| fmvsm_s_conf0.1_n_a | | | 93.19 65 | 93.26 58 | 92.97 90 | 92.49 255 | 83.62 111 | 96.02 69 | 95.72 159 | 86.78 134 | 96.04 22 | 98.19 1 | 82.30 94 | 98.43 127 | 96.38 13 | 95.42 123 | 96.86 133 |
|
| fmvsm_s_conf0.1_n | | | 93.46 53 | 93.66 53 | 92.85 97 | 93.75 218 | 83.13 126 | 96.02 69 | 95.74 156 | 87.68 115 | 95.89 25 | 98.17 2 | 82.78 86 | 98.46 118 | 96.71 10 | 96.17 109 | 96.98 125 |
|
| test_fmvsmconf0.01_n | | | 93.19 65 | 93.02 64 | 93.71 67 | 89.25 350 | 84.42 93 | 96.06 66 | 96.29 107 | 89.06 66 | 94.68 36 | 98.13 3 | 79.22 130 | 98.98 74 | 97.22 5 | 97.24 85 | 97.74 89 |
|
| test0726 | | | | | | 98.78 3 | 85.93 55 | 97.19 11 | 97.47 11 | 90.27 31 | 97.64 4 | 98.13 3 | 91.47 8 | | | | |
|
| test_fmvsmconf0.1_n | | | 94.20 34 | 94.31 28 | 93.88 59 | 92.46 257 | 84.80 77 | 96.18 53 | 96.82 68 | 89.29 59 | 95.68 28 | 98.11 5 | 85.10 56 | 98.99 70 | 97.38 4 | 97.75 78 | 97.86 82 |
|
| test_fmvsmconf_n | | | 94.60 18 | 94.81 16 | 93.98 55 | 94.62 173 | 84.96 74 | 96.15 56 | 97.35 22 | 89.37 56 | 96.03 23 | 98.11 5 | 86.36 41 | 99.01 63 | 97.45 3 | 97.83 74 | 97.96 75 |
|
| SMA-MVS |  | | 95.20 8 | 95.07 11 | 95.59 6 | 98.14 35 | 88.48 8 | 96.26 48 | 97.28 31 | 85.90 157 | 97.67 3 | 98.10 7 | 88.41 20 | 99.56 12 | 94.66 26 | 99.19 1 | 98.71 19 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APDe-MVS |  | | 95.46 5 | 95.64 5 | 94.91 21 | 98.26 28 | 86.29 46 | 97.46 6 | 97.40 20 | 89.03 69 | 96.20 19 | 98.10 7 | 89.39 16 | 99.34 34 | 95.88 16 | 99.03 11 | 99.10 4 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 33 | 98.77 5 | 85.99 52 | 97.13 14 | 97.44 15 | 90.31 28 | 97.71 1 | 98.07 9 | 92.31 4 | 99.58 10 | 95.66 17 | 99.13 3 | 98.84 14 |
|
| test_241102_TWO | | | | | | | | | 97.44 15 | 90.31 28 | 97.62 5 | 98.07 9 | 91.46 10 | 99.58 10 | 95.66 17 | 99.12 6 | 98.98 10 |
|
| DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 31 | 97.78 51 | 86.00 50 | 98.29 1 | 97.49 6 | 90.75 19 | 97.62 5 | 98.06 11 | 92.59 2 | 99.61 4 | 95.64 19 | 99.02 12 | 98.86 11 |
|
| test_one_0601 | | | | | | 98.58 11 | 85.83 61 | | 97.44 15 | 91.05 14 | 96.78 15 | 98.06 11 | 91.45 11 | | | | |
|
| fmvsm_s_conf0.5_n_a | | | 93.57 50 | 93.76 49 | 93.00 88 | 95.02 149 | 83.67 108 | 96.19 51 | 96.10 127 | 87.27 122 | 95.98 24 | 98.05 13 | 83.07 82 | 98.45 122 | 96.68 11 | 95.51 117 | 96.88 132 |
|
| DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 39 | 98.78 3 | 85.93 55 | 97.09 16 | 96.73 79 | 90.27 31 | 97.04 11 | 98.05 13 | 91.47 8 | 99.55 16 | 95.62 21 | 99.08 7 | 98.45 36 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 11 | 98.05 13 | 92.09 6 | 99.55 16 | 95.64 19 | 99.13 3 | 99.13 2 |
|
| fmvsm_s_conf0.5_n | | | 93.76 46 | 94.06 41 | 92.86 96 | 95.62 124 | 83.17 124 | 96.14 58 | 96.12 125 | 88.13 101 | 95.82 26 | 98.04 16 | 83.43 75 | 98.48 114 | 96.97 9 | 96.23 108 | 96.92 129 |
|
| test_241102_ONE | | | | | | 98.77 5 | 85.99 52 | | 97.44 15 | 90.26 33 | 97.71 1 | 97.96 17 | 92.31 4 | 99.38 31 | | | |
|
| DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 10 | 98.36 25 | 87.28 18 | 95.56 96 | 97.51 5 | 89.13 65 | 97.14 9 | 97.91 18 | 91.64 7 | 99.62 2 | 94.61 27 | 99.17 2 | 98.86 11 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_fmvsm_n_1920 | | | 94.71 17 | 95.11 10 | 93.50 71 | 95.79 115 | 84.62 80 | 96.15 56 | 97.64 2 | 89.85 42 | 97.19 8 | 97.89 19 | 86.28 43 | 98.71 97 | 97.11 7 | 98.08 66 | 97.17 110 |
|
| MP-MVS-pluss | | | 94.21 32 | 94.00 42 | 94.85 25 | 98.17 33 | 86.65 31 | 94.82 137 | 97.17 39 | 86.26 147 | 92.83 73 | 97.87 20 | 85.57 50 | 99.56 12 | 94.37 30 | 98.92 17 | 98.34 42 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| fmvsm_l_conf0.5_n_a | | | 94.20 34 | 94.40 23 | 93.60 69 | 95.29 135 | 84.98 73 | 95.61 93 | 96.28 110 | 86.31 145 | 96.75 16 | 97.86 21 | 87.40 33 | 98.74 95 | 97.07 8 | 97.02 90 | 97.07 116 |
|
| MVS_0304 | | | 94.60 18 | 94.38 25 | 95.23 11 | 95.41 132 | 87.49 16 | 96.53 38 | 92.75 279 | 93.82 2 | 93.07 67 | 97.84 22 | 83.66 74 | 99.59 8 | 97.61 2 | 98.76 28 | 98.61 22 |
|
| fmvsm_l_conf0.5_n | | | 94.29 28 | 94.46 21 | 93.79 65 | 95.28 136 | 85.43 68 | 95.68 86 | 96.43 97 | 86.56 139 | 96.84 14 | 97.81 23 | 87.56 32 | 98.77 92 | 97.14 6 | 96.82 97 | 97.16 114 |
|
| MM | | | 95.10 11 | 94.91 13 | 95.68 5 | 96.09 101 | 88.34 9 | 96.68 33 | 94.37 236 | 95.08 1 | 94.68 36 | 97.72 24 | 82.94 83 | 99.64 1 | 97.85 1 | 98.76 28 | 99.06 7 |
|
| SF-MVS | | | 94.97 12 | 94.90 15 | 95.20 12 | 97.84 47 | 87.76 10 | 96.65 35 | 97.48 10 | 87.76 113 | 95.71 27 | 97.70 25 | 88.28 23 | 99.35 33 | 93.89 35 | 98.78 25 | 98.48 30 |
|
| ACMMP_NAP | | | 94.74 16 | 94.56 19 | 95.28 9 | 98.02 41 | 87.70 11 | 95.68 86 | 97.34 23 | 88.28 93 | 95.30 32 | 97.67 26 | 85.90 47 | 99.54 20 | 93.91 34 | 98.95 15 | 98.60 23 |
|
| MTAPA | | | 94.42 26 | 94.22 33 | 95.00 18 | 98.42 21 | 86.95 21 | 94.36 171 | 96.97 50 | 91.07 13 | 93.14 64 | 97.56 27 | 84.30 67 | 99.56 12 | 93.43 40 | 98.75 30 | 98.47 33 |
|
| test_fmvsmvis_n_1920 | | | 93.44 55 | 93.55 55 | 93.10 81 | 93.67 222 | 84.26 95 | 95.83 79 | 96.14 122 | 89.00 72 | 92.43 88 | 97.50 28 | 83.37 78 | 98.72 96 | 96.61 12 | 97.44 82 | 96.32 151 |
|
| APD-MVS_3200maxsize | | | 93.78 45 | 93.77 48 | 93.80 64 | 97.92 43 | 84.19 96 | 96.30 44 | 96.87 62 | 86.96 128 | 93.92 49 | 97.47 29 | 83.88 72 | 98.96 77 | 92.71 54 | 97.87 72 | 98.26 56 |
|
| SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 25 | 96.99 72 | 86.33 42 | 97.33 7 | 97.30 29 | 91.38 12 | 95.39 30 | 97.46 30 | 88.98 19 | 99.40 30 | 94.12 31 | 98.89 18 | 98.82 16 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SR-MVS-dyc-post | | | 93.82 44 | 93.82 45 | 93.82 62 | 97.92 43 | 84.57 82 | 96.28 46 | 96.76 75 | 87.46 118 | 93.75 51 | 97.43 31 | 84.24 68 | 99.01 63 | 92.73 51 | 97.80 75 | 97.88 80 |
|
| RE-MVS-def | | | | 93.68 52 | | 97.92 43 | 84.57 82 | 96.28 46 | 96.76 75 | 87.46 118 | 93.75 51 | 97.43 31 | 82.94 83 | | 92.73 51 | 97.80 75 | 97.88 80 |
|
| 9.14 | | | | 94.47 20 | | 97.79 49 | | 96.08 62 | 97.44 15 | 86.13 155 | 95.10 33 | 97.40 33 | 88.34 22 | 99.22 44 | 93.25 44 | 98.70 35 | |
|
| SR-MVS | | | 94.23 31 | 94.17 37 | 94.43 47 | 98.21 32 | 85.78 63 | 96.40 41 | 96.90 59 | 88.20 98 | 94.33 40 | 97.40 33 | 84.75 64 | 99.03 58 | 93.35 43 | 97.99 68 | 98.48 30 |
|
| DeepC-MVS | | 88.79 3 | 93.31 60 | 92.99 65 | 94.26 52 | 96.07 103 | 85.83 61 | 94.89 132 | 96.99 48 | 89.02 71 | 89.56 135 | 97.37 35 | 82.51 89 | 99.38 31 | 92.20 67 | 98.30 56 | 97.57 96 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PGM-MVS | | | 93.96 42 | 93.72 50 | 94.68 38 | 98.43 20 | 86.22 47 | 95.30 105 | 97.78 1 | 87.45 120 | 93.26 60 | 97.33 36 | 84.62 65 | 99.51 24 | 90.75 101 | 98.57 48 | 98.32 46 |
|
| DeepPCF-MVS | | 89.96 1 | 94.20 34 | 94.77 17 | 92.49 116 | 96.52 87 | 80.00 221 | 94.00 195 | 97.08 44 | 90.05 35 | 95.65 29 | 97.29 37 | 89.66 13 | 98.97 75 | 93.95 33 | 98.71 33 | 98.50 27 |
|
| region2R | | | 94.43 24 | 94.27 32 | 94.92 20 | 98.65 8 | 86.67 30 | 96.92 24 | 97.23 34 | 88.60 84 | 93.58 55 | 97.27 38 | 85.22 54 | 99.54 20 | 92.21 66 | 98.74 31 | 98.56 25 |
|
| SD-MVS | | | 94.96 13 | 95.33 8 | 93.88 59 | 97.25 69 | 86.69 28 | 96.19 51 | 97.11 43 | 90.42 27 | 96.95 13 | 97.27 38 | 89.53 14 | 96.91 254 | 94.38 29 | 98.85 19 | 98.03 72 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ACMMPR | | | 94.43 24 | 94.28 30 | 94.91 21 | 98.63 9 | 86.69 28 | 96.94 20 | 97.32 27 | 88.63 82 | 93.53 58 | 97.26 40 | 85.04 58 | 99.54 20 | 92.35 62 | 98.78 25 | 98.50 27 |
|
| CP-MVS | | | 94.34 27 | 94.21 34 | 94.74 37 | 98.39 23 | 86.64 32 | 97.60 4 | 97.24 32 | 88.53 86 | 92.73 79 | 97.23 41 | 85.20 55 | 99.32 38 | 92.15 69 | 98.83 21 | 98.25 57 |
|
| patch_mono-2 | | | 93.74 47 | 94.32 26 | 92.01 134 | 97.54 57 | 78.37 259 | 93.40 219 | 97.19 35 | 88.02 103 | 94.99 35 | 97.21 42 | 88.35 21 | 98.44 124 | 94.07 32 | 98.09 64 | 99.23 1 |
|
| HFP-MVS | | | 94.52 20 | 94.40 23 | 94.86 24 | 98.61 10 | 86.81 25 | 96.94 20 | 97.34 23 | 88.63 82 | 93.65 53 | 97.21 42 | 86.10 45 | 99.49 26 | 92.35 62 | 98.77 27 | 98.30 47 |
|
| MP-MVS |  | | 94.25 29 | 94.07 39 | 94.77 35 | 98.47 18 | 86.31 44 | 96.71 31 | 96.98 49 | 89.04 68 | 91.98 96 | 97.19 44 | 85.43 52 | 99.56 12 | 92.06 75 | 98.79 23 | 98.44 37 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| APD-MVS |  | | 94.24 30 | 94.07 39 | 94.75 36 | 98.06 39 | 86.90 23 | 95.88 76 | 96.94 55 | 85.68 163 | 95.05 34 | 97.18 45 | 87.31 35 | 99.07 53 | 91.90 82 | 98.61 47 | 98.28 50 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| mPP-MVS | | | 93.99 41 | 93.78 47 | 94.63 40 | 98.50 16 | 85.90 60 | 96.87 26 | 96.91 58 | 88.70 80 | 91.83 105 | 97.17 46 | 83.96 71 | 99.55 16 | 91.44 88 | 98.64 44 | 98.43 38 |
|
| XVS | | | 94.45 22 | 94.32 26 | 94.85 25 | 98.54 13 | 86.60 34 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 71 | 97.16 47 | 85.02 59 | 99.49 26 | 91.99 76 | 98.56 49 | 98.47 33 |
|
| HPM-MVS_fast | | | 93.40 59 | 93.22 60 | 93.94 58 | 98.36 25 | 84.83 76 | 97.15 13 | 96.80 71 | 85.77 160 | 92.47 87 | 97.13 48 | 82.38 90 | 99.07 53 | 90.51 105 | 98.40 53 | 97.92 79 |
|
| OPU-MVS | | | | | 96.21 3 | 98.00 42 | 90.85 3 | 97.13 14 | | | | 97.08 49 | 92.59 2 | 98.94 78 | 92.25 65 | 98.99 14 | 98.84 14 |
|
| CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 8 | 98.11 36 | 88.51 7 | 95.29 107 | 96.96 52 | 92.09 6 | 95.32 31 | 97.08 49 | 89.49 15 | 99.33 37 | 95.10 24 | 98.85 19 | 98.66 20 |
|
| PC_three_1452 | | | | | | | | | | 82.47 237 | 97.09 10 | 97.07 51 | 92.72 1 | 98.04 163 | 92.70 55 | 99.02 12 | 98.86 11 |
|
| ZNCC-MVS | | | 94.47 21 | 94.28 30 | 95.03 16 | 98.52 15 | 86.96 20 | 96.85 28 | 97.32 27 | 88.24 94 | 93.15 63 | 97.04 52 | 86.17 44 | 99.62 2 | 92.40 59 | 98.81 22 | 98.52 26 |
|
| ACMMP |  | | 93.24 63 | 92.88 67 | 94.30 51 | 98.09 38 | 85.33 70 | 96.86 27 | 97.45 14 | 88.33 90 | 90.15 130 | 97.03 53 | 81.44 107 | 99.51 24 | 90.85 100 | 95.74 113 | 98.04 71 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DeepC-MVS_fast | | 89.43 2 | 94.04 38 | 93.79 46 | 94.80 33 | 97.48 61 | 86.78 26 | 95.65 91 | 96.89 60 | 89.40 55 | 92.81 74 | 96.97 54 | 85.37 53 | 99.24 43 | 90.87 99 | 98.69 36 | 98.38 41 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TSAR-MVS + MP. | | | 94.85 14 | 94.94 12 | 94.58 42 | 98.25 29 | 86.33 42 | 96.11 61 | 96.62 88 | 88.14 100 | 96.10 20 | 96.96 55 | 89.09 18 | 98.94 78 | 94.48 28 | 98.68 38 | 98.48 30 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| MSLP-MVS++ | | | 93.72 48 | 94.08 38 | 92.65 108 | 97.31 65 | 83.43 116 | 95.79 81 | 97.33 25 | 90.03 36 | 93.58 55 | 96.96 55 | 84.87 62 | 97.76 178 | 92.19 68 | 98.66 41 | 96.76 136 |
|
| ZD-MVS | | | | | | 98.15 34 | 86.62 33 | | 97.07 45 | 83.63 209 | 94.19 42 | 96.91 57 | 87.57 31 | 99.26 42 | 91.99 76 | 98.44 52 | |
|
| dcpmvs_2 | | | 93.49 52 | 94.19 36 | 91.38 168 | 97.69 54 | 76.78 291 | 94.25 174 | 96.29 107 | 88.33 90 | 94.46 38 | 96.88 58 | 88.07 25 | 98.64 100 | 93.62 38 | 98.09 64 | 98.73 17 |
|
| VDDNet | | | 89.56 136 | 88.49 153 | 92.76 101 | 95.07 148 | 82.09 158 | 96.30 44 | 93.19 269 | 81.05 275 | 91.88 101 | 96.86 59 | 61.16 331 | 98.33 135 | 88.43 126 | 92.49 183 | 97.84 84 |
|
| VDD-MVS | | | 90.74 103 | 89.92 115 | 93.20 77 | 96.27 93 | 83.02 133 | 95.73 83 | 93.86 256 | 88.42 89 | 92.53 83 | 96.84 60 | 62.09 318 | 98.64 100 | 90.95 97 | 92.62 179 | 97.93 78 |
|
| GST-MVS | | | 94.21 32 | 93.97 43 | 94.90 23 | 98.41 22 | 86.82 24 | 96.54 37 | 97.19 35 | 88.24 94 | 93.26 60 | 96.83 61 | 85.48 51 | 99.59 8 | 91.43 89 | 98.40 53 | 98.30 47 |
|
| HPM-MVS++ |  | | 95.14 10 | 94.91 13 | 95.83 4 | 98.25 29 | 89.65 4 | 95.92 75 | 96.96 52 | 91.75 9 | 94.02 47 | 96.83 61 | 88.12 24 | 99.55 16 | 93.41 42 | 98.94 16 | 98.28 50 |
|
| 旧先验1 | | | | | | 96.79 76 | 81.81 165 | | 95.67 162 | | | 96.81 63 | 86.69 37 | | | 97.66 80 | 96.97 126 |
|
| LFMVS | | | 90.08 118 | 89.13 132 | 92.95 92 | 96.71 77 | 82.32 156 | 96.08 62 | 89.91 353 | 86.79 133 | 92.15 93 | 96.81 63 | 62.60 316 | 98.34 133 | 87.18 142 | 93.90 151 | 98.19 60 |
|
| HPM-MVS |  | | 94.02 39 | 93.88 44 | 94.43 47 | 98.39 23 | 85.78 63 | 97.25 10 | 97.07 45 | 86.90 132 | 92.62 82 | 96.80 65 | 84.85 63 | 99.17 47 | 92.43 57 | 98.65 43 | 98.33 43 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 19 | 98.49 17 | 86.52 36 | 96.91 25 | 97.47 11 | 91.73 10 | 96.10 20 | 96.69 66 | 89.90 12 | 99.30 40 | 94.70 25 | 98.04 67 | 99.13 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| testdata | | | | | 90.49 205 | 96.40 89 | 77.89 271 | | 95.37 188 | 72.51 367 | 93.63 54 | 96.69 66 | 82.08 101 | 97.65 186 | 83.08 192 | 97.39 83 | 95.94 170 |
|
| EI-MVSNet-Vis-set | | | 93.01 69 | 92.92 66 | 93.29 73 | 95.01 150 | 83.51 115 | 94.48 156 | 95.77 153 | 90.87 15 | 92.52 84 | 96.67 68 | 84.50 66 | 99.00 68 | 91.99 76 | 94.44 145 | 97.36 102 |
|
| 3Dnovator | | 86.66 5 | 91.73 87 | 90.82 98 | 94.44 45 | 94.59 174 | 86.37 41 | 97.18 12 | 97.02 47 | 89.20 62 | 84.31 263 | 96.66 69 | 73.74 201 | 99.17 47 | 86.74 148 | 97.96 69 | 97.79 87 |
|
| test2506 | | | 87.21 221 | 86.28 218 | 90.02 229 | 95.62 124 | 73.64 327 | 96.25 49 | 71.38 405 | 87.89 109 | 90.45 123 | 96.65 70 | 55.29 362 | 98.09 158 | 86.03 157 | 96.94 91 | 98.33 43 |
|
| test1111 | | | 89.10 150 | 88.64 145 | 90.48 207 | 95.53 129 | 74.97 313 | 96.08 62 | 84.89 381 | 88.13 101 | 90.16 129 | 96.65 70 | 63.29 312 | 98.10 150 | 86.14 153 | 96.90 93 | 98.39 39 |
|
| ECVR-MVS |  | | 89.09 152 | 88.53 149 | 90.77 196 | 95.62 124 | 75.89 304 | 96.16 54 | 84.22 383 | 87.89 109 | 90.20 127 | 96.65 70 | 63.19 314 | 98.10 150 | 85.90 158 | 96.94 91 | 98.33 43 |
|
| CDPH-MVS | | | 92.83 71 | 92.30 77 | 94.44 45 | 97.79 49 | 86.11 49 | 94.06 189 | 96.66 85 | 80.09 283 | 92.77 76 | 96.63 73 | 86.62 38 | 99.04 57 | 87.40 138 | 98.66 41 | 98.17 62 |
|
| 3Dnovator+ | | 87.14 4 | 92.42 78 | 91.37 86 | 95.55 7 | 95.63 123 | 88.73 6 | 97.07 18 | 96.77 74 | 90.84 16 | 84.02 267 | 96.62 74 | 75.95 165 | 99.34 34 | 87.77 133 | 97.68 79 | 98.59 24 |
|
| EI-MVSNet-UG-set | | | 92.74 73 | 92.62 73 | 93.12 80 | 94.86 161 | 83.20 123 | 94.40 164 | 95.74 156 | 90.71 23 | 92.05 94 | 96.60 75 | 84.00 70 | 98.99 70 | 91.55 86 | 93.63 155 | 97.17 110 |
|
| NCCC | | | 94.81 15 | 94.69 18 | 95.17 14 | 97.83 48 | 87.46 17 | 95.66 89 | 96.93 56 | 92.34 4 | 93.94 48 | 96.58 76 | 87.74 27 | 99.44 29 | 92.83 50 | 98.40 53 | 98.62 21 |
|
| Vis-MVSNet |  | | 91.75 86 | 91.23 89 | 93.29 73 | 95.32 134 | 83.78 105 | 96.14 58 | 95.98 136 | 89.89 39 | 90.45 123 | 96.58 76 | 75.09 177 | 98.31 138 | 84.75 172 | 96.90 93 | 97.78 88 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test_vis1_n_1920 | | | 89.39 145 | 89.84 116 | 88.04 290 | 92.97 245 | 72.64 339 | 94.71 145 | 96.03 135 | 86.18 151 | 91.94 100 | 96.56 78 | 61.63 321 | 95.74 315 | 93.42 41 | 95.11 130 | 95.74 180 |
|
| UA-Net | | | 92.83 71 | 92.54 74 | 93.68 68 | 96.10 100 | 84.71 79 | 95.66 89 | 96.39 101 | 91.92 7 | 93.22 62 | 96.49 79 | 83.16 79 | 98.87 82 | 84.47 176 | 95.47 120 | 97.45 101 |
|
| MG-MVS | | | 91.77 85 | 91.70 84 | 92.00 137 | 97.08 71 | 80.03 219 | 93.60 213 | 95.18 196 | 87.85 111 | 90.89 119 | 96.47 80 | 82.06 102 | 98.36 130 | 85.07 166 | 97.04 89 | 97.62 92 |
|
| CPTT-MVS | | | 91.99 81 | 91.80 82 | 92.55 113 | 98.24 31 | 81.98 161 | 96.76 30 | 96.49 95 | 81.89 253 | 90.24 126 | 96.44 81 | 78.59 138 | 98.61 105 | 89.68 111 | 97.85 73 | 97.06 117 |
|
| test_prior2 | | | | | | | | 94.12 181 | | 87.67 116 | 92.63 81 | 96.39 82 | 86.62 38 | | 91.50 87 | 98.67 40 | |
|
| MCST-MVS | | | 94.45 22 | 94.20 35 | 95.19 13 | 98.46 19 | 87.50 15 | 95.00 126 | 97.12 41 | 87.13 124 | 92.51 85 | 96.30 83 | 89.24 17 | 99.34 34 | 93.46 39 | 98.62 45 | 98.73 17 |
|
| PHI-MVS | | | 93.89 43 | 93.65 54 | 94.62 41 | 96.84 75 | 86.43 39 | 96.69 32 | 97.49 6 | 85.15 177 | 93.56 57 | 96.28 84 | 85.60 49 | 99.31 39 | 92.45 56 | 98.79 23 | 98.12 66 |
|
| æ–°å‡ ä½•1 | | | | | 93.10 81 | 97.30 66 | 84.35 94 | | 95.56 170 | 71.09 375 | 91.26 116 | 96.24 85 | 82.87 85 | 98.86 84 | 79.19 263 | 98.10 63 | 96.07 165 |
|
| CS-MVS | | | 94.12 37 | 94.44 22 | 93.17 78 | 96.55 84 | 83.08 131 | 97.63 3 | 96.95 54 | 91.71 11 | 93.50 59 | 96.21 86 | 85.61 48 | 98.24 140 | 93.64 37 | 98.17 59 | 98.19 60 |
|
| TEST9 | | | | | | 97.53 58 | 86.49 37 | 94.07 187 | 96.78 72 | 81.61 263 | 92.77 76 | 96.20 87 | 87.71 28 | 99.12 51 | | | |
|
| train_agg | | | 93.44 55 | 93.08 62 | 94.52 44 | 97.53 58 | 86.49 37 | 94.07 187 | 96.78 72 | 81.86 254 | 92.77 76 | 96.20 87 | 87.63 29 | 99.12 51 | 92.14 70 | 98.69 36 | 97.94 76 |
|
| test_8 | | | | | | 97.49 60 | 86.30 45 | 94.02 192 | 96.76 75 | 81.86 254 | 92.70 80 | 96.20 87 | 87.63 29 | 99.02 61 | | | |
|
| QAPM | | | 89.51 137 | 88.15 162 | 93.59 70 | 94.92 157 | 84.58 81 | 96.82 29 | 96.70 83 | 78.43 309 | 83.41 282 | 96.19 90 | 73.18 208 | 99.30 40 | 77.11 283 | 96.54 102 | 96.89 131 |
|
| casdiffmvs |  | | 92.51 76 | 92.43 76 | 92.74 103 | 94.41 187 | 81.98 161 | 94.54 154 | 96.23 116 | 89.57 51 | 91.96 98 | 96.17 91 | 82.58 88 | 98.01 165 | 90.95 97 | 95.45 122 | 98.23 58 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test222 | | | | | | 96.55 84 | 81.70 167 | 92.22 266 | 95.01 203 | 68.36 381 | 90.20 127 | 96.14 92 | 80.26 116 | | | 97.80 75 | 96.05 168 |
|
| OMC-MVS | | | 91.23 95 | 90.62 100 | 93.08 83 | 96.27 93 | 84.07 98 | 93.52 215 | 95.93 140 | 86.95 129 | 89.51 136 | 96.13 93 | 78.50 140 | 98.35 132 | 85.84 160 | 92.90 173 | 96.83 135 |
|
| OpenMVS |  | 83.78 11 | 88.74 166 | 87.29 183 | 93.08 83 | 92.70 252 | 85.39 69 | 96.57 36 | 96.43 97 | 78.74 304 | 80.85 312 | 96.07 94 | 69.64 251 | 99.01 63 | 78.01 274 | 96.65 101 | 94.83 214 |
|
| casdiffmvs_mvg |  | | 92.96 70 | 92.83 68 | 93.35 72 | 94.59 174 | 83.40 118 | 95.00 126 | 96.34 104 | 90.30 30 | 92.05 94 | 96.05 95 | 83.43 75 | 98.15 147 | 92.07 72 | 95.67 114 | 98.49 29 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_cas_vis1_n_1920 | | | 88.83 165 | 88.85 143 | 88.78 269 | 91.15 305 | 76.72 292 | 93.85 203 | 94.93 210 | 83.23 223 | 92.81 74 | 96.00 96 | 61.17 330 | 94.45 336 | 91.67 85 | 94.84 132 | 95.17 199 |
|
| baseline | | | 92.39 79 | 92.29 78 | 92.69 107 | 94.46 183 | 81.77 166 | 94.14 180 | 96.27 111 | 89.22 61 | 91.88 101 | 96.00 96 | 82.35 91 | 97.99 167 | 91.05 92 | 95.27 128 | 98.30 47 |
|
| IS-MVSNet | | | 91.43 91 | 91.09 93 | 92.46 117 | 95.87 114 | 81.38 179 | 96.95 19 | 93.69 262 | 89.72 49 | 89.50 137 | 95.98 98 | 78.57 139 | 97.77 177 | 83.02 194 | 96.50 104 | 98.22 59 |
|
| LS3D | | | 87.89 187 | 86.32 216 | 92.59 111 | 96.07 103 | 82.92 137 | 95.23 111 | 94.92 211 | 75.66 335 | 82.89 289 | 95.98 98 | 72.48 217 | 99.21 45 | 68.43 344 | 95.23 129 | 95.64 184 |
|
| 原ACMM1 | | | | | 92.01 134 | 97.34 64 | 81.05 188 | | 96.81 70 | 78.89 299 | 90.45 123 | 95.92 100 | 82.65 87 | 98.84 88 | 80.68 242 | 98.26 58 | 96.14 159 |
|
| VNet | | | 92.24 80 | 91.91 81 | 93.24 75 | 96.59 82 | 83.43 116 | 94.84 136 | 96.44 96 | 89.19 63 | 94.08 46 | 95.90 101 | 77.85 149 | 98.17 145 | 88.90 120 | 93.38 164 | 98.13 64 |
|
| CANet | | | 93.54 51 | 93.20 61 | 94.55 43 | 95.65 122 | 85.73 65 | 94.94 129 | 96.69 84 | 91.89 8 | 90.69 121 | 95.88 102 | 81.99 104 | 99.54 20 | 93.14 46 | 97.95 70 | 98.39 39 |
|
| MVS_111021_HR | | | 93.45 54 | 93.31 57 | 93.84 61 | 96.99 72 | 84.84 75 | 93.24 231 | 97.24 32 | 88.76 77 | 91.60 110 | 95.85 103 | 86.07 46 | 98.66 98 | 91.91 80 | 98.16 60 | 98.03 72 |
|
| mvsany_test1 | | | 85.42 266 | 85.30 253 | 85.77 333 | 87.95 367 | 75.41 310 | 87.61 357 | 80.97 391 | 76.82 325 | 88.68 149 | 95.83 104 | 77.44 150 | 90.82 379 | 85.90 158 | 86.51 269 | 91.08 352 |
|
| DP-MVS Recon | | | 91.95 82 | 91.28 88 | 93.96 57 | 98.33 27 | 85.92 57 | 94.66 148 | 96.66 85 | 82.69 235 | 90.03 132 | 95.82 105 | 82.30 94 | 99.03 58 | 84.57 174 | 96.48 105 | 96.91 130 |
|
| EC-MVSNet | | | 93.44 55 | 93.71 51 | 92.63 109 | 95.21 141 | 82.43 151 | 97.27 9 | 96.71 82 | 90.57 26 | 92.88 70 | 95.80 106 | 83.16 79 | 98.16 146 | 93.68 36 | 98.14 61 | 97.31 103 |
|
| EPNet | | | 91.79 84 | 91.02 94 | 94.10 54 | 90.10 338 | 85.25 71 | 96.03 68 | 92.05 300 | 92.83 3 | 87.39 175 | 95.78 107 | 79.39 128 | 99.01 63 | 88.13 129 | 97.48 81 | 98.05 70 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CS-MVS-test | | | 94.02 39 | 94.29 29 | 93.24 75 | 96.69 78 | 83.24 121 | 97.49 5 | 96.92 57 | 92.14 5 | 92.90 69 | 95.77 108 | 85.02 59 | 98.33 135 | 93.03 47 | 98.62 45 | 98.13 64 |
|
| XVG-OURS | | | 89.40 144 | 88.70 144 | 91.52 161 | 94.06 201 | 81.46 176 | 91.27 291 | 96.07 130 | 86.14 153 | 88.89 147 | 95.77 108 | 68.73 268 | 97.26 230 | 87.39 139 | 89.96 212 | 95.83 176 |
|
| XVG-OURS-SEG-HR | | | 89.95 124 | 89.45 122 | 91.47 165 | 94.00 207 | 81.21 184 | 91.87 275 | 96.06 132 | 85.78 159 | 88.55 151 | 95.73 110 | 74.67 185 | 97.27 228 | 88.71 123 | 89.64 221 | 95.91 171 |
|
| MVS_111021_LR | | | 92.47 77 | 92.29 78 | 92.98 89 | 95.99 109 | 84.43 91 | 93.08 236 | 96.09 128 | 88.20 98 | 91.12 117 | 95.72 111 | 81.33 109 | 97.76 178 | 91.74 83 | 97.37 84 | 96.75 137 |
|
| CSCG | | | 93.23 64 | 93.05 63 | 93.76 66 | 98.04 40 | 84.07 98 | 96.22 50 | 97.37 21 | 84.15 197 | 90.05 131 | 95.66 112 | 87.77 26 | 99.15 50 | 89.91 110 | 98.27 57 | 98.07 68 |
|
| h-mvs33 | | | 90.80 101 | 90.15 107 | 92.75 102 | 96.01 105 | 82.66 147 | 95.43 99 | 95.53 174 | 89.80 43 | 93.08 65 | 95.64 113 | 75.77 166 | 99.00 68 | 92.07 72 | 78.05 353 | 96.60 142 |
|
| EPP-MVSNet | | | 91.70 88 | 91.56 85 | 92.13 133 | 95.88 112 | 80.50 204 | 97.33 7 | 95.25 192 | 86.15 152 | 89.76 134 | 95.60 114 | 83.42 77 | 98.32 137 | 87.37 140 | 93.25 167 | 97.56 97 |
|
| TSAR-MVS + GP. | | | 93.66 49 | 93.41 56 | 94.41 49 | 96.59 82 | 86.78 26 | 94.40 164 | 93.93 252 | 89.77 47 | 94.21 41 | 95.59 115 | 87.35 34 | 98.61 105 | 92.72 53 | 96.15 110 | 97.83 85 |
|
| test_fmvs1_n | | | 87.03 229 | 87.04 190 | 86.97 315 | 89.74 346 | 71.86 346 | 94.55 153 | 94.43 232 | 78.47 307 | 91.95 99 | 95.50 116 | 51.16 375 | 93.81 349 | 93.02 48 | 94.56 140 | 95.26 196 |
|
| Anonymous202405211 | | | 87.68 193 | 86.13 223 | 92.31 126 | 96.66 79 | 80.74 198 | 94.87 134 | 91.49 318 | 80.47 279 | 89.46 138 | 95.44 117 | 54.72 364 | 98.23 141 | 82.19 211 | 89.89 214 | 97.97 74 |
|
| TAPA-MVS | | 84.62 6 | 88.16 181 | 87.01 191 | 91.62 158 | 96.64 80 | 80.65 199 | 94.39 166 | 96.21 120 | 76.38 328 | 86.19 204 | 95.44 117 | 79.75 121 | 98.08 160 | 62.75 372 | 95.29 126 | 96.13 160 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| OPM-MVS | | | 90.12 117 | 89.56 120 | 91.82 151 | 93.14 235 | 83.90 102 | 94.16 179 | 95.74 156 | 88.96 73 | 87.86 162 | 95.43 119 | 72.48 217 | 97.91 173 | 88.10 131 | 90.18 209 | 93.65 277 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet (Re-imp) | | | 89.59 135 | 89.44 123 | 90.03 227 | 95.74 117 | 75.85 305 | 95.61 93 | 90.80 337 | 87.66 117 | 87.83 164 | 95.40 120 | 76.79 155 | 96.46 280 | 78.37 267 | 96.73 98 | 97.80 86 |
|
| test_vis1_n | | | 86.56 244 | 86.49 211 | 86.78 322 | 88.51 356 | 72.69 336 | 94.68 146 | 93.78 260 | 79.55 290 | 90.70 120 | 95.31 121 | 48.75 380 | 93.28 357 | 93.15 45 | 93.99 149 | 94.38 239 |
|
| EI-MVSNet | | | 89.10 150 | 88.86 142 | 89.80 240 | 91.84 277 | 78.30 261 | 93.70 210 | 95.01 203 | 85.73 161 | 87.15 177 | 95.28 122 | 79.87 120 | 97.21 235 | 83.81 185 | 87.36 261 | 93.88 260 |
|
| CVMVSNet | | | 84.69 282 | 84.79 265 | 84.37 346 | 91.84 277 | 64.92 382 | 93.70 210 | 91.47 319 | 66.19 384 | 86.16 205 | 95.28 122 | 67.18 279 | 93.33 356 | 80.89 238 | 90.42 206 | 94.88 212 |
|
| 114514_t | | | 89.51 137 | 88.50 151 | 92.54 114 | 98.11 36 | 81.99 160 | 95.16 118 | 96.36 103 | 70.19 378 | 85.81 209 | 95.25 124 | 76.70 157 | 98.63 102 | 82.07 215 | 96.86 96 | 97.00 122 |
|
| test_fmvs1 | | | 87.34 212 | 87.56 176 | 86.68 323 | 90.59 328 | 71.80 348 | 94.01 193 | 94.04 250 | 78.30 311 | 91.97 97 | 95.22 125 | 56.28 356 | 93.71 351 | 92.89 49 | 94.71 134 | 94.52 227 |
|
| RPSCF | | | 85.07 274 | 84.27 271 | 87.48 302 | 92.91 247 | 70.62 361 | 91.69 281 | 92.46 285 | 76.20 332 | 82.67 292 | 95.22 125 | 63.94 307 | 97.29 227 | 77.51 279 | 85.80 273 | 94.53 226 |
|
| Anonymous20240529 | | | 88.09 183 | 86.59 206 | 92.58 112 | 96.53 86 | 81.92 163 | 95.99 71 | 95.84 149 | 74.11 352 | 89.06 145 | 95.21 127 | 61.44 324 | 98.81 89 | 83.67 188 | 87.47 258 | 97.01 121 |
|
| SDMVSNet | | | 90.19 116 | 89.61 119 | 91.93 142 | 96.00 106 | 83.09 130 | 92.89 243 | 95.98 136 | 88.73 78 | 86.85 187 | 95.20 128 | 72.09 221 | 97.08 242 | 88.90 120 | 89.85 216 | 95.63 185 |
|
| sd_testset | | | 88.59 171 | 87.85 170 | 90.83 193 | 96.00 106 | 80.42 206 | 92.35 260 | 94.71 225 | 88.73 78 | 86.85 187 | 95.20 128 | 67.31 275 | 96.43 282 | 79.64 256 | 89.85 216 | 95.63 185 |
|
| LPG-MVS_test | | | 89.45 140 | 88.90 140 | 91.12 178 | 94.47 181 | 81.49 174 | 95.30 105 | 96.14 122 | 86.73 136 | 85.45 225 | 95.16 130 | 69.89 247 | 98.10 150 | 87.70 134 | 89.23 229 | 93.77 271 |
|
| LGP-MVS_train | | | | | 91.12 178 | 94.47 181 | 81.49 174 | | 96.14 122 | 86.73 136 | 85.45 225 | 95.16 130 | 69.89 247 | 98.10 150 | 87.70 134 | 89.23 229 | 93.77 271 |
|
| CNLPA | | | 89.07 154 | 87.98 166 | 92.34 124 | 96.87 74 | 84.78 78 | 94.08 186 | 93.24 267 | 81.41 266 | 84.46 253 | 95.13 132 | 75.57 173 | 96.62 264 | 77.21 281 | 93.84 153 | 95.61 187 |
|
| DELS-MVS | | | 93.43 58 | 93.25 59 | 93.97 56 | 95.42 131 | 85.04 72 | 93.06 238 | 97.13 40 | 90.74 21 | 91.84 103 | 95.09 133 | 86.32 42 | 99.21 45 | 91.22 90 | 98.45 51 | 97.65 91 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| DPM-MVS | | | 92.58 75 | 91.74 83 | 95.08 15 | 96.19 95 | 89.31 5 | 92.66 250 | 96.56 93 | 83.44 215 | 91.68 109 | 95.04 134 | 86.60 40 | 98.99 70 | 85.60 162 | 97.92 71 | 96.93 128 |
|
| DP-MVS | | | 87.25 217 | 85.36 251 | 92.90 94 | 97.65 55 | 83.24 121 | 94.81 138 | 92.00 302 | 74.99 343 | 81.92 301 | 95.00 135 | 72.66 214 | 99.05 55 | 66.92 356 | 92.33 184 | 96.40 149 |
|
| diffmvs |  | | 91.37 93 | 91.23 89 | 91.77 154 | 93.09 237 | 80.27 208 | 92.36 259 | 95.52 175 | 87.03 127 | 91.40 114 | 94.93 136 | 80.08 117 | 97.44 208 | 92.13 71 | 94.56 140 | 97.61 93 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVSFormer | | | 91.68 89 | 91.30 87 | 92.80 99 | 93.86 212 | 83.88 103 | 95.96 73 | 95.90 144 | 84.66 191 | 91.76 106 | 94.91 137 | 77.92 146 | 97.30 224 | 89.64 112 | 97.11 86 | 97.24 106 |
|
| jason | | | 90.80 101 | 90.10 108 | 92.90 94 | 93.04 241 | 83.53 114 | 93.08 236 | 94.15 245 | 80.22 280 | 91.41 113 | 94.91 137 | 76.87 153 | 97.93 172 | 90.28 109 | 96.90 93 | 97.24 106 |
| jason: jason. |
| alignmvs | | | 93.08 67 | 92.50 75 | 94.81 32 | 95.62 124 | 87.61 14 | 95.99 71 | 96.07 130 | 89.77 47 | 94.12 43 | 94.87 139 | 80.56 113 | 98.66 98 | 92.42 58 | 93.10 170 | 98.15 63 |
|
| HQP_MVS | | | 90.60 111 | 90.19 105 | 91.82 151 | 94.70 169 | 82.73 143 | 95.85 77 | 96.22 117 | 90.81 17 | 86.91 183 | 94.86 140 | 74.23 189 | 98.12 148 | 88.15 127 | 89.99 210 | 94.63 219 |
|
| plane_prior4 | | | | | | | | | | | | 94.86 140 | | | | | |
|
| nrg030 | | | 91.08 99 | 90.39 101 | 93.17 78 | 93.07 238 | 86.91 22 | 96.41 39 | 96.26 112 | 88.30 92 | 88.37 155 | 94.85 142 | 82.19 98 | 97.64 189 | 91.09 91 | 82.95 298 | 94.96 207 |
|
| mvsmamba | | | 89.96 123 | 89.50 121 | 91.33 171 | 92.90 248 | 81.82 164 | 96.68 33 | 92.37 288 | 89.03 69 | 87.00 179 | 94.85 142 | 73.05 209 | 97.65 186 | 91.03 93 | 88.63 237 | 94.51 229 |
|
| BH-RMVSNet | | | 88.37 175 | 87.48 178 | 91.02 186 | 95.28 136 | 79.45 234 | 92.89 243 | 93.07 271 | 85.45 169 | 86.91 183 | 94.84 144 | 70.35 242 | 97.76 178 | 73.97 310 | 94.59 139 | 95.85 174 |
|
| PAPM_NR | | | 91.22 96 | 90.78 99 | 92.52 115 | 97.60 56 | 81.46 176 | 94.37 170 | 96.24 115 | 86.39 144 | 87.41 172 | 94.80 145 | 82.06 102 | 98.48 114 | 82.80 200 | 95.37 124 | 97.61 93 |
|
| RRT_MVS | | | 89.09 152 | 88.62 148 | 90.49 205 | 92.85 249 | 79.65 230 | 96.41 39 | 94.41 234 | 88.22 96 | 85.50 221 | 94.77 146 | 69.36 255 | 97.31 223 | 89.33 115 | 86.73 268 | 94.51 229 |
|
| GeoE | | | 90.05 119 | 89.43 124 | 91.90 147 | 95.16 143 | 80.37 207 | 95.80 80 | 94.65 228 | 83.90 202 | 87.55 171 | 94.75 147 | 78.18 144 | 97.62 191 | 81.28 230 | 93.63 155 | 97.71 90 |
|
| test_yl | | | 90.69 105 | 90.02 113 | 92.71 104 | 95.72 118 | 82.41 154 | 94.11 182 | 95.12 198 | 85.63 164 | 91.49 111 | 94.70 148 | 74.75 181 | 98.42 128 | 86.13 155 | 92.53 181 | 97.31 103 |
|
| DCV-MVSNet | | | 90.69 105 | 90.02 113 | 92.71 104 | 95.72 118 | 82.41 154 | 94.11 182 | 95.12 198 | 85.63 164 | 91.49 111 | 94.70 148 | 74.75 181 | 98.42 128 | 86.13 155 | 92.53 181 | 97.31 103 |
|
| FIs | | | 90.51 112 | 90.35 102 | 90.99 189 | 93.99 208 | 80.98 190 | 95.73 83 | 97.54 4 | 89.15 64 | 86.72 190 | 94.68 150 | 81.83 106 | 97.24 232 | 85.18 165 | 88.31 246 | 94.76 217 |
|
| FC-MVSNet-test | | | 90.27 114 | 90.18 106 | 90.53 201 | 93.71 219 | 79.85 226 | 95.77 82 | 97.59 3 | 89.31 58 | 86.27 201 | 94.67 151 | 81.93 105 | 97.01 248 | 84.26 178 | 88.09 249 | 94.71 218 |
|
| MGCFI-Net | | | 93.03 68 | 92.63 72 | 94.23 53 | 95.62 124 | 85.92 57 | 96.08 62 | 96.33 105 | 89.86 41 | 93.89 50 | 94.66 152 | 82.11 99 | 98.50 112 | 92.33 64 | 92.82 177 | 98.27 52 |
|
| AdaColmap |  | | 89.89 127 | 89.07 133 | 92.37 123 | 97.41 62 | 83.03 132 | 94.42 163 | 95.92 141 | 82.81 232 | 86.34 200 | 94.65 153 | 73.89 197 | 99.02 61 | 80.69 241 | 95.51 117 | 95.05 202 |
|
| F-COLMAP | | | 87.95 186 | 86.80 196 | 91.40 167 | 96.35 92 | 80.88 194 | 94.73 143 | 95.45 180 | 79.65 289 | 82.04 299 | 94.61 154 | 71.13 228 | 98.50 112 | 76.24 292 | 91.05 198 | 94.80 216 |
|
| sasdasda | | | 93.27 61 | 92.75 69 | 94.85 25 | 95.70 120 | 87.66 12 | 96.33 42 | 96.41 99 | 90.00 37 | 94.09 44 | 94.60 155 | 82.33 92 | 98.62 103 | 92.40 59 | 92.86 174 | 98.27 52 |
|
| canonicalmvs | | | 93.27 61 | 92.75 69 | 94.85 25 | 95.70 120 | 87.66 12 | 96.33 42 | 96.41 99 | 90.00 37 | 94.09 44 | 94.60 155 | 82.33 92 | 98.62 103 | 92.40 59 | 92.86 174 | 98.27 52 |
|
| tttt0517 | | | 88.61 169 | 87.78 171 | 91.11 181 | 94.96 154 | 77.81 274 | 95.35 101 | 89.69 357 | 85.09 179 | 88.05 160 | 94.59 157 | 66.93 281 | 98.48 114 | 83.27 191 | 92.13 186 | 97.03 120 |
|
| VPNet | | | 88.20 180 | 87.47 179 | 90.39 212 | 93.56 225 | 79.46 233 | 94.04 190 | 95.54 173 | 88.67 81 | 86.96 180 | 94.58 158 | 69.33 256 | 97.15 237 | 84.05 181 | 80.53 336 | 94.56 225 |
|
| UniMVSNet_ETH3D | | | 87.53 204 | 86.37 213 | 91.00 188 | 92.44 258 | 78.96 247 | 94.74 142 | 95.61 168 | 84.07 199 | 85.36 235 | 94.52 159 | 59.78 339 | 97.34 222 | 82.93 195 | 87.88 252 | 96.71 139 |
|
| PVSNet_Blended_VisFu | | | 91.38 92 | 90.91 96 | 92.80 99 | 96.39 90 | 83.17 124 | 94.87 134 | 96.66 85 | 83.29 220 | 89.27 140 | 94.46 160 | 80.29 115 | 99.17 47 | 87.57 136 | 95.37 124 | 96.05 168 |
|
| bld_raw_dy_0_64 | | | 88.86 160 | 87.75 172 | 92.21 131 | 95.12 146 | 81.19 185 | 95.56 96 | 91.29 323 | 85.30 173 | 89.10 142 | 94.38 161 | 59.04 345 | 98.44 124 | 90.50 106 | 89.43 223 | 96.99 123 |
|
| ACMM | | 84.12 9 | 89.14 149 | 88.48 154 | 91.12 178 | 94.65 172 | 81.22 183 | 95.31 103 | 96.12 125 | 85.31 172 | 85.92 208 | 94.34 162 | 70.19 245 | 98.06 162 | 85.65 161 | 88.86 235 | 94.08 252 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PCF-MVS | | 84.11 10 | 87.74 192 | 86.08 227 | 92.70 106 | 94.02 203 | 84.43 91 | 89.27 331 | 95.87 147 | 73.62 357 | 84.43 255 | 94.33 163 | 78.48 141 | 98.86 84 | 70.27 330 | 94.45 144 | 94.81 215 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| WTY-MVS | | | 89.60 134 | 88.92 138 | 91.67 157 | 95.47 130 | 81.15 186 | 92.38 258 | 94.78 222 | 83.11 224 | 89.06 145 | 94.32 164 | 78.67 137 | 96.61 267 | 81.57 227 | 90.89 200 | 97.24 106 |
|
| ACMP | | 84.23 8 | 89.01 158 | 88.35 155 | 90.99 189 | 94.73 166 | 81.27 180 | 95.07 122 | 95.89 146 | 86.48 140 | 83.67 275 | 94.30 165 | 69.33 256 | 97.99 167 | 87.10 147 | 88.55 238 | 93.72 275 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| cdsmvs_eth3d_5k | | | 22.14 374 | 29.52 377 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 95.76 154 | 0.00 411 | 0.00 412 | 94.29 166 | 75.66 172 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| PS-MVSNAJss | | | 89.97 122 | 89.62 118 | 91.02 186 | 91.90 275 | 80.85 195 | 95.26 110 | 95.98 136 | 86.26 147 | 86.21 203 | 94.29 166 | 79.70 123 | 97.65 186 | 88.87 122 | 88.10 247 | 94.57 224 |
|
| lupinMVS | | | 90.92 100 | 90.21 104 | 93.03 86 | 93.86 212 | 83.88 103 | 92.81 247 | 93.86 256 | 79.84 286 | 91.76 106 | 94.29 166 | 77.92 146 | 98.04 163 | 90.48 108 | 97.11 86 | 97.17 110 |
|
| API-MVS | | | 90.66 107 | 90.07 109 | 92.45 118 | 96.36 91 | 84.57 82 | 96.06 66 | 95.22 195 | 82.39 238 | 89.13 141 | 94.27 169 | 80.32 114 | 98.46 118 | 80.16 250 | 96.71 99 | 94.33 240 |
|
| CANet_DTU | | | 90.26 115 | 89.41 125 | 92.81 98 | 93.46 228 | 83.01 134 | 93.48 216 | 94.47 231 | 89.43 54 | 87.76 167 | 94.23 170 | 70.54 241 | 99.03 58 | 84.97 167 | 96.39 106 | 96.38 150 |
|
| PLC |  | 84.53 7 | 89.06 155 | 88.03 165 | 92.15 132 | 97.27 68 | 82.69 146 | 94.29 172 | 95.44 182 | 79.71 288 | 84.01 268 | 94.18 171 | 76.68 158 | 98.75 93 | 77.28 280 | 93.41 163 | 95.02 203 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| iter_conf05 | | | 88.85 161 | 88.08 164 | 91.17 177 | 94.27 194 | 81.64 168 | 95.18 115 | 92.15 297 | 86.23 149 | 87.28 176 | 94.07 172 | 63.89 309 | 97.55 195 | 90.63 102 | 89.00 233 | 94.32 241 |
|
| xiu_mvs_v1_base_debu | | | 90.64 108 | 90.05 110 | 92.40 120 | 93.97 209 | 84.46 88 | 93.32 222 | 95.46 177 | 85.17 174 | 92.25 89 | 94.03 173 | 70.59 237 | 98.57 109 | 90.97 94 | 94.67 135 | 94.18 244 |
|
| xiu_mvs_v1_base | | | 90.64 108 | 90.05 110 | 92.40 120 | 93.97 209 | 84.46 88 | 93.32 222 | 95.46 177 | 85.17 174 | 92.25 89 | 94.03 173 | 70.59 237 | 98.57 109 | 90.97 94 | 94.67 135 | 94.18 244 |
|
| xiu_mvs_v1_base_debi | | | 90.64 108 | 90.05 110 | 92.40 120 | 93.97 209 | 84.46 88 | 93.32 222 | 95.46 177 | 85.17 174 | 92.25 89 | 94.03 173 | 70.59 237 | 98.57 109 | 90.97 94 | 94.67 135 | 94.18 244 |
|
| jajsoiax | | | 88.24 179 | 87.50 177 | 90.48 207 | 90.89 318 | 80.14 212 | 95.31 103 | 95.65 166 | 84.97 181 | 84.24 264 | 94.02 176 | 65.31 299 | 97.42 210 | 88.56 124 | 88.52 240 | 93.89 258 |
|
| XXY-MVS | | | 87.65 195 | 86.85 194 | 90.03 227 | 92.14 265 | 80.60 202 | 93.76 206 | 95.23 193 | 82.94 229 | 84.60 248 | 94.02 176 | 74.27 188 | 95.49 325 | 81.04 233 | 83.68 291 | 94.01 256 |
|
| baseline1 | | | 88.10 182 | 87.28 184 | 90.57 199 | 94.96 154 | 80.07 215 | 94.27 173 | 91.29 323 | 86.74 135 | 87.41 172 | 94.00 178 | 76.77 156 | 96.20 293 | 80.77 239 | 79.31 349 | 95.44 189 |
|
| NP-MVS | | | | | | 94.37 188 | 82.42 152 | | | | | 93.98 179 | | | | | |
|
| HQP-MVS | | | 89.80 130 | 89.28 130 | 91.34 170 | 94.17 197 | 81.56 170 | 94.39 166 | 96.04 133 | 88.81 74 | 85.43 228 | 93.97 180 | 73.83 199 | 97.96 169 | 87.11 145 | 89.77 219 | 94.50 232 |
|
| iter_conf05_11 | | | 89.88 128 | 89.04 135 | 92.41 119 | 95.12 146 | 81.63 169 | 92.87 245 | 92.45 286 | 86.21 150 | 92.48 86 | 93.95 181 | 59.05 344 | 98.60 107 | 90.50 106 | 98.72 32 | 96.99 123 |
|
| mvs_tets | | | 88.06 185 | 87.28 184 | 90.38 214 | 90.94 314 | 79.88 224 | 95.22 112 | 95.66 164 | 85.10 178 | 84.21 265 | 93.94 182 | 63.53 310 | 97.40 217 | 88.50 125 | 88.40 244 | 93.87 261 |
|
| CHOSEN 1792x2688 | | | 88.84 162 | 87.69 173 | 92.30 127 | 96.14 96 | 81.42 178 | 90.01 319 | 95.86 148 | 74.52 348 | 87.41 172 | 93.94 182 | 75.46 174 | 98.36 130 | 80.36 246 | 95.53 116 | 97.12 115 |
|
| UGNet | | | 89.95 124 | 88.95 137 | 92.95 92 | 94.51 180 | 83.31 120 | 95.70 85 | 95.23 193 | 89.37 56 | 87.58 169 | 93.94 182 | 64.00 306 | 98.78 91 | 83.92 183 | 96.31 107 | 96.74 138 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| TAMVS | | | 89.21 148 | 88.29 159 | 91.96 140 | 93.71 219 | 82.62 149 | 93.30 226 | 94.19 243 | 82.22 242 | 87.78 166 | 93.94 182 | 78.83 133 | 96.95 251 | 77.70 276 | 92.98 172 | 96.32 151 |
|
| sss | | | 88.93 159 | 88.26 161 | 90.94 192 | 94.05 202 | 80.78 197 | 91.71 279 | 95.38 186 | 81.55 264 | 88.63 150 | 93.91 186 | 75.04 178 | 95.47 326 | 82.47 204 | 91.61 188 | 96.57 145 |
|
| 1112_ss | | | 88.42 173 | 87.33 182 | 91.72 155 | 94.92 157 | 80.98 190 | 92.97 241 | 94.54 229 | 78.16 315 | 83.82 271 | 93.88 187 | 78.78 135 | 97.91 173 | 79.45 258 | 89.41 224 | 96.26 155 |
|
| ab-mvs-re | | | 7.82 378 | 10.43 381 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 93.88 187 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| TranMVSNet+NR-MVSNet | | | 88.84 162 | 87.95 167 | 91.49 163 | 92.68 253 | 83.01 134 | 94.92 131 | 96.31 106 | 89.88 40 | 85.53 218 | 93.85 189 | 76.63 159 | 96.96 250 | 81.91 219 | 79.87 344 | 94.50 232 |
|
| mvs_anonymous | | | 89.37 146 | 89.32 128 | 89.51 253 | 93.47 227 | 74.22 322 | 91.65 282 | 94.83 218 | 82.91 230 | 85.45 225 | 93.79 190 | 81.23 110 | 96.36 287 | 86.47 152 | 94.09 148 | 97.94 76 |
|
| thisisatest0530 | | | 88.67 167 | 87.61 175 | 91.86 148 | 94.87 160 | 80.07 215 | 94.63 149 | 89.90 354 | 84.00 200 | 88.46 153 | 93.78 191 | 66.88 283 | 98.46 118 | 83.30 190 | 92.65 178 | 97.06 117 |
|
| MVS_Test | | | 91.31 94 | 91.11 91 | 91.93 142 | 94.37 188 | 80.14 212 | 93.46 218 | 95.80 151 | 86.46 142 | 91.35 115 | 93.77 192 | 82.21 97 | 98.09 158 | 87.57 136 | 94.95 131 | 97.55 98 |
|
| COLMAP_ROB |  | 80.39 16 | 83.96 290 | 82.04 299 | 89.74 241 | 95.28 136 | 79.75 227 | 94.25 174 | 92.28 292 | 75.17 341 | 78.02 343 | 93.77 192 | 58.60 348 | 97.84 175 | 65.06 364 | 85.92 272 | 91.63 336 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PAPR | | | 90.02 120 | 89.27 131 | 92.29 128 | 95.78 116 | 80.95 192 | 92.68 249 | 96.22 117 | 81.91 251 | 86.66 191 | 93.75 194 | 82.23 96 | 98.44 124 | 79.40 262 | 94.79 133 | 97.48 99 |
|
| ab-mvs | | | 89.41 142 | 88.35 155 | 92.60 110 | 95.15 145 | 82.65 148 | 92.20 267 | 95.60 169 | 83.97 201 | 88.55 151 | 93.70 195 | 74.16 193 | 98.21 144 | 82.46 205 | 89.37 225 | 96.94 127 |
|
| hse-mvs2 | | | 89.88 128 | 89.34 127 | 91.51 162 | 94.83 163 | 81.12 187 | 93.94 198 | 93.91 255 | 89.80 43 | 93.08 65 | 93.60 196 | 75.77 166 | 97.66 185 | 92.07 72 | 77.07 360 | 95.74 180 |
|
| test_fmvs2 | | | 83.98 289 | 84.03 274 | 83.83 351 | 87.16 370 | 67.53 375 | 93.93 199 | 92.89 274 | 77.62 317 | 86.89 186 | 93.53 197 | 47.18 384 | 92.02 369 | 90.54 103 | 86.51 269 | 91.93 331 |
|
| AUN-MVS | | | 87.78 191 | 86.54 208 | 91.48 164 | 94.82 164 | 81.05 188 | 93.91 202 | 93.93 252 | 83.00 227 | 86.93 181 | 93.53 197 | 69.50 253 | 97.67 183 | 86.14 153 | 77.12 359 | 95.73 182 |
|
| BH-untuned | | | 88.60 170 | 88.13 163 | 90.01 230 | 95.24 140 | 78.50 255 | 93.29 227 | 94.15 245 | 84.75 188 | 84.46 253 | 93.40 199 | 75.76 168 | 97.40 217 | 77.59 277 | 94.52 142 | 94.12 248 |
|
| AllTest | | | 83.42 297 | 81.39 303 | 89.52 251 | 95.01 150 | 77.79 276 | 93.12 233 | 90.89 335 | 77.41 319 | 76.12 355 | 93.34 200 | 54.08 367 | 97.51 199 | 68.31 345 | 84.27 285 | 93.26 289 |
|
| TestCases | | | | | 89.52 251 | 95.01 150 | 77.79 276 | | 90.89 335 | 77.41 319 | 76.12 355 | 93.34 200 | 54.08 367 | 97.51 199 | 68.31 345 | 84.27 285 | 93.26 289 |
|
| UniMVSNet_NR-MVSNet | | | 89.92 126 | 89.29 129 | 91.81 153 | 93.39 230 | 83.72 106 | 94.43 162 | 97.12 41 | 89.80 43 | 86.46 194 | 93.32 202 | 83.16 79 | 97.23 233 | 84.92 168 | 81.02 327 | 94.49 234 |
|
| VPA-MVSNet | | | 89.62 133 | 88.96 136 | 91.60 159 | 93.86 212 | 82.89 138 | 95.46 98 | 97.33 25 | 87.91 106 | 88.43 154 | 93.31 203 | 74.17 192 | 97.40 217 | 87.32 141 | 82.86 303 | 94.52 227 |
|
| ITE_SJBPF | | | | | 88.24 285 | 91.88 276 | 77.05 288 | | 92.92 273 | 85.54 167 | 80.13 323 | 93.30 204 | 57.29 352 | 96.20 293 | 72.46 318 | 84.71 281 | 91.49 340 |
|
| DU-MVS | | | 89.34 147 | 88.50 151 | 91.85 150 | 93.04 241 | 83.72 106 | 94.47 159 | 96.59 90 | 89.50 52 | 86.46 194 | 93.29 205 | 77.25 151 | 97.23 233 | 84.92 168 | 81.02 327 | 94.59 222 |
|
| NR-MVSNet | | | 88.58 172 | 87.47 179 | 91.93 142 | 93.04 241 | 84.16 97 | 94.77 141 | 96.25 114 | 89.05 67 | 80.04 325 | 93.29 205 | 79.02 132 | 97.05 246 | 81.71 226 | 80.05 341 | 94.59 222 |
|
| CDS-MVSNet | | | 89.45 140 | 88.51 150 | 92.29 128 | 93.62 223 | 83.61 113 | 93.01 239 | 94.68 227 | 81.95 249 | 87.82 165 | 93.24 207 | 78.69 136 | 96.99 249 | 80.34 247 | 93.23 168 | 96.28 154 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PAPM | | | 86.68 240 | 85.39 249 | 90.53 201 | 93.05 240 | 79.33 241 | 89.79 322 | 94.77 223 | 78.82 301 | 81.95 300 | 93.24 207 | 76.81 154 | 97.30 224 | 66.94 354 | 93.16 169 | 94.95 210 |
|
| OurMVSNet-221017-0 | | | 85.35 268 | 84.64 268 | 87.49 301 | 90.77 322 | 72.59 341 | 94.01 193 | 94.40 235 | 84.72 189 | 79.62 332 | 93.17 209 | 61.91 320 | 96.72 259 | 81.99 217 | 81.16 321 | 93.16 296 |
|
| PEN-MVS | | | 86.80 234 | 86.27 219 | 88.40 279 | 92.32 261 | 75.71 307 | 95.18 115 | 96.38 102 | 87.97 104 | 82.82 290 | 93.15 210 | 73.39 206 | 95.92 304 | 76.15 293 | 79.03 351 | 93.59 278 |
|
| xiu_mvs_v2_base | | | 91.13 98 | 90.89 97 | 91.86 148 | 94.97 153 | 82.42 152 | 92.24 265 | 95.64 167 | 86.11 156 | 91.74 108 | 93.14 211 | 79.67 126 | 98.89 81 | 89.06 119 | 95.46 121 | 94.28 243 |
|
| MVSTER | | | 88.84 162 | 88.29 159 | 90.51 204 | 92.95 246 | 80.44 205 | 93.73 207 | 95.01 203 | 84.66 191 | 87.15 177 | 93.12 212 | 72.79 213 | 97.21 235 | 87.86 132 | 87.36 261 | 93.87 261 |
|
| Effi-MVS+ | | | 91.59 90 | 91.11 91 | 93.01 87 | 94.35 192 | 83.39 119 | 94.60 150 | 95.10 200 | 87.10 125 | 90.57 122 | 93.10 213 | 81.43 108 | 98.07 161 | 89.29 116 | 94.48 143 | 97.59 95 |
|
| PS-CasMVS | | | 87.32 214 | 86.88 192 | 88.63 276 | 92.99 244 | 76.33 300 | 95.33 102 | 96.61 89 | 88.22 96 | 83.30 286 | 93.07 214 | 73.03 211 | 95.79 313 | 78.36 268 | 81.00 329 | 93.75 273 |
|
| DTE-MVSNet | | | 86.11 254 | 85.48 247 | 87.98 291 | 91.65 287 | 74.92 314 | 94.93 130 | 95.75 155 | 87.36 121 | 82.26 295 | 93.04 215 | 72.85 212 | 95.82 310 | 74.04 309 | 77.46 357 | 93.20 294 |
|
| CP-MVSNet | | | 87.63 198 | 87.26 186 | 88.74 273 | 93.12 236 | 76.59 295 | 95.29 107 | 96.58 91 | 88.43 88 | 83.49 281 | 92.98 216 | 75.28 175 | 95.83 309 | 78.97 264 | 81.15 323 | 93.79 266 |
|
| test_djsdf | | | 89.03 156 | 88.64 145 | 90.21 218 | 90.74 324 | 79.28 242 | 95.96 73 | 95.90 144 | 84.66 191 | 85.33 236 | 92.94 217 | 74.02 195 | 97.30 224 | 89.64 112 | 88.53 239 | 94.05 254 |
|
| MAR-MVS | | | 90.30 113 | 89.37 126 | 93.07 85 | 96.61 81 | 84.48 87 | 95.68 86 | 95.67 162 | 82.36 240 | 87.85 163 | 92.85 218 | 76.63 159 | 98.80 90 | 80.01 251 | 96.68 100 | 95.91 171 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| testgi | | | 80.94 323 | 80.20 314 | 83.18 352 | 87.96 366 | 66.29 376 | 91.28 290 | 90.70 339 | 83.70 207 | 78.12 341 | 92.84 219 | 51.37 374 | 90.82 379 | 63.34 369 | 82.46 305 | 92.43 319 |
|
| EU-MVSNet | | | 81.32 318 | 80.95 306 | 82.42 358 | 88.50 358 | 63.67 386 | 93.32 222 | 91.33 321 | 64.02 387 | 80.57 317 | 92.83 220 | 61.21 328 | 92.27 367 | 76.34 290 | 80.38 339 | 91.32 343 |
|
| ACMH+ | | 81.04 14 | 85.05 275 | 83.46 283 | 89.82 237 | 94.66 171 | 79.37 236 | 94.44 161 | 94.12 248 | 82.19 243 | 78.04 342 | 92.82 221 | 58.23 349 | 97.54 196 | 73.77 312 | 82.90 302 | 92.54 314 |
|
| WR-MVS | | | 88.38 174 | 87.67 174 | 90.52 203 | 93.30 232 | 80.18 210 | 93.26 229 | 95.96 139 | 88.57 85 | 85.47 224 | 92.81 222 | 76.12 161 | 96.91 254 | 81.24 231 | 82.29 307 | 94.47 237 |
|
| tt0805 | | | 86.92 231 | 85.74 243 | 90.48 207 | 92.22 262 | 79.98 222 | 95.63 92 | 94.88 214 | 83.83 205 | 84.74 246 | 92.80 223 | 57.61 351 | 97.67 183 | 85.48 164 | 84.42 283 | 93.79 266 |
|
| HY-MVS | | 83.01 12 | 89.03 156 | 87.94 168 | 92.29 128 | 94.86 161 | 82.77 139 | 92.08 272 | 94.49 230 | 81.52 265 | 86.93 181 | 92.79 224 | 78.32 143 | 98.23 141 | 79.93 252 | 90.55 203 | 95.88 173 |
|
| LTVRE_ROB | | 82.13 13 | 86.26 253 | 84.90 262 | 90.34 216 | 94.44 185 | 81.50 172 | 92.31 264 | 94.89 212 | 83.03 226 | 79.63 331 | 92.67 225 | 69.69 250 | 97.79 176 | 71.20 323 | 86.26 271 | 91.72 334 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ACMH | | 80.38 17 | 85.36 267 | 83.68 280 | 90.39 212 | 94.45 184 | 80.63 200 | 94.73 143 | 94.85 216 | 82.09 244 | 77.24 347 | 92.65 226 | 60.01 337 | 97.58 192 | 72.25 319 | 84.87 280 | 92.96 303 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pm-mvs1 | | | 86.61 241 | 85.54 245 | 89.82 237 | 91.44 290 | 80.18 210 | 95.28 109 | 94.85 216 | 83.84 204 | 81.66 302 | 92.62 227 | 72.45 219 | 96.48 277 | 79.67 255 | 78.06 352 | 92.82 309 |
|
| FA-MVS(test-final) | | | 89.66 132 | 88.91 139 | 91.93 142 | 94.57 177 | 80.27 208 | 91.36 287 | 94.74 224 | 84.87 183 | 89.82 133 | 92.61 228 | 74.72 184 | 98.47 117 | 83.97 182 | 93.53 158 | 97.04 119 |
|
| PVSNet_Blended | | | 90.73 104 | 90.32 103 | 91.98 138 | 96.12 97 | 81.25 181 | 92.55 254 | 96.83 66 | 82.04 247 | 89.10 142 | 92.56 229 | 81.04 111 | 98.85 86 | 86.72 150 | 95.91 111 | 95.84 175 |
|
| ET-MVSNet_ETH3D | | | 87.51 205 | 85.91 235 | 92.32 125 | 93.70 221 | 83.93 101 | 92.33 262 | 90.94 333 | 84.16 196 | 72.09 374 | 92.52 230 | 69.90 246 | 95.85 308 | 89.20 117 | 88.36 245 | 97.17 110 |
|
| PS-MVSNAJ | | | 91.18 97 | 90.92 95 | 91.96 140 | 95.26 139 | 82.60 150 | 92.09 271 | 95.70 160 | 86.27 146 | 91.84 103 | 92.46 231 | 79.70 123 | 98.99 70 | 89.08 118 | 95.86 112 | 94.29 242 |
|
| CLD-MVS | | | 89.47 139 | 88.90 140 | 91.18 176 | 94.22 196 | 82.07 159 | 92.13 269 | 96.09 128 | 87.90 107 | 85.37 234 | 92.45 232 | 74.38 187 | 97.56 194 | 87.15 143 | 90.43 205 | 93.93 257 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| TR-MVS | | | 86.78 235 | 85.76 241 | 89.82 237 | 94.37 188 | 78.41 257 | 92.47 255 | 92.83 276 | 81.11 274 | 86.36 198 | 92.40 233 | 68.73 268 | 97.48 201 | 73.75 313 | 89.85 216 | 93.57 279 |
|
| Test_1112_low_res | | | 87.65 195 | 86.51 209 | 91.08 182 | 94.94 156 | 79.28 242 | 91.77 277 | 94.30 239 | 76.04 333 | 83.51 280 | 92.37 234 | 77.86 148 | 97.73 182 | 78.69 266 | 89.13 231 | 96.22 156 |
|
| EPNet_dtu | | | 86.49 249 | 85.94 234 | 88.14 288 | 90.24 336 | 72.82 334 | 94.11 182 | 92.20 295 | 86.66 138 | 79.42 333 | 92.36 235 | 73.52 202 | 95.81 311 | 71.26 322 | 93.66 154 | 95.80 178 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| UniMVSNet (Re) | | | 89.80 130 | 89.07 133 | 92.01 134 | 93.60 224 | 84.52 85 | 94.78 140 | 97.47 11 | 89.26 60 | 86.44 197 | 92.32 236 | 82.10 100 | 97.39 220 | 84.81 171 | 80.84 331 | 94.12 248 |
|
| thres600view7 | | | 87.65 195 | 86.67 201 | 90.59 198 | 96.08 102 | 78.72 248 | 94.88 133 | 91.58 314 | 87.06 126 | 88.08 158 | 92.30 237 | 68.91 265 | 98.10 150 | 70.05 337 | 91.10 193 | 94.96 207 |
|
| thres100view900 | | | 87.63 198 | 86.71 199 | 90.38 214 | 96.12 97 | 78.55 252 | 95.03 125 | 91.58 314 | 87.15 123 | 88.06 159 | 92.29 238 | 68.91 265 | 98.10 150 | 70.13 334 | 91.10 193 | 94.48 235 |
|
| PVSNet_BlendedMVS | | | 89.98 121 | 89.70 117 | 90.82 194 | 96.12 97 | 81.25 181 | 93.92 200 | 96.83 66 | 83.49 214 | 89.10 142 | 92.26 239 | 81.04 111 | 98.85 86 | 86.72 150 | 87.86 253 | 92.35 323 |
|
| XVG-ACMP-BASELINE | | | 86.00 255 | 84.84 264 | 89.45 254 | 91.20 300 | 78.00 267 | 91.70 280 | 95.55 171 | 85.05 180 | 82.97 288 | 92.25 240 | 54.49 365 | 97.48 201 | 82.93 195 | 87.45 260 | 92.89 306 |
|
| EIA-MVS | | | 91.95 82 | 91.94 80 | 91.98 138 | 95.16 143 | 80.01 220 | 95.36 100 | 96.73 79 | 88.44 87 | 89.34 139 | 92.16 241 | 83.82 73 | 98.45 122 | 89.35 114 | 97.06 88 | 97.48 99 |
|
| Anonymous20231211 | | | 86.59 243 | 85.13 256 | 90.98 191 | 96.52 87 | 81.50 172 | 96.14 58 | 96.16 121 | 73.78 355 | 83.65 276 | 92.15 242 | 63.26 313 | 97.37 221 | 82.82 199 | 81.74 316 | 94.06 253 |
|
| MVS | | | 87.44 208 | 86.10 226 | 91.44 166 | 92.61 254 | 83.62 111 | 92.63 251 | 95.66 164 | 67.26 382 | 81.47 304 | 92.15 242 | 77.95 145 | 98.22 143 | 79.71 254 | 95.48 119 | 92.47 317 |
|
| anonymousdsp | | | 87.84 188 | 87.09 187 | 90.12 223 | 89.13 351 | 80.54 203 | 94.67 147 | 95.55 171 | 82.05 245 | 83.82 271 | 92.12 244 | 71.47 226 | 97.15 237 | 87.15 143 | 87.80 256 | 92.67 311 |
|
| TransMVSNet (Re) | | | 84.43 284 | 83.06 291 | 88.54 277 | 91.72 282 | 78.44 256 | 95.18 115 | 92.82 277 | 82.73 234 | 79.67 330 | 92.12 244 | 73.49 203 | 95.96 303 | 71.10 327 | 68.73 382 | 91.21 346 |
|
| SixPastTwentyTwo | | | 83.91 292 | 82.90 294 | 86.92 317 | 90.99 310 | 70.67 360 | 93.48 216 | 91.99 303 | 85.54 167 | 77.62 346 | 92.11 246 | 60.59 333 | 96.87 256 | 76.05 294 | 77.75 354 | 93.20 294 |
|
| HyFIR lowres test | | | 88.09 183 | 86.81 195 | 91.93 142 | 96.00 106 | 80.63 200 | 90.01 319 | 95.79 152 | 73.42 359 | 87.68 168 | 92.10 247 | 73.86 198 | 97.96 169 | 80.75 240 | 91.70 187 | 97.19 109 |
|
| Baseline_NR-MVSNet | | | 87.07 227 | 86.63 204 | 88.40 279 | 91.44 290 | 77.87 272 | 94.23 177 | 92.57 284 | 84.12 198 | 85.74 212 | 92.08 248 | 77.25 151 | 96.04 298 | 82.29 209 | 79.94 342 | 91.30 344 |
|
| USDC | | | 82.76 300 | 81.26 305 | 87.26 306 | 91.17 302 | 74.55 318 | 89.27 331 | 93.39 266 | 78.26 313 | 75.30 360 | 92.08 248 | 54.43 366 | 96.63 263 | 71.64 320 | 85.79 274 | 90.61 356 |
|
| v2v482 | | | 87.84 188 | 87.06 188 | 90.17 219 | 90.99 310 | 79.23 245 | 94.00 195 | 95.13 197 | 84.87 183 | 85.53 218 | 92.07 250 | 74.45 186 | 97.45 205 | 84.71 173 | 81.75 315 | 93.85 264 |
|
| FMVSNet2 | | | 87.19 223 | 85.82 237 | 91.30 172 | 94.01 204 | 83.67 108 | 94.79 139 | 94.94 206 | 83.57 210 | 83.88 270 | 92.05 251 | 66.59 288 | 96.51 275 | 77.56 278 | 85.01 279 | 93.73 274 |
|
| WR-MVS_H | | | 87.80 190 | 87.37 181 | 89.10 262 | 93.23 233 | 78.12 265 | 95.61 93 | 97.30 29 | 87.90 107 | 83.72 273 | 92.01 252 | 79.65 127 | 96.01 301 | 76.36 289 | 80.54 335 | 93.16 296 |
|
| LCM-MVSNet-Re | | | 88.30 178 | 88.32 158 | 88.27 283 | 94.71 168 | 72.41 344 | 93.15 232 | 90.98 331 | 87.77 112 | 79.25 334 | 91.96 253 | 78.35 142 | 95.75 314 | 83.04 193 | 95.62 115 | 96.65 141 |
|
| MSDG | | | 84.86 278 | 83.09 289 | 90.14 222 | 93.80 215 | 80.05 217 | 89.18 334 | 93.09 270 | 78.89 299 | 78.19 340 | 91.91 254 | 65.86 297 | 97.27 228 | 68.47 343 | 88.45 242 | 93.11 298 |
|
| IterMVS-LS | | | 88.36 176 | 87.91 169 | 89.70 244 | 93.80 215 | 78.29 262 | 93.73 207 | 95.08 202 | 85.73 161 | 84.75 245 | 91.90 255 | 79.88 119 | 96.92 253 | 83.83 184 | 82.51 304 | 93.89 258 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| FMVSNet3 | | | 87.40 210 | 86.11 225 | 91.30 172 | 93.79 217 | 83.64 110 | 94.20 178 | 94.81 220 | 83.89 203 | 84.37 256 | 91.87 256 | 68.45 271 | 96.56 272 | 78.23 271 | 85.36 276 | 93.70 276 |
|
| tfpn200view9 | | | 87.58 202 | 86.64 202 | 90.41 211 | 95.99 109 | 78.64 250 | 94.58 151 | 91.98 304 | 86.94 130 | 88.09 156 | 91.77 257 | 69.18 261 | 98.10 150 | 70.13 334 | 91.10 193 | 94.48 235 |
|
| thres400 | | | 87.62 200 | 86.64 202 | 90.57 199 | 95.99 109 | 78.64 250 | 94.58 151 | 91.98 304 | 86.94 130 | 88.09 156 | 91.77 257 | 69.18 261 | 98.10 150 | 70.13 334 | 91.10 193 | 94.96 207 |
|
| pmmvs4 | | | 85.43 265 | 83.86 278 | 90.16 220 | 90.02 341 | 82.97 136 | 90.27 308 | 92.67 282 | 75.93 334 | 80.73 313 | 91.74 259 | 71.05 229 | 95.73 316 | 78.85 265 | 83.46 295 | 91.78 333 |
|
| GBi-Net | | | 87.26 215 | 85.98 231 | 91.08 182 | 94.01 204 | 83.10 127 | 95.14 119 | 94.94 206 | 83.57 210 | 84.37 256 | 91.64 260 | 66.59 288 | 96.34 288 | 78.23 271 | 85.36 276 | 93.79 266 |
|
| test1 | | | 87.26 215 | 85.98 231 | 91.08 182 | 94.01 204 | 83.10 127 | 95.14 119 | 94.94 206 | 83.57 210 | 84.37 256 | 91.64 260 | 66.59 288 | 96.34 288 | 78.23 271 | 85.36 276 | 93.79 266 |
|
| FMVSNet1 | | | 85.85 259 | 84.11 273 | 91.08 182 | 92.81 250 | 83.10 127 | 95.14 119 | 94.94 206 | 81.64 261 | 82.68 291 | 91.64 260 | 59.01 346 | 96.34 288 | 75.37 298 | 83.78 288 | 93.79 266 |
|
| MVP-Stereo | | | 85.97 256 | 84.86 263 | 89.32 256 | 90.92 316 | 82.19 157 | 92.11 270 | 94.19 243 | 78.76 303 | 78.77 339 | 91.63 263 | 68.38 272 | 96.56 272 | 75.01 303 | 93.95 150 | 89.20 369 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| FE-MVS | | | 87.40 210 | 86.02 229 | 91.57 160 | 94.56 178 | 79.69 229 | 90.27 308 | 93.72 261 | 80.57 278 | 88.80 148 | 91.62 264 | 65.32 298 | 98.59 108 | 74.97 304 | 94.33 147 | 96.44 148 |
|
| 1314 | | | 87.51 205 | 86.57 207 | 90.34 216 | 92.42 259 | 79.74 228 | 92.63 251 | 95.35 190 | 78.35 310 | 80.14 322 | 91.62 264 | 74.05 194 | 97.15 237 | 81.05 232 | 93.53 158 | 94.12 248 |
|
| MS-PatchMatch | | | 85.05 275 | 84.16 272 | 87.73 295 | 91.42 293 | 78.51 254 | 91.25 292 | 93.53 263 | 77.50 318 | 80.15 321 | 91.58 266 | 61.99 319 | 95.51 322 | 75.69 295 | 94.35 146 | 89.16 370 |
|
| TDRefinement | | | 79.81 332 | 77.34 337 | 87.22 310 | 79.24 395 | 75.48 309 | 93.12 233 | 92.03 301 | 76.45 327 | 75.01 361 | 91.58 266 | 49.19 379 | 96.44 281 | 70.22 333 | 69.18 379 | 89.75 363 |
|
| PatchMatch-RL | | | 86.77 238 | 85.54 245 | 90.47 210 | 95.88 112 | 82.71 145 | 90.54 305 | 92.31 291 | 79.82 287 | 84.32 261 | 91.57 268 | 68.77 267 | 96.39 284 | 73.16 315 | 93.48 162 | 92.32 324 |
|
| BH-w/o | | | 87.57 203 | 87.05 189 | 89.12 261 | 94.90 159 | 77.90 270 | 92.41 256 | 93.51 264 | 82.89 231 | 83.70 274 | 91.34 269 | 75.75 169 | 97.07 244 | 75.49 296 | 93.49 160 | 92.39 321 |
|
| v8 | | | 87.50 207 | 86.71 199 | 89.89 234 | 91.37 295 | 79.40 235 | 94.50 155 | 95.38 186 | 84.81 186 | 83.60 278 | 91.33 270 | 76.05 162 | 97.42 210 | 82.84 198 | 80.51 338 | 92.84 308 |
|
| V42 | | | 87.68 193 | 86.86 193 | 90.15 221 | 90.58 329 | 80.14 212 | 94.24 176 | 95.28 191 | 83.66 208 | 85.67 213 | 91.33 270 | 74.73 183 | 97.41 215 | 84.43 177 | 81.83 313 | 92.89 306 |
|
| Fast-Effi-MVS+-dtu | | | 87.44 208 | 86.72 198 | 89.63 248 | 92.04 269 | 77.68 280 | 94.03 191 | 93.94 251 | 85.81 158 | 82.42 293 | 91.32 272 | 70.33 243 | 97.06 245 | 80.33 248 | 90.23 208 | 94.14 247 |
|
| v1144 | | | 87.61 201 | 86.79 197 | 90.06 226 | 91.01 309 | 79.34 238 | 93.95 197 | 95.42 185 | 83.36 219 | 85.66 214 | 91.31 273 | 74.98 179 | 97.42 210 | 83.37 189 | 82.06 309 | 93.42 286 |
|
| tfpnnormal | | | 84.72 281 | 83.23 287 | 89.20 259 | 92.79 251 | 80.05 217 | 94.48 156 | 95.81 150 | 82.38 239 | 81.08 310 | 91.21 274 | 69.01 264 | 96.95 251 | 61.69 374 | 80.59 334 | 90.58 359 |
|
| ETV-MVS | | | 92.74 73 | 92.66 71 | 92.97 90 | 95.20 142 | 84.04 100 | 95.07 122 | 96.51 94 | 90.73 22 | 92.96 68 | 91.19 275 | 84.06 69 | 98.34 133 | 91.72 84 | 96.54 102 | 96.54 147 |
|
| v10 | | | 87.25 217 | 86.38 212 | 89.85 235 | 91.19 301 | 79.50 232 | 94.48 156 | 95.45 180 | 83.79 206 | 83.62 277 | 91.19 275 | 75.13 176 | 97.42 210 | 81.94 218 | 80.60 333 | 92.63 313 |
|
| pmmvs5 | | | 84.21 286 | 82.84 296 | 88.34 282 | 88.95 353 | 76.94 289 | 92.41 256 | 91.91 308 | 75.63 336 | 80.28 319 | 91.18 277 | 64.59 303 | 95.57 319 | 77.09 284 | 83.47 294 | 92.53 315 |
|
| v1192 | | | 87.25 217 | 86.33 215 | 90.00 231 | 90.76 323 | 79.04 246 | 93.80 204 | 95.48 176 | 82.57 236 | 85.48 223 | 91.18 277 | 73.38 207 | 97.42 210 | 82.30 208 | 82.06 309 | 93.53 280 |
|
| v1240 | | | 86.78 235 | 85.85 236 | 89.56 249 | 90.45 333 | 77.79 276 | 93.61 212 | 95.37 188 | 81.65 260 | 85.43 228 | 91.15 279 | 71.50 225 | 97.43 209 | 81.47 229 | 82.05 311 | 93.47 284 |
|
| CMPMVS |  | 59.16 21 | 80.52 324 | 79.20 328 | 84.48 345 | 83.98 384 | 67.63 374 | 89.95 321 | 93.84 258 | 64.79 386 | 66.81 385 | 91.14 280 | 57.93 350 | 95.17 329 | 76.25 291 | 88.10 247 | 90.65 355 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| thres200 | | | 87.21 221 | 86.24 220 | 90.12 223 | 95.36 133 | 78.53 253 | 93.26 229 | 92.10 298 | 86.42 143 | 88.00 161 | 91.11 281 | 69.24 260 | 98.00 166 | 69.58 338 | 91.04 199 | 93.83 265 |
|
| pmmvs6 | | | 83.42 297 | 81.60 301 | 88.87 268 | 88.01 365 | 77.87 272 | 94.96 128 | 94.24 242 | 74.67 347 | 78.80 338 | 91.09 282 | 60.17 336 | 96.49 276 | 77.06 285 | 75.40 366 | 92.23 326 |
|
| v144192 | | | 87.19 223 | 86.35 214 | 89.74 241 | 90.64 327 | 78.24 263 | 93.92 200 | 95.43 183 | 81.93 250 | 85.51 220 | 91.05 283 | 74.21 191 | 97.45 205 | 82.86 197 | 81.56 317 | 93.53 280 |
|
| v1921920 | | | 86.97 230 | 86.06 228 | 89.69 245 | 90.53 332 | 78.11 266 | 93.80 204 | 95.43 183 | 81.90 252 | 85.33 236 | 91.05 283 | 72.66 214 | 97.41 215 | 82.05 216 | 81.80 314 | 93.53 280 |
|
| baseline2 | | | 86.50 247 | 85.39 249 | 89.84 236 | 91.12 306 | 76.70 293 | 91.88 274 | 88.58 363 | 82.35 241 | 79.95 326 | 90.95 285 | 73.42 205 | 97.63 190 | 80.27 249 | 89.95 213 | 95.19 198 |
|
| thisisatest0515 | | | 87.33 213 | 85.99 230 | 91.37 169 | 93.49 226 | 79.55 231 | 90.63 304 | 89.56 360 | 80.17 281 | 87.56 170 | 90.86 286 | 67.07 280 | 98.28 139 | 81.50 228 | 93.02 171 | 96.29 153 |
|
| v7n | | | 86.81 233 | 85.76 241 | 89.95 232 | 90.72 325 | 79.25 244 | 95.07 122 | 95.92 141 | 84.45 194 | 82.29 294 | 90.86 286 | 72.60 216 | 97.53 197 | 79.42 261 | 80.52 337 | 93.08 300 |
|
| testing3 | | | 80.46 325 | 79.59 323 | 83.06 354 | 93.44 229 | 64.64 383 | 93.33 221 | 85.47 378 | 84.34 195 | 79.93 327 | 90.84 288 | 44.35 388 | 92.39 365 | 57.06 386 | 87.56 257 | 92.16 328 |
|
| DIV-MVS_self_test | | | 86.53 245 | 85.78 238 | 88.75 271 | 92.02 271 | 76.45 297 | 90.74 302 | 94.30 239 | 81.83 256 | 83.34 284 | 90.82 289 | 75.75 169 | 96.57 270 | 81.73 225 | 81.52 319 | 93.24 292 |
|
| v148 | | | 87.04 228 | 86.32 216 | 89.21 258 | 90.94 314 | 77.26 285 | 93.71 209 | 94.43 232 | 84.84 185 | 84.36 259 | 90.80 290 | 76.04 163 | 97.05 246 | 82.12 212 | 79.60 346 | 93.31 288 |
|
| cl____ | | | 86.52 246 | 85.78 238 | 88.75 271 | 92.03 270 | 76.46 296 | 90.74 302 | 94.30 239 | 81.83 256 | 83.34 284 | 90.78 291 | 75.74 171 | 96.57 270 | 81.74 224 | 81.54 318 | 93.22 293 |
|
| PMMVS | | | 85.71 262 | 84.96 260 | 87.95 292 | 88.90 354 | 77.09 287 | 88.68 341 | 90.06 349 | 72.32 369 | 86.47 193 | 90.76 292 | 72.15 220 | 94.40 338 | 81.78 223 | 93.49 160 | 92.36 322 |
|
| UWE-MVS | | | 83.69 296 | 83.09 289 | 85.48 335 | 93.06 239 | 65.27 381 | 90.92 299 | 86.14 374 | 79.90 285 | 86.26 202 | 90.72 293 | 57.17 353 | 95.81 311 | 71.03 328 | 92.62 179 | 95.35 194 |
|
| Fast-Effi-MVS+ | | | 89.41 142 | 88.64 145 | 91.71 156 | 94.74 165 | 80.81 196 | 93.54 214 | 95.10 200 | 83.11 224 | 86.82 189 | 90.67 294 | 79.74 122 | 97.75 181 | 80.51 245 | 93.55 157 | 96.57 145 |
|
| IterMVS-SCA-FT | | | 85.45 264 | 84.53 270 | 88.18 287 | 91.71 283 | 76.87 290 | 90.19 315 | 92.65 283 | 85.40 170 | 81.44 305 | 90.54 295 | 66.79 284 | 95.00 334 | 81.04 233 | 81.05 325 | 92.66 312 |
|
| PVSNet | | 78.82 18 | 85.55 263 | 84.65 267 | 88.23 286 | 94.72 167 | 71.93 345 | 87.12 360 | 92.75 279 | 78.80 302 | 84.95 242 | 90.53 296 | 64.43 304 | 96.71 261 | 74.74 305 | 93.86 152 | 96.06 167 |
|
| eth_miper_zixun_eth | | | 86.50 247 | 85.77 240 | 88.68 274 | 91.94 272 | 75.81 306 | 90.47 306 | 94.89 212 | 82.05 245 | 84.05 266 | 90.46 297 | 75.96 164 | 96.77 258 | 82.76 201 | 79.36 348 | 93.46 285 |
|
| c3_l | | | 87.14 225 | 86.50 210 | 89.04 264 | 92.20 263 | 77.26 285 | 91.22 294 | 94.70 226 | 82.01 248 | 84.34 260 | 90.43 298 | 78.81 134 | 96.61 267 | 83.70 187 | 81.09 324 | 93.25 291 |
|
| IterMVS | | | 84.88 277 | 83.98 277 | 87.60 297 | 91.44 290 | 76.03 302 | 90.18 316 | 92.41 287 | 83.24 222 | 81.06 311 | 90.42 299 | 66.60 287 | 94.28 342 | 79.46 257 | 80.98 330 | 92.48 316 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test_0402 | | | 81.30 319 | 79.17 329 | 87.67 296 | 93.19 234 | 78.17 264 | 92.98 240 | 91.71 309 | 75.25 340 | 76.02 357 | 90.31 300 | 59.23 342 | 96.37 285 | 50.22 391 | 83.63 292 | 88.47 376 |
|
| testing91 | | | 87.11 226 | 86.18 221 | 89.92 233 | 94.43 186 | 75.38 312 | 91.53 284 | 92.27 293 | 86.48 140 | 86.50 192 | 90.24 301 | 61.19 329 | 97.53 197 | 82.10 213 | 90.88 201 | 96.84 134 |
|
| testing99 | | | 86.72 239 | 85.73 244 | 89.69 245 | 94.23 195 | 74.91 315 | 91.35 288 | 90.97 332 | 86.14 153 | 86.36 198 | 90.22 302 | 59.41 341 | 97.48 201 | 82.24 210 | 90.66 202 | 96.69 140 |
|
| WB-MVSnew | | | 83.77 294 | 83.28 285 | 85.26 340 | 91.48 289 | 71.03 356 | 91.89 273 | 87.98 366 | 78.91 297 | 84.78 244 | 90.22 302 | 69.11 263 | 94.02 345 | 64.70 365 | 90.44 204 | 90.71 354 |
|
| TinyColmap | | | 79.76 333 | 77.69 336 | 85.97 329 | 91.71 283 | 73.12 331 | 89.55 325 | 90.36 343 | 75.03 342 | 72.03 375 | 90.19 304 | 46.22 385 | 96.19 295 | 63.11 370 | 81.03 326 | 88.59 375 |
|
| EG-PatchMatch MVS | | | 82.37 305 | 80.34 311 | 88.46 278 | 90.27 335 | 79.35 237 | 92.80 248 | 94.33 238 | 77.14 323 | 73.26 371 | 90.18 305 | 47.47 383 | 96.72 259 | 70.25 331 | 87.32 263 | 89.30 367 |
|
| cl22 | | | 86.78 235 | 85.98 231 | 89.18 260 | 92.34 260 | 77.62 281 | 90.84 301 | 94.13 247 | 81.33 268 | 83.97 269 | 90.15 306 | 73.96 196 | 96.60 269 | 84.19 179 | 82.94 299 | 93.33 287 |
|
| testing11 | | | 86.44 250 | 85.35 252 | 89.69 245 | 94.29 193 | 75.40 311 | 91.30 289 | 90.53 340 | 84.76 187 | 85.06 239 | 90.13 307 | 58.95 347 | 97.45 205 | 82.08 214 | 91.09 197 | 96.21 157 |
|
| lessismore_v0 | | | | | 86.04 328 | 88.46 359 | 68.78 369 | | 80.59 392 | | 73.01 372 | 90.11 308 | 55.39 359 | 96.43 282 | 75.06 302 | 65.06 386 | 92.90 305 |
|
| miper_ehance_all_eth | | | 87.22 220 | 86.62 205 | 89.02 265 | 92.13 266 | 77.40 284 | 90.91 300 | 94.81 220 | 81.28 269 | 84.32 261 | 90.08 309 | 79.26 129 | 96.62 264 | 83.81 185 | 82.94 299 | 93.04 301 |
|
| D2MVS | | | 85.90 257 | 85.09 257 | 88.35 281 | 90.79 321 | 77.42 283 | 91.83 276 | 95.70 160 | 80.77 277 | 80.08 324 | 90.02 310 | 66.74 286 | 96.37 285 | 81.88 220 | 87.97 251 | 91.26 345 |
|
| LF4IMVS | | | 80.37 327 | 79.07 331 | 84.27 348 | 86.64 372 | 69.87 366 | 89.39 330 | 91.05 329 | 76.38 328 | 74.97 362 | 90.00 311 | 47.85 382 | 94.25 343 | 74.55 308 | 80.82 332 | 88.69 374 |
|
| CostFormer | | | 85.77 261 | 84.94 261 | 88.26 284 | 91.16 304 | 72.58 342 | 89.47 329 | 91.04 330 | 76.26 331 | 86.45 196 | 89.97 312 | 70.74 235 | 96.86 257 | 82.35 207 | 87.07 266 | 95.34 195 |
|
| test20.03 | | | 79.95 331 | 79.08 330 | 82.55 356 | 85.79 378 | 67.74 373 | 91.09 296 | 91.08 327 | 81.23 272 | 74.48 366 | 89.96 313 | 61.63 321 | 90.15 381 | 60.08 378 | 76.38 362 | 89.76 362 |
|
| tpm | | | 84.73 280 | 84.02 275 | 86.87 320 | 90.33 334 | 68.90 368 | 89.06 336 | 89.94 352 | 80.85 276 | 85.75 211 | 89.86 314 | 68.54 270 | 95.97 302 | 77.76 275 | 84.05 287 | 95.75 179 |
|
| miper_lstm_enhance | | | 85.27 271 | 84.59 269 | 87.31 304 | 91.28 299 | 74.63 317 | 87.69 354 | 94.09 249 | 81.20 273 | 81.36 307 | 89.85 315 | 74.97 180 | 94.30 341 | 81.03 235 | 79.84 345 | 93.01 302 |
|
| test0.0.03 1 | | | 82.41 304 | 81.69 300 | 84.59 344 | 88.23 362 | 72.89 333 | 90.24 312 | 87.83 368 | 83.41 216 | 79.86 328 | 89.78 316 | 67.25 277 | 88.99 387 | 65.18 362 | 83.42 296 | 91.90 332 |
|
| K. test v3 | | | 81.59 313 | 80.15 315 | 85.91 332 | 89.89 344 | 69.42 367 | 92.57 253 | 87.71 369 | 85.56 166 | 73.44 370 | 89.71 317 | 55.58 357 | 95.52 321 | 77.17 282 | 69.76 376 | 92.78 310 |
|
| CHOSEN 280x420 | | | 85.15 273 | 83.99 276 | 88.65 275 | 92.47 256 | 78.40 258 | 79.68 393 | 92.76 278 | 74.90 345 | 81.41 306 | 89.59 318 | 69.85 249 | 95.51 322 | 79.92 253 | 95.29 126 | 92.03 329 |
|
| GA-MVS | | | 86.61 241 | 85.27 254 | 90.66 197 | 91.33 298 | 78.71 249 | 90.40 307 | 93.81 259 | 85.34 171 | 85.12 238 | 89.57 319 | 61.25 326 | 97.11 241 | 80.99 236 | 89.59 222 | 96.15 158 |
|
| Effi-MVS+-dtu | | | 88.65 168 | 88.35 155 | 89.54 250 | 93.33 231 | 76.39 298 | 94.47 159 | 94.36 237 | 87.70 114 | 85.43 228 | 89.56 320 | 73.45 204 | 97.26 230 | 85.57 163 | 91.28 192 | 94.97 204 |
|
| testing222 | | | 84.84 279 | 83.32 284 | 89.43 255 | 94.15 200 | 75.94 303 | 91.09 296 | 89.41 361 | 84.90 182 | 85.78 210 | 89.44 321 | 52.70 372 | 96.28 291 | 70.80 329 | 91.57 189 | 96.07 165 |
|
| tpm2 | | | 84.08 288 | 82.94 292 | 87.48 302 | 91.39 294 | 71.27 352 | 89.23 333 | 90.37 342 | 71.95 371 | 84.64 247 | 89.33 322 | 67.30 276 | 96.55 274 | 75.17 300 | 87.09 265 | 94.63 219 |
|
| Anonymous20231206 | | | 81.03 321 | 79.77 320 | 84.82 343 | 87.85 368 | 70.26 363 | 91.42 286 | 92.08 299 | 73.67 356 | 77.75 344 | 89.25 323 | 62.43 317 | 93.08 360 | 61.50 375 | 82.00 312 | 91.12 349 |
|
| dmvs_re | | | 84.20 287 | 83.22 288 | 87.14 313 | 91.83 279 | 77.81 274 | 90.04 318 | 90.19 345 | 84.70 190 | 81.49 303 | 89.17 324 | 64.37 305 | 91.13 377 | 71.58 321 | 85.65 275 | 92.46 318 |
|
| miper_enhance_ethall | | | 86.90 232 | 86.18 221 | 89.06 263 | 91.66 286 | 77.58 282 | 90.22 314 | 94.82 219 | 79.16 295 | 84.48 252 | 89.10 325 | 79.19 131 | 96.66 262 | 84.06 180 | 82.94 299 | 92.94 304 |
|
| ETVMVS | | | 84.43 284 | 82.92 293 | 88.97 267 | 94.37 188 | 74.67 316 | 91.23 293 | 88.35 365 | 83.37 218 | 86.06 207 | 89.04 326 | 55.38 360 | 95.67 317 | 67.12 352 | 91.34 191 | 96.58 144 |
|
| ppachtmachnet_test | | | 81.84 308 | 80.07 316 | 87.15 312 | 88.46 359 | 74.43 321 | 89.04 337 | 92.16 296 | 75.33 339 | 77.75 344 | 88.99 327 | 66.20 293 | 95.37 327 | 65.12 363 | 77.60 355 | 91.65 335 |
|
| gm-plane-assit | | | | | | 89.60 349 | 68.00 370 | | | 77.28 322 | | 88.99 327 | | 97.57 193 | 79.44 259 | | |
|
| MDTV_nov1_ep13 | | | | 83.56 282 | | 91.69 285 | 69.93 365 | 87.75 353 | 91.54 316 | 78.60 306 | 84.86 243 | 88.90 329 | 69.54 252 | 96.03 299 | 70.25 331 | 88.93 234 | |
|
| SCA | | | 86.32 252 | 85.18 255 | 89.73 243 | 92.15 264 | 76.60 294 | 91.12 295 | 91.69 311 | 83.53 213 | 85.50 221 | 88.81 330 | 66.79 284 | 96.48 277 | 76.65 286 | 90.35 207 | 96.12 161 |
|
| Patchmatch-test | | | 81.37 317 | 79.30 325 | 87.58 298 | 90.92 316 | 74.16 324 | 80.99 389 | 87.68 370 | 70.52 377 | 76.63 352 | 88.81 330 | 71.21 227 | 92.76 363 | 60.01 380 | 86.93 267 | 95.83 176 |
|
| tpmrst | | | 85.35 268 | 84.99 258 | 86.43 325 | 90.88 319 | 67.88 372 | 88.71 340 | 91.43 320 | 80.13 282 | 86.08 206 | 88.80 332 | 73.05 209 | 96.02 300 | 82.48 203 | 83.40 297 | 95.40 191 |
|
| DSMNet-mixed | | | 76.94 346 | 76.29 345 | 78.89 365 | 83.10 387 | 56.11 401 | 87.78 351 | 79.77 393 | 60.65 390 | 75.64 358 | 88.71 333 | 61.56 323 | 88.34 388 | 60.07 379 | 89.29 228 | 92.21 327 |
|
| PatchmatchNet |  | | 85.85 259 | 84.70 266 | 89.29 257 | 91.76 281 | 75.54 308 | 88.49 343 | 91.30 322 | 81.63 262 | 85.05 240 | 88.70 334 | 71.71 222 | 96.24 292 | 74.61 307 | 89.05 232 | 96.08 164 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MIMVSNet | | | 82.59 303 | 80.53 308 | 88.76 270 | 91.51 288 | 78.32 260 | 86.57 364 | 90.13 347 | 79.32 291 | 80.70 314 | 88.69 335 | 52.98 371 | 93.07 361 | 66.03 359 | 88.86 235 | 94.90 211 |
|
| IB-MVS | | 80.51 15 | 85.24 272 | 83.26 286 | 91.19 175 | 92.13 266 | 79.86 225 | 91.75 278 | 91.29 323 | 83.28 221 | 80.66 315 | 88.49 336 | 61.28 325 | 98.46 118 | 80.99 236 | 79.46 347 | 95.25 197 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| cascas | | | 86.43 251 | 84.98 259 | 90.80 195 | 92.10 268 | 80.92 193 | 90.24 312 | 95.91 143 | 73.10 362 | 83.57 279 | 88.39 337 | 65.15 300 | 97.46 204 | 84.90 170 | 91.43 190 | 94.03 255 |
|
| EPMVS | | | 83.90 293 | 82.70 297 | 87.51 299 | 90.23 337 | 72.67 337 | 88.62 342 | 81.96 389 | 81.37 267 | 85.01 241 | 88.34 338 | 66.31 291 | 94.45 336 | 75.30 299 | 87.12 264 | 95.43 190 |
|
| MDA-MVSNet-bldmvs | | | 78.85 339 | 76.31 344 | 86.46 324 | 89.76 345 | 73.88 325 | 88.79 339 | 90.42 341 | 79.16 295 | 59.18 391 | 88.33 339 | 60.20 335 | 94.04 344 | 62.00 373 | 68.96 380 | 91.48 341 |
|
| our_test_3 | | | 81.93 307 | 80.46 310 | 86.33 327 | 88.46 359 | 73.48 329 | 88.46 344 | 91.11 326 | 76.46 326 | 76.69 351 | 88.25 340 | 66.89 282 | 94.36 339 | 68.75 341 | 79.08 350 | 91.14 348 |
|
| OpenMVS_ROB |  | 74.94 19 | 79.51 335 | 77.03 342 | 86.93 316 | 87.00 371 | 76.23 301 | 92.33 262 | 90.74 338 | 68.93 380 | 74.52 365 | 88.23 341 | 49.58 378 | 96.62 264 | 57.64 384 | 84.29 284 | 87.94 379 |
|
| MIMVSNet1 | | | 79.38 336 | 77.28 338 | 85.69 334 | 86.35 373 | 73.67 326 | 91.61 283 | 92.75 279 | 78.11 316 | 72.64 373 | 88.12 342 | 48.16 381 | 91.97 371 | 60.32 377 | 77.49 356 | 91.43 342 |
|
| UnsupCasMVSNet_eth | | | 80.07 329 | 78.27 335 | 85.46 336 | 85.24 382 | 72.63 340 | 88.45 345 | 94.87 215 | 82.99 228 | 71.64 377 | 88.07 343 | 56.34 355 | 91.75 372 | 73.48 314 | 63.36 389 | 92.01 330 |
|
| test-LLR | | | 85.87 258 | 85.41 248 | 87.25 307 | 90.95 312 | 71.67 350 | 89.55 325 | 89.88 355 | 83.41 216 | 84.54 250 | 87.95 344 | 67.25 277 | 95.11 331 | 81.82 221 | 93.37 165 | 94.97 204 |
|
| test-mter | | | 84.54 283 | 83.64 281 | 87.25 307 | 90.95 312 | 71.67 350 | 89.55 325 | 89.88 355 | 79.17 294 | 84.54 250 | 87.95 344 | 55.56 358 | 95.11 331 | 81.82 221 | 93.37 165 | 94.97 204 |
|
| FMVSNet5 | | | 81.52 315 | 79.60 322 | 87.27 305 | 91.17 302 | 77.95 268 | 91.49 285 | 92.26 294 | 76.87 324 | 76.16 354 | 87.91 346 | 51.67 373 | 92.34 366 | 67.74 349 | 81.16 321 | 91.52 339 |
|
| CR-MVSNet | | | 85.35 268 | 83.76 279 | 90.12 223 | 90.58 329 | 79.34 238 | 85.24 373 | 91.96 306 | 78.27 312 | 85.55 216 | 87.87 347 | 71.03 230 | 95.61 318 | 73.96 311 | 89.36 226 | 95.40 191 |
|
| Patchmtry | | | 82.71 301 | 80.93 307 | 88.06 289 | 90.05 340 | 76.37 299 | 84.74 378 | 91.96 306 | 72.28 370 | 81.32 308 | 87.87 347 | 71.03 230 | 95.50 324 | 68.97 340 | 80.15 340 | 92.32 324 |
|
| YYNet1 | | | 79.22 337 | 77.20 339 | 85.28 339 | 88.20 364 | 72.66 338 | 85.87 367 | 90.05 351 | 74.33 350 | 62.70 387 | 87.61 349 | 66.09 295 | 92.03 368 | 66.94 354 | 72.97 369 | 91.15 347 |
|
| MDA-MVSNet_test_wron | | | 79.21 338 | 77.19 340 | 85.29 338 | 88.22 363 | 72.77 335 | 85.87 367 | 90.06 349 | 74.34 349 | 62.62 389 | 87.56 350 | 66.14 294 | 91.99 370 | 66.90 357 | 73.01 368 | 91.10 351 |
|
| Anonymous20240521 | | | 80.44 326 | 79.21 327 | 84.11 349 | 85.75 379 | 67.89 371 | 92.86 246 | 93.23 268 | 75.61 337 | 75.59 359 | 87.47 351 | 50.03 376 | 94.33 340 | 71.14 326 | 81.21 320 | 90.12 361 |
|
| TESTMET0.1,1 | | | 83.74 295 | 82.85 295 | 86.42 326 | 89.96 342 | 71.21 354 | 89.55 325 | 87.88 367 | 77.41 319 | 83.37 283 | 87.31 352 | 56.71 354 | 93.65 353 | 80.62 243 | 92.85 176 | 94.40 238 |
|
| CL-MVSNet_self_test | | | 81.74 310 | 80.53 308 | 85.36 337 | 85.96 376 | 72.45 343 | 90.25 310 | 93.07 271 | 81.24 271 | 79.85 329 | 87.29 353 | 70.93 232 | 92.52 364 | 66.95 353 | 69.23 378 | 91.11 350 |
|
| Syy-MVS | | | 80.07 329 | 79.78 318 | 80.94 361 | 91.92 273 | 59.93 392 | 89.75 323 | 87.40 372 | 81.72 258 | 78.82 336 | 87.20 354 | 66.29 292 | 91.29 375 | 47.06 393 | 87.84 254 | 91.60 337 |
|
| myMVS_eth3d | | | 79.67 334 | 78.79 333 | 82.32 359 | 91.92 273 | 64.08 384 | 89.75 323 | 87.40 372 | 81.72 258 | 78.82 336 | 87.20 354 | 45.33 386 | 91.29 375 | 59.09 382 | 87.84 254 | 91.60 337 |
|
| tpmvs | | | 83.35 299 | 82.07 298 | 87.20 311 | 91.07 308 | 71.00 358 | 88.31 346 | 91.70 310 | 78.91 297 | 80.49 318 | 87.18 356 | 69.30 259 | 97.08 242 | 68.12 348 | 83.56 293 | 93.51 283 |
|
| dp | | | 81.47 316 | 80.23 313 | 85.17 341 | 89.92 343 | 65.49 379 | 86.74 362 | 90.10 348 | 76.30 330 | 81.10 309 | 87.12 357 | 62.81 315 | 95.92 304 | 68.13 347 | 79.88 343 | 94.09 251 |
|
| test_fmvs3 | | | 77.67 344 | 77.16 341 | 79.22 364 | 79.52 394 | 61.14 390 | 92.34 261 | 91.64 313 | 73.98 353 | 78.86 335 | 86.59 358 | 27.38 398 | 87.03 389 | 88.12 130 | 75.97 364 | 89.50 364 |
|
| mvsany_test3 | | | 74.95 349 | 73.26 353 | 80.02 363 | 74.61 397 | 63.16 388 | 85.53 371 | 78.42 396 | 74.16 351 | 74.89 363 | 86.46 359 | 36.02 393 | 89.09 386 | 82.39 206 | 66.91 383 | 87.82 380 |
|
| PM-MVS | | | 78.11 342 | 76.12 346 | 84.09 350 | 83.54 386 | 70.08 364 | 88.97 338 | 85.27 380 | 79.93 284 | 74.73 364 | 86.43 360 | 34.70 394 | 93.48 354 | 79.43 260 | 72.06 372 | 88.72 373 |
|
| KD-MVS_self_test | | | 80.20 328 | 79.24 326 | 83.07 353 | 85.64 380 | 65.29 380 | 91.01 298 | 93.93 252 | 78.71 305 | 76.32 353 | 86.40 361 | 59.20 343 | 92.93 362 | 72.59 317 | 69.35 377 | 91.00 353 |
|
| tpm cat1 | | | 81.96 306 | 80.27 312 | 87.01 314 | 91.09 307 | 71.02 357 | 87.38 358 | 91.53 317 | 66.25 383 | 80.17 320 | 86.35 362 | 68.22 273 | 96.15 296 | 69.16 339 | 82.29 307 | 93.86 263 |
|
| pmmvs-eth3d | | | 80.97 322 | 78.72 334 | 87.74 294 | 84.99 383 | 79.97 223 | 90.11 317 | 91.65 312 | 75.36 338 | 73.51 369 | 86.03 363 | 59.45 340 | 93.96 348 | 75.17 300 | 72.21 371 | 89.29 368 |
|
| KD-MVS_2432*1600 | | | 78.50 340 | 76.02 347 | 85.93 330 | 86.22 374 | 74.47 319 | 84.80 376 | 92.33 289 | 79.29 292 | 76.98 349 | 85.92 364 | 53.81 369 | 93.97 346 | 67.39 350 | 57.42 394 | 89.36 365 |
|
| miper_refine_blended | | | 78.50 340 | 76.02 347 | 85.93 330 | 86.22 374 | 74.47 319 | 84.80 376 | 92.33 289 | 79.29 292 | 76.98 349 | 85.92 364 | 53.81 369 | 93.97 346 | 67.39 350 | 57.42 394 | 89.36 365 |
|
| ADS-MVSNet2 | | | 81.66 312 | 79.71 321 | 87.50 300 | 91.35 296 | 74.19 323 | 83.33 383 | 88.48 364 | 72.90 364 | 82.24 296 | 85.77 366 | 64.98 301 | 93.20 359 | 64.57 366 | 83.74 289 | 95.12 200 |
|
| ADS-MVSNet | | | 81.56 314 | 79.78 318 | 86.90 318 | 91.35 296 | 71.82 347 | 83.33 383 | 89.16 362 | 72.90 364 | 82.24 296 | 85.77 366 | 64.98 301 | 93.76 350 | 64.57 366 | 83.74 289 | 95.12 200 |
|
| dmvs_testset | | | 74.57 350 | 75.81 349 | 70.86 375 | 87.72 369 | 40.47 408 | 87.05 361 | 77.90 400 | 82.75 233 | 71.15 379 | 85.47 368 | 67.98 274 | 84.12 397 | 45.26 394 | 76.98 361 | 88.00 378 |
|
| N_pmnet | | | 68.89 356 | 68.44 358 | 70.23 376 | 89.07 352 | 28.79 413 | 88.06 347 | 19.50 413 | 69.47 379 | 71.86 376 | 84.93 369 | 61.24 327 | 91.75 372 | 54.70 388 | 77.15 358 | 90.15 360 |
|
| EGC-MVSNET | | | 61.97 362 | 56.37 366 | 78.77 366 | 89.63 348 | 73.50 328 | 89.12 335 | 82.79 386 | 0.21 410 | 1.24 411 | 84.80 370 | 39.48 391 | 90.04 382 | 44.13 395 | 75.94 365 | 72.79 394 |
|
| APD_test1 | | | 69.04 355 | 66.26 361 | 77.36 370 | 80.51 392 | 62.79 389 | 85.46 372 | 83.51 385 | 54.11 394 | 59.14 392 | 84.79 371 | 23.40 401 | 89.61 383 | 55.22 387 | 70.24 375 | 79.68 391 |
|
| ambc | | | | | 83.06 354 | 79.99 393 | 63.51 387 | 77.47 394 | 92.86 275 | | 74.34 367 | 84.45 372 | 28.74 395 | 95.06 333 | 73.06 316 | 68.89 381 | 90.61 356 |
|
| GG-mvs-BLEND | | | | | 87.94 293 | 89.73 347 | 77.91 269 | 87.80 350 | 78.23 398 | | 80.58 316 | 83.86 373 | 59.88 338 | 95.33 328 | 71.20 323 | 92.22 185 | 90.60 358 |
|
| patchmatchnet-post | | | | | | | | | | | | 83.76 374 | 71.53 224 | 96.48 277 | | | |
|
| PatchT | | | 82.68 302 | 81.27 304 | 86.89 319 | 90.09 339 | 70.94 359 | 84.06 380 | 90.15 346 | 74.91 344 | 85.63 215 | 83.57 375 | 69.37 254 | 94.87 335 | 65.19 361 | 88.50 241 | 94.84 213 |
|
| new-patchmatchnet | | | 76.41 347 | 75.17 350 | 80.13 362 | 82.65 389 | 59.61 393 | 87.66 355 | 91.08 327 | 78.23 314 | 69.85 381 | 83.22 376 | 54.76 363 | 91.63 374 | 64.14 368 | 64.89 387 | 89.16 370 |
|
| test_f | | | 71.95 353 | 70.87 355 | 75.21 371 | 74.21 399 | 59.37 394 | 85.07 375 | 85.82 376 | 65.25 385 | 70.42 380 | 83.13 377 | 23.62 399 | 82.93 399 | 78.32 269 | 71.94 373 | 83.33 384 |
|
| PVSNet_0 | | 73.20 20 | 77.22 345 | 74.83 351 | 84.37 346 | 90.70 326 | 71.10 355 | 83.09 385 | 89.67 358 | 72.81 366 | 73.93 368 | 83.13 377 | 60.79 332 | 93.70 352 | 68.54 342 | 50.84 398 | 88.30 377 |
|
| WB-MVS | | | 67.92 357 | 67.49 359 | 69.21 379 | 81.09 390 | 41.17 407 | 88.03 348 | 78.00 399 | 73.50 358 | 62.63 388 | 83.11 379 | 63.94 307 | 86.52 391 | 25.66 404 | 51.45 397 | 79.94 390 |
|
| RPMNet | | | 83.95 291 | 81.53 302 | 91.21 174 | 90.58 329 | 79.34 238 | 85.24 373 | 96.76 75 | 71.44 373 | 85.55 216 | 82.97 380 | 70.87 233 | 98.91 80 | 61.01 376 | 89.36 226 | 95.40 191 |
|
| SSC-MVS | | | 67.06 358 | 66.56 360 | 68.56 381 | 80.54 391 | 40.06 409 | 87.77 352 | 77.37 402 | 72.38 368 | 61.75 390 | 82.66 381 | 63.37 311 | 86.45 392 | 24.48 405 | 48.69 400 | 79.16 392 |
|
| Patchmatch-RL test | | | 81.67 311 | 79.96 317 | 86.81 321 | 85.42 381 | 71.23 353 | 82.17 387 | 87.50 371 | 78.47 307 | 77.19 348 | 82.50 382 | 70.81 234 | 93.48 354 | 82.66 202 | 72.89 370 | 95.71 183 |
|
| FPMVS | | | 64.63 361 | 62.55 363 | 70.88 374 | 70.80 401 | 56.71 396 | 84.42 379 | 84.42 382 | 51.78 395 | 49.57 395 | 81.61 383 | 23.49 400 | 81.48 400 | 40.61 400 | 76.25 363 | 74.46 393 |
|
| test_vis1_rt | | | 77.96 343 | 76.46 343 | 82.48 357 | 85.89 377 | 71.74 349 | 90.25 310 | 78.89 395 | 71.03 376 | 71.30 378 | 81.35 384 | 42.49 390 | 91.05 378 | 84.55 175 | 82.37 306 | 84.65 382 |
|
| pmmvs3 | | | 71.81 354 | 68.71 357 | 81.11 360 | 75.86 396 | 70.42 362 | 86.74 362 | 83.66 384 | 58.95 391 | 68.64 384 | 80.89 385 | 36.93 392 | 89.52 384 | 63.10 371 | 63.59 388 | 83.39 383 |
|
| new_pmnet | | | 72.15 352 | 70.13 356 | 78.20 367 | 82.95 388 | 65.68 377 | 83.91 381 | 82.40 388 | 62.94 389 | 64.47 386 | 79.82 386 | 42.85 389 | 86.26 393 | 57.41 385 | 74.44 367 | 82.65 387 |
|
| UnsupCasMVSNet_bld | | | 76.23 348 | 73.27 352 | 85.09 342 | 83.79 385 | 72.92 332 | 85.65 370 | 93.47 265 | 71.52 372 | 68.84 383 | 79.08 387 | 49.77 377 | 93.21 358 | 66.81 358 | 60.52 391 | 89.13 372 |
|
| testf1 | | | 59.54 364 | 56.11 367 | 69.85 377 | 69.28 402 | 56.61 398 | 80.37 391 | 76.55 403 | 42.58 399 | 45.68 398 | 75.61 388 | 11.26 409 | 84.18 395 | 43.20 397 | 60.44 392 | 68.75 395 |
|
| APD_test2 | | | 59.54 364 | 56.11 367 | 69.85 377 | 69.28 402 | 56.61 398 | 80.37 391 | 76.55 403 | 42.58 399 | 45.68 398 | 75.61 388 | 11.26 409 | 84.18 395 | 43.20 397 | 60.44 392 | 68.75 395 |
|
| DeepMVS_CX |  | | | | 56.31 386 | 74.23 398 | 51.81 403 | | 56.67 411 | 44.85 397 | 48.54 397 | 75.16 390 | 27.87 397 | 58.74 407 | 40.92 399 | 52.22 396 | 58.39 400 |
|
| test_method | | | 50.52 369 | 48.47 371 | 56.66 385 | 52.26 411 | 18.98 415 | 41.51 403 | 81.40 390 | 10.10 405 | 44.59 400 | 75.01 391 | 28.51 396 | 68.16 403 | 53.54 389 | 49.31 399 | 82.83 386 |
|
| JIA-IIPM | | | 81.04 320 | 78.98 332 | 87.25 307 | 88.64 355 | 73.48 329 | 81.75 388 | 89.61 359 | 73.19 361 | 82.05 298 | 73.71 392 | 66.07 296 | 95.87 307 | 71.18 325 | 84.60 282 | 92.41 320 |
|
| LCM-MVSNet | | | 66.00 359 | 62.16 364 | 77.51 369 | 64.51 407 | 58.29 395 | 83.87 382 | 90.90 334 | 48.17 396 | 54.69 393 | 73.31 393 | 16.83 407 | 86.75 390 | 65.47 360 | 61.67 390 | 87.48 381 |
|
| PMMVS2 | | | 59.60 363 | 56.40 365 | 69.21 379 | 68.83 404 | 46.58 405 | 73.02 398 | 77.48 401 | 55.07 393 | 49.21 396 | 72.95 394 | 17.43 406 | 80.04 401 | 49.32 392 | 44.33 401 | 80.99 389 |
|
| gg-mvs-nofinetune | | | 81.77 309 | 79.37 324 | 88.99 266 | 90.85 320 | 77.73 279 | 86.29 365 | 79.63 394 | 74.88 346 | 83.19 287 | 69.05 395 | 60.34 334 | 96.11 297 | 75.46 297 | 94.64 138 | 93.11 298 |
|
| MVS-HIRNet | | | 73.70 351 | 72.20 354 | 78.18 368 | 91.81 280 | 56.42 400 | 82.94 386 | 82.58 387 | 55.24 392 | 68.88 382 | 66.48 396 | 55.32 361 | 95.13 330 | 58.12 383 | 88.42 243 | 83.01 385 |
|
| PMVS |  | 47.18 22 | 52.22 368 | 48.46 372 | 63.48 383 | 45.72 412 | 46.20 406 | 73.41 397 | 78.31 397 | 41.03 401 | 30.06 404 | 65.68 397 | 6.05 411 | 83.43 398 | 30.04 402 | 65.86 384 | 60.80 398 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_vis3_rt | | | 65.12 360 | 62.60 362 | 72.69 373 | 71.44 400 | 60.71 391 | 87.17 359 | 65.55 406 | 63.80 388 | 53.22 394 | 65.65 398 | 14.54 408 | 89.44 385 | 76.65 286 | 65.38 385 | 67.91 397 |
|
| ANet_high | | | 58.88 366 | 54.22 370 | 72.86 372 | 56.50 410 | 56.67 397 | 80.75 390 | 86.00 375 | 73.09 363 | 37.39 402 | 64.63 399 | 22.17 402 | 79.49 402 | 43.51 396 | 23.96 404 | 82.43 388 |
|
| tmp_tt | | | 35.64 373 | 39.24 375 | 24.84 389 | 14.87 413 | 23.90 414 | 62.71 399 | 51.51 412 | 6.58 407 | 36.66 403 | 62.08 400 | 44.37 387 | 30.34 409 | 52.40 390 | 22.00 406 | 20.27 404 |
|
| MVE |  | 39.65 23 | 43.39 370 | 38.59 376 | 57.77 384 | 56.52 409 | 48.77 404 | 55.38 400 | 58.64 410 | 29.33 404 | 28.96 405 | 52.65 401 | 4.68 412 | 64.62 406 | 28.11 403 | 33.07 402 | 59.93 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| Gipuma |  | | 57.99 367 | 54.91 369 | 67.24 382 | 88.51 356 | 65.59 378 | 52.21 401 | 90.33 344 | 43.58 398 | 42.84 401 | 51.18 402 | 20.29 404 | 85.07 394 | 34.77 401 | 70.45 374 | 51.05 401 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| E-PMN | | | 43.23 371 | 42.29 373 | 46.03 387 | 65.58 406 | 37.41 410 | 73.51 396 | 64.62 407 | 33.99 402 | 28.47 406 | 47.87 403 | 19.90 405 | 67.91 404 | 22.23 406 | 24.45 403 | 32.77 402 |
|
| EMVS | | | 42.07 372 | 41.12 374 | 44.92 388 | 63.45 408 | 35.56 412 | 73.65 395 | 63.48 408 | 33.05 403 | 26.88 407 | 45.45 404 | 21.27 403 | 67.14 405 | 19.80 407 | 23.02 405 | 32.06 403 |
|
| X-MVStestdata | | | 88.31 177 | 86.13 223 | 94.85 25 | 98.54 13 | 86.60 34 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 71 | 23.41 405 | 85.02 59 | 99.49 26 | 91.99 76 | 98.56 49 | 98.47 33 |
|
| test_post | | | | | | | | | | | | 10.29 406 | 70.57 240 | 95.91 306 | | | |
|
| test_post1 | | | | | | | | 88.00 349 | | | | 9.81 407 | 69.31 258 | 95.53 320 | 76.65 286 | | |
|
| testmvs | | | 8.92 376 | 11.52 379 | 1.12 392 | 1.06 414 | 0.46 417 | 86.02 366 | 0.65 415 | 0.62 408 | 2.74 409 | 9.52 408 | 0.31 415 | 0.45 411 | 2.38 409 | 0.39 408 | 2.46 407 |
|
| test123 | | | 8.76 377 | 11.22 380 | 1.39 391 | 0.85 415 | 0.97 416 | 85.76 369 | 0.35 416 | 0.54 409 | 2.45 410 | 8.14 409 | 0.60 414 | 0.48 410 | 2.16 410 | 0.17 409 | 2.71 406 |
|
| wuyk23d | | | 21.27 375 | 20.48 378 | 23.63 390 | 68.59 405 | 36.41 411 | 49.57 402 | 6.85 414 | 9.37 406 | 7.89 408 | 4.46 410 | 4.03 413 | 31.37 408 | 17.47 408 | 16.07 407 | 3.12 405 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| pcd_1.5k_mvsjas | | | 6.64 379 | 8.86 382 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 79.70 123 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WAC-MVS | | | | | | | 64.08 384 | | | | | | | | 59.14 381 | | |
|
| FOURS1 | | | | | | 98.86 1 | 85.54 67 | 98.29 1 | 97.49 6 | 89.79 46 | 96.29 18 | | | | | | |
|
| MSC_two_6792asdad | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 63 | | | | | 99.61 4 | 96.03 14 | 99.06 9 | 99.07 5 |
|
| No_MVS | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 63 | | | | | 99.61 4 | 96.03 14 | 99.06 9 | 99.07 5 |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 98.77 5 | 86.00 50 | | 96.84 65 | 81.26 270 | 97.26 7 | | | | 95.50 23 | 99.13 3 | 99.03 8 |
|
| save fliter | | | | | | 97.85 46 | 85.63 66 | 95.21 113 | 96.82 68 | 89.44 53 | | | | | | | |
|
| test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 39 | 97.09 16 | 97.49 6 | | | | | 99.61 4 | 95.62 21 | 99.08 7 | 98.99 9 |
|
| GSMVS | | | | | | | | | | | | | | | | | 96.12 161 |
|
| test_part2 | | | | | | 98.55 12 | 87.22 19 | | | | 96.40 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 71.70 223 | | | | 96.12 161 |
|
| sam_mvs | | | | | | | | | | | | | 70.60 236 | | | | |
|
| MTGPA |  | | | | | | | | 96.97 50 | | | | | | | | |
|
| MTMP | | | | | | | | 96.16 54 | 60.64 409 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 91.91 80 | 98.71 33 | 98.07 68 |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.54 103 | 98.68 38 | 98.27 52 |
|
| agg_prior | | | | | | 97.38 63 | 85.92 57 | | 96.72 81 | | 92.16 92 | | | 98.97 75 | | | |
|
| test_prior4 | | | | | | | 85.96 54 | 94.11 182 | | | | | | | | | |
|
| test_prior | | | | | 93.82 62 | 97.29 67 | 84.49 86 | | 96.88 61 | | | | | 98.87 82 | | | 98.11 67 |
|
| 旧先验2 | | | | | | | | 93.36 220 | | 71.25 374 | 94.37 39 | | | 97.13 240 | 86.74 148 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 93.11 235 | | | | | | | | | |
|
| æ— å…ˆéªŒ | | | | | | | | 93.28 228 | 96.26 112 | 73.95 354 | | | | 99.05 55 | 80.56 244 | | 96.59 143 |
|
| 原ACMM2 | | | | | | | | 92.94 242 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 98.75 93 | 78.30 270 | | |
|
| segment_acmp | | | | | | | | | | | | | 87.16 36 | | | | |
|
| testdata1 | | | | | | | | 92.15 268 | | 87.94 105 | | | | | | | |
|
| test12 | | | | | 94.34 50 | 97.13 70 | 86.15 48 | | 96.29 107 | | 91.04 118 | | 85.08 57 | 99.01 63 | | 98.13 62 | 97.86 82 |
|
| plane_prior7 | | | | | | 94.70 169 | 82.74 142 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 94.52 179 | 82.75 140 | | | | | | 74.23 189 | | | | |
|
| plane_prior5 | | | | | | | | | 96.22 117 | | | | | 98.12 148 | 88.15 127 | 89.99 210 | 94.63 219 |
|
| plane_prior3 | | | | | | | 82.75 140 | | | 90.26 33 | 86.91 183 | | | | | | |
|
| plane_prior2 | | | | | | | | 95.85 77 | | 90.81 17 | | | | | | | |
|
| plane_prior1 | | | | | | 94.59 174 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 82.73 143 | 95.21 113 | | 89.66 50 | | | | | | 89.88 215 | |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| door-mid | | | | | | | | | 85.49 377 | | | | | | | | |
|
| test11 | | | | | | | | | 96.57 92 | | | | | | | | |
|
| door | | | | | | | | | 85.33 379 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 81.56 170 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 94.17 197 | | 94.39 166 | | 88.81 74 | 85.43 228 | | | | | | |
|
| ACMP_Plane | | | | | | 94.17 197 | | 94.39 166 | | 88.81 74 | 85.43 228 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.11 145 | | |
|
| HQP4-MVS | | | | | | | | | | | 85.43 228 | | | 97.96 169 | | | 94.51 229 |
|
| HQP3-MVS | | | | | | | | | 96.04 133 | | | | | | | 89.77 219 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.83 199 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 55.91 402 | 87.62 356 | | 73.32 360 | 84.59 249 | | 70.33 243 | | 74.65 306 | | 95.50 188 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 258 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.01 250 | |
|
| Test By Simon | | | | | | | | | | | | | 80.02 118 | | | | |
|