This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
fmvsm_s_conf0.1_n_a98.08 6298.04 6298.21 11997.66 24495.39 18298.89 10599.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11199.35 115
fmvsm_s_conf0.1_n98.18 6098.21 5198.11 13198.54 16595.24 19298.87 11499.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9499.21 140
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19198.85 11999.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9799.25 134
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18198.86 11799.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10999.49 96
test_fmvsmconf_n98.92 798.87 699.04 5598.88 13097.25 9198.82 12799.34 1098.75 399.80 599.61 495.16 7199.95 799.70 699.80 2299.93 1
test_fmvsmconf0.01_n97.86 7297.54 8298.83 6995.48 35996.83 10898.95 9198.60 14298.58 698.93 5999.55 688.57 21299.91 3999.54 1199.61 7799.77 27
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18596.15 14598.97 8599.15 2898.55 798.45 9199.55 694.26 9499.97 199.65 799.66 6698.57 215
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23897.15 9698.84 12398.97 4298.75 399.43 2799.54 893.29 10699.93 2599.64 999.79 2899.89 5
UA-Net97.96 6797.62 7598.98 5998.86 13397.47 8098.89 10599.08 3296.67 8298.72 7499.54 893.15 10899.81 8194.87 19698.83 14299.65 69
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2499.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32598.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1999.86 199.82 16
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9198.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 6499.81 1599.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 13098.96 9099.36 998.63 599.86 299.51 1395.91 4099.97 199.72 599.75 4598.94 181
mvsany_test197.69 8297.70 7397.66 16998.24 19194.18 24497.53 30197.53 30195.52 12999.66 1599.51 1394.30 9299.56 14798.38 5098.62 15199.23 136
test072699.72 1299.25 299.06 6498.88 6297.62 2499.56 2099.50 1597.42 9
DeepC-MVS95.98 397.88 7197.58 7798.77 7199.25 8196.93 10398.83 12598.75 10696.96 6796.89 17499.50 1590.46 17099.87 5897.84 7899.76 4099.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_298.08 6298.59 1496.56 24499.57 3390.34 33299.15 5098.38 19996.82 7399.29 3499.49 1795.78 4499.57 14498.94 2299.86 199.77 27
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7598.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4799.81 1599.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4799.80 2299.83 13
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9697.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6199.91 2
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 4399.72 5699.74 37
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12798.81 8695.80 11699.16 4499.47 2095.37 5799.92 3197.89 7499.75 4599.79 19
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8598.58 15097.62 2499.45 2599.46 2497.42 999.94 898.47 4399.81 1599.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 4399.86 199.85 10
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1199.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 11095.32 37798.86 298.53 8699.44 2794.38 9099.94 899.86 199.70 5999.90 3
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 11099.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2299.89 5
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10599.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 5099.90 3
MP-MVS-pluss98.31 5697.92 6899.49 1299.72 1298.88 1898.43 20398.78 10094.10 19997.69 14099.42 2995.25 6599.92 3198.09 6399.80 2299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 6098.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8199.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6998.81 8695.12 15199.32 3399.39 3296.22 2799.84 6797.72 8499.73 5399.67 65
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 10098.74 10897.27 4998.02 11499.39 3294.81 8099.96 497.91 7299.79 2899.77 27
VDDNet95.36 20394.53 22097.86 14698.10 20895.13 19898.85 11997.75 28290.46 33598.36 9699.39 3273.27 37999.64 13197.98 6796.58 21798.81 190
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 10098.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5999.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS96.37 297.93 7098.48 2396.30 26999.00 11489.54 34497.43 30798.87 6998.16 1199.26 3699.38 3796.12 3299.64 13198.30 5499.77 3499.72 45
test_vis1_n_192096.71 13796.84 11796.31 26899.11 10489.74 33999.05 6698.58 15098.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6199.27 129
EI-MVSNet-UG-set98.41 4598.34 3598.61 8099.45 5296.32 13898.28 22098.68 12497.17 5598.74 7199.37 3895.25 6599.79 9898.57 3299.54 9499.73 42
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 5098.81 8696.24 9899.20 3899.37 3895.30 6199.80 8897.73 8399.67 6499.72 45
LS3D97.16 11896.66 13098.68 7598.53 16697.19 9498.93 9698.90 5792.83 27095.99 20999.37 3892.12 12999.87 5893.67 23999.57 8598.97 177
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12798.30 21798.69 12197.21 5298.84 6499.36 4295.41 5499.78 10198.62 3099.65 6999.80 18
ACMMPcopyleft98.23 5897.95 6699.09 5299.74 797.62 7399.03 7299.41 695.98 10797.60 14999.36 4294.45 8899.93 2597.14 11498.85 14199.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_cas_vis1_n_192097.38 10697.36 9397.45 17898.95 12493.25 27999.00 7998.53 16397.70 2099.77 799.35 4484.71 29299.85 6398.57 3299.66 6699.26 132
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5798.80 9396.49 8899.17 4199.35 4495.34 5999.82 7697.72 8499.65 6999.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5798.80 9396.49 8899.17 4199.35 4495.29 6297.72 8499.65 6999.71 49
DP-MVS96.59 14195.93 15698.57 8399.34 5796.19 14498.70 16098.39 19589.45 35494.52 24099.35 4491.85 13799.85 6392.89 26398.88 13899.68 61
VDD-MVS95.82 17795.23 18897.61 17298.84 13693.98 24898.68 16397.40 31695.02 15997.95 12099.34 4874.37 37699.78 10198.64 2996.80 21099.08 165
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6198.82 8196.58 8599.10 4699.32 4995.39 5599.82 7697.70 8899.63 7499.72 45
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8299.49 595.43 13399.03 4799.32 4995.56 4999.94 896.80 13799.77 3499.78 21
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5298.66 13296.84 7199.56 2099.31 5196.34 2599.70 11998.32 5399.73 5399.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-OURS96.55 14496.41 13896.99 20698.75 14193.76 25497.50 30498.52 16695.67 12396.83 17599.30 5288.95 20699.53 15695.88 16496.26 23497.69 247
9.1498.06 6099.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3499.81 8197.00 11899.71 58
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6499.28 5496.47 2399.40 17698.52 4199.70 5999.47 100
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6199.28 5495.27 6399.82 7697.55 10099.77 3499.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test111195.94 16995.78 16096.41 26198.99 11890.12 33499.04 6992.45 39996.99 6698.03 11299.27 5681.40 32499.48 16796.87 13299.04 12899.63 73
test_fmvs1_n95.90 17295.99 15495.63 29598.67 15288.32 36699.26 2798.22 22696.40 9399.67 1499.26 5773.91 37799.70 11999.02 2199.50 9998.87 185
test250694.44 26493.91 26196.04 27799.02 11188.99 35499.06 6479.47 41396.96 6798.36 9699.26 5777.21 35899.52 15996.78 13899.04 12899.59 79
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32099.03 7291.80 40096.96 6798.10 10699.26 5781.31 32599.51 16096.90 12699.04 12899.59 79
RPSCF94.87 23495.40 17593.26 35298.89 12882.06 39098.33 21098.06 26490.30 34096.56 18899.26 5787.09 24699.49 16293.82 23496.32 22698.24 228
APD-MVScopyleft98.35 5298.00 6599.42 1699.51 3998.72 2198.80 13698.82 8194.52 18799.23 3799.25 6195.54 5199.80 8896.52 14499.77 3499.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.33 5598.01 6499.28 3299.75 398.18 5199.22 3798.79 9896.13 10397.92 12599.23 6294.54 8399.94 896.74 14099.78 3299.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2498.81 8696.24 9898.35 9899.23 6295.46 5299.94 897.42 10799.81 1599.77 27
MG-MVS97.81 7597.60 7698.44 9999.12 10295.97 15497.75 28598.78 10096.89 7098.46 8899.22 6493.90 10099.68 12594.81 20099.52 9799.67 65
casdiffmvspermissive97.63 8797.41 9098.28 11198.33 18596.14 14698.82 12798.32 20896.38 9597.95 12099.21 6591.23 15699.23 19398.12 6198.37 16599.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive97.42 10397.11 10498.34 10798.66 15396.23 14199.22 3799.00 3996.63 8498.04 11199.21 6588.05 22899.35 18196.01 16199.21 12299.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs196.42 14896.67 12995.66 29498.82 13788.53 36298.80 13698.20 22996.39 9499.64 1799.20 6780.35 33599.67 12699.04 2099.57 8598.78 194
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2298.88 6297.40 3698.46 8899.20 6795.90 4299.89 4797.85 7699.74 5099.78 21
LFMVS95.86 17494.98 20198.47 9598.87 13296.32 13898.84 12396.02 36793.40 24498.62 8199.20 6774.99 37199.63 13497.72 8497.20 20099.46 104
HPM-MVS_fast98.38 4798.13 5599.12 5099.75 397.86 6499.44 998.82 8194.46 19098.94 5599.20 6795.16 7199.74 11197.58 9699.85 599.77 27
casdiffmvs_mvgpermissive97.72 7997.48 8698.44 9998.42 17196.59 12198.92 9898.44 18596.20 10097.76 13299.20 6791.66 14299.23 19398.27 5898.41 16499.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10598.93 5999.19 7295.70 4699.94 897.62 9399.79 2899.78 21
test_vis1_n95.47 19295.13 19296.49 25297.77 23390.41 33099.27 2698.11 24996.58 8599.66 1599.18 7367.00 39099.62 13799.21 1699.40 11499.44 107
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10598.94 5599.17 7496.06 3399.92 3197.62 9399.78 3299.75 35
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10298.94 5599.17 7495.91 4099.94 897.55 10099.79 2899.78 21
baseline97.64 8697.44 8998.25 11698.35 17796.20 14299.00 7998.32 20896.33 9798.03 11299.17 7491.35 15199.16 20098.10 6298.29 17199.39 112
PC_three_145295.08 15699.60 1999.16 7797.86 298.47 28597.52 10399.72 5699.74 37
OPU-MVS99.37 2099.24 8799.05 1499.02 7599.16 7797.81 399.37 18097.24 11299.73 5399.70 53
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7099.16 7797.05 1399.78 10198.06 6499.66 6699.69 56
3Dnovator94.51 597.46 9796.93 11399.07 5397.78 23297.64 7199.35 1599.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4599.64 71
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17497.45 3598.88 6299.14 8195.25 6599.15 20398.83 2699.56 9199.20 141
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1698.87 6995.96 10898.60 8399.13 8296.05 3499.94 897.77 8199.86 199.77 27
3Dnovator+94.38 697.43 10296.78 12199.38 1897.83 22998.52 2899.37 1298.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8599.71 49
EPNet97.28 11096.87 11698.51 9094.98 36896.14 14698.90 10097.02 34098.28 1095.99 20999.11 8491.36 15099.89 4796.98 11999.19 12499.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.93 12896.27 14398.92 6499.50 4197.63 7298.85 11998.90 5784.80 38397.77 13199.11 8492.84 11199.66 12894.85 19799.77 3499.47 100
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 11798.31 10199.10 8695.46 5299.93 2597.57 9999.81 1599.74 37
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 18097.17 5598.94 5599.10 8695.73 4599.13 20698.71 2899.49 10199.09 161
testdata98.26 11599.20 9295.36 18498.68 12491.89 30098.60 8399.10 8694.44 8999.82 7694.27 21999.44 10899.58 83
PHI-MVS98.34 5398.06 6099.18 4299.15 10098.12 5799.04 6999.09 3193.32 24798.83 6699.10 8696.54 2199.83 6997.70 8899.76 4099.59 79
OMC-MVS97.55 9597.34 9498.20 12199.33 5995.92 16198.28 22098.59 14595.52 12997.97 11999.10 8693.28 10799.49 16295.09 19198.88 13899.19 145
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28098.58 18098.11 24989.92 34593.57 28699.10 8686.37 26099.79 9890.78 31098.10 17597.09 263
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
旧先验199.29 7397.48 7898.70 12099.09 9295.56 4999.47 10499.61 75
XVG-OURS-SEG-HR96.51 14596.34 14097.02 20598.77 14093.76 25497.79 28398.50 17495.45 13296.94 16999.09 9287.87 23399.55 15496.76 13995.83 24697.74 244
CPTT-MVS97.72 7997.32 9598.92 6499.64 2897.10 9799.12 5698.81 8692.34 28698.09 10799.08 9493.01 10999.92 3196.06 15899.77 3499.75 35
EPP-MVSNet97.46 9797.28 9697.99 14098.64 15695.38 18399.33 2098.31 21093.61 23697.19 15899.07 9594.05 9799.23 19396.89 12798.43 16399.37 114
GST-MVS98.43 4398.12 5699.34 2399.72 1298.38 3599.09 6198.82 8195.71 12198.73 7399.06 9695.27 6399.93 2597.07 11799.63 7499.72 45
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28497.32 8499.21 4098.97 4289.96 34491.14 34299.05 9786.64 25499.92 3193.38 24599.47 10497.73 245
EI-MVSNet95.96 16695.83 15996.36 26497.93 22493.70 26098.12 24298.27 21993.70 22795.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 286
CVMVSNet95.43 19696.04 15193.57 34697.93 22483.62 38498.12 24298.59 14595.68 12296.56 18899.02 9887.51 23997.51 35893.56 24397.44 19699.60 77
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9198.11 24498.29 21897.19 5498.99 5299.02 9896.22 2799.67 12698.52 4198.56 15599.51 89
QAPM96.29 15495.40 17598.96 6297.85 22897.60 7499.23 3398.93 5089.76 34893.11 30699.02 9889.11 19899.93 2591.99 28699.62 7699.34 116
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26199.58 397.14 5898.44 9399.01 10295.03 7699.62 13797.91 7299.75 4599.50 91
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8497.91 26699.58 397.20 5398.33 9999.00 10395.99 3799.64 13198.05 6699.76 4099.69 56
IS-MVSNet97.22 11396.88 11598.25 11698.85 13596.36 13699.19 4497.97 26995.39 13597.23 15798.99 10491.11 15998.93 23994.60 20798.59 15399.47 100
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7598.97 10595.70 4699.83 6996.07 15599.58 84
Anonymous2024052995.10 21894.22 23797.75 15799.01 11394.26 24198.87 11498.83 8085.79 37996.64 18398.97 10578.73 34399.85 6396.27 15094.89 25299.12 157
原ACMM198.65 7899.32 6296.62 11698.67 12993.27 25197.81 13098.97 10595.18 7099.83 6993.84 23399.46 10799.50 91
HPM-MVScopyleft98.36 5098.10 5999.13 4899.74 797.82 6899.53 698.80 9394.63 18098.61 8298.97 10595.13 7399.77 10697.65 9199.83 1499.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28598.89 5997.71 1998.33 9998.97 10594.97 7799.88 5698.42 4999.76 4099.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet98.05 6497.76 7198.90 6798.73 14297.27 8698.35 20898.78 10097.37 4197.72 13898.96 11091.53 14899.92 3198.79 2799.65 6999.51 89
test22299.23 8897.17 9597.40 30898.66 13288.68 36398.05 10998.96 11094.14 9699.53 9699.61 75
新几何199.16 4599.34 5798.01 6198.69 12190.06 34398.13 10498.95 11294.60 8299.89 4791.97 28899.47 10499.59 79
DP-MVS Recon97.86 7297.46 8799.06 5499.53 3698.35 4298.33 21098.89 5992.62 27598.05 10998.94 11395.34 5999.65 12996.04 15999.42 11099.19 145
CANet_DTU96.96 12796.55 13398.21 11998.17 20496.07 14897.98 25998.21 22797.24 5097.13 16098.93 11486.88 25199.91 3995.00 19499.37 11798.66 206
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9198.93 11496.65 1999.83 6997.38 10999.41 11199.71 49
CSCG97.85 7497.74 7298.20 12199.67 2595.16 19599.22 3799.32 1193.04 26197.02 16798.92 11695.36 5899.91 3997.43 10699.64 7399.52 86
CHOSEN 1792x268897.12 12196.80 11898.08 13399.30 6894.56 22998.05 25199.71 193.57 23797.09 16198.91 11788.17 22299.89 4796.87 13299.56 9199.81 17
MVSMamba_PlusPlus98.31 5698.19 5498.67 7698.96 12297.36 8399.24 3098.57 15294.81 17198.99 5298.90 11895.22 6899.59 14099.15 1799.84 1199.07 169
iter_conf0598.16 6198.02 6398.59 8298.96 12297.07 9898.90 10098.57 15294.81 17197.84 12898.90 11895.22 6899.59 14099.15 1799.84 1199.12 157
mamv497.13 12098.11 5794.17 34298.97 12183.70 38398.66 16898.71 11694.63 18097.83 12998.90 11896.25 2699.55 15499.27 1599.76 4099.27 129
diffmvspermissive97.58 9297.40 9198.13 12798.32 18895.81 16798.06 25098.37 20196.20 10098.74 7198.89 12191.31 15499.25 19098.16 6098.52 15699.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu97.70 8197.46 8798.44 9999.27 7895.91 16298.63 17499.16 2794.48 18997.67 14198.88 12292.80 11299.91 3997.11 11599.12 12699.50 91
GeoE96.58 14396.07 14998.10 13298.35 17795.89 16499.34 1698.12 24693.12 25896.09 20598.87 12389.71 18298.97 22992.95 25998.08 17699.43 109
Vis-MVSNet (Re-imp)96.87 13196.55 13397.83 14898.73 14295.46 17999.20 4298.30 21694.96 16396.60 18798.87 12390.05 17698.59 27593.67 23998.60 15299.46 104
CDPH-MVS97.94 6997.49 8499.28 3299.47 4798.44 3197.91 26698.67 12992.57 27898.77 6998.85 12595.93 3999.72 11395.56 17799.69 6199.68 61
VNet97.79 7697.40 9198.96 6298.88 13097.55 7598.63 17498.93 5096.74 7899.02 4898.84 12690.33 17399.83 6998.53 3596.66 21499.50 91
EC-MVSNet98.21 5998.11 5798.49 9398.34 18297.26 9099.61 598.43 18996.78 7498.87 6398.84 12693.72 10199.01 22798.91 2399.50 9999.19 145
bld_raw_dy_0_6497.09 12396.76 12598.08 13398.89 12896.54 12598.17 23798.52 16688.80 36295.67 21698.83 12893.32 10499.48 16798.86 2499.75 4598.21 232
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13297.51 3098.15 10298.83 12895.70 4699.92 3197.53 10299.67 6499.66 68
MVSFormer97.57 9397.49 8497.84 14798.07 20995.76 16899.47 798.40 19394.98 16198.79 6798.83 12892.34 11998.41 29896.91 12399.59 8199.34 116
jason97.32 10997.08 10698.06 13697.45 26395.59 17197.87 27497.91 27594.79 17398.55 8598.83 12891.12 15899.23 19397.58 9699.60 7999.34 116
jason: jason.
Anonymous20240521195.28 20894.49 22297.67 16699.00 11493.75 25698.70 16097.04 33790.66 33196.49 19498.80 13278.13 35099.83 6996.21 15495.36 25199.44 107
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12497.04 6398.52 8798.80 13296.78 1699.83 6997.93 7099.61 7799.74 37
iter_conf05_1198.04 6597.94 6798.34 10798.60 16096.38 13399.24 3098.57 15295.90 11198.99 5298.79 13492.97 11099.47 17098.58 3199.85 599.17 151
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2798.88 6297.52 2999.41 2898.78 13596.00 3699.79 9897.79 8099.59 8199.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22298.43 20398.39 19596.64 8395.02 22898.78 13585.15 28299.05 21895.21 19094.20 25896.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28198.59 17898.18 23491.36 31493.52 28898.77 13784.67 29399.72 11389.70 32897.87 18298.02 237
TestCases96.99 20699.25 8193.21 28198.18 23491.36 31493.52 28898.77 13784.67 29399.72 11389.70 32897.87 18298.02 237
LPG-MVS_test95.62 18795.34 18196.47 25597.46 26093.54 26398.99 8298.54 16194.67 17894.36 25198.77 13785.39 27599.11 21095.71 17294.15 26196.76 292
LGP-MVS_train96.47 25597.46 26093.54 26398.54 16194.67 17894.36 25198.77 13785.39 27599.11 21095.71 17294.15 26196.76 292
SDMVSNet96.85 13296.42 13798.14 12499.30 6896.38 13399.21 4099.23 2095.92 10995.96 21198.76 14185.88 26899.44 17497.93 7095.59 24798.60 210
sd_testset96.17 15995.76 16197.42 18199.30 6894.34 23898.82 12799.08 3295.92 10995.96 21198.76 14182.83 31899.32 18495.56 17795.59 24798.60 210
MSDG95.93 17095.30 18697.83 14898.90 12795.36 18496.83 35698.37 20191.32 31894.43 24798.73 14390.27 17499.60 13990.05 32198.82 14398.52 216
h-mvs3396.17 15995.62 17297.81 15199.03 11094.45 23198.64 17198.75 10697.48 3298.67 7598.72 14489.76 18099.86 6297.95 6881.59 38199.11 159
test_prior297.80 28196.12 10497.89 12798.69 14595.96 3896.89 12799.60 79
TEST999.31 6498.50 2997.92 26498.73 11192.63 27497.74 13598.68 14696.20 2999.80 88
train_agg97.97 6697.52 8399.33 2699.31 6498.50 2997.92 26498.73 11192.98 26397.74 13598.68 14696.20 2999.80 8896.59 14199.57 8599.68 61
AdaColmapbinary97.15 11996.70 12698.48 9499.16 9896.69 11598.01 25598.89 5994.44 19196.83 17598.68 14690.69 16799.76 10794.36 21499.29 12198.98 176
test_899.29 7398.44 3197.89 27298.72 11392.98 26397.70 13998.66 14996.20 2999.80 88
tttt051796.07 16295.51 17497.78 15398.41 17394.84 21299.28 2494.33 38894.26 19697.64 14698.64 15084.05 30799.47 17095.34 18297.60 19399.03 171
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1450.00 4140.00 41598.61 15190.60 1680.00 4150.00 4140.00 4130.00 411
lupinMVS97.44 10197.22 10098.12 13098.07 20995.76 16897.68 29097.76 28194.50 18898.79 6798.61 15192.34 11999.30 18697.58 9699.59 8199.31 122
BH-RMVSNet95.92 17195.32 18497.69 16398.32 18894.64 22198.19 23197.45 31294.56 18396.03 20798.61 15185.02 28399.12 20890.68 31299.06 12799.30 125
TAMVS97.02 12596.79 12097.70 16298.06 21295.31 18998.52 18998.31 21093.95 20897.05 16698.61 15193.49 10398.52 28095.33 18397.81 18499.29 127
TAPA-MVS93.98 795.35 20494.56 21997.74 15899.13 10194.83 21498.33 21098.64 13786.62 37196.29 20198.61 15194.00 9999.29 18780.00 38599.41 11199.09 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28393.38 27398.74 14798.57 15291.21 32593.81 27998.58 15672.85 38098.77 26195.05 19393.93 26998.77 196
DPM-MVS97.55 9596.99 11099.23 3899.04 10998.55 2797.17 33198.35 20494.85 17097.93 12498.58 15695.07 7599.71 11892.60 26799.34 11899.43 109
F-COLMAP97.09 12396.80 11897.97 14199.45 5294.95 20898.55 18798.62 14193.02 26296.17 20498.58 15694.01 9899.81 8193.95 22998.90 13699.14 155
mvsmamba97.25 11296.99 11098.02 13898.34 18295.54 17699.18 4797.47 30795.04 15798.15 10298.57 15989.46 18799.31 18597.68 9099.01 13199.22 138
WTY-MVS97.37 10896.92 11498.72 7398.86 13396.89 10798.31 21598.71 11695.26 14497.67 14198.56 16092.21 12699.78 10195.89 16396.85 20999.48 98
CNLPA97.45 10097.03 10898.73 7299.05 10897.44 8298.07 24998.53 16395.32 14196.80 17998.53 16193.32 10499.72 11394.31 21899.31 12099.02 172
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24293.48 26798.73 15198.44 18594.94 16692.53 32298.53 16184.50 29899.14 20595.48 18194.00 26696.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH92.88 1694.55 25293.95 25896.34 26697.63 24693.26 27898.81 13598.49 17993.43 24389.74 35498.53 16181.91 32199.08 21693.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-094.21 27794.00 25494.85 32295.60 35489.22 34998.89 10597.43 31495.29 14292.18 33198.52 16482.86 31798.59 27593.46 24491.76 30096.74 294
CDS-MVSNet96.99 12696.69 12797.90 14598.05 21395.98 14998.20 22898.33 20793.67 23296.95 16898.49 16593.54 10298.42 29195.24 18997.74 18899.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss97.39 10596.98 11298.61 8098.60 16096.61 11898.22 22598.93 5093.97 20798.01 11798.48 16691.98 13499.85 6396.45 14698.15 17399.39 112
ACMH+92.99 1494.30 27193.77 27395.88 28797.81 23192.04 30098.71 15698.37 20193.99 20690.60 34898.47 16780.86 33199.05 21892.75 26592.40 29496.55 320
ACMM93.85 995.69 18495.38 17996.61 23797.61 24793.84 25298.91 9998.44 18595.25 14594.28 25598.47 16786.04 26799.12 20895.50 18093.95 26896.87 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
1112_ss96.63 13996.00 15398.50 9198.56 16296.37 13598.18 23698.10 25292.92 26694.84 23198.43 16992.14 12899.58 14394.35 21596.51 22099.56 85
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
test_yl97.22 11396.78 12198.54 8798.73 14296.60 11998.45 19898.31 21094.70 17498.02 11498.42 17190.80 16499.70 11996.81 13596.79 21199.34 116
DCV-MVSNet97.22 11396.78 12198.54 8798.73 14296.60 11998.45 19898.31 21094.70 17498.02 11498.42 17190.80 16499.70 11996.81 13596.79 21199.34 116
xiu_mvs_v1_base_debu97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
xiu_mvs_v1_base97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
xiu_mvs_v1_base_debi97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23399.00 7998.55 15995.73 12093.21 30198.38 17683.45 31698.63 27197.09 11694.00 26696.91 277
FC-MVSNet-test96.42 14896.05 15097.53 17696.95 29697.27 8699.36 1399.23 2095.83 11593.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 267
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22299.14 5298.52 16695.74 11893.22 30098.36 17883.87 31298.65 27096.95 12294.04 26496.91 277
nrg03096.28 15695.72 16397.96 14396.90 30198.15 5499.39 1098.31 21095.47 13194.42 24898.35 17992.09 13198.69 26597.50 10489.05 33797.04 265
FIs96.51 14596.12 14897.67 16697.13 28797.54 7699.36 1399.22 2395.89 11294.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 266
ITE_SJBPF95.44 30397.42 26591.32 31297.50 30495.09 15593.59 28498.35 17981.70 32298.88 24889.71 32793.39 28296.12 348
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26894.42 23398.52 18998.59 14591.69 30691.21 34198.35 17984.87 28699.04 22191.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 20099.16 4998.50 17495.87 11493.84 27898.34 18394.51 8498.61 27296.88 12993.45 28097.06 264
EPNet_dtu95.21 21294.95 20395.99 27996.17 33590.45 32998.16 23897.27 32396.77 7593.14 30598.33 18490.34 17298.42 29185.57 36398.81 14499.09 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15896.77 11195.48 38098.20 22984.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13498.68 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053096.01 16495.36 18097.97 14198.38 17495.52 17798.88 11094.19 39094.04 20197.64 14698.31 18683.82 31499.46 17295.29 18697.70 19098.93 182
PLCcopyleft95.07 497.20 11696.78 12198.44 9999.29 7396.31 14098.14 23998.76 10492.41 28496.39 19998.31 18694.92 7999.78 10194.06 22798.77 14599.23 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP_MVS96.14 16195.90 15796.85 21897.42 26594.60 22798.80 13698.56 15797.28 4595.34 22098.28 18887.09 24699.03 22296.07 15594.27 25596.92 272
plane_prior498.28 188
API-MVS97.41 10497.25 9797.91 14498.70 14796.80 10998.82 12798.69 12194.53 18598.11 10598.28 18894.50 8799.57 14494.12 22499.49 10197.37 258
test_fmvs293.43 30193.58 28492.95 35696.97 29583.91 38299.19 4497.24 32595.74 11895.20 22598.27 19169.65 38398.72 26496.26 15193.73 27296.24 344
mvs_anonymous96.70 13896.53 13597.18 19498.19 19993.78 25398.31 21598.19 23194.01 20494.47 24298.27 19192.08 13298.46 28697.39 10897.91 18099.31 122
XXY-MVS95.20 21394.45 22797.46 17796.75 31096.56 12398.86 11798.65 13693.30 24993.27 29998.27 19184.85 28798.87 24994.82 19991.26 30896.96 269
SixPastTwentyTwo93.34 30492.86 30394.75 32695.67 35289.41 34798.75 14496.67 35893.89 21190.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
VPNet94.99 22594.19 23997.40 18497.16 28596.57 12298.71 15698.97 4295.67 12394.84 23198.24 19580.36 33498.67 26996.46 14587.32 35796.96 269
PVSNet_Blended97.38 10697.12 10398.14 12499.25 8195.35 18697.28 32199.26 1593.13 25797.94 12298.21 19692.74 11399.81 8196.88 12999.40 11499.27 129
HyFIR lowres test96.90 13096.49 13698.14 12499.33 5995.56 17397.38 31099.65 292.34 28697.61 14898.20 19789.29 19299.10 21496.97 12097.60 19399.77 27
baseline195.84 17595.12 19498.01 13998.49 16995.98 14998.73 15197.03 33895.37 13896.22 20298.19 19889.96 17899.16 20094.60 20787.48 35398.90 184
ab-mvs96.42 14895.71 16698.55 8598.63 15796.75 11297.88 27398.74 10893.84 21496.54 19298.18 19985.34 27899.75 10995.93 16296.35 22499.15 153
xiu_mvs_v2_base97.66 8597.70 7397.56 17598.61 15995.46 17997.44 30598.46 18197.15 5798.65 8098.15 20094.33 9199.80 8897.84 7898.66 15097.41 254
USDC93.33 30592.71 30695.21 30996.83 30590.83 32296.91 34697.50 30493.84 21490.72 34698.14 20177.69 35398.82 25689.51 33293.21 28695.97 352
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24694.69 17692.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 268
CHOSEN 280x42097.18 11797.18 10297.20 19198.81 13893.27 27795.78 37699.15 2895.25 14596.79 18098.11 20392.29 12199.07 21798.56 3499.85 599.25 134
MVSTER96.06 16395.72 16397.08 20298.23 19395.93 16098.73 15198.27 21994.86 16895.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 289
MVS_Test97.28 11097.00 10998.13 12798.33 18595.97 15498.74 14798.07 25994.27 19598.44 9398.07 20592.48 11699.26 18996.43 14798.19 17299.16 152
PAPM_NR97.46 9797.11 10498.50 9199.50 4196.41 13298.63 17498.60 14295.18 14897.06 16598.06 20694.26 9499.57 14493.80 23598.87 14099.52 86
PatchMatch-RL96.59 14196.03 15298.27 11299.31 6496.51 12697.91 26699.06 3493.72 22496.92 17298.06 20688.50 21799.65 12991.77 29299.00 13398.66 206
tt080594.54 25393.85 26796.63 23497.98 21993.06 28798.77 14397.84 27893.67 23293.80 28098.04 20876.88 36398.96 23394.79 20192.86 28997.86 241
Effi-MVS+97.12 12196.69 12798.39 10598.19 19996.72 11497.37 31298.43 18993.71 22597.65 14598.02 20992.20 12799.25 19096.87 13297.79 18599.19 145
MVS94.67 24593.54 28798.08 13396.88 30296.56 12398.19 23198.50 17478.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16798.04 236
BH-untuned95.95 16795.72 16396.65 23098.55 16492.26 29498.23 22497.79 28093.73 22294.62 23798.01 21188.97 20599.00 22893.04 25698.51 15798.68 202
CLD-MVS95.62 18795.34 18196.46 25897.52 25793.75 25697.27 32298.46 18195.53 12894.42 24898.00 21286.21 26298.97 22996.25 15394.37 25396.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs295.71 18195.30 18696.93 21298.50 16793.53 26598.36 20798.10 25297.48 3298.67 7597.99 21389.76 18099.02 22597.95 6880.91 38698.22 230
HY-MVS93.96 896.82 13496.23 14698.57 8398.46 17097.00 10098.14 23998.21 22793.95 20896.72 18197.99 21391.58 14399.76 10794.51 21196.54 21998.95 180
AUN-MVS94.53 25593.73 27796.92 21598.50 16793.52 26698.34 20998.10 25293.83 21695.94 21397.98 21585.59 27399.03 22294.35 21580.94 38598.22 230
MAR-MVS96.91 12996.40 13998.45 9798.69 15096.90 10598.66 16898.68 12492.40 28597.07 16497.96 21691.54 14799.75 10993.68 23798.92 13598.69 201
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-CasMVS94.67 24593.99 25696.71 22596.68 31495.26 19099.13 5599.03 3793.68 23092.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 289
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13699.03 7299.03 3795.04 15793.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 271
testgi93.06 31392.45 31394.88 32196.43 32689.90 33698.75 14497.54 30095.60 12591.63 33997.91 21974.46 37597.02 36586.10 35993.67 27397.72 246
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
CP-MVSNet94.94 23294.30 23396.83 21996.72 31295.56 17399.11 5798.95 4693.89 21192.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 288
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29296.55 31991.65 30798.11 24498.44 18594.96 16394.22 25997.90 22079.18 34299.11 21094.05 22893.85 27096.48 334
PS-MVSNAJ97.73 7897.77 7097.62 17198.68 15195.58 17297.34 31698.51 16997.29 4498.66 7997.88 22394.51 8499.90 4597.87 7599.17 12597.39 256
TransMVSNet (Re)92.67 31791.51 32396.15 27396.58 31894.65 22098.90 10096.73 35490.86 33089.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17899.47 798.40 19394.98 16194.58 23897.86 22489.16 19698.41 29896.91 12394.12 26396.88 281
TinyColmap92.31 32191.53 32294.65 33096.92 29889.75 33896.92 34496.68 35790.45 33689.62 35597.85 22676.06 36798.81 25786.74 35592.51 29395.41 361
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19598.95 9198.03 26692.32 28891.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
UGNet96.78 13596.30 14298.19 12398.24 19195.89 16498.88 11098.93 5097.39 3896.81 17897.84 22782.60 31999.90 4596.53 14399.49 10198.79 191
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TDRefinement91.06 33289.68 33795.21 30985.35 40691.49 31098.51 19397.07 33491.47 31088.83 36497.84 22777.31 35799.09 21592.79 26477.98 39495.04 369
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21299.17 4899.00 3993.51 23892.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
131496.25 15895.73 16297.79 15297.13 28795.55 17598.19 23198.59 14593.47 24192.03 33497.82 23191.33 15299.49 16294.62 20698.44 16198.32 227
DTE-MVSNet93.98 29493.26 29796.14 27496.06 34094.39 23599.20 4298.86 7593.06 26091.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
PAPM94.95 23094.00 25497.78 15397.04 29195.65 17096.03 37298.25 22491.23 32394.19 26197.80 23391.27 15598.86 25182.61 37997.61 19298.84 188
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 29996.08 36998.68 12493.69 22897.75 13497.80 23388.86 20799.69 12494.26 22099.01 13199.15 153
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20480.97 39181.57 39097.75 23574.75 37298.61 27289.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NP-MVS97.28 27494.51 23097.73 236
HQP-MVS95.72 18095.40 17596.69 22897.20 28094.25 24298.05 25198.46 18196.43 9094.45 24397.73 23686.75 25298.96 23395.30 18494.18 25996.86 285
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18496.84 30496.97 10198.74 14799.24 1795.16 14993.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 272
FE-MVS95.62 18794.90 20597.78 15398.37 17694.92 20997.17 33197.38 31890.95 32997.73 13797.70 23985.32 28099.63 13491.18 30098.33 16898.79 191
FA-MVS(test-final)96.41 15195.94 15597.82 15098.21 19595.20 19497.80 28197.58 29193.21 25297.36 15497.70 23989.47 18699.56 14794.12 22497.99 17798.71 200
DU-MVS95.42 19794.76 21097.40 18496.53 32096.97 10198.66 16898.99 4195.43 13393.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 272
WR-MVS95.15 21594.46 22597.22 19096.67 31596.45 12898.21 22698.81 8694.15 19793.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 279
NR-MVSNet94.98 22794.16 24297.44 17996.53 32097.22 9398.74 14798.95 4694.96 16389.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 272
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28497.74 23791.74 30598.69 16298.15 24295.56 12794.92 22997.68 24488.98 20498.79 25993.19 25197.78 18697.20 262
alignmvs97.56 9497.07 10799.01 5698.66 15398.37 4098.83 12598.06 26496.74 7898.00 11897.65 24590.80 16499.48 16798.37 5196.56 21899.19 145
LF4IMVS93.14 31292.79 30594.20 34095.88 34788.67 35997.66 29297.07 33493.81 21791.71 33797.65 24577.96 35298.81 25791.47 29791.92 29995.12 366
lessismore_v094.45 33894.93 37088.44 36491.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
TR-MVS94.94 23294.20 23897.17 19597.75 23494.14 24597.59 29897.02 34092.28 29095.75 21597.64 24783.88 31198.96 23389.77 32596.15 23998.40 221
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17398.22 19496.20 14297.31 31995.37 37694.53 18579.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 172
Baseline_NR-MVSNet94.35 26893.81 26995.96 28296.20 33394.05 24798.61 17796.67 35891.44 31293.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15797.40 30897.67 28590.42 33793.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
K. test v392.55 31891.91 32194.48 33595.64 35389.24 34899.07 6394.88 38294.04 20186.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23999.01 7798.88 6286.43 37392.81 31297.57 25381.66 32398.68 26894.83 19889.02 33996.88 281
PAPR96.84 13396.24 14598.65 7898.72 14696.92 10497.36 31498.57 15293.33 24696.67 18297.57 25394.30 9299.56 14791.05 30798.59 15399.47 100
pmmvs691.77 32490.63 32995.17 31194.69 37591.24 31498.67 16697.92 27486.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
EIA-MVS97.75 7797.58 7798.27 11298.38 17496.44 12999.01 7798.60 14295.88 11397.26 15697.53 25694.97 7799.33 18397.38 10999.20 12399.05 170
MS-PatchMatch93.84 29693.63 28294.46 33796.18 33489.45 34597.76 28498.27 21992.23 29192.13 33297.49 25779.50 33998.69 26589.75 32699.38 11695.25 363
IterMVS-SCA-FT94.11 28793.87 26594.85 32297.98 21990.56 32897.18 32998.11 24993.75 21992.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16399.14 5298.41 19193.75 21993.16 30297.46 25987.50 24198.41 29895.63 17694.03 26596.50 331
PVSNet_BlendedMVS96.73 13696.60 13197.12 19999.25 8195.35 18698.26 22399.26 1594.28 19497.94 12297.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
PMMVS96.60 14096.33 14197.41 18297.90 22693.93 24997.35 31598.41 19192.84 26997.76 13297.45 26191.10 16099.20 19796.26 15197.91 18099.11 159
ETV-MVS97.96 6797.81 6998.40 10498.42 17197.27 8698.73 15198.55 15996.84 7198.38 9597.44 26295.39 5599.35 18197.62 9398.89 13798.58 214
thisisatest051595.61 19094.89 20697.76 15698.15 20595.15 19796.77 35794.41 38692.95 26597.18 15997.43 26384.78 28999.45 17394.63 20497.73 18998.68 202
baseline295.11 21794.52 22196.87 21796.65 31693.56 26298.27 22294.10 39293.45 24292.02 33597.43 26387.45 24399.19 19893.88 23297.41 19897.87 240
MGCFI-Net97.62 8897.19 10198.92 6498.66 15398.20 4999.32 2198.38 19996.69 8197.58 15097.42 26592.10 13099.50 16198.28 5596.25 23599.08 165
sasdasda97.67 8397.23 9898.98 5998.70 14798.38 3599.34 1698.39 19596.76 7697.67 14197.40 26692.26 12299.49 16298.28 5596.28 23299.08 165
canonicalmvs97.67 8397.23 9898.98 5998.70 14798.38 3599.34 1698.39 19596.76 7697.67 14197.40 26692.26 12299.49 16298.28 5596.28 23299.08 165
tfpnnormal93.66 29792.70 30796.55 24896.94 29795.94 15798.97 8599.19 2491.04 32791.38 34097.34 26884.94 28598.61 27285.45 36589.02 33995.11 367
IterMVS94.09 28993.85 26794.80 32597.99 21790.35 33197.18 32998.12 24693.68 23092.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet95.75 17995.11 19597.69 16397.24 27697.27 8698.94 9499.23 2095.13 15095.51 21897.32 27085.73 27098.91 24297.33 11189.55 32996.89 280
IterMVS-LS95.46 19395.21 18996.22 27298.12 20693.72 25998.32 21498.13 24593.71 22594.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res96.34 15395.66 17198.36 10698.56 16295.94 15797.71 28898.07 25992.10 29594.79 23597.29 27291.75 13999.56 14794.17 22296.50 22199.58 83
ppachtmachnet_test93.22 30892.63 30894.97 31795.45 36190.84 32196.88 35297.88 27690.60 33292.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
pmmvs593.65 29992.97 30295.68 29395.49 35892.37 29298.20 22897.28 32289.66 35092.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
MDTV_nov1_ep1395.40 17597.48 25888.34 36596.85 35497.29 32193.74 22197.48 15397.26 27389.18 19599.05 21891.92 28997.43 197
dmvs_re94.48 26194.18 24195.37 30597.68 24190.11 33598.54 18897.08 33294.56 18394.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 228
Fast-Effi-MVS+96.28 15695.70 16898.03 13798.29 19095.97 15498.58 18098.25 22491.74 30395.29 22497.23 27791.03 16299.15 20392.90 26197.96 17998.97 177
BH-w/o95.38 20095.08 19696.26 27198.34 18291.79 30297.70 28997.43 31492.87 26894.24 25897.22 27888.66 21098.84 25291.55 29697.70 19098.16 234
eth_miper_zixun_eth94.68 24294.41 23095.47 30197.64 24591.71 30696.73 36098.07 25992.71 27393.64 28397.21 27990.54 16998.17 32093.38 24589.76 32496.54 321
v192192094.20 27893.47 29096.40 26395.98 34394.08 24698.52 18998.15 24291.33 31794.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21798.67 16698.08 25792.72 27294.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
v7n94.19 27993.43 29296.47 25595.90 34694.38 23699.26 2798.34 20691.99 29792.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
DIV-MVS_self_test94.52 25694.03 25095.99 27997.57 25393.38 27397.05 33797.94 27291.74 30392.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
SCA95.46 19395.13 19296.46 25897.67 24291.29 31397.33 31797.60 29094.68 17796.92 17297.10 28383.97 30998.89 24692.59 26998.32 17099.20 141
Patchmatch-test94.42 26593.68 28196.63 23497.60 24891.76 30394.83 38697.49 30689.45 35494.14 26397.10 28388.99 20198.83 25585.37 36698.13 17499.29 127
FMVSNet394.97 22994.26 23597.11 20098.18 20196.62 11698.56 18698.26 22393.67 23294.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
MVP-Stereo94.28 27593.92 25995.35 30694.95 36992.60 29197.97 26097.65 28691.61 30890.68 34797.09 28786.32 26198.42 29189.70 32899.34 11895.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet294.47 26293.61 28397.04 20498.21 19596.43 13098.79 14198.27 21992.46 27993.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
cl____94.51 25794.01 25396.02 27897.58 24993.40 27297.05 33797.96 27191.73 30592.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
UWE-MVS94.30 27193.89 26495.53 29897.83 22988.95 35597.52 30393.25 39494.44 19196.63 18497.07 29078.70 34499.28 18891.99 28697.56 19598.36 224
GBi-Net94.49 25993.80 27096.56 24498.21 19595.00 20298.82 12798.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19595.00 20298.82 12798.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet193.19 31092.07 31796.56 24497.54 25495.00 20298.82 12798.18 23490.38 33892.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
v119294.32 27093.58 28496.53 24996.10 33894.45 23198.50 19498.17 23991.54 30994.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
V4294.78 23894.14 24496.70 22796.33 33095.22 19398.97 8598.09 25692.32 28894.31 25497.06 29488.39 21898.55 27792.90 26188.87 34196.34 340
c3_l94.79 23794.43 22995.89 28697.75 23493.12 28597.16 33398.03 26692.23 29193.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
testing393.19 31092.48 31295.30 30898.07 20992.27 29398.64 17197.17 32893.94 21093.98 27197.04 29767.97 38796.01 38288.40 34497.14 20197.63 249
GA-MVS94.81 23694.03 25097.14 19797.15 28693.86 25196.76 35897.58 29194.00 20594.76 23697.04 29780.91 32998.48 28291.79 29196.25 23599.09 161
UniMVSNet (Re)95.78 17895.19 19097.58 17396.99 29497.47 8098.79 14199.18 2595.60 12593.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 289
v14419294.39 26793.70 27996.48 25496.06 34094.35 23798.58 18098.16 24191.45 31194.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
v114494.59 25093.92 25996.60 23996.21 33294.78 21898.59 17898.14 24491.86 30294.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
v124094.06 29293.29 29696.34 26696.03 34293.90 25098.44 20198.17 23991.18 32694.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
v1094.29 27393.55 28696.51 25196.39 32794.80 21698.99 8298.19 23191.35 31693.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
test_040291.32 32790.27 33394.48 33596.60 31791.12 31598.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
miper_lstm_enhance94.33 26994.07 24895.11 31397.75 23490.97 31797.22 32498.03 26691.67 30792.76 31496.97 30590.03 17797.78 34892.51 27489.64 32696.56 318
v894.47 26293.77 27396.57 24396.36 32894.83 21499.05 6698.19 23191.92 29993.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
miper_ehance_all_eth95.01 22294.69 21495.97 28197.70 24093.31 27697.02 33998.07 25992.23 29193.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
PatchmatchNetpermissive95.71 18195.52 17396.29 27097.58 24990.72 32496.84 35597.52 30294.06 20097.08 16296.96 30789.24 19498.90 24592.03 28598.37 16599.26 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14894.29 27393.76 27595.91 28496.10 33892.93 28898.58 18097.97 26992.59 27793.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
gm-plane-assit95.88 34787.47 37389.74 34996.94 31099.19 19893.32 248
tpmrst95.63 18695.69 16995.44 30397.54 25488.54 36196.97 34197.56 29493.50 23997.52 15296.93 31189.49 18499.16 20095.25 18896.42 22398.64 208
thres600view795.49 19194.77 20997.67 16698.98 11995.02 20198.85 11996.90 34795.38 13696.63 18496.90 31284.29 29999.59 14088.65 34396.33 22598.40 221
our_test_393.65 29993.30 29594.69 32795.45 36189.68 34296.91 34697.65 28691.97 29891.66 33896.88 31389.67 18397.93 34088.02 34991.49 30496.48 334
thres100view90095.38 20094.70 21397.41 18298.98 11994.92 20998.87 11496.90 34795.38 13696.61 18696.88 31384.29 29999.56 14788.11 34696.29 22997.76 242
cl2294.68 24294.19 23996.13 27598.11 20793.60 26196.94 34398.31 21092.43 28393.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
LCM-MVSNet-Re95.22 21195.32 18494.91 31898.18 20187.85 37298.75 14495.66 37495.11 15288.96 36096.85 31690.26 17597.65 35195.65 17598.44 16199.22 138
WR-MVS_H95.05 22194.46 22596.81 22196.86 30395.82 16699.24 3099.24 1793.87 21392.53 32296.84 31790.37 17198.24 31793.24 24987.93 34996.38 339
EPMVS94.99 22594.48 22396.52 25097.22 27891.75 30497.23 32391.66 40194.11 19897.28 15596.81 31885.70 27198.84 25293.04 25697.28 19998.97 177
tpm294.19 27993.76 27595.46 30297.23 27789.04 35297.31 31996.85 35387.08 37096.21 20396.79 31983.75 31598.74 26292.43 27796.23 23798.59 212
WB-MVSnew94.19 27994.04 24994.66 32996.82 30692.14 29597.86 27595.96 37093.50 23995.64 21796.77 32088.06 22797.99 33584.87 36896.86 20893.85 385
D2MVS95.18 21495.08 19695.48 30097.10 28992.07 29898.30 21799.13 3094.02 20392.90 31096.73 32189.48 18598.73 26394.48 21293.60 27795.65 359
CostFormer94.95 23094.73 21295.60 29797.28 27489.06 35197.53 30196.89 34989.66 35096.82 17796.72 32286.05 26598.95 23895.53 17996.13 24098.79 191
test20.0390.89 33490.38 33292.43 35893.48 38388.14 36998.33 21097.56 29493.40 24487.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
Effi-MVS+-dtu96.29 15496.56 13295.51 29997.89 22790.22 33398.80 13698.10 25296.57 8796.45 19796.66 32490.81 16398.91 24295.72 17197.99 17797.40 255
test0.0.03 194.08 29093.51 28895.80 28995.53 35792.89 28997.38 31095.97 36995.11 15292.51 32496.66 32487.71 23596.94 36787.03 35493.67 27397.57 252
miper_enhance_ethall95.10 21894.75 21196.12 27697.53 25693.73 25896.61 36398.08 25792.20 29493.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
ADS-MVSNet294.58 25194.40 23195.11 31398.00 21588.74 35896.04 37097.30 32090.15 34196.47 19596.64 32787.89 23197.56 35690.08 31997.06 20299.02 172
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21591.91 30196.04 37097.74 28390.15 34196.47 19596.64 32787.89 23198.96 23390.08 31997.06 20299.02 172
dp94.15 28393.90 26294.90 31997.31 27386.82 37796.97 34197.19 32791.22 32496.02 20896.61 32985.51 27499.02 22590.00 32394.30 25498.85 186
tfpn200view995.32 20794.62 21697.43 18098.94 12594.98 20598.68 16396.93 34595.33 13996.55 19096.53 33084.23 30399.56 14788.11 34696.29 22997.76 242
thres40095.38 20094.62 21697.65 17098.94 12594.98 20598.68 16396.93 34595.33 13996.55 19096.53 33084.23 30399.56 14788.11 34696.29 22998.40 221
EG-PatchMatch MVS91.13 33190.12 33494.17 34294.73 37489.00 35398.13 24197.81 27989.22 35885.32 38496.46 33267.71 38898.42 29187.89 35193.82 27195.08 368
TESTMET0.1,194.18 28293.69 28095.63 29596.92 29889.12 35096.91 34694.78 38393.17 25494.88 23096.45 33378.52 34598.92 24093.09 25398.50 15898.85 186
tpmvs94.60 24894.36 23295.33 30797.46 26088.60 36096.88 35297.68 28491.29 32093.80 28096.42 33488.58 21199.24 19291.06 30596.04 24198.17 233
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37498.58 18097.26 32490.48 33490.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
tpm94.13 28493.80 27095.12 31296.50 32287.91 37197.44 30595.89 37392.62 27596.37 20096.30 33684.13 30698.30 31193.24 24991.66 30399.14 155
CR-MVSNet94.76 23994.15 24396.59 24097.00 29293.43 26894.96 38297.56 29492.46 27996.93 17096.24 33788.15 22397.88 34587.38 35296.65 21598.46 219
Patchmtry93.22 30892.35 31495.84 28896.77 30793.09 28694.66 38997.56 29487.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
cascas94.63 24793.86 26696.93 21296.91 30094.27 24096.00 37398.51 16985.55 38094.54 23996.23 33984.20 30598.87 24995.80 16896.98 20797.66 248
thres20095.25 20994.57 21897.28 18898.81 13894.92 20998.20 22897.11 33095.24 14796.54 19296.22 34184.58 29699.53 15687.93 35096.50 22197.39 256
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34194.08 37889.83 33797.13 33598.67 12993.69 22885.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
testing1195.00 22394.28 23497.16 19697.96 22193.36 27598.09 24797.06 33694.94 16695.33 22396.15 34376.89 36299.40 17695.77 17096.30 22898.72 197
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32495.21 36591.34 31197.64 29497.51 30388.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
MIMVSNet93.26 30792.21 31696.41 26197.73 23893.13 28395.65 37797.03 33891.27 32294.04 26896.06 34675.33 36997.19 36386.56 35696.23 23798.92 183
testing9194.98 22794.25 23697.20 19197.94 22293.41 27098.00 25797.58 29194.99 16095.45 21996.04 34777.20 35999.42 17594.97 19596.02 24298.78 194
tpm cat193.36 30292.80 30495.07 31597.58 24987.97 37096.76 35897.86 27782.17 39093.53 28796.04 34786.13 26399.13 20689.24 33695.87 24598.10 235
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
testing9994.83 23594.08 24797.07 20397.94 22293.13 28398.10 24697.17 32894.86 16895.34 22096.00 35076.31 36599.40 17695.08 19295.90 24398.68 202
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 25985.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31698.01 25597.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
testing22294.12 28693.03 30097.37 18798.02 21494.66 21997.94 26396.65 36094.63 18095.78 21495.76 35371.49 38198.92 24091.17 30195.88 24498.52 216
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34397.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
YYNet190.70 33689.39 33994.62 33194.79 37390.65 32697.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 35992.65 31895.73 35685.01 28495.76 38486.24 35897.76 18798.59 212
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25993.41 27097.09 33695.99 36893.32 24792.47 32595.73 35678.06 35199.53 15694.59 20982.98 37698.62 209
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR95.10 21894.87 20795.80 28996.77 30789.70 34096.91 34695.21 37895.11 15294.83 23395.72 35887.71 23598.97 22993.06 25498.50 15898.72 197
test-mter94.08 29093.51 28895.80 28996.77 30789.70 34096.91 34695.21 37892.89 26794.83 23395.72 35877.69 35398.97 22993.06 25498.50 15898.72 197
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32894.83 37190.78 32397.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
FMVSNet591.81 32390.92 32694.49 33497.21 27992.09 29798.00 25797.55 29989.31 35790.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
ETVMVS94.50 25893.44 29197.68 16598.18 20195.35 18698.19 23197.11 33093.73 22296.40 19895.39 36374.53 37398.84 25291.10 30296.31 22798.84 188
Syy-MVS92.55 31892.61 30992.38 35997.39 26983.41 38597.91 26697.46 30893.16 25593.42 29495.37 36484.75 29096.12 38077.00 39396.99 20497.60 250
myMVS_eth3d92.73 31692.01 31894.89 32097.39 26990.94 31897.91 26697.46 30893.16 25593.42 29495.37 36468.09 38696.12 38088.34 34596.99 20497.60 250
PVSNet_088.72 1991.28 32990.03 33595.00 31697.99 21787.29 37594.84 38598.50 17492.06 29689.86 35395.19 36679.81 33899.39 17992.27 27869.79 40198.33 226
DeepMVS_CXcopyleft86.78 37297.09 29072.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390
patchmatchnet-post95.10 36889.42 18998.89 246
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36398.94 9497.56 29488.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38092.81 39695.93 37291.87 30187.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34697.91 26696.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35281.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24896.30 36689.04 36081.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36896.51 36698.07 25990.49 33390.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
KD-MVS_2432*160089.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28889.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28889.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
GG-mvs-BLEND96.59 24096.34 32994.98 20596.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20496.74 294
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35697.95 26197.94 27290.35 33990.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 28095.49 37593.81 21787.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36696.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
test_vis1_rt91.29 32890.65 32893.19 35497.45 26386.25 37898.57 18590.90 40493.30 24986.94 37393.59 38262.07 39699.11 21097.48 10595.58 24994.22 377
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32186.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
pmmvs-eth3d90.36 33889.05 34394.32 33991.10 39392.12 29697.63 29796.95 34488.86 36184.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6696.61 36192.79 27188.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 37997.16 33397.33 31989.47 35383.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37696.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
PatchT93.06 31391.97 31996.35 26596.69 31392.67 29094.48 39297.08 33286.62 37197.08 16292.23 39287.94 23097.90 34178.89 38996.69 21398.49 218
RPMNet92.81 31591.34 32497.24 18997.00 29293.43 26894.96 38298.80 9382.27 38996.93 17092.12 39386.98 24999.82 7676.32 39496.65 21598.46 219
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28796.33 36589.41 35685.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35794.92 38498.30 21684.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
JIA-IIPM93.35 30392.49 31195.92 28396.48 32490.65 32695.01 38196.96 34385.93 37796.08 20687.33 39887.70 23798.78 26091.35 29895.58 24998.34 225
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24982.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14697.43 253
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 31095.09 19995.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16897.88 239
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2298.88 6297.40 3698.46 8843.50 40895.90 4299.89 4797.85 7699.74 5099.78 21
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
test_post31.83 41188.83 20898.91 242
test_post196.68 36130.43 41287.85 23498.69 26592.59 269
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 840.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.94 31888.66 342
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13999.94 898.53 3599.80 2299.86 8
No_MVS99.62 699.17 9499.08 1198.63 13999.94 898.53 3599.80 2299.86 8
eth-test20.00 419
eth-test0.00 419
IU-MVS99.71 1999.23 798.64 13795.28 14399.63 1898.35 5299.81 1599.83 13
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
test_0728_SECOND99.71 199.72 1299.35 198.97 8598.88 6299.94 898.47 4399.81 1599.84 12
GSMVS99.20 141
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18899.20 141
sam_mvs88.99 201
MTGPAbinary98.74 108
MTMP98.89 10594.14 391
test9_res96.39 14999.57 8599.69 56
agg_prior295.87 16599.57 8599.68 61
agg_prior99.30 6898.38 3598.72 11397.57 15199.81 81
test_prior498.01 6197.86 275
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
旧先验297.57 30091.30 31998.67 7599.80 8895.70 174
新几何297.64 294
无先验97.58 29998.72 11391.38 31399.87 5893.36 24799.60 77
原ACMM297.67 291
testdata299.89 4791.65 295
segment_acmp96.85 14
testdata197.32 31896.34 96
test1299.18 4299.16 9898.19 5098.53 16398.07 10895.13 7399.72 11399.56 9199.63 73
plane_prior797.42 26594.63 222
plane_prior697.35 27294.61 22587.09 246
plane_prior598.56 15799.03 22296.07 15594.27 25596.92 272
plane_prior394.61 22597.02 6495.34 220
plane_prior298.80 13697.28 45
plane_prior197.37 271
plane_prior94.60 22798.44 20196.74 7894.22 257
n20.00 420
nn0.00 420
door-mid94.37 387
test1198.66 132
door94.64 385
HQP5-MVS94.25 242
HQP-NCC97.20 28098.05 25196.43 9094.45 243
ACMP_Plane97.20 28098.05 25196.43 9094.45 243
BP-MVS95.30 184
HQP4-MVS94.45 24398.96 23396.87 283
HQP3-MVS98.46 18194.18 259
HQP2-MVS86.75 252
MDTV_nov1_ep13_2view84.26 38196.89 35190.97 32897.90 12689.89 17993.91 23199.18 150
ACMMP++_ref92.97 287
ACMMP++93.61 276
Test By Simon94.64 81