This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MVS_030478.73 1578.75 1478.66 2980.82 10057.62 8285.31 2981.31 11170.51 174.17 5291.24 1454.99 4489.56 1682.29 188.13 3488.80 6
CANet76.46 3675.93 3978.06 3881.29 9257.53 8482.35 6883.31 7367.78 270.09 9986.34 9454.92 4688.90 2472.68 4784.55 6487.76 31
UA-Net73.13 6772.93 6773.76 11383.58 6451.66 17778.75 11777.66 18367.75 372.61 7789.42 4649.82 9883.29 14253.61 18983.14 7486.32 76
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 1784.37 3585.03 3466.96 477.58 2790.06 3559.47 2089.13 2178.67 1389.73 1687.03 52
TranMVSNet+NR-MVSNet70.36 11070.10 10671.17 17878.64 14842.97 27976.53 16381.16 11866.95 568.53 12885.42 11851.61 8383.07 14652.32 19769.70 24487.46 40
3Dnovator+66.72 475.84 4474.57 5279.66 882.40 7659.92 4785.83 2186.32 1666.92 667.80 14789.24 5042.03 18789.38 1864.07 10686.50 5489.69 2
NCCC78.58 1678.31 1879.39 1187.51 1262.61 1385.20 3084.42 4266.73 774.67 4789.38 4855.30 4189.18 2074.19 3687.34 4286.38 68
SteuartSystems-ACMMP79.48 1079.31 1079.98 283.01 7262.18 1687.60 985.83 1966.69 878.03 2690.98 1554.26 5190.06 1278.42 1889.02 2387.69 32
Skip Steuart: Steuart Systems R&D Blog.
EPNet73.09 6872.16 7275.90 6475.95 21556.28 10383.05 5572.39 25266.53 965.27 19687.00 7750.40 9585.47 10162.48 12386.32 5585.94 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet_NR-MVSNet71.11 9671.00 9171.44 16879.20 13344.13 26776.02 17682.60 8666.48 1068.20 13284.60 13056.82 3282.82 15754.62 18070.43 22687.36 47
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1786.83 865.51 1183.81 1090.51 2263.71 1289.23 1981.51 288.44 2788.09 20
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6065.37 1278.78 2290.64 1858.63 2487.24 5079.00 1190.37 1485.26 120
NR-MVSNet69.54 13168.85 12471.59 16678.05 16643.81 27174.20 21080.86 12465.18 1362.76 23184.52 13152.35 7483.59 13850.96 21270.78 22187.37 45
MTAPA76.90 3376.42 3478.35 3486.08 3763.57 274.92 19880.97 12265.13 1475.77 3490.88 1648.63 11286.66 6977.23 2088.17 3384.81 132
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 5988.18 187.15 365.04 1584.26 591.86 667.01 190.84 379.48 591.38 288.42 10
test_0728_THIRD65.04 1583.82 892.00 364.69 1090.75 879.48 590.63 1088.09 20
EI-MVSNet-Vis-set72.42 7771.59 7774.91 8378.47 15254.02 13577.05 15379.33 14665.03 1771.68 8779.35 24152.75 6784.89 11366.46 8674.23 17385.83 92
casdiffmvs_mvgpermissive76.14 4076.30 3575.66 7076.46 20951.83 17679.67 10885.08 3165.02 1875.84 3388.58 5959.42 2185.08 10772.75 4683.93 7190.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060187.58 959.30 5686.84 765.01 1983.80 1191.86 664.03 11
ETV-MVS74.46 5773.84 6076.33 5979.27 13155.24 12579.22 11485.00 3664.97 2072.65 7679.46 23853.65 6287.87 4167.45 8082.91 8085.89 90
WR-MVS68.47 15468.47 13268.44 22480.20 11239.84 30173.75 22276.07 20664.68 2168.11 13783.63 15050.39 9679.14 22849.78 21769.66 24586.34 72
XVS77.17 3076.56 3379.00 2286.32 2962.62 1185.83 2183.92 5164.55 2272.17 8290.01 3947.95 11988.01 3771.55 5586.74 5186.37 70
X-MVStestdata70.21 11367.28 16179.00 2286.32 2962.62 1185.83 2183.92 5164.55 2272.17 826.49 38147.95 11988.01 3771.55 5586.74 5186.37 70
HQP_MVS74.31 5873.73 6176.06 6181.41 8956.31 10184.22 3984.01 4964.52 2469.27 11786.10 9945.26 16087.21 5268.16 7180.58 10284.65 136
plane_prior284.22 3964.52 24
EI-MVSNet-UG-set71.92 8471.06 9074.52 9877.98 16953.56 14176.62 16179.16 14764.40 2671.18 9078.95 24652.19 7584.66 11965.47 9773.57 18385.32 117
DU-MVS70.01 11669.53 11371.44 16878.05 16644.13 26775.01 19581.51 10164.37 2768.20 13284.52 13149.12 10982.82 15754.62 18070.43 22687.37 45
DVP-MVScopyleft80.84 481.64 378.42 3387.75 759.07 6387.85 585.03 3464.26 2883.82 892.00 364.82 890.75 878.66 1490.61 1185.45 110
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6387.86 486.83 864.26 2884.19 791.92 564.82 8
test_241102_ONE87.77 458.90 6886.78 1064.20 3085.97 191.34 1266.87 390.78 7
SED-MVS81.56 282.30 279.32 1287.77 458.90 6887.82 786.78 1064.18 3185.97 191.84 866.87 390.83 578.63 1690.87 588.23 15
test_241102_TWO86.73 1264.18 3184.26 591.84 865.19 690.83 578.63 1690.70 787.65 34
LFMVS71.78 8671.59 7772.32 15483.40 6746.38 24479.75 10671.08 26164.18 3172.80 7388.64 5842.58 18283.72 13457.41 15884.49 6586.86 57
IS-MVSNet71.57 9071.00 9173.27 13578.86 14145.63 25580.22 9678.69 15864.14 3466.46 17287.36 7249.30 10385.60 9450.26 21683.71 7388.59 8
plane_prior356.09 10763.92 3569.27 117
MP-MVScopyleft78.35 1978.26 2078.64 3086.54 2563.47 486.02 1983.55 6463.89 3673.60 5990.60 1954.85 4786.72 6777.20 2188.06 3685.74 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DELS-MVS74.76 5174.46 5375.65 7177.84 17252.25 16875.59 18284.17 4663.76 3773.15 6682.79 16459.58 1986.80 6567.24 8186.04 5687.89 23
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPM-MVS74.73 5274.25 5576.19 6080.81 10159.01 6682.60 6583.64 6163.74 3872.52 7887.49 7047.18 13485.88 8969.47 6480.78 9883.66 171
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)70.63 10570.20 10271.89 15778.55 14945.29 25875.94 17782.92 8163.68 3968.16 13583.59 15153.89 5683.49 14053.97 18571.12 21986.89 56
GST-MVS78.14 2177.85 2378.99 2486.05 3861.82 2285.84 2085.21 2963.56 4074.29 5190.03 3752.56 6888.53 2874.79 3288.34 2986.63 64
EC-MVSNet75.84 4475.87 4175.74 6878.86 14152.65 15883.73 4986.08 1763.47 4172.77 7487.25 7653.13 6587.93 3971.97 5185.57 5986.66 63
ZNCC-MVS78.82 1278.67 1679.30 1386.43 2862.05 1886.62 1186.01 1863.32 4275.08 3890.47 2553.96 5588.68 2676.48 2489.63 2087.16 50
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4185.71 2586.42 1463.28 4383.27 1391.83 1064.96 790.47 1076.41 2589.67 1886.84 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS76.25 3975.98 3877.06 4980.15 11555.63 11784.51 3483.90 5363.24 4473.30 6287.27 7555.06 4386.30 8271.78 5284.58 6389.25 4
DeepC-MVS69.38 278.56 1778.14 2179.83 683.60 6361.62 2384.17 4186.85 663.23 4573.84 5790.25 3157.68 2789.96 1374.62 3389.03 2287.89 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS72.50 7472.09 7373.75 11581.58 8549.69 20777.76 13577.63 18463.21 4673.21 6589.02 5242.14 18683.32 14161.72 13082.50 8688.25 14
plane_prior56.31 10183.58 5263.19 4780.48 105
ACMMPcopyleft76.02 4275.33 4578.07 3785.20 4961.91 2085.49 2884.44 4163.04 4869.80 10989.74 4545.43 15687.16 5472.01 5082.87 8285.14 121
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS66.60 19466.45 17467.04 23877.11 19536.56 33277.03 15480.42 13062.95 4962.51 23984.03 14146.69 14279.07 22944.22 26463.08 30185.51 107
APDe-MVS80.16 780.59 678.86 2786.64 2160.02 4588.12 386.42 1462.94 5082.40 1492.12 259.64 1889.76 1478.70 1288.32 3186.79 60
mPP-MVS76.54 3575.93 3978.34 3586.47 2663.50 385.74 2482.28 8962.90 5171.77 8590.26 3046.61 14386.55 7371.71 5385.66 5884.97 128
ACMMP_NAP78.77 1478.78 1378.74 2885.44 4561.04 3183.84 4885.16 3062.88 5278.10 2491.26 1352.51 6988.39 2979.34 790.52 1386.78 61
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1884.92 5660.32 4483.03 5685.33 2762.86 5380.17 1790.03 3761.76 1488.95 2374.21 3588.67 2688.12 19
HFP-MVS78.01 2377.65 2479.10 2086.71 1962.81 886.29 1484.32 4462.82 5473.96 5590.50 2353.20 6488.35 3074.02 3887.05 4386.13 82
ACMMPR77.71 2477.23 2779.16 1686.75 1862.93 786.29 1484.24 4562.82 5473.55 6090.56 2149.80 9988.24 3274.02 3887.03 4486.32 76
region2R77.67 2677.18 2879.15 1786.76 1762.95 686.29 1484.16 4762.81 5673.30 6290.58 2049.90 9788.21 3373.78 4087.03 4486.29 79
casdiffmvspermissive74.80 5074.89 5074.53 9775.59 22150.37 19478.17 12785.06 3362.80 5774.40 4987.86 6757.88 2683.61 13769.46 6582.79 8489.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 5474.70 5174.34 10175.70 21749.99 20277.54 14084.63 4062.73 5873.98 5487.79 6957.67 2883.82 13369.49 6382.74 8589.20 5
HPM-MVScopyleft77.28 2876.85 2978.54 3185.00 5160.81 3882.91 5985.08 3162.57 5973.09 6989.97 4050.90 9387.48 4875.30 2886.85 4987.33 48
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DTE-MVSNet65.58 20665.34 19766.31 24576.06 21434.79 34176.43 16579.38 14562.55 6061.66 24883.83 14645.60 15079.15 22741.64 29160.88 31585.00 126
SMA-MVScopyleft80.28 680.39 779.95 386.60 2361.95 1986.33 1385.75 2162.49 6182.20 1592.28 156.53 3389.70 1579.85 491.48 188.19 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVSNet66.49 19766.41 17866.72 24077.67 17736.33 33576.83 16079.52 14262.45 6262.54 23783.47 15746.32 14478.37 23745.47 25963.43 29885.45 110
CP-MVS77.12 3176.68 3178.43 3286.05 3863.18 587.55 1083.45 6762.44 6372.68 7590.50 2348.18 11787.34 4973.59 4285.71 5784.76 135
PS-CasMVS66.42 19866.32 18266.70 24277.60 18536.30 33776.94 15679.61 14062.36 6462.43 24183.66 14945.69 14878.37 23745.35 26163.26 29985.42 113
3Dnovator64.47 572.49 7571.39 8275.79 6577.70 17558.99 6780.66 9383.15 7862.24 6565.46 19286.59 8842.38 18585.52 9759.59 14884.72 6282.85 191
MP-MVS-pluss78.35 1978.46 1778.03 3984.96 5259.52 5282.93 5885.39 2662.15 6676.41 3291.51 1152.47 7186.78 6680.66 389.64 1987.80 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HQP-NCC80.66 10282.31 7062.10 6767.85 142
ACMP_Plane80.66 10282.31 7062.10 6767.85 142
HQP-MVS73.45 6472.80 6875.40 7580.66 10254.94 12782.31 7083.90 5362.10 6767.85 14285.54 11645.46 15486.93 6167.04 8380.35 10684.32 143
CS-MVS-test75.62 4675.31 4676.56 5680.63 10555.13 12683.88 4785.22 2862.05 7071.49 8986.03 10253.83 5786.36 8067.74 7586.91 4888.19 17
VPNet67.52 17368.11 13865.74 25879.18 13436.80 33072.17 24372.83 24962.04 7167.79 14885.83 10948.88 11176.60 26251.30 20872.97 19683.81 161
WR-MVS_H67.02 18566.92 17067.33 23777.95 17037.75 31977.57 13882.11 9262.03 7262.65 23482.48 17550.57 9479.46 21842.91 28064.01 29184.79 133
DeepC-MVS_fast68.24 377.25 2976.63 3279.12 1986.15 3460.86 3684.71 3284.85 3861.98 7373.06 7088.88 5453.72 5889.06 2268.27 6888.04 3787.42 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS78.82 1279.22 1177.60 4382.88 7457.83 7984.99 3188.13 261.86 7479.16 2090.75 1757.96 2587.09 5977.08 2290.18 1587.87 25
PGM-MVS76.77 3476.06 3778.88 2686.14 3562.73 982.55 6683.74 5961.71 7572.45 8190.34 2848.48 11588.13 3472.32 4886.85 4985.78 93
Effi-MVS+73.31 6672.54 7075.62 7277.87 17153.64 13979.62 11079.61 14061.63 7672.02 8482.61 16956.44 3485.97 8763.99 10979.07 12687.25 49
MG-MVS73.96 6173.89 5974.16 10485.65 4249.69 20781.59 8381.29 11361.45 7771.05 9188.11 6151.77 8187.73 4461.05 13683.09 7585.05 125
LPG-MVS_test72.74 7171.74 7675.76 6680.22 11057.51 8582.55 6683.40 6961.32 7866.67 16987.33 7339.15 21786.59 7067.70 7677.30 14883.19 183
LGP-MVS_train75.76 6680.22 11057.51 8583.40 6961.32 7866.67 16987.33 7339.15 21786.59 7067.70 7677.30 14883.19 183
CLD-MVS73.33 6572.68 6975.29 7978.82 14353.33 14878.23 12684.79 3961.30 8070.41 9681.04 20652.41 7287.12 5764.61 10582.49 8785.41 114
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_HR74.02 6073.46 6475.69 6983.01 7260.63 4077.29 14878.40 17261.18 8170.58 9485.97 10454.18 5384.00 13067.52 7982.98 7982.45 197
FIs70.82 10271.43 8068.98 21778.33 15738.14 31576.96 15583.59 6361.02 8267.33 15586.73 8255.07 4281.64 17854.61 18279.22 12287.14 51
FOURS186.12 3660.82 3788.18 183.61 6260.87 8381.50 16
FC-MVSNet-test69.80 12370.58 9767.46 23377.61 18334.73 34476.05 17483.19 7760.84 8465.88 18586.46 9154.52 5080.76 20252.52 19678.12 13786.91 55
v870.33 11169.28 11873.49 12773.15 25350.22 19678.62 12180.78 12560.79 8566.45 17382.11 18749.35 10284.98 11063.58 11468.71 25885.28 118
CSCG76.92 3276.75 3077.41 4583.96 6259.60 5082.95 5786.50 1360.78 8675.27 3684.83 12360.76 1586.56 7267.86 7487.87 4086.06 84
Vis-MVSNetpermissive72.18 8071.37 8374.61 9381.29 9255.41 12280.90 8978.28 17460.73 8769.23 12088.09 6244.36 16882.65 16157.68 15581.75 9585.77 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APD-MVScopyleft78.02 2278.04 2277.98 4086.44 2760.81 3885.52 2684.36 4360.61 8879.05 2190.30 2955.54 4088.32 3173.48 4387.03 4484.83 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMP63.53 672.30 7871.20 8775.59 7480.28 10857.54 8382.74 6282.84 8460.58 8965.24 20086.18 9639.25 21586.03 8566.95 8576.79 15583.22 181
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testdata172.65 23360.50 90
UGNet68.81 14467.39 15673.06 13878.33 15754.47 13379.77 10575.40 21560.45 9163.22 22684.40 13432.71 28580.91 19851.71 20680.56 10483.81 161
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
h-mvs3372.71 7271.49 7976.40 5781.99 8159.58 5176.92 15776.74 19960.40 9274.81 4385.95 10645.54 15285.76 9270.41 6070.61 22483.86 160
hse-mvs271.04 9769.86 10774.60 9479.58 12357.12 9573.96 21475.25 21760.40 9274.81 4381.95 18945.54 15282.90 15070.41 6066.83 27283.77 165
EPP-MVSNet72.16 8271.31 8574.71 8778.68 14749.70 20582.10 7581.65 9860.40 9265.94 18185.84 10851.74 8286.37 7955.93 16679.55 11788.07 22
UniMVSNet_ETH3D67.60 17267.07 16969.18 21677.39 18842.29 28374.18 21175.59 21260.37 9566.77 16686.06 10137.64 23178.93 23552.16 19973.49 18586.32 76
test_prior281.75 7960.37 9575.01 3989.06 5156.22 3672.19 4988.96 24
SD-MVS77.70 2577.62 2577.93 4184.47 5961.88 2184.55 3383.87 5660.37 9579.89 1889.38 4854.97 4585.58 9676.12 2684.94 6186.33 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet69.68 12770.19 10368.16 22779.73 12141.63 29270.53 26577.38 18960.37 9570.69 9386.63 8651.08 8977.09 25753.61 18981.69 9785.75 98
canonicalmvs74.67 5374.98 4973.71 11778.94 14050.56 19280.23 9583.87 5660.30 9977.15 2986.56 9059.65 1782.00 17366.01 9182.12 8888.58 9
v7n69.01 14267.36 15873.98 10672.51 26752.65 15878.54 12481.30 11260.26 10062.67 23381.62 19543.61 17384.49 12057.01 15968.70 25984.79 133
HPM-MVS_fast74.30 5973.46 6476.80 5184.45 6059.04 6583.65 5181.05 11960.15 10170.43 9589.84 4241.09 20385.59 9567.61 7882.90 8185.77 96
VPA-MVSNet69.02 14169.47 11567.69 23177.42 18741.00 29774.04 21279.68 13860.06 10269.26 11984.81 12451.06 9077.58 24954.44 18374.43 17184.48 140
v1070.21 11369.02 12273.81 11073.51 25050.92 18478.74 11881.39 10460.05 10366.39 17481.83 19247.58 12685.41 10462.80 12068.86 25785.09 124
SR-MVS76.13 4175.70 4277.40 4785.87 4061.20 2985.52 2682.19 9059.99 10475.10 3790.35 2747.66 12486.52 7471.64 5482.99 7784.47 141
9.1478.75 1483.10 6984.15 4288.26 159.90 10578.57 2390.36 2657.51 3086.86 6377.39 1989.52 21
v2v48270.50 10869.45 11673.66 11972.62 26350.03 20177.58 13780.51 12959.90 10569.52 11182.14 18547.53 12784.88 11565.07 10170.17 23286.09 83
Baseline_NR-MVSNet67.05 18467.56 14765.50 26075.65 21837.70 32175.42 18574.65 22959.90 10568.14 13683.15 16149.12 10977.20 25552.23 19869.78 24181.60 209
API-MVS72.17 8171.41 8174.45 9981.95 8257.22 8884.03 4480.38 13159.89 10868.40 12982.33 17849.64 10087.83 4351.87 20384.16 7078.30 256
Effi-MVS+-dtu69.64 12967.53 15075.95 6376.10 21362.29 1580.20 9776.06 20759.83 10965.26 19977.09 26841.56 19584.02 12960.60 13971.09 22081.53 210
CANet_DTU68.18 16067.71 14569.59 20774.83 23146.24 24678.66 12076.85 19659.60 11063.45 22582.09 18835.25 25577.41 25259.88 14578.76 13185.14 121
EI-MVSNet69.27 13868.44 13471.73 16174.47 23949.39 21275.20 19078.45 16859.60 11069.16 12176.51 27851.29 8582.50 16559.86 14771.45 21783.30 178
IterMVS-LS69.22 14068.48 13071.43 17074.44 24149.40 21176.23 16977.55 18559.60 11065.85 18681.59 19851.28 8681.58 18159.87 14669.90 23983.30 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDDNet71.81 8571.33 8473.26 13682.80 7547.60 23578.74 11875.27 21659.59 11372.94 7189.40 4741.51 19783.91 13158.75 15282.99 7788.26 13
alignmvs73.86 6273.99 5773.45 12978.20 16050.50 19378.57 12282.43 8759.40 11476.57 3086.71 8456.42 3581.23 18965.84 9381.79 9288.62 7
MVS_Test72.45 7672.46 7172.42 15374.88 22948.50 22376.28 16883.14 7959.40 11472.46 7984.68 12555.66 3981.12 19065.98 9279.66 11487.63 35
TSAR-MVS + MP.78.44 1878.28 1978.90 2584.96 5261.41 2684.03 4483.82 5859.34 11679.37 1989.76 4459.84 1687.62 4676.69 2386.74 5187.68 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++73.77 6373.47 6374.66 9083.02 7159.29 5782.30 7381.88 9459.34 11671.59 8886.83 7845.94 14783.65 13665.09 10085.22 6081.06 224
PAPM_NR72.63 7371.80 7575.13 8281.72 8453.42 14679.91 10383.28 7559.14 11866.31 17685.90 10751.86 7986.06 8357.45 15780.62 10085.91 88
save fliter86.17 3361.30 2883.98 4679.66 13959.00 119
v14868.24 15967.19 16771.40 17170.43 29247.77 23275.76 18077.03 19458.91 12067.36 15480.10 22548.60 11481.89 17460.01 14366.52 27584.53 138
TransMVSNet (Re)64.72 21764.33 20665.87 25775.22 22638.56 31274.66 20475.08 22658.90 12161.79 24782.63 16851.18 8778.07 24243.63 27355.87 33680.99 225
Anonymous20240521166.84 18965.99 18869.40 21180.19 11342.21 28571.11 25971.31 26058.80 12267.90 14086.39 9329.83 30579.65 21549.60 22378.78 13086.33 74
test250665.33 21164.61 20467.50 23279.46 12634.19 34874.43 20851.92 35158.72 12366.75 16788.05 6425.99 33380.92 19751.94 20284.25 6787.39 43
ECVR-MVScopyleft67.72 17067.51 15168.35 22579.46 12636.29 33874.79 20166.93 29058.72 12367.19 15788.05 6436.10 24881.38 18452.07 20084.25 6787.39 43
test111167.21 17767.14 16867.42 23479.24 13234.76 34373.89 21965.65 29758.71 12566.96 16287.95 6636.09 24980.53 20452.03 20183.79 7286.97 53
LCM-MVSNet-Re61.88 24761.35 24163.46 27474.58 23731.48 36061.42 31958.14 33358.71 12553.02 32579.55 23643.07 17776.80 26045.69 25377.96 13982.11 203
v114470.42 10969.31 11773.76 11373.22 25150.64 18977.83 13381.43 10358.58 12769.40 11581.16 20347.53 12785.29 10664.01 10870.64 22285.34 116
TSAR-MVS + GP.74.90 4974.15 5677.17 4882.00 8058.77 7181.80 7878.57 16158.58 12774.32 5084.51 13355.94 3887.22 5167.11 8284.48 6685.52 106
BH-RMVSNet68.81 14467.42 15572.97 13980.11 11652.53 16374.26 20976.29 20258.48 12968.38 13084.20 13642.59 18183.83 13246.53 24575.91 16182.56 192
APD-MVS_3200maxsize74.96 4874.39 5476.67 5382.20 7858.24 7683.67 5083.29 7458.41 13073.71 5890.14 3245.62 14985.99 8669.64 6282.85 8385.78 93
OMC-MVS71.40 9470.60 9573.78 11176.60 20553.15 15179.74 10779.78 13658.37 13168.75 12486.45 9245.43 15680.60 20362.58 12177.73 14187.58 38
nrg03072.96 6973.01 6672.84 14275.41 22450.24 19580.02 9982.89 8358.36 13274.44 4886.73 8258.90 2380.83 19965.84 9374.46 17087.44 41
K. test v360.47 25757.11 26970.56 18973.74 24948.22 22675.10 19462.55 31758.27 13353.62 32176.31 28127.81 32081.59 18047.42 23639.18 36681.88 207
FA-MVS(test-final)69.82 12168.48 13073.84 10978.44 15350.04 20075.58 18478.99 15158.16 13467.59 15182.14 18542.66 18085.63 9356.60 16176.19 15985.84 91
MVS_111021_LR69.50 13268.78 12671.65 16478.38 15459.33 5574.82 20070.11 26858.08 13567.83 14684.68 12541.96 18876.34 26565.62 9677.54 14379.30 250
SR-MVS-dyc-post74.57 5573.90 5876.58 5583.49 6559.87 4884.29 3681.36 10658.07 13673.14 6790.07 3344.74 16385.84 9068.20 6981.76 9384.03 151
RE-MVS-def73.71 6283.49 6559.87 4884.29 3681.36 10658.07 13673.14 6790.07 3343.06 17868.20 6981.76 9384.03 151
SDMVSNet68.03 16268.10 13967.84 22977.13 19348.72 22165.32 29979.10 14858.02 13865.08 20382.55 17147.83 12173.40 27763.92 11073.92 17681.41 212
sd_testset64.46 22264.45 20564.51 26977.13 19342.25 28462.67 31272.11 25558.02 13865.08 20382.55 17141.22 20269.88 29547.32 23873.92 17681.41 212
GeoE71.01 9870.15 10473.60 12479.57 12452.17 16978.93 11678.12 17658.02 13867.76 15083.87 14552.36 7382.72 15956.90 16075.79 16285.92 87
ZD-MVS86.64 2160.38 4382.70 8557.95 14178.10 2490.06 3556.12 3788.84 2574.05 3787.00 47
EIA-MVS71.78 8670.60 9575.30 7879.85 11953.54 14277.27 14983.26 7657.92 14266.49 17179.39 23952.07 7786.69 6860.05 14279.14 12585.66 101
test_yl69.69 12569.13 11971.36 17278.37 15545.74 25174.71 20280.20 13357.91 14370.01 10483.83 14642.44 18382.87 15354.97 17679.72 11285.48 108
DCV-MVSNet69.69 12569.13 11971.36 17278.37 15545.74 25174.71 20280.20 13357.91 14370.01 10483.83 14642.44 18382.87 15354.97 17679.72 11285.48 108
dcpmvs_274.55 5675.23 4772.48 14982.34 7753.34 14777.87 13181.46 10257.80 14575.49 3586.81 7962.22 1377.75 24771.09 5782.02 9086.34 72
mvsmamba71.15 9569.54 11275.99 6277.61 18353.46 14481.95 7775.11 22257.73 14666.95 16385.96 10537.14 24087.56 4767.94 7375.49 16686.97 53
Fast-Effi-MVS+-dtu67.37 17565.33 19873.48 12872.94 25857.78 8177.47 14276.88 19557.60 14761.97 24476.85 27239.31 21380.49 20754.72 17970.28 23182.17 202
v119269.97 11868.68 12773.85 10873.19 25250.94 18277.68 13681.36 10657.51 14868.95 12380.85 21345.28 15985.33 10562.97 11970.37 22885.27 119
ACMH+57.40 1166.12 20064.06 20772.30 15577.79 17452.83 15680.39 9478.03 17757.30 14957.47 28682.55 17127.68 32184.17 12445.54 25669.78 24179.90 241
diffmvspermissive70.69 10470.43 9871.46 16769.45 30648.95 21772.93 23078.46 16757.27 15071.69 8683.97 14451.48 8477.92 24470.70 5977.95 14087.53 39
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned68.27 15767.29 16071.21 17679.74 12053.22 15076.06 17377.46 18857.19 15166.10 17881.61 19645.37 15883.50 13945.42 26076.68 15776.91 277
thres100view90063.28 23262.41 23065.89 25677.31 19038.66 31172.65 23369.11 27857.07 15262.45 24081.03 20737.01 24479.17 22431.84 33973.25 19179.83 243
DP-MVS Recon72.15 8370.73 9476.40 5786.57 2457.99 7881.15 8882.96 8057.03 15366.78 16585.56 11344.50 16688.11 3551.77 20580.23 10983.10 186
thres600view763.30 23162.27 23166.41 24477.18 19238.87 30972.35 24069.11 27856.98 15462.37 24280.96 20937.01 24479.00 23331.43 34673.05 19581.36 215
V4268.65 14867.35 15972.56 14768.93 31250.18 19772.90 23179.47 14356.92 15569.45 11480.26 22246.29 14582.99 14764.07 10667.82 26484.53 138
MCST-MVS77.48 2777.45 2677.54 4486.67 2058.36 7583.22 5486.93 556.91 15674.91 4288.19 6059.15 2287.68 4573.67 4187.45 4186.57 65
GA-MVS65.53 20763.70 21371.02 18270.87 28748.10 22770.48 26674.40 23156.69 15764.70 21176.77 27333.66 27281.10 19155.42 17570.32 23083.87 159
v14419269.71 12468.51 12973.33 13473.10 25450.13 19877.54 14080.64 12656.65 15868.57 12780.55 21646.87 14184.96 11262.98 11869.66 24584.89 130
tfpn200view963.18 23462.18 23366.21 24876.85 20039.62 30371.96 24769.44 27456.63 15962.61 23579.83 22837.18 23779.17 22431.84 33973.25 19179.83 243
thres40063.31 23062.18 23366.72 24076.85 20039.62 30371.96 24769.44 27456.63 15962.61 23579.83 22837.18 23779.17 22431.84 33973.25 19181.36 215
GBi-Net67.21 17766.55 17269.19 21377.63 17843.33 27477.31 14577.83 18056.62 16165.04 20582.70 16541.85 19080.33 20947.18 24072.76 19883.92 156
test167.21 17766.55 17269.19 21377.63 17843.33 27477.31 14577.83 18056.62 16165.04 20582.70 16541.85 19080.33 20947.18 24072.76 19883.92 156
FMVSNet266.93 18766.31 18368.79 22077.63 17842.98 27876.11 17177.47 18656.62 16165.22 20282.17 18341.85 19080.18 21247.05 24372.72 20183.20 182
DPM-MVS75.47 4775.00 4876.88 5081.38 9159.16 5879.94 10185.71 2256.59 16472.46 7986.76 8056.89 3187.86 4266.36 8788.91 2583.64 173
v192192069.47 13368.17 13773.36 13373.06 25550.10 19977.39 14380.56 12756.58 16568.59 12580.37 21844.72 16484.98 11062.47 12469.82 24085.00 126
FMVSNet166.70 19265.87 18969.19 21377.49 18643.33 27477.31 14577.83 18056.45 16664.60 21382.70 16538.08 22980.33 20946.08 24972.31 20783.92 156
v124069.24 13967.91 14173.25 13773.02 25749.82 20377.21 15080.54 12856.43 16768.34 13180.51 21743.33 17684.99 10862.03 12869.77 24384.95 129
CDPH-MVS76.31 3775.67 4378.22 3685.35 4859.14 6181.31 8684.02 4856.32 16874.05 5388.98 5353.34 6387.92 4069.23 6688.42 2887.59 37
Vis-MVSNet (Re-imp)63.69 22763.88 21063.14 27874.75 23431.04 36171.16 25763.64 31056.32 16859.80 26484.99 12144.51 16575.46 26839.12 30180.62 10082.92 188
AdaColmapbinary69.99 11768.66 12873.97 10784.94 5457.83 7982.63 6478.71 15756.28 17064.34 21484.14 13841.57 19487.06 6046.45 24678.88 12777.02 273
PS-MVSNAJss72.24 7971.21 8675.31 7778.50 15055.93 11181.63 8082.12 9156.24 17170.02 10385.68 11247.05 13684.34 12365.27 9974.41 17285.67 100
c3_l68.33 15667.56 14770.62 18870.87 28746.21 24774.47 20778.80 15556.22 17266.19 17778.53 25351.88 7881.40 18362.08 12569.04 25484.25 145
Fast-Effi-MVS+70.28 11269.12 12173.73 11678.50 15051.50 17875.01 19579.46 14456.16 17368.59 12579.55 23653.97 5484.05 12653.34 19177.53 14485.65 102
PHI-MVS75.87 4375.36 4477.41 4580.62 10655.91 11284.28 3885.78 2056.08 17473.41 6186.58 8950.94 9288.54 2770.79 5889.71 1787.79 30
baseline163.81 22663.87 21163.62 27376.29 21036.36 33371.78 24967.29 28756.05 17564.23 21882.95 16347.11 13574.41 27347.30 23961.85 30980.10 239
train_agg76.27 3876.15 3676.64 5485.58 4361.59 2481.62 8181.26 11455.86 17674.93 4088.81 5553.70 5984.68 11775.24 3088.33 3083.65 172
test_885.40 4660.96 3481.54 8481.18 11755.86 17674.81 4388.80 5753.70 5984.45 121
RRT_MVS69.42 13567.49 15375.21 8178.01 16852.56 16282.23 7478.15 17555.84 17865.65 18885.07 12030.86 29686.83 6461.56 13470.00 23586.24 81
FMVSNet366.32 19965.61 19468.46 22376.48 20842.34 28274.98 19777.15 19355.83 17965.04 20581.16 20339.91 20780.14 21347.18 24072.76 19882.90 190
PAPR71.72 8970.82 9374.41 10081.20 9651.17 17979.55 11183.33 7255.81 18066.93 16484.61 12950.95 9186.06 8355.79 16979.20 12386.00 85
eth_miper_zixun_eth67.63 17166.28 18471.67 16371.60 27848.33 22573.68 22377.88 17855.80 18165.91 18278.62 25147.35 13382.88 15259.45 14966.25 27683.81 161
ACMH55.70 1565.20 21363.57 21570.07 19778.07 16552.01 17479.48 11279.69 13755.75 18256.59 29280.98 20827.12 32580.94 19542.90 28171.58 21577.25 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS56.42 1265.40 21062.73 22773.40 13274.89 22852.78 15773.09 22975.13 22155.69 18358.48 28073.73 30332.86 28086.32 8150.63 21370.11 23381.10 223
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CL-MVSNet_self_test61.53 25060.94 24763.30 27668.95 31136.93 32967.60 28472.80 25055.67 18459.95 26176.63 27445.01 16272.22 28439.74 29962.09 30880.74 229
TEST985.58 4361.59 2481.62 8181.26 11455.65 18574.93 4088.81 5553.70 5984.68 117
thres20062.20 24361.16 24565.34 26375.38 22539.99 30069.60 27469.29 27655.64 18661.87 24676.99 26937.07 24378.96 23431.28 34773.28 19077.06 272
pm-mvs165.24 21264.97 20266.04 25372.38 26839.40 30672.62 23575.63 21155.53 18762.35 24383.18 16047.45 12976.47 26349.06 22766.54 27482.24 199
ACMM61.98 770.80 10369.73 10974.02 10580.59 10758.59 7382.68 6382.02 9355.46 18867.18 15884.39 13538.51 22283.17 14560.65 13876.10 16080.30 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052969.91 11969.02 12272.56 14780.19 11347.65 23377.56 13980.99 12155.45 18969.88 10786.76 8039.24 21682.18 17154.04 18477.10 15187.85 26
tt080567.77 16967.24 16569.34 21274.87 23040.08 29977.36 14481.37 10555.31 19066.33 17584.65 12737.35 23582.55 16455.65 17272.28 20885.39 115
CPTT-MVS72.78 7072.08 7474.87 8584.88 5761.41 2684.15 4277.86 17955.27 19167.51 15388.08 6341.93 18981.85 17569.04 6780.01 11081.35 217
XVG-OURS68.76 14767.37 15772.90 14174.32 24457.22 8870.09 27178.81 15455.24 19267.79 14885.81 11136.54 24778.28 23962.04 12775.74 16383.19 183
tfpnnormal62.47 23961.63 23864.99 26674.81 23239.01 30871.22 25573.72 24155.22 19360.21 25680.09 22641.26 20176.98 25930.02 35268.09 26278.97 253
cl____67.18 18066.26 18569.94 19970.20 29545.74 25173.30 22576.83 19755.10 19465.27 19679.57 23547.39 13180.53 20459.41 15169.22 25283.53 175
DIV-MVS_self_test67.18 18066.26 18569.94 19970.20 29545.74 25173.29 22676.83 19755.10 19465.27 19679.58 23447.38 13280.53 20459.43 15069.22 25283.54 174
PC_three_145255.09 19684.46 489.84 4266.68 589.41 1774.24 3491.38 288.42 10
EPNet_dtu61.90 24661.97 23561.68 28672.89 25939.78 30275.85 17965.62 29855.09 19654.56 31179.36 24037.59 23267.02 30739.80 29876.95 15278.25 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu71.45 9370.39 9974.65 9182.01 7958.82 7079.93 10280.35 13255.09 19665.82 18782.16 18449.17 10682.64 16260.34 14078.62 13482.50 196
cl2267.47 17466.45 17470.54 19069.85 30246.49 24373.85 22077.35 19055.07 19965.51 19177.92 25847.64 12581.10 19161.58 13369.32 24884.01 153
miper_ehance_all_eth68.03 16267.24 16570.40 19270.54 29046.21 24773.98 21378.68 15955.07 19966.05 17977.80 26252.16 7681.31 18661.53 13569.32 24883.67 169
PS-MVSNAJ70.51 10769.70 11072.93 14081.52 8655.79 11374.92 19879.00 15055.04 20169.88 10778.66 24847.05 13682.19 17061.61 13179.58 11580.83 227
iter_conf_final69.82 12168.02 14075.23 8079.38 12852.91 15580.11 9873.96 23954.99 20268.04 13983.59 15129.05 31087.16 5465.41 9877.62 14285.63 103
xiu_mvs_v2_base70.52 10669.75 10872.84 14281.21 9555.63 11775.11 19278.92 15254.92 20369.96 10679.68 23347.00 14082.09 17261.60 13279.37 11880.81 228
MAR-MVS71.51 9170.15 10475.60 7381.84 8359.39 5481.38 8582.90 8254.90 20468.08 13878.70 24747.73 12285.51 9851.68 20784.17 6981.88 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR68.81 14467.47 15472.82 14474.40 24256.87 9870.59 26479.04 14954.77 20566.99 16186.01 10339.57 21178.21 24062.54 12273.33 18983.37 177
iter_conf0569.40 13667.62 14674.73 8677.84 17251.13 18079.28 11373.71 24254.62 20668.17 13483.59 15128.68 31587.16 5465.74 9576.95 15285.91 88
Anonymous2023121169.28 13768.47 13271.73 16180.28 10847.18 23979.98 10082.37 8854.61 20767.24 15684.01 14239.43 21282.41 16855.45 17472.83 19785.62 104
SixPastTwentyTwo61.65 24958.80 25870.20 19575.80 21647.22 23875.59 18269.68 27054.61 20754.11 31579.26 24227.07 32682.96 14843.27 27549.79 35380.41 233
test_040263.25 23361.01 24669.96 19880.00 11754.37 13476.86 15972.02 25654.58 20958.71 27680.79 21535.00 25884.36 12226.41 36364.71 28771.15 332
tttt051767.83 16865.66 19374.33 10276.69 20250.82 18677.86 13273.99 23854.54 21064.64 21282.53 17435.06 25785.50 9955.71 17069.91 23886.67 62
BH-w/o66.85 18865.83 19069.90 20279.29 12952.46 16574.66 20476.65 20054.51 21164.85 20978.12 25445.59 15182.95 14943.26 27675.54 16574.27 302
AUN-MVS68.45 15566.41 17874.57 9679.53 12557.08 9673.93 21775.23 21854.44 21266.69 16881.85 19137.10 24282.89 15162.07 12666.84 27183.75 166
LTVRE_ROB55.42 1663.15 23561.23 24468.92 21876.57 20647.80 23059.92 32876.39 20154.35 21358.67 27782.46 17629.44 30881.49 18242.12 28571.14 21877.46 266
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ab-mvs66.65 19366.42 17767.37 23576.17 21241.73 28970.41 26876.14 20553.99 21465.98 18083.51 15549.48 10176.24 26648.60 23073.46 18784.14 149
IU-MVS87.77 459.15 5985.53 2553.93 21584.64 379.07 1090.87 588.37 12
XVG-ACMP-BASELINE64.36 22362.23 23270.74 18672.35 26952.45 16670.80 26378.45 16853.84 21659.87 26281.10 20516.24 35679.32 22155.64 17371.76 21280.47 231
FE-MVS65.91 20263.33 21973.63 12277.36 18951.95 17572.62 23575.81 20853.70 21765.31 19478.96 24528.81 31486.39 7843.93 26973.48 18682.55 193
thisisatest053067.92 16665.78 19174.33 10276.29 21051.03 18176.89 15874.25 23553.67 21865.59 19081.76 19335.15 25685.50 9955.94 16572.47 20286.47 67
PVSNet_BlendedMVS68.56 15367.72 14371.07 18177.03 19750.57 19074.50 20681.52 9953.66 21964.22 21979.72 23249.13 10782.87 15355.82 16773.92 17679.77 245
patch_mono-269.85 12071.09 8966.16 24979.11 13754.80 13171.97 24674.31 23353.50 22070.90 9284.17 13757.63 2963.31 32066.17 8882.02 9080.38 234
EG-PatchMatch MVS64.71 21862.87 22470.22 19377.68 17653.48 14377.99 13078.82 15353.37 22156.03 29577.41 26724.75 34084.04 12746.37 24773.42 18873.14 308
DP-MVS65.68 20463.66 21471.75 16084.93 5556.87 9880.74 9273.16 24753.06 22259.09 27382.35 17736.79 24685.94 8832.82 33569.96 23772.45 316
TR-MVS66.59 19665.07 20171.17 17879.18 13449.63 20973.48 22475.20 22052.95 22367.90 14080.33 22139.81 20983.68 13543.20 27773.56 18480.20 236
ET-MVSNet_ETH3D67.96 16565.72 19274.68 8976.67 20355.62 11975.11 19274.74 22752.91 22460.03 25980.12 22433.68 27182.64 16261.86 12976.34 15885.78 93
QAPM70.05 11568.81 12573.78 11176.54 20753.43 14583.23 5383.48 6552.89 22565.90 18386.29 9541.55 19686.49 7651.01 21078.40 13681.42 211
OpenMVScopyleft61.03 968.85 14367.56 14772.70 14674.26 24553.99 13681.21 8781.34 11052.70 22662.75 23285.55 11538.86 22084.14 12548.41 23283.01 7679.97 240
pmmvs663.69 22762.82 22666.27 24770.63 28939.27 30773.13 22875.47 21452.69 22759.75 26682.30 17939.71 21077.03 25847.40 23764.35 29082.53 194
IterMVS62.79 23761.27 24267.35 23669.37 30752.04 17371.17 25668.24 28352.63 22859.82 26376.91 27137.32 23672.36 28152.80 19563.19 30077.66 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_tets68.18 16066.36 18073.63 12275.61 22055.35 12480.77 9178.56 16252.48 22964.27 21784.10 14027.45 32381.84 17663.45 11670.56 22583.69 168
jajsoiax68.25 15866.45 17473.66 11975.62 21955.49 12180.82 9078.51 16452.33 23064.33 21584.11 13928.28 31781.81 17763.48 11570.62 22383.67 169
TAMVS66.78 19165.27 19971.33 17579.16 13653.67 13873.84 22169.59 27252.32 23165.28 19581.72 19444.49 16777.40 25342.32 28478.66 13382.92 188
CDS-MVSNet66.80 19065.37 19671.10 18078.98 13953.13 15373.27 22771.07 26252.15 23264.72 21080.23 22343.56 17477.10 25645.48 25878.88 12783.05 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended68.59 14967.72 14371.19 17777.03 19750.57 19072.51 23881.52 9951.91 23364.22 21977.77 26449.13 10782.87 15355.82 16779.58 11580.14 238
mvs_anonymous68.03 16267.51 15169.59 20772.08 27244.57 26571.99 24575.23 21851.67 23467.06 16082.57 17054.68 4877.94 24356.56 16275.71 16486.26 80
xiu_mvs_v1_base_debu68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
xiu_mvs_v1_base68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
xiu_mvs_v1_base_debi68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
MVSTER67.16 18265.58 19571.88 15870.37 29449.70 20570.25 27078.45 16851.52 23869.16 12180.37 21838.45 22382.50 16560.19 14171.46 21683.44 176
CNLPA65.43 20864.02 20869.68 20578.73 14658.07 7777.82 13470.71 26551.49 23961.57 25083.58 15438.23 22770.82 28843.90 27070.10 23480.16 237
原ACMM174.69 8885.39 4759.40 5383.42 6851.47 24070.27 9886.61 8748.61 11386.51 7553.85 18787.96 3878.16 258
miper_enhance_ethall67.11 18366.09 18770.17 19669.21 30945.98 24972.85 23278.41 17151.38 24165.65 18875.98 28651.17 8881.25 18760.82 13769.32 24883.29 180
MSDG61.81 24859.23 25469.55 21072.64 26252.63 16070.45 26775.81 20851.38 24153.70 31876.11 28229.52 30681.08 19337.70 30765.79 28074.93 294
test20.0353.87 29754.02 29653.41 32961.47 34928.11 36861.30 32059.21 32951.34 24352.09 32777.43 26633.29 27658.55 33929.76 35360.27 32073.58 307
MVSFormer71.50 9270.38 10074.88 8478.76 14457.15 9382.79 6078.48 16551.26 24469.49 11283.22 15843.99 17183.24 14366.06 8979.37 11884.23 146
test_djsdf69.45 13467.74 14274.58 9574.57 23854.92 12982.79 6078.48 16551.26 24465.41 19383.49 15638.37 22483.24 14366.06 8969.25 25185.56 105
bld_raw_dy_0_6464.87 21663.22 22069.83 20474.79 23353.32 14978.15 12862.02 32151.20 24660.17 25783.12 16224.15 34274.20 27663.08 11772.33 20581.96 204
dmvs_testset50.16 31451.90 30444.94 34766.49 32711.78 38461.01 32551.50 35251.17 24750.30 33967.44 34139.28 21460.29 33122.38 36657.49 32962.76 352
PAPM67.92 16666.69 17171.63 16578.09 16449.02 21577.09 15281.24 11651.04 24860.91 25383.98 14347.71 12384.99 10840.81 29279.32 12180.90 226
miper_lstm_enhance62.03 24560.88 24865.49 26166.71 32546.25 24556.29 34275.70 21050.68 24961.27 25175.48 29140.21 20668.03 30256.31 16465.25 28382.18 200
gg-mvs-nofinetune57.86 27256.43 27862.18 28472.62 26335.35 34066.57 28756.33 34050.65 25057.64 28557.10 36130.65 29776.36 26437.38 30978.88 12774.82 296
TAPA-MVS59.36 1066.60 19465.20 20070.81 18476.63 20448.75 21976.52 16480.04 13550.64 25165.24 20084.93 12239.15 21778.54 23636.77 31376.88 15485.14 121
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re56.77 27956.83 27456.61 31269.23 30841.02 29458.37 33364.18 30750.59 25257.45 28771.42 31635.54 25358.94 33737.23 31067.45 26769.87 341
MVP-Stereo65.41 20963.80 21270.22 19377.62 18255.53 12076.30 16778.53 16350.59 25256.47 29378.65 24939.84 20882.68 16044.10 26872.12 21072.44 317
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PCF-MVS61.88 870.95 9969.49 11475.35 7677.63 17855.71 11476.04 17581.81 9650.30 25469.66 11085.40 11952.51 6984.89 11351.82 20480.24 10885.45 110
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline263.42 22961.26 24369.89 20372.55 26547.62 23471.54 25068.38 28250.11 25554.82 30775.55 29043.06 17880.96 19448.13 23367.16 27081.11 222
test-LLR58.15 27058.13 26658.22 30368.57 31344.80 26165.46 29657.92 33450.08 25655.44 29969.82 32932.62 28657.44 34249.66 22173.62 18172.41 318
test0.0.03 153.32 30253.59 29952.50 33362.81 34529.45 36459.51 32954.11 34750.08 25654.40 31374.31 30032.62 28655.92 35130.50 35063.95 29372.15 323
COLMAP_ROBcopyleft52.97 1761.27 25458.81 25768.64 22174.63 23652.51 16478.42 12573.30 24549.92 25850.96 33181.51 19923.06 34479.40 21931.63 34365.85 27874.01 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpmvs58.47 26656.95 27263.03 28070.20 29541.21 29367.90 28367.23 28849.62 25954.73 30970.84 32034.14 26676.24 26636.64 31761.29 31371.64 326
thisisatest051565.83 20363.50 21672.82 14473.75 24849.50 21071.32 25373.12 24849.39 26063.82 22176.50 28034.95 25984.84 11653.20 19375.49 16684.13 150
HY-MVS56.14 1364.55 22163.89 20966.55 24374.73 23541.02 29469.96 27274.43 23049.29 26161.66 24880.92 21047.43 13076.68 26144.91 26371.69 21381.94 205
MIMVSNet155.17 29254.31 29357.77 30870.03 29932.01 35865.68 29464.81 30249.19 26246.75 34876.00 28325.53 33664.04 31828.65 35762.13 30777.26 270
SCA60.49 25658.38 26266.80 23974.14 24748.06 22863.35 30963.23 31349.13 26359.33 27272.10 31037.45 23374.27 27444.17 26562.57 30478.05 260
test_fmvsmvis_n_192070.84 10070.38 10072.22 15671.16 28555.39 12375.86 17872.21 25449.03 26473.28 6486.17 9751.83 8077.29 25475.80 2778.05 13883.98 154
testgi51.90 30652.37 30350.51 33960.39 35623.55 37858.42 33258.15 33249.03 26451.83 32879.21 24322.39 34555.59 35229.24 35662.64 30372.40 320
MIMVSNet57.35 27457.07 27058.22 30374.21 24637.18 32462.46 31360.88 32648.88 26655.29 30275.99 28531.68 29362.04 32531.87 33872.35 20475.43 288
gm-plane-assit71.40 28341.72 29148.85 26773.31 30582.48 16748.90 228
cascas65.98 20163.42 21773.64 12177.26 19152.58 16172.26 24277.21 19248.56 26861.21 25274.60 29832.57 28985.82 9150.38 21576.75 15682.52 195
PLCcopyleft56.13 1465.09 21463.21 22170.72 18781.04 9854.87 13078.57 12277.47 18648.51 26955.71 29681.89 19033.71 27079.71 21441.66 28970.37 22877.58 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D64.71 21862.50 22971.34 17479.72 12255.71 11479.82 10474.72 22848.50 27056.62 29184.62 12833.59 27382.34 16929.65 35475.23 16875.97 281
anonymousdsp67.00 18664.82 20373.57 12570.09 29856.13 10676.35 16677.35 19048.43 27164.99 20880.84 21433.01 27880.34 20864.66 10367.64 26684.23 146
无先验79.66 10974.30 23448.40 27280.78 20153.62 18879.03 252
114514_t70.83 10169.56 11174.64 9286.21 3154.63 13282.34 6981.81 9648.22 27363.01 22985.83 10940.92 20487.10 5857.91 15479.79 11182.18 200
tpm57.34 27558.16 26454.86 31971.80 27734.77 34267.47 28656.04 34348.20 27460.10 25876.92 27037.17 23953.41 35840.76 29365.01 28476.40 280
test_fmvsm_n_192071.73 8871.14 8873.50 12672.52 26656.53 10075.60 18176.16 20348.11 27577.22 2885.56 11353.10 6677.43 25174.86 3177.14 15086.55 66
MDA-MVSNet-bldmvs53.87 29750.81 30963.05 27966.25 32948.58 22256.93 34063.82 30948.09 27641.22 36070.48 32530.34 30068.00 30334.24 32845.92 35872.57 314
XXY-MVS60.68 25561.67 23757.70 30970.43 29238.45 31364.19 30666.47 29248.05 27763.22 22680.86 21249.28 10460.47 32945.25 26267.28 26974.19 303
F-COLMAP63.05 23660.87 24969.58 20976.99 19953.63 14078.12 12976.16 20347.97 27852.41 32681.61 19627.87 31978.11 24140.07 29566.66 27377.00 274
Patchmatch-RL test58.16 26955.49 28366.15 25067.92 31848.89 21860.66 32651.07 35547.86 27959.36 26962.71 35534.02 26872.27 28356.41 16359.40 32277.30 268
D2MVS62.30 24260.29 25168.34 22666.46 32848.42 22465.70 29373.42 24447.71 28058.16 28275.02 29430.51 29877.71 24853.96 18671.68 21478.90 254
ANet_high41.38 32937.47 33653.11 33039.73 38024.45 37656.94 33969.69 26947.65 28126.04 37252.32 36412.44 36262.38 32421.80 36710.61 38172.49 315
CostFormer64.04 22462.51 22868.61 22271.88 27545.77 25071.30 25470.60 26647.55 28264.31 21676.61 27641.63 19379.62 21749.74 21969.00 25580.42 232
PatchmatchNetpermissive59.84 26058.24 26364.65 26873.05 25646.70 24269.42 27662.18 31947.55 28258.88 27571.96 31234.49 26369.16 29742.99 27963.60 29578.07 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_self_test55.22 29153.89 29759.21 29657.80 36127.47 37057.75 33774.32 23247.38 28450.90 33270.00 32828.45 31670.30 29340.44 29457.92 32779.87 242
ITE_SJBPF62.09 28566.16 33044.55 26664.32 30647.36 28555.31 30180.34 22019.27 35162.68 32336.29 32162.39 30679.04 251
KD-MVS_2432*160053.45 29951.50 30759.30 29362.82 34337.14 32555.33 34371.79 25847.34 28655.09 30470.52 32321.91 34870.45 29135.72 32342.97 36170.31 337
miper_refine_blended53.45 29951.50 30759.30 29362.82 34337.14 32555.33 34371.79 25847.34 28655.09 30470.52 32321.91 34870.45 29135.72 32342.97 36170.31 337
OurMVSNet-221017-061.37 25358.63 26069.61 20672.05 27348.06 22873.93 21772.51 25147.23 28854.74 30880.92 21021.49 35081.24 18848.57 23156.22 33579.53 247
tpmrst58.24 26858.70 25956.84 31166.97 32234.32 34669.57 27561.14 32547.17 28958.58 27971.60 31541.28 20060.41 33049.20 22562.84 30275.78 284
PVSNet50.76 1958.40 26757.39 26861.42 28875.53 22244.04 26961.43 31863.45 31147.04 29056.91 28973.61 30427.00 32764.76 31639.12 30172.40 20375.47 287
FMVSNet555.86 28654.93 28658.66 30171.05 28636.35 33464.18 30762.48 31846.76 29150.66 33674.73 29725.80 33464.04 31833.11 33365.57 28175.59 286
jason69.65 12868.39 13573.43 13178.27 15956.88 9777.12 15173.71 24246.53 29269.34 11683.22 15843.37 17579.18 22364.77 10279.20 12384.23 146
jason: jason.
MS-PatchMatch62.42 24061.46 24065.31 26475.21 22752.10 17072.05 24474.05 23746.41 29357.42 28874.36 29934.35 26577.57 25045.62 25573.67 18066.26 349
1112_ss64.00 22563.36 21865.93 25579.28 13042.58 28171.35 25272.36 25346.41 29360.55 25577.89 26046.27 14673.28 27846.18 24869.97 23681.92 206
lupinMVS69.57 13068.28 13673.44 13078.76 14457.15 9376.57 16273.29 24646.19 29569.49 11282.18 18143.99 17179.23 22264.66 10379.37 11883.93 155
testdata64.66 26781.52 8652.93 15465.29 30046.09 29673.88 5687.46 7138.08 22966.26 31253.31 19278.48 13574.78 297
UnsupCasMVSNet_eth53.16 30452.47 30255.23 31759.45 35733.39 35359.43 33069.13 27745.98 29750.35 33872.32 30929.30 30958.26 34042.02 28744.30 35974.05 304
AllTest57.08 27754.65 28864.39 27071.44 28049.03 21369.92 27367.30 28545.97 29847.16 34579.77 23017.47 35267.56 30433.65 33059.16 32376.57 278
TestCases64.39 27071.44 28049.03 21367.30 28545.97 29847.16 34579.77 23017.47 35267.56 30433.65 33059.16 32376.57 278
WTY-MVS59.75 26160.39 25057.85 30772.32 27037.83 31861.05 32464.18 30745.95 30061.91 24579.11 24447.01 13960.88 32842.50 28369.49 24774.83 295
IterMVS-SCA-FT62.49 23861.52 23965.40 26271.99 27450.80 18771.15 25869.63 27145.71 30160.61 25477.93 25737.45 23365.99 31355.67 17163.50 29779.42 248
旧先验276.08 17245.32 30276.55 3165.56 31558.75 152
OpenMVS_ROBcopyleft52.78 1860.03 25858.14 26565.69 25970.47 29144.82 26075.33 18670.86 26445.04 30356.06 29476.00 28326.89 32879.65 21535.36 32567.29 26872.60 313
TinyColmap54.14 29451.72 30561.40 28966.84 32441.97 28666.52 28868.51 28144.81 30442.69 35975.77 28711.66 36472.94 27931.96 33756.77 33369.27 345
MDTV_nov1_ep1357.00 27172.73 26138.26 31465.02 30364.73 30444.74 30555.46 29872.48 30832.61 28870.47 29037.47 30867.75 265
新几何170.76 18585.66 4161.13 3066.43 29344.68 30670.29 9786.64 8541.29 19975.23 26949.72 22081.75 9575.93 282
Patchmtry57.16 27656.47 27759.23 29569.17 31034.58 34562.98 31063.15 31444.53 30756.83 29074.84 29535.83 25168.71 29940.03 29660.91 31474.39 301
ppachtmachnet_test58.06 27155.38 28466.10 25269.51 30448.99 21668.01 28266.13 29544.50 30854.05 31670.74 32132.09 29272.34 28236.68 31656.71 33476.99 276
PatchT53.17 30353.44 30052.33 33468.29 31725.34 37558.21 33454.41 34644.46 30954.56 31169.05 33533.32 27560.94 32736.93 31261.76 31170.73 335
EPMVS53.96 29553.69 29854.79 32066.12 33131.96 35962.34 31549.05 35844.42 31055.54 29771.33 31830.22 30156.70 34541.65 29062.54 30575.71 285
pmmvs461.48 25259.39 25367.76 23071.57 27953.86 13771.42 25165.34 29944.20 31159.46 26877.92 25835.90 25074.71 27143.87 27164.87 28674.71 298
dp51.89 30751.60 30652.77 33268.44 31632.45 35762.36 31454.57 34544.16 31249.31 34067.91 33728.87 31356.61 34733.89 32954.89 33869.24 346
PatchMatch-RL56.25 28454.55 28961.32 29077.06 19656.07 10865.57 29554.10 34844.13 31353.49 32471.27 31925.20 33766.78 30836.52 31963.66 29461.12 353
our_test_356.49 28054.42 29062.68 28269.51 30445.48 25666.08 29161.49 32344.11 31450.73 33569.60 33233.05 27768.15 30138.38 30456.86 33174.40 300
USDC56.35 28354.24 29462.69 28164.74 33640.31 29865.05 30273.83 24043.93 31547.58 34377.71 26515.36 35875.05 27038.19 30661.81 31072.70 312
PM-MVS52.33 30550.19 31358.75 30062.10 34745.14 25965.75 29240.38 37243.60 31653.52 32272.65 3079.16 37265.87 31450.41 21454.18 34165.24 351
pmmvs-eth3d58.81 26556.31 27966.30 24667.61 31952.42 16772.30 24164.76 30343.55 31754.94 30674.19 30128.95 31172.60 28043.31 27457.21 33073.88 306
new-patchmatchnet47.56 32147.73 32147.06 34258.81 3599.37 38648.78 35759.21 32943.28 31844.22 35568.66 33625.67 33557.20 34431.57 34549.35 35474.62 299
Test_1112_low_res62.32 24161.77 23664.00 27279.08 13839.53 30568.17 28070.17 26743.25 31959.03 27479.90 22744.08 16971.24 28743.79 27268.42 26081.25 218
RPMNet61.53 25058.42 26170.86 18369.96 30052.07 17165.31 30081.36 10643.20 32059.36 26970.15 32735.37 25485.47 10136.42 32064.65 28875.06 290
tpm262.07 24460.10 25267.99 22872.79 26043.86 27071.05 26166.85 29143.14 32162.77 23075.39 29238.32 22580.80 20041.69 28868.88 25679.32 249
JIA-IIPM51.56 30847.68 32263.21 27764.61 33750.73 18847.71 35958.77 33142.90 32248.46 34251.72 36524.97 33870.24 29436.06 32253.89 34268.64 347
131464.61 22063.21 22168.80 21971.87 27647.46 23673.95 21578.39 17342.88 32359.97 26076.60 27738.11 22879.39 22054.84 17872.32 20679.55 246
HyFIR lowres test65.67 20563.01 22373.67 11879.97 11855.65 11669.07 27875.52 21342.68 32463.53 22477.95 25640.43 20581.64 17846.01 25071.91 21183.73 167
CR-MVSNet59.91 25957.90 26765.96 25469.96 30052.07 17165.31 30063.15 31442.48 32559.36 26974.84 29535.83 25170.75 28945.50 25764.65 28875.06 290
test22283.14 6858.68 7272.57 23763.45 31141.78 32667.56 15286.12 9837.13 24178.73 13274.98 293
TDRefinement53.44 30150.72 31061.60 28764.31 33946.96 24070.89 26265.27 30141.78 32644.61 35477.98 25511.52 36666.36 31128.57 35851.59 34771.49 329
sss56.17 28556.57 27654.96 31866.93 32336.32 33657.94 33561.69 32241.67 32858.64 27875.32 29338.72 22156.25 34942.04 28666.19 27772.31 321
PVSNet_043.31 2047.46 32245.64 32552.92 33167.60 32044.65 26354.06 34754.64 34441.59 32946.15 35058.75 35830.99 29558.66 33832.18 33624.81 37455.46 361
MVS67.37 17566.33 18170.51 19175.46 22350.94 18273.95 21581.85 9541.57 33062.54 23778.57 25247.98 11885.47 10152.97 19482.05 8975.14 289
Anonymous2024052155.30 28954.41 29157.96 30660.92 35541.73 28971.09 26071.06 26341.18 33148.65 34173.31 30516.93 35459.25 33642.54 28264.01 29172.90 310
Anonymous2023120655.10 29355.30 28554.48 32169.81 30333.94 35062.91 31162.13 32041.08 33255.18 30375.65 28832.75 28456.59 34830.32 35167.86 26372.91 309
MDA-MVSNet_test_wron50.71 31348.95 31556.00 31661.17 35141.84 28751.90 35256.45 33840.96 33344.79 35367.84 33830.04 30355.07 35536.71 31550.69 35071.11 333
YYNet150.73 31248.96 31456.03 31561.10 35241.78 28851.94 35156.44 33940.94 33444.84 35267.80 33930.08 30255.08 35436.77 31350.71 34971.22 330
CHOSEN 1792x268865.08 21562.84 22571.82 15981.49 8856.26 10466.32 29074.20 23640.53 33563.16 22878.65 24941.30 19877.80 24645.80 25274.09 17481.40 214
pmmvs556.47 28155.68 28258.86 29961.41 35036.71 33166.37 28962.75 31640.38 33653.70 31876.62 27534.56 26167.05 30640.02 29765.27 28272.83 311
test_vis1_n_192058.86 26459.06 25658.25 30263.76 34043.14 27767.49 28566.36 29440.22 33765.89 18471.95 31331.04 29459.75 33459.94 14464.90 28571.85 325
MDTV_nov1_ep13_2view25.89 37361.22 32140.10 33851.10 33032.97 27938.49 30378.61 255
tpm cat159.25 26356.95 27266.15 25072.19 27146.96 24068.09 28165.76 29640.03 33957.81 28470.56 32238.32 22574.51 27238.26 30561.50 31277.00 274
test-mter56.42 28255.82 28158.22 30368.57 31344.80 26165.46 29657.92 33439.94 34055.44 29969.82 32921.92 34757.44 34249.66 22173.62 18172.41 318
UnsupCasMVSNet_bld50.07 31548.87 31653.66 32660.97 35433.67 35157.62 33864.56 30539.47 34147.38 34464.02 35327.47 32259.32 33534.69 32743.68 36067.98 348
TESTMET0.1,155.28 29054.90 28756.42 31366.56 32643.67 27265.46 29656.27 34139.18 34253.83 31767.44 34124.21 34155.46 35348.04 23473.11 19470.13 339
ADS-MVSNet251.33 31048.76 31759.07 29866.02 33244.60 26450.90 35359.76 32836.90 34350.74 33366.18 34726.38 32963.11 32127.17 35954.76 33969.50 343
ADS-MVSNet48.48 31947.77 32050.63 33866.02 33229.92 36350.90 35350.87 35736.90 34350.74 33366.18 34726.38 32952.47 36027.17 35954.76 33969.50 343
RPSCF55.80 28754.22 29560.53 29265.13 33542.91 28064.30 30557.62 33636.84 34558.05 28382.28 18028.01 31856.24 35037.14 31158.61 32582.44 198
test_cas_vis1_n_192056.91 27856.71 27557.51 31059.13 35845.40 25763.58 30861.29 32436.24 34667.14 15971.85 31429.89 30456.69 34657.65 15663.58 29670.46 336
Patchmatch-test49.08 31748.28 31951.50 33764.40 33830.85 36245.68 36348.46 36135.60 34746.10 35172.10 31034.47 26446.37 36827.08 36160.65 31877.27 269
CHOSEN 280x42047.83 32046.36 32452.24 33667.37 32149.78 20438.91 37143.11 37035.00 34843.27 35863.30 35428.95 31149.19 36536.53 31860.80 31657.76 358
N_pmnet39.35 33340.28 33136.54 35663.76 3401.62 39049.37 3560.76 39034.62 34943.61 35766.38 34626.25 33142.57 37226.02 36451.77 34665.44 350
PMMVS53.96 29553.26 30156.04 31462.60 34650.92 18461.17 32256.09 34232.81 35053.51 32366.84 34534.04 26759.93 33344.14 26768.18 26157.27 359
CMPMVSbinary42.80 2157.81 27355.97 28063.32 27560.98 35347.38 23764.66 30469.50 27332.06 35146.83 34777.80 26229.50 30771.36 28648.68 22973.75 17971.21 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet59.63 26259.14 25561.08 29174.47 23938.84 31075.20 19068.74 28031.15 35258.24 28176.51 27832.39 29068.58 30049.77 21865.84 27975.81 283
FPMVS42.18 32841.11 33045.39 34458.03 36041.01 29649.50 35553.81 34930.07 35333.71 36764.03 35111.69 36352.08 36314.01 37455.11 33743.09 370
EU-MVSNet55.61 28854.41 29159.19 29765.41 33433.42 35272.44 23971.91 25728.81 35451.27 32973.87 30224.76 33969.08 29843.04 27858.20 32675.06 290
test_vis1_n49.89 31648.69 31853.50 32853.97 36237.38 32361.53 31747.33 36428.54 35559.62 26767.10 34413.52 36052.27 36149.07 22657.52 32870.84 334
test_fmvs1_n51.37 30950.35 31254.42 32352.85 36437.71 32061.16 32351.93 35028.15 35663.81 22269.73 33113.72 35953.95 35651.16 20960.65 31871.59 327
LF4IMVS42.95 32642.26 32845.04 34548.30 37132.50 35654.80 34548.49 36028.03 35740.51 36270.16 3269.24 37143.89 37131.63 34349.18 35558.72 356
test_fmvs151.32 31150.48 31153.81 32553.57 36337.51 32260.63 32751.16 35328.02 35863.62 22369.23 33416.41 35553.93 35751.01 21060.70 31769.99 340
MVS-HIRNet45.52 32344.48 32648.65 34168.49 31534.05 34959.41 33144.50 36827.03 35937.96 36650.47 36926.16 33264.10 31726.74 36259.52 32147.82 368
PMVScopyleft28.69 2236.22 33633.29 34045.02 34636.82 38235.98 33954.68 34648.74 35926.31 36021.02 37551.61 3662.88 38460.10 3329.99 38047.58 35638.99 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs344.92 32441.95 32953.86 32452.58 36643.55 27362.11 31646.90 36626.05 36140.63 36160.19 35711.08 36957.91 34131.83 34246.15 35760.11 354
test_fmvs248.69 31847.49 32352.29 33548.63 37033.06 35557.76 33648.05 36225.71 36259.76 26569.60 33211.57 36552.23 36249.45 22456.86 33171.58 328
PMMVS227.40 34425.91 34731.87 36039.46 3816.57 38731.17 37428.52 38123.96 36320.45 37648.94 3724.20 38037.94 37616.51 37119.97 37651.09 363
Gipumacopyleft34.77 33731.91 34143.33 34962.05 34837.87 31620.39 37667.03 28923.23 36418.41 37725.84 3774.24 37862.73 32214.71 37351.32 34829.38 376
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis1_rt41.35 33039.45 33247.03 34346.65 37337.86 31747.76 35838.65 37323.10 36544.21 35651.22 36711.20 36844.08 37039.27 30053.02 34459.14 355
new_pmnet34.13 33834.29 33933.64 35852.63 36518.23 38344.43 36633.90 37822.81 36630.89 36953.18 36310.48 37035.72 37920.77 36839.51 36546.98 369
mvsany_test139.38 33238.16 33543.02 35049.05 36834.28 34744.16 36725.94 38322.74 36746.57 34962.21 35623.85 34341.16 37533.01 33435.91 36953.63 362
LCM-MVSNet40.30 33135.88 33753.57 32742.24 37529.15 36545.21 36560.53 32722.23 36828.02 37050.98 3683.72 38161.78 32631.22 34838.76 36769.78 342
test_fmvs344.30 32542.55 32749.55 34042.83 37427.15 37153.03 34944.93 36722.03 36953.69 32064.94 3504.21 37949.63 36447.47 23549.82 35271.88 324
APD_test137.39 33534.94 33844.72 34848.88 36933.19 35452.95 35044.00 36919.49 37027.28 37158.59 3593.18 38352.84 35918.92 36941.17 36448.14 367
mvsany_test332.62 33930.57 34338.77 35436.16 38324.20 37738.10 37220.63 38519.14 37140.36 36357.43 3605.06 37636.63 37829.59 35528.66 37355.49 360
E-PMN23.77 34522.73 34926.90 36142.02 37620.67 38042.66 36835.70 37617.43 37210.28 38225.05 3786.42 37442.39 37310.28 37914.71 37817.63 377
EMVS22.97 34621.84 35026.36 36240.20 37919.53 38241.95 36934.64 37717.09 3739.73 38322.83 3797.29 37342.22 3749.18 38113.66 37917.32 378
test_vis3_rt32.09 34030.20 34437.76 35535.36 38427.48 36940.60 37028.29 38216.69 37432.52 36840.53 3731.96 38537.40 37733.64 33242.21 36348.39 365
test_f31.86 34131.05 34234.28 35732.33 38621.86 37932.34 37330.46 38016.02 37539.78 36555.45 3624.80 37732.36 38030.61 34937.66 36848.64 364
DSMNet-mixed39.30 33438.72 33341.03 35151.22 36719.66 38145.53 36431.35 37915.83 37639.80 36467.42 34322.19 34645.13 36922.43 36552.69 34558.31 357
testf131.46 34228.89 34539.16 35241.99 37728.78 36646.45 36137.56 37414.28 37721.10 37348.96 3701.48 38747.11 36613.63 37534.56 37041.60 371
APD_test231.46 34228.89 34539.16 35241.99 37728.78 36646.45 36137.56 37414.28 37721.10 37348.96 3701.48 38747.11 36613.63 37534.56 37041.60 371
MVEpermissive17.77 2321.41 34717.77 35232.34 35934.34 38525.44 37416.11 37724.11 38411.19 37913.22 37931.92 3751.58 38630.95 38110.47 37817.03 37740.62 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft12.03 36517.97 38710.91 38510.60 3887.46 38011.07 38128.36 3763.28 38211.29 3848.01 3829.74 38313.89 379
wuyk23d13.32 35012.52 35315.71 36447.54 37226.27 37231.06 3751.98 3894.93 3815.18 3841.94 3840.45 38918.54 3836.81 38312.83 3802.33 381
test_method19.68 34818.10 35124.41 36313.68 3883.11 38912.06 37942.37 3712.00 38211.97 38036.38 3745.77 37529.35 38215.06 37223.65 37540.76 373
tmp_tt9.43 35111.14 3544.30 3662.38 3894.40 38813.62 37816.08 3870.39 38315.89 37813.06 38015.80 3575.54 38512.63 37710.46 3822.95 380
EGC-MVSNET42.47 32738.48 33454.46 32274.33 24348.73 22070.33 26951.10 3540.03 3840.18 38567.78 34013.28 36166.49 31018.91 37050.36 35148.15 366
testmvs4.52 3546.03 3570.01 3680.01 3900.00 39253.86 3480.00 3910.01 3850.04 3860.27 3850.00 3910.00 3860.04 3840.00 3840.03 383
test1234.73 3536.30 3560.02 3670.01 3900.01 39156.36 3410.00 3910.01 3850.04 3860.21 3860.01 3900.00 3860.03 3850.00 3840.04 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
cdsmvs_eth3d_5k17.50 34923.34 3480.00 3690.00 3920.00 3920.00 38078.63 1600.00 3870.00 38882.18 18149.25 1050.00 3860.00 3860.00 3840.00 384
pcd_1.5k_mvsjas3.92 3555.23 3580.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 38747.05 1360.00 3860.00 3860.00 3840.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
ab-mvs-re6.49 3528.65 3550.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 38877.89 2600.00 3910.00 3860.00 3860.00 3840.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
MSC_two_6792asdad79.95 387.24 1461.04 3185.62 2390.96 179.31 890.65 887.85 26
No_MVS79.95 387.24 1461.04 3185.62 2390.96 179.31 890.65 887.85 26
eth-test20.00 392
eth-test0.00 392
OPU-MVS79.83 687.54 1160.93 3587.82 789.89 4167.01 190.33 1173.16 4491.15 488.23 15
test_0728_SECOND79.19 1587.82 359.11 6287.85 587.15 390.84 378.66 1490.61 1187.62 36
GSMVS78.05 260
test_part287.58 960.47 4283.42 12
sam_mvs134.74 26078.05 260
sam_mvs33.43 274
ambc65.13 26563.72 34237.07 32747.66 36078.78 15654.37 31471.42 31611.24 36780.94 19545.64 25453.85 34377.38 267
MTGPAbinary80.97 122
test_post168.67 2793.64 38232.39 29069.49 29644.17 265
test_post3.55 38333.90 26966.52 309
patchmatchnet-post64.03 35134.50 26274.27 274
GG-mvs-BLEND62.34 28371.36 28437.04 32869.20 27757.33 33754.73 30965.48 34930.37 29977.82 24534.82 32674.93 16972.17 322
MTMP86.03 1817.08 386
test9_res75.28 2988.31 3283.81 161
agg_prior273.09 4587.93 3984.33 142
agg_prior85.04 5059.96 4681.04 12074.68 4684.04 127
test_prior462.51 1482.08 76
test_prior76.69 5284.20 6157.27 8784.88 3786.43 7786.38 68
新几何276.12 170
旧先验183.04 7053.15 15167.52 28487.85 6844.08 16980.76 9978.03 263
原ACMM279.02 115
testdata272.18 28546.95 244
segment_acmp54.23 52
test1277.76 4284.52 5858.41 7483.36 7172.93 7254.61 4988.05 3688.12 3586.81 59
plane_prior781.41 8955.96 110
plane_prior681.20 9656.24 10545.26 160
plane_prior584.01 4987.21 5268.16 7180.58 10284.65 136
plane_prior486.10 99
plane_prior181.27 94
n20.00 391
nn0.00 391
door-mid47.19 365
lessismore_v069.91 20171.42 28247.80 23050.90 35650.39 33775.56 28927.43 32481.33 18545.91 25134.10 37280.59 230
test1183.47 66
door47.60 363
HQP5-MVS54.94 127
BP-MVS67.04 83
HQP4-MVS67.85 14286.93 6184.32 143
HQP3-MVS83.90 5380.35 106
HQP2-MVS45.46 154
NP-MVS80.98 9956.05 10985.54 116
ACMMP++_ref74.07 175
ACMMP++72.16 209
Test By Simon48.33 116