | 81.16 291 | 91.52 312 |
|
CR-MVSNet | | | 85.35 248 | 83.76 258 | 90.12 211 | 90.58 303 | 79.34 227 | 85.24 336 | 91.96 289 | 78.27 283 | 85.55 191 | 87.87 319 | 71.03 224 | 95.61 300 | 73.96 286 | 89.36 202 | 95.40 174 |
|
Patchmtry | | | 82.71 277 | 80.93 283 | 88.06 273 | 90.05 314 | 76.37 286 | 84.74 340 | 91.96 289 | 72.28 335 | 81.32 281 | 87.87 319 | 71.03 224 | 95.50 307 | 68.97 312 | 80.15 311 | 92.32 301 |
|
YYNet1 | | | 79.22 310 | 77.20 312 | 85.28 316 | 88.20 335 | 72.66 316 | 85.87 332 | 90.05 331 | 74.33 319 | 62.70 353 | 87.61 321 | 66.09 285 | 92.03 345 | 66.94 325 | 72.97 337 | 91.15 321 |
|
MDA-MVSNet_test_wron | | | 79.21 311 | 77.19 313 | 85.29 315 | 88.22 333 | 72.77 314 | 85.87 332 | 90.06 329 | 74.34 318 | 62.62 354 | 87.56 322 | 66.14 284 | 91.99 346 | 66.90 328 | 73.01 336 | 91.10 325 |
|
Anonymous20240521 | | | 80.44 301 | 79.21 301 | 84.11 325 | 85.75 346 | 67.89 344 | 92.86 229 | 93.23 257 | 75.61 306 | 75.59 329 | 87.47 323 | 50.03 348 | 94.33 322 | 71.14 300 | 81.21 290 | 90.12 333 |
|
DWT-MVSNet_test | | | 84.95 257 | 83.68 259 | 88.77 251 | 91.43 267 | 73.75 305 | 91.74 260 | 90.98 312 | 80.66 253 | 83.84 244 | 87.36 324 | 62.44 301 | 97.11 226 | 78.84 242 | 85.81 243 | 95.46 171 |
|
TESTMET0.1,1 | | | 83.74 271 | 82.85 270 | 86.42 305 | 89.96 316 | 71.21 328 | 89.55 295 | 87.88 344 | 77.41 289 | 83.37 257 | 87.31 325 | 56.71 331 | 93.65 332 | 80.62 219 | 92.85 163 | 94.40 217 |
|
CL-MVSNet_2432*1600 | | | 81.74 286 | 80.53 284 | 85.36 314 | 85.96 344 | 72.45 320 | 90.25 284 | 93.07 260 | 81.24 246 | 79.85 302 | 87.29 326 | 70.93 226 | 92.52 342 | 66.95 324 | 69.23 344 | 91.11 324 |
|
MVS_0304 | | | 83.46 272 | 81.92 275 | 88.10 272 | 90.63 302 | 77.49 271 | 93.26 213 | 93.75 250 | 80.04 259 | 80.44 292 | 87.24 327 | 47.94 353 | 95.55 302 | 75.79 270 | 88.16 221 | 91.26 318 |
|
tpmvs | | | 83.35 275 | 82.07 273 | 87.20 294 | 91.07 282 | 71.00 331 | 88.31 316 | 91.70 293 | 78.91 271 | 80.49 291 | 87.18 328 | 69.30 252 | 97.08 229 | 68.12 320 | 83.56 263 | 93.51 260 |
|
dp | | | 81.47 292 | 80.23 289 | 85.17 317 | 89.92 317 | 65.49 351 | 86.74 327 | 90.10 328 | 76.30 299 | 81.10 282 | 87.12 329 | 62.81 299 | 95.92 289 | 68.13 319 | 79.88 314 | 94.09 228 |
|
PM-MVS | | | 78.11 315 | 76.12 317 | 84.09 326 | 83.54 353 | 70.08 337 | 88.97 307 | 85.27 352 | 79.93 260 | 74.73 333 | 86.43 330 | 34.70 360 | 93.48 333 | 79.43 236 | 72.06 340 | 88.72 344 |
|
DIV-MVS_2432*1600 | | | 80.20 303 | 79.24 300 | 83.07 328 | 85.64 347 | 65.29 352 | 91.01 274 | 93.93 242 | 78.71 278 | 76.32 323 | 86.40 331 | 59.20 325 | 92.93 340 | 72.59 292 | 69.35 343 | 91.00 326 |
|
tpm cat1 | | | 81.96 282 | 80.27 288 | 87.01 296 | 91.09 281 | 71.02 330 | 87.38 325 | 91.53 299 | 66.25 348 | 80.17 294 | 86.35 332 | 68.22 265 | 96.15 281 | 69.16 311 | 82.29 276 | 93.86 241 |
|
pmmvs-eth3d | | | 80.97 298 | 78.72 307 | 87.74 277 | 84.99 350 | 79.97 214 | 90.11 290 | 91.65 295 | 75.36 307 | 73.51 338 | 86.03 333 | 59.45 323 | 93.96 329 | 75.17 276 | 72.21 339 | 89.29 339 |
|
KD-MVS_2432*1600 | | | 78.50 313 | 76.02 318 | 85.93 309 | 86.22 342 | 74.47 298 | 84.80 338 | 92.33 274 | 79.29 266 | 76.98 319 | 85.92 334 | 53.81 343 | 93.97 327 | 67.39 322 | 57.42 356 | 89.36 336 |
|
miper_refine_blended | | | 78.50 313 | 76.02 318 | 85.93 309 | 86.22 342 | 74.47 298 | 84.80 338 | 92.33 274 | 79.29 266 | 76.98 319 | 85.92 334 | 53.81 343 | 93.97 327 | 67.39 322 | 57.42 356 | 89.36 336 |
|
ADS-MVSNet2 | | | 81.66 288 | 79.71 296 | 87.50 283 | 91.35 271 | 74.19 302 | 83.33 345 | 88.48 343 | 72.90 330 | 82.24 270 | 85.77 336 | 64.98 291 | 93.20 337 | 64.57 336 | 83.74 259 | 95.12 180 |
|
ADS-MVSNet | | | 81.56 290 | 79.78 294 | 86.90 299 | 91.35 271 | 71.82 323 | 83.33 345 | 89.16 341 | 72.90 330 | 82.24 270 | 85.77 336 | 64.98 291 | 93.76 330 | 64.57 336 | 83.74 259 | 95.12 180 |
|
N_pmnet | | | 68.89 323 | 68.44 326 | 70.23 340 | 89.07 323 | 28.79 370 | 88.06 317 | 19.50 371 | 69.47 344 | 71.86 345 | 84.93 338 | 61.24 311 | 91.75 348 | 54.70 354 | 77.15 329 | 90.15 332 |
|
ambc | | | | | 83.06 329 | 79.99 357 | 63.51 355 | 77.47 354 | 92.86 263 | | 74.34 336 | 84.45 339 | 28.74 361 | 95.06 316 | 73.06 291 | 68.89 347 | 90.61 328 |
|
GG-mvs-BLEND | | | | | 87.94 276 | 89.73 320 | 77.91 257 | 87.80 319 | 78.23 363 | | 80.58 289 | 83.86 340 | 59.88 321 | 95.33 311 | 71.20 297 | 92.22 170 | 90.60 330 |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 341 | 71.53 218 | 96.48 264 | | | |
|
PatchT | | | 82.68 278 | 81.27 280 | 86.89 300 | 90.09 313 | 70.94 332 | 84.06 342 | 90.15 326 | 74.91 313 | 85.63 190 | 83.57 342 | 69.37 248 | 94.87 318 | 65.19 332 | 88.50 215 | 94.84 193 |
|
new-patchmatchnet | | | 76.41 318 | 75.17 320 | 80.13 333 | 82.65 356 | 59.61 356 | 87.66 323 | 91.08 308 | 78.23 285 | 69.85 347 | 83.22 343 | 54.76 337 | 91.63 350 | 64.14 338 | 64.89 351 | 89.16 341 |
|
PVSNet_0 | | 73.20 20 | 77.22 316 | 74.83 321 | 84.37 322 | 90.70 300 | 71.10 329 | 83.09 347 | 89.67 338 | 72.81 332 | 73.93 337 | 83.13 344 | 60.79 314 | 93.70 331 | 68.54 314 | 50.84 359 | 88.30 348 |
|
RPMNet | | | 83.95 268 | 81.53 278 | 91.21 166 | 90.58 303 | 79.34 227 | 85.24 336 | 96.76 73 | 71.44 338 | 85.55 191 | 82.97 345 | 70.87 227 | 98.91 87 | 61.01 346 | 89.36 202 | 95.40 174 |
|
Patchmatch-RL test | | | 81.67 287 | 79.96 293 | 86.81 302 | 85.42 348 | 71.23 327 | 82.17 349 | 87.50 348 | 78.47 280 | 77.19 318 | 82.50 346 | 70.81 228 | 93.48 333 | 82.66 182 | 72.89 338 | 95.71 166 |
|
FPMVS | | | 64.63 325 | 62.55 327 | 70.88 339 | 70.80 361 | 56.71 358 | 84.42 341 | 84.42 353 | 51.78 357 | 49.57 357 | 81.61 347 | 23.49 364 | 81.48 360 | 40.61 361 | 76.25 333 | 74.46 357 |
|
pmmvs3 | | | 71.81 322 | 68.71 325 | 81.11 332 | 75.86 359 | 70.42 335 | 86.74 327 | 83.66 354 | 58.95 354 | 68.64 350 | 80.89 348 | 36.93 359 | 89.52 353 | 63.10 341 | 63.59 352 | 83.39 351 |
|
new_pmnet | | | 72.15 321 | 70.13 324 | 78.20 335 | 82.95 355 | 65.68 349 | 83.91 343 | 82.40 356 | 62.94 352 | 64.47 352 | 79.82 349 | 42.85 358 | 86.26 357 | 57.41 353 | 74.44 335 | 82.65 354 |
|
UnsupCasMVSNet_bld | | | 76.23 319 | 73.27 322 | 85.09 318 | 83.79 352 | 72.92 311 | 85.65 335 | 93.47 254 | 71.52 337 | 68.84 349 | 79.08 350 | 49.77 349 | 93.21 336 | 66.81 329 | 60.52 355 | 89.13 343 |
|
DeepMVS_CX |  | | | | 56.31 346 | 74.23 360 | 51.81 363 | | 56.67 369 | 44.85 359 | 48.54 359 | 75.16 351 | 27.87 363 | 58.74 367 | 40.92 360 | 52.22 358 | 58.39 360 |
|
test_method | | | 50.52 330 | 48.47 332 | 56.66 345 | 52.26 369 | 18.98 372 | 41.51 363 | 81.40 358 | 10.10 365 | 44.59 360 | 75.01 352 | 28.51 362 | 68.16 363 | 53.54 355 | 49.31 360 | 82.83 353 |
|
JIA-IIPM | | | 81.04 296 | 78.98 306 | 87.25 290 | 88.64 326 | 73.48 307 | 81.75 350 | 89.61 339 | 73.19 327 | 82.05 272 | 73.71 353 | 66.07 286 | 95.87 292 | 71.18 299 | 84.60 252 | 92.41 297 |
|
LCM-MVSNet | | | 66.00 324 | 62.16 328 | 77.51 337 | 64.51 365 | 58.29 357 | 83.87 344 | 90.90 315 | 48.17 358 | 54.69 356 | 73.31 354 | 16.83 370 | 86.75 356 | 65.47 331 | 61.67 354 | 87.48 350 |
|
PMMVS2 | | | 59.60 326 | 56.40 329 | 69.21 341 | 68.83 362 | 46.58 365 | 73.02 358 | 77.48 364 | 55.07 356 | 49.21 358 | 72.95 355 | 17.43 369 | 80.04 361 | 49.32 358 | 44.33 361 | 80.99 356 |
|
gg-mvs-nofinetune | | | 81.77 285 | 79.37 298 | 88.99 249 | 90.85 294 | 77.73 266 | 86.29 330 | 79.63 361 | 74.88 315 | 83.19 261 | 69.05 356 | 60.34 317 | 96.11 282 | 75.46 273 | 94.64 129 | 93.11 276 |
|
MVS-HIRNet | | | 73.70 320 | 72.20 323 | 78.18 336 | 91.81 255 | 56.42 360 | 82.94 348 | 82.58 355 | 55.24 355 | 68.88 348 | 66.48 357 | 55.32 336 | 95.13 313 | 58.12 351 | 88.42 217 | 83.01 352 |
|
PMVS |  | 47.18 22 | 52.22 329 | 48.46 333 | 63.48 343 | 45.72 370 | 46.20 366 | 73.41 357 | 78.31 362 | 41.03 361 | 30.06 364 | 65.68 358 | 6.05 371 | 83.43 359 | 30.04 363 | 65.86 349 | 60.80 358 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ANet_high | | | 58.88 327 | 54.22 331 | 72.86 338 | 56.50 368 | 56.67 359 | 80.75 352 | 86.00 349 | 73.09 329 | 37.39 362 | 64.63 359 | 22.17 365 | 79.49 362 | 43.51 359 | 23.96 364 | 82.43 355 |
|
tmp_tt | | | 35.64 334 | 39.24 336 | 24.84 349 | 14.87 371 | 23.90 371 | 62.71 359 | 51.51 370 | 6.58 367 | 36.66 363 | 62.08 360 | 44.37 357 | 30.34 369 | 52.40 356 | 22.00 366 | 20.27 364 |
|
MVE |  | 39.65 23 | 43.39 331 | 38.59 337 | 57.77 344 | 56.52 367 | 48.77 364 | 55.38 360 | 58.64 368 | 29.33 364 | 28.96 365 | 52.65 361 | 4.68 372 | 64.62 366 | 28.11 364 | 33.07 362 | 59.93 359 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
Gipuma |  | | 57.99 328 | 54.91 330 | 67.24 342 | 88.51 327 | 65.59 350 | 52.21 361 | 90.33 325 | 43.58 360 | 42.84 361 | 51.18 362 | 20.29 367 | 85.07 358 | 34.77 362 | 70.45 341 | 51.05 361 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 43.23 332 | 42.29 334 | 46.03 347 | 65.58 364 | 37.41 367 | 73.51 356 | 64.62 365 | 33.99 362 | 28.47 366 | 47.87 363 | 19.90 368 | 67.91 364 | 22.23 365 | 24.45 363 | 32.77 362 |
|
EMVS | | | 42.07 333 | 41.12 335 | 44.92 348 | 63.45 366 | 35.56 369 | 73.65 355 | 63.48 366 | 33.05 363 | 26.88 367 | 45.45 364 | 21.27 366 | 67.14 365 | 19.80 366 | 23.02 365 | 32.06 363 |
|
X-MVStestdata | | | 88.31 165 | 86.13 207 | 94.85 28 | 98.54 12 | 86.60 37 | 96.93 18 | 97.19 35 | 90.66 23 | 92.85 63 | 23.41 365 | 85.02 61 | 99.49 24 | 91.99 59 | 98.56 49 | 98.47 30 |
|
test_post | | | | | | | | | | | | 10.29 366 | 70.57 234 | 95.91 291 | | | |
|
test_post1 | | | | | | | | 88.00 318 | | | | 9.81 367 | 69.31 251 | 95.53 303 | 76.65 262 | | |
|
testmvs | | | 8.92 337 | 11.52 340 | 1.12 352 | 1.06 372 | 0.46 374 | 86.02 331 | 0.65 373 | 0.62 368 | 2.74 369 | 9.52 368 | 0.31 375 | 0.45 371 | 2.38 368 | 0.39 368 | 2.46 367 |
|
test123 | | | 8.76 338 | 11.22 341 | 1.39 351 | 0.85 373 | 0.97 373 | 85.76 334 | 0.35 374 | 0.54 369 | 2.45 370 | 8.14 369 | 0.60 374 | 0.48 370 | 2.16 369 | 0.17 369 | 2.71 366 |
|
wuyk23d | | | 21.27 336 | 20.48 339 | 23.63 350 | 68.59 363 | 36.41 368 | 49.57 362 | 6.85 372 | 9.37 366 | 7.89 368 | 4.46 370 | 4.03 373 | 31.37 368 | 17.47 367 | 16.07 367 | 3.12 365 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
pcd_1.5k_mvsjas | | | 6.64 340 | 8.86 343 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 79.70 120 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
No_MVS | | | | | 96.52 1 | 97.78 55 | 90.86 1 | | 96.85 62 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 4 |
|
eth-test2 | | | | | | 0.00 374 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 374 | | | | | | | | | | | |
|
IU-MVS | | | | | | 98.77 4 | 86.00 55 | | 96.84 63 | 81.26 245 | 97.26 6 | | | | 95.50 8 | 99.13 3 | 99.03 5 |
|
save fliter | | | | | | 97.85 48 | 85.63 69 | 95.21 96 | 96.82 67 | 89.44 47 | | | | | | | |
|
test_0728_SECOND | | | | | 95.01 16 | 98.79 1 | 86.43 42 | 97.09 12 | 97.49 5 | | | | | 99.61 3 | 95.62 6 | 99.08 7 | 98.99 6 |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 145 |
|
test_part2 | | | | | | 98.55 11 | 87.22 17 | | | | 96.40 12 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 216 | | | | 96.12 145 |
|
sam_mvs | | | | | | | | | | | | | 70.60 230 | | | | |
|
MTGPA |  | | | | | | | | 96.97 49 | | | | | | | | |
|
MTMP | | | | | | | | 96.16 45 | 60.64 367 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 64 | 98.71 32 | 98.07 65 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 90 | 98.68 37 | 98.27 49 |
|
agg_prior | | | | | | 97.38 65 | 85.92 61 | | 96.72 79 | | 92.16 82 | | | 98.97 81 | | | |
|
test_prior4 | | | | | | | 85.96 58 | 94.11 170 | | | | | | | | | |
|
test_prior | | | | | 93.82 65 | 97.29 70 | 84.49 86 | | 96.88 59 | | | | | 98.87 89 | | | 98.11 63 |
|
旧先验2 | | | | | | | | 93.36 205 | | 71.25 339 | 94.37 27 | | | 97.13 225 | 86.74 133 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 93.11 220 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 93.28 212 | 96.26 110 | 73.95 321 | | | | 99.05 61 | 80.56 220 | | 96.59 130 |
|
原ACMM2 | | | | | | | | 92.94 227 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 101 | 78.30 246 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 36 | | | | |
|
testdata1 | | | | | | | | 92.15 250 | | 87.94 91 | | | | | | | |
|
test12 | | | | | 94.34 54 | 97.13 75 | 86.15 52 | | 96.29 108 | | 91.04 108 | | 85.08 59 | 99.01 71 | | 98.13 65 | 97.86 81 |
|
plane_prior7 | | | | | | 94.70 163 | 82.74 137 | | | | | | | | | | |
|
plane_prior6 | | | | | | 94.52 169 | 82.75 135 | | | | | | 74.23 183 | | | | |
|
plane_prior5 | | | | | | | | | 96.22 115 | | | | | 98.12 138 | 88.15 113 | 89.99 189 | 94.63 200 |
|
plane_prior3 | | | | | | | 82.75 135 | | | 90.26 31 | 86.91 165 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 62 | | 90.81 17 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 167 | | | | | | | | | | | |
|
plane_prior | | | | | | | 82.73 138 | 95.21 96 | | 89.66 44 | | | | | | 89.88 194 | |
|
n2 | | | | | | | | | 0.00 375 | | | | | | | | |
|
nn | | | | | | | | | 0.00 375 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 350 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 94 | | | | | | | | |
|
door | | | | | | | | | 85.33 351 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 163 | | | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 183 | | 94.39 152 | | 88.81 65 | 85.43 203 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 183 | | 94.39 152 | | 88.81 65 | 85.43 203 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 130 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 203 | | | 97.96 159 | | | 94.51 210 |
|
HQP3-MVS | | | | | | | | | 96.04 129 | | | | | | | 89.77 196 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 193 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 362 | 87.62 324 | | 73.32 326 | 84.59 221 | | 70.33 237 | | 74.65 281 | | 95.50 169 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 230 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 225 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 115 | | | | |
|