This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
MVS_030494.60 1894.38 2595.23 1195.41 13087.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
EPNet91.79 8291.02 9294.10 5290.10 33685.25 6996.03 6692.05 29892.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
CS-MVS-test94.02 3994.29 2993.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
UA-Net92.83 6992.54 7293.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
CANet93.54 5193.20 6194.55 4295.65 12185.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS94.12 3794.44 2293.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
EI-MVSNet-Vis-set93.01 6792.92 6693.29 7195.01 14783.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
3Dnovator+87.14 492.42 7691.37 8495.55 795.63 12288.73 697.07 1896.77 7490.84 1684.02 26596.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
HQP_MVS90.60 10990.19 10391.82 14794.70 16682.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20794.63 215
plane_prior295.85 7590.81 17
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
DELS-MVS93.43 5893.25 5993.97 5495.42 12985.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETV-MVS92.74 7192.66 7092.97 8895.20 14084.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 143
EI-MVSNet-UG-set92.74 7192.62 7193.12 7894.86 15883.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
XVS94.45 2294.32 2694.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
X-MVStestdata88.31 17486.13 22194.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 40385.02 5999.49 2691.99 7498.56 4898.47 33
EC-MVSNet93.44 5593.71 5192.63 10795.21 13982.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
SD-MVS94.96 1395.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25194.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
casdiffmvs_mvgpermissive92.96 6892.83 6893.35 7094.59 17183.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
plane_prior382.75 13990.26 3386.91 180
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
MSLP-MVS++93.72 4894.08 3892.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 132
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
Vis-MVSNetpermissive91.75 8491.23 8793.29 7195.32 13283.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet88.84 15987.95 16591.49 16092.68 25083.01 13294.92 13096.31 10489.88 3985.53 21693.85 18776.63 15796.96 24781.91 21779.87 34294.50 228
test_fmvsm_n_192094.71 1795.11 1093.50 6995.79 11584.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
h-mvs3390.80 9990.15 10592.75 10096.01 10582.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 35196.60 138
hse-mvs289.88 12689.34 12591.51 15994.83 16081.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35895.74 176
UniMVSNet_NR-MVSNet89.92 12489.29 12791.81 14993.39 22783.72 10494.43 16197.12 4189.80 4186.46 19193.32 20083.16 7997.23 23084.92 16681.02 32594.49 230
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
alignmvs93.08 6692.50 7394.81 3195.62 12387.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
TSAR-MVS + GP.93.66 4993.41 5694.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
IS-MVSNet91.43 8991.09 9192.46 11595.87 11481.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
plane_prior82.73 14295.21 11189.66 4889.88 212
casdiffmvspermissive92.51 7492.43 7492.74 10194.41 18481.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS89.34 14588.50 14991.85 14693.04 23883.72 10494.47 15896.59 9089.50 5086.46 19193.29 20377.25 14997.23 23084.92 16681.02 32594.59 218
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
CANet_DTU90.26 11389.41 12392.81 9693.46 22583.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 146
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n94.60 1894.81 1693.98 5394.62 17084.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
UGNet89.95 12288.95 13492.95 9094.51 17783.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30598.78 9183.92 18196.31 10696.74 134
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.27 11290.18 10490.53 19893.71 21679.85 22495.77 8097.59 389.31 5686.27 19894.67 15181.93 10397.01 24584.26 17688.09 24694.71 214
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5792.46 25484.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
UniMVSNet (Re)89.80 12789.07 13192.01 13093.60 22184.52 8394.78 13997.47 1189.26 5886.44 19492.32 23482.10 9897.39 21784.81 16980.84 32994.12 245
baseline92.39 7792.29 7692.69 10594.46 18081.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
3Dnovator86.66 591.73 8590.82 9694.44 4494.59 17186.37 4097.18 1297.02 4789.20 6084.31 26196.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
VNet92.24 7891.91 7993.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
FIs90.51 11090.35 10090.99 18693.99 20580.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22985.18 16388.31 24394.76 213
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsmconf0.01_n93.19 6493.02 6493.71 6589.25 34884.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
NR-MVSNet88.58 16987.47 17691.93 13893.04 23884.16 9594.77 14096.25 11289.05 6580.04 32393.29 20379.02 13097.05 24381.71 22480.05 33994.59 218
MP-MVScopyleft94.25 2994.07 3994.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mvsmamba89.96 12189.50 11991.33 16892.90 24581.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 23494.51 225
DeepC-MVS88.79 393.31 6092.99 6594.26 5196.07 10385.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmvis_n_192093.44 5593.55 5593.10 7993.67 21984.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 147
OPM-MVS90.12 11589.56 11891.82 14793.14 23283.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 20693.65 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-NCC94.17 19494.39 16588.81 7285.43 226
ACMP_Plane94.17 19494.39 16588.81 7285.43 226
HQP-MVS89.80 12789.28 12891.34 16794.17 19481.56 16894.39 16596.04 13188.81 7285.43 22693.97 17973.83 19797.96 16587.11 14389.77 21694.50 228
MVS_111021_HR93.45 5493.31 5793.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
SDMVSNet90.19 11489.61 11791.93 13896.00 10683.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23988.90 11789.85 21395.63 181
sd_testset88.59 16887.85 16890.83 19096.00 10680.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27396.43 28079.64 25489.85 21395.63 181
mPP-MVS93.99 4193.78 4794.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
VPNet88.20 17787.47 17690.39 20993.56 22279.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23484.05 17980.53 33494.56 221
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
region2R94.43 2494.27 3294.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
WR-MVS88.38 17187.67 17190.52 20093.30 22980.18 20893.26 22895.96 13788.57 8385.47 22292.81 22076.12 15996.91 25181.24 22982.29 30594.47 233
CP-MVS94.34 2794.21 3494.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
EIA-MVS91.95 8091.94 7891.98 13495.16 14180.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
CP-MVSNet87.63 19587.26 18388.74 27193.12 23376.59 29395.29 10596.58 9188.43 8683.49 27992.98 21475.28 17395.83 30778.97 26281.15 32193.79 263
VDD-MVS90.74 10189.92 11393.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31898.64 10090.95 9592.62 17697.93 76
dcpmvs_293.49 5294.19 3691.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
ACMMPcopyleft93.24 6292.88 6794.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
nrg03091.08 9790.39 9993.17 7693.07 23586.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 29694.96 203
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
RRT_MVS89.09 15088.62 14690.49 20292.85 24679.65 22896.41 3994.41 23288.22 9485.50 21994.77 14669.36 25397.31 22089.33 11286.73 26694.51 225
PS-CasMVS87.32 21286.88 18988.63 27492.99 24176.33 29895.33 10096.61 8988.22 9483.30 28493.07 21273.03 20995.79 31178.36 26681.00 32793.75 270
SR-MVS94.23 3194.17 3794.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
MVS_111021_LR92.47 7592.29 7692.98 8795.99 10984.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 133
TSAR-MVS + MP.94.85 1494.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9495.62 12383.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
test111189.10 14888.64 14390.48 20495.53 12774.97 31196.08 6184.89 37988.13 9990.16 12696.65 7063.29 31298.10 14686.14 15196.90 9298.39 39
patch_mono-293.74 4794.32 2692.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
PEN-MVS86.80 23286.27 21788.40 27792.32 25875.71 30595.18 11396.38 10187.97 10282.82 28893.15 20873.39 20495.92 30276.15 29179.03 34993.59 276
testdata192.15 26687.94 103
VPA-MVSNet89.62 13088.96 13391.60 15593.86 20982.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21487.32 13982.86 30194.52 223
WR-MVS_H87.80 18787.37 17889.10 26093.23 23078.12 26395.61 9297.30 2987.90 10583.72 27192.01 25079.65 12596.01 29976.36 28780.54 33393.16 294
CLD-MVS89.47 13688.90 13791.18 17394.22 19382.07 15892.13 26796.09 12687.90 10585.37 23292.45 23074.38 18597.56 19087.15 14190.43 20293.93 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test250687.21 21986.28 21690.02 22795.62 12373.64 32596.25 4871.38 40387.89 10790.45 12096.65 7055.29 36098.09 15486.03 15596.94 9098.33 43
ECVR-MVScopyleft89.09 15088.53 14790.77 19395.62 12375.89 30296.16 5384.22 38187.89 10790.20 12496.65 7063.19 31498.10 14685.90 15696.94 9098.33 43
MG-MVS91.77 8391.70 8292.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
LCM-MVSNet-Re88.30 17588.32 15688.27 28194.71 16572.41 34293.15 23190.98 32887.77 11079.25 33291.96 25178.35 14095.75 31283.04 19195.62 11496.65 137
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
Effi-MVS+-dtu88.65 16588.35 15389.54 24893.33 22876.39 29694.47 15894.36 23587.70 11285.43 22689.56 31873.45 20297.26 22785.57 16191.28 18994.97 200
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9593.75 21583.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22595.74 11775.85 30395.61 9290.80 33487.66 11587.83 16095.40 12076.79 15396.46 27878.37 26596.73 9797.80 84
SR-MVS-dyc-post93.82 4493.82 4593.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
RE-MVS-def93.68 5297.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
PGM-MVS93.96 4293.72 5094.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
DTE-MVSNet86.11 25285.48 24587.98 28991.65 28574.92 31294.93 12995.75 15387.36 11982.26 29393.04 21372.85 21095.82 30874.04 30777.46 35593.20 292
iter_conf_final89.42 13988.69 14291.60 15595.12 14482.93 13595.75 8192.14 29587.32 12087.12 17594.07 17067.09 27897.55 19190.61 10189.01 22994.32 237
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8695.02 14683.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
thres100view90087.63 19586.71 19790.38 21196.12 9778.55 25095.03 12491.58 31287.15 12288.06 15592.29 23668.91 26398.10 14670.13 33291.10 19094.48 231
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
Effi-MVS+91.59 8891.11 8993.01 8594.35 18983.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
thres600view787.65 19286.67 19990.59 19596.08 10278.72 24694.88 13291.58 31287.06 12588.08 15492.30 23568.91 26398.10 14670.05 33591.10 19094.96 203
diffmvspermissive91.37 9191.23 8791.77 15093.09 23480.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20592.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize93.78 4593.77 4893.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
OMC-MVS91.23 9390.62 9893.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 131
tfpn200view987.58 20086.64 20090.41 20895.99 10978.64 24894.58 15091.98 30286.94 12988.09 15291.77 25569.18 25998.10 14670.13 33291.10 19094.48 231
thres40087.62 19786.64 20090.57 19695.99 10978.64 24894.58 15091.98 30286.94 12988.09 15291.77 25569.18 25998.10 14670.13 33291.10 19094.96 203
HPM-MVScopyleft94.02 3993.88 4494.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LFMVS90.08 11689.13 13092.95 9096.71 7782.32 15596.08 6189.91 35086.79 13292.15 9096.81 6362.60 31698.34 12987.18 14093.90 15098.19 58
fmvsm_s_conf0.1_n_a93.19 6493.26 5892.97 8892.49 25283.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
baseline188.10 17987.28 18190.57 19694.96 15180.07 21394.27 17291.29 32186.74 13487.41 16894.00 17776.77 15496.20 29180.77 23779.31 34795.44 185
LPG-MVS_test89.45 13788.90 13791.12 17594.47 17881.49 17295.30 10396.14 12086.73 13585.45 22395.16 13069.89 24598.10 14687.70 13289.23 22593.77 268
LGP-MVS_train91.12 17594.47 17881.49 17296.14 12086.73 13585.45 22395.16 13069.89 24598.10 14687.70 13289.23 22593.77 268
EPNet_dtu86.49 24785.94 23288.14 28690.24 33472.82 33294.11 18192.20 29286.66 13779.42 33192.36 23373.52 20095.81 30971.26 32093.66 15395.80 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6395.28 13485.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
testing9187.11 22486.18 21989.92 23194.43 18375.38 31091.53 28292.27 29086.48 13986.50 18990.24 29961.19 32997.53 19482.10 21190.88 19896.84 130
ACMP84.23 889.01 15688.35 15390.99 18694.73 16381.27 17895.07 12195.89 14486.48 13983.67 27394.30 16369.33 25497.99 16387.10 14588.55 23593.72 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_Test91.31 9291.11 8991.93 13894.37 18580.14 21093.46 21795.80 14986.46 14191.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
thres20087.21 21986.24 21890.12 22195.36 13178.53 25193.26 22892.10 29686.42 14288.00 15791.11 27969.24 25898.00 16269.58 33691.04 19693.83 262
PAPM_NR91.22 9490.78 9792.52 11397.60 5681.46 17494.37 16996.24 11386.39 14387.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6795.29 13384.98 7195.61 9296.28 10886.31 14496.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
PS-MVSNAJ91.18 9590.92 9391.96 13695.26 13782.60 14992.09 26995.70 15886.27 14591.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 239
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3094.82 13697.17 3986.26 14692.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PS-MVSNAJss89.97 12089.62 11691.02 18391.90 27280.85 19295.26 10895.98 13486.26 14686.21 20094.29 16479.70 12197.65 18288.87 11988.10 24494.57 220
iter_conf0588.85 15888.08 16291.17 17494.27 19181.64 16795.18 11392.15 29486.23 14887.28 17294.07 17063.89 30997.55 19190.63 10089.00 23094.32 237
test_vis1_n_192089.39 14389.84 11488.04 28892.97 24272.64 33794.71 14496.03 13386.18 14991.94 9796.56 7861.63 32195.74 31393.42 4195.11 12995.74 176
EPP-MVSNet91.70 8691.56 8392.13 12995.88 11280.50 20197.33 795.25 19086.15 15089.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
testing9986.72 23785.73 24289.69 24394.23 19274.91 31391.35 28690.97 32986.14 15186.36 19590.22 30059.41 34197.48 19882.24 20890.66 19996.69 136
XVG-OURS89.40 14288.70 14191.52 15894.06 19881.46 17491.27 28996.07 12886.14 15188.89 14395.77 10868.73 26697.26 22787.39 13789.96 20995.83 172
9.1494.47 2097.79 4996.08 6197.44 1586.13 15395.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
xiu_mvs_v2_base91.13 9690.89 9591.86 14494.97 15082.42 15192.24 26395.64 16586.11 15491.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 240
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15597.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+-dtu87.44 20686.72 19689.63 24692.04 26677.68 27894.03 19093.94 24985.81 15682.42 29191.32 27070.33 24197.06 24280.33 24690.23 20594.14 244
XVG-OURS-SEG-HR89.95 12289.45 12091.47 16294.00 20481.21 18291.87 27396.06 13085.78 15788.55 14795.73 11074.67 18397.27 22588.71 12089.64 21895.91 167
HPM-MVS_fast93.40 5993.22 6093.94 5698.36 2584.83 7497.15 1396.80 7185.77 15892.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
EI-MVSNet89.10 14888.86 13989.80 23891.84 27478.30 25993.70 20995.01 20185.73 15987.15 17395.28 12279.87 11897.21 23283.81 18387.36 25993.88 257
IterMVS-LS88.36 17387.91 16789.70 24293.80 21278.29 26093.73 20695.08 20085.73 15984.75 24391.90 25379.88 11796.92 25083.83 18282.51 30293.89 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
bld_raw_dy_0_6487.60 19986.73 19590.21 21591.72 27980.26 20795.09 12088.61 36085.68 16185.55 21394.38 15963.93 30896.66 25987.73 13187.84 25193.72 272
APD-MVScopyleft94.24 3094.07 3994.75 3598.06 3986.90 2295.88 7496.94 5585.68 16195.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_yl90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16391.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
DCV-MVSNet90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16391.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
K. test v381.59 31180.15 31385.91 33089.89 34269.42 36592.57 25187.71 36785.56 16573.44 36889.71 31555.58 35595.52 31977.17 28069.76 37492.78 308
SixPastTwentyTwo83.91 29082.90 29286.92 31590.99 30870.67 35893.48 21591.99 30185.54 16677.62 34492.11 24460.59 33396.87 25376.05 29277.75 35293.20 292
ITE_SJBPF88.24 28391.88 27377.05 28692.92 27185.54 16680.13 32193.30 20257.29 35096.20 29172.46 31684.71 27991.49 338
BH-RMVSNet88.37 17287.48 17591.02 18395.28 13479.45 23292.89 24293.07 26985.45 16886.91 18094.84 14470.35 24097.76 17473.97 30894.59 13895.85 170
IterMVS-SCA-FT85.45 26284.53 26888.18 28591.71 28176.87 28890.19 31392.65 28185.40 16981.44 30390.54 29366.79 28395.00 33281.04 23181.05 32392.66 310
GA-MVS86.61 23985.27 25290.66 19491.33 29678.71 24790.40 30593.81 25785.34 17085.12 23689.57 31761.25 32697.11 23880.99 23489.59 21996.15 154
ACMM84.12 989.14 14788.48 15291.12 17594.65 16981.22 18195.31 10196.12 12385.31 17185.92 20594.34 16070.19 24398.06 15885.65 15988.86 23294.08 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
xiu_mvs_v1_base90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
PHI-MVS93.89 4393.65 5494.62 4096.84 7586.43 3896.69 3297.49 685.15 17593.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
mvs_tets88.06 18287.28 18190.38 21190.94 31279.88 22295.22 11095.66 16285.10 17684.21 26393.94 18063.53 31097.40 21488.50 12288.40 24193.87 258
tttt051788.61 16687.78 16991.11 17894.96 15177.81 27295.35 9989.69 35485.09 17788.05 15694.59 15566.93 28098.48 11183.27 18992.13 18397.03 118
XVG-ACMP-BASELINE86.00 25384.84 26289.45 25291.20 29878.00 26591.70 27895.55 16985.05 17882.97 28692.25 23854.49 36397.48 19882.93 19387.45 25892.89 304
jajsoiax88.24 17687.50 17490.48 20490.89 31680.14 21095.31 10195.65 16484.97 17984.24 26294.02 17565.31 29897.42 20788.56 12188.52 23793.89 255
testing22284.84 27783.32 28289.43 25394.15 19775.94 30191.09 29489.41 35884.90 18085.78 20789.44 31952.70 37096.28 28970.80 32791.57 18696.07 161
FA-MVS(test-final)89.66 12988.91 13691.93 13894.57 17480.27 20591.36 28594.74 22284.87 18189.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
v2v48287.84 18587.06 18590.17 21790.99 30879.23 24394.00 19495.13 19584.87 18185.53 21692.07 24874.45 18497.45 20284.71 17181.75 31393.85 261
v14887.04 22686.32 21489.21 25690.94 31277.26 28393.71 20894.43 23084.84 18384.36 25790.80 28876.04 16197.05 24382.12 21079.60 34493.31 286
v887.50 20586.71 19789.89 23291.37 29379.40 23394.50 15495.38 18484.81 18483.60 27691.33 26876.05 16097.42 20782.84 19680.51 33692.84 306
testing1186.44 24885.35 25089.69 24394.29 19075.40 30991.30 28790.53 33784.76 18585.06 23790.13 30558.95 34597.45 20282.08 21291.09 19496.21 153
BH-untuned88.60 16788.13 16190.01 22895.24 13878.50 25393.29 22694.15 24384.75 18684.46 25193.40 19775.76 16697.40 21477.59 27594.52 14194.12 245
OurMVSNet-221017-085.35 26684.64 26687.49 29990.77 32072.59 33994.01 19294.40 23384.72 18779.62 33093.17 20761.91 32096.72 25681.99 21581.16 31993.16 294
dmvs_re84.20 28583.22 28687.14 31191.83 27677.81 27290.04 31690.19 34284.70 18881.49 30189.17 32264.37 30491.13 37571.58 31985.65 27392.46 316
MVSFormer91.68 8791.30 8592.80 9793.86 20983.88 10195.96 7195.90 14284.66 18991.76 10394.91 13777.92 14497.30 22189.64 10997.11 8597.24 104
test_djsdf89.03 15488.64 14390.21 21590.74 32279.28 24095.96 7195.90 14284.66 18985.33 23492.94 21574.02 19397.30 22189.64 10988.53 23694.05 251
MVSTER88.84 15988.29 15790.51 20192.95 24380.44 20293.73 20695.01 20184.66 18987.15 17393.12 21072.79 21197.21 23287.86 12987.36 25993.87 258
v7n86.81 23185.76 23989.95 23090.72 32379.25 24295.07 12195.92 13984.45 19282.29 29290.86 28472.60 21497.53 19479.42 25980.52 33593.08 298
testing380.46 32379.59 32183.06 35293.44 22664.64 38193.33 22085.47 37684.34 19379.93 32590.84 28644.35 38692.39 36357.06 38487.56 25592.16 326
ET-MVSNet_ETH3D87.51 20385.91 23392.32 12293.70 21883.93 9992.33 26090.94 33084.16 19472.09 37292.52 22869.90 24495.85 30689.20 11488.36 24297.17 108
CSCG93.23 6393.05 6393.76 6498.04 4084.07 9696.22 4997.37 2184.15 19590.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
Baseline_NR-MVSNet87.07 22586.63 20288.40 27791.44 28877.87 27094.23 17692.57 28284.12 19685.74 20992.08 24677.25 14996.04 29682.29 20779.94 34091.30 342
UniMVSNet_ETH3D87.53 20286.37 21191.00 18592.44 25578.96 24594.74 14195.61 16684.07 19785.36 23394.52 15759.78 33997.34 21982.93 19387.88 24996.71 135
thisisatest053088.67 16487.61 17291.86 14494.87 15780.07 21394.63 14889.90 35184.00 19888.46 14993.78 18966.88 28298.46 11583.30 18892.65 17597.06 115
ab-mvs89.41 14088.35 15392.60 10895.15 14382.65 14792.20 26595.60 16783.97 19988.55 14793.70 19374.16 19198.21 14082.46 20389.37 22196.94 123
GeoE90.05 11789.43 12291.90 14395.16 14180.37 20495.80 7894.65 22683.90 20087.55 16794.75 14778.18 14297.62 18781.28 22893.63 15497.71 88
FMVSNet387.40 20886.11 22391.30 16993.79 21483.64 10894.20 17794.81 21883.89 20184.37 25491.87 25468.45 26996.56 27078.23 26985.36 27493.70 274
pm-mvs186.61 23985.54 24389.82 23591.44 28880.18 20895.28 10794.85 21483.84 20281.66 30092.62 22572.45 21796.48 27579.67 25378.06 35092.82 307
tt080586.92 22985.74 24190.48 20492.22 25979.98 22095.63 9194.88 21283.83 20384.74 24492.80 22157.61 34997.67 17985.48 16284.42 28193.79 263
v1087.25 21586.38 21089.85 23391.19 29979.50 23094.48 15595.45 17883.79 20483.62 27591.19 27375.13 17497.42 20781.94 21680.60 33192.63 311
testgi80.94 32180.20 31283.18 35087.96 36466.29 37491.28 28890.70 33683.70 20578.12 33992.84 21751.37 37290.82 37763.34 36782.46 30392.43 317
V4287.68 19086.86 19090.15 21990.58 32780.14 21094.24 17595.28 18983.66 20685.67 21091.33 26874.73 18197.41 21284.43 17581.83 31192.89 304
ZD-MVS98.15 3486.62 3297.07 4583.63 20794.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
GBi-Net87.26 21385.98 22991.08 17994.01 20183.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28796.34 28678.23 26985.36 27493.79 263
test187.26 21385.98 22991.08 17994.01 20183.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28796.34 28678.23 26985.36 27493.79 263
FMVSNet287.19 22185.82 23591.30 16994.01 20183.67 10694.79 13894.94 20483.57 20883.88 26892.05 24966.59 28796.51 27377.56 27685.01 27793.73 271
SCA86.32 25085.18 25389.73 24192.15 26176.60 29291.12 29391.69 30983.53 21185.50 21988.81 32866.79 28396.48 27576.65 28490.35 20496.12 157
PVSNet_BlendedMVS89.98 11989.70 11590.82 19196.12 9781.25 17993.92 19996.83 6683.49 21289.10 13992.26 23781.04 10998.85 8686.72 14887.86 25092.35 321
DPM-MVS92.58 7391.74 8195.08 1596.19 9589.31 592.66 24896.56 9383.44 21391.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
test-LLR85.87 25685.41 24687.25 30590.95 31071.67 34889.55 32389.88 35283.41 21484.54 24887.95 34267.25 27595.11 32981.82 21993.37 16494.97 200
test0.0.03 182.41 30281.69 29884.59 34288.23 36072.89 33190.24 31087.83 36683.41 21479.86 32689.78 31467.25 27588.99 38565.18 36083.42 29491.90 330
ETVMVS84.43 28282.92 29188.97 26594.37 18574.67 31491.23 29188.35 36383.37 21686.06 20489.04 32455.38 35895.67 31567.12 35091.34 18896.58 140
v114487.61 19886.79 19490.06 22491.01 30779.34 23693.95 19695.42 18383.36 21785.66 21191.31 27174.98 17797.42 20783.37 18782.06 30793.42 284
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9796.39 9083.17 12294.87 13396.66 8583.29 21889.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 164
IB-MVS80.51 1585.24 27083.26 28491.19 17292.13 26379.86 22391.75 27691.29 32183.28 21980.66 31388.49 33461.28 32598.46 11580.99 23479.46 34595.25 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS84.88 27583.98 27587.60 29591.44 28876.03 30090.18 31492.41 28483.24 22081.06 30990.42 29766.60 28694.28 34079.46 25580.98 32892.48 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_cas_vis1_n_192088.83 16288.85 14088.78 26791.15 30376.72 29093.85 20294.93 20883.23 22192.81 7296.00 9661.17 33094.45 33491.67 8394.84 13195.17 195
Fast-Effi-MVS+89.41 14088.64 14391.71 15294.74 16280.81 19393.54 21395.10 19883.11 22286.82 18690.67 29279.74 12097.75 17780.51 24393.55 15696.57 141
WTY-MVS89.60 13188.92 13591.67 15395.47 12881.15 18392.38 25694.78 22083.11 22289.06 14194.32 16278.67 13596.61 26581.57 22590.89 19797.24 104
LTVRE_ROB82.13 1386.26 25184.90 26090.34 21394.44 18281.50 17092.31 26294.89 21083.03 22479.63 32992.67 22369.69 24897.79 17271.20 32186.26 26991.72 332
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS87.78 18886.54 20691.48 16194.82 16181.05 18593.91 20193.93 25083.00 22586.93 17893.53 19569.50 25197.67 17986.14 15177.12 35795.73 178
UnsupCasMVSNet_eth80.07 32778.27 33385.46 33485.24 38072.63 33888.45 34394.87 21382.99 22671.64 37588.07 34156.34 35391.75 37073.48 31263.36 38792.01 328
XXY-MVS87.65 19286.85 19190.03 22592.14 26280.60 19993.76 20595.23 19182.94 22784.60 24694.02 17574.27 18695.49 32381.04 23183.68 28994.01 253
mvs_anonymous89.37 14489.32 12689.51 25193.47 22474.22 32091.65 28094.83 21682.91 22885.45 22393.79 18881.23 10896.36 28586.47 15094.09 14797.94 74
BH-w/o87.57 20187.05 18689.12 25994.90 15677.90 26892.41 25493.51 26282.89 22983.70 27291.34 26775.75 16797.07 24175.49 29493.49 15992.39 319
AdaColmapbinary89.89 12589.07 13192.37 12097.41 6283.03 13094.42 16295.92 13982.81 23086.34 19794.65 15273.89 19599.02 6180.69 23995.51 11695.05 198
dmvs_testset74.57 34875.81 34770.86 37387.72 36740.47 40687.05 35977.90 39882.75 23171.15 37785.47 36667.98 27284.12 39545.26 39276.98 35988.00 376
TransMVSNet (Re)84.43 28283.06 28988.54 27591.72 27978.44 25495.18 11392.82 27582.73 23279.67 32892.12 24273.49 20195.96 30171.10 32568.73 38091.21 344
DP-MVS Recon91.95 8091.28 8693.96 5598.33 2785.92 5694.66 14796.66 8582.69 23390.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
v119287.25 21586.33 21390.00 22990.76 32179.04 24493.80 20395.48 17482.57 23485.48 22191.18 27573.38 20597.42 20782.30 20682.06 30793.53 278
PC_three_145282.47 23597.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
API-MVS90.66 10590.07 10792.45 11696.36 9184.57 8096.06 6495.22 19382.39 23689.13 13894.27 16780.32 11298.46 11580.16 24896.71 9894.33 236
tfpnnormal84.72 27983.23 28589.20 25792.79 24880.05 21594.48 15595.81 14882.38 23781.08 30891.21 27269.01 26296.95 24861.69 37280.59 33290.58 357
MAR-MVS90.30 11189.37 12493.07 8396.61 8184.48 8595.68 8595.67 16082.36 23887.85 15992.85 21676.63 15798.80 9080.01 24996.68 9995.91 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline286.50 24585.39 24789.84 23491.12 30476.70 29191.88 27288.58 36182.35 23979.95 32490.95 28373.42 20397.63 18680.27 24789.95 21095.19 194
TAMVS89.21 14688.29 15791.96 13693.71 21682.62 14893.30 22594.19 24182.22 24087.78 16293.94 18078.83 13196.95 24877.70 27492.98 17196.32 147
ACMH+81.04 1485.05 27383.46 28189.82 23594.66 16879.37 23494.44 16094.12 24682.19 24178.04 34092.82 21958.23 34797.54 19373.77 31082.90 30092.54 312
ACMH80.38 1785.36 26583.68 27890.39 20994.45 18180.63 19794.73 14294.85 21482.09 24277.24 34592.65 22460.01 33797.58 18872.25 31784.87 27892.96 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
eth_miper_zixun_eth86.50 24585.77 23888.68 27291.94 26975.81 30490.47 30494.89 21082.05 24384.05 26490.46 29575.96 16296.77 25582.76 19979.36 34693.46 283
anonymousdsp87.84 18587.09 18490.12 22189.13 34980.54 20094.67 14695.55 16982.05 24383.82 26992.12 24271.47 22497.15 23487.15 14187.80 25492.67 309
PVSNet_Blended90.73 10290.32 10191.98 13496.12 9781.25 17992.55 25296.83 6682.04 24589.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 171
c3_l87.14 22386.50 20889.04 26292.20 26077.26 28391.22 29294.70 22482.01 24684.34 25890.43 29678.81 13296.61 26583.70 18581.09 32293.25 289
CDS-MVSNet89.45 13788.51 14892.29 12593.62 22083.61 11193.01 23894.68 22581.95 24787.82 16193.24 20578.69 13496.99 24680.34 24593.23 16796.28 150
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v14419287.19 22186.35 21289.74 23990.64 32578.24 26193.92 19995.43 18181.93 24885.51 21891.05 28174.21 18997.45 20282.86 19581.56 31593.53 278
PAPR90.02 11889.27 12992.29 12595.78 11680.95 18992.68 24796.22 11581.91 24986.66 18893.75 19282.23 9598.44 12179.40 26094.79 13297.48 97
v192192086.97 22886.06 22689.69 24390.53 33078.11 26493.80 20395.43 18181.90 25085.33 23491.05 28172.66 21297.41 21282.05 21481.80 31293.53 278
CPTT-MVS91.99 7991.80 8092.55 11198.24 3181.98 16096.76 3096.49 9581.89 25190.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
train_agg93.44 5593.08 6294.52 4397.53 5886.49 3694.07 18696.78 7281.86 25292.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
test_897.49 6086.30 4494.02 19196.76 7581.86 25292.70 7896.20 8787.63 2999.02 61
cl____86.52 24485.78 23688.75 26992.03 26776.46 29490.74 30094.30 23781.83 25483.34 28290.78 28975.74 16996.57 26881.74 22281.54 31693.22 291
DIV-MVS_self_test86.53 24385.78 23688.75 26992.02 26876.45 29590.74 30094.30 23781.83 25483.34 28290.82 28775.75 16796.57 26881.73 22381.52 31793.24 290
Syy-MVS80.07 32779.78 31680.94 35991.92 27059.93 39089.75 32187.40 37081.72 25678.82 33487.20 35266.29 29191.29 37347.06 39187.84 25191.60 335
myMVS_eth3d79.67 33278.79 33182.32 35791.92 27064.08 38289.75 32187.40 37081.72 25678.82 33487.20 35245.33 38491.29 37359.09 38087.84 25191.60 335
v124086.78 23385.85 23489.56 24790.45 33177.79 27493.61 21195.37 18681.65 25885.43 22691.15 27771.50 22397.43 20681.47 22782.05 30993.47 282
FMVSNet185.85 25784.11 27191.08 17992.81 24783.10 12595.14 11794.94 20481.64 25982.68 28991.64 25859.01 34496.34 28675.37 29683.78 28693.79 263
PatchmatchNetpermissive85.85 25784.70 26489.29 25591.76 27875.54 30688.49 34191.30 32081.63 26085.05 23888.70 33271.71 22096.24 29074.61 30589.05 22896.08 160
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TEST997.53 5886.49 3694.07 18696.78 7281.61 26192.77 7496.20 8787.71 2899.12 51
sss88.93 15788.26 15990.94 18994.05 19980.78 19491.71 27795.38 18481.55 26288.63 14693.91 18475.04 17695.47 32482.47 20291.61 18596.57 141
HY-MVS83.01 1289.03 15487.94 16692.29 12594.86 15882.77 13892.08 27094.49 22881.52 26386.93 17892.79 22278.32 14198.23 13779.93 25090.55 20095.88 169
CNLPA89.07 15287.98 16492.34 12196.87 7484.78 7694.08 18593.24 26581.41 26484.46 25195.13 13275.57 17196.62 26277.21 27993.84 15295.61 183
EPMVS83.90 29182.70 29587.51 29790.23 33572.67 33588.62 34081.96 38781.37 26585.01 23988.34 33666.31 29094.45 33475.30 29787.12 26295.43 186
cl2286.78 23385.98 22989.18 25892.34 25777.62 27990.84 29994.13 24581.33 26683.97 26790.15 30473.96 19496.60 26784.19 17782.94 29793.33 285
miper_ehance_all_eth87.22 21886.62 20389.02 26392.13 26377.40 28290.91 29894.81 21881.28 26784.32 25990.08 30779.26 12796.62 26283.81 18382.94 29793.04 299
IU-MVS98.77 586.00 4996.84 6581.26 26897.26 795.50 2399.13 399.03 8
CL-MVSNet_self_test81.74 30880.53 30685.36 33585.96 37472.45 34190.25 30893.07 26981.24 26979.85 32787.29 35170.93 23092.52 36266.95 35169.23 37691.11 348
test20.0379.95 32979.08 32882.55 35485.79 37667.74 37191.09 29491.08 32481.23 27074.48 36489.96 31161.63 32190.15 37960.08 37676.38 36089.76 360
miper_lstm_enhance85.27 26984.59 26787.31 30291.28 29774.63 31587.69 35294.09 24781.20 27181.36 30589.85 31374.97 17894.30 33981.03 23379.84 34393.01 300
TR-MVS86.78 23385.76 23989.82 23594.37 18578.41 25592.47 25392.83 27481.11 27286.36 19592.40 23168.73 26697.48 19873.75 31189.85 21393.57 277
VDDNet89.56 13388.49 15192.76 9995.07 14582.09 15796.30 4393.19 26781.05 27391.88 9896.86 5961.16 33198.33 13188.43 12392.49 18097.84 82
tpm84.73 27884.02 27386.87 31890.33 33268.90 36689.06 33489.94 34980.85 27485.75 20889.86 31268.54 26895.97 30077.76 27384.05 28595.75 175
D2MVS85.90 25585.09 25588.35 27990.79 31977.42 28191.83 27495.70 15880.77 27580.08 32290.02 30866.74 28596.37 28381.88 21887.97 24891.26 343
FE-MVS87.40 20886.02 22791.57 15794.56 17579.69 22790.27 30693.72 25980.57 27688.80 14491.62 26265.32 29798.59 10674.97 30294.33 14696.44 144
Anonymous20240521187.68 19086.13 22192.31 12396.66 7980.74 19594.87 13391.49 31680.47 27789.46 13595.44 11754.72 36298.23 13782.19 20989.89 21197.97 72
jason90.80 9990.10 10692.90 9293.04 23883.53 11293.08 23594.15 24380.22 27891.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
thisisatest051587.33 21185.99 22891.37 16693.49 22379.55 22990.63 30289.56 35780.17 27987.56 16690.86 28467.07 27998.28 13581.50 22693.02 17096.29 149
tpmrst85.35 26684.99 25686.43 32390.88 31767.88 37088.71 33891.43 31880.13 28086.08 20388.80 33073.05 20796.02 29882.48 20183.40 29595.40 187
CDPH-MVS92.83 6992.30 7594.44 4497.79 4986.11 4894.06 18896.66 8580.09 28192.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
PM-MVS78.11 34076.12 34484.09 34883.54 38470.08 36288.97 33685.27 37879.93 28274.73 36286.43 35834.70 39293.48 35279.43 25872.06 37088.72 371
UWE-MVS83.69 29483.09 28785.48 33393.06 23665.27 37990.92 29786.14 37279.90 28386.26 19990.72 29157.17 35195.81 30971.03 32692.62 17695.35 190
lupinMVS90.92 9890.21 10293.03 8493.86 20983.88 10192.81 24593.86 25479.84 28491.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
PatchMatch-RL86.77 23685.54 24390.47 20795.88 11282.71 14490.54 30392.31 28879.82 28584.32 25991.57 26668.77 26596.39 28273.16 31393.48 16192.32 322
PLCcopyleft84.53 789.06 15388.03 16392.15 12897.27 6882.69 14594.29 17195.44 18079.71 28684.01 26694.18 16976.68 15698.75 9377.28 27893.41 16295.02 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
F-COLMAP87.95 18386.80 19391.40 16496.35 9280.88 19194.73 14295.45 17879.65 28782.04 29794.61 15371.13 22698.50 11076.24 29091.05 19594.80 212
test_vis1_n86.56 24286.49 20986.78 32088.51 35472.69 33494.68 14593.78 25879.55 28890.70 11795.31 12148.75 37893.28 35593.15 4593.99 14894.38 235
MIMVSNet82.59 30180.53 30688.76 26891.51 28678.32 25886.57 36290.13 34479.32 28980.70 31288.69 33352.98 36993.07 35966.03 35788.86 23294.90 207
KD-MVS_2432*160078.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28679.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
miper_refine_blended78.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28679.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
test-mter84.54 28183.64 27987.25 30590.95 31071.67 34889.55 32389.88 35279.17 29284.54 24887.95 34255.56 35695.11 32981.82 21993.37 16494.97 200
miper_enhance_ethall86.90 23086.18 21989.06 26191.66 28477.58 28090.22 31294.82 21779.16 29384.48 25089.10 32379.19 12996.66 25984.06 17882.94 29792.94 302
MDA-MVSNet-bldmvs78.85 33776.31 34286.46 32289.76 34373.88 32388.79 33790.42 33879.16 29359.18 38988.33 33760.20 33594.04 34262.00 37168.96 37891.48 339
WB-MVSnew83.77 29283.28 28385.26 33891.48 28771.03 35491.89 27187.98 36478.91 29584.78 24290.22 30069.11 26194.02 34364.70 36390.44 20190.71 352
tpmvs83.35 29782.07 29687.20 30991.07 30671.00 35688.31 34491.70 30878.91 29580.49 31687.18 35469.30 25797.08 23968.12 34683.56 29193.51 281
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29790.45 12095.92 10082.65 8798.84 8880.68 24098.26 5796.14 155
MSDG84.86 27683.09 28790.14 22093.80 21280.05 21589.18 33293.09 26878.89 29778.19 33891.91 25265.86 29697.27 22568.47 34188.45 23993.11 296
PAPM86.68 23885.39 24790.53 19893.05 23779.33 23989.79 32094.77 22178.82 29981.95 29893.24 20576.81 15297.30 22166.94 35293.16 16894.95 206
PVSNet78.82 1885.55 26184.65 26588.23 28494.72 16471.93 34387.12 35892.75 27778.80 30084.95 24090.53 29464.43 30396.71 25874.74 30393.86 15196.06 163
MVP-Stereo85.97 25484.86 26189.32 25490.92 31482.19 15692.11 26894.19 24178.76 30178.77 33791.63 26168.38 27096.56 27075.01 30193.95 14989.20 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVScopyleft83.78 1188.74 16387.29 18093.08 8192.70 24985.39 6796.57 3696.43 9778.74 30280.85 31096.07 9469.64 24999.01 6378.01 27296.65 10094.83 210
KD-MVS_self_test80.20 32679.24 32483.07 35185.64 37865.29 37891.01 29693.93 25078.71 30376.32 35186.40 35959.20 34392.93 36072.59 31569.35 37591.00 351
MDTV_nov1_ep1383.56 28091.69 28369.93 36387.75 35191.54 31478.60 30484.86 24188.90 32769.54 25096.03 29770.25 32988.93 231
test_fmvs1_n87.03 22787.04 18786.97 31389.74 34471.86 34494.55 15294.43 23078.47 30591.95 9695.50 11651.16 37393.81 34793.02 4894.56 13995.26 192
Patchmatch-RL test81.67 30979.96 31586.81 31985.42 37971.23 35182.17 38587.50 36978.47 30577.19 34682.50 38070.81 23293.48 35282.66 20072.89 36895.71 179
QAPM89.51 13488.15 16093.59 6894.92 15484.58 7996.82 2996.70 8378.43 30783.41 28096.19 9073.18 20699.30 4077.11 28196.54 10196.89 127
131487.51 20386.57 20590.34 21392.42 25679.74 22692.63 24995.35 18878.35 30880.14 32091.62 26274.05 19297.15 23481.05 23093.53 15794.12 245
test_fmvs187.34 21087.56 17386.68 32190.59 32671.80 34694.01 19294.04 24878.30 30991.97 9495.22 12556.28 35493.71 34992.89 4994.71 13394.52 223
CR-MVSNet85.35 26683.76 27790.12 22190.58 32779.34 23685.24 37191.96 30478.27 31085.55 21387.87 34571.03 22895.61 31673.96 30989.36 22295.40 187
USDC82.76 29881.26 30387.26 30491.17 30074.55 31689.27 32993.39 26478.26 31175.30 35892.08 24654.43 36496.63 26171.64 31885.79 27290.61 354
new-patchmatchnet76.41 34575.17 34880.13 36082.65 38759.61 39187.66 35391.08 32478.23 31269.85 37983.22 37454.76 36191.63 37264.14 36664.89 38589.16 368
1112_ss88.42 17087.33 17991.72 15194.92 15480.98 18792.97 24094.54 22778.16 31383.82 26993.88 18578.78 13397.91 16979.45 25689.41 22096.26 151
MIMVSNet179.38 33477.28 33685.69 33286.35 37173.67 32491.61 28192.75 27778.11 31472.64 37188.12 34048.16 37991.97 36960.32 37577.49 35491.43 340
test_fmvs283.98 28784.03 27283.83 34987.16 36867.53 37393.93 19892.89 27277.62 31586.89 18393.53 19547.18 38292.02 36790.54 10286.51 26791.93 329
MS-PatchMatch85.05 27384.16 27087.73 29391.42 29178.51 25291.25 29093.53 26177.50 31680.15 31991.58 26461.99 31995.51 32075.69 29394.35 14589.16 368
AllTest83.42 29581.39 30189.52 24995.01 14777.79 27493.12 23290.89 33277.41 31776.12 35393.34 19854.08 36597.51 19668.31 34384.27 28393.26 287
TestCases89.52 24995.01 14777.79 27490.89 33277.41 31776.12 35393.34 19854.08 36597.51 19668.31 34384.27 28393.26 287
TESTMET0.1,183.74 29382.85 29386.42 32489.96 34071.21 35289.55 32387.88 36577.41 31783.37 28187.31 35056.71 35293.65 35180.62 24192.85 17494.40 234
gm-plane-assit89.60 34768.00 36877.28 32088.99 32597.57 18979.44 257
EG-PatchMatch MVS82.37 30380.34 30988.46 27690.27 33379.35 23592.80 24694.33 23677.14 32173.26 36990.18 30347.47 38196.72 25670.25 32987.32 26189.30 365
FMVSNet581.52 31379.60 32087.27 30391.17 30077.95 26691.49 28392.26 29176.87 32276.16 35287.91 34451.67 37192.34 36467.74 34781.16 31991.52 337
mvsany_test185.42 26485.30 25185.77 33187.95 36575.41 30887.61 35580.97 38976.82 32388.68 14595.83 10477.44 14890.82 37785.90 15686.51 26791.08 350
our_test_381.93 30580.46 30886.33 32588.46 35773.48 32788.46 34291.11 32376.46 32476.69 34988.25 33866.89 28194.36 33768.75 33979.08 34891.14 346
TDRefinement79.81 33077.34 33587.22 30879.24 39375.48 30793.12 23292.03 29976.45 32575.01 35991.58 26449.19 37796.44 27970.22 33169.18 37789.75 361
LF4IMVS80.37 32579.07 32984.27 34686.64 37069.87 36489.39 32891.05 32676.38 32674.97 36090.00 30947.85 38094.25 34174.55 30680.82 33088.69 372
TAPA-MVS84.62 688.16 17887.01 18891.62 15496.64 8080.65 19694.39 16596.21 11876.38 32686.19 20195.44 11779.75 11998.08 15662.75 37095.29 12596.13 156
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dp81.47 31480.23 31185.17 33989.92 34165.49 37786.74 36090.10 34576.30 32881.10 30787.12 35562.81 31595.92 30268.13 34579.88 34194.09 248
CostFormer85.77 25984.94 25988.26 28291.16 30272.58 34089.47 32791.04 32776.26 32986.45 19389.97 31070.74 23396.86 25482.35 20587.07 26495.34 191
RPSCF85.07 27284.27 26987.48 30092.91 24470.62 35991.69 27992.46 28376.20 33082.67 29095.22 12563.94 30697.29 22477.51 27785.80 27194.53 222
Test_1112_low_res87.65 19286.51 20791.08 17994.94 15379.28 24091.77 27594.30 23776.04 33183.51 27892.37 23277.86 14697.73 17878.69 26489.13 22796.22 152
pmmvs485.43 26383.86 27690.16 21890.02 33982.97 13490.27 30692.67 28075.93 33280.73 31191.74 25771.05 22795.73 31478.85 26383.46 29391.78 331
LS3D87.89 18486.32 21492.59 10996.07 10382.92 13695.23 10994.92 20975.66 33382.89 28795.98 9872.48 21599.21 4568.43 34295.23 12895.64 180
pmmvs584.21 28482.84 29488.34 28088.95 35176.94 28792.41 25491.91 30675.63 33480.28 31791.18 27564.59 30295.57 31777.09 28283.47 29292.53 313
Anonymous2024052180.44 32479.21 32584.11 34785.75 37767.89 36992.86 24493.23 26675.61 33575.59 35787.47 34950.03 37494.33 33871.14 32481.21 31890.12 359
pmmvs-eth3d80.97 32078.72 33287.74 29284.99 38179.97 22190.11 31591.65 31075.36 33673.51 36786.03 36159.45 34093.96 34675.17 29872.21 36989.29 366
ppachtmachnet_test81.84 30680.07 31487.15 31088.46 35774.43 31989.04 33592.16 29375.33 33777.75 34288.99 32566.20 29295.37 32565.12 36177.60 35391.65 333
test_040281.30 31779.17 32787.67 29493.19 23178.17 26292.98 23991.71 30775.25 33876.02 35590.31 29859.23 34296.37 28350.22 38983.63 29088.47 374
COLMAP_ROBcopyleft80.39 1683.96 28882.04 29789.74 23995.28 13479.75 22594.25 17392.28 28975.17 33978.02 34193.77 19058.60 34697.84 17165.06 36285.92 27091.63 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap79.76 33177.69 33485.97 32791.71 28173.12 32989.55 32390.36 34075.03 34072.03 37390.19 30246.22 38396.19 29363.11 36881.03 32488.59 373
DP-MVS87.25 21585.36 24992.90 9297.65 5583.24 11994.81 13792.00 30074.99 34181.92 29995.00 13572.66 21299.05 5566.92 35492.33 18196.40 145
PatchT82.68 30081.27 30286.89 31790.09 33770.94 35784.06 37890.15 34374.91 34285.63 21283.57 37369.37 25294.87 33365.19 35988.50 23894.84 209
CHOSEN 280x42085.15 27183.99 27488.65 27392.47 25378.40 25679.68 39192.76 27674.90 34381.41 30489.59 31669.85 24795.51 32079.92 25195.29 12592.03 327
gg-mvs-nofinetune81.77 30779.37 32288.99 26490.85 31877.73 27786.29 36379.63 39274.88 34483.19 28569.05 39360.34 33496.11 29575.46 29594.64 13793.11 296
pmmvs683.42 29581.60 29988.87 26688.01 36377.87 27094.96 12794.24 24074.67 34578.80 33691.09 28060.17 33696.49 27477.06 28375.40 36492.23 324
CHOSEN 1792x268888.84 15987.69 17092.30 12496.14 9681.42 17690.01 31795.86 14674.52 34687.41 16893.94 18075.46 17298.36 12680.36 24495.53 11597.12 113
MDA-MVSNet_test_wron79.21 33677.19 33885.29 33688.22 36172.77 33385.87 36590.06 34674.34 34762.62 38787.56 34866.14 29391.99 36866.90 35573.01 36691.10 349
YYNet179.22 33577.20 33785.28 33788.20 36272.66 33685.87 36590.05 34874.33 34862.70 38587.61 34766.09 29492.03 36666.94 35272.97 36791.15 345
mvsany_test374.95 34773.26 35180.02 36174.61 39563.16 38685.53 36978.42 39474.16 34974.89 36186.46 35736.02 39189.09 38482.39 20466.91 38187.82 378
Anonymous2024052988.09 18086.59 20492.58 11096.53 8681.92 16295.99 6995.84 14774.11 35089.06 14195.21 12761.44 32498.81 8983.67 18687.47 25697.01 119
test_fmvs377.67 34277.16 33979.22 36279.52 39261.14 38892.34 25991.64 31173.98 35178.86 33386.59 35627.38 39687.03 38788.12 12775.97 36289.50 362
无先验93.28 22796.26 11073.95 35299.05 5580.56 24296.59 139
Anonymous2023121186.59 24185.13 25490.98 18896.52 8781.50 17096.14 5796.16 11973.78 35383.65 27492.15 24063.26 31397.37 21882.82 19781.74 31494.06 250
Anonymous2023120681.03 31979.77 31884.82 34187.85 36670.26 36191.42 28492.08 29773.67 35477.75 34289.25 32162.43 31793.08 35861.50 37382.00 31091.12 347
PCF-MVS84.11 1087.74 18986.08 22592.70 10494.02 20084.43 8989.27 32995.87 14573.62 35584.43 25394.33 16178.48 13998.86 8470.27 32894.45 14394.81 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVS67.92 35567.49 35769.21 37781.09 38841.17 40588.03 34678.00 39773.50 35662.63 38683.11 37763.94 30686.52 38925.66 40251.45 39579.94 388
HyFIR lowres test88.09 18086.81 19291.93 13896.00 10680.63 19790.01 31795.79 15073.42 35787.68 16492.10 24573.86 19697.96 16580.75 23891.70 18497.19 107
MDTV_nov1_ep13_2view55.91 40087.62 35473.32 35884.59 24770.33 24174.65 30495.50 184
JIA-IIPM81.04 31878.98 33087.25 30588.64 35373.48 32781.75 38689.61 35673.19 35982.05 29673.71 39066.07 29595.87 30571.18 32384.60 28092.41 318
cascas86.43 24984.98 25790.80 19292.10 26580.92 19090.24 31095.91 14173.10 36083.57 27788.39 33565.15 29997.46 20184.90 16891.43 18794.03 252
ANet_high58.88 36454.22 36872.86 37056.50 40856.67 39580.75 38886.00 37373.09 36137.39 40064.63 39722.17 40079.49 40043.51 39423.96 40282.43 386
ADS-MVSNet281.66 31079.71 31987.50 29891.35 29474.19 32183.33 38188.48 36272.90 36282.24 29485.77 36464.98 30093.20 35764.57 36483.74 28795.12 196
ADS-MVSNet81.56 31279.78 31686.90 31691.35 29471.82 34583.33 38189.16 35972.90 36282.24 29485.77 36464.98 30093.76 34864.57 36483.74 28795.12 196
PVSNet_073.20 2077.22 34374.83 34984.37 34490.70 32471.10 35383.09 38389.67 35572.81 36473.93 36683.13 37560.79 33293.70 35068.54 34050.84 39688.30 375
testdata90.49 20296.40 8977.89 26995.37 18672.51 36593.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 166
SSC-MVS67.06 35666.56 35868.56 37980.54 38940.06 40787.77 35077.37 40072.38 36661.75 38882.66 37963.37 31186.45 39024.48 40348.69 39879.16 390
PMMVS85.71 26084.96 25887.95 29088.90 35277.09 28588.68 33990.06 34672.32 36786.47 19090.76 29072.15 21894.40 33681.78 22193.49 15992.36 320
Patchmtry82.71 29980.93 30588.06 28790.05 33876.37 29784.74 37691.96 30472.28 36881.32 30687.87 34571.03 22895.50 32268.97 33880.15 33892.32 322
tpm284.08 28682.94 29087.48 30091.39 29271.27 35089.23 33190.37 33971.95 36984.64 24589.33 32067.30 27496.55 27275.17 29887.09 26394.63 215
UnsupCasMVSNet_bld76.23 34673.27 35085.09 34083.79 38372.92 33085.65 36893.47 26371.52 37068.84 38179.08 38549.77 37593.21 35666.81 35660.52 38989.13 370
RPMNet83.95 28981.53 30091.21 17190.58 32779.34 23685.24 37196.76 7571.44 37185.55 21382.97 37870.87 23198.91 8061.01 37489.36 22295.40 187
旧先验293.36 21971.25 37294.37 3997.13 23786.74 146
新几何193.10 7997.30 6684.35 9295.56 16871.09 37391.26 11396.24 8582.87 8598.86 8479.19 26198.10 6296.07 161
test_vis1_rt77.96 34176.46 34182.48 35585.89 37571.74 34790.25 30878.89 39371.03 37471.30 37681.35 38242.49 38891.05 37684.55 17382.37 30484.65 380
Patchmatch-test81.37 31579.30 32387.58 29690.92 31474.16 32280.99 38787.68 36870.52 37576.63 35088.81 32871.21 22592.76 36160.01 37886.93 26595.83 172
114514_t89.51 13488.50 14992.54 11298.11 3681.99 15995.16 11696.36 10270.19 37685.81 20695.25 12476.70 15598.63 10282.07 21396.86 9597.00 120
N_pmnet68.89 35468.44 35670.23 37489.07 35028.79 41188.06 34519.50 41169.47 37771.86 37484.93 36761.24 32791.75 37054.70 38677.15 35690.15 358
OpenMVS_ROBcopyleft74.94 1979.51 33377.03 34086.93 31487.00 36976.23 29992.33 26090.74 33568.93 37874.52 36388.23 33949.58 37696.62 26257.64 38284.29 28287.94 377
test22296.55 8481.70 16692.22 26495.01 20168.36 37990.20 12496.14 9280.26 11497.80 7496.05 164
MVS87.44 20686.10 22491.44 16392.61 25183.62 10992.63 24995.66 16267.26 38081.47 30292.15 24077.95 14398.22 13979.71 25295.48 11892.47 315
tpm cat181.96 30480.27 31087.01 31291.09 30571.02 35587.38 35691.53 31566.25 38180.17 31886.35 36068.22 27196.15 29469.16 33782.29 30593.86 260
CVMVSNet84.69 28084.79 26384.37 34491.84 27464.92 38093.70 20991.47 31766.19 38286.16 20295.28 12267.18 27793.33 35480.89 23690.42 20394.88 208
test_f71.95 35170.87 35375.21 36974.21 39759.37 39285.07 37385.82 37465.25 38370.42 37883.13 37523.62 39782.93 39778.32 26771.94 37183.33 382
CMPMVSbinary59.16 2180.52 32279.20 32684.48 34383.98 38267.63 37289.95 31993.84 25664.79 38466.81 38391.14 27857.93 34895.17 32776.25 28988.10 24490.65 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet81.32 31680.95 30482.42 35688.50 35663.67 38493.32 22191.33 31964.02 38580.57 31592.83 21861.21 32892.27 36576.34 28880.38 33791.32 341
test_vis3_rt65.12 35862.60 36072.69 37171.44 39860.71 38987.17 35765.55 40463.80 38653.22 39265.65 39614.54 40689.44 38376.65 28465.38 38367.91 395
new_pmnet72.15 35070.13 35478.20 36582.95 38665.68 37583.91 37982.40 38662.94 38764.47 38479.82 38442.85 38786.26 39157.41 38374.44 36582.65 385
DSMNet-mixed76.94 34476.29 34378.89 36383.10 38556.11 39987.78 34979.77 39160.65 38875.64 35688.71 33161.56 32388.34 38660.07 37789.29 22492.21 325
pmmvs371.81 35268.71 35581.11 35875.86 39470.42 36086.74 36083.66 38258.95 38968.64 38280.89 38336.93 39089.52 38263.10 36963.59 38683.39 381
MVS-HIRNet73.70 34972.20 35278.18 36691.81 27756.42 39882.94 38482.58 38555.24 39068.88 38066.48 39455.32 35995.13 32858.12 38188.42 24083.01 383
PMMVS259.60 36156.40 36369.21 37768.83 40246.58 40373.02 39677.48 39955.07 39149.21 39472.95 39217.43 40480.04 39949.32 39044.33 39980.99 387
APD_test169.04 35366.26 35977.36 36880.51 39062.79 38785.46 37083.51 38354.11 39259.14 39084.79 36923.40 39989.61 38155.22 38570.24 37379.68 389
FPMVS64.63 35962.55 36170.88 37270.80 39956.71 39484.42 37784.42 38051.78 39349.57 39381.61 38123.49 39881.48 39840.61 39876.25 36174.46 391
LCM-MVSNet66.00 35762.16 36277.51 36764.51 40558.29 39383.87 38090.90 33148.17 39454.69 39173.31 39116.83 40586.75 38865.47 35861.67 38887.48 379
DeepMVS_CXcopyleft56.31 38474.23 39651.81 40156.67 40944.85 39548.54 39575.16 38827.87 39558.74 40540.92 39752.22 39458.39 398
Gipumacopyleft57.99 36554.91 36767.24 38088.51 35465.59 37652.21 39990.33 34143.58 39642.84 39951.18 40020.29 40285.07 39234.77 39970.45 37251.05 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf159.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
APD_test259.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
PMVScopyleft47.18 2252.22 36648.46 37063.48 38145.72 41046.20 40473.41 39578.31 39541.03 39930.06 40265.68 3956.05 40983.43 39630.04 40065.86 38260.80 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 36942.29 37146.03 38565.58 40437.41 40873.51 39464.62 40533.99 40028.47 40447.87 40119.90 40367.91 40222.23 40424.45 40132.77 400
EMVS42.07 37041.12 37244.92 38663.45 40635.56 41073.65 39363.48 40633.05 40126.88 40545.45 40221.27 40167.14 40319.80 40523.02 40332.06 401
MVEpermissive39.65 2343.39 36838.59 37457.77 38256.52 40748.77 40255.38 39858.64 40829.33 40228.96 40352.65 3994.68 41064.62 40428.11 40133.07 40059.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 36748.47 36956.66 38352.26 40918.98 41341.51 40181.40 38810.10 40344.59 39875.01 38928.51 39468.16 40153.54 38749.31 39782.83 384
wuyk23d21.27 37320.48 37623.63 38868.59 40336.41 40949.57 4006.85 4129.37 4047.89 4064.46 4084.03 41131.37 40617.47 40616.07 4053.12 403
tmp_tt35.64 37139.24 37324.84 38714.87 41123.90 41262.71 39751.51 4106.58 40536.66 40162.08 39844.37 38530.34 40752.40 38822.00 40420.27 402
testmvs8.92 37411.52 3771.12 3901.06 4120.46 41586.02 3640.65 4130.62 4062.74 4079.52 4060.31 4130.45 4092.38 4070.39 4062.46 405
test1238.76 37511.22 3781.39 3890.85 4130.97 41485.76 3670.35 4140.54 4072.45 4088.14 4070.60 4120.48 4082.16 4080.17 4072.71 404
EGC-MVSNET61.97 36056.37 36478.77 36489.63 34673.50 32689.12 33382.79 3840.21 4081.24 40984.80 36839.48 38990.04 38044.13 39375.94 36372.79 392
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k22.14 37229.52 3750.00 3910.00 4140.00 4160.00 40295.76 1520.00 4090.00 41094.29 16475.66 1700.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.64 3778.86 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40979.70 1210.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.82 37610.43 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41093.88 1850.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS64.08 38259.14 379
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
eth-test20.00 414
eth-test0.00 414
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
GSMVS96.12 157
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 157
sam_mvs70.60 234
ambc83.06 35279.99 39163.51 38577.47 39292.86 27374.34 36584.45 37028.74 39395.06 33173.06 31468.89 37990.61 354
MTGPAbinary96.97 50
test_post188.00 3479.81 40569.31 25695.53 31876.65 284
test_post10.29 40470.57 23895.91 304
patchmatchnet-post83.76 37271.53 22296.48 275
GG-mvs-BLEND87.94 29189.73 34577.91 26787.80 34878.23 39680.58 31483.86 37159.88 33895.33 32671.20 32192.22 18290.60 356
MTMP96.16 5360.64 407
test9_res91.91 7898.71 3298.07 66
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
test_prior485.96 5394.11 181
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
新几何293.11 234
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
原ACMM292.94 241
testdata298.75 9378.30 268
segment_acmp87.16 36
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
plane_prior794.70 16682.74 141
plane_prior694.52 17682.75 13974.23 187
plane_prior596.22 11598.12 14488.15 12489.99 20794.63 215
plane_prior494.86 140
plane_prior194.59 171
n20.00 415
nn0.00 415
door-mid85.49 375
lessismore_v086.04 32688.46 35768.78 36780.59 39073.01 37090.11 30655.39 35796.43 28075.06 30065.06 38492.90 303
test1196.57 92
door85.33 377
HQP5-MVS81.56 168
BP-MVS87.11 143
HQP4-MVS85.43 22697.96 16594.51 225
HQP3-MVS96.04 13189.77 216
HQP2-MVS73.83 197
NP-MVS94.37 18582.42 15193.98 178
ACMMP++_ref87.47 256
ACMMP++88.01 247
Test By Simon80.02 116