This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
EPNet91.79 7891.02 8894.10 5890.10 30985.25 7396.03 5392.05 28092.83 187.39 15495.78 9679.39 12299.01 7088.13 11197.48 8098.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7196.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3498.40 5398.62 16
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8896.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
UA-Net92.83 6592.54 6893.68 7096.10 10384.71 7895.66 7196.39 10191.92 493.22 5396.49 6983.16 7898.87 8884.47 15395.47 11197.45 96
CANet93.54 5193.20 5794.55 4495.65 12185.73 6794.94 11196.69 8291.89 590.69 10795.88 9381.99 9799.54 1693.14 3097.95 6998.39 36
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13696.70 8091.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7898.16 55
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13696.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7898.15 56
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 12896.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 12895.83 14291.27 1293.60 4696.71 5685.75 5098.86 9192.87 3396.65 9497.96 71
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10696.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15696.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
EI-MVSNet-Vis-set93.01 6392.92 6393.29 7495.01 14183.51 11494.48 14095.77 14690.87 1592.52 7496.67 6084.50 6699.00 7591.99 5694.44 13197.36 97
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12288.73 497.07 1396.77 7190.84 1684.02 23796.62 6375.95 15799.34 3387.77 11497.68 7698.59 18
HQP_MVS90.60 10590.19 9991.82 14394.70 16082.73 13795.85 6196.22 11290.81 1786.91 16294.86 12474.23 18098.12 13788.15 10989.99 18594.63 196
plane_prior295.85 6190.81 17
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
DELS-MVS93.43 5493.25 5493.97 5995.42 12785.04 7493.06 22197.13 3990.74 2091.84 8995.09 11786.32 4399.21 4791.22 7598.45 5097.65 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETV-MVS92.74 6792.66 6692.97 8895.20 13684.04 10095.07 10396.51 9490.73 2192.96 6091.19 25284.06 7198.34 12591.72 6796.54 9796.54 130
EI-MVSNet-UG-set92.74 6792.62 6793.12 8094.86 15283.20 12194.40 14895.74 14990.71 2292.05 8496.60 6484.00 7298.99 7791.55 6993.63 13997.17 105
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6197.16 3785.02 6099.49 2391.99 5698.56 4798.47 28
X-MVStestdata88.31 16386.13 20594.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6123.41 36285.02 6099.49 2391.99 5698.56 4798.47 28
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23794.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7690.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
plane_prior382.75 13490.26 3086.91 162
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 21094.00 18097.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6497.33 2290.03 3393.58 4796.96 4684.87 6297.76 16492.19 4998.66 4096.76 121
canonicalmvs93.27 5892.75 6594.85 2795.70 12087.66 1196.33 3596.41 9990.00 3494.09 3394.60 13682.33 8898.62 10692.40 4292.86 15898.27 47
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13183.78 10696.14 4695.98 12889.89 3590.45 10996.58 6575.09 16998.31 12984.75 15096.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet88.84 15087.95 15491.49 15492.68 23083.01 12894.92 11396.31 10489.88 3685.53 19093.85 16676.63 15196.96 23381.91 19179.87 31194.50 207
hse-mvs390.80 9590.15 10192.75 9796.01 10782.66 14195.43 7995.53 16589.80 3793.08 5895.64 10175.77 15899.00 7592.07 5378.05 32096.60 126
hse-mvs289.88 12189.34 11991.51 15394.83 15481.12 17893.94 18393.91 24289.80 3793.08 5893.60 17575.77 15897.66 17192.07 5377.07 32795.74 160
UniMVSNet_NR-MVSNet89.92 11989.29 12191.81 14593.39 20983.72 10794.43 14697.12 4089.80 3786.46 16993.32 18083.16 7897.23 21484.92 14681.02 29394.49 209
alignmvs93.08 6292.50 6994.81 3295.62 12387.61 1295.99 5496.07 12289.77 4094.12 3294.87 12380.56 10698.66 10292.42 4193.10 15398.15 56
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14893.93 23989.77 4094.21 2995.59 10387.35 3098.61 10792.72 3796.15 10397.83 81
IS-MVSNet91.43 8591.09 8792.46 11195.87 11581.38 17196.95 1493.69 24889.72 4289.50 11995.98 8978.57 13297.77 16383.02 17096.50 9998.22 52
plane_prior82.73 13795.21 9489.66 4389.88 190
CS-MVS93.01 6393.28 5392.21 12594.70 16081.67 16196.60 2996.65 8789.58 4492.34 7795.10 11683.39 7798.15 13693.11 3197.99 6596.82 120
casdiffmvs92.51 7092.43 7092.74 9894.41 17481.98 15494.54 13896.23 11189.57 4591.96 8696.17 8482.58 8498.01 15190.95 8195.45 11398.23 51
DU-MVS89.34 13888.50 13891.85 14293.04 22083.72 10794.47 14396.59 9089.50 4686.46 16993.29 18377.25 14397.23 21484.92 14681.02 29394.59 200
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9495.47 16989.44 4795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
save fliter97.85 4885.63 6895.21 9496.82 6689.44 47
CANet_DTU90.26 11089.41 11792.81 9393.46 20883.01 12893.48 20094.47 22189.43 4987.76 14694.23 14970.54 23299.03 6484.97 14596.39 10196.38 132
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7396.89 5889.40 5092.81 6496.97 4585.37 5599.24 4490.87 8398.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UGNet89.95 11788.95 12992.95 8994.51 16883.31 11995.70 6895.23 18689.37 5187.58 14893.94 15964.00 29298.78 9983.92 15996.31 10296.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.27 10990.18 10090.53 18893.71 20079.85 21495.77 6597.59 289.31 5286.27 17594.67 13381.93 9897.01 23184.26 15588.09 22094.71 194
UniMVSNet (Re)89.80 12289.07 12692.01 12993.60 20484.52 8494.78 12397.47 889.26 5386.44 17292.32 21482.10 9397.39 20284.81 14980.84 29794.12 221
baseline92.39 7392.29 7292.69 10294.46 17181.77 15894.14 16596.27 10689.22 5491.88 8796.00 8882.35 8797.99 15391.05 7795.27 11898.30 41
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16586.37 4397.18 797.02 4689.20 5584.31 23296.66 6173.74 19299.17 5086.74 12997.96 6897.79 83
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11996.44 9689.19 5694.08 3495.90 9277.85 14298.17 13588.90 10193.38 14798.13 58
FIs90.51 10690.35 9690.99 17793.99 19080.98 18195.73 6697.54 389.15 5786.72 16694.68 13281.83 9997.24 21385.18 14388.31 21694.76 193
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7697.51 489.13 5897.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NR-MVSNet88.58 15887.47 16491.93 13693.04 22084.16 9794.77 12496.25 10989.05 5980.04 29693.29 18379.02 12597.05 22881.71 19880.05 30894.59 200
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 6091.98 8597.19 3485.43 5499.56 792.06 5598.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 6196.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
DeepC-MVS88.79 393.31 5692.99 6194.26 5596.07 10585.83 6494.89 11596.99 4789.02 6289.56 11797.37 2382.51 8599.38 2992.20 4898.30 5797.57 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPM-MVS90.12 11189.56 11291.82 14393.14 21583.90 10294.16 16495.74 14988.96 6387.86 14195.43 10672.48 20897.91 15988.10 11290.18 18493.65 250
HQP-NCC94.17 18094.39 15088.81 6485.43 200
ACMP_Plane94.17 18094.39 15088.81 6485.43 200
HQP-MVS89.80 12289.28 12291.34 16094.17 18081.56 16294.39 15096.04 12688.81 6485.43 20093.97 15873.83 19097.96 15587.11 12689.77 19294.50 207
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21497.24 3088.76 6791.60 9695.85 9486.07 4798.66 10291.91 6198.16 6098.03 67
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6891.83 9197.17 3683.96 7399.55 1291.44 7398.64 4398.43 34
VPNet88.20 16687.47 16490.39 19693.56 20579.46 21994.04 17695.54 16488.67 6986.96 15994.58 13869.33 24697.15 21884.05 15880.53 30394.56 203
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 7093.65 4397.21 3286.10 4599.49 2392.35 4498.77 2498.30 41
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 7093.53 5097.26 2985.04 5999.54 1692.35 4498.78 2198.50 22
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7293.58 4797.27 2785.22 5699.54 1692.21 4798.74 2998.56 19
WR-MVS88.38 16087.67 16090.52 19093.30 21280.18 19993.26 21195.96 13088.57 7385.47 19692.81 20176.12 15396.91 23781.24 20382.29 27294.47 212
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7492.73 6897.23 3085.20 5799.32 3792.15 5098.83 1798.25 50
EIA-MVS91.95 7691.94 7491.98 13295.16 13780.01 20995.36 8096.73 7688.44 7589.34 12192.16 21983.82 7598.45 11889.35 9697.06 8697.48 94
CP-MVSNet87.63 18487.26 17188.74 25293.12 21676.59 27995.29 8896.58 9188.43 7683.49 25292.98 19475.28 16795.83 29078.97 23681.15 28993.79 240
VDD-MVS90.74 9789.92 10993.20 7796.27 9683.02 12795.73 6693.86 24388.42 7792.53 7396.84 5062.09 30098.64 10490.95 8192.62 16197.93 74
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 4096.84 6288.33 7894.19 3097.43 1884.24 6999.01 7093.26 2797.98 6798.52 20
ACMMPcopyleft93.24 5992.88 6494.30 5498.09 4085.33 7296.86 2297.45 1188.33 7890.15 11397.03 4481.44 10099.51 2190.85 8495.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
nrg03091.08 9390.39 9593.17 7993.07 21886.91 2096.41 3396.26 10788.30 8088.37 13494.85 12682.19 9297.64 17591.09 7682.95 26494.96 183
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6997.34 1988.28 8195.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8293.15 5597.04 4286.17 4499.62 192.40 4298.81 1898.52 20
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3197.19 3588.24 8293.26 5196.83 5185.48 5399.59 491.43 7498.40 5398.30 41
PS-CasMVS87.32 19886.88 17688.63 25592.99 22476.33 28495.33 8296.61 8988.22 8483.30 25793.07 19273.03 20295.79 29378.36 24181.00 29593.75 246
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8594.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10984.43 9293.08 21996.09 12088.20 8591.12 10495.72 9981.33 10297.76 16491.74 6697.37 8296.75 122
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8796.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PEN-MVS86.80 21686.27 20288.40 25992.32 23675.71 28995.18 9796.38 10287.97 8882.82 26193.15 18873.39 19895.92 28576.15 26479.03 31893.59 251
testdata192.15 24887.94 89
VPA-MVSNet89.62 12488.96 12891.60 15193.86 19482.89 13295.46 7897.33 2287.91 9088.43 13393.31 18174.17 18397.40 19987.32 12282.86 26994.52 205
WR-MVS_H87.80 17687.37 16689.10 24293.23 21378.12 25095.61 7497.30 2687.90 9183.72 24492.01 23079.65 12196.01 28276.36 26080.54 30193.16 270
CLD-MVS89.47 13088.90 13191.18 16594.22 17982.07 15292.13 24996.09 12087.90 9185.37 20692.45 21074.38 17897.56 18087.15 12490.43 18093.93 231
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
abl_693.18 6193.05 5993.57 7397.52 6084.27 9595.53 7796.67 8387.85 9393.20 5497.22 3180.35 10799.18 4991.91 6197.21 8397.26 100
MG-MVS91.77 7991.70 7892.00 13197.08 7580.03 20893.60 19795.18 18987.85 9390.89 10696.47 7082.06 9598.36 12285.07 14497.04 8797.62 87
LCM-MVSNet-Re88.30 16488.32 14588.27 26394.71 15972.41 31893.15 21590.98 30987.77 9579.25 30491.96 23178.35 13595.75 29483.04 16995.62 10796.65 125
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9695.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
Effi-MVS+-dtu88.65 15588.35 14289.54 23193.33 21076.39 28294.47 14394.36 22487.70 9785.43 20089.56 29273.45 19597.26 21185.57 14191.28 17194.97 180
mvs-test189.45 13189.14 12490.38 19893.33 21077.63 26594.95 11094.36 22487.70 9787.10 15892.81 20173.45 19598.03 15085.57 14193.04 15495.48 166
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16696.88 5987.67 9992.63 7096.39 7286.62 3998.87 8891.50 7198.67 3798.11 61
test_prior294.12 16687.67 9992.63 7096.39 7286.62 3991.50 7198.67 37
Vis-MVSNet (Re-imp)89.59 12689.44 11590.03 21295.74 11775.85 28795.61 7490.80 31587.66 10187.83 14395.40 10776.79 14796.46 26378.37 24096.73 9197.80 82
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3297.34 1987.51 10293.65 4397.21 3286.10 4599.49 2391.68 6898.77 2498.30 41
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7287.46 10393.75 4097.43 1884.24 6999.01 7092.73 3597.80 7397.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7287.46 10393.75 4097.43 1882.94 8092.73 3597.80 7397.88 77
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8697.78 187.45 10593.26 5197.33 2484.62 6599.51 2190.75 8598.57 4698.32 40
DTE-MVSNet86.11 23385.48 22787.98 27191.65 25974.92 29294.93 11295.75 14887.36 10682.26 26693.04 19372.85 20395.82 29174.04 28077.46 32493.20 268
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10794.85 2497.04 4286.99 3799.52 2091.54 7098.33 5698.71 12
thres100view90087.63 18486.71 18390.38 19896.12 10078.55 23895.03 10791.58 29387.15 10888.06 13892.29 21668.91 25498.10 13970.13 30291.10 17294.48 210
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10897.12 4087.13 10992.51 7596.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
Effi-MVS+91.59 8491.11 8593.01 8694.35 17883.39 11894.60 13395.10 19387.10 11090.57 10893.10 19181.43 10198.07 14789.29 9794.48 12997.59 90
thres600view787.65 18186.67 18590.59 18596.08 10478.72 23494.88 11691.58 29387.06 11188.08 13792.30 21568.91 25498.10 13970.05 30591.10 17294.96 183
diffmvs91.37 8791.23 8391.77 14693.09 21780.27 19892.36 24195.52 16687.03 11291.40 10094.93 12080.08 11197.44 19092.13 5294.56 12797.61 88
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11393.92 3797.47 1683.88 7498.96 8392.71 3897.87 7198.26 49
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19995.93 13286.95 11489.51 11896.13 8678.50 13398.35 12485.84 13792.90 15796.83 119
tfpn200view987.58 18886.64 18690.41 19595.99 10978.64 23694.58 13491.98 28486.94 11588.09 13591.77 23569.18 25198.10 13970.13 30291.10 17294.48 210
thres40087.62 18686.64 18690.57 18695.99 10978.64 23694.58 13491.98 28486.94 11588.09 13591.77 23569.18 25198.10 13970.13 30291.10 17294.96 183
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11792.62 7296.80 5584.85 6399.17 5092.43 4098.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LFMVS90.08 11289.13 12592.95 8996.71 8282.32 14996.08 5089.91 33086.79 11892.15 8396.81 5362.60 29798.34 12587.18 12393.90 13598.19 53
baseline188.10 16887.28 16990.57 18694.96 14580.07 20494.27 15991.29 30286.74 11987.41 15194.00 15676.77 14896.20 27480.77 21179.31 31695.44 168
LPG-MVS_test89.45 13188.90 13191.12 16694.47 16981.49 16695.30 8696.14 11786.73 12085.45 19795.16 11369.89 23898.10 13987.70 11589.23 20193.77 244
LGP-MVS_train91.12 16694.47 16981.49 16696.14 11786.73 12085.45 19795.16 11369.89 23898.10 13987.70 11589.23 20193.77 244
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12295.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
EPNet_dtu86.49 22985.94 21588.14 26890.24 30772.82 31094.11 16892.20 27686.66 12379.42 30392.36 21373.52 19395.81 29271.26 29293.66 13895.80 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMP84.23 889.01 14688.35 14290.99 17794.73 15781.27 17295.07 10395.89 13886.48 12483.67 24694.30 14469.33 24697.99 15387.10 12888.55 20893.72 248
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_Test91.31 8891.11 8591.93 13694.37 17580.14 20193.46 20295.80 14486.46 12591.35 10193.77 17082.21 9198.09 14587.57 11794.95 12097.55 93
test_part189.00 14787.99 15292.04 12895.94 11283.81 10596.14 4696.05 12586.44 12685.69 18493.73 17371.57 21497.66 17185.80 13880.54 30194.66 195
thres20087.21 20586.24 20390.12 20895.36 12878.53 23993.26 21192.10 27886.42 12788.00 14091.11 25869.24 25098.00 15269.58 30691.04 17793.83 239
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16894.37 15596.24 11086.39 12887.41 15194.80 12882.06 9598.48 11382.80 17695.37 11497.61 88
PS-MVSNAJ91.18 9190.92 8991.96 13495.26 13482.60 14492.09 25195.70 15186.27 12991.84 8992.46 20979.70 11798.99 7789.08 9995.86 10594.29 215
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 12097.17 3886.26 13092.83 6397.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PS-MVSNAJss89.97 11689.62 11191.02 17491.90 24880.85 18695.26 9195.98 12886.26 13086.21 17694.29 14579.70 11797.65 17388.87 10288.10 21894.57 202
EPP-MVSNet91.70 8291.56 7992.13 12795.88 11380.50 19597.33 395.25 18586.15 13289.76 11695.60 10283.42 7698.32 12887.37 12193.25 15097.56 92
XVG-OURS89.40 13688.70 13491.52 15294.06 18381.46 16891.27 26796.07 12286.14 13388.89 12895.77 9768.73 25797.26 21187.39 12089.96 18795.83 156
9.1494.47 1797.79 5296.08 5097.44 1286.13 13495.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
xiu_mvs_v2_base91.13 9290.89 9191.86 14094.97 14482.42 14592.24 24595.64 15886.11 13591.74 9493.14 18979.67 12098.89 8789.06 10095.46 11294.28 216
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13697.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+-dtu87.44 19486.72 18289.63 22992.04 24377.68 26494.03 17793.94 23885.81 13782.42 26491.32 24970.33 23497.06 22780.33 22190.23 18394.14 220
XVG-OURS-SEG-HR89.95 11789.45 11491.47 15694.00 18981.21 17691.87 25496.06 12485.78 13888.55 13095.73 9874.67 17697.27 20988.71 10489.64 19495.91 151
HPM-MVS_fast93.40 5593.22 5593.94 6198.36 2584.83 7697.15 896.80 6885.77 13992.47 7697.13 3882.38 8699.07 5890.51 8798.40 5397.92 75
EI-MVSNet89.10 14188.86 13389.80 22391.84 25078.30 24693.70 19495.01 19685.73 14087.15 15595.28 10879.87 11497.21 21683.81 16187.36 22993.88 234
IterMVS-LS88.36 16287.91 15689.70 22793.80 19778.29 24793.73 19195.08 19585.73 14084.75 21591.90 23379.88 11396.92 23683.83 16082.51 27093.89 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14295.05 2397.18 3587.31 3199.07 5891.90 6498.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_yl90.69 9990.02 10792.71 9995.72 11882.41 14794.11 16895.12 19185.63 14391.49 9794.70 13074.75 17398.42 12086.13 13592.53 16297.31 98
DCV-MVSNet90.69 9990.02 10792.71 9995.72 11882.41 14794.11 16895.12 19185.63 14391.49 9794.70 13074.75 17398.42 12086.13 13592.53 16297.31 98
K. test v381.59 28780.15 28985.91 30889.89 31569.42 33792.57 23587.71 34385.56 14573.44 33689.71 28955.58 33095.52 30077.17 25469.76 33892.78 284
SixPastTwentyTwo83.91 26782.90 26786.92 29590.99 28170.67 33093.48 20091.99 28385.54 14677.62 31392.11 22460.59 31396.87 23976.05 26577.75 32193.20 268
ITE_SJBPF88.24 26591.88 24977.05 27492.92 25985.54 14680.13 29493.30 18257.29 32796.20 27472.46 28984.71 24791.49 309
RRT_test8_iter0586.90 21286.36 19788.52 25793.00 22373.27 30694.32 15795.96 13085.50 14884.26 23392.86 19660.76 31297.70 16988.32 10882.29 27294.60 199
RRT_MVS88.86 14987.68 15992.39 11692.02 24586.09 5394.38 15494.94 19985.45 14987.14 15793.84 16765.88 28497.11 22288.73 10386.77 23693.98 230
BH-RMVSNet88.37 16187.48 16391.02 17495.28 13279.45 22092.89 22693.07 25785.45 14986.91 16294.84 12770.35 23397.76 16473.97 28194.59 12695.85 154
IterMVS-SCA-FT85.45 24384.53 24888.18 26791.71 25576.87 27690.19 28692.65 26785.40 15181.44 27590.54 27166.79 27295.00 31381.04 20581.05 29192.66 286
GA-MVS86.61 22285.27 23290.66 18391.33 27078.71 23590.40 28093.81 24685.34 15285.12 21089.57 29161.25 30797.11 22280.99 20889.59 19596.15 138
ACMM84.12 989.14 14088.48 14191.12 16694.65 16481.22 17595.31 8396.12 11985.31 15385.92 18094.34 14170.19 23698.06 14885.65 13988.86 20694.08 225
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bset_n11_16_dypcd86.83 21485.55 22490.65 18488.22 33081.70 15988.88 30690.42 31885.26 15485.49 19490.69 26967.11 26797.02 23089.51 9584.39 24993.23 266
xiu_mvs_v1_base_debu90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
xiu_mvs_v1_base90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
xiu_mvs_v1_base_debi90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15893.56 4996.28 7685.60 5199.31 3892.45 3998.79 1998.12 59
mvs_tets88.06 17187.28 16990.38 19890.94 28579.88 21295.22 9395.66 15585.10 15984.21 23593.94 15963.53 29497.40 19988.50 10688.40 21493.87 235
tttt051788.61 15687.78 15791.11 16994.96 14577.81 25995.35 8189.69 33485.09 16088.05 13994.59 13766.93 26998.48 11383.27 16792.13 16797.03 111
XVG-ACMP-BASELINE86.00 23484.84 24289.45 23591.20 27278.00 25291.70 26095.55 16285.05 16182.97 25992.25 21854.49 33697.48 18582.93 17187.45 22892.89 280
jajsoiax88.24 16587.50 16290.48 19390.89 28980.14 20195.31 8395.65 15784.97 16284.24 23494.02 15465.31 28697.42 19288.56 10588.52 21093.89 232
v2v48287.84 17487.06 17390.17 20490.99 28179.23 23194.00 18095.13 19084.87 16385.53 19092.07 22874.45 17797.45 18884.71 15181.75 28193.85 238
v14887.04 21086.32 20089.21 23890.94 28577.26 27193.71 19394.43 22284.84 16484.36 22890.80 26676.04 15597.05 22882.12 18679.60 31393.31 261
v887.50 19386.71 18389.89 21791.37 26779.40 22194.50 13995.38 17984.81 16583.60 24991.33 24776.05 15497.42 19282.84 17480.51 30592.84 282
BH-untuned88.60 15788.13 15090.01 21495.24 13578.50 24193.29 20994.15 23384.75 16684.46 22293.40 17775.76 16097.40 19977.59 24994.52 12894.12 221
OurMVSNet-221017-085.35 24684.64 24687.49 28190.77 29372.59 31594.01 17994.40 22384.72 16779.62 30293.17 18761.91 30296.72 24281.99 18981.16 28793.16 270
MVSFormer91.68 8391.30 8192.80 9493.86 19483.88 10395.96 5795.90 13684.66 16891.76 9294.91 12177.92 13997.30 20589.64 9397.11 8497.24 101
test_djsdf89.03 14488.64 13590.21 20390.74 29579.28 22895.96 5795.90 13684.66 16885.33 20892.94 19574.02 18697.30 20589.64 9388.53 20994.05 227
MVSTER88.84 15088.29 14690.51 19192.95 22580.44 19693.73 19195.01 19684.66 16887.15 15593.12 19072.79 20497.21 21687.86 11387.36 22993.87 235
v7n86.81 21585.76 22289.95 21690.72 29679.25 23095.07 10395.92 13384.45 17182.29 26590.86 26372.60 20797.53 18279.42 23380.52 30493.08 274
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11397.21 3484.33 17293.89 3897.09 3987.20 3399.29 4191.90 6498.44 5198.12 59
ET-MVSNet_ETH3D87.51 19185.91 21692.32 11993.70 20283.93 10192.33 24290.94 31184.16 17372.09 34092.52 20869.90 23795.85 28989.20 9888.36 21597.17 105
CSCG93.23 6093.05 5993.76 6998.04 4284.07 9896.22 4297.37 1884.15 17490.05 11495.66 10087.77 2399.15 5389.91 9098.27 5898.07 63
Baseline_NR-MVSNet87.07 20986.63 18888.40 25991.44 26177.87 25794.23 16292.57 26884.12 17585.74 18392.08 22677.25 14396.04 27982.29 18479.94 30991.30 313
UniMVSNet_ETH3D87.53 19086.37 19691.00 17692.44 23378.96 23394.74 12595.61 15984.07 17685.36 20794.52 13959.78 31997.34 20482.93 17187.88 22396.71 124
thisisatest053088.67 15487.61 16191.86 14094.87 15180.07 20494.63 13289.90 33184.00 17788.46 13293.78 16966.88 27198.46 11583.30 16692.65 16097.06 109
ab-mvs89.41 13488.35 14292.60 10495.15 13982.65 14292.20 24795.60 16083.97 17888.55 13093.70 17474.16 18498.21 13482.46 18189.37 19796.94 115
GeoE90.05 11389.43 11691.90 13995.16 13780.37 19795.80 6394.65 21883.90 17987.55 15094.75 12978.18 13797.62 17781.28 20293.63 13997.71 85
FMVSNet387.40 19686.11 20791.30 16193.79 19983.64 11094.20 16394.81 21283.89 18084.37 22591.87 23468.45 26096.56 25578.23 24385.36 24293.70 249
pm-mvs186.61 22285.54 22589.82 22091.44 26180.18 19995.28 9094.85 20883.84 18181.66 27392.62 20672.45 21096.48 26079.67 22878.06 31992.82 283
v1087.25 20186.38 19589.85 21891.19 27379.50 21894.48 14095.45 17383.79 18283.62 24891.19 25275.13 16897.42 19281.94 19080.60 29992.63 287
testgi80.94 29780.20 28883.18 32487.96 33466.29 34591.28 26690.70 31783.70 18378.12 30892.84 19851.37 34490.82 34763.34 33582.46 27192.43 292
V4287.68 17986.86 17790.15 20690.58 30080.14 20194.24 16195.28 18483.66 18485.67 18591.33 24774.73 17597.41 19784.43 15481.83 27992.89 280
ZD-MVS98.15 3586.62 3597.07 4483.63 18594.19 3096.91 4887.57 2999.26 4391.99 5698.44 51
GBi-Net87.26 19985.98 21291.08 17094.01 18683.10 12395.14 10094.94 19983.57 18684.37 22591.64 23866.59 27696.34 27078.23 24385.36 24293.79 240
test187.26 19985.98 21291.08 17094.01 18683.10 12395.14 10094.94 19983.57 18684.37 22591.64 23866.59 27696.34 27078.23 24385.36 24293.79 240
FMVSNet287.19 20685.82 21891.30 16194.01 18683.67 10994.79 12294.94 19983.57 18683.88 24092.05 22966.59 27696.51 25877.56 25085.01 24593.73 247
SCA86.32 23185.18 23389.73 22692.15 23876.60 27891.12 27091.69 29183.53 18985.50 19388.81 29966.79 27296.48 26076.65 25890.35 18296.12 141
PVSNet_BlendedMVS89.98 11589.70 11090.82 18196.12 10081.25 17393.92 18496.83 6483.49 19089.10 12492.26 21781.04 10498.85 9486.72 13187.86 22492.35 296
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 23196.56 9383.44 19191.68 9595.04 11886.60 4298.99 7785.60 14097.92 7096.93 116
test-LLR85.87 23785.41 22887.25 28790.95 28371.67 32189.55 29389.88 33283.41 19284.54 21987.95 31367.25 26495.11 31081.82 19393.37 14894.97 180
test0.0.03 182.41 27881.69 27484.59 31788.23 32972.89 30990.24 28387.83 34283.41 19279.86 29889.78 28867.25 26488.99 35065.18 32983.42 26291.90 303
v114487.61 18786.79 18190.06 21191.01 28079.34 22493.95 18295.42 17883.36 19485.66 18691.31 25074.98 17197.42 19283.37 16582.06 27593.42 259
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11796.66 8483.29 19589.27 12294.46 14080.29 10999.17 5087.57 11795.37 11496.05 148
IB-MVS80.51 1585.24 25083.26 26291.19 16492.13 24079.86 21391.75 25791.29 30283.28 19680.66 28588.49 30561.28 30698.46 11580.99 20879.46 31495.25 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS84.88 25683.98 25487.60 27791.44 26176.03 28690.18 28792.41 27083.24 19781.06 28190.42 27566.60 27594.28 32079.46 22980.98 29692.48 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+89.41 13488.64 13591.71 14894.74 15680.81 18793.54 19895.10 19383.11 19886.82 16590.67 27079.74 11697.75 16780.51 21893.55 14196.57 128
WTY-MVS89.60 12588.92 13091.67 14995.47 12681.15 17792.38 24094.78 21483.11 19889.06 12694.32 14378.67 13096.61 25081.57 19990.89 17897.24 101
LTVRE_ROB82.13 1386.26 23284.90 24090.34 20194.44 17381.50 16492.31 24494.89 20583.03 20079.63 30192.67 20469.69 24197.79 16271.20 29386.26 23791.72 305
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS87.78 17786.54 19291.48 15594.82 15581.05 17993.91 18793.93 23983.00 20186.93 16093.53 17669.50 24497.67 17086.14 13477.12 32695.73 161
UnsupCasMVSNet_eth80.07 30278.27 30685.46 31085.24 34672.63 31488.45 31394.87 20782.99 20271.64 34388.07 31256.34 32991.75 34473.48 28563.36 34992.01 302
XXY-MVS87.65 18186.85 17890.03 21292.14 23980.60 19393.76 19095.23 18682.94 20384.60 21794.02 15474.27 17995.49 30481.04 20583.68 25794.01 229
mvs_anonymous89.37 13789.32 12089.51 23493.47 20774.22 29891.65 26294.83 21082.91 20485.45 19793.79 16881.23 10396.36 26986.47 13394.09 13397.94 72
BH-w/o87.57 18987.05 17489.12 24194.90 15077.90 25592.41 23893.51 25082.89 20583.70 24591.34 24675.75 16197.07 22675.49 26893.49 14392.39 294
AdaColmapbinary89.89 12089.07 12692.37 11797.41 6383.03 12694.42 14795.92 13382.81 20686.34 17494.65 13473.89 18899.02 6880.69 21395.51 10995.05 178
TransMVSNet (Re)84.43 26283.06 26588.54 25691.72 25478.44 24295.18 9792.82 26282.73 20779.67 30092.12 22273.49 19495.96 28471.10 29768.73 34491.21 316
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 13196.66 8482.69 20890.03 11595.82 9582.30 8999.03 6484.57 15296.48 10096.91 117
ETH3 D test640093.64 4993.22 5594.92 2097.79 5286.84 2295.31 8397.26 2982.67 20993.81 3996.29 7587.29 3299.27 4289.87 9198.67 3798.65 15
v119287.25 20186.33 19990.00 21590.76 29479.04 23293.80 18895.48 16882.57 21085.48 19591.18 25473.38 19997.42 19282.30 18382.06 27593.53 253
API-MVS90.66 10190.07 10392.45 11296.36 9484.57 8196.06 5295.22 18882.39 21189.13 12394.27 14880.32 10898.46 11580.16 22396.71 9294.33 214
tfpnnormal84.72 25983.23 26389.20 23992.79 22880.05 20694.48 14095.81 14382.38 21281.08 28091.21 25169.01 25396.95 23461.69 34080.59 30090.58 327
MAR-MVS90.30 10889.37 11893.07 8496.61 8584.48 8795.68 6995.67 15382.36 21387.85 14292.85 19776.63 15198.80 9880.01 22496.68 9395.91 151
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline286.50 22785.39 22989.84 21991.12 27776.70 27791.88 25388.58 33982.35 21479.95 29790.95 26273.42 19797.63 17680.27 22289.95 18895.19 175
TAMVS89.21 13988.29 14691.96 13493.71 20082.62 14393.30 20894.19 23182.22 21587.78 14593.94 15978.83 12696.95 23477.70 24892.98 15696.32 133
ACMH+81.04 1485.05 25383.46 26189.82 22094.66 16379.37 22294.44 14594.12 23682.19 21678.04 30992.82 20058.23 32597.54 18173.77 28382.90 26892.54 288
ACMH80.38 1785.36 24583.68 25790.39 19694.45 17280.63 19194.73 12694.85 20882.09 21777.24 31492.65 20560.01 31797.58 17872.25 29084.87 24692.96 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
eth_miper_zixun_eth86.50 22785.77 22188.68 25391.94 24775.81 28890.47 27994.89 20582.05 21884.05 23690.46 27375.96 15696.77 24182.76 17779.36 31593.46 258
anonymousdsp87.84 17487.09 17290.12 20889.13 31980.54 19494.67 13095.55 16282.05 21883.82 24292.12 22271.47 21797.15 21887.15 12487.80 22592.67 285
PVSNet_Blended90.73 9890.32 9791.98 13296.12 10081.25 17392.55 23696.83 6482.04 22089.10 12492.56 20781.04 10498.85 9486.72 13195.91 10495.84 155
cl_fuxian87.14 20886.50 19489.04 24492.20 23777.26 27191.22 26994.70 21682.01 22184.34 22990.43 27478.81 12796.61 25083.70 16381.09 29093.25 264
agg_prior193.29 5792.97 6294.26 5597.38 6485.92 6093.92 18496.72 7881.96 22292.16 8196.23 7887.85 2298.97 8091.95 6098.55 4997.90 76
CDS-MVSNet89.45 13188.51 13792.29 12293.62 20383.61 11293.01 22294.68 21781.95 22387.82 14493.24 18578.69 12996.99 23280.34 22093.23 15196.28 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v14419287.19 20686.35 19889.74 22490.64 29878.24 24893.92 18495.43 17681.93 22485.51 19291.05 26074.21 18297.45 18882.86 17381.56 28393.53 253
PAPR90.02 11489.27 12392.29 12295.78 11680.95 18392.68 23096.22 11281.91 22586.66 16793.75 17282.23 9098.44 11979.40 23494.79 12197.48 94
v192192086.97 21186.06 21089.69 22890.53 30378.11 25193.80 18895.43 17681.90 22685.33 20891.05 26072.66 20597.41 19782.05 18881.80 28093.53 253
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22790.24 11196.44 7178.59 13198.61 10789.68 9297.85 7297.06 109
train_agg93.44 5393.08 5894.52 4597.53 5886.49 3994.07 17396.78 6981.86 22892.77 6596.20 8087.63 2799.12 5592.14 5198.69 3397.94 72
test_897.49 6186.30 4894.02 17896.76 7281.86 22892.70 6996.20 8087.63 2799.02 68
cl-mvsnet____86.52 22685.78 21988.75 25092.03 24476.46 28090.74 27594.30 22781.83 23083.34 25590.78 26775.74 16396.57 25381.74 19681.54 28493.22 267
cl-mvsnet186.53 22585.78 21988.75 25092.02 24576.45 28190.74 27594.30 22781.83 23083.34 25590.82 26575.75 16196.57 25381.73 19781.52 28593.24 265
v124086.78 21785.85 21789.56 23090.45 30477.79 26093.61 19695.37 18181.65 23285.43 20091.15 25671.50 21697.43 19181.47 20182.05 27793.47 257
FMVSNet185.85 23884.11 25191.08 17092.81 22783.10 12395.14 10094.94 19981.64 23382.68 26291.64 23859.01 32396.34 27075.37 27083.78 25493.79 240
PatchmatchNetpermissive85.85 23884.70 24489.29 23791.76 25375.54 29088.49 31191.30 30181.63 23485.05 21188.70 30371.71 21296.24 27374.61 27889.05 20496.08 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TEST997.53 5886.49 3994.07 17396.78 6981.61 23592.77 6596.20 8087.71 2699.12 55
sss88.93 14888.26 14890.94 18094.05 18480.78 18891.71 25995.38 17981.55 23688.63 12993.91 16375.04 17095.47 30582.47 18091.61 16996.57 128
HY-MVS83.01 1289.03 14487.94 15592.29 12294.86 15282.77 13392.08 25294.49 22081.52 23786.93 16092.79 20378.32 13698.23 13179.93 22590.55 17995.88 153
CNLPA89.07 14287.98 15392.34 11896.87 7884.78 7794.08 17293.24 25381.41 23884.46 22295.13 11575.57 16596.62 24777.21 25393.84 13795.61 164
EPMVS83.90 26882.70 27087.51 27990.23 30872.67 31288.62 31081.96 35481.37 23985.01 21288.34 30766.31 27994.45 31575.30 27187.12 23295.43 169
cl-mvsnet286.78 21785.98 21289.18 24092.34 23577.62 26690.84 27494.13 23581.33 24083.97 23990.15 27973.96 18796.60 25284.19 15682.94 26593.33 260
miper_ehance_all_eth87.22 20486.62 18989.02 24592.13 24077.40 27090.91 27394.81 21281.28 24184.32 23090.08 28179.26 12396.62 24783.81 16182.94 26593.04 275
IU-MVS98.77 486.00 5496.84 6281.26 24297.26 695.50 799.13 399.03 4
CL-MVSNet_2432*160081.74 28480.53 28285.36 31185.96 34172.45 31790.25 28293.07 25781.24 24379.85 29987.29 32370.93 22392.52 33866.95 32069.23 34091.11 320
test20.0379.95 30379.08 30282.55 32785.79 34267.74 34391.09 27191.08 30581.23 24474.48 33289.96 28561.63 30390.15 34860.08 34476.38 32889.76 330
miper_lstm_enhance85.27 24984.59 24787.31 28491.28 27174.63 29387.69 32094.09 23781.20 24581.36 27789.85 28774.97 17294.30 31981.03 20779.84 31293.01 276
TR-MVS86.78 21785.76 22289.82 22094.37 17578.41 24392.47 23792.83 26181.11 24686.36 17392.40 21168.73 25797.48 18573.75 28489.85 19193.57 252
VDDNet89.56 12788.49 14092.76 9695.07 14082.09 15196.30 3693.19 25581.05 24791.88 8796.86 4961.16 31098.33 12788.43 10792.49 16497.84 80
tpm84.73 25884.02 25286.87 29890.33 30568.90 33889.06 30389.94 32980.85 24885.75 18289.86 28668.54 25995.97 28377.76 24784.05 25395.75 159
D2MVS85.90 23685.09 23588.35 26190.79 29277.42 26991.83 25595.70 15180.77 24980.08 29590.02 28266.74 27496.37 26781.88 19287.97 22291.26 314
DWT-MVSNet_test84.95 25583.68 25788.77 24891.43 26473.75 30291.74 25890.98 30980.66 25083.84 24187.36 32162.44 29897.11 22278.84 23885.81 23995.46 167
Anonymous20240521187.68 17986.13 20592.31 12096.66 8380.74 18994.87 11791.49 29780.47 25189.46 12095.44 10454.72 33598.23 13182.19 18589.89 18997.97 70
jason90.80 9590.10 10292.90 9193.04 22083.53 11393.08 21994.15 23380.22 25291.41 9994.91 12176.87 14597.93 15890.28 8996.90 8897.24 101
jason: jason.
thisisatest051587.33 19785.99 21191.37 15993.49 20679.55 21790.63 27789.56 33780.17 25387.56 14990.86 26367.07 26898.28 13081.50 20093.02 15596.29 134
tpmrst85.35 24684.99 23686.43 30190.88 29067.88 34288.71 30891.43 29980.13 25486.08 17988.80 30173.05 20196.02 28182.48 17983.40 26395.40 170
CDPH-MVS92.83 6592.30 7194.44 4897.79 5286.11 5294.06 17596.66 8480.09 25592.77 6596.63 6286.62 3999.04 6387.40 11998.66 4098.17 54
MVS_030483.46 27081.92 27388.10 26990.63 29977.49 26893.26 21193.75 24780.04 25680.44 28987.24 32447.94 35095.55 29875.79 26688.16 21791.26 314
PM-MVS78.11 31376.12 31584.09 32383.54 35070.08 33488.97 30585.27 34979.93 25774.73 33086.43 32734.70 35793.48 32979.43 23272.06 33688.72 340
lupinMVS90.92 9490.21 9893.03 8593.86 19483.88 10392.81 22893.86 24379.84 25891.76 9294.29 14577.92 13998.04 14990.48 8897.11 8497.17 105
PatchMatch-RL86.77 22085.54 22590.47 19495.88 11382.71 13990.54 27892.31 27379.82 25984.32 23091.57 24568.77 25696.39 26673.16 28693.48 14592.32 297
PLCcopyleft84.53 789.06 14388.03 15192.15 12697.27 7182.69 14094.29 15895.44 17579.71 26084.01 23894.18 15076.68 15098.75 10077.28 25293.41 14695.02 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
F-COLMAP87.95 17286.80 18091.40 15896.35 9580.88 18594.73 12695.45 17379.65 26182.04 27094.61 13571.13 21998.50 11276.24 26391.05 17694.80 192
MIMVSNet82.59 27780.53 28288.76 24991.51 26078.32 24586.57 32790.13 32479.32 26280.70 28488.69 30452.98 34293.07 33566.03 32688.86 20694.90 187
KD-MVS_2432*160078.50 31176.02 31685.93 30686.22 33974.47 29584.80 33692.33 27179.29 26376.98 31685.92 33153.81 34093.97 32367.39 31857.42 35289.36 332
miper_refine_blended78.50 31176.02 31685.93 30686.22 33974.47 29584.80 33692.33 27179.29 26376.98 31685.92 33153.81 34093.97 32367.39 31857.42 35289.36 332
test-mter84.54 26183.64 25987.25 28790.95 28371.67 32189.55 29389.88 33279.17 26584.54 21987.95 31355.56 33195.11 31081.82 19393.37 14894.97 180
miper_enhance_ethall86.90 21286.18 20489.06 24391.66 25877.58 26790.22 28594.82 21179.16 26684.48 22189.10 29579.19 12496.66 24584.06 15782.94 26592.94 278
MDA-MVSNet-bldmvs78.85 31076.31 31386.46 30089.76 31673.88 30188.79 30790.42 31879.16 26659.18 35288.33 30860.20 31594.04 32262.00 33968.96 34291.48 310
tpmvs83.35 27382.07 27187.20 29191.07 27971.00 32888.31 31491.70 29078.91 26880.49 28887.18 32569.30 24997.08 22568.12 31683.56 25993.51 256
原ACMM192.01 12997.34 6681.05 17996.81 6778.89 26990.45 10995.92 9182.65 8398.84 9680.68 21498.26 5996.14 139
MSDG84.86 25783.09 26490.14 20793.80 19780.05 20689.18 30293.09 25678.89 26978.19 30791.91 23265.86 28597.27 20968.47 31188.45 21293.11 272
PAPM86.68 22185.39 22990.53 18893.05 21979.33 22789.79 29294.77 21578.82 27181.95 27193.24 18576.81 14697.30 20566.94 32193.16 15294.95 186
PVSNet78.82 1885.55 24284.65 24588.23 26694.72 15871.93 31987.12 32492.75 26478.80 27284.95 21390.53 27264.43 29196.71 24474.74 27693.86 13696.06 147
MVP-Stereo85.97 23584.86 24189.32 23690.92 28782.19 15092.11 25094.19 23178.76 27378.77 30691.63 24168.38 26196.56 25575.01 27593.95 13489.20 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVScopyleft83.78 1188.74 15387.29 16893.08 8292.70 22985.39 7196.57 3096.43 9878.74 27480.85 28296.07 8769.64 24299.01 7078.01 24696.65 9494.83 190
DIV-MVS_2432*160080.20 30179.24 29883.07 32585.64 34465.29 34991.01 27293.93 23978.71 27576.32 32086.40 32859.20 32292.93 33672.59 28869.35 33991.00 322
MDTV_nov1_ep1383.56 26091.69 25769.93 33587.75 31991.54 29578.60 27684.86 21488.90 29869.54 24396.03 28070.25 29988.93 205
Patchmatch-RL test81.67 28579.96 29186.81 29985.42 34571.23 32482.17 34787.50 34578.47 27777.19 31582.50 34370.81 22593.48 32982.66 17872.89 33495.71 162
QAPM89.51 12888.15 14993.59 7294.92 14884.58 8096.82 2496.70 8078.43 27883.41 25396.19 8373.18 20099.30 3977.11 25596.54 9796.89 118
131487.51 19186.57 19190.34 20192.42 23479.74 21692.63 23295.35 18378.35 27980.14 29391.62 24274.05 18597.15 21881.05 20493.53 14294.12 221
CR-MVSNet85.35 24683.76 25690.12 20890.58 30079.34 22485.24 33491.96 28678.27 28085.55 18887.87 31671.03 22195.61 29673.96 28289.36 19895.40 170
USDC82.76 27481.26 27987.26 28691.17 27474.55 29489.27 29993.39 25278.26 28175.30 32792.08 22654.43 33796.63 24671.64 29185.79 24190.61 324
new-patchmatchnet76.41 31675.17 31880.13 33082.65 35359.61 35387.66 32191.08 30578.23 28269.85 34483.22 34054.76 33491.63 34664.14 33464.89 34789.16 337
1112_ss88.42 15987.33 16791.72 14794.92 14880.98 18192.97 22494.54 21978.16 28383.82 24293.88 16478.78 12897.91 15979.45 23089.41 19696.26 136
MIMVSNet179.38 30777.28 30985.69 30986.35 33873.67 30391.61 26392.75 26478.11 28472.64 33988.12 31148.16 34991.97 34360.32 34377.49 32391.43 311
MS-PatchMatch85.05 25384.16 25087.73 27591.42 26578.51 24091.25 26893.53 24977.50 28580.15 29291.58 24361.99 30195.51 30175.69 26794.35 13289.16 337
AllTest83.42 27181.39 27789.52 23295.01 14177.79 26093.12 21690.89 31377.41 28676.12 32293.34 17854.08 33897.51 18368.31 31384.27 25193.26 262
TestCases89.52 23295.01 14177.79 26090.89 31377.41 28676.12 32293.34 17854.08 33897.51 18368.31 31384.27 25193.26 262
TESTMET0.1,183.74 26982.85 26886.42 30289.96 31371.21 32589.55 29387.88 34177.41 28683.37 25487.31 32256.71 32893.65 32880.62 21592.85 15994.40 213
gm-plane-assit89.60 31868.00 34077.28 28988.99 29697.57 17979.44 231
EG-PatchMatch MVS82.37 27980.34 28588.46 25890.27 30679.35 22392.80 22994.33 22677.14 29073.26 33790.18 27847.47 35296.72 24270.25 29987.32 23189.30 334
FMVSNet581.52 28979.60 29587.27 28591.17 27477.95 25391.49 26492.26 27576.87 29176.16 32187.91 31551.67 34392.34 33967.74 31781.16 28791.52 308
our_test_381.93 28180.46 28486.33 30388.46 32673.48 30488.46 31291.11 30476.46 29276.69 31888.25 30966.89 27094.36 31768.75 30979.08 31791.14 318
TDRefinement79.81 30477.34 30887.22 29079.24 35575.48 29193.12 21692.03 28176.45 29375.01 32891.58 24349.19 34896.44 26470.22 30169.18 34189.75 331
LF4IMVS80.37 30079.07 30384.27 32186.64 33769.87 33689.39 29891.05 30776.38 29474.97 32990.00 28347.85 35194.25 32174.55 27980.82 29888.69 341
TAPA-MVS84.62 688.16 16787.01 17591.62 15096.64 8480.65 19094.39 15096.21 11576.38 29486.19 17795.44 10479.75 11598.08 14662.75 33895.29 11696.13 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dp81.47 29080.23 28785.17 31489.92 31465.49 34886.74 32590.10 32576.30 29681.10 27987.12 32662.81 29695.92 28568.13 31579.88 31094.09 224
CostFormer85.77 24084.94 23988.26 26491.16 27672.58 31689.47 29791.04 30876.26 29786.45 17189.97 28470.74 22696.86 24082.35 18287.07 23495.34 173
RPSCF85.07 25284.27 24987.48 28292.91 22670.62 33191.69 26192.46 26976.20 29882.67 26395.22 11163.94 29397.29 20877.51 25185.80 24094.53 204
Test_1112_low_res87.65 18186.51 19391.08 17094.94 14779.28 22891.77 25694.30 22776.04 29983.51 25192.37 21277.86 14197.73 16878.69 23989.13 20396.22 137
pmmvs485.43 24483.86 25590.16 20590.02 31282.97 13090.27 28192.67 26675.93 30080.73 28391.74 23771.05 22095.73 29578.85 23783.46 26191.78 304
LS3D87.89 17386.32 20092.59 10596.07 10582.92 13195.23 9294.92 20475.66 30182.89 26095.98 8972.48 20899.21 4768.43 31295.23 11995.64 163
pmmvs584.21 26382.84 26988.34 26288.95 32176.94 27592.41 23891.91 28875.63 30280.28 29091.18 25464.59 29095.57 29777.09 25683.47 26092.53 289
Anonymous2024052180.44 29979.21 29984.11 32285.75 34367.89 34192.86 22793.23 25475.61 30375.59 32687.47 32050.03 34594.33 31871.14 29681.21 28690.12 329
pmmvs-eth3d80.97 29678.72 30587.74 27484.99 34779.97 21190.11 28891.65 29275.36 30473.51 33586.03 33059.45 32093.96 32575.17 27272.21 33589.29 335
ppachtmachnet_test81.84 28280.07 29087.15 29288.46 32674.43 29789.04 30492.16 27775.33 30577.75 31188.99 29666.20 28095.37 30665.12 33077.60 32291.65 306
test_040281.30 29379.17 30187.67 27693.19 21478.17 24992.98 22391.71 28975.25 30676.02 32490.31 27659.23 32196.37 26750.22 35383.63 25888.47 343
COLMAP_ROBcopyleft80.39 1683.96 26582.04 27289.74 22495.28 13279.75 21594.25 16092.28 27475.17 30778.02 31093.77 17058.60 32497.84 16165.06 33185.92 23891.63 307
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap79.76 30577.69 30785.97 30591.71 25573.12 30789.55 29390.36 32175.03 30872.03 34190.19 27746.22 35396.19 27663.11 33681.03 29288.59 342
DP-MVS87.25 20185.36 23192.90 9197.65 5683.24 12094.81 12192.00 28274.99 30981.92 27295.00 11972.66 20599.05 6066.92 32392.33 16596.40 131
PatchT82.68 27681.27 27886.89 29790.09 31070.94 32984.06 34090.15 32374.91 31085.63 18783.57 33969.37 24594.87 31465.19 32888.50 21194.84 189
CHOSEN 280x42085.15 25183.99 25388.65 25492.47 23278.40 24479.68 35192.76 26374.90 31181.41 27689.59 29069.85 24095.51 30179.92 22695.29 11692.03 301
gg-mvs-nofinetune81.77 28379.37 29688.99 24690.85 29177.73 26386.29 32879.63 35874.88 31283.19 25869.05 35360.34 31496.11 27875.46 26994.64 12593.11 272
pmmvs683.42 27181.60 27588.87 24788.01 33377.87 25794.96 10994.24 23074.67 31378.80 30591.09 25960.17 31696.49 25977.06 25775.40 33092.23 299
CHOSEN 1792x268888.84 15087.69 15892.30 12196.14 9981.42 17090.01 28995.86 14074.52 31487.41 15193.94 15975.46 16698.36 12280.36 21995.53 10897.12 108
MDA-MVSNet_test_wron79.21 30977.19 31185.29 31288.22 33072.77 31185.87 33090.06 32674.34 31562.62 35187.56 31966.14 28191.99 34266.90 32473.01 33291.10 321
YYNet179.22 30877.20 31085.28 31388.20 33272.66 31385.87 33090.05 32874.33 31662.70 35087.61 31866.09 28292.03 34166.94 32172.97 33391.15 317
Anonymous2024052988.09 16986.59 19092.58 10696.53 8981.92 15695.99 5495.84 14174.11 31789.06 12695.21 11261.44 30598.81 9783.67 16487.47 22697.01 112
无先验93.28 21096.26 10773.95 31899.05 6080.56 21696.59 127
Anonymous2023121186.59 22485.13 23490.98 17996.52 9081.50 16496.14 4696.16 11673.78 31983.65 24792.15 22063.26 29597.37 20382.82 17581.74 28294.06 226
Anonymous2023120681.03 29579.77 29384.82 31687.85 33570.26 33391.42 26592.08 27973.67 32077.75 31189.25 29462.43 29993.08 33461.50 34182.00 27891.12 319
PCF-MVS84.11 1087.74 17886.08 20992.70 10194.02 18584.43 9289.27 29995.87 13973.62 32184.43 22494.33 14278.48 13498.86 9170.27 29894.45 13094.81 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HyFIR lowres test88.09 16986.81 17991.93 13696.00 10880.63 19190.01 28995.79 14573.42 32287.68 14792.10 22573.86 18997.96 15580.75 21291.70 16897.19 104
MDTV_nov1_ep13_2view55.91 35987.62 32273.32 32384.59 21870.33 23474.65 27795.50 165
JIA-IIPM81.04 29478.98 30487.25 28788.64 32373.48 30481.75 34889.61 33673.19 32482.05 26973.71 35066.07 28395.87 28871.18 29584.60 24892.41 293
cascas86.43 23084.98 23790.80 18292.10 24280.92 18490.24 28395.91 13573.10 32583.57 25088.39 30665.15 28797.46 18784.90 14891.43 17094.03 228
ANet_high58.88 32554.22 32972.86 33556.50 36556.67 35680.75 35086.00 34673.09 32637.39 35964.63 35622.17 36279.49 35843.51 35523.96 36082.43 351
ADS-MVSNet281.66 28679.71 29487.50 28091.35 26874.19 29983.33 34388.48 34072.90 32782.24 26785.77 33364.98 28893.20 33364.57 33283.74 25595.12 176
ADS-MVSNet81.56 28879.78 29286.90 29691.35 26871.82 32083.33 34389.16 33872.90 32782.24 26785.77 33364.98 28893.76 32664.57 33283.74 25595.12 176
PVSNet_073.20 2077.22 31474.83 31984.37 31990.70 29771.10 32683.09 34589.67 33572.81 32973.93 33483.13 34160.79 31193.70 32768.54 31050.84 35588.30 344
testdata90.49 19296.40 9277.89 25695.37 18172.51 33093.63 4596.69 5882.08 9497.65 17383.08 16897.39 8195.94 150
PMMVS85.71 24184.96 23887.95 27288.90 32277.09 27388.68 30990.06 32672.32 33186.47 16890.76 26872.15 21194.40 31681.78 19593.49 14392.36 295
Patchmtry82.71 27580.93 28188.06 27090.05 31176.37 28384.74 33891.96 28672.28 33281.32 27887.87 31671.03 22195.50 30368.97 30880.15 30792.32 297
tpm284.08 26482.94 26687.48 28291.39 26671.27 32389.23 30190.37 32071.95 33384.64 21689.33 29367.30 26396.55 25775.17 27287.09 23394.63 196
UnsupCasMVSNet_bld76.23 31773.27 32085.09 31583.79 34972.92 30885.65 33393.47 25171.52 33468.84 34679.08 34749.77 34693.21 33266.81 32560.52 35189.13 339
RPMNet83.95 26681.53 27691.21 16390.58 30079.34 22485.24 33496.76 7271.44 33585.55 18882.97 34270.87 22498.91 8661.01 34289.36 19895.40 170
旧先验293.36 20371.25 33694.37 2697.13 22186.74 129
新几何193.10 8197.30 6884.35 9495.56 16171.09 33791.26 10296.24 7782.87 8298.86 9179.19 23598.10 6296.07 146
112190.42 10789.49 11393.20 7797.27 7184.46 8892.63 23295.51 16771.01 33891.20 10396.21 7982.92 8199.05 6080.56 21698.07 6396.10 144
Patchmatch-test81.37 29179.30 29787.58 27890.92 28774.16 30080.99 34987.68 34470.52 33976.63 31988.81 29971.21 21892.76 33760.01 34686.93 23595.83 156
114514_t89.51 12888.50 13892.54 10898.11 3781.99 15395.16 9996.36 10370.19 34085.81 18195.25 11076.70 14998.63 10582.07 18796.86 9097.00 113
N_pmnet68.89 32168.44 32470.23 33789.07 32028.79 36788.06 31519.50 36869.47 34171.86 34284.93 33561.24 30891.75 34454.70 35077.15 32590.15 328
OpenMVS_ROBcopyleft74.94 1979.51 30677.03 31286.93 29487.00 33676.23 28592.33 24290.74 31668.93 34274.52 33188.23 31049.58 34796.62 24757.64 34884.29 25087.94 345
test22296.55 8881.70 15992.22 24695.01 19668.36 34390.20 11296.14 8580.26 11097.80 7396.05 148
MVS87.44 19486.10 20891.44 15792.61 23183.62 11192.63 23295.66 15567.26 34481.47 27492.15 22077.95 13898.22 13379.71 22795.48 11092.47 291
tpm cat181.96 28080.27 28687.01 29391.09 27871.02 32787.38 32391.53 29666.25 34580.17 29186.35 32968.22 26296.15 27769.16 30782.29 27293.86 237
CVMVSNet84.69 26084.79 24384.37 31991.84 25064.92 35093.70 19491.47 29866.19 34686.16 17895.28 10867.18 26693.33 33180.89 21090.42 18194.88 188
CMPMVSbinary59.16 2180.52 29879.20 30084.48 31883.98 34867.63 34489.95 29193.84 24564.79 34766.81 34891.14 25757.93 32695.17 30876.25 26288.10 21890.65 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet81.32 29280.95 28082.42 32888.50 32563.67 35193.32 20491.33 30064.02 34880.57 28792.83 19961.21 30992.27 34076.34 26180.38 30691.32 312
new_pmnet72.15 31970.13 32278.20 33282.95 35265.68 34683.91 34182.40 35362.94 34964.47 34979.82 34642.85 35586.26 35357.41 34974.44 33182.65 350
DSMNet-mixed76.94 31576.29 31478.89 33183.10 35156.11 35887.78 31879.77 35760.65 35075.64 32588.71 30261.56 30488.34 35160.07 34589.29 20092.21 300
pmmvs371.81 32068.71 32381.11 32975.86 35670.42 33286.74 32583.66 35158.95 35168.64 34780.89 34536.93 35689.52 34963.10 33763.59 34883.39 347
MVS-HIRNet73.70 31872.20 32178.18 33391.81 25256.42 35782.94 34682.58 35255.24 35268.88 34566.48 35455.32 33395.13 30958.12 34788.42 21383.01 348
PMMVS259.60 32456.40 32769.21 33868.83 35946.58 36273.02 35677.48 36155.07 35349.21 35572.95 35217.43 36680.04 35749.32 35444.33 35780.99 352
FPMVS64.63 32362.55 32570.88 33670.80 35856.71 35584.42 33984.42 35051.78 35449.57 35481.61 34423.49 36181.48 35640.61 35776.25 32974.46 353
LCM-MVSNet66.00 32262.16 32677.51 33464.51 36258.29 35483.87 34290.90 31248.17 35554.69 35373.31 35116.83 36786.75 35265.47 32761.67 35087.48 346
DeepMVS_CXcopyleft56.31 34374.23 35751.81 36056.67 36644.85 35648.54 35675.16 34827.87 36058.74 36340.92 35652.22 35458.39 356
Gipumacopyleft57.99 32654.91 32867.24 33988.51 32465.59 34752.21 35990.33 32243.58 35742.84 35851.18 35920.29 36485.07 35434.77 35870.45 33751.05 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 32748.46 33163.48 34045.72 36746.20 36373.41 35578.31 35941.03 35830.06 36165.68 3556.05 36883.43 35530.04 35965.86 34560.80 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 33042.29 33246.03 34465.58 36137.41 36473.51 35464.62 36233.99 35928.47 36347.87 36019.90 36567.91 36022.23 36124.45 35932.77 358
EMVS42.07 33141.12 33344.92 34563.45 36335.56 36673.65 35363.48 36333.05 36026.88 36445.45 36121.27 36367.14 36119.80 36223.02 36132.06 359
MVEpermissive39.65 2343.39 32938.59 33557.77 34156.52 36448.77 36155.38 35858.64 36529.33 36128.96 36252.65 3584.68 36964.62 36228.11 36033.07 35859.93 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 32848.47 33056.66 34252.26 36618.98 36941.51 36181.40 35510.10 36244.59 35775.01 34928.51 35968.16 35953.54 35149.31 35682.83 349
wuyk23d21.27 33420.48 33723.63 34768.59 36036.41 36549.57 3606.85 3699.37 3637.89 3654.46 3674.03 37031.37 36417.47 36316.07 3633.12 361
tmp_tt35.64 33239.24 33424.84 34614.87 36823.90 36862.71 35751.51 3676.58 36436.66 36062.08 35744.37 35430.34 36552.40 35222.00 36220.27 360
testmvs8.92 33511.52 3381.12 3491.06 3690.46 37186.02 3290.65 3700.62 3652.74 3669.52 3650.31 3720.45 3672.38 3640.39 3642.46 363
test1238.76 33611.22 3391.39 3480.85 3700.97 37085.76 3320.35 3710.54 3662.45 3678.14 3660.60 3710.48 3662.16 3650.17 3652.71 362
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k22.14 33329.52 3360.00 3500.00 3710.00 3720.00 36295.76 1470.00 3670.00 36894.29 14575.66 1640.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.64 3388.86 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36879.70 1170.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.82 33710.43 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36893.88 1640.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4698.99 1098.84 8
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
GSMVS96.12 141
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 21396.12 141
sam_mvs70.60 227
ambc83.06 32679.99 35463.51 35277.47 35292.86 26074.34 33384.45 33628.74 35895.06 31273.06 28768.89 34390.61 324
MTGPAbinary96.97 49
test_post188.00 3169.81 36469.31 24895.53 29976.65 258
test_post10.29 36370.57 23195.91 287
patchmatchnet-post83.76 33871.53 21596.48 260
GG-mvs-BLEND87.94 27389.73 31777.91 25487.80 31778.23 36080.58 28683.86 33759.88 31895.33 30771.20 29392.22 16690.60 326
MTMP96.16 4460.64 364
test9_res91.91 6198.71 3098.07 63
agg_prior290.54 8698.68 3598.27 47
agg_prior97.38 6485.92 6096.72 7892.16 8198.97 80
test_prior485.96 5794.11 168
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
新几何293.11 218
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7796.97 114
原ACMM292.94 225
testdata298.75 10078.30 242
segment_acmp87.16 35
test1294.34 5397.13 7486.15 5196.29 10591.04 10585.08 5899.01 7098.13 6197.86 79
plane_prior794.70 16082.74 136
plane_prior694.52 16782.75 13474.23 180
plane_prior596.22 11298.12 13788.15 10989.99 18594.63 196
plane_prior494.86 124
plane_prior194.59 165
n20.00 372
nn0.00 372
door-mid85.49 347
lessismore_v086.04 30488.46 32668.78 33980.59 35673.01 33890.11 28055.39 33296.43 26575.06 27465.06 34692.90 279
test1196.57 92
door85.33 348
HQP5-MVS81.56 162
BP-MVS87.11 126
HQP4-MVS85.43 20097.96 15594.51 206
HQP3-MVS96.04 12689.77 192
HQP2-MVS73.83 190
NP-MVS94.37 17582.42 14593.98 157
ACMMP++_ref87.47 226
ACMMP++88.01 221
Test By Simon80.02 112