This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
fmvsm_s_conf0.1_n_a99.26 7399.06 8799.85 2899.52 17299.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2999.98 2
UA-Net99.42 4499.29 5799.80 4699.62 14199.55 7899.50 16399.70 1598.79 7099.77 5599.96 197.45 12099.96 3098.92 10199.90 4499.89 20
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10299.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
test_fmvs1_n98.41 17598.14 18699.21 17099.82 4297.71 26399.74 4599.49 14799.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8299.96 7
DeepC-MVS98.35 299.30 6599.19 7299.64 7999.82 4299.23 12499.62 8999.55 7998.94 5499.63 10199.95 395.82 18299.94 6999.37 5499.97 899.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_cas_vis1_n_192099.16 8899.01 10099.61 8799.81 4698.86 17899.65 7799.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3499.91 3699.99 1
test_vis1_n97.92 23497.44 26999.34 14399.53 16798.08 23899.74 4599.49 14799.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11599.97 4
bld_raw_dy_0_6499.22 8099.09 8399.60 9099.74 8099.31 11199.42 20699.55 7996.02 33999.59 11499.94 698.03 10699.92 9899.58 3099.98 499.56 160
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18198.78 27599.94 691.68 31699.35 29297.21 27796.99 29898.69 285
test_fmvsmconf0.01_n99.22 8099.03 9299.79 4998.42 36899.48 9199.55 13599.51 11999.39 1099.78 5199.93 1094.80 21799.95 5999.93 1199.95 2099.94 11
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9685.06 41699.13 2299.77 5599.93 1087.82 36699.85 15299.38 5399.38 15599.80 70
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 11095.40 40399.12 2599.65 9399.93 1090.73 33299.84 15999.43 5199.38 15599.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10294.98 40499.13 2299.66 8799.93 1090.67 33399.84 15999.40 5299.38 15599.80 70
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3398.68 36697.14 25097.90 34099.93 1090.45 33499.18 32197.00 29096.43 30698.67 297
MVSMamba_PlusPlus99.46 3299.41 2699.64 7999.68 11199.50 8899.75 4099.50 13898.27 11799.87 2799.92 1598.09 10199.94 6999.65 2499.95 2099.47 190
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1597.35 12599.96 3099.94 1099.92 2999.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1596.60 15199.96 3099.95 899.96 1499.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20299.65 5799.50 16399.61 4899.45 599.87 2799.92 1597.31 12699.97 2199.95 899.99 199.97 4
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1799.92 1598.62 7099.99 499.96 799.99 199.96 7
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 22099.37 10399.58 11099.62 4199.41 999.87 2799.92 1598.81 44100.00 199.97 199.93 2799.94 11
iter_conf0599.48 2699.40 2799.71 6799.68 11199.61 6799.49 17499.58 6298.27 11799.95 1599.92 1598.09 10199.94 6999.65 2499.96 1499.58 154
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 11099.69 1899.43 799.98 699.91 2298.62 70100.00 199.97 199.95 2099.90 17
test_vis1_n_192098.63 16498.40 17099.31 15099.86 2097.94 25099.67 6699.62 4199.43 799.99 299.91 2287.29 368100.00 199.92 1299.92 2999.98 2
mvsany_test199.50 2099.46 2099.62 8699.61 14599.09 14198.94 34199.48 15999.10 2799.96 1499.91 2298.85 3999.96 3099.72 1899.58 14399.82 54
test_fmvs198.88 13198.79 13399.16 17599.69 10797.61 26699.55 13599.49 14799.32 1499.98 699.91 2291.41 32399.96 3099.82 1699.92 2999.90 17
mamv499.33 6199.42 2299.07 18399.67 11497.73 25899.42 20699.60 5498.15 13599.94 1699.91 2298.42 8599.94 6999.72 1899.96 1499.54 164
SD-MVS99.41 4999.52 1199.05 18799.74 8099.68 4899.46 18899.52 10499.11 2699.88 2299.91 2299.43 197.70 38898.72 13399.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMH97.28 898.10 20397.99 20598.44 27599.41 21096.96 30099.60 9699.56 7198.09 14698.15 33099.91 2290.87 33199.70 23198.88 10597.45 28098.67 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
patch_mono-299.26 7399.62 598.16 29999.81 4694.59 36299.52 14899.64 3699.33 1399.73 6699.90 2999.00 2299.99 499.69 2099.98 499.89 20
VDDNet97.55 28597.02 30499.16 17599.49 18698.12 23799.38 22799.30 27895.35 34699.68 7899.90 2982.62 38999.93 8799.31 6298.13 24399.42 202
QAPM98.67 16098.30 17799.80 4699.20 26499.67 5199.77 3399.72 1194.74 36098.73 27999.90 2995.78 18399.98 1396.96 29499.88 5699.76 87
3Dnovator97.25 999.24 7899.05 8899.81 4499.12 28699.66 5399.84 1199.74 1099.09 3298.92 25499.90 2995.94 17699.98 1398.95 9699.92 2999.79 74
Anonymous2024052998.09 20497.68 24099.34 14399.66 12498.44 22199.40 21899.43 21393.67 37099.22 19999.89 3390.23 33999.93 8799.26 7098.33 22699.66 125
CHOSEN 1792x268899.19 8299.10 8099.45 12999.89 898.52 21299.39 22299.94 198.73 7699.11 22199.89 3395.50 19299.94 6999.50 4199.97 899.89 20
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5099.44 20796.61 29499.66 8799.89 3395.92 17799.82 17997.46 26399.10 18099.57 158
3Dnovator+97.12 1399.18 8498.97 10699.82 4199.17 27899.68 4899.81 1999.51 11999.20 1898.72 28099.89 3395.68 18799.97 2198.86 11399.86 6799.81 61
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17499.88 1198.53 20899.34 24199.59 5897.55 20998.70 28799.89 3395.83 18199.90 12198.10 19899.90 4499.08 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SDMVSNet99.11 10498.90 11699.75 5899.81 4699.59 7199.81 1999.65 3398.78 7399.64 9899.88 3894.56 23599.93 8799.67 2298.26 23299.72 103
sd_testset98.75 15398.57 16099.29 15899.81 4698.26 22999.56 12399.62 4198.78 7399.64 9899.88 3892.02 30799.88 13899.54 3598.26 23299.72 103
dcpmvs_299.23 7999.58 798.16 29999.83 3994.68 36099.76 3699.52 10499.07 3599.98 699.88 3898.56 7499.93 8799.67 2299.98 499.87 31
test_djsdf98.67 16098.57 16098.98 19598.70 35098.91 17299.88 399.46 18897.55 20999.22 19999.88 3895.73 18599.28 30299.03 8897.62 26498.75 270
DP-MVS99.16 8898.95 11199.78 5299.77 6299.53 8399.41 21099.50 13897.03 26599.04 23799.88 3897.39 12199.92 9898.66 14299.90 4499.87 31
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28296.68 36799.88 3888.65 35599.71 22598.37 17982.74 39898.09 365
EPP-MVSNet99.13 9498.99 10299.53 10999.65 13099.06 14799.81 1999.33 26097.43 22599.60 11199.88 3897.14 13199.84 15999.13 8098.94 19199.69 115
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30499.53 8399.82 1599.72 1194.56 36398.08 33299.88 3894.73 22599.98 1397.47 26299.76 11599.06 243
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4688.69 35399.32 29795.89 32594.93 34398.62 318
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10099.66 12499.09 14199.64 8099.56 7198.26 12099.45 14099.87 4696.03 17199.81 18499.54 3599.15 17499.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.12 10098.97 10699.56 9899.78 5699.10 14099.68 6399.66 2898.49 9599.86 3199.87 4694.77 22299.84 15999.19 7499.41 15499.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19696.68 31399.56 12399.54 8898.41 10297.79 34699.87 4690.18 34099.66 24298.05 20797.18 29498.62 318
ACMMP_NAP99.47 3099.34 3999.88 599.87 1599.86 1399.47 18599.48 15998.05 15699.76 6099.86 5098.82 4399.93 8798.82 12599.91 3699.84 40
casdiffmvspermissive99.13 9498.98 10599.56 9899.65 13099.16 13199.56 12399.50 13898.33 11299.41 15399.86 5095.92 17799.83 17299.45 5099.16 17199.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.36 5899.28 5999.61 8799.86 2099.07 14699.47 18599.93 297.66 19899.71 7299.86 5097.73 11499.96 3099.47 4899.82 9599.79 74
IS-MVSNet99.05 11498.87 12199.57 9699.73 8899.32 10799.75 4099.20 29898.02 16099.56 12099.86 5096.54 15499.67 23998.09 19999.13 17699.73 97
USDC97.34 30197.20 29697.75 32799.07 29895.20 35198.51 37899.04 31997.99 16198.31 31999.86 5089.02 34899.55 26395.67 33397.36 28898.49 338
APD_test195.87 33396.49 31794.00 36899.53 16784.01 39799.54 13999.32 27095.91 34097.99 33799.85 5585.49 37599.88 13891.96 37798.84 20098.12 364
iter_conf05_1199.40 5299.32 4399.63 8599.53 16799.47 9399.75 4099.52 10498.11 14299.87 2799.85 5597.72 11599.89 13299.56 3299.97 899.53 170
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8499.39 22698.91 5899.78 5199.85 5599.36 299.94 6998.84 11899.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5585.77 37296.15 39997.86 22043.89 40995.39 399
AllTest98.87 13298.72 13799.31 15099.86 2098.48 21899.56 12399.61 4897.85 17399.36 16799.85 5595.95 17499.85 15296.66 31099.83 9199.59 150
TestCases99.31 15099.86 2098.48 21899.61 4897.85 17399.36 16799.85 5595.95 17499.85 15296.66 31099.83 9199.59 150
VDD-MVS97.73 26597.35 28198.88 21699.47 19497.12 28299.34 24198.85 34698.19 13099.67 8299.85 5582.98 38799.92 9899.49 4598.32 23099.60 146
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4099.56 7199.02 3899.88 2299.85 5599.18 1099.96 3099.22 7299.92 2999.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepPCF-MVS98.18 398.81 14699.37 3397.12 34699.60 15091.75 38698.61 37199.44 20799.35 1299.83 3899.85 5598.70 6399.81 18499.02 9099.91 3699.81 61
ACMM97.58 598.37 18098.34 17398.48 26599.41 21097.10 28399.56 12399.45 19998.53 9299.04 23799.85 5593.00 27899.71 22598.74 13097.45 28098.64 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 7199.12 7899.74 6199.18 27099.75 3999.56 12399.57 6698.45 9899.49 13599.85 5597.77 11399.94 6998.33 18399.84 8299.52 172
DPE-MVScopyleft99.46 3299.32 4399.91 299.78 5699.88 899.36 23399.51 11998.73 7699.88 2299.84 6698.72 6199.96 3098.16 19699.87 5999.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.73 15698.68 14298.88 21699.70 10297.73 25898.92 34399.55 7998.52 9399.45 14099.84 6695.27 20099.91 11098.08 20398.84 20099.00 248
baseline99.15 9099.02 9699.53 10999.66 12499.14 13699.72 5099.48 15998.35 10999.42 14999.84 6696.07 16999.79 19399.51 4099.14 17599.67 122
ACMMPcopyleft99.45 3599.32 4399.82 4199.89 899.67 5199.62 8999.69 1898.12 14099.63 10199.84 6698.73 6099.96 3098.55 16499.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 7098.75 5599.99 499.97 199.96 1499.94 11
EI-MVSNet-UG-set99.58 999.57 899.64 7999.78 5699.14 13699.60 9699.45 19999.01 4099.90 2099.83 7098.98 2399.93 8799.59 2899.95 2099.86 33
EI-MVSNet98.67 16098.67 14398.68 24599.35 22797.97 24499.50 16399.38 23496.93 27499.20 20599.83 7097.87 10999.36 28998.38 17797.56 26998.71 277
CVMVSNet98.57 16698.67 14398.30 28999.35 22795.59 34099.50 16399.55 7998.60 8699.39 16099.83 7094.48 24099.45 26998.75 12998.56 21699.85 36
mvsmamba99.06 11298.96 11099.36 14199.47 19498.64 19999.70 5399.05 31897.61 20299.65 9399.83 7096.54 15499.92 9899.19 7499.62 13999.51 178
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23297.05 28999.58 11099.55 7997.46 21999.24 19499.83 7092.58 29499.72 21998.09 19997.51 27398.68 290
LGP-MVS_train98.49 26399.33 23297.05 28999.55 7997.46 21999.24 19499.83 7092.58 29499.72 21998.09 19997.51 27398.68 290
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11998.62 8499.79 4699.83 7099.28 499.97 2198.48 16899.90 4499.84 40
Skip Steuart: Steuart Systems R&D Blog.
XXY-MVS98.38 17998.09 19499.24 16799.26 25199.32 10799.56 12399.55 7997.45 22298.71 28199.83 7093.23 27399.63 25598.88 10596.32 30998.76 268
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7998.75 5599.99 499.97 199.97 899.94 11
SR-MVS-dyc-post99.45 3599.31 5199.85 2899.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.53 7699.95 5998.61 14999.81 9899.77 82
RE-MVS-def99.34 3999.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.75 5598.61 14999.81 9899.77 82
test072699.85 2699.89 499.62 8999.50 13899.10 2799.86 3199.82 7998.94 29
SMA-MVScopyleft99.44 3999.30 5399.85 2899.73 8899.83 1699.56 12399.47 17997.45 22299.78 5199.82 7999.18 1099.91 11098.79 12699.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
nrg03098.64 16398.42 16899.28 16299.05 30399.69 4799.81 1999.46 18898.04 15799.01 24099.82 7996.69 14999.38 28299.34 5994.59 34898.78 263
FC-MVSNet-test98.75 15398.62 15399.15 17999.08 29799.45 9699.86 1099.60 5498.23 12598.70 28799.82 7996.80 14499.22 31399.07 8696.38 30798.79 262
EI-MVSNet-Vis-set99.58 999.56 1099.64 7999.78 5699.15 13599.61 9599.45 19999.01 4099.89 2199.82 7999.01 1899.92 9899.56 3299.95 2099.85 36
APD-MVS_3200maxsize99.48 2699.35 3799.85 2899.76 6599.83 1699.63 8499.54 8898.36 10899.79 4699.82 7998.86 3899.95 5998.62 14699.81 9899.78 80
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7199.66 2898.09 14698.35 31799.82 7995.25 20398.01 38197.41 26795.30 33498.78 263
APD-MVScopyleft99.27 7199.08 8599.84 3999.75 7399.79 3099.50 16399.50 13897.16 24999.77 5599.82 7998.78 4899.94 6997.56 25399.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 10099.08 8599.24 16799.46 19698.55 20699.51 15699.46 18898.09 14699.45 14099.82 7998.34 9099.51 26598.70 13598.93 19299.67 122
DeepC-MVS_fast98.69 199.49 2299.39 3099.77 5599.63 13599.59 7199.36 23399.46 18899.07 3599.79 4699.82 7998.85 3999.92 9898.68 14099.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.13 9499.02 9699.45 12999.57 15698.63 20099.07 30899.34 25398.99 4599.61 10899.82 7997.98 10899.87 14397.00 29099.80 10299.85 36
DVP-MVS++99.59 899.50 1399.88 599.51 17599.88 899.87 799.51 11998.99 4599.88 2299.81 9399.27 599.96 3098.85 11599.80 10299.81 61
test_one_060199.81 4699.88 899.49 14798.97 5199.65 9399.81 9399.09 14
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 15999.08 3399.91 1899.81 9399.20 799.96 3098.91 10299.85 7499.79 74
test_241102_TWO99.48 15999.08 3399.88 2299.81 9398.94 2999.96 3098.91 10299.84 8299.88 26
OPM-MVS98.19 19398.10 19198.45 27298.88 32397.07 28799.28 25999.38 23498.57 8899.22 19999.81 9392.12 30599.66 24298.08 20397.54 27198.61 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MTAPA99.52 1799.39 3099.89 499.90 499.86 1399.66 7199.47 17998.79 7099.68 7899.81 9398.43 8399.97 2198.88 10599.90 4499.83 49
FIs98.78 15098.63 14899.23 16999.18 27099.54 8099.83 1499.59 5898.28 11598.79 27499.81 9396.75 14799.37 28599.08 8596.38 30798.78 263
mvs_tets98.40 17898.23 18098.91 20998.67 35398.51 21499.66 7199.53 9998.19 13098.65 29699.81 9392.75 28499.44 27499.31 6297.48 27998.77 266
mvs_anonymous99.03 11798.99 10299.16 17599.38 22098.52 21299.51 15699.38 23497.79 18199.38 16299.81 9397.30 12799.45 26999.35 5598.99 18999.51 178
TSAR-MVS + GP.99.36 5899.36 3599.36 14199.67 11498.61 20399.07 30899.33 26099.00 4399.82 3999.81 9399.06 1699.84 15999.09 8499.42 15399.65 129
EPNet98.86 13598.71 13999.30 15597.20 38898.18 23299.62 8998.91 33799.28 1698.63 29899.81 9395.96 17399.99 499.24 7199.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ab-mvs98.86 13598.63 14899.54 10199.64 13299.19 12699.44 19599.54 8897.77 18499.30 17999.81 9394.20 24999.93 8799.17 7898.82 20299.49 183
OMC-MVS99.08 11099.04 9099.20 17199.67 11498.22 23199.28 25999.52 10498.07 15199.66 8799.81 9397.79 11299.78 19897.79 22799.81 9899.60 146
MM99.40 5299.28 5999.74 6199.67 11499.31 11199.52 14898.87 34499.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 899.94 11
test_fmvs297.25 30597.30 28997.09 34799.43 20393.31 37899.73 4898.87 34498.83 6499.28 18399.80 10684.45 38299.66 24297.88 21797.45 28098.30 355
tt080597.97 22897.77 22998.57 25499.59 15296.61 31699.45 18999.08 31298.21 12898.88 26099.80 10688.66 35499.70 23198.58 15597.72 25999.39 207
SF-MVS99.38 5699.24 6799.79 4999.79 5499.68 4899.57 11799.54 8897.82 18099.71 7299.80 10698.95 2799.93 8798.19 19299.84 8299.74 92
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 24299.10 2799.81 4199.80 10698.94 2999.96 3098.93 9999.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 4199.80 10699.09 1499.96 3098.85 11599.90 4499.88 26
jajsoiax98.43 17298.28 17898.88 21698.60 36098.43 22299.82 1599.53 9998.19 13098.63 29899.80 10693.22 27599.44 27499.22 7297.50 27598.77 266
PGM-MVS99.45 3599.31 5199.86 2199.87 1599.78 3699.58 11099.65 3397.84 17599.71 7299.80 10699.12 1399.97 2198.33 18399.87 5999.83 49
TransMVSNet (Re)97.15 30996.58 31498.86 22399.12 28698.85 17999.49 17498.91 33795.48 34597.16 36099.80 10693.38 27199.11 33294.16 35891.73 37798.62 318
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 797.05 39397.59 20396.16 37299.80 10688.71 35299.04 33996.69 30896.55 30498.65 307
DELS-MVS99.48 2699.42 2299.65 7499.72 9299.40 10299.05 31399.66 2899.14 2199.57 11999.80 10698.46 8199.94 6999.57 3199.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.32 6399.32 4399.32 14999.85 2698.29 22799.71 5299.66 2898.11 14299.41 15399.80 10698.37 8999.96 3098.99 9299.96 1499.72 103
SR-MVS99.43 4299.29 5799.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6699.79 11898.68 6499.96 3098.44 17499.77 11299.79 74
MP-MVS-pluss99.37 5799.20 7199.88 599.90 499.87 1299.30 24999.52 10497.18 24799.60 11199.79 11898.79 4799.95 5998.83 12199.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs197.68 27497.28 29298.88 21699.06 30098.62 20199.50 16399.45 19996.32 31497.87 34299.79 11892.47 29899.35 29297.54 25593.54 36498.67 297
LFMVS97.90 23797.35 28199.54 10199.52 17299.01 15399.39 22298.24 37897.10 25799.65 9399.79 11884.79 38099.91 11099.28 6698.38 22399.69 115
TinyColmap97.12 31096.89 30997.83 32299.07 29895.52 34498.57 37498.74 35897.58 20597.81 34599.79 11888.16 36199.56 26195.10 34497.21 29298.39 351
ACMP97.20 1198.06 20897.94 21298.45 27299.37 22397.01 29499.44 19599.49 14797.54 21298.45 31299.79 11891.95 30999.72 21997.91 21597.49 27898.62 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE98.85 14298.62 15399.53 10999.61 14599.08 14499.80 2499.51 11997.10 25799.31 17699.78 12495.23 20499.77 20098.21 19099.03 18699.75 88
9.1499.10 8099.72 9299.40 21899.51 11997.53 21399.64 9899.78 12498.84 4199.91 11097.63 24499.82 95
MVS_030499.42 4499.32 4399.72 6599.70 10299.27 11899.52 14897.57 39099.51 299.82 3999.78 12498.09 10199.96 3099.97 199.97 899.94 11
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22999.47 17993.46 37497.41 35199.78 12487.06 36999.33 29596.92 29992.70 37498.65 307
MSLP-MVS++99.46 3299.47 1799.44 13399.60 15099.16 13199.41 21099.71 1398.98 4899.45 14099.78 12499.19 999.54 26499.28 6699.84 8299.63 140
VNet99.11 10498.90 11699.73 6499.52 17299.56 7699.41 21099.39 22699.01 4099.74 6499.78 12495.56 19099.92 9899.52 3998.18 23999.72 103
114514_t98.93 12898.67 14399.72 6599.85 2699.53 8399.62 8999.59 5892.65 38199.71 7299.78 12498.06 10599.90 12198.84 11899.91 3699.74 92
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 15099.71 9798.88 17499.80 2499.44 20797.91 16799.36 16799.78 12495.49 19399.43 27897.91 21599.11 17799.62 142
UniMVSNet_ETH3D97.32 30296.81 31098.87 22099.40 21597.46 26999.51 15699.53 9995.86 34198.54 30799.77 13282.44 39099.66 24298.68 14097.52 27299.50 182
anonymousdsp98.44 17198.28 17898.94 20198.50 36598.96 16299.77 3399.50 13897.07 25998.87 26399.77 13294.76 22399.28 30298.66 14297.60 26598.57 333
CDS-MVSNet99.09 10999.03 9299.25 16599.42 20598.73 19199.45 18999.46 18898.11 14299.46 13999.77 13298.01 10799.37 28598.70 13598.92 19499.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG98.98 12498.80 13099.53 10999.76 6599.19 12698.75 36099.55 7997.25 24199.47 13799.77 13297.82 11199.87 14396.93 29799.90 4499.54 164
CHOSEN 280x42099.12 10099.13 7799.08 18299.66 12497.89 25198.43 38199.71 1398.88 5999.62 10599.76 13696.63 15099.70 23199.46 4999.99 199.66 125
PS-MVSNAJss98.92 12998.92 11398.90 21198.78 33798.53 20899.78 3199.54 8898.07 15199.00 24499.76 13699.01 1899.37 28599.13 8097.23 29198.81 261
MVS_Test99.10 10898.97 10699.48 12399.49 18699.14 13699.67 6699.34 25397.31 23699.58 11699.76 13697.65 11799.82 17998.87 10899.07 18399.46 195
CANet_DTU98.97 12698.87 12199.25 16599.33 23298.42 22499.08 30799.30 27899.16 1999.43 14699.75 13995.27 20099.97 2198.56 16199.95 2099.36 212
mPP-MVS99.44 3999.30 5399.86 2199.88 1199.79 3099.69 5799.48 15998.12 14099.50 13299.75 13998.78 4899.97 2198.57 15899.89 5399.83 49
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3699.56 7197.72 18999.76 6099.75 13999.13 1299.92 9899.07 8699.92 2999.85 36
HyFIR lowres test99.11 10498.92 11399.65 7499.90 499.37 10399.02 32199.91 397.67 19799.59 11499.75 13995.90 17999.73 21599.53 3799.02 18899.86 33
ITE_SJBPF98.08 30499.29 24496.37 32398.92 33398.34 11098.83 26899.75 13991.09 32899.62 25695.82 32697.40 28698.25 359
test_241102_ONE99.84 3299.90 299.48 15999.07 3599.91 1899.74 14499.20 799.76 204
Anonymous20240521198.30 18597.98 20699.26 16499.57 15698.16 23399.41 21098.55 37196.03 33799.19 20899.74 14491.87 31099.92 9899.16 7998.29 23199.70 113
tttt051798.42 17398.14 18699.28 16299.66 12498.38 22599.74 4596.85 39497.68 19599.79 4699.74 14491.39 32499.89 13298.83 12199.56 14499.57 158
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6799.84 40
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7199.46 18898.09 14699.48 13699.74 14498.29 9299.96 3097.93 21499.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.41 4999.33 4199.65 7499.77 6299.51 8798.94 34199.85 698.82 6599.65 9399.74 14498.51 7899.80 19098.83 12199.89 5399.64 136
VPNet97.84 24697.44 26999.01 19199.21 26298.94 16899.48 17999.57 6698.38 10499.28 18399.73 15088.89 35099.39 28199.19 7493.27 36798.71 277
MVSTER98.49 16798.32 17599.00 19399.35 22799.02 15199.54 13999.38 23497.41 22899.20 20599.73 15093.86 26399.36 28998.87 10897.56 26998.62 318
MVS_111021_HR99.41 4999.32 4399.66 7099.72 9299.47 9398.95 33999.85 698.82 6599.54 12599.73 15098.51 7899.74 20998.91 10299.88 5699.77 82
PHI-MVS99.30 6599.17 7499.70 6899.56 16099.52 8699.58 11099.80 897.12 25399.62 10599.73 15098.58 7299.90 12198.61 14999.91 3699.68 119
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15696.36 32499.02 32199.49 14797.18 24798.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 297
diffmvspermissive99.14 9299.02 9699.51 11799.61 14598.96 16299.28 25999.49 14798.46 9799.72 7199.71 15596.50 15699.88 13899.31 6299.11 17799.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21499.71 9797.74 25799.12 29899.54 8898.44 10199.42 14999.71 15594.20 24999.92 9898.54 16598.90 19699.00 248
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26693.04 36999.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS99.42 4499.30 5399.78 5299.62 14199.71 4499.26 27399.52 10498.82 6599.39 16099.71 15598.96 2499.85 15298.59 15499.80 10299.77 82
FE-MVS98.48 16898.17 18299.40 13699.54 16698.96 16299.68 6398.81 35195.54 34499.62 10599.70 15993.82 26499.93 8797.35 27199.46 15099.32 218
PC_three_145298.18 13399.84 3399.70 15999.31 398.52 37198.30 18799.80 10299.81 61
OPU-MVS99.64 7999.56 16099.72 4299.60 9699.70 15999.27 599.42 27998.24 18999.80 10299.79 74
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 9999.90 199.55 7998.56 8999.78 5199.70 15998.65 6899.79 19399.65 2499.78 10999.41 204
tfpnnormal97.84 24697.47 26198.98 19599.20 26499.22 12599.64 8099.61 4896.32 31498.27 32399.70 15993.35 27299.44 27495.69 33195.40 33298.27 357
v7n97.87 24097.52 25598.92 20598.76 34398.58 20499.84 1199.46 18896.20 32398.91 25599.70 15994.89 21399.44 27496.03 32293.89 36098.75 270
testdata99.54 10199.75 7398.95 16599.51 11997.07 25999.43 14699.70 15998.87 3799.94 6997.76 23299.64 13699.72 103
IterMVS97.83 24897.77 22998.02 30899.58 15496.27 32799.02 32199.48 15997.22 24598.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14599.09 14198.04 39599.25 28991.24 38698.51 30899.70 15994.55 23799.91 11092.76 37499.85 7499.42 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28099.23 25796.80 30899.70 5399.60 5497.12 25398.18 32999.70 15991.73 31599.72 21998.39 17697.45 28098.68 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11499.89 299.58 6298.56 8999.73 6699.69 16998.55 7599.82 17999.69 2099.85 7499.48 184
HFP-MVS99.49 2299.37 3399.86 2199.87 1599.80 2799.66 7199.67 2398.15 13599.68 7899.69 16999.06 1699.96 3098.69 13899.87 5999.84 40
旧先验199.74 8099.59 7199.54 8899.69 16998.47 8099.68 13199.73 97
ACMMPR99.49 2299.36 3599.86 2199.87 1599.79 3099.66 7199.67 2398.15 13599.67 8299.69 16998.95 2799.96 3098.69 13899.87 5999.84 40
CPTT-MVS99.11 10498.90 11699.74 6199.80 5299.46 9599.59 10299.49 14797.03 26599.63 10199.69 16997.27 12999.96 3097.82 22599.84 8299.81 61
EC-MVSNet99.44 3999.39 3099.58 9499.56 16099.49 8999.88 399.58 6298.38 10499.73 6699.69 16998.20 9699.70 23199.64 2799.82 9599.54 164
GST-MVS99.40 5299.24 6799.85 2899.86 2099.79 3099.60 9699.67 2397.97 16299.63 10199.68 17598.52 7799.95 5998.38 17799.86 6799.81 61
Anonymous2023121197.88 23897.54 25498.90 21199.71 9798.53 20899.48 17999.57 6694.16 36698.81 27099.68 17593.23 27399.42 27998.84 11894.42 35198.76 268
region2R99.48 2699.35 3799.87 1199.88 1199.80 2799.65 7799.66 2898.13 13999.66 8799.68 17598.96 2499.96 3098.62 14699.87 5999.84 40
PS-CasMVS97.93 23197.59 25098.95 20098.99 31199.06 14799.68 6399.52 10497.13 25198.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 270
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20599.08 14499.62 8999.36 24397.39 23099.28 18399.68 17596.44 16099.92 9898.37 17998.22 23499.40 206
DP-MVS Recon99.12 10098.95 11199.65 7499.74 8099.70 4699.27 26499.57 6696.40 31299.42 14999.68 17598.75 5599.80 19097.98 21199.72 12399.44 200
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23295.19 35299.23 27899.08 31296.24 32099.10 22499.67 18194.11 25398.93 35896.81 30299.05 18499.48 184
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23296.48 32099.23 27899.15 30496.24 32099.10 22499.67 18194.11 25399.71 22596.81 30299.05 18499.48 184
DTE-MVSNet97.51 28997.19 29798.46 27198.63 35698.13 23699.84 1199.48 15996.68 28697.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 281
Baseline_NR-MVSNet97.76 25897.45 26498.68 24599.09 29498.29 22799.41 21098.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 309
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 15989.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
原ACMM199.65 7499.73 8899.33 10699.47 17997.46 21999.12 21999.66 18698.67 6699.91 11097.70 24199.69 12899.71 112
thisisatest053098.35 18198.03 20199.31 15099.63 13598.56 20599.54 13996.75 39697.53 21399.73 6699.65 18791.25 32799.89 13298.62 14699.56 14499.48 184
test22299.75 7399.49 8998.91 34599.49 14796.42 31099.34 17399.65 18798.28 9399.69 12899.72 103
MVSFormer99.17 8699.12 7899.29 15899.51 17598.94 16899.88 399.46 18897.55 20999.80 4499.65 18797.39 12199.28 30299.03 8899.85 7499.65 129
jason99.13 9499.03 9299.45 12999.46 19698.87 17599.12 29899.26 28798.03 15999.79 4699.65 18797.02 13899.85 15299.02 9099.90 4499.65 129
jason: jason.
BH-RMVSNet98.41 17598.08 19599.40 13699.41 21098.83 18399.30 24998.77 35497.70 19398.94 25299.65 18792.91 28299.74 20996.52 31399.55 14699.64 136
sss99.17 8699.05 8899.53 10999.62 14198.97 15899.36 23399.62 4197.83 17699.67 8299.65 18797.37 12499.95 5999.19 7499.19 17099.68 119
h-mvs3397.70 27197.28 29298.97 19799.70 10297.27 27499.36 23399.45 19998.94 5499.66 8799.64 19394.93 20999.99 499.48 4684.36 39599.65 129
ZNCC-MVS99.47 3099.33 4199.87 1199.87 1599.81 2599.64 8099.67 2398.08 15099.55 12499.64 19398.91 3499.96 3098.72 13399.90 4499.82 54
新几何199.75 5899.75 7399.59 7199.54 8896.76 28199.29 18299.64 19398.43 8399.94 6996.92 29999.66 13399.72 103
PEN-MVS97.76 25897.44 26998.72 24098.77 34298.54 20799.78 3199.51 11997.06 26198.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 275
CP-MVSNet98.09 20497.78 22799.01 19198.97 31699.24 12399.67 6699.46 18897.25 24198.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 273
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25498.82 34998.07 15198.66 29099.64 19389.97 34199.61 25797.01 28996.68 29997.94 376
HPM-MVScopyleft99.42 4499.28 5999.83 4099.90 499.72 4299.81 1999.54 8897.59 20399.68 7899.63 19998.91 3499.94 6998.58 15599.91 3699.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC99.34 6099.19 7299.79 4999.61 14599.65 5799.30 24999.48 15998.86 6099.21 20299.63 19998.72 6199.90 12198.25 18899.63 13899.80 70
CP-MVS99.45 3599.32 4399.85 2899.83 3999.75 3999.69 5799.52 10498.07 15199.53 12799.63 19998.93 3399.97 2198.74 13099.91 3699.83 49
AdaColmapbinary99.01 12298.80 13099.66 7099.56 16099.54 8099.18 28799.70 1598.18 13399.35 17099.63 19996.32 16399.90 12197.48 26099.77 11299.55 162
TAPA-MVS97.07 1597.74 26497.34 28498.94 20199.70 10297.53 26799.25 27599.51 11991.90 38399.30 17999.63 19998.78 4899.64 25088.09 39299.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18896.11 33298.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 327
MCST-MVS99.43 4299.30 5399.82 4199.79 5499.74 4199.29 25499.40 22398.79 7099.52 12999.62 20498.91 3499.90 12198.64 14499.75 11799.82 54
WTY-MVS99.06 11298.88 12099.61 8799.62 14199.16 13199.37 22999.56 7198.04 15799.53 12799.62 20496.84 14399.94 6998.85 11598.49 22199.72 103
MDTV_nov1_ep1398.32 17599.11 28894.44 36499.27 26498.74 35897.51 21699.40 15899.62 20494.78 21999.76 20497.59 24798.81 204
CANet99.25 7799.14 7699.59 9199.41 21099.16 13199.35 23899.57 6698.82 6599.51 13199.61 20896.46 15899.95 5999.59 2899.98 499.65 129
HQP_MVS98.27 18898.22 18198.44 27599.29 24496.97 29899.39 22299.47 17998.97 5199.11 22199.61 20892.71 28999.69 23697.78 22897.63 26298.67 297
plane_prior499.61 208
baseline198.31 18397.95 21099.38 14099.50 18498.74 19099.59 10298.93 33098.41 10299.14 21699.60 21194.59 23399.79 19398.48 16893.29 36699.61 144
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33798.62 20199.65 7799.49 14797.76 18598.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 281
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16499.05 14999.80 2499.01 32296.59 29899.58 11699.59 21395.39 19599.90 12197.78 22899.49 14999.28 221
tpmrst98.33 18298.48 16697.90 31799.16 28094.78 35899.31 24799.11 30897.27 23999.45 14099.59 21395.33 19899.84 15998.48 16898.61 21099.09 236
IterMVS-LS98.46 17098.42 16898.58 25399.59 15298.00 24299.37 22999.43 21396.94 27399.07 22999.59 21397.87 10999.03 34198.32 18595.62 32798.71 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP99.19 8299.04 9099.64 7999.78 5699.27 11899.42 20699.54 8897.29 23899.41 15399.59 21398.42 8599.93 8798.19 19299.69 12899.73 97
pmmvs498.13 20097.90 21598.81 23298.61 35998.87 17598.99 32999.21 29796.44 30899.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
1112_ss98.98 12498.77 13499.59 9199.68 11199.02 15199.25 27599.48 15997.23 24499.13 21799.58 21796.93 14299.90 12198.87 10898.78 20599.84 40
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 28095.32 34999.27 26498.92 33397.37 23199.37 16499.58 21794.90 21299.70 23197.43 26699.21 16899.54 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 19398.16 18398.27 29499.30 24095.55 34199.07 30898.97 32697.57 20699.43 14699.57 22192.72 28799.74 20997.58 24899.20 16999.52 172
Patchmatch-test97.93 23197.65 24398.77 23799.18 27097.07 28799.03 31899.14 30696.16 32798.74 27899.57 22194.56 23599.72 21993.36 36599.11 17799.52 172
PVSNet96.02 1798.85 14298.84 12798.89 21499.73 8897.28 27398.32 38799.60 5497.86 17099.50 13299.57 22196.75 14799.86 14698.56 16199.70 12799.54 164
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1190.00 4140.00 41599.56 22496.58 1520.00 4150.00 4140.00 4130.00 411
131498.68 15998.54 16399.11 18198.89 32298.65 19799.27 26499.49 14796.89 27597.99 33799.56 22497.72 11599.83 17297.74 23599.27 16698.84 260
lupinMVS99.13 9499.01 10099.46 12899.51 17598.94 16899.05 31399.16 30397.86 17099.80 4499.56 22497.39 12199.86 14698.94 9799.85 7499.58 154
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 23197.43 27098.88 34799.36 24396.48 30598.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
DPM-MVS98.95 12798.71 13999.66 7099.63 13599.55 7898.64 37099.10 30997.93 16599.42 14999.55 22798.67 6699.80 19095.80 32899.68 13199.61 144
CDPH-MVS99.13 9498.91 11599.80 4699.75 7399.71 4499.15 29299.41 21796.60 29699.60 11199.55 22798.83 4299.90 12197.48 26099.83 9199.78 80
dp97.75 26297.80 22397.59 33499.10 29193.71 37399.32 24498.88 34296.48 30599.08 22899.55 22792.67 29299.82 17996.52 31398.58 21399.24 225
CLD-MVS98.16 19798.10 19198.33 28599.29 24496.82 30798.75 36099.44 20797.83 17699.13 21799.55 22792.92 28099.67 23998.32 18597.69 26098.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.71 9799.79 3099.61 4896.84 27899.56 12099.54 23298.58 7299.96 3096.93 29799.75 117
cl____98.01 22197.84 22298.55 25999.25 25597.97 24498.71 36499.34 25396.47 30798.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25697.95 24898.71 36499.35 24996.50 30198.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
MVS97.28 30396.55 31599.48 12398.78 33798.95 16599.27 26499.39 22683.53 39998.08 33299.54 23296.97 14099.87 14394.23 35699.16 17199.63 140
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33098.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 316
HPM-MVS++copyleft99.39 5599.23 6999.87 1199.75 7399.84 1599.43 19999.51 11998.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10299.79 74
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9799.28 11699.06 31199.77 997.74 18899.50 13299.53 23695.41 19499.84 15997.17 28499.64 13699.44 200
eth_miper_zixun_eth98.05 21397.96 20898.33 28599.26 25197.38 27198.56 37699.31 27496.65 28998.88 26099.52 23996.58 15299.12 33197.39 26895.53 33098.47 341
test_prior298.96 33698.34 11099.01 24099.52 23998.68 6497.96 21299.74 120
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28793.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27597.93 377
test_yl98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31598.22 12699.61 10899.51 24295.37 19699.84 15998.60 15298.33 22699.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31598.22 12699.61 10899.51 24295.37 19699.84 15998.60 15298.33 22699.59 150
v14897.79 25697.55 25198.50 26298.74 34497.72 26099.54 13999.33 26096.26 31998.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 316
DU-MVS98.08 20697.79 22498.96 19898.87 32698.98 15599.41 21099.45 19997.87 16998.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 290
NR-MVSNet97.97 22897.61 24899.02 19098.87 32699.26 12099.47 18599.42 21597.63 20097.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 290
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28896.33 32599.41 21099.52 10498.06 15599.05 23699.50 24589.64 34599.73 21597.73 23697.38 28798.53 335
MSP-MVS99.42 4499.27 6299.88 599.89 899.80 2799.67 6699.50 13898.70 7899.77 5599.49 24898.21 9599.95 5998.46 17299.77 11299.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST999.67 11499.65 5799.05 31399.41 21796.22 32298.95 25099.49 24898.77 5199.91 110
train_agg99.02 11898.77 13499.77 5599.67 11499.65 5799.05 31399.41 21796.28 31698.95 25099.49 24898.76 5299.91 11097.63 24499.72 12399.75 88
PVSNet_Blended99.08 11098.97 10699.42 13499.76 6598.79 18798.78 35799.91 396.74 28299.67 8299.49 24897.53 11899.88 13898.98 9399.85 7499.60 146
CNLPA99.14 9298.99 10299.59 9199.58 15499.41 10199.16 28999.44 20798.45 9899.19 20899.49 24898.08 10499.89 13297.73 23699.75 11799.48 184
test_899.67 11499.61 6799.03 31899.41 21796.28 31698.93 25399.48 25398.76 5299.91 110
EPMVS97.82 25197.65 24398.35 28498.88 32395.98 33399.49 17494.71 40697.57 20699.26 19299.48 25392.46 30199.71 22597.87 21999.08 18299.35 213
PLCcopyleft97.94 499.02 11898.85 12599.53 10999.66 12499.01 15399.24 27799.52 10496.85 27799.27 18899.48 25398.25 9499.91 11097.76 23299.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14399.63 13598.97 15899.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16399.08 237
xiu_mvs_v1_base99.29 6799.27 6299.34 14399.63 13598.97 15899.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16399.08 237
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14399.63 13598.97 15899.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16399.08 237
v192192097.80 25597.45 26498.84 22798.80 33398.53 20899.52 14899.34 25396.15 32999.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 285
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32098.98 15599.48 17999.53 9997.76 18598.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 285
testgi97.65 27997.50 25898.13 30399.36 22696.45 32199.42 20699.48 15997.76 18597.87 34299.45 26191.09 32898.81 36394.53 35198.52 21999.13 231
EIA-MVS99.18 8499.09 8399.45 12999.49 18699.18 12899.67 6699.53 9997.66 19899.40 15899.44 26298.10 10099.81 18498.94 9799.62 13999.35 213
tpm297.44 29797.34 28497.74 32899.15 28494.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25997.31 27298.07 24599.29 220
thisisatest051598.14 19997.79 22499.19 17299.50 18498.50 21598.61 37196.82 39596.95 27199.54 12599.43 26491.66 31999.86 14698.08 20399.51 14899.22 226
WR-MVS98.06 20897.73 23699.06 18598.86 32999.25 12299.19 28599.35 24997.30 23798.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 277
hse-mvs297.50 29097.14 29898.59 25099.49 18697.05 28999.28 25999.22 29498.94 5499.66 8799.42 26694.93 20999.65 24799.48 4683.80 39799.08 237
v897.95 23097.63 24798.93 20398.95 31898.81 18699.80 2499.41 21796.03 33799.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 305
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24799.20 29896.10 33698.76 27799.42 26694.94 20899.81 18496.97 29398.45 22298.97 252
UGNet98.87 13298.69 14199.40 13699.22 26198.72 19299.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5999.94 2699.53 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS96.88 31596.31 32198.59 25099.48 19397.04 29299.27 26499.22 29497.44 22498.51 30899.41 27091.97 30899.66 24297.71 23983.83 39699.07 242
Effi-MVS+98.81 14698.59 15999.48 12399.46 19699.12 13998.08 39499.50 13897.50 21799.38 16299.41 27096.37 16299.81 18499.11 8298.54 21899.51 178
v1097.85 24397.52 25598.86 22398.99 31198.67 19599.75 4099.41 21795.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 297
v14419297.92 23497.60 24998.87 22098.83 33298.65 19799.55 13599.34 25396.20 32399.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 281
NP-MVS99.23 25796.92 30199.40 273
HQP-MVS98.02 21897.90 21598.37 28399.19 26796.83 30598.98 33299.39 22698.24 12298.66 29099.40 27392.47 29899.64 25097.19 28197.58 26798.64 309
MAR-MVS98.86 13598.63 14899.54 10199.37 22399.66 5399.45 18999.54 8896.61 29499.01 24099.40 27397.09 13399.86 14697.68 24399.53 14799.10 232
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dongtai93.26 35592.93 35994.25 36799.39 21885.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25699.58 154
API-MVS99.04 11599.03 9299.06 18599.40 21599.31 11199.55 13599.56 7198.54 9199.33 17499.39 27798.76 5299.78 19896.98 29299.78 10998.07 366
CR-MVSNet98.17 19697.93 21398.87 22099.18 27098.49 21699.22 28299.33 26096.96 26999.56 12099.38 27994.33 24599.00 34694.83 34998.58 21399.14 229
Patchmtry97.75 26297.40 27698.81 23299.10 29198.87 17599.11 30499.33 26094.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
BH-untuned98.42 17398.36 17198.59 25099.49 18696.70 31099.27 26499.13 30797.24 24398.80 27299.38 27995.75 18499.74 20997.07 28899.16 17199.33 217
V4298.06 20897.79 22498.86 22398.98 31498.84 18099.69 5799.34 25396.53 30099.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
VPA-MVSNet98.29 18697.95 21099.30 15599.16 28099.54 8099.50 16399.58 6298.27 11799.35 17099.37 28292.53 29699.65 24799.35 5594.46 34998.72 275
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18799.28 25999.91 397.42 22799.67 8299.37 28297.53 11899.88 13898.98 9397.29 28998.42 347
D2MVS98.41 17598.50 16598.15 30299.26 25196.62 31599.40 21899.61 4897.71 19098.98 24699.36 28596.04 17099.67 23998.70 13597.41 28598.15 363
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24597.23 35799.36 28595.28 19999.46 26895.51 33599.78 10997.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124097.69 27297.32 28798.79 23598.85 33098.43 22299.48 17999.36 24396.11 33299.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 281
dmvs_re98.08 20698.16 18397.85 31999.55 16494.67 36199.70 5398.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
v114497.98 22597.69 23998.85 22698.87 32698.66 19699.54 13999.35 24996.27 31899.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 290
v2v48298.06 20897.77 22998.92 20598.90 32198.82 18499.57 11799.36 24396.65 28999.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 285
CostFormer97.72 26797.73 23697.71 32999.15 28494.02 36999.54 13999.02 32194.67 36199.04 23799.35 28892.35 30499.77 20098.50 16797.94 24999.34 216
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27896.83 28098.19 32899.34 29297.01 13999.02 34395.00 34796.01 31498.64 309
c3_l98.12 20298.04 20098.38 28299.30 24097.69 26498.81 35499.33 26096.67 28798.83 26899.34 29297.11 13298.99 34797.58 24895.34 33398.48 339
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 24999.41 21096.99 29699.52 14899.49 14798.11 14299.24 19499.34 29296.96 14199.79 19397.95 21399.45 15199.02 247
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17599.28 11699.52 14899.47 17996.11 33299.01 24099.34 29296.20 16799.84 15997.88 21798.82 20299.39 207
v119297.81 25397.44 26998.91 20998.88 32398.68 19499.51 15699.34 25396.18 32599.20 20599.34 29294.03 25699.36 28995.32 34195.18 33698.69 285
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30899.12 21999.34 29291.83 31299.60 25897.75 23496.46 30599.48 184
PAPM97.59 28397.09 30299.07 18399.06 30098.26 22998.30 38899.10 30994.88 35698.08 33299.34 29296.27 16599.64 25089.87 38598.92 19499.31 219
GBi-Net97.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 15996.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
test197.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 15996.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
FMVSNet196.84 31696.36 32098.29 29099.32 23897.26 27699.43 19999.48 15995.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 318
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27097.41 22898.13 33199.30 30288.99 34999.56 26195.68 33299.80 10297.90 379
GA-MVS97.85 24397.47 26199.00 19399.38 22097.99 24398.57 37499.15 30497.04 26498.90 25799.30 30289.83 34299.38 28296.70 30798.33 22699.62 142
miper_ehance_all_eth98.18 19598.10 19198.41 27899.23 25797.72 26098.72 36399.31 27496.60 29698.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
FMVSNet297.72 26797.36 27998.80 23499.51 17598.84 18099.45 18999.42 21596.49 30298.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 332
TESTMET0.1,197.55 28597.27 29598.40 28098.93 31996.53 31898.67 36697.61 38996.96 26998.64 29799.28 30688.63 35699.45 26997.30 27399.38 15599.21 227
FMVSNet398.03 21697.76 23398.84 22799.39 21898.98 15599.40 21899.38 23496.67 28799.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 334
PAPM_NR99.04 11598.84 12799.66 7099.74 8099.44 9799.39 22299.38 23497.70 19399.28 18399.28 30698.34 9099.85 15296.96 29499.45 15199.69 115
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2848.40 41325.05 41499.27 30984.11 38399.33 29589.20 38798.22 23497.42 387
ETV-MVS99.26 7399.21 7099.40 13699.46 19699.30 11499.56 12399.52 10498.52 9399.44 14599.27 30998.41 8799.86 14699.10 8399.59 14299.04 244
xiu_mvs_v2_base99.26 7399.25 6699.29 15899.53 16798.91 17299.02 32199.45 19998.80 6999.71 7299.26 31198.94 2999.98 1399.34 5999.23 16798.98 251
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15699.38 23496.55 29996.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
PS-MVSNAJ99.32 6399.32 4399.30 15599.57 15698.94 16898.97 33599.46 18898.92 5799.71 7299.24 31399.01 1899.98 1399.35 5599.66 13398.97 252
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10798.95 16599.03 31899.47 17996.98 26799.15 21599.23 31496.77 14699.89 13298.83 12198.78 20599.86 33
cl2297.85 24397.64 24698.48 26599.09 29497.87 25298.60 37399.33 26097.11 25698.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32794.08 38599.22 31582.72 38899.47 26795.67 33397.50 27598.17 362
TR-MVS97.76 25897.41 27598.82 22999.06 30097.87 25298.87 34998.56 37096.63 29398.68 28999.22 31592.49 29799.65 24795.40 33997.79 25798.95 256
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18799.53 16798.82 18498.84 35197.51 39197.63 20084.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 204
WR-MVS_H98.13 20097.87 22098.90 21199.02 30698.84 18099.70 5399.59 5897.27 23998.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 327
miper_enhance_ethall98.16 19798.08 19598.41 27898.96 31797.72 26098.45 38099.32 27096.95 27198.97 24899.17 32097.06 13699.22 31397.86 22095.99 31698.29 356
baseline297.87 24097.55 25198.82 22999.18 27098.02 24199.41 21096.58 40096.97 26896.51 36899.17 32093.43 27099.57 26097.71 23999.03 18698.86 258
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14899.50 13893.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 330
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 25097.56 253
MIMVSNet97.73 26597.45 26498.57 25499.45 20197.50 26899.02 32198.98 32596.11 33299.41 15399.14 32490.28 33598.74 36695.74 32998.93 19299.47 190
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 24092.25 38499.59 10298.26 37697.43 22596.20 37199.13 32596.27 16598.73 36798.17 19598.99 18999.64 136
UniMVSNet (Re)98.29 18698.00 20499.13 18099.00 30899.36 10599.49 17499.51 11997.95 16398.97 24899.13 32596.30 16499.38 28298.36 18193.34 36598.66 305
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 331
PAPR98.63 16498.34 17399.51 11799.40 21599.03 15098.80 35599.36 24396.33 31399.00 24499.12 32898.46 8199.84 15995.23 34399.37 16299.66 125
tpm cat197.39 29997.36 27997.50 33799.17 27893.73 37299.43 19999.31 27491.27 38598.71 28199.08 32994.31 24799.77 20096.41 31798.50 22099.00 248
FMVSNet596.43 32496.19 32397.15 34399.11 28895.89 33599.32 24499.52 10494.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
PMMVS98.80 14998.62 15399.34 14399.27 24998.70 19398.76 35999.31 27497.34 23399.21 20299.07 33097.20 13099.82 17998.56 16198.87 19799.52 172
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8499.08 31296.17 32697.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
DeepMVS_CXcopyleft93.34 37199.29 24482.27 40099.22 29485.15 39796.33 37099.05 33390.97 33099.73 21593.57 36397.77 25898.01 370
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28399.10 30699.23 29293.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 309
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3099.29 28293.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27499.15 29299.33 26093.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 318
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 28968.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
UWE-MVS97.58 28497.29 29198.48 26599.09 29496.25 32899.01 32696.61 39997.86 17099.19 20899.01 33888.72 35199.90 12197.38 26998.69 20899.28 221
BH-w/o98.00 22397.89 21998.32 28799.35 22796.20 33099.01 32698.90 33996.42 31098.38 31599.00 33995.26 20299.72 21996.06 32198.61 21099.03 245
Effi-MVS+-dtu98.78 15098.89 11998.47 27099.33 23296.91 30299.57 11799.30 27898.47 9699.41 15398.99 34096.78 14599.74 20998.73 13299.38 15598.74 273
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11997.13 25196.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
test0.0.03 197.71 27097.42 27498.56 25798.41 36997.82 25598.78 35798.63 36897.34 23398.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 257
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27999.11 30499.24 29193.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 309
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
testing397.28 30396.76 31298.82 22999.37 22398.07 23999.45 18999.36 24397.56 20897.89 34198.95 34583.70 38598.82 36296.03 32298.56 21699.58 154
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26599.13 29598.33 37597.36 23299.07 22998.94 34695.64 18999.15 32392.95 37098.68 20996.12 397
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3699.23 29294.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
alignmvs98.81 14698.56 16299.58 9499.43 20399.42 9999.51 15698.96 32898.61 8599.35 17098.92 35094.78 21999.77 20099.35 5598.11 24499.54 164
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4899.27 28695.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
test-LLR98.06 20897.90 21598.55 25998.79 33497.10 28398.67 36697.75 38697.34 23398.61 30198.85 35294.45 24299.45 26997.25 27599.38 15599.10 232
test-mter97.49 29597.13 30098.55 25998.79 33497.10 28398.67 36697.75 38696.65 28998.61 30198.85 35288.23 36099.45 26997.25 27599.38 15599.10 232
dmvs_testset95.02 34296.12 32491.72 37799.10 29180.43 40599.58 11097.87 38597.47 21895.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 160
MGCFI-Net99.01 12298.85 12599.50 12299.42 20599.26 12099.82 1599.48 15998.60 8699.28 18398.81 35597.04 13799.76 20499.29 6597.87 25399.47 190
sasdasda99.02 11898.86 12399.51 11799.42 20599.32 10799.80 2499.48 15998.63 8299.31 17698.81 35597.09 13399.75 20799.27 6897.90 25099.47 190
canonicalmvs99.02 11898.86 12399.51 11799.42 20599.32 10799.80 2499.48 15998.63 8299.31 17698.81 35597.09 13399.75 20799.27 6897.90 25099.47 190
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29893.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
cascas97.69 27297.43 27398.48 26598.60 36097.30 27298.18 39299.39 22692.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 21098.86 258
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23994.34 36797.81 39699.70 1597.12 25397.46 35098.75 36089.71 34399.79 19397.69 24281.69 39999.68 119
patchmatchnet-post98.70 36194.79 21899.74 209
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 178
thres100view90097.76 25897.45 26498.69 24499.72 9297.86 25499.59 10298.74 35897.93 16599.26 19298.62 36391.75 31399.83 17293.22 36698.18 23998.37 353
thres600view797.86 24297.51 25798.92 20599.72 9297.95 24899.59 10298.74 35897.94 16499.27 18898.62 36391.75 31399.86 14693.73 36198.19 23898.96 254
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11796.63 39896.13 33198.87 26398.61 36594.59 23397.70 38895.08 34598.86 19899.55 162
IB-MVS95.67 1896.22 32695.44 33998.57 25499.21 26296.70 31098.65 36997.74 38896.71 28497.27 35698.54 36686.03 37199.92 9898.47 17186.30 39399.10 232
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 27298.55 36398.16 23399.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23497.98 374
tfpn200view997.72 26797.38 27798.72 24099.69 10797.96 24699.50 16398.73 36397.83 17699.17 21398.45 36891.67 31799.83 17293.22 36698.18 23998.37 353
thres40097.77 25797.38 27798.92 20599.69 10797.96 24699.50 16398.73 36397.83 17699.17 21398.45 36891.67 31799.83 17293.22 36698.18 23998.96 254
testing1197.50 29097.10 30198.71 24299.20 26496.91 30299.29 25498.82 34997.89 16898.21 32798.40 37085.63 37499.83 17298.45 17398.04 24699.37 211
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 224
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29895.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29895.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
thres20097.61 28297.28 29298.62 24899.64 13298.03 24099.26 27398.74 35897.68 19599.09 22798.32 37491.66 31999.81 18492.88 37198.22 23498.03 369
testing9197.44 29797.02 30498.71 24299.18 27096.89 30499.19 28599.04 31997.78 18398.31 31998.29 37585.41 37699.85 15298.01 20997.95 24899.39 207
testing9997.36 30096.94 30798.63 24799.18 27096.70 31099.30 24998.93 33097.71 19098.23 32498.26 37684.92 37999.84 15998.04 20897.85 25599.35 213
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25396.76 390
testing22297.16 30896.50 31699.16 17599.16 28098.47 22099.27 26498.66 36797.71 19098.23 32498.15 37882.28 39299.84 15997.36 27097.66 26199.18 228
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25499.39 22697.06 26197.41 35198.15 37893.92 26198.68 36891.71 37898.34 22499.45 198
myMVS_eth3d96.89 31496.37 31998.43 27799.00 30897.16 28099.29 25499.39 22697.06 26197.41 35198.15 37883.46 38698.68 36895.27 34298.34 22499.45 198
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23495.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
test_vis1_rt95.81 33595.65 33596.32 36199.67 11491.35 38899.49 17496.74 39798.25 12195.24 37798.10 38274.96 39799.90 12199.53 3798.85 19997.70 382
ETVMVS97.50 29096.90 30899.29 15899.23 25798.78 18999.32 24498.90 33997.52 21598.56 30598.09 38384.72 38199.69 23697.86 22097.88 25299.39 207
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 8098.25 37798.28 11594.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22998.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 30995.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
RPMNet96.72 31895.90 33099.19 17299.18 27098.49 21699.22 28299.52 10488.72 39599.56 12097.38 38994.08 25599.95 5986.87 39798.58 21399.14 229
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28494.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12399.44 20795.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
PatchT97.03 31396.44 31898.79 23598.99 31198.34 22699.16 28999.07 31592.13 38299.52 12997.31 39294.54 23898.98 34888.54 39098.73 20799.03 245
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1598.62 36996.65 28995.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 15991.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5798.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 19979.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM97.50 29097.02 30498.93 20398.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22597.58 24897.98 24799.28 221
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet95.75 33695.16 34197.51 33699.30 24093.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28594.85 34899.85 7499.46 195
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3690.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
gg-mvs-nofinetune96.17 32995.32 34098.73 23998.79 33498.14 23599.38 22794.09 40791.07 38898.07 33591.04 40589.62 34699.35 29296.75 30499.09 18198.68 290
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
test_post65.99 41094.65 23299.73 215
test_post199.23 27865.14 41194.18 25299.71 22597.58 248
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6799.84 40
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 28095.47 336
FOURS199.91 199.93 199.87 799.56 7199.10 2799.81 41
MSC_two_6792asdad99.87 1199.51 17599.76 3799.33 26099.96 3098.87 10899.84 8299.89 20
No_MVS99.87 1199.51 17599.76 3799.33 26099.96 3098.87 10899.84 8299.89 20
eth-test20.00 419
eth-test0.00 419
IU-MVS99.84 3299.88 899.32 27098.30 11499.84 3398.86 11399.85 7499.89 20
save fliter99.76 6599.59 7199.14 29499.40 22399.00 43
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11999.96 3098.93 9999.86 6799.88 26
GSMVS99.52 172
test_part299.81 4699.83 1699.77 55
sam_mvs194.86 21499.52 172
sam_mvs94.72 226
MTGPAbinary99.47 179
MTMP99.54 13998.88 342
test9_res97.49 25999.72 12399.75 88
agg_prior297.21 27799.73 12299.75 88
agg_prior99.67 11499.62 6599.40 22398.87 26399.91 110
test_prior499.56 7698.99 329
test_prior99.68 6999.67 11499.48 9199.56 7199.83 17299.74 92
旧先验298.96 33696.70 28599.47 13799.94 6998.19 192
新几何299.01 326
无先验98.99 32999.51 11996.89 27599.93 8797.53 25699.72 103
原ACMM298.95 339
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata198.85 35098.32 113
test1299.75 5899.64 13299.61 6799.29 28299.21 20298.38 8899.89 13299.74 12099.74 92
plane_prior799.29 24497.03 293
plane_prior699.27 24996.98 29792.71 289
plane_prior599.47 17999.69 23697.78 22897.63 26298.67 297
plane_prior397.00 29598.69 7999.11 221
plane_prior299.39 22298.97 51
plane_prior199.26 251
plane_prior96.97 29899.21 28498.45 9897.60 265
n20.00 420
nn0.00 420
door-mid98.05 382
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
HQP-NCC99.19 26798.98 33298.24 12298.66 290
ACMP_Plane99.19 26798.98 33298.24 12298.66 290
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 25098.64 309
HQP3-MVS99.39 22697.58 267
HQP2-MVS92.47 298
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27899.58 11695.19 20597.82 22599.46 195
ACMMP++_ref97.19 293
ACMMP++97.43 284
Test By Simon98.75 55