This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MVS_030497.04 2396.73 3497.96 2297.60 12994.36 3398.01 5694.09 33497.33 196.29 7698.79 1489.73 7899.86 899.36 199.42 4599.67 11
EPNet95.20 8094.56 8897.14 5892.80 33592.68 7797.85 7494.87 31996.64 292.46 16497.80 9186.23 12399.65 5293.72 11798.62 9399.10 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsm_n_192097.55 997.89 396.53 7398.41 7491.73 10198.01 5699.02 196.37 399.30 198.92 392.39 3599.79 3199.16 299.46 3998.08 155
test_fmvsmvis_n_192096.70 4096.84 2696.31 9496.62 17691.73 10197.98 5998.30 2596.19 496.10 8398.95 189.42 7999.76 3398.90 399.08 7697.43 184
NCCC97.30 1597.03 1998.11 1698.77 5395.06 2497.34 13498.04 8195.96 597.09 4597.88 8293.18 2399.71 4095.84 6199.17 6999.56 26
CS-MVS-test96.89 3097.04 1896.45 8498.29 8291.66 10799.03 497.85 10895.84 696.90 4997.97 7691.24 5698.75 16696.92 2599.33 5598.94 91
CNVR-MVS97.68 697.44 1098.37 798.90 5095.86 697.27 14198.08 6695.81 797.87 2898.31 5094.26 1399.68 4897.02 2399.49 3699.57 23
HPM-MVS++copyleft97.34 1496.97 2198.47 599.08 3696.16 497.55 11297.97 9395.59 896.61 6297.89 8092.57 3299.84 2295.95 5699.51 3199.40 49
MSP-MVS97.59 897.54 797.73 3599.40 1193.77 5398.53 1598.29 2795.55 998.56 1597.81 8993.90 1599.65 5296.62 3299.21 6699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS93.97 196.61 4597.09 1495.15 15398.09 9986.63 26796.00 24298.15 5495.43 1097.95 2598.56 2193.40 2099.36 10496.77 2899.48 3799.45 42
CANet96.39 5096.02 5597.50 4497.62 12693.38 6097.02 16097.96 9495.42 1194.86 11597.81 8987.38 11099.82 2796.88 2699.20 6799.29 57
save fliter98.91 4994.28 3597.02 16098.02 8695.35 12
SteuartSystems-ACMMP97.62 797.53 897.87 2398.39 7794.25 3798.43 2498.27 3295.34 1398.11 2098.56 2194.53 1299.71 4096.57 3599.62 1599.65 13
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS96.86 3297.06 1596.26 10098.16 9691.16 13499.09 397.87 10395.30 1497.06 4698.03 7091.72 4498.71 17297.10 2199.17 6998.90 96
DELS-MVS96.61 4596.38 5097.30 5097.79 11693.19 6695.96 24498.18 4995.23 1595.87 9197.65 10191.45 5199.70 4595.87 5799.44 4499.00 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
h-mvs3394.15 10693.52 11596.04 11197.81 11590.22 16197.62 10497.58 13695.19 1696.74 5497.45 11483.67 15899.61 6095.85 5979.73 34598.29 144
hse-mvs293.45 13692.99 13294.81 17697.02 15588.59 21496.69 19096.47 24495.19 1696.74 5496.16 18983.67 15898.48 19395.85 5979.13 34997.35 188
DPE-MVScopyleft97.86 497.65 698.47 599.17 3295.78 797.21 14998.35 2195.16 1898.71 1398.80 1395.05 1099.89 396.70 3199.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060199.32 2295.20 2098.25 3795.13 1998.48 1798.87 895.16 7
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3295.13 1999.19 298.89 695.54 599.85 1797.52 1299.66 1099.56 26
test_241102_TWO98.27 3295.13 1998.93 798.89 694.99 1199.85 1797.52 1299.65 1299.74 7
test_241102_ONE99.42 795.30 1798.27 3295.09 2299.19 298.81 1295.54 599.65 52
MTAPA97.08 2096.78 3297.97 2199.37 1694.42 3297.24 14398.08 6695.07 2396.11 8298.59 2090.88 6599.90 296.18 4999.50 3399.58 22
FOURS199.55 193.34 6399.29 198.35 2194.98 2498.49 16
DVP-MVScopyleft97.91 397.81 498.22 1299.45 395.36 1398.21 4397.85 10894.92 2598.73 1198.87 895.08 899.84 2297.52 1299.67 699.48 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2998.29 2794.92 2598.99 598.92 395.08 8
XVS97.18 1796.96 2297.81 2799.38 1494.03 4798.59 1298.20 4494.85 2796.59 6498.29 5391.70 4699.80 2995.66 6599.40 4899.62 16
X-MVStestdata91.71 20489.67 26397.81 2799.38 1494.03 4798.59 1298.20 4494.85 2796.59 6432.69 38191.70 4699.80 2995.66 6599.40 4899.62 16
HQP_MVS93.78 12593.43 12194.82 17496.21 20189.99 16697.74 8397.51 14494.85 2791.34 19396.64 15881.32 20798.60 18293.02 13292.23 21695.86 231
plane_prior297.74 8394.85 27
SD-MVS97.41 1197.53 897.06 6198.57 6994.46 3097.92 6898.14 5694.82 3199.01 498.55 2394.18 1497.41 30996.94 2499.64 1399.32 56
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UA-Net95.95 6195.53 6297.20 5797.67 12192.98 7197.65 9698.13 5794.81 3296.61 6298.35 4188.87 8699.51 8690.36 17997.35 13299.11 75
DeepC-MVS_fast93.89 296.93 2996.64 3897.78 3098.64 6494.30 3497.41 12498.04 8194.81 3296.59 6498.37 3991.24 5699.64 5995.16 8399.52 2899.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2994.78 3498.93 798.87 896.04 299.86 897.45 1699.58 2199.59 20
test_0728_THIRD94.78 3498.73 1198.87 895.87 499.84 2297.45 1699.72 299.77 1
APDe-MVS97.82 597.73 598.08 1799.15 3394.82 2698.81 798.30 2594.76 3698.30 1898.90 593.77 1799.68 4897.93 499.69 399.75 5
EI-MVSNet-Vis-set96.51 4796.47 4596.63 6898.24 8691.20 12996.89 17197.73 11794.74 3796.49 6898.49 2890.88 6599.58 6796.44 3898.32 10499.13 71
patch_mono-296.83 3597.44 1095.01 16299.05 3985.39 28796.98 16598.77 694.70 3897.99 2498.66 1793.61 1999.91 197.67 899.50 3399.72 10
test_vis1_n_192094.17 10494.58 8792.91 26597.42 13582.02 32597.83 7697.85 10894.68 3998.10 2198.49 2870.15 32399.32 10797.91 598.82 8697.40 185
EI-MVSNet-UG-set96.34 5296.30 5196.47 8198.20 9190.93 14196.86 17397.72 11994.67 4096.16 8198.46 3290.43 7099.58 6796.23 4297.96 11598.90 96
MSLP-MVS++96.94 2897.06 1596.59 7198.72 5591.86 10097.67 9398.49 1494.66 4197.24 3998.41 3792.31 3898.94 14996.61 3399.46 3998.96 88
3Dnovator+91.43 495.40 7294.48 9498.16 1596.90 16095.34 1698.48 2197.87 10394.65 4288.53 26998.02 7283.69 15799.71 4093.18 12698.96 8299.44 44
ETV-MVS96.02 5895.89 5896.40 8797.16 14292.44 8397.47 12197.77 11394.55 4396.48 6994.51 26391.23 5898.92 15195.65 6898.19 10897.82 167
canonicalmvs96.02 5895.45 6597.75 3497.59 13095.15 2398.28 3297.60 13394.52 4496.27 7896.12 19087.65 10399.18 12096.20 4894.82 18398.91 95
plane_prior390.00 16494.46 4591.34 193
EC-MVSNet96.42 4996.47 4596.26 10097.01 15691.52 11398.89 597.75 11494.42 4696.64 6197.68 9789.32 8098.60 18297.45 1699.11 7598.67 115
UGNet94.04 11493.28 12696.31 9496.85 16291.19 13097.88 7097.68 12494.40 4793.00 15696.18 18673.39 30599.61 6091.72 15598.46 10098.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
alignmvs95.87 6395.23 7297.78 3097.56 13395.19 2197.86 7197.17 18494.39 4896.47 7096.40 17785.89 12999.20 11796.21 4795.11 17998.95 90
CANet_DTU94.37 9993.65 10896.55 7296.46 19192.13 9396.21 23296.67 23294.38 4993.53 14497.03 13779.34 24099.71 4090.76 17398.45 10197.82 167
Vis-MVSNetpermissive95.23 7894.81 8096.51 7797.18 14191.58 11198.26 3598.12 5994.38 4994.90 11498.15 6282.28 19198.92 15191.45 16398.58 9599.01 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.68 4496.58 4196.99 6298.46 7092.31 8796.20 23398.90 394.30 5195.86 9297.74 9492.33 3699.38 10396.04 5399.42 4599.28 59
mvsmamba93.83 12293.46 11894.93 17194.88 27290.85 14498.55 1495.49 28794.24 5291.29 19996.97 13983.04 17298.14 22195.56 7691.17 23895.78 240
TSAR-MVS + GP.96.69 4296.49 4497.27 5398.31 8193.39 5996.79 17996.72 22594.17 5397.44 3397.66 10092.76 2699.33 10596.86 2797.76 12199.08 77
3Dnovator91.36 595.19 8194.44 9697.44 4696.56 18393.36 6298.65 1198.36 1894.12 5489.25 25498.06 6782.20 19399.77 3293.41 12399.32 5699.18 66
plane_prior89.99 16697.24 14394.06 5592.16 220
casdiffmvspermissive95.64 6795.49 6396.08 10796.76 17390.45 15797.29 14097.44 16194.00 5695.46 10797.98 7587.52 10798.73 16895.64 6997.33 13399.08 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive95.81 6495.57 6196.51 7796.87 16191.49 11497.50 11597.56 14093.99 5795.13 11297.92 7987.89 9998.78 16195.97 5597.33 13399.26 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR96.24 5596.19 5496.39 8998.23 9091.35 12196.24 23198.79 593.99 5795.80 9497.65 10189.92 7699.24 11495.87 5799.20 6798.58 117
dcpmvs_296.37 5197.05 1794.31 20198.96 4684.11 30597.56 10997.51 14493.92 5997.43 3598.52 2592.75 2799.32 10797.32 2099.50 3399.51 34
DeepC-MVS93.07 396.06 5695.66 6097.29 5197.96 10593.17 6797.30 13998.06 7493.92 5993.38 14898.66 1786.83 11699.73 3695.60 7499.22 6598.96 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet95.89 6295.45 6597.21 5698.07 10392.94 7297.50 11598.15 5493.87 6197.52 3197.61 10785.29 13699.53 8195.81 6295.27 17599.16 67
Effi-MVS+-dtu93.08 15293.21 12892.68 27596.02 21483.25 31597.14 15596.72 22593.85 6291.20 20393.44 31183.08 17098.30 20891.69 15895.73 16796.50 212
PS-MVSNAJ95.37 7395.33 7095.49 14197.35 13690.66 15295.31 27197.48 14793.85 6296.51 6795.70 21488.65 9099.65 5294.80 9498.27 10596.17 221
SR-MVS97.01 2596.86 2497.47 4599.09 3493.27 6597.98 5998.07 7193.75 6497.45 3298.48 3191.43 5299.59 6496.22 4399.27 5999.54 30
TSAR-MVS + MP.97.42 1097.33 1297.69 3999.25 2794.24 3898.07 5297.85 10893.72 6598.57 1498.35 4193.69 1899.40 10097.06 2299.46 3999.44 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS93.28 14192.76 14294.82 17494.63 28590.77 14896.65 19497.18 18293.72 6591.68 18497.26 12479.33 24198.63 17992.13 14592.28 21595.07 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
xiu_mvs_v2_base95.32 7595.29 7195.40 14697.22 13890.50 15595.44 26597.44 16193.70 6796.46 7196.18 18688.59 9399.53 8194.79 9697.81 11896.17 221
baseline95.58 6995.42 6796.08 10796.78 16890.41 15997.16 15397.45 15793.69 6895.65 10197.85 8687.29 11198.68 17495.66 6597.25 13799.13 71
EIA-MVS95.53 7195.47 6495.71 12897.06 15189.63 17697.82 7797.87 10393.57 6993.92 13695.04 24090.61 6898.95 14894.62 9998.68 9198.54 119
HQP-NCC95.86 21696.65 19493.55 7090.14 216
ACMP_Plane95.86 21696.65 19493.55 7090.14 216
HQP-MVS93.19 14592.74 14594.54 19195.86 21689.33 19396.65 19497.39 16793.55 7090.14 21695.87 20080.95 21098.50 19092.13 14592.10 22195.78 240
MCST-MVS97.18 1796.84 2698.20 1399.30 2495.35 1597.12 15698.07 7193.54 7396.08 8497.69 9693.86 1699.71 4096.50 3699.39 5099.55 29
test111193.19 14592.82 14094.30 20297.58 13284.56 30098.21 4389.02 36893.53 7494.58 12098.21 5772.69 30699.05 14193.06 13098.48 9999.28 59
SR-MVS-dyc-post96.88 3196.80 3197.11 6099.02 4292.34 8597.98 5998.03 8393.52 7597.43 3598.51 2691.40 5399.56 7596.05 5199.26 6199.43 46
RE-MVS-def96.72 3599.02 4292.34 8597.98 5998.03 8393.52 7597.43 3598.51 2690.71 6796.05 5199.26 6199.43 46
MG-MVS95.61 6895.38 6896.31 9498.42 7390.53 15496.04 23997.48 14793.47 7795.67 10098.10 6389.17 8299.25 11391.27 16698.77 8899.13 71
RRT_MVS93.10 15092.83 13993.93 22494.76 27788.04 23398.47 2296.55 24093.44 7890.01 22897.04 13680.64 21797.93 26294.33 10490.21 25595.83 235
test250691.60 20890.78 21694.04 21397.66 12383.81 30898.27 3375.53 38493.43 7995.23 10998.21 5767.21 33899.07 13893.01 13498.49 9799.25 62
ECVR-MVScopyleft93.19 14592.73 14694.57 19097.66 12385.41 28598.21 4388.23 36993.43 7994.70 11898.21 5772.57 30799.07 13893.05 13198.49 9799.25 62
FC-MVSNet-test93.94 11793.57 11095.04 15995.48 23291.45 11898.12 4898.71 793.37 8190.23 21596.70 15287.66 10297.85 26991.49 16190.39 25395.83 235
MP-MVScopyleft96.77 3896.45 4897.72 3699.39 1393.80 5098.41 2598.06 7493.37 8195.54 10598.34 4490.59 6999.88 494.83 9199.54 2699.49 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FIs94.09 11193.70 10695.27 14995.70 22392.03 9698.10 4998.68 993.36 8390.39 21296.70 15287.63 10497.94 25992.25 14190.50 25295.84 234
test_cas_vis1_n_192094.48 9894.55 9194.28 20396.78 16886.45 26997.63 10297.64 12993.32 8497.68 3098.36 4073.75 30399.08 13496.73 2999.05 7797.31 190
mPP-MVS96.86 3296.60 3997.64 4299.40 1193.44 5898.50 1998.09 6593.27 8595.95 9098.33 4791.04 6199.88 495.20 8299.57 2399.60 19
HFP-MVS97.14 1996.92 2397.83 2599.42 794.12 4398.52 1698.32 2393.21 8697.18 4098.29 5392.08 4099.83 2595.63 7099.59 1799.54 30
ACMMPR97.07 2196.84 2697.79 2999.44 693.88 4998.52 1698.31 2493.21 8697.15 4198.33 4791.35 5499.86 895.63 7099.59 1799.62 16
IS-MVSNet94.90 8994.52 9296.05 11097.67 12190.56 15398.44 2396.22 25593.21 8693.99 13397.74 9485.55 13498.45 19489.98 18397.86 11699.14 70
region2R97.07 2196.84 2697.77 3299.46 293.79 5198.52 1698.24 3993.19 8997.14 4298.34 4491.59 5099.87 795.46 7799.59 1799.64 14
SDMVSNet94.17 10493.61 10995.86 11898.09 9991.37 12097.35 13398.20 4493.18 9091.79 18297.28 12179.13 24498.93 15094.61 10092.84 20797.28 191
sd_testset93.10 15092.45 16095.05 15898.09 9989.21 19996.89 17197.64 12993.18 9091.79 18297.28 12175.35 29198.65 17788.99 21192.84 20797.28 191
EPNet_dtu91.71 20491.28 19892.99 26293.76 31283.71 31196.69 19095.28 29693.15 9287.02 30195.95 19783.37 16497.38 31179.46 32996.84 14497.88 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)93.31 14092.55 15495.61 13395.39 23693.34 6397.39 12998.71 793.14 9390.10 22494.83 25087.71 10198.03 24491.67 15983.99 32195.46 258
APD-MVS_3200maxsize96.81 3696.71 3697.12 5999.01 4592.31 8797.98 5998.06 7493.11 9497.44 3398.55 2390.93 6399.55 7796.06 5099.25 6399.51 34
testdata195.26 27693.10 95
DU-MVS92.90 16292.04 16995.49 14194.95 26592.83 7397.16 15398.24 3993.02 9690.13 22095.71 21283.47 16197.85 26991.71 15683.93 32295.78 240
xiu_mvs_v1_base_debu95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
xiu_mvs_v1_base95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
xiu_mvs_v1_base_debi95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
CP-MVS97.02 2496.81 3097.64 4299.33 2193.54 5698.80 898.28 2992.99 9796.45 7298.30 5291.90 4399.85 1795.61 7299.68 499.54 30
ACMMPcopyleft96.27 5495.93 5697.28 5299.24 2892.62 7898.25 3698.81 492.99 9794.56 12198.39 3888.96 8599.85 1794.57 10297.63 12299.36 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
iter_conf_final93.60 12993.11 12995.04 15997.13 14591.30 12297.92 6895.65 28092.98 10291.60 18596.64 15879.28 24298.13 22295.34 8091.49 23095.70 248
UniMVSNet_NR-MVSNet93.37 13892.67 14895.47 14495.34 24292.83 7397.17 15298.58 1292.98 10290.13 22095.80 20588.37 9597.85 26991.71 15683.93 32295.73 247
VPNet92.23 19091.31 19694.99 16395.56 22890.96 13997.22 14897.86 10792.96 10490.96 20496.62 16775.06 29298.20 21591.90 14983.65 32795.80 238
nrg03094.05 11393.31 12596.27 9995.22 25394.59 2898.34 2797.46 15292.93 10591.21 20296.64 15887.23 11398.22 21394.99 8885.80 29495.98 230
TranMVSNet+NR-MVSNet92.50 17391.63 18495.14 15494.76 27792.07 9497.53 11398.11 6292.90 10689.56 24296.12 19083.16 16797.60 29289.30 20183.20 33195.75 245
diffmvspermissive95.25 7795.13 7595.63 13196.43 19389.34 19295.99 24397.35 17392.83 10796.31 7597.37 11886.44 12198.67 17596.26 4097.19 13998.87 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMP_NAP97.20 1696.86 2498.23 1199.09 3495.16 2297.60 10598.19 4792.82 10897.93 2698.74 1691.60 4999.86 896.26 4099.52 2899.67 11
test_prior296.35 22092.80 10996.03 8597.59 10892.01 4195.01 8799.38 51
bld_raw_dy_0_6492.37 18091.69 18294.39 19694.28 29989.73 17597.71 9093.65 34192.78 11090.46 21096.67 15675.88 28497.97 25192.92 13690.89 24695.48 254
GST-MVS96.85 3496.52 4397.82 2699.36 1894.14 4298.29 3198.13 5792.72 11196.70 5698.06 6791.35 5499.86 894.83 9199.28 5899.47 41
CLD-MVS92.98 15792.53 15694.32 20096.12 21089.20 20095.28 27297.47 15092.66 11289.90 23095.62 21880.58 21898.40 19792.73 13792.40 21495.38 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
NR-MVSNet92.34 18291.27 19995.53 13894.95 26593.05 6997.39 12998.07 7192.65 11384.46 32395.71 21285.00 14097.77 27889.71 19083.52 32895.78 240
ZNCC-MVS96.96 2696.67 3797.85 2499.37 1694.12 4398.49 2098.18 4992.64 11496.39 7498.18 6091.61 4899.88 495.59 7599.55 2499.57 23
iter_conf0593.18 14892.63 14994.83 17396.64 17590.69 15097.60 10595.53 28692.52 11591.58 18696.64 15876.35 28298.13 22295.43 7891.42 23395.68 250
PS-MVSNAJss93.74 12693.51 11694.44 19393.91 30789.28 19797.75 8297.56 14092.50 11689.94 22996.54 17088.65 9098.18 21893.83 11690.90 24595.86 231
VDD-MVS93.82 12393.08 13096.02 11297.88 11289.96 17097.72 8895.85 26992.43 11795.86 9298.44 3468.42 33299.39 10196.31 3994.85 18198.71 112
LCM-MVSNet-Re92.50 17392.52 15792.44 27796.82 16781.89 32696.92 16993.71 34092.41 11884.30 32594.60 26185.08 13997.03 32291.51 16097.36 13198.40 137
SF-MVS97.39 1297.13 1398.17 1499.02 4295.28 1998.23 4098.27 3292.37 11998.27 1998.65 1993.33 2199.72 3996.49 3799.52 2899.51 34
VPA-MVSNet93.24 14292.48 15995.51 13995.70 22392.39 8497.86 7198.66 1192.30 12092.09 17795.37 22880.49 22098.40 19793.95 11085.86 29395.75 245
PGM-MVS96.81 3696.53 4297.65 4099.35 2093.53 5797.65 9698.98 292.22 12197.14 4298.44 3491.17 5999.85 1794.35 10399.46 3999.57 23
Vis-MVSNet (Re-imp)94.15 10693.88 10394.95 16897.61 12787.92 23798.10 4995.80 27192.22 12193.02 15597.45 11484.53 14697.91 26688.24 22197.97 11499.02 80
thres100view90092.43 17691.58 18694.98 16597.92 10989.37 19197.71 9094.66 32192.20 12393.31 15094.90 24678.06 26699.08 13481.40 31494.08 19296.48 213
baseline192.82 16791.90 17595.55 13797.20 14090.77 14897.19 15094.58 32492.20 12392.36 16896.34 18084.16 15298.21 21489.20 20783.90 32597.68 172
tfpn200view992.38 17991.52 18994.95 16897.85 11389.29 19597.41 12494.88 31692.19 12593.27 15294.46 26878.17 26299.08 13481.40 31494.08 19296.48 213
thres40092.42 17791.52 18995.12 15697.85 11389.29 19597.41 12494.88 31692.19 12593.27 15294.46 26878.17 26299.08 13481.40 31494.08 19296.98 198
thres600view792.49 17591.60 18595.18 15297.91 11089.47 18597.65 9694.66 32192.18 12793.33 14994.91 24578.06 26699.10 12981.61 31194.06 19596.98 198
Fast-Effi-MVS+-dtu92.29 18691.99 17293.21 25695.27 24985.52 28397.03 15896.63 23692.09 12889.11 25795.14 23780.33 22498.08 23387.54 24094.74 18696.03 229
thres20092.23 19091.39 19294.75 18397.61 12789.03 20596.60 20295.09 30692.08 12993.28 15194.00 29178.39 26099.04 14481.26 31894.18 19196.19 220
mvs_tets92.31 18491.76 17893.94 22293.41 32488.29 22397.63 10297.53 14292.04 13088.76 26496.45 17474.62 29598.09 23293.91 11291.48 23195.45 259
OMC-MVS95.09 8294.70 8496.25 10398.46 7091.28 12396.43 21097.57 13792.04 13094.77 11797.96 7787.01 11599.09 13291.31 16596.77 14698.36 141
jajsoiax92.42 17791.89 17694.03 21493.33 32788.50 21997.73 8597.53 14292.00 13288.85 26196.50 17275.62 28998.11 22893.88 11491.56 22995.48 254
XVG-OURS93.72 12793.35 12494.80 17997.07 14888.61 21394.79 28397.46 15291.97 13393.99 13397.86 8581.74 20298.88 15592.64 13892.67 21296.92 202
WR-MVS92.34 18291.53 18894.77 18195.13 25890.83 14596.40 21697.98 9291.88 13489.29 25195.54 22382.50 18697.80 27489.79 18985.27 30295.69 249
PAPM_NR95.01 8394.59 8696.26 10098.89 5190.68 15197.24 14397.73 11791.80 13592.93 16196.62 16789.13 8399.14 12589.21 20697.78 11998.97 87
testgi87.97 29487.21 29490.24 32492.86 33380.76 33496.67 19394.97 31191.74 13685.52 31495.83 20362.66 35694.47 35876.25 34488.36 27395.48 254
CP-MVSNet91.89 20091.24 20093.82 22895.05 26188.57 21597.82 7798.19 4791.70 13788.21 27895.76 21081.96 19797.52 30087.86 22684.65 31195.37 266
XVG-OURS-SEG-HR93.86 12193.55 11194.81 17697.06 15188.53 21895.28 27297.45 15791.68 13894.08 13297.68 9782.41 18998.90 15493.84 11592.47 21396.98 198
OurMVSNet-221017-090.51 25890.19 24391.44 30593.41 32481.25 33096.98 16596.28 25191.68 13886.55 30796.30 18174.20 29897.98 24888.96 21287.40 28295.09 279
ACMP89.59 1092.62 17292.14 16794.05 21296.40 19488.20 22897.36 13297.25 18191.52 14088.30 27496.64 15878.46 25898.72 17191.86 15291.48 23195.23 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD-MVScopyleft96.95 2796.60 3998.01 1899.03 4194.93 2597.72 8898.10 6491.50 14198.01 2398.32 4992.33 3699.58 6794.85 9099.51 3199.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF92.43 27895.34 24285.37 28895.92 26491.47 14287.75 28796.39 17871.00 31697.96 25682.36 30889.86 25893.97 326
PS-CasMVS91.55 21390.84 21493.69 23694.96 26488.28 22497.84 7598.24 3991.46 14388.04 28295.80 20579.67 23697.48 30287.02 25184.54 31695.31 269
WR-MVS_H92.00 19791.35 19393.95 22095.09 26089.47 18598.04 5498.68 991.46 14388.34 27294.68 25785.86 13097.56 29485.77 27184.24 31994.82 297
MVSFormer95.37 7395.16 7495.99 11496.34 19791.21 12798.22 4197.57 13791.42 14596.22 7997.32 11986.20 12697.92 26394.07 10799.05 7798.85 102
test_djsdf93.07 15392.76 14294.00 21593.49 32188.70 21298.22 4197.57 13791.42 14590.08 22695.55 22282.85 17897.92 26394.07 10791.58 22895.40 263
ACMM89.79 892.96 15892.50 15894.35 19896.30 19988.71 21197.58 10797.36 17291.40 14790.53 20896.65 15779.77 23498.75 16691.24 16791.64 22695.59 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS91.20 23290.44 22893.48 24594.49 28987.91 23997.76 8198.18 4991.29 14887.78 28695.74 21180.35 22397.33 31385.46 27582.96 33295.19 278
LPG-MVS_test92.94 16092.56 15394.10 20996.16 20688.26 22597.65 9697.46 15291.29 14890.12 22297.16 12979.05 24698.73 16892.25 14191.89 22495.31 269
LGP-MVS_train94.10 20996.16 20688.26 22597.46 15291.29 14890.12 22297.16 12979.05 24698.73 16892.25 14191.89 22495.31 269
9.1496.75 3398.93 4797.73 8598.23 4291.28 15197.88 2798.44 3493.00 2499.65 5295.76 6399.47 38
MVSTER93.20 14492.81 14194.37 19796.56 18389.59 17997.06 15797.12 18791.24 15291.30 19695.96 19682.02 19698.05 24093.48 12090.55 25095.47 257
test_yl94.78 9494.23 9896.43 8597.74 11891.22 12596.85 17497.10 18991.23 15395.71 9796.93 14084.30 14999.31 10993.10 12795.12 17798.75 107
DCV-MVSNet94.78 9494.23 9896.43 8597.74 11891.22 12596.85 17497.10 18991.23 15395.71 9796.93 14084.30 14999.31 10993.10 12795.12 17798.75 107
test_vis1_n92.37 18092.26 16592.72 27294.75 27982.64 31798.02 5596.80 22291.18 15597.77 2997.93 7858.02 36198.29 20997.63 998.21 10797.23 194
MVS_Test94.89 9094.62 8595.68 12996.83 16589.55 18196.70 18897.17 18491.17 15695.60 10296.11 19387.87 10098.76 16593.01 13497.17 14098.72 110
HPM-MVScopyleft96.69 4296.45 4897.40 4799.36 1893.11 6898.87 698.06 7491.17 15696.40 7397.99 7490.99 6299.58 6795.61 7299.61 1699.49 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR91.42 21991.19 20392.12 28694.59 28680.66 33594.29 30192.98 34691.11 15890.76 20692.37 32579.02 24898.07 23788.81 21496.74 14797.63 173
test0.0.03 189.37 28088.70 27891.41 30692.47 34185.63 28195.22 27792.70 34991.11 15886.91 30493.65 30579.02 24893.19 36678.00 33689.18 26495.41 260
XVG-ACMP-BASELINE90.93 24590.21 24293.09 25994.31 29785.89 27895.33 26997.26 17991.06 16089.38 24795.44 22768.61 33098.60 18289.46 19791.05 24194.79 302
Effi-MVS+94.93 8894.45 9596.36 9296.61 17791.47 11696.41 21297.41 16691.02 16194.50 12295.92 19887.53 10698.78 16193.89 11396.81 14598.84 104
dmvs_re90.21 26589.50 26792.35 27995.47 23485.15 29195.70 25494.37 32990.94 16288.42 27093.57 30774.63 29495.67 34682.80 30389.57 26196.22 218
SCA91.84 20191.18 20493.83 22795.59 22684.95 29694.72 28495.58 28390.82 16392.25 17193.69 30175.80 28698.10 22986.20 26195.98 16098.45 131
SixPastTwentyTwo89.15 28188.54 28190.98 31293.49 32180.28 34396.70 18894.70 32090.78 16484.15 32895.57 22071.78 31197.71 28284.63 28585.07 30694.94 286
PC_three_145290.77 16598.89 998.28 5596.24 198.35 20495.76 6399.58 2199.59 20
DTE-MVSNet90.56 25689.75 26193.01 26193.95 30587.25 24997.64 10097.65 12790.74 16687.12 29795.68 21579.97 23197.00 32583.33 29781.66 33894.78 304
GA-MVS91.38 22190.31 23394.59 18594.65 28487.62 24494.34 29896.19 25890.73 16790.35 21393.83 29571.84 31097.96 25687.22 24693.61 20198.21 147
test_fmvs1_n92.73 17092.88 13792.29 28296.08 21381.05 33397.98 5997.08 19290.72 16896.79 5298.18 6063.07 35498.45 19497.62 1098.42 10297.36 186
EPP-MVSNet95.22 7995.04 7795.76 12197.49 13489.56 18098.67 1097.00 20390.69 16994.24 12797.62 10689.79 7798.81 15993.39 12496.49 15498.92 94
test_fmvs193.21 14393.53 11392.25 28496.55 18581.20 33297.40 12896.96 20590.68 17096.80 5198.04 6969.25 32798.40 19797.58 1198.50 9697.16 195
MP-MVS-pluss96.70 4096.27 5297.98 2099.23 3094.71 2796.96 16798.06 7490.67 17195.55 10398.78 1591.07 6099.86 896.58 3499.55 2499.38 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IterMVS-LS92.29 18691.94 17493.34 25096.25 20086.97 25896.57 20697.05 19790.67 17189.50 24594.80 25286.59 11797.64 28789.91 18586.11 29295.40 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 15592.88 13793.48 24595.77 22186.98 25796.44 20897.12 18790.66 17391.30 19697.64 10486.56 11898.05 24089.91 18590.55 25095.41 260
K. test v387.64 29886.75 29990.32 32393.02 33279.48 35096.61 20092.08 35590.66 17380.25 35194.09 28867.21 33896.65 33285.96 26980.83 34194.83 295
tttt051792.96 15892.33 16394.87 17297.11 14687.16 25497.97 6592.09 35490.63 17593.88 13797.01 13876.50 27899.06 14090.29 18195.45 17298.38 139
BH-RMVSNet92.72 17191.97 17394.97 16697.16 14287.99 23596.15 23595.60 28190.62 17691.87 18097.15 13178.41 25998.57 18683.16 29897.60 12398.36 141
IterMVS-SCA-FT90.31 26189.81 25791.82 29495.52 23084.20 30494.30 30096.15 25990.61 17787.39 29394.27 27975.80 28696.44 33387.34 24386.88 28894.82 297
WTY-MVS94.71 9694.02 10096.79 6497.71 12092.05 9596.59 20397.35 17390.61 17794.64 11996.93 14086.41 12299.39 10191.20 16894.71 18798.94 91
ET-MVSNet_ETH3D91.49 21690.11 24495.63 13196.40 19491.57 11295.34 26893.48 34390.60 17975.58 36295.49 22580.08 22896.79 33094.25 10589.76 25998.52 121
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 3895.42 1097.94 6698.18 4990.57 18098.85 1098.94 293.33 2199.83 2596.72 3099.68 499.63 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS93.60 12992.63 14996.52 7498.13 9891.27 12497.94 6693.39 34490.57 18096.29 7698.31 5069.00 32899.16 12294.18 10695.87 16399.12 74
HPM-MVS_fast96.51 4796.27 5297.22 5599.32 2292.74 7598.74 998.06 7490.57 18096.77 5398.35 4190.21 7299.53 8194.80 9499.63 1499.38 52
DPM-MVS95.69 6594.92 7898.01 1898.08 10295.71 995.27 27497.62 13290.43 18395.55 10397.07 13491.72 4499.50 8989.62 19498.94 8398.82 105
IU-MVS99.42 795.39 1197.94 9690.40 18498.94 697.41 1999.66 1099.74 7
PVSNet_Blended_VisFu95.27 7694.91 7996.38 9098.20 9190.86 14397.27 14198.25 3790.21 18594.18 12997.27 12387.48 10899.73 3693.53 11897.77 12098.55 118
PVSNet_BlendedMVS94.06 11293.92 10294.47 19298.27 8389.46 18796.73 18498.36 1890.17 18694.36 12495.24 23488.02 9699.58 6793.44 12190.72 24894.36 317
thisisatest053093.03 15592.21 16695.49 14197.07 14889.11 20497.49 12092.19 35390.16 18794.09 13196.41 17676.43 28199.05 14190.38 17895.68 16998.31 143
CNLPA94.28 10193.53 11396.52 7498.38 7892.55 8096.59 20396.88 21690.13 18891.91 17997.24 12585.21 13799.09 13287.64 23797.83 11797.92 159
BH-untuned92.94 16092.62 15193.92 22597.22 13886.16 27796.40 21696.25 25490.06 18989.79 23496.17 18883.19 16698.35 20487.19 24797.27 13697.24 193
IterMVS90.15 26889.67 26391.61 30195.48 23283.72 31094.33 29996.12 26089.99 19087.31 29694.15 28775.78 28896.27 33686.97 25286.89 28794.83 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary94.34 10093.68 10796.31 9498.59 6691.68 10696.59 20397.81 11289.87 19192.15 17397.06 13583.62 16099.54 7989.34 20098.07 11297.70 171
UnsupCasMVSNet_eth85.99 31284.45 31690.62 31989.97 35782.40 32293.62 32497.37 17089.86 19278.59 35792.37 32565.25 35095.35 35382.27 30970.75 36694.10 323
PHI-MVS96.77 3896.46 4797.71 3898.40 7594.07 4598.21 4398.45 1789.86 19297.11 4498.01 7392.52 3399.69 4696.03 5499.53 2799.36 54
mvs_anonymous93.82 12393.74 10594.06 21196.44 19285.41 28595.81 25097.05 19789.85 19490.09 22596.36 17987.44 10997.75 27993.97 10996.69 15099.02 80
test_fmvs289.77 27689.93 25289.31 33293.68 31576.37 35997.64 10095.90 26689.84 19591.49 18996.26 18458.77 36097.10 31994.65 9891.13 23994.46 313
ab-mvs93.57 13292.55 15496.64 6697.28 13791.96 9995.40 26697.45 15789.81 19693.22 15496.28 18279.62 23799.46 9390.74 17493.11 20498.50 124
FMVSNet391.78 20290.69 22195.03 16196.53 18692.27 8997.02 16096.93 20889.79 19789.35 24894.65 25977.01 27497.47 30386.12 26488.82 26695.35 267
AUN-MVS91.76 20390.75 21894.81 17697.00 15788.57 21596.65 19496.49 24389.63 19892.15 17396.12 19078.66 25598.50 19090.83 17179.18 34897.36 186
FA-MVS(test-final)93.52 13492.92 13595.31 14896.77 17088.54 21794.82 28296.21 25789.61 19994.20 12895.25 23383.24 16599.14 12590.01 18296.16 15898.25 145
tt080591.09 23690.07 24894.16 20795.61 22588.31 22297.56 10996.51 24289.56 20089.17 25595.64 21767.08 34298.38 20291.07 16988.44 27295.80 238
v2v48291.59 20990.85 21393.80 22993.87 30988.17 23096.94 16896.88 21689.54 20189.53 24394.90 24681.70 20398.02 24589.25 20485.04 30895.20 277
PatchmatchNetpermissive91.91 19991.35 19393.59 24095.38 23784.11 30593.15 33395.39 28989.54 20192.10 17693.68 30382.82 17998.13 22284.81 28295.32 17498.52 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS90.70 25389.81 25793.37 24994.73 28184.21 30393.67 32288.02 37089.50 20392.38 16793.49 30977.82 27097.78 27686.03 26792.68 21198.11 153
GeoE93.89 11993.28 12695.72 12796.96 15989.75 17498.24 3996.92 21289.47 20492.12 17597.21 12784.42 14798.39 20187.71 23196.50 15399.01 83
v14890.99 24190.38 23092.81 27093.83 31085.80 27996.78 18196.68 23089.45 20588.75 26593.93 29482.96 17697.82 27387.83 22783.25 32994.80 300
anonymousdsp92.16 19291.55 18793.97 21892.58 33989.55 18197.51 11497.42 16589.42 20688.40 27194.84 24980.66 21697.88 26891.87 15191.28 23694.48 312
baseline291.63 20790.86 21193.94 22294.33 29586.32 27195.92 24691.64 35889.37 20786.94 30294.69 25681.62 20498.69 17388.64 21894.57 18896.81 205
IB-MVS87.33 1789.91 27188.28 28494.79 18095.26 25287.70 24395.12 28093.95 33889.35 20887.03 30092.49 32370.74 31899.19 11889.18 20881.37 33997.49 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jason94.84 9294.39 9796.18 10595.52 23090.93 14196.09 23796.52 24189.28 20996.01 8897.32 11984.70 14398.77 16495.15 8498.91 8598.85 102
jason: jason.
TAMVS94.01 11593.46 11895.64 13096.16 20690.45 15796.71 18796.89 21589.27 21093.46 14696.92 14387.29 11197.94 25988.70 21795.74 16698.53 120
ZD-MVS99.05 3994.59 2898.08 6689.22 21197.03 4798.10 6392.52 3399.65 5294.58 10199.31 57
API-MVS94.84 9294.49 9395.90 11697.90 11192.00 9797.80 7997.48 14789.19 21294.81 11696.71 15088.84 8799.17 12188.91 21398.76 8996.53 210
XXY-MVS92.16 19291.23 20194.95 16894.75 27990.94 14097.47 12197.43 16489.14 21388.90 25896.43 17579.71 23598.24 21189.56 19587.68 27795.67 251
dmvs_testset81.38 33082.60 32677.73 35391.74 34851.49 38393.03 33684.21 37989.07 21478.28 35891.25 34076.97 27588.53 37456.57 37582.24 33693.16 335
pm-mvs190.72 25289.65 26593.96 21994.29 29889.63 17697.79 8096.82 22189.07 21486.12 31195.48 22678.61 25697.78 27686.97 25281.67 33794.46 313
HY-MVS89.66 993.87 12092.95 13496.63 6897.10 14792.49 8295.64 25896.64 23389.05 21693.00 15695.79 20885.77 13299.45 9589.16 20994.35 18997.96 157
CSCG96.05 5795.91 5796.46 8399.24 2890.47 15698.30 3098.57 1389.01 21793.97 13597.57 10992.62 3199.76 3394.66 9799.27 5999.15 69
v891.29 22990.53 22793.57 24294.15 30088.12 23297.34 13497.06 19688.99 21888.32 27394.26 28183.08 17098.01 24687.62 23883.92 32494.57 311
PAPR94.18 10393.42 12396.48 8097.64 12591.42 11995.55 26097.71 12388.99 21892.34 17095.82 20489.19 8199.11 12886.14 26397.38 13098.90 96
CDS-MVSNet94.14 10993.54 11295.93 11596.18 20491.46 11796.33 22297.04 19988.97 22093.56 14196.51 17187.55 10597.89 26789.80 18895.95 16198.44 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss94.51 9793.80 10496.64 6697.07 14891.97 9896.32 22398.06 7488.94 22194.50 12296.78 14784.60 14499.27 11291.90 14996.02 15998.68 114
lupinMVS94.99 8794.56 8896.29 9896.34 19791.21 12795.83 24996.27 25288.93 22296.22 7996.88 14586.20 12698.85 15695.27 8199.05 7798.82 105
D2MVS91.30 22890.95 20892.35 27994.71 28285.52 28396.18 23498.21 4388.89 22386.60 30693.82 29779.92 23297.95 25889.29 20290.95 24493.56 330
v7n90.76 24989.86 25493.45 24793.54 31887.60 24597.70 9297.37 17088.85 22487.65 28894.08 28981.08 20998.10 22984.68 28483.79 32694.66 309
PVSNet_Blended94.87 9194.56 8895.81 12098.27 8389.46 18795.47 26498.36 1888.84 22594.36 12496.09 19488.02 9699.58 6793.44 12198.18 10998.40 137
ACMH+87.92 1490.20 26689.18 27393.25 25396.48 19086.45 26996.99 16496.68 23088.83 22684.79 32296.22 18570.16 32298.53 18884.42 28888.04 27494.77 305
GBi-Net91.35 22490.27 23694.59 18596.51 18791.18 13197.50 11596.93 20888.82 22789.35 24894.51 26373.87 29997.29 31586.12 26488.82 26695.31 269
test191.35 22490.27 23694.59 18596.51 18791.18 13197.50 11596.93 20888.82 22789.35 24894.51 26373.87 29997.29 31586.12 26488.82 26695.31 269
FMVSNet291.31 22790.08 24594.99 16396.51 18792.21 9097.41 12496.95 20688.82 22788.62 26694.75 25473.87 29997.42 30885.20 27988.55 27195.35 267
V4291.58 21190.87 21093.73 23294.05 30488.50 21997.32 13796.97 20488.80 23089.71 23594.33 27482.54 18598.05 24089.01 21085.07 30694.64 310
mvsany_test193.93 11893.98 10193.78 23194.94 26786.80 26094.62 28692.55 35188.77 23196.85 5098.49 2888.98 8498.08 23395.03 8695.62 17096.46 215
BH-w/o92.14 19491.75 17993.31 25196.99 15885.73 28095.67 25595.69 27688.73 23289.26 25394.82 25182.97 17598.07 23785.26 27896.32 15796.13 225
test20.0386.14 31185.40 30888.35 33490.12 35580.06 34595.90 24795.20 30188.59 23381.29 34493.62 30671.43 31392.65 36771.26 36281.17 34092.34 347
train_agg96.30 5395.83 5997.72 3698.70 5694.19 3996.41 21298.02 8688.58 23496.03 8597.56 11192.73 2999.59 6495.04 8599.37 5499.39 50
test_898.67 5894.06 4696.37 21998.01 8988.58 23495.98 8997.55 11392.73 2999.58 67
eth_miper_zixun_eth91.02 24090.59 22492.34 28195.33 24584.35 30194.10 30696.90 21388.56 23688.84 26294.33 27484.08 15397.60 29288.77 21684.37 31895.06 281
tpmrst91.44 21891.32 19591.79 29695.15 25679.20 35293.42 32895.37 29188.55 23793.49 14593.67 30482.49 18798.27 21090.41 17789.34 26397.90 160
ACMH87.59 1690.53 25789.42 26893.87 22696.21 20187.92 23797.24 14396.94 20788.45 23883.91 33396.27 18371.92 30998.62 18184.43 28789.43 26295.05 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Baseline_NR-MVSNet91.20 23290.62 22292.95 26493.83 31088.03 23497.01 16395.12 30588.42 23989.70 23695.13 23883.47 16197.44 30689.66 19383.24 33093.37 334
v114491.37 22390.60 22393.68 23793.89 30888.23 22796.84 17697.03 20188.37 24089.69 23794.39 27082.04 19597.98 24887.80 22885.37 29994.84 294
DP-MVS Recon95.68 6695.12 7697.37 4899.19 3194.19 3997.03 15898.08 6688.35 24195.09 11397.65 10189.97 7599.48 9192.08 14898.59 9498.44 134
tpm90.25 26389.74 26291.76 29993.92 30679.73 34893.98 30893.54 34288.28 24291.99 17893.25 31477.51 27297.44 30687.30 24587.94 27598.12 150
v1091.04 23990.23 23993.49 24494.12 30188.16 23197.32 13797.08 19288.26 24388.29 27594.22 28482.17 19497.97 25186.45 25884.12 32094.33 318
Fast-Effi-MVS+93.46 13592.75 14495.59 13496.77 17090.03 16396.81 17897.13 18688.19 24491.30 19694.27 27986.21 12598.63 17987.66 23696.46 15698.12 150
c3_l91.38 22190.89 20992.88 26795.58 22786.30 27294.68 28596.84 22088.17 24588.83 26394.23 28285.65 13397.47 30389.36 19984.63 31294.89 292
TEST998.70 5694.19 3996.41 21298.02 8688.17 24596.03 8597.56 11192.74 2899.59 64
MDTV_nov1_ep1390.76 21795.22 25380.33 34193.03 33695.28 29688.14 24792.84 16293.83 29581.34 20698.08 23382.86 30194.34 190
MAR-MVS94.22 10293.46 11896.51 7798.00 10492.19 9297.67 9397.47 15088.13 24893.00 15695.84 20284.86 14299.51 8687.99 22498.17 11097.83 166
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D91.34 22690.22 24194.68 18494.86 27387.86 24097.23 14797.46 15287.99 24989.90 23096.92 14366.35 34498.23 21290.30 18090.99 24397.96 157
PatchMatch-RL92.90 16292.02 17195.56 13598.19 9390.80 14695.27 27497.18 18287.96 25091.86 18195.68 21580.44 22198.99 14684.01 29297.54 12496.89 203
thisisatest051592.29 18691.30 19795.25 15096.60 17888.90 20894.36 29792.32 35287.92 25193.43 14794.57 26277.28 27399.00 14589.42 19895.86 16497.86 163
PVSNet86.66 1892.24 18991.74 18193.73 23297.77 11783.69 31292.88 33896.72 22587.91 25293.00 15694.86 24878.51 25799.05 14186.53 25597.45 12998.47 129
LTVRE_ROB88.41 1390.99 24189.92 25394.19 20596.18 20489.55 18196.31 22497.09 19187.88 25385.67 31395.91 19978.79 25498.57 18681.50 31289.98 25694.44 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____90.96 24490.32 23292.89 26695.37 23986.21 27594.46 29396.64 23387.82 25488.15 28094.18 28582.98 17497.54 29687.70 23285.59 29594.92 290
DIV-MVS_self_test90.97 24390.33 23192.88 26795.36 24086.19 27694.46 29396.63 23687.82 25488.18 27994.23 28282.99 17397.53 29887.72 22985.57 29694.93 288
cl2291.21 23190.56 22693.14 25896.09 21286.80 26094.41 29596.58 23987.80 25688.58 26893.99 29280.85 21597.62 29089.87 18786.93 28494.99 283
CPTT-MVS95.57 7095.19 7396.70 6599.27 2691.48 11598.33 2898.11 6287.79 25795.17 11198.03 7087.09 11499.61 6093.51 11999.42 4599.02 80
miper_ehance_all_eth91.59 20991.13 20592.97 26395.55 22986.57 26894.47 29196.88 21687.77 25888.88 26094.01 29086.22 12497.54 29689.49 19686.93 28494.79 302
v119291.07 23790.23 23993.58 24193.70 31387.82 24196.73 18497.07 19487.77 25889.58 24094.32 27680.90 21497.97 25186.52 25685.48 29794.95 284
F-COLMAP93.58 13192.98 13395.37 14798.40 7588.98 20697.18 15197.29 17887.75 26090.49 20997.10 13385.21 13799.50 8986.70 25496.72 14997.63 173
131492.81 16892.03 17095.14 15495.33 24589.52 18496.04 23997.44 16187.72 26186.25 30995.33 22983.84 15598.79 16089.26 20397.05 14297.11 196
test-mter90.19 26789.54 26692.12 28694.59 28680.66 33594.29 30192.98 34687.68 26290.76 20692.37 32567.67 33498.07 23788.81 21496.74 14797.63 173
TR-MVS91.48 21790.59 22494.16 20796.40 19487.33 24695.67 25595.34 29587.68 26291.46 19095.52 22476.77 27698.35 20482.85 30293.61 20196.79 206
LF4IMVS87.94 29587.25 29289.98 32692.38 34480.05 34694.38 29695.25 29987.59 26484.34 32494.74 25564.31 35197.66 28684.83 28187.45 27992.23 348
miper_lstm_enhance90.50 25990.06 24991.83 29395.33 24583.74 30993.86 31596.70 22987.56 26587.79 28593.81 29883.45 16396.92 32787.39 24284.62 31394.82 297
TransMVSNet (Re)88.94 28387.56 28993.08 26094.35 29488.45 22197.73 8595.23 30087.47 26684.26 32695.29 23079.86 23397.33 31379.44 33074.44 36093.45 333
v14419291.06 23890.28 23593.39 24893.66 31687.23 25196.83 17797.07 19487.43 26789.69 23794.28 27881.48 20598.00 24787.18 24884.92 31094.93 288
原ACMM196.38 9098.59 6691.09 13697.89 9987.41 26895.22 11097.68 9790.25 7199.54 7987.95 22599.12 7498.49 126
v192192090.85 24790.03 25093.29 25293.55 31786.96 25996.74 18397.04 19987.36 26989.52 24494.34 27380.23 22697.97 25186.27 25985.21 30394.94 286
USDC88.94 28387.83 28892.27 28394.66 28384.96 29593.86 31595.90 26687.34 27083.40 33595.56 22167.43 33698.19 21782.64 30789.67 26093.66 329
PLCcopyleft91.00 694.11 11093.43 12196.13 10698.58 6891.15 13596.69 19097.39 16787.29 27191.37 19296.71 15088.39 9499.52 8587.33 24497.13 14197.73 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal89.70 27788.40 28293.60 23995.15 25690.10 16297.56 10998.16 5387.28 27286.16 31094.63 26077.57 27198.05 24074.48 34984.59 31492.65 343
TESTMET0.1,190.06 26989.42 26891.97 28994.41 29380.62 33794.29 30191.97 35687.28 27290.44 21192.47 32468.79 32997.67 28488.50 22096.60 15297.61 177
v124090.70 25389.85 25593.23 25493.51 32086.80 26096.61 20097.02 20287.16 27489.58 24094.31 27779.55 23897.98 24885.52 27485.44 29894.90 291
Patchmatch-RL test87.38 29986.24 30090.81 31588.74 36578.40 35688.12 36893.17 34587.11 27582.17 34289.29 35381.95 19895.60 34888.64 21877.02 35398.41 136
CDPH-MVS95.97 6095.38 6897.77 3298.93 4794.44 3196.35 22097.88 10186.98 27696.65 6097.89 8091.99 4299.47 9292.26 13999.46 3999.39 50
PM-MVS83.48 32481.86 33088.31 33587.83 36877.59 35793.43 32791.75 35786.91 27780.63 34789.91 34944.42 37195.84 34285.17 28076.73 35691.50 356
CR-MVSNet90.82 24889.77 25993.95 22094.45 29187.19 25290.23 35895.68 27886.89 27892.40 16592.36 32880.91 21297.05 32181.09 31993.95 19697.60 178
1112_ss93.37 13892.42 16196.21 10497.05 15390.99 13796.31 22496.72 22586.87 27989.83 23396.69 15486.51 12099.14 12588.12 22293.67 19898.50 124
miper_enhance_ethall91.54 21491.01 20793.15 25795.35 24187.07 25693.97 30996.90 21386.79 28089.17 25593.43 31386.55 11997.64 28789.97 18486.93 28494.74 306
CL-MVSNet_self_test86.31 30885.15 31089.80 32888.83 36481.74 32893.93 31296.22 25586.67 28185.03 31990.80 34278.09 26594.50 35674.92 34871.86 36593.15 336
FMVSNet189.88 27388.31 28394.59 18595.41 23591.18 13197.50 11596.93 20886.62 28287.41 29294.51 26365.94 34897.29 31583.04 30087.43 28095.31 269
CHOSEN 280x42093.12 14992.72 14794.34 19996.71 17487.27 24890.29 35797.72 11986.61 28391.34 19395.29 23084.29 15198.41 19693.25 12598.94 8397.35 188
test_fmvs383.21 32583.02 32283.78 34786.77 37068.34 37296.76 18294.91 31486.49 28484.14 32989.48 35236.04 37591.73 36991.86 15280.77 34291.26 359
mvsany_test383.59 32382.44 32787.03 34183.80 37173.82 36493.70 31990.92 36486.42 28582.51 34090.26 34546.76 37095.71 34490.82 17276.76 35591.57 354
MIMVSNet88.50 29086.76 29893.72 23494.84 27487.77 24291.39 34894.05 33586.41 28687.99 28392.59 32263.27 35395.82 34377.44 33792.84 20797.57 180
FE-MVS92.05 19691.05 20695.08 15796.83 16587.93 23693.91 31495.70 27486.30 28794.15 13094.97 24176.59 27799.21 11684.10 29096.86 14398.09 154
tpmvs89.83 27589.15 27491.89 29194.92 26880.30 34293.11 33495.46 28886.28 28888.08 28192.65 31980.44 22198.52 18981.47 31389.92 25796.84 204
PAPM91.52 21590.30 23495.20 15195.30 24889.83 17293.38 32996.85 21986.26 28988.59 26795.80 20584.88 14198.15 22075.67 34795.93 16297.63 173
VDDNet93.05 15492.07 16896.02 11296.84 16390.39 16098.08 5195.85 26986.22 29095.79 9598.46 3267.59 33599.19 11894.92 8994.85 18198.47 129
MS-PatchMatch90.27 26289.77 25991.78 29794.33 29584.72 29995.55 26096.73 22486.17 29186.36 30895.28 23271.28 31497.80 27484.09 29198.14 11192.81 340
MVP-Stereo90.74 25190.08 24592.71 27393.19 32988.20 22895.86 24896.27 25286.07 29284.86 32194.76 25377.84 26997.75 27983.88 29598.01 11392.17 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous20240521192.07 19590.83 21595.76 12198.19 9388.75 21097.58 10795.00 30986.00 29393.64 14097.45 11466.24 34699.53 8190.68 17692.71 21099.01 83
KD-MVS_self_test85.95 31384.95 31288.96 33389.55 36179.11 35395.13 27996.42 24685.91 29484.07 33190.48 34370.03 32494.82 35580.04 32372.94 36392.94 338
CVMVSNet91.23 23091.75 17989.67 32995.77 22174.69 36296.44 20894.88 31685.81 29592.18 17297.64 10479.07 24595.58 34988.06 22395.86 16498.74 109
our_test_388.78 28787.98 28791.20 31092.45 34282.53 31993.61 32595.69 27685.77 29684.88 32093.71 30079.99 23096.78 33179.47 32886.24 28994.28 321
MSDG91.42 21990.24 23894.96 16797.15 14488.91 20793.69 32196.32 25085.72 29786.93 30396.47 17380.24 22598.98 14780.57 32095.05 18096.98 198
CHOSEN 1792x268894.15 10693.51 11696.06 10998.27 8389.38 19095.18 27898.48 1685.60 29893.76 13997.11 13283.15 16899.61 6091.33 16498.72 9099.19 65
KD-MVS_2432*160084.81 32082.64 32491.31 30791.07 35185.34 28991.22 35095.75 27285.56 29983.09 33790.21 34667.21 33895.89 33977.18 34162.48 37492.69 341
miper_refine_blended84.81 32082.64 32491.31 30791.07 35185.34 28991.22 35095.75 27285.56 29983.09 33790.21 34667.21 33895.89 33977.18 34162.48 37492.69 341
AllTest90.23 26488.98 27593.98 21697.94 10786.64 26496.51 20795.54 28485.38 30185.49 31596.77 14870.28 32099.15 12380.02 32492.87 20596.15 223
TestCases93.98 21697.94 10786.64 26495.54 28485.38 30185.49 31596.77 14870.28 32099.15 12380.02 32492.87 20596.15 223
Test_1112_low_res92.84 16691.84 17795.85 11997.04 15489.97 16995.53 26296.64 23385.38 30189.65 23995.18 23585.86 13099.10 12987.70 23293.58 20398.49 126
test_vis1_rt86.16 31085.06 31189.46 33093.47 32380.46 33996.41 21286.61 37585.22 30479.15 35588.64 35452.41 36797.06 32093.08 12990.57 24990.87 360
EU-MVSNet88.72 28888.90 27688.20 33693.15 33074.21 36396.63 19994.22 33385.18 30587.32 29595.97 19576.16 28394.98 35485.27 27786.17 29095.41 260
LS3D93.57 13292.61 15296.47 8197.59 13091.61 10897.67 9397.72 11985.17 30690.29 21498.34 4484.60 14499.73 3683.85 29698.27 10598.06 156
dp88.90 28588.26 28590.81 31594.58 28876.62 35892.85 33994.93 31385.12 30790.07 22793.07 31575.81 28598.12 22780.53 32187.42 28197.71 170
HyFIR lowres test93.66 12892.92 13595.87 11798.24 8689.88 17194.58 28898.49 1485.06 30893.78 13895.78 20982.86 17798.67 17591.77 15495.71 16899.07 79
new-patchmatchnet83.18 32681.87 32987.11 34086.88 36975.99 36193.70 31995.18 30285.02 30977.30 36088.40 35665.99 34793.88 36274.19 35370.18 36791.47 357
TDRefinement86.53 30484.76 31591.85 29282.23 37584.25 30296.38 21895.35 29284.97 31084.09 33094.94 24365.76 34998.34 20784.60 28674.52 35992.97 337
OpenMVScopyleft89.19 1292.86 16491.68 18396.40 8795.34 24292.73 7698.27 3398.12 5984.86 31185.78 31297.75 9378.89 25399.74 3587.50 24198.65 9296.73 207
gm-plane-assit93.22 32878.89 35584.82 31293.52 30898.64 17887.72 229
PMMVS92.86 16492.34 16294.42 19594.92 26886.73 26394.53 29096.38 24884.78 31394.27 12695.12 23983.13 16998.40 19791.47 16296.49 15498.12 150
pmmvs490.93 24589.85 25594.17 20693.34 32690.79 14794.60 28796.02 26284.62 31487.45 29095.15 23681.88 20097.45 30587.70 23287.87 27694.27 322
MDA-MVSNet-bldmvs85.00 31882.95 32391.17 31193.13 33183.33 31494.56 28995.00 30984.57 31565.13 37192.65 31970.45 31995.85 34173.57 35477.49 35294.33 318
QAPM93.45 13692.27 16496.98 6396.77 17092.62 7898.39 2698.12 5984.50 31688.27 27697.77 9282.39 19099.81 2885.40 27698.81 8798.51 123
ppachtmachnet_test88.35 29287.29 29191.53 30292.45 34283.57 31393.75 31895.97 26384.28 31785.32 31894.18 28579.00 25296.93 32675.71 34684.99 30994.10 323
pmmvs589.86 27488.87 27792.82 26992.86 33386.23 27496.26 22795.39 28984.24 31887.12 29794.51 26374.27 29797.36 31287.61 23987.57 27894.86 293
CostFormer91.18 23590.70 22092.62 27694.84 27481.76 32794.09 30794.43 32684.15 31992.72 16393.77 29979.43 23998.20 21590.70 17592.18 21997.90 160
FMVSNet587.29 30085.79 30491.78 29794.80 27687.28 24795.49 26395.28 29684.09 32083.85 33491.82 33462.95 35594.17 36078.48 33385.34 30193.91 327
MIMVSNet184.93 31983.05 32190.56 32089.56 36084.84 29895.40 26695.35 29283.91 32180.38 34992.21 33257.23 36293.34 36570.69 36482.75 33593.50 331
RPSCF90.75 25090.86 21190.42 32296.84 16376.29 36095.61 25996.34 24983.89 32291.38 19197.87 8376.45 27998.78 16187.16 24992.23 21696.20 219
MDTV_nov1_ep13_2view70.35 36893.10 33583.88 32393.55 14282.47 18886.25 26098.38 139
无先验95.79 25197.87 10383.87 32499.65 5287.68 23598.89 99
PVSNet_082.17 1985.46 31783.64 32090.92 31395.27 24979.49 34990.55 35695.60 28183.76 32583.00 33989.95 34871.09 31597.97 25182.75 30560.79 37695.31 269
Anonymous2024052186.42 30685.44 30689.34 33190.33 35479.79 34796.73 18495.92 26483.71 32683.25 33691.36 33963.92 35296.01 33778.39 33585.36 30092.22 349
TinyColmap86.82 30385.35 30991.21 30994.91 27082.99 31693.94 31194.02 33783.58 32781.56 34394.68 25762.34 35798.13 22275.78 34587.35 28392.52 345
Anonymous2023120687.09 30186.14 30289.93 32791.22 35080.35 34096.11 23695.35 29283.57 32884.16 32793.02 31673.54 30495.61 34772.16 35886.14 29193.84 328
pmmvs-eth3d86.22 30984.45 31691.53 30288.34 36687.25 24994.47 29195.01 30883.47 32979.51 35489.61 35169.75 32695.71 34483.13 29976.73 35691.64 352
EG-PatchMatch MVS87.02 30285.44 30691.76 29992.67 33785.00 29496.08 23896.45 24583.41 33079.52 35393.49 30957.10 36397.72 28179.34 33190.87 24792.56 344
ADS-MVSNet289.45 27888.59 28092.03 28895.86 21682.26 32390.93 35394.32 33283.23 33191.28 20091.81 33579.01 25095.99 33879.52 32691.39 23497.84 164
ADS-MVSNet89.89 27288.68 27993.53 24395.86 21684.89 29790.93 35395.07 30783.23 33191.28 20091.81 33579.01 25097.85 26979.52 32691.39 23497.84 164
COLMAP_ROBcopyleft87.81 1590.40 26089.28 27193.79 23097.95 10687.13 25596.92 16995.89 26882.83 33386.88 30597.18 12873.77 30299.29 11178.44 33493.62 20094.95 284
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testdata95.46 14598.18 9588.90 20897.66 12582.73 33497.03 4798.07 6690.06 7398.85 15689.67 19298.98 8198.64 116
DP-MVS92.76 16991.51 19196.52 7498.77 5390.99 13797.38 13196.08 26182.38 33589.29 25197.87 8383.77 15699.69 4681.37 31796.69 15098.89 99
MDA-MVSNet_test_wron85.87 31484.23 31890.80 31792.38 34482.57 31893.17 33195.15 30382.15 33667.65 36792.33 33178.20 26195.51 35077.33 33879.74 34494.31 320
YYNet185.87 31484.23 31890.78 31892.38 34482.46 32193.17 33195.14 30482.12 33767.69 36692.36 32878.16 26495.50 35177.31 33979.73 34594.39 316
PatchT88.87 28687.42 29093.22 25594.08 30385.10 29389.51 36294.64 32381.92 33892.36 16888.15 35980.05 22997.01 32472.43 35793.65 19997.54 181
TAPA-MVS90.10 792.30 18591.22 20295.56 13598.33 8089.60 17896.79 17997.65 12781.83 33991.52 18897.23 12687.94 9898.91 15371.31 36198.37 10398.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
旧先验295.94 24581.66 34097.34 3898.82 15892.26 139
新几何197.32 4998.60 6593.59 5597.75 11481.58 34195.75 9697.85 8690.04 7499.67 5086.50 25799.13 7398.69 113
Patchmatch-test89.42 27987.99 28693.70 23595.27 24985.11 29288.98 36494.37 32981.11 34287.10 29993.69 30182.28 19197.50 30174.37 35194.76 18498.48 128
test_040286.46 30584.79 31491.45 30495.02 26285.55 28296.29 22694.89 31580.90 34382.21 34193.97 29368.21 33397.29 31562.98 37088.68 27091.51 355
gg-mvs-nofinetune87.82 29685.61 30594.44 19394.46 29089.27 19891.21 35284.61 37880.88 34489.89 23274.98 37271.50 31297.53 29885.75 27297.21 13896.51 211
JIA-IIPM88.26 29387.04 29791.91 29093.52 31981.42 32989.38 36394.38 32880.84 34590.93 20580.74 37079.22 24397.92 26382.76 30491.62 22796.38 216
Patchmtry88.64 28987.25 29292.78 27194.09 30286.64 26489.82 36195.68 27880.81 34687.63 28992.36 32880.91 21297.03 32278.86 33285.12 30594.67 308
test_f80.57 33179.62 33383.41 34883.38 37367.80 37493.57 32693.72 33980.80 34777.91 35987.63 36233.40 37692.08 36887.14 25079.04 35090.34 363
tpm289.96 27089.21 27292.23 28594.91 27081.25 33093.78 31794.42 32780.62 34891.56 18793.44 31176.44 28097.94 25985.60 27392.08 22397.49 182
pmmvs687.81 29786.19 30192.69 27491.32 34986.30 27297.34 13496.41 24780.59 34984.05 33294.37 27267.37 33797.67 28484.75 28379.51 34794.09 325
Anonymous2023121190.63 25589.42 26894.27 20498.24 8689.19 20298.05 5397.89 9979.95 35088.25 27794.96 24272.56 30898.13 22289.70 19185.14 30495.49 253
cascas91.20 23290.08 24594.58 18994.97 26389.16 20393.65 32397.59 13579.90 35189.40 24692.92 31775.36 29098.36 20392.14 14494.75 18596.23 217
Anonymous2024052991.98 19890.73 21995.73 12698.14 9789.40 18997.99 5897.72 11979.63 35293.54 14397.41 11769.94 32599.56 7591.04 17091.11 24098.22 146
PCF-MVS89.48 1191.56 21289.95 25196.36 9296.60 17892.52 8192.51 34397.26 17979.41 35388.90 25896.56 16984.04 15499.55 7777.01 34397.30 13597.01 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test22298.24 8692.21 9095.33 26997.60 13379.22 35495.25 10897.84 8888.80 8899.15 7198.72 110
UnsupCasMVSNet_bld82.13 32979.46 33490.14 32588.00 36782.47 32090.89 35596.62 23878.94 35575.61 36184.40 36856.63 36496.31 33577.30 34066.77 37291.63 353
N_pmnet78.73 33478.71 33578.79 35292.80 33546.50 38694.14 30543.71 38978.61 35680.83 34591.66 33774.94 29396.36 33467.24 36784.45 31793.50 331
ANet_high63.94 34459.58 34777.02 35461.24 38766.06 37585.66 37187.93 37178.53 35742.94 37971.04 37625.42 38280.71 37952.60 37730.83 38084.28 368
114514_t93.95 11693.06 13196.63 6899.07 3791.61 10897.46 12397.96 9477.99 35893.00 15697.57 10986.14 12899.33 10589.22 20599.15 7198.94 91
DSMNet-mixed86.34 30786.12 30387.00 34289.88 35870.43 36794.93 28190.08 36677.97 35985.42 31792.78 31874.44 29693.96 36174.43 35095.14 17696.62 209
RPMNet88.98 28287.05 29694.77 18194.45 29187.19 25290.23 35898.03 8377.87 36092.40 16587.55 36380.17 22799.51 8668.84 36693.95 19697.60 178
test_vis3_rt72.73 33570.55 33879.27 35180.02 37668.13 37393.92 31374.30 38676.90 36158.99 37573.58 37520.29 38495.37 35284.16 28972.80 36474.31 374
new_pmnet82.89 32781.12 33288.18 33789.63 35980.18 34491.77 34792.57 35076.79 36275.56 36388.23 35861.22 35894.48 35771.43 36082.92 33389.87 364
tpm cat188.36 29187.21 29491.81 29595.13 25880.55 33892.58 34295.70 27474.97 36387.45 29091.96 33378.01 26898.17 21980.39 32288.74 26996.72 208
CMPMVSbinary62.92 2185.62 31684.92 31387.74 33889.14 36273.12 36694.17 30496.80 22273.98 36473.65 36594.93 24466.36 34397.61 29183.95 29491.28 23692.48 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft81.14 2084.42 32282.28 32890.83 31490.06 35684.05 30795.73 25394.04 33673.89 36580.17 35291.53 33859.15 35997.64 28766.92 36889.05 26590.80 361
MVS91.71 20490.44 22895.51 13995.20 25591.59 11096.04 23997.45 15773.44 36687.36 29495.60 21985.42 13599.10 12985.97 26897.46 12595.83 235
pmmvs379.97 33277.50 33787.39 33982.80 37479.38 35192.70 34190.75 36570.69 36778.66 35687.47 36451.34 36893.40 36473.39 35569.65 36889.38 365
APD_test179.31 33377.70 33684.14 34689.11 36369.07 37192.36 34691.50 35969.07 36873.87 36492.63 32139.93 37394.32 35970.54 36580.25 34389.02 366
MVS-HIRNet82.47 32881.21 33186.26 34495.38 23769.21 37088.96 36589.49 36766.28 36980.79 34674.08 37468.48 33197.39 31071.93 35995.47 17192.18 350
DeepMVS_CXcopyleft74.68 35990.84 35364.34 37881.61 38265.34 37067.47 36888.01 36148.60 36980.13 38062.33 37173.68 36279.58 371
PMMVS270.19 33866.92 34180.01 35076.35 37965.67 37686.22 36987.58 37264.83 37162.38 37280.29 37126.78 38188.49 37563.79 36954.07 37785.88 367
FPMVS71.27 33769.85 33975.50 35774.64 38059.03 38191.30 34991.50 35958.80 37257.92 37688.28 35729.98 37985.53 37753.43 37682.84 33481.95 370
testf169.31 33966.76 34276.94 35578.61 37761.93 37988.27 36686.11 37655.62 37359.69 37385.31 36620.19 38589.32 37157.62 37269.44 36979.58 371
APD_test269.31 33966.76 34276.94 35578.61 37761.93 37988.27 36686.11 37655.62 37359.69 37385.31 36620.19 38589.32 37157.62 37269.44 36979.58 371
LCM-MVSNet72.55 33669.39 34082.03 34970.81 38565.42 37790.12 36094.36 33155.02 37565.88 36981.72 36924.16 38389.96 37074.32 35268.10 37190.71 362
Gipumacopyleft67.86 34265.41 34475.18 35892.66 33873.45 36566.50 37794.52 32553.33 37657.80 37766.07 37730.81 37789.20 37348.15 37878.88 35162.90 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 34555.40 34868.12 36151.00 38848.64 38478.86 37487.10 37446.77 37735.84 38374.28 3738.76 38786.34 37642.07 37973.91 36169.38 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 34652.56 35055.43 36374.43 38147.13 38583.63 37376.30 38342.23 37842.59 38062.22 37928.57 38074.40 38131.53 38131.51 37944.78 378
EMVS52.08 34851.31 35154.39 36472.62 38345.39 38783.84 37275.51 38541.13 37940.77 38159.65 38030.08 37873.60 38228.31 38229.90 38144.18 379
MVEpermissive50.73 2353.25 34748.81 35266.58 36265.34 38657.50 38272.49 37670.94 38740.15 38039.28 38263.51 3786.89 38973.48 38338.29 38042.38 37868.76 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method66.11 34364.89 34569.79 36072.62 38335.23 39065.19 37892.83 34820.35 38165.20 37088.08 36043.14 37282.70 37873.12 35663.46 37391.45 358
tmp_tt51.94 34953.82 34946.29 36533.73 38945.30 38878.32 37567.24 38818.02 38250.93 37887.05 36552.99 36653.11 38470.76 36325.29 38240.46 380
wuyk23d25.11 35024.57 35426.74 36673.98 38239.89 38957.88 3799.80 39012.27 38310.39 3846.97 3867.03 38836.44 38525.43 38317.39 3833.89 383
testmvs13.36 35216.33 3554.48 3685.04 3902.26 39293.18 3303.28 3912.70 3848.24 38521.66 3822.29 3912.19 3867.58 3842.96 3849.00 382
test12313.04 35315.66 3565.18 3674.51 3913.45 39192.50 3441.81 3922.50 3857.58 38620.15 3833.67 3902.18 3877.13 3851.07 3859.90 381
EGC-MVSNET68.77 34163.01 34686.07 34592.49 34082.24 32493.96 31090.96 3630.71 3862.62 38790.89 34153.66 36593.46 36357.25 37484.55 31582.51 369
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.24 35130.99 3530.00 3690.00 3920.00 3930.00 38097.63 1310.00 3870.00 38896.88 14584.38 1480.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.39 3559.85 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38788.65 900.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.06 35410.74 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38896.69 1540.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9799.86 897.68 699.67 699.77 1
No_MVS98.86 198.67 5896.94 197.93 9799.86 897.68 699.67 699.77 1
eth-test20.00 392
eth-test0.00 392
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5696.04 299.24 11495.36 7999.59 1799.56 26
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2999.86 897.52 1299.67 699.75 5
GSMVS98.45 131
test_part299.28 2595.74 898.10 21
sam_mvs182.76 18098.45 131
sam_mvs81.94 199
ambc86.56 34383.60 37270.00 36985.69 37094.97 31180.60 34888.45 35537.42 37496.84 32982.69 30675.44 35892.86 339
MTGPAbinary98.08 66
test_post192.81 34016.58 38580.53 21997.68 28386.20 261
test_post17.58 38481.76 20198.08 233
patchmatchnet-post90.45 34482.65 18498.10 229
GG-mvs-BLEND93.62 23893.69 31489.20 20092.39 34583.33 38087.98 28489.84 35071.00 31696.87 32882.08 31095.40 17394.80 300
MTMP97.86 7182.03 381
test9_res94.81 9399.38 5199.45 42
agg_prior293.94 11199.38 5199.50 37
agg_prior98.67 5893.79 5198.00 9095.68 9999.57 74
test_prior493.66 5496.42 211
test_prior97.23 5498.67 5892.99 7098.00 9099.41 9999.29 57
新几何295.79 251
旧先验198.38 7893.38 6097.75 11498.09 6592.30 3999.01 8099.16 67
原ACMM295.67 255
testdata299.67 5085.96 269
segment_acmp92.89 25
test1297.65 4098.46 7094.26 3697.66 12595.52 10690.89 6499.46 9399.25 6399.22 64
plane_prior796.21 20189.98 168
plane_prior696.10 21190.00 16481.32 207
plane_prior597.51 14498.60 18293.02 13292.23 21695.86 231
plane_prior496.64 158
plane_prior196.14 209
n20.00 393
nn0.00 393
door-mid91.06 362
lessismore_v090.45 32191.96 34779.09 35487.19 37380.32 35094.39 27066.31 34597.55 29584.00 29376.84 35494.70 307
test1197.88 101
door91.13 361
HQP5-MVS89.33 193
BP-MVS92.13 145
HQP4-MVS90.14 21698.50 19095.78 240
HQP3-MVS97.39 16792.10 221
HQP2-MVS80.95 210
NP-MVS95.99 21589.81 17395.87 200
ACMMP++_ref90.30 254
ACMMP++91.02 242
Test By Simon88.73 89