APDe-MVS | | | 89.15 5 | 89.63 5 | 87.73 28 | 94.49 18 | 71.69 56 | 93.83 2 | 93.96 14 | 75.70 90 | 91.06 13 | 96.03 1 | 76.84 13 | 97.03 13 | 89.09 4 | 95.65 30 | 94.47 24 |
|
SMA-MVS |  | | 89.08 6 | 89.23 6 | 88.61 4 | 94.25 29 | 73.73 9 | 92.40 20 | 93.63 20 | 74.77 107 | 92.29 6 | 95.97 2 | 74.28 32 | 97.24 9 | 88.58 11 | 96.91 1 | 94.87 10 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test0726 | | | | | | 95.27 5 | 71.25 60 | 93.60 4 | 94.11 6 | 77.33 47 | 92.81 3 | 95.79 3 | 80.98 8 | | | | |
|
DVP-MVS |  | | 89.60 2 | 90.35 2 | 87.33 43 | 95.27 5 | 71.25 60 | 93.49 7 | 92.73 61 | 77.33 47 | 92.12 8 | 95.78 4 | 80.98 8 | 97.40 5 | 89.08 5 | 96.41 10 | 93.33 77 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 8 | 95.78 4 | 81.46 6 | 97.40 5 | 89.42 3 | 96.57 6 | 94.67 17 |
|
SED-MVS | | | 90.08 1 | 90.85 1 | 87.77 24 | 95.30 2 | 70.98 66 | 93.57 5 | 94.06 10 | 77.24 49 | 93.10 1 | 95.72 6 | 82.99 1 | 97.44 3 | 89.07 7 | 96.63 3 | 94.88 8 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 49 | 92.78 4 | 95.72 6 | 81.26 7 | 97.44 3 | 89.07 7 | 96.58 5 | 94.26 33 |
|
DPE-MVS |  | | 89.48 4 | 89.98 3 | 88.01 13 | 94.80 9 | 72.69 31 | 91.59 40 | 94.10 8 | 75.90 86 | 92.29 6 | 95.66 8 | 81.67 5 | 97.38 7 | 87.44 18 | 96.34 13 | 93.95 46 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_241102_ONE | | | | | | 95.30 2 | 70.98 66 | | 94.06 10 | 77.17 53 | 93.10 1 | 95.39 9 | 82.99 1 | 97.27 8 | | | |
|
MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 37 | 93.64 46 | 72.04 50 | 89.80 81 | 93.50 25 | 75.17 101 | 86.34 37 | 95.29 10 | 70.86 58 | 96.00 51 | 88.78 10 | 96.04 14 | 94.58 20 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
xxxxxxxxxxxxxcwj | | | 87.88 18 | 87.92 18 | 87.77 24 | 93.80 40 | 72.35 43 | 90.47 64 | 89.69 164 | 74.31 116 | 89.16 16 | 95.10 11 | 75.65 19 | 96.19 43 | 87.07 19 | 96.01 15 | 94.79 12 |
|
SF-MVS | | | 88.46 10 | 88.74 10 | 87.64 36 | 92.78 65 | 71.95 51 | 92.40 20 | 94.74 2 | 75.71 88 | 89.16 16 | 95.10 11 | 75.65 19 | 96.19 43 | 87.07 19 | 96.01 15 | 94.79 12 |
|
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 16 | 93.70 43 | 73.05 22 | 90.86 54 | 93.59 22 | 76.27 79 | 88.14 23 | 95.09 13 | 71.06 57 | 96.67 26 | 87.67 14 | 96.37 12 | 94.09 38 |
|
zzz-MVS | | | 87.53 23 | 87.41 26 | 87.90 20 | 94.18 33 | 74.25 4 | 90.23 71 | 92.02 90 | 79.45 19 | 85.88 39 | 94.80 14 | 68.07 84 | 96.21 41 | 86.69 22 | 95.34 34 | 93.23 80 |
|
MTAPA | | | 87.23 32 | 87.00 33 | 87.90 20 | 94.18 33 | 74.25 4 | 86.58 180 | 92.02 90 | 79.45 19 | 85.88 39 | 94.80 14 | 68.07 84 | 96.21 41 | 86.69 22 | 95.34 34 | 93.23 80 |
|
SteuartSystems-ACMMP | | | 88.72 9 | 88.86 9 | 88.32 7 | 92.14 76 | 72.96 25 | 93.73 3 | 93.67 19 | 80.19 14 | 88.10 24 | 94.80 14 | 73.76 37 | 97.11 11 | 87.51 16 | 95.82 22 | 94.90 7 |
Skip Steuart: Steuart Systems R&D Blog. |
9.14 | | | | 88.26 14 | | 92.84 64 | | 91.52 43 | 94.75 1 | 73.93 126 | 88.57 21 | 94.67 17 | 75.57 21 | 95.79 57 | 86.77 21 | 95.76 26 | |
|
SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 50 | 94.11 36 | 72.11 49 | 92.37 24 | 92.56 69 | 74.50 112 | 86.84 34 | 94.65 18 | 67.31 93 | 95.77 58 | 84.80 35 | 92.85 72 | 92.84 97 |
|
ETH3D-3000-0.1 | | | 88.09 12 | 88.29 13 | 87.50 39 | 92.76 66 | 71.89 54 | 91.43 44 | 94.70 3 | 74.47 113 | 88.86 19 | 94.61 19 | 75.23 22 | 95.84 56 | 86.62 24 | 95.92 19 | 94.78 14 |
|
test1172 | | | 86.20 49 | 86.22 46 | 86.12 68 | 93.95 38 | 69.89 92 | 91.79 39 | 92.28 78 | 75.07 102 | 86.40 36 | 94.58 20 | 65.00 118 | 95.56 64 | 84.34 43 | 92.60 75 | 92.90 95 |
|
region2R | | | 87.42 27 | 87.20 31 | 88.09 11 | 94.63 12 | 73.55 12 | 93.03 12 | 93.12 39 | 76.73 68 | 84.45 65 | 94.52 21 | 69.09 78 | 96.70 24 | 84.37 42 | 94.83 48 | 94.03 41 |
|
ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 12 | 94.64 11 | 73.59 11 | 93.04 10 | 93.20 36 | 76.78 65 | 84.66 62 | 94.52 21 | 68.81 82 | 96.65 27 | 84.53 39 | 94.90 43 | 94.00 44 |
|
APD-MVS |  | | 87.44 25 | 87.52 23 | 87.19 45 | 94.24 30 | 72.39 41 | 91.86 37 | 92.83 57 | 73.01 144 | 88.58 20 | 94.52 21 | 73.36 38 | 96.49 35 | 84.26 44 | 95.01 40 | 92.70 99 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
APD-MVS_3200maxsize | | | 85.97 51 | 85.88 52 | 86.22 65 | 92.69 68 | 69.53 99 | 91.93 34 | 92.99 46 | 73.54 134 | 85.94 38 | 94.51 24 | 65.80 110 | 95.61 61 | 83.04 60 | 92.51 77 | 93.53 72 |
|
CP-MVS | | | 87.11 34 | 86.92 35 | 87.68 35 | 94.20 32 | 73.86 7 | 93.98 1 | 92.82 60 | 76.62 70 | 83.68 79 | 94.46 25 | 67.93 86 | 95.95 54 | 84.20 46 | 94.39 57 | 93.23 80 |
|
SR-MVS-dyc-post | | | 85.77 54 | 85.61 55 | 86.23 64 | 93.06 58 | 70.63 78 | 91.88 35 | 92.27 79 | 73.53 135 | 85.69 43 | 94.45 26 | 65.00 118 | 95.56 64 | 82.75 63 | 91.87 81 | 92.50 106 |
|
RE-MVS-def | | | | 85.48 56 | | 93.06 58 | 70.63 78 | 91.88 35 | 92.27 79 | 73.53 135 | 85.69 43 | 94.45 26 | 63.87 125 | | 82.75 63 | 91.87 81 | 92.50 106 |
|
HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 16 | 94.58 14 | 73.54 14 | 93.04 10 | 93.24 34 | 76.78 65 | 84.91 53 | 94.44 28 | 70.78 59 | 96.61 30 | 84.53 39 | 94.89 44 | 93.66 60 |
|
#test# | | | 87.33 30 | 87.13 32 | 87.94 16 | 94.58 14 | 73.54 14 | 92.34 25 | 93.24 34 | 75.23 98 | 84.91 53 | 94.44 28 | 70.78 59 | 96.61 30 | 83.75 52 | 94.89 44 | 93.66 60 |
|
testtj | | | 87.78 19 | 87.78 20 | 87.77 24 | 94.55 16 | 72.47 38 | 92.23 29 | 93.49 27 | 74.75 108 | 88.33 22 | 94.43 30 | 73.27 40 | 97.02 14 | 84.18 47 | 94.84 46 | 93.82 54 |
|
PGM-MVS | | | 86.68 40 | 86.27 45 | 87.90 20 | 94.22 31 | 73.38 18 | 90.22 72 | 93.04 40 | 75.53 92 | 83.86 76 | 94.42 31 | 67.87 88 | 96.64 28 | 82.70 67 | 94.57 53 | 93.66 60 |
|
MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 19 | 94.36 26 | 73.88 6 | 92.71 19 | 92.65 66 | 77.57 40 | 83.84 77 | 94.40 32 | 72.24 48 | 96.28 39 | 85.65 26 | 95.30 38 | 93.62 67 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 87.94 17 | 87.85 19 | 88.20 10 | 94.39 24 | 73.33 19 | 93.03 12 | 93.81 17 | 76.81 63 | 85.24 48 | 94.32 33 | 71.76 52 | 96.93 16 | 85.53 27 | 95.79 23 | 94.32 30 |
|
ETH3D cwj APD-0.16 | | | 87.31 31 | 87.27 27 | 87.44 41 | 91.60 83 | 72.45 40 | 90.02 75 | 94.37 4 | 71.76 158 | 87.28 31 | 94.27 34 | 75.18 23 | 96.08 47 | 85.16 28 | 95.77 24 | 93.80 57 |
|
HPM-MVS++ |  | | 89.02 7 | 89.15 7 | 88.63 3 | 95.01 8 | 76.03 1 | 92.38 23 | 92.85 56 | 80.26 13 | 87.78 27 | 94.27 34 | 75.89 17 | 96.81 20 | 87.45 17 | 96.44 8 | 93.05 88 |
|
mPP-MVS | | | 86.67 41 | 86.32 44 | 87.72 30 | 94.41 22 | 73.55 12 | 92.74 17 | 92.22 83 | 76.87 62 | 82.81 92 | 94.25 36 | 66.44 100 | 96.24 40 | 82.88 62 | 94.28 60 | 93.38 74 |
|
DeepC-MVS | | 79.81 2 | 87.08 36 | 86.88 37 | 87.69 34 | 91.16 87 | 72.32 45 | 90.31 69 | 93.94 15 | 77.12 55 | 82.82 91 | 94.23 37 | 72.13 50 | 97.09 12 | 84.83 34 | 95.37 33 | 93.65 65 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVS | | | 87.18 33 | 86.91 36 | 88.00 14 | 94.42 20 | 73.33 19 | 92.78 15 | 92.99 46 | 79.14 22 | 83.67 80 | 94.17 38 | 67.45 91 | 96.60 32 | 83.06 58 | 94.50 54 | 94.07 39 |
|
MSP-MVS | | | 89.51 3 | 89.91 4 | 88.30 8 | 94.28 28 | 73.46 17 | 92.90 14 | 94.11 6 | 80.27 12 | 91.35 12 | 94.16 39 | 78.35 11 | 96.77 21 | 89.59 2 | 94.22 62 | 94.67 17 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
abl_6 | | | 85.23 63 | 84.95 69 | 86.07 69 | 92.23 75 | 70.48 82 | 90.80 56 | 92.08 88 | 73.51 137 | 85.26 47 | 94.16 39 | 62.75 142 | 95.92 55 | 82.46 70 | 91.30 90 | 91.81 130 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 11 | 88.56 11 | 86.73 54 | 92.24 74 | 69.03 106 | 89.57 87 | 93.39 32 | 77.53 44 | 89.79 15 | 94.12 41 | 78.98 10 | 96.58 34 | 85.66 25 | 95.72 27 | 94.58 20 |
|
HPM-MVS_fast | | | 85.35 62 | 84.95 69 | 86.57 59 | 93.69 44 | 70.58 81 | 92.15 32 | 91.62 109 | 73.89 127 | 82.67 94 | 94.09 42 | 62.60 143 | 95.54 67 | 80.93 79 | 92.93 70 | 93.57 69 |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 46 | | 92.67 63 | 70.98 173 | 87.75 28 | 94.07 43 | 74.01 36 | 96.70 24 | 84.66 37 | 94.84 46 | |
|
CNVR-MVS | | | 88.93 8 | 89.13 8 | 88.33 6 | 94.77 10 | 73.82 8 | 90.51 61 | 93.00 44 | 80.90 9 | 88.06 25 | 94.06 44 | 76.43 14 | 96.84 18 | 88.48 12 | 95.99 17 | 94.34 29 |
|
OPU-MVS | | | | | 89.06 2 | 94.62 13 | 75.42 3 | 93.57 5 | | | | 94.02 45 | 82.45 3 | 96.87 17 | 83.77 51 | 96.48 7 | 94.88 8 |
|
PC_three_1452 | | | | | | | | | | 68.21 228 | 92.02 10 | 94.00 46 | 82.09 4 | 95.98 53 | 84.58 38 | 96.68 2 | 94.95 5 |
|
SD-MVS | | | 88.06 13 | 88.50 12 | 86.71 55 | 92.60 72 | 72.71 29 | 91.81 38 | 93.19 37 | 77.87 34 | 90.32 14 | 94.00 46 | 74.83 25 | 93.78 143 | 87.63 15 | 94.27 61 | 93.65 65 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 23 | 94.12 35 | 72.97 24 | 92.39 22 | 93.43 30 | 76.89 61 | 84.68 59 | 93.99 48 | 70.67 62 | 96.82 19 | 84.18 47 | 95.01 40 | 93.90 49 |
|
HPM-MVS |  | | 87.11 34 | 86.98 34 | 87.50 39 | 93.88 39 | 72.16 47 | 92.19 30 | 93.33 33 | 76.07 82 | 83.81 78 | 93.95 49 | 69.77 72 | 96.01 50 | 85.15 29 | 94.66 50 | 94.32 30 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 30 | 93.68 45 | 72.13 48 | 91.41 45 | 92.35 76 | 74.62 111 | 88.90 18 | 93.85 50 | 75.75 18 | 96.00 51 | 87.80 13 | 94.63 51 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP |  | | 85.89 53 | 85.39 58 | 87.38 42 | 93.59 47 | 72.63 33 | 92.74 17 | 93.18 38 | 76.78 65 | 80.73 117 | 93.82 51 | 64.33 121 | 96.29 38 | 82.67 68 | 90.69 95 | 93.23 80 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
test_prior3 | | | 86.73 38 | 86.86 38 | 86.33 61 | 92.61 70 | 69.59 97 | 88.85 106 | 92.97 50 | 75.41 94 | 84.91 53 | 93.54 52 | 74.28 32 | 95.48 69 | 83.31 53 | 95.86 20 | 93.91 47 |
|
test_prior2 | | | | | | | | 88.85 106 | | 75.41 94 | 84.91 53 | 93.54 52 | 74.28 32 | | 83.31 53 | 95.86 20 | |
|
ETH3 D test6400 | | | 87.50 24 | 87.44 25 | 87.70 33 | 93.71 42 | 71.75 55 | 90.62 59 | 94.05 13 | 70.80 175 | 87.59 30 | 93.51 54 | 77.57 12 | 96.63 29 | 83.31 53 | 95.77 24 | 94.72 16 |
|
VDDNet | | | 81.52 114 | 80.67 117 | 84.05 124 | 90.44 101 | 64.13 205 | 89.73 84 | 85.91 248 | 71.11 170 | 83.18 84 | 93.48 55 | 50.54 264 | 93.49 158 | 73.40 146 | 88.25 125 | 94.54 23 |
|
CDPH-MVS | | | 85.76 55 | 85.29 62 | 87.17 46 | 93.49 49 | 71.08 64 | 88.58 119 | 92.42 74 | 68.32 227 | 84.61 63 | 93.48 55 | 72.32 47 | 96.15 46 | 79.00 92 | 95.43 32 | 94.28 32 |
|
NCCC | | | 88.06 13 | 88.01 17 | 88.24 9 | 94.41 22 | 73.62 10 | 91.22 49 | 92.83 57 | 81.50 6 | 85.79 42 | 93.47 57 | 73.02 43 | 97.00 15 | 84.90 31 | 94.94 42 | 94.10 37 |
|
3Dnovator+ | | 77.84 4 | 85.48 58 | 84.47 73 | 88.51 5 | 91.08 88 | 73.49 16 | 93.18 9 | 93.78 18 | 80.79 10 | 76.66 181 | 93.37 58 | 60.40 186 | 96.75 23 | 77.20 112 | 93.73 66 | 95.29 2 |
|
DeepC-MVS_fast | | 79.65 3 | 86.91 37 | 86.62 40 | 87.76 27 | 93.52 48 | 72.37 42 | 91.26 46 | 93.04 40 | 76.62 70 | 84.22 70 | 93.36 59 | 71.44 55 | 96.76 22 | 80.82 81 | 95.33 36 | 94.16 35 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
VDD-MVS | | | 83.01 91 | 82.36 92 | 84.96 89 | 91.02 90 | 66.40 160 | 88.91 103 | 88.11 208 | 77.57 40 | 84.39 68 | 93.29 60 | 52.19 241 | 93.91 138 | 77.05 114 | 88.70 119 | 94.57 22 |
|
UA-Net | | | 85.08 67 | 84.96 68 | 85.45 76 | 92.07 77 | 68.07 133 | 89.78 82 | 90.86 133 | 82.48 2 | 84.60 64 | 93.20 61 | 69.35 75 | 95.22 85 | 71.39 162 | 90.88 94 | 93.07 87 |
|
agg_prior1 | | | 86.22 48 | 86.09 51 | 86.62 57 | 92.85 62 | 71.94 52 | 88.59 118 | 91.78 105 | 68.96 217 | 84.41 66 | 93.18 62 | 74.94 24 | 94.93 96 | 84.75 36 | 95.33 36 | 93.01 91 |
|
TEST9 | | | | | | 93.26 52 | 72.96 25 | 88.75 111 | 91.89 99 | 68.44 226 | 85.00 51 | 93.10 63 | 74.36 31 | 95.41 75 | | | |
|
train_agg | | | 86.43 44 | 86.20 47 | 87.13 47 | 93.26 52 | 72.96 25 | 88.75 111 | 91.89 99 | 68.69 222 | 85.00 51 | 93.10 63 | 74.43 28 | 95.41 75 | 84.97 30 | 95.71 28 | 93.02 90 |
|
test_8 | | | | | | 93.13 54 | 72.57 35 | 88.68 116 | 91.84 102 | 68.69 222 | 84.87 57 | 93.10 63 | 74.43 28 | 95.16 87 | | | |
|
LFMVS | | | 81.82 107 | 81.23 108 | 83.57 139 | 91.89 80 | 63.43 221 | 89.84 78 | 81.85 299 | 77.04 58 | 83.21 83 | 93.10 63 | 52.26 240 | 93.43 163 | 71.98 157 | 89.95 107 | 93.85 51 |
|
旧先验1 | | | | | | 91.96 78 | 65.79 173 | | 86.37 242 | | | 93.08 67 | 69.31 77 | | | 92.74 73 | 88.74 238 |
|
testdata | | | | | 79.97 233 | 90.90 92 | 64.21 203 | | 84.71 258 | 59.27 315 | 85.40 45 | 92.91 68 | 62.02 156 | 89.08 272 | 68.95 186 | 91.37 88 | 86.63 285 |
|
MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 28 | 94.53 17 | 72.46 39 | 89.82 79 | 93.82 16 | 73.07 142 | 84.86 58 | 92.89 69 | 76.22 15 | 96.33 37 | 84.89 33 | 95.13 39 | 94.40 26 |
|
Vis-MVSNet |  | | 83.46 81 | 82.80 87 | 85.43 77 | 90.25 104 | 68.74 116 | 90.30 70 | 90.13 152 | 76.33 78 | 80.87 116 | 92.89 69 | 61.00 175 | 94.20 123 | 72.45 156 | 90.97 92 | 93.35 76 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CPTT-MVS | | | 83.73 76 | 83.33 79 | 84.92 92 | 93.28 51 | 70.86 73 | 92.09 33 | 90.38 142 | 68.75 221 | 79.57 125 | 92.83 71 | 60.60 182 | 93.04 182 | 80.92 80 | 91.56 86 | 90.86 158 |
|
3Dnovator | | 76.31 5 | 83.38 84 | 82.31 93 | 86.59 58 | 87.94 181 | 72.94 28 | 90.64 58 | 92.14 87 | 77.21 51 | 75.47 206 | 92.83 71 | 58.56 193 | 94.72 108 | 73.24 149 | 92.71 74 | 92.13 121 |
|
MSLP-MVS++ | | | 85.43 60 | 85.76 54 | 84.45 107 | 91.93 79 | 70.24 83 | 90.71 57 | 92.86 55 | 77.46 46 | 84.22 70 | 92.81 73 | 67.16 95 | 92.94 184 | 80.36 86 | 94.35 59 | 90.16 182 |
|
MG-MVS | | | 83.41 82 | 83.45 77 | 83.28 147 | 92.74 67 | 62.28 240 | 88.17 136 | 89.50 168 | 75.22 99 | 81.49 107 | 92.74 74 | 66.75 96 | 95.11 89 | 72.85 152 | 91.58 85 | 92.45 109 |
|
casdiffmvs | | | 85.11 66 | 85.14 64 | 85.01 87 | 87.20 205 | 65.77 174 | 87.75 147 | 92.83 57 | 77.84 35 | 84.36 69 | 92.38 75 | 72.15 49 | 93.93 137 | 81.27 77 | 90.48 98 | 95.33 1 |
|
baseline | | | 84.93 69 | 84.98 66 | 84.80 98 | 87.30 203 | 65.39 182 | 87.30 158 | 92.88 54 | 77.62 38 | 84.04 75 | 92.26 76 | 71.81 51 | 93.96 131 | 81.31 76 | 90.30 100 | 95.03 4 |
|
QAPM | | | 80.88 123 | 79.50 139 | 85.03 86 | 88.01 180 | 68.97 110 | 91.59 40 | 92.00 93 | 66.63 243 | 75.15 220 | 92.16 77 | 57.70 199 | 95.45 71 | 63.52 225 | 88.76 118 | 90.66 164 |
|
IS-MVSNet | | | 83.15 86 | 82.81 86 | 84.18 118 | 89.94 111 | 63.30 223 | 91.59 40 | 88.46 205 | 79.04 26 | 79.49 126 | 92.16 77 | 65.10 115 | 94.28 117 | 67.71 193 | 91.86 83 | 94.95 5 |
|
1121 | | | 80.84 125 | 79.77 132 | 84.05 124 | 93.11 56 | 70.78 75 | 84.66 225 | 85.42 252 | 57.37 329 | 81.76 106 | 92.02 79 | 63.41 129 | 94.12 127 | 67.28 198 | 92.93 70 | 87.26 269 |
|
æ–°å‡ ä½•1 | | | | | 83.42 142 | 93.13 54 | 70.71 76 | | 85.48 251 | 57.43 328 | 81.80 102 | 91.98 80 | 63.28 131 | 92.27 202 | 64.60 222 | 92.99 69 | 87.27 268 |
|
OpenMVS |  | 72.83 10 | 79.77 152 | 78.33 165 | 84.09 121 | 85.17 233 | 69.91 90 | 90.57 60 | 90.97 129 | 66.70 239 | 72.17 252 | 91.91 81 | 54.70 221 | 93.96 131 | 61.81 244 | 90.95 93 | 88.41 246 |
|
PHI-MVS | | | 86.43 44 | 86.17 49 | 87.24 44 | 90.88 93 | 70.96 68 | 92.27 28 | 94.07 9 | 72.45 147 | 85.22 49 | 91.90 82 | 69.47 74 | 96.42 36 | 83.28 56 | 95.94 18 | 94.35 28 |
|
VNet | | | 82.21 99 | 82.41 90 | 81.62 197 | 90.82 94 | 60.93 254 | 84.47 231 | 89.78 160 | 76.36 77 | 84.07 74 | 91.88 83 | 64.71 120 | 90.26 252 | 70.68 167 | 88.89 115 | 93.66 60 |
|
DROMVSNet | | | 86.01 50 | 86.38 42 | 84.91 93 | 89.31 132 | 66.27 163 | 92.32 26 | 93.63 20 | 79.37 21 | 84.17 72 | 91.88 83 | 69.04 81 | 95.43 73 | 83.93 50 | 93.77 65 | 93.01 91 |
|
OPM-MVS | | | 83.50 80 | 82.95 84 | 85.14 83 | 88.79 154 | 70.95 69 | 89.13 98 | 91.52 112 | 77.55 43 | 80.96 115 | 91.75 85 | 60.71 178 | 94.50 113 | 79.67 91 | 86.51 148 | 89.97 198 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XVG-OURS-SEG-HR | | | 80.81 128 | 79.76 133 | 83.96 132 | 85.60 227 | 68.78 113 | 83.54 253 | 90.50 139 | 70.66 180 | 76.71 180 | 91.66 86 | 60.69 179 | 91.26 233 | 76.94 116 | 81.58 203 | 91.83 128 |
|
EPNet | | | 83.72 77 | 82.92 85 | 86.14 67 | 84.22 248 | 69.48 100 | 91.05 52 | 85.27 253 | 81.30 7 | 76.83 176 | 91.65 87 | 66.09 105 | 95.56 64 | 76.00 124 | 93.85 64 | 93.38 74 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OMC-MVS | | | 82.69 94 | 81.97 101 | 84.85 95 | 88.75 156 | 67.42 144 | 87.98 140 | 90.87 132 | 74.92 105 | 79.72 124 | 91.65 87 | 62.19 153 | 93.96 131 | 75.26 131 | 86.42 149 | 93.16 85 |
|
test222 | | | | | | 91.50 84 | 68.26 129 | 84.16 240 | 83.20 285 | 54.63 340 | 79.74 123 | 91.63 89 | 58.97 191 | | | 91.42 87 | 86.77 281 |
|
MVS_111021_HR | | | 85.14 65 | 84.75 71 | 86.32 63 | 91.65 82 | 72.70 30 | 85.98 195 | 90.33 146 | 76.11 81 | 82.08 97 | 91.61 90 | 71.36 56 | 94.17 126 | 81.02 78 | 92.58 76 | 92.08 122 |
|
原ACMM1 | | | | | 84.35 112 | 93.01 60 | 68.79 112 | | 92.44 71 | 63.96 277 | 81.09 113 | 91.57 91 | 66.06 106 | 95.45 71 | 67.19 201 | 94.82 49 | 88.81 235 |
|
LPG-MVS_test | | | 82.08 101 | 81.27 107 | 84.50 104 | 89.23 137 | 68.76 114 | 90.22 72 | 91.94 97 | 75.37 96 | 76.64 182 | 91.51 92 | 54.29 224 | 94.91 98 | 78.44 99 | 83.78 174 | 89.83 203 |
|
LGP-MVS_train | | | | | 84.50 104 | 89.23 137 | 68.76 114 | | 91.94 97 | 75.37 96 | 76.64 182 | 91.51 92 | 54.29 224 | 94.91 98 | 78.44 99 | 83.78 174 | 89.83 203 |
|
XVG-OURS | | | 80.41 140 | 79.23 146 | 83.97 131 | 85.64 226 | 69.02 107 | 83.03 261 | 90.39 141 | 71.09 171 | 77.63 160 | 91.49 94 | 54.62 223 | 91.35 231 | 75.71 125 | 83.47 181 | 91.54 135 |
|
alignmvs | | | 85.48 58 | 85.32 60 | 85.96 72 | 89.51 120 | 69.47 101 | 89.74 83 | 92.47 70 | 76.17 80 | 87.73 29 | 91.46 95 | 70.32 65 | 93.78 143 | 81.51 74 | 88.95 114 | 94.63 19 |
|
CANet | | | 86.45 43 | 86.10 50 | 87.51 38 | 90.09 107 | 70.94 70 | 89.70 85 | 92.59 68 | 81.78 4 | 81.32 108 | 91.43 96 | 70.34 64 | 97.23 10 | 84.26 44 | 93.36 68 | 94.37 27 |
|
hse-mvs3 | | | 83.15 86 | 82.19 94 | 86.02 71 | 90.56 98 | 70.85 74 | 88.15 138 | 89.16 180 | 76.02 83 | 84.67 60 | 91.39 97 | 61.54 161 | 95.50 68 | 82.71 65 | 75.48 274 | 91.72 132 |
|
nrg030 | | | 83.88 74 | 83.53 76 | 84.96 89 | 86.77 213 | 69.28 105 | 90.46 66 | 92.67 63 | 74.79 106 | 82.95 87 | 91.33 98 | 72.70 44 | 93.09 178 | 80.79 83 | 79.28 231 | 92.50 106 |
|
canonicalmvs | | | 85.91 52 | 85.87 53 | 86.04 70 | 89.84 113 | 69.44 104 | 90.45 67 | 93.00 44 | 76.70 69 | 88.01 26 | 91.23 99 | 73.28 39 | 93.91 138 | 81.50 75 | 88.80 117 | 94.77 15 |
|
DPM-MVS | | | 84.93 69 | 84.29 74 | 86.84 51 | 90.20 105 | 73.04 23 | 87.12 162 | 93.04 40 | 69.80 195 | 82.85 90 | 91.22 100 | 73.06 42 | 96.02 49 | 76.72 119 | 94.63 51 | 91.46 140 |
|
Anonymous202405211 | | | 78.25 187 | 77.01 195 | 81.99 191 | 91.03 89 | 60.67 258 | 84.77 223 | 83.90 271 | 70.65 181 | 80.00 122 | 91.20 101 | 41.08 327 | 91.43 229 | 65.21 216 | 85.26 160 | 93.85 51 |
|
Anonymous20240529 | | | 80.19 146 | 78.89 152 | 84.10 120 | 90.60 97 | 64.75 192 | 88.95 102 | 90.90 131 | 65.97 251 | 80.59 118 | 91.17 102 | 49.97 269 | 93.73 149 | 69.16 184 | 82.70 193 | 93.81 55 |
|
EPP-MVSNet | | | 83.40 83 | 83.02 83 | 84.57 102 | 90.13 106 | 64.47 198 | 92.32 26 | 90.73 134 | 74.45 115 | 79.35 128 | 91.10 103 | 69.05 80 | 95.12 88 | 72.78 153 | 87.22 137 | 94.13 36 |
|
TAPA-MVS | | 73.13 9 | 79.15 167 | 77.94 172 | 82.79 175 | 89.59 116 | 62.99 233 | 88.16 137 | 91.51 113 | 65.77 252 | 77.14 173 | 91.09 104 | 60.91 176 | 93.21 168 | 50.26 316 | 87.05 139 | 92.17 120 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CSCG | | | 86.41 46 | 86.19 48 | 87.07 48 | 92.91 61 | 72.48 37 | 90.81 55 | 93.56 23 | 73.95 124 | 83.16 85 | 91.07 105 | 75.94 16 | 95.19 86 | 79.94 90 | 94.38 58 | 93.55 70 |
|
FIs | | | 82.07 102 | 82.42 89 | 81.04 215 | 88.80 153 | 58.34 278 | 88.26 133 | 93.49 27 | 76.93 60 | 78.47 143 | 91.04 106 | 69.92 70 | 92.34 201 | 69.87 177 | 84.97 162 | 92.44 110 |
|
MVS_111021_LR | | | 82.61 96 | 82.11 95 | 84.11 119 | 88.82 151 | 71.58 57 | 85.15 215 | 86.16 245 | 74.69 109 | 80.47 120 | 91.04 106 | 62.29 150 | 90.55 250 | 80.33 87 | 90.08 105 | 90.20 181 |
|
DP-MVS Recon | | | 83.11 89 | 82.09 96 | 86.15 66 | 94.44 19 | 70.92 72 | 88.79 109 | 92.20 84 | 70.53 182 | 79.17 129 | 91.03 108 | 64.12 123 | 96.03 48 | 68.39 190 | 90.14 103 | 91.50 137 |
|
HQP_MVS | | | 83.64 78 | 83.14 80 | 85.14 83 | 90.08 108 | 68.71 118 | 91.25 47 | 92.44 71 | 79.12 24 | 78.92 133 | 91.00 109 | 60.42 184 | 95.38 78 | 78.71 95 | 86.32 150 | 91.33 142 |
|
plane_prior4 | | | | | | | | | | | | 91.00 109 | | | | | |
|
FC-MVSNet-test | | | 81.52 114 | 82.02 99 | 80.03 232 | 88.42 168 | 55.97 314 | 87.95 142 | 93.42 31 | 77.10 56 | 77.38 164 | 90.98 111 | 69.96 69 | 91.79 219 | 68.46 189 | 84.50 167 | 92.33 111 |
|
Vis-MVSNet (Re-imp) | | | 78.36 186 | 78.45 159 | 78.07 264 | 88.64 160 | 51.78 336 | 86.70 177 | 79.63 320 | 74.14 122 | 75.11 221 | 90.83 112 | 61.29 169 | 89.75 260 | 58.10 276 | 91.60 84 | 92.69 101 |
|
114514_t | | | 80.68 134 | 79.51 138 | 84.20 117 | 94.09 37 | 67.27 148 | 89.64 86 | 91.11 127 | 58.75 320 | 74.08 234 | 90.72 113 | 58.10 195 | 95.04 94 | 69.70 178 | 89.42 112 | 90.30 178 |
|
PAPM_NR | | | 83.02 90 | 82.41 90 | 84.82 96 | 92.47 73 | 66.37 161 | 87.93 144 | 91.80 103 | 73.82 128 | 77.32 166 | 90.66 114 | 67.90 87 | 94.90 100 | 70.37 170 | 89.48 111 | 93.19 84 |
|
LS3D | | | 76.95 217 | 74.82 229 | 83.37 145 | 90.45 100 | 67.36 147 | 89.15 97 | 86.94 234 | 61.87 296 | 69.52 281 | 90.61 115 | 51.71 252 | 94.53 111 | 46.38 336 | 86.71 145 | 88.21 248 |
|
VPNet | | | 78.69 178 | 78.66 155 | 78.76 253 | 88.31 171 | 55.72 316 | 84.45 234 | 86.63 238 | 76.79 64 | 78.26 147 | 90.55 116 | 59.30 189 | 89.70 262 | 66.63 205 | 77.05 249 | 90.88 157 |
|
UniMVSNet_ETH3D | | | 79.10 169 | 78.24 167 | 81.70 196 | 86.85 210 | 60.24 264 | 87.28 159 | 88.79 194 | 74.25 119 | 76.84 175 | 90.53 117 | 49.48 275 | 91.56 225 | 67.98 191 | 82.15 197 | 93.29 78 |
|
ACMP | | 74.13 6 | 81.51 116 | 80.57 118 | 84.36 111 | 89.42 123 | 68.69 121 | 89.97 77 | 91.50 116 | 74.46 114 | 75.04 224 | 90.41 118 | 53.82 229 | 94.54 110 | 77.56 108 | 82.91 188 | 89.86 202 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PCF-MVS | | 73.52 7 | 80.38 141 | 78.84 153 | 85.01 87 | 87.71 189 | 68.99 109 | 83.65 248 | 91.46 117 | 63.00 283 | 77.77 158 | 90.28 119 | 66.10 104 | 95.09 93 | 61.40 247 | 88.22 126 | 90.94 156 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
NP-MVS | | | | | | 89.62 115 | 68.32 127 | | | | | 90.24 120 | | | | | |
|
HQP-MVS | | | 82.61 96 | 82.02 99 | 84.37 110 | 89.33 127 | 66.98 152 | 89.17 93 | 92.19 85 | 76.41 72 | 77.23 169 | 90.23 121 | 60.17 187 | 95.11 89 | 77.47 109 | 85.99 156 | 91.03 152 |
|
PS-MVSNAJss | | | 82.07 102 | 81.31 106 | 84.34 113 | 86.51 216 | 67.27 148 | 89.27 91 | 91.51 113 | 71.75 159 | 79.37 127 | 90.22 122 | 63.15 136 | 94.27 118 | 77.69 107 | 82.36 196 | 91.49 138 |
|
TSAR-MVS + GP. | | | 85.71 56 | 85.33 59 | 86.84 51 | 91.34 85 | 72.50 36 | 89.07 99 | 87.28 228 | 76.41 72 | 85.80 41 | 90.22 122 | 74.15 35 | 95.37 81 | 81.82 73 | 91.88 80 | 92.65 103 |
|
Regformer-1 | | | 86.41 46 | 86.33 43 | 86.64 56 | 89.33 127 | 70.93 71 | 88.43 121 | 91.39 118 | 82.14 3 | 86.65 35 | 90.09 124 | 74.39 30 | 95.01 95 | 83.97 49 | 90.63 96 | 93.97 45 |
|
Regformer-2 | | | 86.63 42 | 86.53 41 | 86.95 49 | 89.33 127 | 71.24 63 | 88.43 121 | 92.05 89 | 82.50 1 | 86.88 33 | 90.09 124 | 74.45 27 | 95.61 61 | 84.38 41 | 90.63 96 | 94.01 43 |
|
test_part1 | | | 82.78 93 | 82.08 97 | 84.89 94 | 90.66 96 | 66.97 154 | 90.96 53 | 92.93 53 | 77.19 52 | 80.53 119 | 90.04 126 | 63.44 128 | 95.39 77 | 76.04 123 | 76.90 251 | 92.31 113 |
|
Regformer-3 | | | 85.23 63 | 85.07 65 | 85.70 74 | 88.95 146 | 69.01 108 | 88.29 131 | 89.91 158 | 80.95 8 | 85.01 50 | 90.01 127 | 72.45 46 | 94.19 124 | 82.50 69 | 87.57 129 | 93.90 49 |
|
Regformer-4 | | | 85.68 57 | 85.45 57 | 86.35 60 | 88.95 146 | 69.67 96 | 88.29 131 | 91.29 120 | 81.73 5 | 85.36 46 | 90.01 127 | 72.62 45 | 95.35 82 | 83.28 56 | 87.57 129 | 94.03 41 |
|
CS-MVS-test | | | 85.02 68 | 85.21 63 | 84.46 106 | 89.28 134 | 65.70 175 | 91.16 50 | 93.56 23 | 77.83 36 | 81.80 102 | 89.89 129 | 70.67 62 | 95.61 61 | 80.39 85 | 92.34 78 | 92.06 123 |
|
TranMVSNet+NR-MVSNet | | | 80.84 125 | 80.31 124 | 82.42 183 | 87.85 183 | 62.33 238 | 87.74 148 | 91.33 119 | 80.55 11 | 77.99 154 | 89.86 130 | 65.23 114 | 92.62 190 | 67.05 203 | 75.24 284 | 92.30 114 |
|
diffmvs | | | 82.10 100 | 81.88 102 | 82.76 178 | 83.00 274 | 63.78 211 | 83.68 247 | 89.76 161 | 72.94 145 | 82.02 98 | 89.85 131 | 65.96 109 | 90.79 246 | 82.38 71 | 87.30 136 | 93.71 59 |
|
BH-RMVSNet | | | 79.61 154 | 78.44 160 | 83.14 156 | 89.38 126 | 65.93 169 | 84.95 220 | 87.15 231 | 73.56 133 | 78.19 149 | 89.79 132 | 56.67 210 | 93.36 164 | 59.53 261 | 86.74 144 | 90.13 184 |
|
GeoE | | | 81.71 109 | 81.01 113 | 83.80 135 | 89.51 120 | 64.45 199 | 88.97 101 | 88.73 200 | 71.27 168 | 78.63 139 | 89.76 133 | 66.32 102 | 93.20 170 | 69.89 176 | 86.02 155 | 93.74 58 |
|
CS-MVS | | | 84.53 72 | 84.97 67 | 83.23 152 | 87.54 197 | 63.27 224 | 88.82 108 | 93.50 25 | 75.98 85 | 83.07 86 | 89.73 134 | 70.29 66 | 95.23 84 | 82.07 72 | 93.70 67 | 91.18 146 |
|
AdaColmap |  | | 80.58 138 | 79.42 140 | 84.06 123 | 93.09 57 | 68.91 111 | 89.36 89 | 88.97 190 | 69.27 205 | 75.70 203 | 89.69 135 | 57.20 207 | 95.77 58 | 63.06 231 | 88.41 124 | 87.50 263 |
|
ACMM | | 73.20 8 | 80.78 133 | 79.84 131 | 83.58 138 | 89.31 132 | 68.37 126 | 89.99 76 | 91.60 110 | 70.28 186 | 77.25 167 | 89.66 136 | 53.37 232 | 93.53 157 | 74.24 137 | 82.85 189 | 88.85 233 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CNLPA | | | 78.08 193 | 76.79 202 | 81.97 192 | 90.40 102 | 71.07 65 | 87.59 151 | 84.55 261 | 66.03 250 | 72.38 250 | 89.64 137 | 57.56 201 | 86.04 301 | 59.61 260 | 83.35 182 | 88.79 236 |
|
test_yl | | | 81.17 119 | 80.47 121 | 83.24 150 | 89.13 141 | 63.62 212 | 86.21 190 | 89.95 156 | 72.43 150 | 81.78 104 | 89.61 138 | 57.50 202 | 93.58 152 | 70.75 165 | 86.90 141 | 92.52 104 |
|
DCV-MVSNet | | | 81.17 119 | 80.47 121 | 83.24 150 | 89.13 141 | 63.62 212 | 86.21 190 | 89.95 156 | 72.43 150 | 81.78 104 | 89.61 138 | 57.50 202 | 93.58 152 | 70.75 165 | 86.90 141 | 92.52 104 |
|
EI-MVSNet-Vis-set | | | 84.19 73 | 83.81 75 | 85.31 78 | 88.18 173 | 67.85 136 | 87.66 149 | 89.73 163 | 80.05 16 | 82.95 87 | 89.59 140 | 70.74 61 | 94.82 104 | 80.66 84 | 84.72 165 | 93.28 79 |
|
PAPR | | | 81.66 112 | 80.89 115 | 83.99 130 | 90.27 103 | 64.00 206 | 86.76 176 | 91.77 107 | 68.84 220 | 77.13 174 | 89.50 141 | 67.63 89 | 94.88 102 | 67.55 195 | 88.52 122 | 93.09 86 |
|
jajsoiax | | | 79.29 164 | 77.96 171 | 83.27 148 | 84.68 242 | 66.57 159 | 89.25 92 | 90.16 151 | 69.20 209 | 75.46 208 | 89.49 142 | 45.75 302 | 93.13 176 | 76.84 117 | 80.80 211 | 90.11 186 |
|
MVSFormer | | | 82.85 92 | 82.05 98 | 85.24 81 | 87.35 198 | 70.21 84 | 90.50 62 | 90.38 142 | 68.55 224 | 81.32 108 | 89.47 143 | 61.68 158 | 93.46 161 | 78.98 93 | 90.26 101 | 92.05 124 |
|
jason | | | 81.39 117 | 80.29 125 | 84.70 100 | 86.63 215 | 69.90 91 | 85.95 196 | 86.77 236 | 63.24 279 | 81.07 114 | 89.47 143 | 61.08 174 | 92.15 208 | 78.33 102 | 90.07 106 | 92.05 124 |
jason: jason. |
mvs_tets | | | 79.13 168 | 77.77 179 | 83.22 153 | 84.70 241 | 66.37 161 | 89.17 93 | 90.19 150 | 69.38 203 | 75.40 211 | 89.46 145 | 44.17 310 | 93.15 174 | 76.78 118 | 80.70 213 | 90.14 183 |
|
UGNet | | | 80.83 127 | 79.59 137 | 84.54 103 | 88.04 178 | 68.09 132 | 89.42 88 | 88.16 207 | 76.95 59 | 76.22 191 | 89.46 145 | 49.30 278 | 93.94 134 | 68.48 188 | 90.31 99 | 91.60 133 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
VPA-MVSNet | | | 80.60 136 | 80.55 119 | 80.76 220 | 88.07 177 | 60.80 257 | 86.86 170 | 91.58 111 | 75.67 91 | 80.24 121 | 89.45 147 | 63.34 130 | 90.25 253 | 70.51 169 | 79.22 232 | 91.23 145 |
|
MVS_Test | | | 83.15 86 | 83.06 82 | 83.41 144 | 86.86 209 | 63.21 226 | 86.11 193 | 92.00 93 | 74.31 116 | 82.87 89 | 89.44 148 | 70.03 68 | 93.21 168 | 77.39 111 | 88.50 123 | 93.81 55 |
|
EI-MVSNet-UG-set | | | 83.81 75 | 83.38 78 | 85.09 85 | 87.87 182 | 67.53 142 | 87.44 155 | 89.66 165 | 79.74 18 | 82.23 96 | 89.41 149 | 70.24 67 | 94.74 107 | 79.95 89 | 83.92 173 | 92.99 93 |
|
RPSCF | | | 73.23 259 | 71.46 260 | 78.54 257 | 82.50 286 | 59.85 266 | 82.18 267 | 82.84 290 | 58.96 317 | 71.15 262 | 89.41 149 | 45.48 304 | 84.77 311 | 58.82 269 | 71.83 312 | 91.02 154 |
|
RRT_MVS | | | 79.88 151 | 78.38 162 | 84.38 109 | 85.42 230 | 70.60 80 | 88.71 115 | 88.75 199 | 72.30 152 | 78.83 135 | 89.14 151 | 44.44 308 | 92.18 207 | 78.50 98 | 79.33 230 | 90.35 176 |
|
UniMVSNet_NR-MVSNet | | | 81.88 105 | 81.54 105 | 82.92 167 | 88.46 166 | 63.46 219 | 87.13 161 | 92.37 75 | 80.19 14 | 78.38 144 | 89.14 151 | 71.66 54 | 93.05 180 | 70.05 173 | 76.46 259 | 92.25 116 |
|
tttt0517 | | | 79.40 161 | 77.91 173 | 83.90 134 | 88.10 176 | 63.84 209 | 88.37 128 | 84.05 269 | 71.45 166 | 76.78 178 | 89.12 153 | 49.93 272 | 94.89 101 | 70.18 172 | 83.18 185 | 92.96 94 |
|
DU-MVS | | | 81.12 121 | 80.52 120 | 82.90 168 | 87.80 185 | 63.46 219 | 87.02 165 | 91.87 101 | 79.01 27 | 78.38 144 | 89.07 154 | 65.02 116 | 93.05 180 | 70.05 173 | 76.46 259 | 92.20 118 |
|
NR-MVSNet | | | 80.23 144 | 79.38 142 | 82.78 176 | 87.80 185 | 63.34 222 | 86.31 187 | 91.09 128 | 79.01 27 | 72.17 252 | 89.07 154 | 67.20 94 | 92.81 189 | 66.08 210 | 75.65 270 | 92.20 118 |
|
DELS-MVS | | | 85.41 61 | 85.30 61 | 85.77 73 | 88.49 164 | 67.93 135 | 85.52 212 | 93.44 29 | 78.70 29 | 83.63 82 | 89.03 156 | 74.57 26 | 95.71 60 | 80.26 88 | 94.04 63 | 93.66 60 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
baseline1 | | | 76.98 216 | 76.75 205 | 77.66 269 | 88.13 174 | 55.66 317 | 85.12 216 | 81.89 297 | 73.04 143 | 76.79 177 | 88.90 157 | 62.43 148 | 87.78 290 | 63.30 229 | 71.18 316 | 89.55 212 |
|
DP-MVS | | | 76.78 219 | 74.57 231 | 83.42 142 | 93.29 50 | 69.46 103 | 88.55 120 | 83.70 273 | 63.98 276 | 70.20 269 | 88.89 158 | 54.01 228 | 94.80 105 | 46.66 333 | 81.88 201 | 86.01 295 |
|
ab-mvs | | | 79.51 156 | 78.97 151 | 81.14 212 | 88.46 166 | 60.91 255 | 83.84 245 | 89.24 177 | 70.36 184 | 79.03 130 | 88.87 159 | 63.23 134 | 90.21 254 | 65.12 217 | 82.57 194 | 92.28 115 |
|
PEN-MVS | | | 77.73 202 | 77.69 183 | 77.84 266 | 87.07 208 | 53.91 326 | 87.91 145 | 91.18 124 | 77.56 42 | 73.14 241 | 88.82 160 | 61.23 170 | 89.17 270 | 59.95 257 | 72.37 307 | 90.43 173 |
|
test_djsdf | | | 80.30 143 | 79.32 144 | 83.27 148 | 83.98 253 | 65.37 183 | 90.50 62 | 90.38 142 | 68.55 224 | 76.19 192 | 88.70 161 | 56.44 211 | 93.46 161 | 78.98 93 | 80.14 221 | 90.97 155 |
|
PAPM | | | 77.68 205 | 76.40 211 | 81.51 200 | 87.29 204 | 61.85 245 | 83.78 246 | 89.59 166 | 64.74 264 | 71.23 260 | 88.70 161 | 62.59 144 | 93.66 151 | 52.66 303 | 87.03 140 | 89.01 225 |
|
DTE-MVSNet | | | 76.99 215 | 76.80 201 | 77.54 273 | 86.24 218 | 53.06 333 | 87.52 152 | 90.66 135 | 77.08 57 | 72.50 247 | 88.67 163 | 60.48 183 | 89.52 264 | 57.33 283 | 70.74 318 | 90.05 193 |
|
PS-CasMVS | | | 78.01 197 | 78.09 169 | 77.77 268 | 87.71 189 | 54.39 323 | 88.02 139 | 91.22 122 | 77.50 45 | 73.26 239 | 88.64 164 | 60.73 177 | 88.41 283 | 61.88 242 | 73.88 296 | 90.53 170 |
|
cdsmvs_eth3d_5k | | | 19.96 334 | 26.61 336 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 89.26 176 | 0.00 370 | 0.00 371 | 88.61 165 | 61.62 160 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
lupinMVS | | | 81.39 117 | 80.27 126 | 84.76 99 | 87.35 198 | 70.21 84 | 85.55 208 | 86.41 240 | 62.85 286 | 81.32 108 | 88.61 165 | 61.68 158 | 92.24 205 | 78.41 101 | 90.26 101 | 91.83 128 |
|
F-COLMAP | | | 76.38 227 | 74.33 236 | 82.50 182 | 89.28 134 | 66.95 156 | 88.41 124 | 89.03 185 | 64.05 274 | 66.83 303 | 88.61 165 | 46.78 292 | 92.89 185 | 57.48 280 | 78.55 233 | 87.67 257 |
|
mvs_anonymous | | | 79.42 160 | 79.11 148 | 80.34 227 | 84.45 245 | 57.97 284 | 82.59 263 | 87.62 221 | 67.40 234 | 76.17 195 | 88.56 168 | 68.47 83 | 89.59 263 | 70.65 168 | 86.05 154 | 93.47 73 |
|
CP-MVSNet | | | 78.22 188 | 78.34 164 | 77.84 266 | 87.83 184 | 54.54 321 | 87.94 143 | 91.17 125 | 77.65 37 | 73.48 237 | 88.49 169 | 62.24 152 | 88.43 282 | 62.19 238 | 74.07 292 | 90.55 169 |
|
PVSNet_Blended_VisFu | | | 82.62 95 | 81.83 103 | 84.96 89 | 90.80 95 | 69.76 94 | 88.74 113 | 91.70 108 | 69.39 202 | 78.96 131 | 88.46 170 | 65.47 112 | 94.87 103 | 74.42 134 | 88.57 120 | 90.24 180 |
|
CANet_DTU | | | 80.61 135 | 79.87 130 | 82.83 170 | 85.60 227 | 63.17 229 | 87.36 156 | 88.65 201 | 76.37 76 | 75.88 200 | 88.44 171 | 53.51 231 | 93.07 179 | 73.30 147 | 89.74 109 | 92.25 116 |
|
PLC |  | 70.83 11 | 78.05 195 | 76.37 212 | 83.08 159 | 91.88 81 | 67.80 137 | 88.19 135 | 89.46 169 | 64.33 270 | 69.87 278 | 88.38 172 | 53.66 230 | 93.58 152 | 58.86 268 | 82.73 191 | 87.86 254 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
WR-MVS | | | 79.49 157 | 79.22 147 | 80.27 229 | 88.79 154 | 58.35 277 | 85.06 217 | 88.61 203 | 78.56 30 | 77.65 159 | 88.34 173 | 63.81 127 | 90.66 249 | 64.98 219 | 77.22 247 | 91.80 131 |
|
XXY-MVS | | | 75.41 239 | 75.56 217 | 74.96 296 | 83.59 259 | 57.82 288 | 80.59 283 | 83.87 272 | 66.54 244 | 74.93 226 | 88.31 174 | 63.24 133 | 80.09 332 | 62.16 239 | 76.85 254 | 86.97 277 |
|
Effi-MVS+ | | | 83.62 79 | 83.08 81 | 85.24 81 | 88.38 169 | 67.45 143 | 88.89 104 | 89.15 181 | 75.50 93 | 82.27 95 | 88.28 175 | 69.61 73 | 94.45 114 | 77.81 106 | 87.84 127 | 93.84 53 |
|
API-MVS | | | 81.99 104 | 81.23 108 | 84.26 116 | 90.94 91 | 70.18 89 | 91.10 51 | 89.32 172 | 71.51 165 | 78.66 138 | 88.28 175 | 65.26 113 | 95.10 92 | 64.74 221 | 91.23 91 | 87.51 262 |
|
thisisatest0530 | | | 79.40 161 | 77.76 180 | 84.31 114 | 87.69 191 | 65.10 188 | 87.36 156 | 84.26 267 | 70.04 189 | 77.42 163 | 88.26 177 | 49.94 270 | 94.79 106 | 70.20 171 | 84.70 166 | 93.03 89 |
|
hse-mvs2 | | | 81.72 108 | 80.94 114 | 84.07 122 | 88.72 157 | 67.68 140 | 85.87 199 | 87.26 229 | 76.02 83 | 84.67 60 | 88.22 178 | 61.54 161 | 93.48 159 | 82.71 65 | 73.44 301 | 91.06 150 |
|
xiu_mvs_v1_base_debu | | | 80.80 130 | 79.72 134 | 84.03 127 | 87.35 198 | 70.19 86 | 85.56 205 | 88.77 195 | 69.06 213 | 81.83 99 | 88.16 179 | 50.91 258 | 92.85 186 | 78.29 103 | 87.56 131 | 89.06 220 |
|
xiu_mvs_v1_base | | | 80.80 130 | 79.72 134 | 84.03 127 | 87.35 198 | 70.19 86 | 85.56 205 | 88.77 195 | 69.06 213 | 81.83 99 | 88.16 179 | 50.91 258 | 92.85 186 | 78.29 103 | 87.56 131 | 89.06 220 |
|
xiu_mvs_v1_base_debi | | | 80.80 130 | 79.72 134 | 84.03 127 | 87.35 198 | 70.19 86 | 85.56 205 | 88.77 195 | 69.06 213 | 81.83 99 | 88.16 179 | 50.91 258 | 92.85 186 | 78.29 103 | 87.56 131 | 89.06 220 |
|
UniMVSNet (Re) | | | 81.60 113 | 81.11 110 | 83.09 158 | 88.38 169 | 64.41 200 | 87.60 150 | 93.02 43 | 78.42 32 | 78.56 140 | 88.16 179 | 69.78 71 | 93.26 167 | 69.58 180 | 76.49 258 | 91.60 133 |
|
AUN-MVS | | | 79.21 166 | 77.60 185 | 84.05 124 | 88.71 158 | 67.61 141 | 85.84 201 | 87.26 229 | 69.08 212 | 77.23 169 | 88.14 183 | 53.20 234 | 93.47 160 | 75.50 130 | 73.45 300 | 91.06 150 |
|
Anonymous20231211 | | | 78.97 173 | 77.69 183 | 82.81 172 | 90.54 99 | 64.29 202 | 90.11 74 | 91.51 113 | 65.01 262 | 76.16 196 | 88.13 184 | 50.56 263 | 93.03 183 | 69.68 179 | 77.56 244 | 91.11 149 |
|
pm-mvs1 | | | 77.25 212 | 76.68 207 | 78.93 251 | 84.22 248 | 58.62 276 | 86.41 184 | 88.36 206 | 71.37 167 | 73.31 238 | 88.01 185 | 61.22 171 | 89.15 271 | 64.24 223 | 73.01 304 | 89.03 224 |
|
LTVRE_ROB | | 69.57 13 | 76.25 228 | 74.54 233 | 81.41 202 | 88.60 161 | 64.38 201 | 79.24 295 | 89.12 184 | 70.76 178 | 69.79 280 | 87.86 186 | 49.09 280 | 93.20 170 | 56.21 291 | 80.16 219 | 86.65 284 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
WTY-MVS | | | 75.65 235 | 75.68 216 | 75.57 290 | 86.40 217 | 56.82 300 | 77.92 310 | 82.40 293 | 65.10 259 | 76.18 193 | 87.72 187 | 63.13 139 | 80.90 329 | 60.31 255 | 81.96 199 | 89.00 227 |
|
TAMVS | | | 78.89 175 | 77.51 187 | 83.03 162 | 87.80 185 | 67.79 138 | 84.72 224 | 85.05 256 | 67.63 230 | 76.75 179 | 87.70 188 | 62.25 151 | 90.82 245 | 58.53 272 | 87.13 138 | 90.49 171 |
|
BH-untuned | | | 79.47 158 | 78.60 156 | 82.05 189 | 89.19 139 | 65.91 170 | 86.07 194 | 88.52 204 | 72.18 153 | 75.42 210 | 87.69 189 | 61.15 172 | 93.54 156 | 60.38 254 | 86.83 143 | 86.70 283 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 261 | 70.41 272 | 80.81 219 | 87.13 207 | 65.63 176 | 88.30 130 | 84.19 268 | 62.96 284 | 63.80 327 | 87.69 189 | 38.04 337 | 92.56 193 | 46.66 333 | 74.91 286 | 84.24 314 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
OurMVSNet-221017-0 | | | 74.26 246 | 72.42 253 | 79.80 237 | 83.76 257 | 59.59 269 | 85.92 198 | 86.64 237 | 66.39 245 | 66.96 300 | 87.58 191 | 39.46 331 | 91.60 223 | 65.76 213 | 69.27 322 | 88.22 247 |
|
Baseline_NR-MVSNet | | | 78.15 192 | 78.33 165 | 77.61 271 | 85.79 223 | 56.21 312 | 86.78 174 | 85.76 249 | 73.60 132 | 77.93 155 | 87.57 192 | 65.02 116 | 88.99 273 | 67.14 202 | 75.33 280 | 87.63 258 |
|
WR-MVS_H | | | 78.51 182 | 78.49 158 | 78.56 256 | 88.02 179 | 56.38 309 | 88.43 121 | 92.67 63 | 77.14 54 | 73.89 235 | 87.55 193 | 66.25 103 | 89.24 269 | 58.92 267 | 73.55 299 | 90.06 192 |
|
EI-MVSNet | | | 80.52 139 | 79.98 128 | 82.12 186 | 84.28 246 | 63.19 228 | 86.41 184 | 88.95 191 | 74.18 121 | 78.69 136 | 87.54 194 | 66.62 97 | 92.43 196 | 72.57 155 | 80.57 215 | 90.74 162 |
|
CVMVSNet | | | 72.99 262 | 72.58 251 | 74.25 303 | 84.28 246 | 50.85 342 | 86.41 184 | 83.45 280 | 44.56 350 | 73.23 240 | 87.54 194 | 49.38 276 | 85.70 303 | 65.90 211 | 78.44 236 | 86.19 290 |
|
ACMH+ | | 68.96 14 | 76.01 231 | 74.01 238 | 82.03 190 | 88.60 161 | 65.31 184 | 88.86 105 | 87.55 222 | 70.25 187 | 67.75 292 | 87.47 196 | 41.27 325 | 93.19 172 | 58.37 273 | 75.94 267 | 87.60 259 |
|
RRT_test8_iter05 | | | 78.38 185 | 77.40 188 | 81.34 206 | 86.00 221 | 58.86 273 | 86.55 182 | 91.26 121 | 72.13 156 | 75.91 198 | 87.42 197 | 44.97 305 | 93.73 149 | 77.02 115 | 75.30 281 | 91.45 141 |
|
TransMVSNet (Re) | | | 75.39 240 | 74.56 232 | 77.86 265 | 85.50 229 | 57.10 297 | 86.78 174 | 86.09 247 | 72.17 154 | 71.53 258 | 87.34 198 | 63.01 140 | 89.31 268 | 56.84 287 | 61.83 340 | 87.17 271 |
|
GBi-Net | | | 78.40 183 | 77.40 188 | 81.40 203 | 87.60 192 | 63.01 230 | 88.39 125 | 89.28 173 | 71.63 161 | 75.34 213 | 87.28 199 | 54.80 217 | 91.11 236 | 62.72 232 | 79.57 224 | 90.09 188 |
|
test1 | | | 78.40 183 | 77.40 188 | 81.40 203 | 87.60 192 | 63.01 230 | 88.39 125 | 89.28 173 | 71.63 161 | 75.34 213 | 87.28 199 | 54.80 217 | 91.11 236 | 62.72 232 | 79.57 224 | 90.09 188 |
|
FMVSNet2 | | | 78.20 190 | 77.21 192 | 81.20 210 | 87.60 192 | 62.89 234 | 87.47 154 | 89.02 186 | 71.63 161 | 75.29 217 | 87.28 199 | 54.80 217 | 91.10 239 | 62.38 236 | 79.38 228 | 89.61 210 |
|
FMVSNet1 | | | 77.44 208 | 76.12 214 | 81.40 203 | 86.81 212 | 63.01 230 | 88.39 125 | 89.28 173 | 70.49 183 | 74.39 231 | 87.28 199 | 49.06 281 | 91.11 236 | 60.91 251 | 78.52 234 | 90.09 188 |
|
v2v482 | | | 80.23 144 | 79.29 145 | 83.05 161 | 83.62 258 | 64.14 204 | 87.04 164 | 89.97 155 | 73.61 131 | 78.18 150 | 87.22 203 | 61.10 173 | 93.82 141 | 76.11 121 | 76.78 256 | 91.18 146 |
|
ITE_SJBPF | | | | | 78.22 261 | 81.77 296 | 60.57 259 | | 83.30 281 | 69.25 206 | 67.54 294 | 87.20 204 | 36.33 342 | 87.28 294 | 54.34 296 | 74.62 289 | 86.80 280 |
|
anonymousdsp | | | 78.60 180 | 77.15 193 | 82.98 165 | 80.51 315 | 67.08 150 | 87.24 160 | 89.53 167 | 65.66 254 | 75.16 219 | 87.19 205 | 52.52 235 | 92.25 204 | 77.17 113 | 79.34 229 | 89.61 210 |
|
MVSTER | | | 79.01 171 | 77.88 175 | 82.38 184 | 83.07 271 | 64.80 191 | 84.08 244 | 88.95 191 | 69.01 216 | 78.69 136 | 87.17 206 | 54.70 221 | 92.43 196 | 74.69 133 | 80.57 215 | 89.89 201 |
|
thres100view900 | | | 76.50 222 | 75.55 218 | 79.33 245 | 89.52 119 | 56.99 298 | 85.83 202 | 83.23 283 | 73.94 125 | 76.32 189 | 87.12 207 | 51.89 249 | 91.95 214 | 48.33 324 | 83.75 176 | 89.07 218 |
|
thres600view7 | | | 76.50 222 | 75.44 220 | 79.68 239 | 89.40 124 | 57.16 295 | 85.53 210 | 83.23 283 | 73.79 129 | 76.26 190 | 87.09 208 | 51.89 249 | 91.89 217 | 48.05 329 | 83.72 179 | 90.00 194 |
|
XVG-ACMP-BASELINE | | | 76.11 230 | 74.27 237 | 81.62 197 | 83.20 267 | 64.67 193 | 83.60 251 | 89.75 162 | 69.75 197 | 71.85 255 | 87.09 208 | 32.78 349 | 92.11 209 | 69.99 175 | 80.43 217 | 88.09 249 |
|
HY-MVS | | 69.67 12 | 77.95 198 | 77.15 193 | 80.36 226 | 87.57 196 | 60.21 265 | 83.37 255 | 87.78 219 | 66.11 247 | 75.37 212 | 87.06 210 | 63.27 132 | 90.48 251 | 61.38 248 | 82.43 195 | 90.40 175 |
|
CHOSEN 1792x2688 | | | 77.63 206 | 75.69 215 | 83.44 141 | 89.98 110 | 68.58 124 | 78.70 302 | 87.50 224 | 56.38 334 | 75.80 202 | 86.84 211 | 58.67 192 | 91.40 230 | 61.58 246 | 85.75 159 | 90.34 177 |
|
v8 | | | 79.97 150 | 79.02 150 | 82.80 173 | 84.09 250 | 64.50 197 | 87.96 141 | 90.29 149 | 74.13 123 | 75.24 218 | 86.81 212 | 62.88 141 | 93.89 140 | 74.39 135 | 75.40 278 | 90.00 194 |
|
AllTest | | | 70.96 275 | 68.09 287 | 79.58 242 | 85.15 234 | 63.62 212 | 84.58 230 | 79.83 318 | 62.31 292 | 60.32 337 | 86.73 213 | 32.02 350 | 88.96 276 | 50.28 314 | 71.57 314 | 86.15 291 |
|
TestCases | | | | | 79.58 242 | 85.15 234 | 63.62 212 | | 79.83 318 | 62.31 292 | 60.32 337 | 86.73 213 | 32.02 350 | 88.96 276 | 50.28 314 | 71.57 314 | 86.15 291 |
|
mvs-test1 | | | 80.88 123 | 79.40 141 | 85.29 79 | 85.13 236 | 69.75 95 | 89.28 90 | 88.10 209 | 74.99 103 | 76.44 187 | 86.72 215 | 57.27 205 | 94.26 122 | 73.53 142 | 83.18 185 | 91.87 127 |
|
LCM-MVSNet-Re | | | 77.05 214 | 76.94 198 | 77.36 274 | 87.20 205 | 51.60 337 | 80.06 287 | 80.46 312 | 75.20 100 | 67.69 293 | 86.72 215 | 62.48 146 | 88.98 274 | 63.44 227 | 89.25 113 | 91.51 136 |
|
1112_ss | | | 77.40 210 | 76.43 210 | 80.32 228 | 89.11 145 | 60.41 263 | 83.65 248 | 87.72 220 | 62.13 294 | 73.05 242 | 86.72 215 | 62.58 145 | 89.97 257 | 62.11 241 | 80.80 211 | 90.59 168 |
|
ab-mvs-re | | | 7.23 337 | 9.64 340 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 86.72 215 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
IterMVS-LS | | | 80.06 147 | 79.38 142 | 82.11 187 | 85.89 222 | 63.20 227 | 86.79 173 | 89.34 171 | 74.19 120 | 75.45 209 | 86.72 215 | 66.62 97 | 92.39 198 | 72.58 154 | 76.86 253 | 90.75 161 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH | | 67.68 16 | 75.89 232 | 73.93 239 | 81.77 195 | 88.71 158 | 66.61 158 | 88.62 117 | 89.01 187 | 69.81 194 | 66.78 304 | 86.70 220 | 41.95 324 | 91.51 228 | 55.64 292 | 78.14 239 | 87.17 271 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Test_1112_low_res | | | 76.40 226 | 75.44 220 | 79.27 246 | 89.28 134 | 58.09 280 | 81.69 272 | 87.07 232 | 59.53 313 | 72.48 248 | 86.67 221 | 61.30 168 | 89.33 267 | 60.81 253 | 80.15 220 | 90.41 174 |
|
FMVSNet3 | | | 77.88 200 | 76.85 200 | 80.97 216 | 86.84 211 | 62.36 237 | 86.52 183 | 88.77 195 | 71.13 169 | 75.34 213 | 86.66 222 | 54.07 227 | 91.10 239 | 62.72 232 | 79.57 224 | 89.45 213 |
|
pmmvs6 | | | 74.69 243 | 73.39 244 | 78.61 255 | 81.38 303 | 57.48 293 | 86.64 178 | 87.95 214 | 64.99 263 | 70.18 270 | 86.61 223 | 50.43 265 | 89.52 264 | 62.12 240 | 70.18 320 | 88.83 234 |
|
ET-MVSNet_ETH3D | | | 78.63 179 | 76.63 208 | 84.64 101 | 86.73 214 | 69.47 101 | 85.01 218 | 84.61 260 | 69.54 200 | 66.51 309 | 86.59 224 | 50.16 267 | 91.75 220 | 76.26 120 | 84.24 171 | 92.69 101 |
|
testgi | | | 66.67 304 | 66.53 302 | 67.08 333 | 75.62 343 | 41.69 358 | 75.93 317 | 76.50 334 | 66.11 247 | 65.20 319 | 86.59 224 | 35.72 344 | 74.71 352 | 43.71 343 | 73.38 302 | 84.84 308 |
|
CLD-MVS | | | 82.31 98 | 81.65 104 | 84.29 115 | 88.47 165 | 67.73 139 | 85.81 203 | 92.35 76 | 75.78 87 | 78.33 146 | 86.58 226 | 64.01 124 | 94.35 115 | 76.05 122 | 87.48 134 | 90.79 159 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
v10 | | | 79.74 153 | 78.67 154 | 82.97 166 | 84.06 251 | 64.95 189 | 87.88 146 | 90.62 136 | 73.11 141 | 75.11 221 | 86.56 227 | 61.46 164 | 94.05 130 | 73.68 140 | 75.55 272 | 89.90 200 |
|
CDS-MVSNet | | | 79.07 170 | 77.70 182 | 83.17 155 | 87.60 192 | 68.23 130 | 84.40 237 | 86.20 244 | 67.49 233 | 76.36 188 | 86.54 228 | 61.54 161 | 90.79 246 | 61.86 243 | 87.33 135 | 90.49 171 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
xiu_mvs_v2_base | | | 81.69 110 | 81.05 111 | 83.60 137 | 89.15 140 | 68.03 134 | 84.46 233 | 90.02 154 | 70.67 179 | 81.30 111 | 86.53 229 | 63.17 135 | 94.19 124 | 75.60 128 | 88.54 121 | 88.57 242 |
|
TR-MVS | | | 77.44 208 | 76.18 213 | 81.20 210 | 88.24 172 | 63.24 225 | 84.61 229 | 86.40 241 | 67.55 232 | 77.81 156 | 86.48 230 | 54.10 226 | 93.15 174 | 57.75 279 | 82.72 192 | 87.20 270 |
|
EIA-MVS | | | 83.31 85 | 82.80 87 | 84.82 96 | 89.59 116 | 65.59 177 | 88.21 134 | 92.68 62 | 74.66 110 | 78.96 131 | 86.42 231 | 69.06 79 | 95.26 83 | 75.54 129 | 90.09 104 | 93.62 67 |
|
tfpn200view9 | | | 76.42 225 | 75.37 224 | 79.55 244 | 89.13 141 | 57.65 290 | 85.17 213 | 83.60 274 | 73.41 138 | 76.45 184 | 86.39 232 | 52.12 242 | 91.95 214 | 48.33 324 | 83.75 176 | 89.07 218 |
|
thres400 | | | 76.50 222 | 75.37 224 | 79.86 235 | 89.13 141 | 57.65 290 | 85.17 213 | 83.60 274 | 73.41 138 | 76.45 184 | 86.39 232 | 52.12 242 | 91.95 214 | 48.33 324 | 83.75 176 | 90.00 194 |
|
v7n | | | 78.97 173 | 77.58 186 | 83.14 156 | 83.45 261 | 65.51 178 | 88.32 129 | 91.21 123 | 73.69 130 | 72.41 249 | 86.32 234 | 57.93 196 | 93.81 142 | 69.18 183 | 75.65 270 | 90.11 186 |
|
MAR-MVS | | | 81.84 106 | 80.70 116 | 85.27 80 | 91.32 86 | 71.53 58 | 89.82 79 | 90.92 130 | 69.77 196 | 78.50 141 | 86.21 235 | 62.36 149 | 94.52 112 | 65.36 215 | 92.05 79 | 89.77 206 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
v1144 | | | 80.03 148 | 79.03 149 | 83.01 163 | 83.78 256 | 64.51 195 | 87.11 163 | 90.57 138 | 71.96 157 | 78.08 153 | 86.20 236 | 61.41 165 | 93.94 134 | 74.93 132 | 77.23 246 | 90.60 167 |
|
V42 | | | 79.38 163 | 78.24 167 | 82.83 170 | 81.10 309 | 65.50 179 | 85.55 208 | 89.82 159 | 71.57 164 | 78.21 148 | 86.12 237 | 60.66 180 | 93.18 173 | 75.64 126 | 75.46 276 | 89.81 205 |
|
PVSNet_BlendedMVS | | | 80.60 136 | 80.02 127 | 82.36 185 | 88.85 148 | 65.40 180 | 86.16 192 | 92.00 93 | 69.34 204 | 78.11 151 | 86.09 238 | 66.02 107 | 94.27 118 | 71.52 159 | 82.06 198 | 87.39 264 |
|
v1192 | | | 79.59 155 | 78.43 161 | 83.07 160 | 83.55 260 | 64.52 194 | 86.93 168 | 90.58 137 | 70.83 174 | 77.78 157 | 85.90 239 | 59.15 190 | 93.94 134 | 73.96 139 | 77.19 248 | 90.76 160 |
|
SixPastTwentyTwo | | | 73.37 255 | 71.26 265 | 79.70 238 | 85.08 238 | 57.89 286 | 85.57 204 | 83.56 276 | 71.03 172 | 65.66 313 | 85.88 240 | 42.10 322 | 92.57 192 | 59.11 265 | 63.34 339 | 88.65 240 |
|
EPNet_dtu | | | 75.46 237 | 74.86 228 | 77.23 278 | 82.57 285 | 54.60 320 | 86.89 169 | 83.09 287 | 71.64 160 | 66.25 311 | 85.86 241 | 55.99 212 | 88.04 287 | 54.92 294 | 86.55 147 | 89.05 223 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
sss | | | 73.60 253 | 73.64 243 | 73.51 307 | 82.80 279 | 55.01 319 | 76.12 316 | 81.69 300 | 62.47 291 | 74.68 229 | 85.85 242 | 57.32 204 | 78.11 339 | 60.86 252 | 80.93 208 | 87.39 264 |
|
ETV-MVS | | | 84.90 71 | 84.67 72 | 85.59 75 | 89.39 125 | 68.66 122 | 88.74 113 | 92.64 67 | 79.97 17 | 84.10 73 | 85.71 243 | 69.32 76 | 95.38 78 | 80.82 81 | 91.37 88 | 92.72 98 |
|
v1240 | | | 78.99 172 | 77.78 178 | 82.64 179 | 83.21 266 | 63.54 216 | 86.62 179 | 90.30 148 | 69.74 199 | 77.33 165 | 85.68 244 | 57.04 208 | 93.76 146 | 73.13 150 | 76.92 250 | 90.62 165 |
|
v144192 | | | 79.47 158 | 78.37 163 | 82.78 176 | 83.35 262 | 63.96 207 | 86.96 166 | 90.36 145 | 69.99 190 | 77.50 161 | 85.67 245 | 60.66 180 | 93.77 145 | 74.27 136 | 76.58 257 | 90.62 165 |
|
tfpnnormal | | | 74.39 244 | 73.16 247 | 78.08 263 | 86.10 220 | 58.05 281 | 84.65 228 | 87.53 223 | 70.32 185 | 71.22 261 | 85.63 246 | 54.97 216 | 89.86 258 | 43.03 345 | 75.02 285 | 86.32 287 |
|
PS-MVSNAJ | | | 81.69 110 | 81.02 112 | 83.70 136 | 89.51 120 | 68.21 131 | 84.28 239 | 90.09 153 | 70.79 176 | 81.26 112 | 85.62 247 | 63.15 136 | 94.29 116 | 75.62 127 | 88.87 116 | 88.59 241 |
|
v1921920 | | | 79.22 165 | 78.03 170 | 82.80 173 | 83.30 264 | 63.94 208 | 86.80 172 | 90.33 146 | 69.91 193 | 77.48 162 | 85.53 248 | 58.44 194 | 93.75 147 | 73.60 141 | 76.85 254 | 90.71 163 |
|
test_0402 | | | 72.79 264 | 70.44 271 | 79.84 236 | 88.13 174 | 65.99 167 | 85.93 197 | 84.29 265 | 65.57 255 | 67.40 297 | 85.49 249 | 46.92 291 | 92.61 191 | 35.88 354 | 74.38 291 | 80.94 338 |
|
v148 | | | 78.72 177 | 77.80 177 | 81.47 201 | 82.73 281 | 61.96 244 | 86.30 188 | 88.08 211 | 73.26 140 | 76.18 193 | 85.47 250 | 62.46 147 | 92.36 200 | 71.92 158 | 73.82 297 | 90.09 188 |
|
USDC | | | 70.33 281 | 68.37 282 | 76.21 285 | 80.60 313 | 56.23 311 | 79.19 297 | 86.49 239 | 60.89 301 | 61.29 334 | 85.47 250 | 31.78 352 | 89.47 266 | 53.37 300 | 76.21 265 | 82.94 329 |
|
MVP-Stereo | | | 76.12 229 | 74.46 235 | 81.13 213 | 85.37 231 | 69.79 93 | 84.42 236 | 87.95 214 | 65.03 261 | 67.46 295 | 85.33 252 | 53.28 233 | 91.73 222 | 58.01 277 | 83.27 183 | 81.85 333 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MVS | | | 78.19 191 | 76.99 197 | 81.78 194 | 85.66 225 | 66.99 151 | 84.66 225 | 90.47 140 | 55.08 339 | 72.02 254 | 85.27 253 | 63.83 126 | 94.11 129 | 66.10 209 | 89.80 108 | 84.24 314 |
|
cl-mvsnet1 | | | 77.72 203 | 76.76 203 | 80.58 222 | 82.48 288 | 60.48 261 | 83.09 258 | 87.86 217 | 69.22 207 | 74.38 232 | 85.24 254 | 62.10 154 | 91.53 226 | 71.09 163 | 75.40 278 | 89.74 207 |
|
cl-mvsnet____ | | | 77.72 203 | 76.76 203 | 80.58 222 | 82.49 287 | 60.48 261 | 83.09 258 | 87.87 216 | 69.22 207 | 74.38 232 | 85.22 255 | 62.10 154 | 91.53 226 | 71.09 163 | 75.41 277 | 89.73 208 |
|
HyFIR lowres test | | | 77.53 207 | 75.40 222 | 83.94 133 | 89.59 116 | 66.62 157 | 80.36 284 | 88.64 202 | 56.29 335 | 76.45 184 | 85.17 256 | 57.64 200 | 93.28 166 | 61.34 249 | 83.10 187 | 91.91 126 |
|
pmmvs4 | | | 74.03 250 | 71.91 256 | 80.39 225 | 81.96 294 | 68.32 127 | 81.45 275 | 82.14 295 | 59.32 314 | 69.87 278 | 85.13 257 | 52.40 238 | 88.13 286 | 60.21 256 | 74.74 288 | 84.73 310 |
|
TDRefinement | | | 67.49 298 | 64.34 307 | 76.92 280 | 73.47 352 | 61.07 253 | 84.86 222 | 82.98 288 | 59.77 310 | 58.30 343 | 85.13 257 | 26.06 355 | 87.89 288 | 47.92 330 | 60.59 344 | 81.81 334 |
|
Fast-Effi-MVS+ | | | 80.81 128 | 79.92 129 | 83.47 140 | 88.85 148 | 64.51 195 | 85.53 210 | 89.39 170 | 70.79 176 | 78.49 142 | 85.06 259 | 67.54 90 | 93.58 152 | 67.03 204 | 86.58 146 | 92.32 112 |
|
PVSNet_Blended | | | 80.98 122 | 80.34 123 | 82.90 168 | 88.85 148 | 65.40 180 | 84.43 235 | 92.00 93 | 67.62 231 | 78.11 151 | 85.05 260 | 66.02 107 | 94.27 118 | 71.52 159 | 89.50 110 | 89.01 225 |
|
CMPMVS |  | 51.72 21 | 70.19 283 | 68.16 285 | 76.28 284 | 73.15 354 | 57.55 292 | 79.47 293 | 83.92 270 | 48.02 349 | 56.48 348 | 84.81 261 | 43.13 314 | 86.42 299 | 62.67 235 | 81.81 202 | 84.89 307 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
EU-MVSNet | | | 68.53 295 | 67.61 295 | 71.31 320 | 78.51 333 | 47.01 351 | 84.47 231 | 84.27 266 | 42.27 351 | 66.44 310 | 84.79 262 | 40.44 329 | 83.76 316 | 58.76 270 | 68.54 327 | 83.17 323 |
|
BH-w/o | | | 78.21 189 | 77.33 191 | 80.84 218 | 88.81 152 | 65.13 187 | 84.87 221 | 87.85 218 | 69.75 197 | 74.52 230 | 84.74 263 | 61.34 167 | 93.11 177 | 58.24 275 | 85.84 158 | 84.27 313 |
|
pmmvs5 | | | 71.55 271 | 70.20 274 | 75.61 289 | 77.83 334 | 56.39 308 | 81.74 271 | 80.89 304 | 57.76 325 | 67.46 295 | 84.49 264 | 49.26 279 | 85.32 307 | 57.08 285 | 75.29 282 | 85.11 306 |
|
thres200 | | | 75.55 236 | 74.47 234 | 78.82 252 | 87.78 188 | 57.85 287 | 83.07 260 | 83.51 277 | 72.44 149 | 75.84 201 | 84.42 265 | 52.08 244 | 91.75 220 | 47.41 331 | 83.64 180 | 86.86 279 |
|
eth_miper_zixun_eth | | | 77.92 199 | 76.69 206 | 81.61 199 | 83.00 274 | 61.98 243 | 83.15 257 | 89.20 179 | 69.52 201 | 74.86 227 | 84.35 266 | 61.76 157 | 92.56 193 | 71.50 161 | 72.89 305 | 90.28 179 |
|
cl_fuxian | | | 78.75 176 | 77.91 173 | 81.26 208 | 82.89 278 | 61.56 249 | 84.09 243 | 89.13 183 | 69.97 191 | 75.56 204 | 84.29 267 | 66.36 101 | 92.09 210 | 73.47 145 | 75.48 274 | 90.12 185 |
|
Fast-Effi-MVS+-dtu | | | 78.02 196 | 76.49 209 | 82.62 180 | 83.16 270 | 66.96 155 | 86.94 167 | 87.45 226 | 72.45 147 | 71.49 259 | 84.17 268 | 54.79 220 | 91.58 224 | 67.61 194 | 80.31 218 | 89.30 216 |
|
IterMVS-SCA-FT | | | 75.43 238 | 73.87 241 | 80.11 231 | 82.69 282 | 64.85 190 | 81.57 274 | 83.47 279 | 69.16 210 | 70.49 266 | 84.15 269 | 51.95 247 | 88.15 285 | 69.23 182 | 72.14 310 | 87.34 266 |
|
1314 | | | 76.53 221 | 75.30 226 | 80.21 230 | 83.93 254 | 62.32 239 | 84.66 225 | 88.81 193 | 60.23 306 | 70.16 272 | 84.07 270 | 55.30 215 | 90.73 248 | 67.37 197 | 83.21 184 | 87.59 261 |
|
cl-mvsnet2 | | | 78.07 194 | 77.01 195 | 81.23 209 | 82.37 290 | 61.83 246 | 83.55 252 | 87.98 213 | 68.96 217 | 75.06 223 | 83.87 271 | 61.40 166 | 91.88 218 | 73.53 142 | 76.39 261 | 89.98 197 |
|
EG-PatchMatch MVS | | | 74.04 249 | 71.82 258 | 80.71 221 | 84.92 239 | 67.42 144 | 85.86 200 | 88.08 211 | 66.04 249 | 64.22 323 | 83.85 272 | 35.10 345 | 92.56 193 | 57.44 281 | 80.83 210 | 82.16 332 |
|
thisisatest0515 | | | 77.33 211 | 75.38 223 | 83.18 154 | 85.27 232 | 63.80 210 | 82.11 268 | 83.27 282 | 65.06 260 | 75.91 198 | 83.84 273 | 49.54 274 | 94.27 118 | 67.24 200 | 86.19 152 | 91.48 139 |
|
test20.03 | | | 67.45 299 | 66.95 300 | 68.94 327 | 75.48 344 | 44.84 354 | 77.50 311 | 77.67 328 | 66.66 240 | 63.01 329 | 83.80 274 | 47.02 290 | 78.40 337 | 42.53 347 | 68.86 326 | 83.58 320 |
|
miper_ehance_all_eth | | | 78.59 181 | 77.76 180 | 81.08 214 | 82.66 283 | 61.56 249 | 83.65 248 | 89.15 181 | 68.87 219 | 75.55 205 | 83.79 275 | 66.49 99 | 92.03 211 | 73.25 148 | 76.39 261 | 89.64 209 |
|
MSDG | | | 73.36 257 | 70.99 266 | 80.49 224 | 84.51 244 | 65.80 172 | 80.71 281 | 86.13 246 | 65.70 253 | 65.46 314 | 83.74 276 | 44.60 306 | 90.91 244 | 51.13 309 | 76.89 252 | 84.74 309 |
|
IterMVS | | | 74.29 245 | 72.94 249 | 78.35 260 | 81.53 300 | 63.49 218 | 81.58 273 | 82.49 292 | 68.06 229 | 69.99 275 | 83.69 277 | 51.66 253 | 85.54 304 | 65.85 212 | 71.64 313 | 86.01 295 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tpm | | | 72.37 268 | 71.71 259 | 74.35 302 | 82.19 292 | 52.00 334 | 79.22 296 | 77.29 331 | 64.56 266 | 72.95 243 | 83.68 278 | 51.35 254 | 83.26 321 | 58.33 274 | 75.80 268 | 87.81 255 |
|
Effi-MVS+-dtu | | | 80.03 148 | 78.57 157 | 84.42 108 | 85.13 236 | 68.74 116 | 88.77 110 | 88.10 209 | 74.99 103 | 74.97 225 | 83.49 279 | 57.27 205 | 93.36 164 | 73.53 142 | 80.88 209 | 91.18 146 |
|
baseline2 | | | 75.70 234 | 73.83 242 | 81.30 207 | 83.26 265 | 61.79 247 | 82.57 264 | 80.65 308 | 66.81 236 | 66.88 301 | 83.42 280 | 57.86 198 | 92.19 206 | 63.47 226 | 79.57 224 | 89.91 199 |
|
bset_n11_16_dypcd | | | 77.12 213 | 75.47 219 | 82.06 188 | 81.12 308 | 65.99 167 | 81.37 277 | 83.20 285 | 69.94 192 | 76.09 197 | 83.38 281 | 47.75 286 | 92.26 203 | 78.51 97 | 77.91 240 | 87.95 250 |
|
TinyColmap | | | 67.30 301 | 64.81 305 | 74.76 299 | 81.92 295 | 56.68 304 | 80.29 286 | 81.49 302 | 60.33 304 | 56.27 349 | 83.22 282 | 24.77 356 | 87.66 291 | 45.52 339 | 69.47 321 | 79.95 342 |
|
CostFormer | | | 75.24 241 | 73.90 240 | 79.27 246 | 82.65 284 | 58.27 279 | 80.80 278 | 82.73 291 | 61.57 297 | 75.33 216 | 83.13 283 | 55.52 213 | 91.07 242 | 64.98 219 | 78.34 238 | 88.45 244 |
|
miper_lstm_enhance | | | 74.11 248 | 73.11 248 | 77.13 279 | 80.11 318 | 59.62 268 | 72.23 332 | 86.92 235 | 66.76 238 | 70.40 267 | 82.92 284 | 56.93 209 | 82.92 322 | 69.06 185 | 72.63 306 | 88.87 232 |
|
GA-MVS | | | 76.87 218 | 75.17 227 | 81.97 192 | 82.75 280 | 62.58 235 | 81.44 276 | 86.35 243 | 72.16 155 | 74.74 228 | 82.89 285 | 46.20 297 | 92.02 212 | 68.85 187 | 81.09 207 | 91.30 144 |
|
K. test v3 | | | 71.19 273 | 68.51 281 | 79.21 248 | 83.04 273 | 57.78 289 | 84.35 238 | 76.91 333 | 72.90 146 | 62.99 330 | 82.86 286 | 39.27 332 | 91.09 241 | 61.65 245 | 52.66 352 | 88.75 237 |
|
MS-PatchMatch | | | 73.83 251 | 72.67 250 | 77.30 276 | 83.87 255 | 66.02 166 | 81.82 269 | 84.66 259 | 61.37 300 | 68.61 288 | 82.82 287 | 47.29 288 | 88.21 284 | 59.27 262 | 84.32 170 | 77.68 347 |
|
lessismore_v0 | | | | | 78.97 250 | 81.01 310 | 57.15 296 | | 65.99 356 | | 61.16 335 | 82.82 287 | 39.12 333 | 91.34 232 | 59.67 259 | 46.92 357 | 88.43 245 |
|
D2MVS | | | 74.82 242 | 73.21 246 | 79.64 241 | 79.81 322 | 62.56 236 | 80.34 285 | 87.35 227 | 64.37 269 | 68.86 285 | 82.66 289 | 46.37 294 | 90.10 256 | 67.91 192 | 81.24 206 | 86.25 288 |
|
Anonymous20231206 | | | 68.60 293 | 67.80 292 | 71.02 321 | 80.23 317 | 50.75 343 | 78.30 306 | 80.47 311 | 56.79 332 | 66.11 312 | 82.63 290 | 46.35 295 | 78.95 335 | 43.62 344 | 75.70 269 | 83.36 322 |
|
MIMVSNet | | | 70.69 277 | 69.30 276 | 74.88 297 | 84.52 243 | 56.35 310 | 75.87 320 | 79.42 321 | 64.59 265 | 67.76 291 | 82.41 291 | 41.10 326 | 81.54 327 | 46.64 335 | 81.34 204 | 86.75 282 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 279 | 68.19 284 | 77.65 270 | 80.26 316 | 59.41 271 | 85.01 218 | 82.96 289 | 58.76 319 | 65.43 315 | 82.33 292 | 37.63 339 | 91.23 235 | 45.34 341 | 76.03 266 | 82.32 330 |
|
miper_enhance_ethall | | | 77.87 201 | 76.86 199 | 80.92 217 | 81.65 297 | 61.38 251 | 82.68 262 | 88.98 188 | 65.52 256 | 75.47 206 | 82.30 293 | 65.76 111 | 92.00 213 | 72.95 151 | 76.39 261 | 89.39 214 |
|
test0.0.03 1 | | | 68.00 297 | 67.69 294 | 68.90 328 | 77.55 335 | 47.43 349 | 75.70 321 | 72.95 345 | 66.66 240 | 66.56 305 | 82.29 294 | 48.06 284 | 75.87 348 | 44.97 342 | 74.51 290 | 83.41 321 |
|
PVSNet | | 64.34 18 | 72.08 270 | 70.87 269 | 75.69 288 | 86.21 219 | 56.44 307 | 74.37 328 | 80.73 307 | 62.06 295 | 70.17 271 | 82.23 295 | 42.86 316 | 83.31 320 | 54.77 295 | 84.45 169 | 87.32 267 |
|
MIMVSNet1 | | | 68.58 294 | 66.78 301 | 73.98 305 | 80.07 319 | 51.82 335 | 80.77 279 | 84.37 262 | 64.40 268 | 59.75 340 | 82.16 296 | 36.47 341 | 83.63 318 | 42.73 346 | 70.33 319 | 86.48 286 |
|
CL-MVSNet_2432*1600 | | | 72.37 268 | 71.46 260 | 75.09 295 | 79.49 328 | 53.53 328 | 80.76 280 | 85.01 257 | 69.12 211 | 70.51 265 | 82.05 297 | 57.92 197 | 84.13 314 | 52.27 304 | 66.00 333 | 87.60 259 |
|
tpm2 | | | 73.26 258 | 71.46 260 | 78.63 254 | 83.34 263 | 56.71 303 | 80.65 282 | 80.40 313 | 56.63 333 | 73.55 236 | 82.02 298 | 51.80 251 | 91.24 234 | 56.35 290 | 78.42 237 | 87.95 250 |
|
PatchMatch-RL | | | 72.38 267 | 70.90 267 | 76.80 282 | 88.60 161 | 67.38 146 | 79.53 292 | 76.17 335 | 62.75 288 | 69.36 283 | 82.00 299 | 45.51 303 | 84.89 310 | 53.62 299 | 80.58 214 | 78.12 346 |
|
FMVSNet5 | | | 69.50 287 | 67.96 288 | 74.15 304 | 82.97 276 | 55.35 318 | 80.01 288 | 82.12 296 | 62.56 290 | 63.02 328 | 81.53 300 | 36.92 340 | 81.92 325 | 48.42 323 | 74.06 293 | 85.17 305 |
|
CR-MVSNet | | | 73.37 255 | 71.27 264 | 79.67 240 | 81.32 306 | 65.19 185 | 75.92 318 | 80.30 314 | 59.92 309 | 72.73 245 | 81.19 301 | 52.50 236 | 86.69 296 | 59.84 258 | 77.71 241 | 87.11 275 |
|
Patchmtry | | | 70.74 276 | 69.16 278 | 75.49 292 | 80.72 311 | 54.07 325 | 74.94 327 | 80.30 314 | 58.34 321 | 70.01 273 | 81.19 301 | 52.50 236 | 86.54 297 | 53.37 300 | 71.09 317 | 85.87 298 |
|
IB-MVS | | 68.01 15 | 75.85 233 | 73.36 245 | 83.31 146 | 84.76 240 | 66.03 165 | 83.38 254 | 85.06 255 | 70.21 188 | 69.40 282 | 81.05 303 | 45.76 301 | 94.66 109 | 65.10 218 | 75.49 273 | 89.25 217 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
cascas | | | 76.72 220 | 74.64 230 | 82.99 164 | 85.78 224 | 65.88 171 | 82.33 266 | 89.21 178 | 60.85 302 | 72.74 244 | 81.02 304 | 47.28 289 | 93.75 147 | 67.48 196 | 85.02 161 | 89.34 215 |
|
LF4IMVS | | | 64.02 315 | 62.19 318 | 69.50 326 | 70.90 356 | 53.29 332 | 76.13 315 | 77.18 332 | 52.65 344 | 58.59 341 | 80.98 305 | 23.55 357 | 76.52 345 | 53.06 302 | 66.66 330 | 78.68 345 |
|
Anonymous20240521 | | | 68.80 292 | 67.22 298 | 73.55 306 | 74.33 347 | 54.11 324 | 83.18 256 | 85.61 250 | 58.15 322 | 61.68 333 | 80.94 306 | 30.71 353 | 81.27 328 | 57.00 286 | 73.34 303 | 85.28 302 |
|
gm-plane-assit | | | | | | 81.40 302 | 53.83 327 | | | 62.72 289 | | 80.94 306 | | 92.39 198 | 63.40 228 | | |
|
UnsupCasMVSNet_eth | | | 67.33 300 | 65.99 303 | 71.37 317 | 73.48 351 | 51.47 339 | 75.16 323 | 85.19 254 | 65.20 258 | 60.78 336 | 80.93 308 | 42.35 318 | 77.20 343 | 57.12 284 | 53.69 351 | 85.44 300 |
|
MVS_0304 | | | 72.48 265 | 70.89 268 | 77.24 277 | 82.20 291 | 59.68 267 | 84.11 242 | 83.49 278 | 67.10 235 | 66.87 302 | 80.59 309 | 35.00 346 | 87.40 292 | 59.07 266 | 79.58 223 | 84.63 311 |
|
MDTV_nov1_ep13 | | | | 69.97 275 | | 83.18 268 | 53.48 329 | 77.10 314 | 80.18 317 | 60.45 303 | 69.33 284 | 80.44 310 | 48.89 282 | 86.90 295 | 51.60 307 | 78.51 235 | |
|
pmmvs-eth3d | | | 70.50 280 | 67.83 291 | 78.52 258 | 77.37 337 | 66.18 164 | 81.82 269 | 81.51 301 | 58.90 318 | 63.90 326 | 80.42 311 | 42.69 317 | 86.28 300 | 58.56 271 | 65.30 335 | 83.11 325 |
|
PM-MVS | | | 66.41 306 | 64.14 308 | 73.20 310 | 73.92 349 | 56.45 306 | 78.97 299 | 64.96 359 | 63.88 278 | 64.72 320 | 80.24 312 | 19.84 360 | 83.44 319 | 66.24 206 | 64.52 337 | 79.71 343 |
|
SCA | | | 74.22 247 | 72.33 254 | 79.91 234 | 84.05 252 | 62.17 241 | 79.96 289 | 79.29 322 | 66.30 246 | 72.38 250 | 80.13 313 | 51.95 247 | 88.60 280 | 59.25 263 | 77.67 243 | 88.96 229 |
|
Patchmatch-test | | | 64.82 313 | 63.24 313 | 69.57 325 | 79.42 329 | 49.82 346 | 63.49 353 | 69.05 353 | 51.98 346 | 59.95 339 | 80.13 313 | 50.91 258 | 70.98 357 | 40.66 350 | 73.57 298 | 87.90 253 |
|
tpmrst | | | 72.39 266 | 72.13 255 | 73.18 311 | 80.54 314 | 49.91 345 | 79.91 290 | 79.08 323 | 63.11 281 | 71.69 257 | 79.95 315 | 55.32 214 | 82.77 323 | 65.66 214 | 73.89 295 | 86.87 278 |
|
DSMNet-mixed | | | 57.77 321 | 56.90 323 | 60.38 337 | 67.70 358 | 35.61 361 | 69.18 342 | 53.97 363 | 32.30 360 | 57.49 345 | 79.88 316 | 40.39 330 | 68.57 359 | 38.78 352 | 72.37 307 | 76.97 348 |
|
MDA-MVSNet-bldmvs | | | 66.68 303 | 63.66 311 | 75.75 287 | 79.28 330 | 60.56 260 | 73.92 329 | 78.35 325 | 64.43 267 | 50.13 354 | 79.87 317 | 44.02 311 | 83.67 317 | 46.10 337 | 56.86 347 | 83.03 327 |
|
PatchmatchNet |  | | 73.12 260 | 71.33 263 | 78.49 259 | 83.18 268 | 60.85 256 | 79.63 291 | 78.57 324 | 64.13 271 | 71.73 256 | 79.81 318 | 51.20 256 | 85.97 302 | 57.40 282 | 76.36 264 | 88.66 239 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ppachtmachnet_test | | | 70.04 284 | 67.34 297 | 78.14 262 | 79.80 323 | 61.13 252 | 79.19 297 | 80.59 309 | 59.16 316 | 65.27 316 | 79.29 319 | 46.75 293 | 87.29 293 | 49.33 320 | 66.72 329 | 86.00 297 |
|
EPMVS | | | 69.02 290 | 68.16 285 | 71.59 315 | 79.61 326 | 49.80 347 | 77.40 312 | 66.93 355 | 62.82 287 | 70.01 273 | 79.05 320 | 45.79 300 | 77.86 341 | 56.58 288 | 75.26 283 | 87.13 274 |
|
PMMVS | | | 69.34 288 | 68.67 280 | 71.35 319 | 75.67 342 | 62.03 242 | 75.17 322 | 73.46 343 | 50.00 348 | 68.68 286 | 79.05 320 | 52.07 245 | 78.13 338 | 61.16 250 | 82.77 190 | 73.90 350 |
|
test-LLR | | | 72.94 263 | 72.43 252 | 74.48 300 | 81.35 304 | 58.04 282 | 78.38 303 | 77.46 329 | 66.66 240 | 69.95 276 | 79.00 322 | 48.06 284 | 79.24 333 | 66.13 207 | 84.83 163 | 86.15 291 |
|
test-mter | | | 71.41 272 | 70.39 273 | 74.48 300 | 81.35 304 | 58.04 282 | 78.38 303 | 77.46 329 | 60.32 305 | 69.95 276 | 79.00 322 | 36.08 343 | 79.24 333 | 66.13 207 | 84.83 163 | 86.15 291 |
|
DIV-MVS_2432*1600 | | | 68.81 291 | 67.59 296 | 72.46 313 | 74.29 348 | 45.45 352 | 77.93 309 | 87.00 233 | 63.12 280 | 63.99 325 | 78.99 324 | 42.32 319 | 84.77 311 | 56.55 289 | 64.09 338 | 87.16 273 |
|
KD-MVS_2432*1600 | | | 66.22 308 | 63.89 309 | 73.21 308 | 75.47 345 | 53.42 330 | 70.76 337 | 84.35 263 | 64.10 272 | 66.52 307 | 78.52 325 | 34.55 347 | 84.98 308 | 50.40 312 | 50.33 355 | 81.23 336 |
|
miper_refine_blended | | | 66.22 308 | 63.89 309 | 73.21 308 | 75.47 345 | 53.42 330 | 70.76 337 | 84.35 263 | 64.10 272 | 66.52 307 | 78.52 325 | 34.55 347 | 84.98 308 | 50.40 312 | 50.33 355 | 81.23 336 |
|
DWT-MVSNet_test | | | 73.70 252 | 71.86 257 | 79.21 248 | 82.91 277 | 58.94 272 | 82.34 265 | 82.17 294 | 65.21 257 | 71.05 263 | 78.31 327 | 44.21 309 | 90.17 255 | 63.29 230 | 77.28 245 | 88.53 243 |
|
tpmvs | | | 71.09 274 | 69.29 277 | 76.49 283 | 82.04 293 | 56.04 313 | 78.92 300 | 81.37 303 | 64.05 274 | 67.18 299 | 78.28 328 | 49.74 273 | 89.77 259 | 49.67 319 | 72.37 307 | 83.67 319 |
|
our_test_3 | | | 69.14 289 | 67.00 299 | 75.57 290 | 79.80 323 | 58.80 274 | 77.96 308 | 77.81 327 | 59.55 312 | 62.90 331 | 78.25 329 | 47.43 287 | 83.97 315 | 51.71 306 | 67.58 328 | 83.93 318 |
|
MDA-MVSNet_test_wron | | | 65.03 311 | 62.92 314 | 71.37 317 | 75.93 340 | 56.73 301 | 69.09 345 | 74.73 340 | 57.28 330 | 54.03 351 | 77.89 330 | 45.88 298 | 74.39 354 | 49.89 318 | 61.55 341 | 82.99 328 |
|
YYNet1 | | | 65.03 311 | 62.91 315 | 71.38 316 | 75.85 341 | 56.60 305 | 69.12 344 | 74.66 342 | 57.28 330 | 54.12 350 | 77.87 331 | 45.85 299 | 74.48 353 | 49.95 317 | 61.52 342 | 83.05 326 |
|
ambc | | | | | 75.24 294 | 73.16 353 | 50.51 344 | 63.05 354 | 87.47 225 | | 64.28 322 | 77.81 332 | 17.80 361 | 89.73 261 | 57.88 278 | 60.64 343 | 85.49 299 |
|
tpm cat1 | | | 70.57 278 | 68.31 283 | 77.35 275 | 82.41 289 | 57.95 285 | 78.08 307 | 80.22 316 | 52.04 345 | 68.54 289 | 77.66 333 | 52.00 246 | 87.84 289 | 51.77 305 | 72.07 311 | 86.25 288 |
|
dp | | | 66.80 302 | 65.43 304 | 70.90 322 | 79.74 325 | 48.82 348 | 75.12 325 | 74.77 339 | 59.61 311 | 64.08 324 | 77.23 334 | 42.89 315 | 80.72 330 | 48.86 322 | 66.58 331 | 83.16 324 |
|
TESTMET0.1,1 | | | 69.89 286 | 69.00 279 | 72.55 312 | 79.27 331 | 56.85 299 | 78.38 303 | 74.71 341 | 57.64 326 | 68.09 290 | 77.19 335 | 37.75 338 | 76.70 344 | 63.92 224 | 84.09 172 | 84.10 317 |
|
CHOSEN 280x420 | | | 66.51 305 | 64.71 306 | 71.90 314 | 81.45 301 | 63.52 217 | 57.98 355 | 68.95 354 | 53.57 341 | 62.59 332 | 76.70 336 | 46.22 296 | 75.29 351 | 55.25 293 | 79.68 222 | 76.88 349 |
|
PatchT | | | 68.46 296 | 67.85 290 | 70.29 323 | 80.70 312 | 43.93 355 | 72.47 331 | 74.88 338 | 60.15 307 | 70.55 264 | 76.57 337 | 49.94 270 | 81.59 326 | 50.58 310 | 74.83 287 | 85.34 301 |
|
RPMNet | | | 73.51 254 | 70.49 270 | 82.58 181 | 81.32 306 | 65.19 185 | 75.92 318 | 92.27 79 | 57.60 327 | 72.73 245 | 76.45 338 | 52.30 239 | 95.43 73 | 48.14 328 | 77.71 241 | 87.11 275 |
|
ADS-MVSNet2 | | | 66.20 310 | 63.33 312 | 74.82 298 | 79.92 320 | 58.75 275 | 67.55 347 | 75.19 337 | 53.37 342 | 65.25 317 | 75.86 339 | 42.32 319 | 80.53 331 | 41.57 348 | 68.91 324 | 85.18 303 |
|
ADS-MVSNet | | | 64.36 314 | 62.88 316 | 68.78 330 | 79.92 320 | 47.17 350 | 67.55 347 | 71.18 346 | 53.37 342 | 65.25 317 | 75.86 339 | 42.32 319 | 73.99 355 | 41.57 348 | 68.91 324 | 85.18 303 |
|
new-patchmatchnet | | | 61.73 317 | 61.73 319 | 61.70 336 | 72.74 355 | 24.50 368 | 69.16 343 | 78.03 326 | 61.40 298 | 56.72 347 | 75.53 341 | 38.42 335 | 76.48 346 | 45.95 338 | 57.67 346 | 84.13 316 |
|
N_pmnet | | | 52.79 324 | 53.26 325 | 51.40 342 | 78.99 332 | 7.68 371 | 69.52 340 | 3.89 371 | 51.63 347 | 57.01 346 | 74.98 342 | 40.83 328 | 65.96 360 | 37.78 353 | 64.67 336 | 80.56 341 |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 343 | 51.12 257 | 88.60 280 | | | |
|
GG-mvs-BLEND | | | | | 75.38 293 | 81.59 299 | 55.80 315 | 79.32 294 | 69.63 350 | | 67.19 298 | 73.67 344 | 43.24 313 | 88.90 278 | 50.41 311 | 84.50 167 | 81.45 335 |
|
Patchmatch-RL test | | | 70.24 282 | 67.78 293 | 77.61 271 | 77.43 336 | 59.57 270 | 71.16 334 | 70.33 347 | 62.94 285 | 68.65 287 | 72.77 345 | 50.62 262 | 85.49 305 | 69.58 180 | 66.58 331 | 87.77 256 |
|
FPMVS | | | 53.68 323 | 51.64 326 | 59.81 338 | 65.08 359 | 51.03 341 | 69.48 341 | 69.58 351 | 41.46 352 | 40.67 356 | 72.32 346 | 16.46 363 | 70.00 358 | 24.24 360 | 65.42 334 | 58.40 357 |
|
UnsupCasMVSNet_bld | | | 63.70 316 | 61.53 320 | 70.21 324 | 73.69 350 | 51.39 340 | 72.82 330 | 81.89 297 | 55.63 337 | 57.81 344 | 71.80 347 | 38.67 334 | 78.61 336 | 49.26 321 | 52.21 353 | 80.63 339 |
|
PVSNet_0 | | 57.27 20 | 61.67 318 | 59.27 321 | 68.85 329 | 79.61 326 | 57.44 294 | 68.01 346 | 73.44 344 | 55.93 336 | 58.54 342 | 70.41 348 | 44.58 307 | 77.55 342 | 47.01 332 | 35.91 358 | 71.55 352 |
|
pmmvs3 | | | 57.79 320 | 54.26 324 | 68.37 331 | 64.02 360 | 56.72 302 | 75.12 325 | 65.17 357 | 40.20 353 | 52.93 352 | 69.86 349 | 20.36 359 | 75.48 350 | 45.45 340 | 55.25 350 | 72.90 351 |
|
new_pmnet | | | 50.91 325 | 50.29 327 | 52.78 341 | 68.58 357 | 34.94 363 | 63.71 352 | 56.63 362 | 39.73 354 | 44.95 355 | 65.47 350 | 21.93 358 | 58.48 361 | 34.98 355 | 56.62 348 | 64.92 354 |
|
gg-mvs-nofinetune | | | 69.95 285 | 67.96 288 | 75.94 286 | 83.07 271 | 54.51 322 | 77.23 313 | 70.29 348 | 63.11 281 | 70.32 268 | 62.33 351 | 43.62 312 | 88.69 279 | 53.88 298 | 87.76 128 | 84.62 312 |
|
JIA-IIPM | | | 66.32 307 | 62.82 317 | 76.82 281 | 77.09 338 | 61.72 248 | 65.34 350 | 75.38 336 | 58.04 324 | 64.51 321 | 62.32 352 | 42.05 323 | 86.51 298 | 51.45 308 | 69.22 323 | 82.21 331 |
|
LCM-MVSNet | | | 54.25 322 | 49.68 328 | 67.97 332 | 53.73 363 | 45.28 353 | 66.85 349 | 80.78 306 | 35.96 357 | 39.45 357 | 62.23 353 | 8.70 369 | 78.06 340 | 48.24 327 | 51.20 354 | 80.57 340 |
|
PMMVS2 | | | 40.82 329 | 38.86 332 | 46.69 343 | 53.84 362 | 16.45 369 | 48.61 358 | 49.92 364 | 37.49 356 | 31.67 358 | 60.97 354 | 8.14 370 | 56.42 362 | 28.42 357 | 30.72 360 | 67.19 353 |
|
MVS-HIRNet | | | 59.14 319 | 57.67 322 | 63.57 335 | 81.65 297 | 43.50 356 | 71.73 333 | 65.06 358 | 39.59 355 | 51.43 353 | 57.73 355 | 38.34 336 | 82.58 324 | 39.53 351 | 73.95 294 | 64.62 355 |
|
ANet_high | | | 50.57 326 | 46.10 329 | 63.99 334 | 48.67 366 | 39.13 359 | 70.99 336 | 80.85 305 | 61.39 299 | 31.18 359 | 57.70 356 | 17.02 362 | 73.65 356 | 31.22 356 | 15.89 365 | 79.18 344 |
|
PMVS |  | 37.38 22 | 44.16 328 | 40.28 331 | 55.82 339 | 40.82 368 | 42.54 357 | 65.12 351 | 63.99 360 | 34.43 358 | 24.48 361 | 57.12 357 | 3.92 371 | 76.17 347 | 17.10 363 | 55.52 349 | 48.75 358 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_method | | | 31.52 331 | 29.28 335 | 38.23 345 | 27.03 370 | 6.50 372 | 20.94 363 | 62.21 361 | 4.05 366 | 22.35 364 | 52.50 358 | 13.33 364 | 47.58 365 | 27.04 359 | 34.04 359 | 60.62 356 |
|
DeepMVS_CX |  | | | | 27.40 348 | 40.17 369 | 26.90 366 | | 24.59 370 | 17.44 364 | 23.95 362 | 48.61 359 | 9.77 367 | 26.48 367 | 18.06 362 | 24.47 361 | 28.83 361 |
|
MVE |  | 26.22 23 | 30.37 333 | 25.89 337 | 43.81 344 | 44.55 367 | 35.46 362 | 28.87 362 | 39.07 367 | 18.20 363 | 18.58 365 | 40.18 360 | 2.68 372 | 47.37 366 | 17.07 364 | 23.78 362 | 48.60 359 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
Gipuma |  | | 45.18 327 | 41.86 330 | 55.16 340 | 77.03 339 | 51.52 338 | 32.50 361 | 80.52 310 | 32.46 359 | 27.12 360 | 35.02 361 | 9.52 368 | 75.50 349 | 22.31 361 | 60.21 345 | 38.45 360 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 31.77 330 | 30.64 333 | 35.15 346 | 52.87 364 | 27.67 365 | 57.09 356 | 47.86 365 | 24.64 361 | 16.40 366 | 33.05 362 | 11.23 366 | 54.90 363 | 14.46 365 | 18.15 363 | 22.87 362 |
|
EMVS | | | 30.81 332 | 29.65 334 | 34.27 347 | 50.96 365 | 25.95 367 | 56.58 357 | 46.80 366 | 24.01 362 | 15.53 367 | 30.68 363 | 12.47 365 | 54.43 364 | 12.81 366 | 17.05 364 | 22.43 363 |
|
tmp_tt | | | 18.61 335 | 21.40 338 | 10.23 350 | 4.82 371 | 10.11 370 | 34.70 360 | 30.74 369 | 1.48 367 | 23.91 363 | 26.07 364 | 28.42 354 | 13.41 369 | 27.12 358 | 15.35 366 | 7.17 364 |
|
X-MVStestdata | | | 80.37 142 | 77.83 176 | 88.00 14 | 94.42 20 | 73.33 19 | 92.78 15 | 92.99 46 | 79.14 22 | 83.67 80 | 12.47 365 | 67.45 91 | 96.60 32 | 83.06 58 | 94.50 54 | 94.07 39 |
|
test_post | | | | | | | | | | | | 5.46 366 | 50.36 266 | 84.24 313 | | | |
|
test_post1 | | | | | | | | 78.90 301 | | | | 5.43 367 | 48.81 283 | 85.44 306 | 59.25 263 | | |
|
wuyk23d | | | 16.82 336 | 15.94 339 | 19.46 349 | 58.74 361 | 31.45 364 | 39.22 359 | 3.74 372 | 6.84 365 | 6.04 368 | 2.70 368 | 1.27 373 | 24.29 368 | 10.54 367 | 14.40 367 | 2.63 365 |
|
testmvs | | | 6.04 339 | 8.02 342 | 0.10 352 | 0.08 372 | 0.03 374 | 69.74 339 | 0.04 373 | 0.05 368 | 0.31 369 | 1.68 369 | 0.02 375 | 0.04 370 | 0.24 368 | 0.02 368 | 0.25 367 |
|
test123 | | | 6.12 338 | 8.11 341 | 0.14 351 | 0.06 373 | 0.09 373 | 71.05 335 | 0.03 374 | 0.04 369 | 0.25 370 | 1.30 370 | 0.05 374 | 0.03 371 | 0.21 369 | 0.01 369 | 0.29 366 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
pcd_1.5k_mvsjas | | | 5.26 340 | 7.02 343 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 63.15 136 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 1 | 89.67 1 | 96.44 8 | 94.41 25 |
|
eth-test2 | | | | | | 0.00 374 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 374 | | | | | | | | | | | |
|
IU-MVS | | | | | | 95.30 2 | 71.25 60 | | 92.95 52 | 66.81 236 | 92.39 5 | | | | 88.94 9 | 96.63 3 | 94.85 11 |
|
save fliter | | | | | | 93.80 40 | 72.35 43 | 90.47 64 | 91.17 125 | 74.31 116 | | | | | | | |
|
test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 59 | 93.49 7 | 94.23 5 | | | | | 97.49 2 | 89.08 5 | 96.41 10 | 94.21 34 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 229 |
|
test_part2 | | | | | | 95.06 7 | 72.65 32 | | | | 91.80 11 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 255 | | | | 88.96 229 |
|
sam_mvs | | | | | | | | | | | | | 50.01 268 | | | | |
|
MTGPA |  | | | | | | | | 92.02 90 | | | | | | | | |
|
MTMP | | | | | | | | 92.18 31 | 32.83 368 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 31 | 95.70 29 | 92.87 96 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 61 | 95.45 31 | 92.70 99 |
|
agg_prior | | | | | | 92.85 62 | 71.94 52 | | 91.78 105 | | 84.41 66 | | | 94.93 96 | | | |
|
test_prior4 | | | | | | | 72.60 34 | 89.01 100 | | | | | | | | | |
|
test_prior | | | | | 86.33 61 | 92.61 70 | 69.59 97 | | 92.97 50 | | | | | 95.48 69 | | | 93.91 47 |
|
旧先验2 | | | | | | | | 86.56 181 | | 58.10 323 | 87.04 32 | | | 88.98 274 | 74.07 138 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 86.29 189 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 87.48 153 | 88.98 188 | 60.00 308 | | | | 94.12 127 | 67.28 198 | | 88.97 228 |
|
原ACMM2 | | | | | | | | 86.86 170 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 243 | 62.37 237 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 41 | | | | |
|
testdata1 | | | | | | | | 84.14 241 | | 75.71 88 | | | | | | | |
|
test12 | | | | | 86.80 53 | 92.63 69 | 70.70 77 | | 91.79 104 | | 82.71 93 | | 71.67 53 | 96.16 45 | | 94.50 54 | 93.54 71 |
|
plane_prior7 | | | | | | 90.08 108 | 68.51 125 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 113 | 68.70 120 | | | | | | 60.42 184 | | | | |
|
plane_prior5 | | | | | | | | | 92.44 71 | | | | | 95.38 78 | 78.71 95 | 86.32 150 | 91.33 142 |
|
plane_prior3 | | | | | | | 68.60 123 | | | 78.44 31 | 78.92 133 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 47 | | 79.12 24 | | | | | | | |
|
plane_prior1 | | | | | | 89.90 112 | | | | | | | | | | | |
|
plane_prior | | | | | | | 68.71 118 | 90.38 68 | | 77.62 38 | | | | | | 86.16 153 | |
|
n2 | | | | | | | | | 0.00 375 | | | | | | | | |
|
nn | | | | | | | | | 0.00 375 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 349 | | | | | | | | |
|
test11 | | | | | | | | | 92.23 82 | | | | | | | | |
|
door | | | | | | | | | 69.44 352 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 152 | | | | | | | | | | |
|
HQP-NCC | | | | | | 89.33 127 | | 89.17 93 | | 76.41 72 | 77.23 169 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 127 | | 89.17 93 | | 76.41 72 | 77.23 169 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 109 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 168 | | | 95.11 89 | | | 91.03 152 |
|
HQP3-MVS | | | | | | | | | 92.19 85 | | | | | | | 85.99 156 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 187 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 360 | 75.16 323 | | 55.10 338 | 66.53 306 | | 49.34 277 | | 53.98 297 | | 87.94 252 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 200 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 205 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 121 | | | | |
|