This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11497.66 23895.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12698.54 15895.24 18998.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12299.30 6895.25 18898.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10799.09 10695.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6795.48 35696.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
test_fmvsmvis_n_192098.44 4198.51 1898.23 11398.33 17896.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 208
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23297.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19398.83 13699.65 69
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-298.36 5098.87 696.82 21799.53 3690.68 32398.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23099.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
mvsany_test197.69 7997.70 6997.66 16298.24 18494.18 24297.53 29897.53 29895.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
DeepC-MVS95.98 397.88 6897.58 7398.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_298.08 6098.59 1496.56 24199.57 3390.34 33099.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
MM98.51 3398.24 4699.33 2699.12 10298.14 5498.93 9597.02 33798.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6798.88 10895.32 37498.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20198.78 10094.10 19797.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
VDDNet95.36 20094.53 21797.86 13998.10 20295.13 19598.85 11897.75 27990.46 33398.36 9499.39 3273.27 37699.64 13197.98 6096.58 21198.81 183
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35098.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26799.00 11489.54 34297.43 30498.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
test_vis1_n_192096.71 12996.84 11096.31 26699.11 10489.74 33799.05 6598.58 14998.08 1299.87 199.37 3878.48 34399.93 2599.29 1499.69 5699.27 129
EI-MVSNet-UG-set98.41 4598.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
LS3D97.16 11296.66 12298.68 7398.53 15997.19 9198.93 9598.90 5792.83 26895.99 20299.37 3892.12 12399.87 5893.67 23699.57 8098.97 170
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_cas_vis1_n_192097.38 10197.36 8997.45 17198.95 12193.25 27799.00 7898.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6199.26 131
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
DP-MVS96.59 13395.93 15098.57 7999.34 5796.19 14098.70 15998.39 19089.45 35294.52 23699.35 4491.85 13099.85 6392.89 26098.88 13299.68 61
VDD-MVS95.82 17395.23 18597.61 16598.84 13293.98 24698.68 16297.40 31295.02 16097.95 11799.34 4874.37 37399.78 10198.64 2596.80 20499.08 161
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-OURS96.55 13796.41 13096.99 20398.75 13793.76 25297.50 30198.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22797.69 239
9.1498.06 5899.47 4798.71 15598.82 8194.36 19199.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16998.52 3699.70 5499.47 100
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test111195.94 16595.78 15596.41 25998.99 11890.12 33299.04 6892.45 39696.99 6698.03 10999.27 5681.40 32199.48 16296.87 12899.04 12399.63 73
test_fmvs1_n95.90 16895.99 14895.63 29398.67 14788.32 36499.26 2798.22 21996.40 9299.67 1499.26 5773.91 37499.70 11999.02 1899.50 9498.87 178
test250694.44 26193.91 25896.04 27599.02 11188.99 35299.06 6379.47 41096.96 6798.36 9499.26 5777.21 35599.52 15696.78 13499.04 12399.59 79
ECVR-MVScopyleft95.95 16395.71 16296.65 22799.02 11190.86 31899.03 7191.80 39796.96 6798.10 10399.26 5781.31 32299.51 15796.90 12299.04 12399.59 79
RPSCF94.87 23195.40 17193.26 34998.89 12582.06 38798.33 20898.06 25790.30 33896.56 18199.26 5787.09 24199.49 15893.82 23196.32 22098.24 221
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13598.82 8194.52 18599.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
MG-MVS97.81 7297.60 7298.44 9599.12 10295.97 15197.75 28298.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19799.52 9299.67 65
casdiffmvspermissive97.63 8397.41 8698.28 10698.33 17896.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18598.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive97.42 9897.11 9898.34 10398.66 14896.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22299.35 17496.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs196.42 14196.67 12195.66 29298.82 13388.53 36098.80 13598.20 22296.39 9399.64 1799.20 6780.35 33299.67 12699.04 1799.57 8098.78 187
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
LFMVS95.86 17094.98 19898.47 9198.87 12896.32 13498.84 12296.02 36493.40 24298.62 7999.20 6774.99 36899.63 13497.72 8097.20 19499.46 104
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6299.44 1198.82 8194.46 18898.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9598.42 16596.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18598.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
test_vis1_n95.47 18995.13 18996.49 25097.77 22790.41 32899.27 2698.11 24296.58 8399.66 1599.18 7367.00 38799.62 13799.21 1599.40 10999.44 107
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
baseline97.64 8297.44 8598.25 11198.35 17196.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 19298.10 5598.29 16599.39 112
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 28197.52 9899.72 5199.74 37
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17397.24 10799.73 4899.70 53
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
3Dnovator94.51 597.46 9296.93 10699.07 5397.78 22697.64 6999.35 1799.06 3497.02 6493.75 27999.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
CS-MVS-test98.49 3598.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19598.83 2299.56 8699.20 139
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
3Dnovator+94.38 697.43 9796.78 11499.38 1897.83 22398.52 2899.37 1498.71 11697.09 6292.99 30699.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
EPNet97.28 10596.87 10998.51 8694.98 36496.14 14298.90 9997.02 33798.28 1095.99 20299.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.93 12096.27 13698.92 6399.50 4197.63 7098.85 11898.90 5784.80 38097.77 12699.11 8492.84 10699.66 12894.85 19499.77 3199.47 100
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
CS-MVS98.44 4198.49 2198.31 10599.08 10796.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19898.71 2499.49 9699.09 157
testdata98.26 11099.20 9295.36 18198.68 12391.89 29898.60 8199.10 8694.44 8699.82 7694.27 21699.44 10399.58 83
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5599.04 6899.09 3193.32 24598.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
OMC-MVS97.55 9097.34 9098.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18898.88 13299.19 143
COLMAP_ROBcopyleft93.27 1295.33 20394.87 20496.71 22299.29 7393.24 27898.58 17898.11 24289.92 34393.57 28399.10 8686.37 25599.79 9890.78 30798.10 16997.09 255
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
XVG-OURS-SEG-HR96.51 13896.34 13297.02 20298.77 13693.76 25297.79 28098.50 16995.45 13496.94 16299.09 9287.87 22799.55 15296.76 13595.83 23897.74 236
CPTT-MVS97.72 7697.32 9198.92 6399.64 2897.10 9499.12 5398.81 8692.34 28498.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
EPP-MVSNet97.46 9297.28 9297.99 13398.64 15095.38 18099.33 2198.31 20393.61 23497.19 15199.07 9594.05 9499.23 18596.89 12398.43 15799.37 114
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
OpenMVScopyleft93.04 1395.83 17295.00 19698.32 10497.18 27897.32 8199.21 3898.97 4289.96 34291.14 33999.05 9786.64 24999.92 3193.38 24299.47 9997.73 237
EI-MVSNet95.96 16295.83 15396.36 26297.93 21893.70 25898.12 23998.27 21293.70 22595.07 22199.02 9892.23 11998.54 27394.68 19993.46 27496.84 282
CVMVSNet95.43 19396.04 14593.57 34397.93 21883.62 38198.12 23998.59 14495.68 12496.56 18199.02 9887.51 23497.51 35593.56 24097.44 19099.60 77
TSAR-MVS + GP.98.38 4798.24 4698.81 6899.22 8997.25 8898.11 24198.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
QAPM96.29 14895.40 17198.96 6197.85 22297.60 7299.23 3198.93 5089.76 34693.11 30399.02 9889.11 19299.93 2591.99 28399.62 7199.34 116
MVS_111021_LR98.34 5398.23 4898.67 7499.27 7896.90 10197.95 25899.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
MVS_111021_HR98.47 3898.34 3598.88 6699.22 8997.32 8197.91 26399.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
IS-MVSNet97.22 10796.88 10898.25 11198.85 13196.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 23194.60 20498.59 14799.47 100
ZD-MVS99.46 4998.70 2398.79 9893.21 25098.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
Anonymous2024052995.10 21594.22 23497.75 15099.01 11394.26 23898.87 11398.83 8085.79 37696.64 17698.97 10578.73 34099.85 6396.27 14794.89 24499.12 154
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24997.81 12598.97 10595.18 6799.83 6993.84 23099.46 10299.50 91
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6699.53 898.80 9394.63 17998.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 6897.75 28298.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet98.05 6297.76 6798.90 6598.73 13897.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
test22299.23 8897.17 9297.40 30598.66 13188.68 36098.05 10698.96 11094.14 9399.53 9199.61 75
新几何199.16 4599.34 5798.01 5998.69 12090.06 34198.13 10198.95 11294.60 7999.89 4791.97 28599.47 9999.59 79
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4198.33 20898.89 5992.62 27398.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
CANet_DTU96.96 11996.55 12598.21 11498.17 19796.07 14497.98 25698.21 22097.24 5097.13 15398.93 11486.88 24699.91 3995.00 19199.37 11298.66 199
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
CSCG97.85 7197.74 6898.20 11699.67 2595.16 19299.22 3599.32 1193.04 25997.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
CHOSEN 1792x268897.12 11496.80 11198.08 12899.30 6894.56 22698.05 24899.71 193.57 23597.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
diffmvspermissive97.58 8797.40 8798.13 12298.32 18195.81 16498.06 24798.37 19496.20 9998.74 6998.89 11891.31 14799.25 18298.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9599.27 7895.91 15998.63 17299.16 2794.48 18797.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
GeoE96.58 13596.07 14398.10 12798.35 17195.89 16199.34 1898.12 23993.12 25696.09 19898.87 12089.71 17698.97 22192.95 25698.08 17099.43 109
Vis-MVSNet (Re-imp)96.87 12396.55 12597.83 14198.73 13895.46 17699.20 4098.30 20994.96 16496.60 18098.87 12090.05 17098.59 26793.67 23698.60 14699.46 104
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26398.67 12892.57 27698.77 6798.85 12295.93 3899.72 11395.56 17499.69 5699.68 61
VNet97.79 7397.40 8798.96 6198.88 12697.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20899.50 91
EC-MVSNet98.21 5898.11 5698.49 8998.34 17697.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21998.91 2099.50 9499.19 143
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
MVSFormer97.57 8897.49 8097.84 14098.07 20395.76 16599.47 998.40 18894.98 16298.79 6598.83 12592.34 11498.41 29596.91 11999.59 7699.34 116
jason97.32 10497.08 10098.06 13097.45 25795.59 16997.87 27197.91 27294.79 17298.55 8398.83 12591.12 15199.23 18597.58 9199.60 7499.34 116
jason: jason.
Anonymous20240521195.28 20594.49 21997.67 15999.00 11493.75 25498.70 15997.04 33490.66 32996.49 18798.80 12878.13 34799.83 6996.21 15195.36 24399.44 107
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OPM-MVS95.69 18195.33 17996.76 22096.16 33494.63 21998.43 20198.39 19096.64 8195.02 22398.78 13085.15 27999.05 21095.21 18794.20 25096.60 309
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest95.24 20794.65 21296.99 20399.25 8193.21 27998.59 17698.18 22791.36 31293.52 28598.77 13284.67 29099.72 11389.70 32597.87 17698.02 229
TestCases96.99 20399.25 8193.21 27998.18 22791.36 31293.52 28598.77 13284.67 29099.72 11389.70 32597.87 17698.02 229
LPG-MVS_test95.62 18495.34 17796.47 25397.46 25493.54 26198.99 8198.54 15794.67 17794.36 24798.77 13285.39 27299.11 20295.71 16994.15 25396.76 289
LGP-MVS_train96.47 25397.46 25493.54 26198.54 15794.67 17794.36 24798.77 13285.39 27299.11 20295.71 16994.15 25396.76 289
SDMVSNet96.85 12496.42 12998.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20498.76 13685.88 26399.44 16797.93 6495.59 23998.60 203
sd_testset96.17 15395.76 15797.42 17499.30 6894.34 23598.82 12699.08 3295.92 11095.96 20498.76 13682.83 31599.32 17795.56 17495.59 23998.60 203
MSDG95.93 16695.30 18397.83 14198.90 12495.36 18196.83 35398.37 19491.32 31694.43 24398.73 13890.27 16899.60 13990.05 31898.82 13798.52 209
h-mvs3396.17 15395.62 16897.81 14499.03 11094.45 22898.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37799.11 155
RRT_MVS95.98 16195.78 15596.56 24196.48 31994.22 24199.57 697.92 27095.89 11393.95 26898.70 14089.27 18698.42 28797.23 10893.02 28397.04 257
test_prior297.80 27896.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
TEST999.31 6498.50 2997.92 26198.73 11192.63 27297.74 13098.68 14296.20 2899.80 88
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 26198.73 11192.98 26197.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
AdaColmapbinary97.15 11396.70 11898.48 9099.16 9896.69 11198.01 25298.89 5994.44 18996.83 16898.68 14290.69 16199.76 10794.36 21199.29 11698.98 169
test_899.29 7398.44 3197.89 26998.72 11392.98 26197.70 13498.66 14596.20 2899.80 88
tttt051796.07 15795.51 17097.78 14698.41 16794.84 20999.28 2494.33 38594.26 19497.64 14098.64 14684.05 30499.47 16495.34 17997.60 18799.03 164
mvsmamba96.57 13696.32 13497.32 18296.60 31196.43 12699.54 797.98 26396.49 8695.20 21998.64 14690.82 15698.55 27197.97 6193.65 26996.98 261
cdsmvs_eth3d_5k23.98 37331.98 3750.00 3910.00 4140.00 4160.00 40298.59 1440.00 4090.00 41098.61 14890.60 1620.00 4100.00 4090.00 4080.00 406
lupinMVS97.44 9697.22 9598.12 12598.07 20395.76 16597.68 28797.76 27894.50 18698.79 6598.61 14892.34 11499.30 17897.58 9199.59 7699.31 122
BH-RMVSNet95.92 16795.32 18097.69 15698.32 18194.64 21898.19 22997.45 30894.56 18196.03 20098.61 14885.02 28099.12 20090.68 30999.06 12299.30 125
TAMVS97.02 11796.79 11397.70 15598.06 20695.31 18698.52 18798.31 20393.95 20697.05 15998.61 14893.49 10098.52 27595.33 18097.81 17899.29 127
TAPA-MVS93.98 795.35 20194.56 21697.74 15199.13 10194.83 21198.33 20898.64 13686.62 36896.29 19498.61 14894.00 9699.29 17980.00 38299.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D94.24 27393.33 29196.97 20697.19 27793.38 27198.74 14698.57 15191.21 32393.81 27698.58 15372.85 37798.77 25395.05 19093.93 26198.77 189
DPM-MVS97.55 9096.99 10499.23 3899.04 10998.55 2797.17 32898.35 19794.85 17197.93 12198.58 15395.07 7299.71 11892.60 26499.34 11399.43 109
F-COLMAP97.09 11696.80 11197.97 13499.45 5294.95 20598.55 18598.62 14093.02 26096.17 19798.58 15394.01 9599.81 8193.95 22698.90 13099.14 152
WTY-MVS97.37 10396.92 10798.72 7198.86 12996.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20399.48 98
CNLPA97.45 9597.03 10298.73 7099.05 10897.44 8098.07 24698.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21599.31 11599.02 165
ACMP93.49 1095.34 20294.98 19896.43 25897.67 23693.48 26598.73 15098.44 18094.94 16792.53 31998.53 15784.50 29599.14 19795.48 17894.00 25896.66 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH92.88 1694.55 24993.95 25596.34 26497.63 24093.26 27698.81 13498.49 17493.43 24189.74 35198.53 15781.91 31899.08 20893.69 23393.30 28096.70 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-094.21 27494.00 25194.85 32095.60 35189.22 34798.89 10397.43 31095.29 14492.18 32898.52 16082.86 31498.59 26793.46 24191.76 29796.74 291
CDS-MVSNet96.99 11896.69 11997.90 13898.05 20795.98 14698.20 22698.33 20093.67 23096.95 16198.49 16193.54 9998.42 28795.24 18697.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
bld_raw_dy_0_6495.74 17695.31 18297.03 20196.35 32595.76 16599.12 5397.37 31595.97 10894.70 23298.48 16285.80 26598.49 27796.55 13993.48 27396.84 282
sss97.39 10096.98 10598.61 7798.60 15496.61 11498.22 22398.93 5093.97 20598.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
ACMH+92.99 1494.30 26893.77 27095.88 28597.81 22592.04 29898.71 15598.37 19493.99 20490.60 34598.47 16480.86 32899.05 21092.75 26292.40 29196.55 317
ACMM93.85 995.69 18195.38 17596.61 23497.61 24193.84 25098.91 9898.44 18095.25 14794.28 25198.47 16486.04 26299.12 20095.50 17793.95 26096.87 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf_final96.42 14196.12 14197.34 18198.46 16396.55 12199.08 6198.06 25796.03 10695.63 21098.46 16687.72 22998.59 26797.84 7393.80 26496.87 277
iter_conf0596.13 15695.79 15497.15 19298.16 19895.99 14598.88 10897.98 26395.91 11295.58 21198.46 16685.53 27098.59 26797.88 6993.75 26596.86 280
1112_ss96.63 13196.00 14798.50 8798.56 15596.37 13198.18 23498.10 24592.92 26494.84 22698.43 16892.14 12299.58 14194.35 21296.51 21499.56 85
ab-mvs-re8.20 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.43 1680.00 4140.00 4100.00 4090.00 4080.00 406
test_yl97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17398.02 11198.42 17090.80 15899.70 11996.81 13196.79 20599.34 116
DCV-MVSNet97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17398.02 11198.42 17090.80 15899.70 11996.81 13196.79 20599.34 116
xiu_mvs_v1_base_debu97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
xiu_mvs_v1_base97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
xiu_mvs_v1_base_debi97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
mvs_tets95.41 19695.00 19696.65 22795.58 35294.42 23099.00 7898.55 15595.73 12293.21 29898.38 17583.45 31398.63 26397.09 11294.00 25896.91 271
FC-MVSNet-test96.42 14196.05 14497.53 16996.95 29097.27 8399.36 1599.23 2095.83 11793.93 26998.37 17692.00 12698.32 30496.02 15792.72 28997.00 260
jajsoiax95.45 19295.03 19596.73 22195.42 36094.63 21999.14 4998.52 16295.74 12093.22 29798.36 17783.87 30998.65 26296.95 11894.04 25696.91 271
nrg03096.28 15095.72 15997.96 13696.90 29598.15 5299.39 1298.31 20395.47 13394.42 24498.35 17892.09 12498.69 25797.50 9989.05 33497.04 257
FIs96.51 13896.12 14197.67 15997.13 28197.54 7499.36 1599.22 2395.89 11394.03 26598.35 17891.98 12798.44 28596.40 14592.76 28897.01 259
ITE_SJBPF95.44 30197.42 25991.32 31097.50 30195.09 15793.59 28198.35 17881.70 31998.88 24089.71 32493.39 27896.12 345
LTVRE_ROB92.95 1594.60 24593.90 25996.68 22697.41 26294.42 23098.52 18798.59 14491.69 30491.21 33898.35 17884.87 28399.04 21391.06 30293.44 27796.60 309
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-MVSNAJss96.43 14096.26 13796.92 21295.84 34695.08 19799.16 4698.50 16995.87 11693.84 27598.34 18294.51 8198.61 26496.88 12593.45 27697.06 256
EPNet_dtu95.21 20994.95 20095.99 27796.17 33290.45 32798.16 23597.27 32096.77 7593.14 30298.33 18390.34 16698.42 28785.57 36098.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS93.45 1194.68 23993.43 28998.42 9998.62 15296.77 10795.48 37798.20 22284.63 38193.34 29498.32 18488.55 20999.81 8184.80 36898.96 12898.68 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053096.01 15995.36 17697.97 13498.38 16895.52 17498.88 10894.19 38794.04 19997.64 14098.31 18583.82 31199.46 16595.29 18397.70 18498.93 175
PLCcopyleft95.07 497.20 11096.78 11498.44 9599.29 7396.31 13698.14 23698.76 10492.41 28296.39 19298.31 18594.92 7699.78 10194.06 22498.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP_MVS96.14 15595.90 15196.85 21597.42 25994.60 22498.80 13598.56 15397.28 4595.34 21498.28 18787.09 24199.03 21496.07 15294.27 24796.92 266
plane_prior498.28 187
API-MVS97.41 9997.25 9397.91 13798.70 14396.80 10598.82 12698.69 12094.53 18398.11 10298.28 18794.50 8499.57 14294.12 22199.49 9697.37 250
test_fmvs293.43 29893.58 28192.95 35396.97 28983.91 38099.19 4297.24 32295.74 12095.20 21998.27 19069.65 38098.72 25696.26 14893.73 26696.24 341
mvs_anonymous96.70 13096.53 12797.18 18998.19 19293.78 25198.31 21398.19 22494.01 20294.47 23898.27 19092.08 12598.46 28297.39 10397.91 17499.31 122
XXY-MVS95.20 21094.45 22497.46 17096.75 30496.56 11998.86 11698.65 13593.30 24793.27 29698.27 19084.85 28498.87 24194.82 19691.26 30596.96 263
SixPastTwentyTwo93.34 30192.86 30094.75 32495.67 34989.41 34598.75 14396.67 35593.89 20990.15 34998.25 19380.87 32798.27 31390.90 30690.64 31196.57 313
VPNet94.99 22294.19 23697.40 17797.16 27996.57 11898.71 15598.97 4295.67 12594.84 22698.24 19480.36 33198.67 26196.46 14287.32 35496.96 263
PVSNet_Blended97.38 10197.12 9798.14 11999.25 8195.35 18397.28 31899.26 1593.13 25597.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
HyFIR lowres test96.90 12296.49 12898.14 11999.33 5995.56 17197.38 30799.65 292.34 28497.61 14298.20 19689.29 18599.10 20696.97 11697.60 18799.77 27
baseline195.84 17195.12 19198.01 13298.49 16295.98 14698.73 15097.03 33595.37 14096.22 19598.19 19789.96 17299.16 19294.60 20487.48 35098.90 177
ab-mvs96.42 14195.71 16298.55 8198.63 15196.75 10897.88 27098.74 10893.84 21296.54 18598.18 19885.34 27599.75 10995.93 15996.35 21899.15 150
xiu_mvs_v2_base97.66 8197.70 6997.56 16898.61 15395.46 17697.44 30298.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 246
USDC93.33 30292.71 30395.21 30796.83 29990.83 32096.91 34397.50 30193.84 21290.72 34398.14 20077.69 35098.82 24889.51 32993.21 28295.97 349
EU-MVSNet93.66 29494.14 24192.25 35995.96 34283.38 38398.52 18798.12 23994.69 17592.61 31698.13 20187.36 23996.39 37591.82 28790.00 31996.98 261
CHOSEN 280x42097.18 11197.18 9697.20 18698.81 13493.27 27595.78 37399.15 2895.25 14796.79 17398.11 20292.29 11699.07 20998.56 2999.85 599.25 133
MVSTER96.06 15895.72 15997.08 19898.23 18695.93 15798.73 15098.27 21294.86 16995.07 22198.09 20388.21 21598.54 27396.59 13793.46 27496.79 286
MVS_Test97.28 10597.00 10398.13 12298.33 17895.97 15198.74 14698.07 25294.27 19398.44 9198.07 20492.48 11199.26 18196.43 14498.19 16699.16 149
PAPM_NR97.46 9297.11 9898.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 23298.87 13499.52 86
PatchMatch-RL96.59 13396.03 14698.27 10799.31 6496.51 12297.91 26399.06 3493.72 22296.92 16598.06 20588.50 21199.65 12991.77 28999.00 12798.66 199
tt080594.54 25093.85 26496.63 23197.98 21393.06 28598.77 14297.84 27593.67 23093.80 27798.04 20776.88 36098.96 22594.79 19892.86 28697.86 233
Effi-MVS+97.12 11496.69 11998.39 10198.19 19296.72 11097.37 30998.43 18493.71 22397.65 13998.02 20892.20 12199.25 18296.87 12897.79 17999.19 143
MVS94.67 24293.54 28498.08 12896.88 29696.56 11998.19 22998.50 16978.05 39092.69 31498.02 20891.07 15499.63 13490.09 31598.36 16198.04 228
BH-untuned95.95 16395.72 15996.65 22798.55 15792.26 29298.23 22297.79 27793.73 22094.62 23398.01 21088.97 19999.00 22093.04 25398.51 15198.68 195
CLD-MVS95.62 18495.34 17796.46 25697.52 25193.75 25497.27 31998.46 17695.53 13094.42 24498.00 21186.21 25798.97 22196.25 15094.37 24596.66 304
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs295.71 17895.30 18396.93 20998.50 16093.53 26398.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21797.95 6280.91 38198.22 223
HY-MVS93.96 896.82 12696.23 13998.57 7998.46 16397.00 9698.14 23698.21 22093.95 20696.72 17497.99 21291.58 13699.76 10794.51 20896.54 21398.95 173
AUN-MVS94.53 25293.73 27496.92 21298.50 16093.52 26498.34 20798.10 24593.83 21495.94 20697.98 21485.59 26999.03 21494.35 21280.94 38098.22 223
MAR-MVS96.91 12196.40 13198.45 9398.69 14596.90 10198.66 16798.68 12392.40 28397.07 15797.96 21591.54 14099.75 10993.68 23498.92 12998.69 194
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-CasMVS94.67 24293.99 25396.71 22296.68 30895.26 18799.13 5299.03 3793.68 22892.33 32597.95 21685.35 27498.10 32293.59 23888.16 34596.79 286
TranMVSNet+NR-MVSNet95.14 21394.48 22097.11 19696.45 32196.36 13299.03 7199.03 3795.04 15993.58 28297.93 21788.27 21498.03 32894.13 22086.90 36096.95 265
testgi93.06 31092.45 31094.88 31996.43 32289.90 33498.75 14397.54 29795.60 12791.63 33697.91 21874.46 37297.02 36286.10 35693.67 26797.72 238
APD_test188.22 34788.01 34788.86 36695.98 34074.66 39697.21 32296.44 36083.96 38386.66 37297.90 21960.95 39297.84 34482.73 37490.23 31694.09 377
CP-MVSNet94.94 22994.30 23096.83 21696.72 30695.56 17199.11 5598.95 4693.89 20992.42 32497.90 21987.19 24098.12 32194.32 21488.21 34396.82 285
XVG-ACMP-BASELINE94.54 25094.14 24195.75 29096.55 31491.65 30598.11 24198.44 18094.96 16494.22 25597.90 21979.18 33999.11 20294.05 22593.85 26296.48 331
PS-MVSNAJ97.73 7597.77 6697.62 16498.68 14695.58 17097.34 31398.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 248
TransMVSNet (Re)92.67 31491.51 32096.15 27196.58 31394.65 21798.90 9996.73 35190.86 32889.46 35597.86 22385.62 26898.09 32486.45 35481.12 37895.71 354
test_djsdf96.00 16095.69 16596.93 20995.72 34895.49 17599.47 998.40 18894.98 16294.58 23497.86 22389.16 19098.41 29596.91 11994.12 25596.88 275
TinyColmap92.31 31891.53 31994.65 32896.92 29289.75 33696.92 34196.68 35490.45 33489.62 35297.85 22576.06 36498.81 24986.74 35292.51 29095.41 358
pm-mvs193.94 29293.06 29696.59 23796.49 31895.16 19298.95 9098.03 26092.32 28691.08 34097.84 22684.54 29498.41 29592.16 27686.13 36696.19 344
UGNet96.78 12796.30 13598.19 11898.24 18495.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31699.90 4596.53 14099.49 9698.79 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TDRefinement91.06 32989.68 33495.21 30785.35 40191.49 30898.51 19197.07 33191.47 30888.83 36197.84 22677.31 35499.09 20792.79 26177.98 38995.04 366
PEN-MVS94.42 26293.73 27496.49 25096.28 32894.84 20999.17 4599.00 3993.51 23692.23 32797.83 22986.10 25997.90 33892.55 26986.92 35996.74 291
131496.25 15295.73 15897.79 14597.13 28195.55 17398.19 22998.59 14493.47 23992.03 33197.82 23091.33 14599.49 15894.62 20398.44 15598.32 220
DTE-MVSNet93.98 29193.26 29496.14 27296.06 33794.39 23299.20 4098.86 7593.06 25891.78 33397.81 23185.87 26497.58 35290.53 31086.17 36496.46 333
PAPM94.95 22794.00 25197.78 14697.04 28595.65 16896.03 36998.25 21791.23 32194.19 25797.80 23291.27 14898.86 24382.61 37697.61 18698.84 181
PVSNet91.96 1896.35 14696.15 14096.96 20799.17 9492.05 29796.08 36698.68 12393.69 22697.75 12997.80 23288.86 20199.69 12494.26 21799.01 12699.15 150
CMPMVSbinary66.06 2189.70 33989.67 33589.78 36493.19 38076.56 39097.00 33798.35 19780.97 38781.57 38697.75 23474.75 36998.61 26489.85 32193.63 27094.17 375
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NP-MVS97.28 26894.51 22797.73 235
HQP-MVS95.72 17795.40 17196.69 22597.20 27494.25 23998.05 24898.46 17696.43 8994.45 23997.73 23586.75 24798.96 22595.30 18194.18 25196.86 280
UniMVSNet_NR-MVSNet95.71 17895.15 18897.40 17796.84 29896.97 9798.74 14699.24 1795.16 15193.88 27297.72 23791.68 13398.31 30695.81 16387.25 35596.92 266
FE-MVS95.62 18494.90 20297.78 14698.37 17094.92 20697.17 32897.38 31490.95 32797.73 13297.70 23885.32 27799.63 13491.18 29798.33 16298.79 184
FA-MVS(test-final)96.41 14595.94 14997.82 14398.21 18895.20 19197.80 27897.58 28893.21 25097.36 14797.70 23889.47 18099.56 14594.12 22197.99 17198.71 193
DU-MVS95.42 19494.76 20797.40 17796.53 31596.97 9798.66 16798.99 4195.43 13593.88 27297.69 24088.57 20698.31 30695.81 16387.25 35596.92 266
WR-MVS95.15 21294.46 22297.22 18596.67 30996.45 12498.21 22498.81 8694.15 19593.16 29997.69 24087.51 23498.30 30895.29 18388.62 34096.90 273
NR-MVSNet94.98 22494.16 23997.44 17296.53 31597.22 9098.74 14698.95 4694.96 16489.25 35697.69 24089.32 18498.18 31694.59 20687.40 35296.92 266
Fast-Effi-MVS+-dtu95.87 16995.85 15295.91 28297.74 23191.74 30398.69 16198.15 23595.56 12994.92 22497.68 24388.98 19898.79 25193.19 24897.78 18097.20 254
alignmvs97.56 8997.07 10199.01 5698.66 14898.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21299.19 143
LF4IMVS93.14 30992.79 30294.20 33895.88 34488.67 35797.66 28997.07 33193.81 21591.71 33497.65 24477.96 34998.81 24991.47 29491.92 29695.12 363
lessismore_v094.45 33694.93 36688.44 36291.03 40086.77 37197.64 24676.23 36398.42 28790.31 31385.64 36796.51 326
TR-MVS94.94 22994.20 23597.17 19097.75 22894.14 24397.59 29597.02 33792.28 28895.75 20897.64 24683.88 30898.96 22589.77 32296.15 23198.40 214
ET-MVSNet_ETH3D94.13 28192.98 29897.58 16698.22 18796.20 13897.31 31695.37 37394.53 18379.56 38997.63 24886.51 25097.53 35496.91 11990.74 31099.02 165
Baseline_NR-MVSNet94.35 26593.81 26695.96 28096.20 33094.05 24598.61 17596.67 35591.44 31093.85 27497.60 24988.57 20698.14 31994.39 21086.93 35895.68 355
pmmvs494.69 23793.99 25396.81 21895.74 34795.94 15497.40 30597.67 28290.42 33593.37 29397.59 25089.08 19398.20 31592.97 25591.67 29996.30 340
K. test v392.55 31591.91 31894.48 33395.64 35089.24 34699.07 6294.88 37994.04 19986.78 37097.59 25077.64 35397.64 34992.08 27889.43 32996.57 313
Anonymous2023121194.10 28593.26 29496.61 23499.11 10494.28 23699.01 7698.88 6286.43 37092.81 30997.57 25281.66 32098.68 26094.83 19589.02 33696.88 275
PAPR96.84 12596.24 13898.65 7598.72 14296.92 10097.36 31198.57 15193.33 24496.67 17597.57 25294.30 8999.56 14591.05 30498.59 14799.47 100
pmmvs691.77 32190.63 32695.17 30994.69 37191.24 31298.67 16597.92 27086.14 37289.62 35297.56 25475.79 36598.34 30290.75 30884.56 36895.94 350
EIA-MVS97.75 7497.58 7398.27 10798.38 16896.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17697.38 10499.20 11899.05 163
MS-PatchMatch93.84 29393.63 27994.46 33596.18 33189.45 34397.76 28198.27 21292.23 28992.13 32997.49 25679.50 33698.69 25789.75 32399.38 11195.25 360
IterMVS-SCA-FT94.11 28493.87 26294.85 32097.98 21390.56 32697.18 32698.11 24293.75 21792.58 31797.48 25783.97 30697.41 35792.48 27391.30 30396.58 311
anonymousdsp95.42 19494.91 20196.94 20895.10 36395.90 16099.14 4998.41 18693.75 21793.16 29997.46 25887.50 23698.41 29595.63 17394.03 25796.50 328
PVSNet_BlendedMVS96.73 12896.60 12397.12 19599.25 8195.35 18398.26 22199.26 1594.28 19297.94 11997.46 25892.74 10899.81 8196.88 12593.32 27996.20 343
PMMVS96.60 13296.33 13397.41 17597.90 22093.93 24797.35 31298.41 18692.84 26797.76 12797.45 26091.10 15399.20 18996.26 14897.91 17499.11 155
ETV-MVS97.96 6497.81 6598.40 10098.42 16597.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17497.62 8898.89 13198.58 207
thisisatest051595.61 18794.89 20397.76 14998.15 19995.15 19496.77 35494.41 38392.95 26397.18 15297.43 26284.78 28699.45 16694.63 20197.73 18398.68 195
baseline295.11 21494.52 21896.87 21496.65 31093.56 26098.27 22094.10 38993.45 24092.02 33297.43 26287.45 23899.19 19093.88 22997.41 19297.87 232
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22699.08 161
tfpnnormal93.66 29492.70 30496.55 24696.94 29195.94 15498.97 8499.19 2491.04 32591.38 33797.34 26584.94 28298.61 26485.45 36289.02 33695.11 364
IterMVS94.09 28693.85 26494.80 32397.99 21190.35 32997.18 32698.12 23993.68 22892.46 32397.34 26584.05 30497.41 35792.51 27191.33 30296.62 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet95.75 17595.11 19297.69 15697.24 27097.27 8398.94 9399.23 2095.13 15295.51 21297.32 26785.73 26698.91 23497.33 10689.55 32696.89 274
IterMVS-LS95.46 19095.21 18696.22 27098.12 20093.72 25798.32 21298.13 23893.71 22394.26 25297.31 26892.24 11898.10 32294.63 20190.12 31796.84 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res96.34 14795.66 16798.36 10298.56 15595.94 15497.71 28598.07 25292.10 29394.79 23097.29 26991.75 13299.56 14594.17 21996.50 21599.58 83
ppachtmachnet_test93.22 30592.63 30594.97 31595.45 35890.84 31996.88 34997.88 27390.60 33092.08 33097.26 27088.08 22097.86 34385.12 36490.33 31396.22 342
pmmvs593.65 29692.97 29995.68 29195.49 35592.37 29098.20 22697.28 31989.66 34892.58 31797.26 27082.14 31798.09 32493.18 24990.95 30996.58 311
MDTV_nov1_ep1395.40 17197.48 25288.34 36396.85 35197.29 31893.74 21997.48 14697.26 27089.18 18999.05 21091.92 28697.43 191
dmvs_re94.48 25894.18 23895.37 30397.68 23590.11 33398.54 18697.08 32994.56 18194.42 24497.24 27384.25 29897.76 34691.02 30592.83 28798.24 221
Fast-Effi-MVS+96.28 15095.70 16498.03 13198.29 18395.97 15198.58 17898.25 21791.74 30195.29 21897.23 27491.03 15599.15 19592.90 25897.96 17398.97 170
BH-w/o95.38 19795.08 19396.26 26998.34 17691.79 30097.70 28697.43 31092.87 26694.24 25497.22 27588.66 20498.84 24491.55 29397.70 18498.16 226
eth_miper_zixun_eth94.68 23994.41 22795.47 29997.64 23991.71 30496.73 35798.07 25292.71 27193.64 28097.21 27690.54 16398.17 31793.38 24289.76 32196.54 318
v192192094.20 27593.47 28796.40 26195.98 34094.08 24498.52 18798.15 23591.33 31594.25 25397.20 27786.41 25498.42 28790.04 31989.39 33096.69 303
v2v48294.69 23794.03 24796.65 22796.17 33294.79 21498.67 16598.08 25092.72 27094.00 26697.16 27887.69 23398.45 28392.91 25788.87 33896.72 294
v7n94.19 27693.43 28996.47 25395.90 34394.38 23399.26 2798.34 19991.99 29592.76 31197.13 27988.31 21398.52 27589.48 33087.70 34896.52 323
DIV-MVS_self_test94.52 25394.03 24795.99 27797.57 24793.38 27197.05 33497.94 26891.74 30192.81 30997.10 28089.12 19198.07 32692.60 26490.30 31496.53 320
SCA95.46 19095.13 18996.46 25697.67 23691.29 31197.33 31497.60 28794.68 17696.92 16597.10 28083.97 30698.89 23892.59 26698.32 16499.20 139
Patchmatch-test94.42 26293.68 27896.63 23197.60 24291.76 30194.83 38397.49 30389.45 35294.14 25997.10 28088.99 19598.83 24785.37 36398.13 16899.29 127
FMVSNet394.97 22694.26 23297.11 19698.18 19496.62 11298.56 18498.26 21693.67 23094.09 26197.10 28084.25 29898.01 32992.08 27892.14 29296.70 298
MVP-Stereo94.28 27293.92 25695.35 30494.95 36592.60 28997.97 25797.65 28391.61 30690.68 34497.09 28486.32 25698.42 28789.70 32599.34 11395.02 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet294.47 25993.61 28097.04 20098.21 18896.43 12698.79 14098.27 21292.46 27793.50 28897.09 28481.16 32398.00 33191.09 30091.93 29596.70 298
cl____94.51 25494.01 25096.02 27697.58 24393.40 27097.05 33497.96 26791.73 30392.76 31197.08 28689.06 19498.13 32092.61 26390.29 31596.52 323
UWE-MVS94.30 26893.89 26195.53 29697.83 22388.95 35397.52 30093.25 39194.44 18996.63 17797.07 28778.70 34199.28 18091.99 28397.56 18998.36 217
GBi-Net94.49 25693.80 26796.56 24198.21 18895.00 19998.82 12698.18 22792.46 27794.09 26197.07 28781.16 32397.95 33492.08 27892.14 29296.72 294
test194.49 25693.80 26796.56 24198.21 18895.00 19998.82 12698.18 22792.46 27794.09 26197.07 28781.16 32397.95 33492.08 27892.14 29296.72 294
FMVSNet193.19 30792.07 31496.56 24197.54 24895.00 19998.82 12698.18 22790.38 33692.27 32697.07 28773.68 37597.95 33489.36 33291.30 30396.72 294
v119294.32 26793.58 28196.53 24796.10 33594.45 22898.50 19298.17 23291.54 30794.19 25797.06 29186.95 24598.43 28690.14 31489.57 32496.70 298
V4294.78 23594.14 24196.70 22496.33 32795.22 19098.97 8498.09 24992.32 28694.31 25097.06 29188.39 21298.55 27192.90 25888.87 33896.34 337
c3_l94.79 23494.43 22695.89 28497.75 22893.12 28397.16 33098.03 26092.23 28993.46 29097.05 29391.39 14298.01 32993.58 23989.21 33296.53 320
testing393.19 30792.48 30995.30 30698.07 20392.27 29198.64 16997.17 32593.94 20893.98 26797.04 29467.97 38496.01 37988.40 34197.14 19597.63 241
GA-MVS94.81 23394.03 24797.14 19397.15 28093.86 24996.76 35597.58 28894.00 20394.76 23197.04 29480.91 32698.48 27891.79 28896.25 22899.09 157
UniMVSNet (Re)95.78 17495.19 18797.58 16696.99 28897.47 7898.79 14099.18 2595.60 12793.92 27097.04 29491.68 13398.48 27895.80 16587.66 34996.79 286
v14419294.39 26493.70 27696.48 25296.06 33794.35 23498.58 17898.16 23491.45 30994.33 24997.02 29787.50 23698.45 28391.08 30189.11 33396.63 306
v114494.59 24793.92 25696.60 23696.21 32994.78 21598.59 17698.14 23791.86 30094.21 25697.02 29787.97 22398.41 29591.72 29089.57 32496.61 308
v124094.06 28993.29 29396.34 26496.03 33993.90 24898.44 19998.17 23291.18 32494.13 26097.01 29986.05 26098.42 28789.13 33589.50 32896.70 298
v1094.29 27093.55 28396.51 24996.39 32394.80 21398.99 8198.19 22491.35 31493.02 30596.99 30088.09 21998.41 29590.50 31188.41 34296.33 339
test_040291.32 32490.27 33094.48 33396.60 31191.12 31398.50 19297.22 32386.10 37388.30 36396.98 30177.65 35297.99 33278.13 38892.94 28594.34 371
miper_lstm_enhance94.33 26694.07 24595.11 31197.75 22890.97 31597.22 32198.03 26091.67 30592.76 31196.97 30290.03 17197.78 34592.51 27189.64 32396.56 315
v894.47 25993.77 27096.57 24096.36 32494.83 21199.05 6598.19 22491.92 29793.16 29996.97 30288.82 20398.48 27891.69 29187.79 34796.39 335
miper_ehance_all_eth95.01 21994.69 21195.97 27997.70 23493.31 27497.02 33698.07 25292.23 28993.51 28796.96 30491.85 13098.15 31893.68 23491.16 30696.44 334
PatchmatchNetpermissive95.71 17895.52 16996.29 26897.58 24390.72 32296.84 35297.52 29994.06 19897.08 15596.96 30489.24 18898.90 23792.03 28298.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14894.29 27093.76 27295.91 28296.10 33592.93 28698.58 17897.97 26592.59 27593.47 28996.95 30688.53 21098.32 30492.56 26887.06 35796.49 329
gm-plane-assit95.88 34487.47 37189.74 34796.94 30799.19 19093.32 245
tpmrst95.63 18395.69 16595.44 30197.54 24888.54 35996.97 33897.56 29193.50 23797.52 14596.93 30889.49 17899.16 19295.25 18596.42 21798.64 201
thres600view795.49 18894.77 20697.67 15998.98 11995.02 19898.85 11896.90 34495.38 13896.63 17796.90 30984.29 29699.59 14088.65 34096.33 21998.40 214
our_test_393.65 29693.30 29294.69 32595.45 35889.68 34096.91 34397.65 28391.97 29691.66 33596.88 31089.67 17797.93 33788.02 34691.49 30196.48 331
thres100view90095.38 19794.70 21097.41 17598.98 11994.92 20698.87 11396.90 34495.38 13896.61 17996.88 31084.29 29699.56 14588.11 34396.29 22397.76 234
cl2294.68 23994.19 23696.13 27398.11 20193.60 25996.94 34098.31 20392.43 28193.32 29596.87 31286.51 25098.28 31294.10 22391.16 30696.51 326
LCM-MVSNet-Re95.22 20895.32 18094.91 31698.18 19487.85 37098.75 14395.66 37195.11 15488.96 35796.85 31390.26 16997.65 34895.65 17298.44 15599.22 137
WR-MVS_H95.05 21894.46 22296.81 21896.86 29795.82 16399.24 3099.24 1793.87 21192.53 31996.84 31490.37 16598.24 31493.24 24687.93 34696.38 336
EPMVS94.99 22294.48 22096.52 24897.22 27291.75 30297.23 32091.66 39894.11 19697.28 14896.81 31585.70 26798.84 24493.04 25397.28 19398.97 170
tpm294.19 27693.76 27295.46 30097.23 27189.04 35097.31 31696.85 35087.08 36796.21 19696.79 31683.75 31298.74 25492.43 27496.23 22998.59 205
WB-MVSnew94.19 27694.04 24694.66 32796.82 30092.14 29397.86 27295.96 36793.50 23795.64 20996.77 31788.06 22197.99 33284.87 36596.86 20293.85 382
D2MVS95.18 21195.08 19395.48 29897.10 28392.07 29698.30 21599.13 3094.02 20192.90 30796.73 31889.48 17998.73 25594.48 20993.60 27295.65 356
CostFormer94.95 22794.73 20995.60 29597.28 26889.06 34997.53 29896.89 34689.66 34896.82 17096.72 31986.05 26098.95 23095.53 17696.13 23298.79 184
test20.0390.89 33190.38 32992.43 35593.48 37988.14 36798.33 20897.56 29193.40 24287.96 36496.71 32080.69 33094.13 39079.15 38586.17 36495.01 368
Effi-MVS+-dtu96.29 14896.56 12495.51 29797.89 22190.22 33198.80 13598.10 24596.57 8596.45 19096.66 32190.81 15798.91 23495.72 16897.99 17197.40 247
test0.0.03 194.08 28793.51 28595.80 28795.53 35492.89 28797.38 30795.97 36695.11 15492.51 32196.66 32187.71 23096.94 36487.03 35193.67 26797.57 244
miper_enhance_ethall95.10 21594.75 20896.12 27497.53 25093.73 25696.61 36098.08 25092.20 29293.89 27196.65 32392.44 11298.30 30894.21 21891.16 30696.34 337
ADS-MVSNet294.58 24894.40 22895.11 31198.00 20988.74 35696.04 36797.30 31790.15 33996.47 18896.64 32487.89 22597.56 35390.08 31697.06 19699.02 165
ADS-MVSNet95.00 22094.45 22496.63 23198.00 20991.91 29996.04 36797.74 28090.15 33996.47 18896.64 32487.89 22598.96 22590.08 31697.06 19699.02 165
dp94.15 28093.90 25994.90 31797.31 26786.82 37596.97 33897.19 32491.22 32296.02 20196.61 32685.51 27199.02 21790.00 32094.30 24698.85 179
tfpn200view995.32 20494.62 21397.43 17398.94 12294.98 20298.68 16296.93 34295.33 14196.55 18396.53 32784.23 30099.56 14588.11 34396.29 22397.76 234
thres40095.38 19794.62 21397.65 16398.94 12294.98 20298.68 16296.93 34295.33 14196.55 18396.53 32784.23 30099.56 14588.11 34396.29 22398.40 214
EG-PatchMatch MVS91.13 32890.12 33194.17 34094.73 37089.00 35198.13 23897.81 27689.22 35685.32 38096.46 32967.71 38598.42 28787.89 34893.82 26395.08 365
TESTMET0.1,194.18 27993.69 27795.63 29396.92 29289.12 34896.91 34394.78 38093.17 25294.88 22596.45 33078.52 34298.92 23293.09 25098.50 15298.85 179
tpmvs94.60 24594.36 22995.33 30597.46 25488.60 35896.88 34997.68 28191.29 31893.80 27796.42 33188.58 20599.24 18491.06 30296.04 23398.17 225
Anonymous2023120691.66 32291.10 32293.33 34794.02 37787.35 37298.58 17897.26 32190.48 33290.16 34896.31 33283.83 31096.53 37379.36 38489.90 32096.12 345
tpm94.13 28193.80 26795.12 31096.50 31787.91 36997.44 30295.89 37092.62 27396.37 19396.30 33384.13 30398.30 30893.24 24691.66 30099.14 152
CR-MVSNet94.76 23694.15 24096.59 23797.00 28693.43 26694.96 37997.56 29192.46 27796.93 16396.24 33488.15 21797.88 34287.38 34996.65 20998.46 212
Patchmtry93.22 30592.35 31195.84 28696.77 30193.09 28494.66 38697.56 29187.37 36692.90 30796.24 33488.15 21797.90 33887.37 35090.10 31896.53 320
tmp_tt68.90 36766.97 36974.68 38450.78 41159.95 40887.13 39683.47 40738.80 40462.21 40096.23 33664.70 38976.91 40688.91 33730.49 40487.19 395
cascas94.63 24493.86 26396.93 20996.91 29494.27 23796.00 37098.51 16485.55 37794.54 23596.23 33684.20 30298.87 24195.80 16596.98 20197.66 240
thres20095.25 20694.57 21597.28 18398.81 13494.92 20698.20 22697.11 32795.24 14996.54 18596.22 33884.58 29399.53 15387.93 34796.50 21597.39 248
UnsupCasMVSNet_eth90.99 33089.92 33394.19 33994.08 37489.83 33597.13 33298.67 12893.69 22685.83 37696.19 33975.15 36796.74 36789.14 33479.41 38596.00 348
testing1195.00 22094.28 23197.16 19197.96 21593.36 27398.09 24497.06 33394.94 16795.33 21796.15 34076.89 35999.40 16995.77 16796.30 22298.72 190
MDA-MVSNet-bldmvs89.97 33888.35 34494.83 32295.21 36291.34 30997.64 29197.51 30088.36 36271.17 39796.13 34179.22 33896.63 37283.65 37286.27 36396.52 323
MIMVSNet93.26 30492.21 31396.41 25997.73 23293.13 28195.65 37497.03 33591.27 32094.04 26496.06 34275.33 36697.19 36086.56 35396.23 22998.92 176
testing9194.98 22494.25 23397.20 18697.94 21693.41 26898.00 25497.58 28894.99 16195.45 21396.04 34377.20 35699.42 16894.97 19296.02 23498.78 187
tpm cat193.36 29992.80 30195.07 31397.58 24387.97 36896.76 35597.86 27482.17 38693.53 28496.04 34386.13 25899.13 19889.24 33395.87 23798.10 227
N_pmnet87.12 35287.77 35085.17 37295.46 35761.92 40697.37 30970.66 41185.83 37588.73 36296.04 34385.33 27697.76 34680.02 38190.48 31295.84 351
testing9994.83 23294.08 24497.07 19997.94 21693.13 28198.10 24397.17 32594.86 16995.34 21496.00 34676.31 36299.40 16995.08 18995.90 23598.68 195
dmvs_testset87.64 34988.93 34283.79 37495.25 36163.36 40597.20 32391.17 39993.07 25785.64 37895.98 34785.30 27891.52 39769.42 39687.33 35396.49 329
MIMVSNet189.67 34088.28 34593.82 34192.81 38391.08 31498.01 25297.45 30887.95 36387.90 36595.87 34867.63 38694.56 38978.73 38788.18 34495.83 352
testing22294.12 28393.03 29797.37 18098.02 20894.66 21697.94 26096.65 35794.63 17995.78 20795.76 34971.49 37898.92 23291.17 29895.88 23698.52 209
EGC-MVSNET75.22 36569.54 36892.28 35894.81 36889.58 34197.64 29196.50 3591.82 4085.57 40995.74 35068.21 38296.26 37673.80 39391.71 29890.99 388
YYNet190.70 33389.39 33694.62 32994.79 36990.65 32497.20 32397.46 30487.54 36572.54 39595.74 35086.51 25096.66 37186.00 35786.76 36296.54 318
DSMNet-mixed92.52 31792.58 30792.33 35794.15 37382.65 38598.30 21594.26 38689.08 35792.65 31595.73 35285.01 28195.76 38186.24 35597.76 18198.59 205
IB-MVS91.98 1793.27 30391.97 31697.19 18897.47 25393.41 26897.09 33395.99 36593.32 24592.47 32295.73 35278.06 34899.53 15394.59 20682.98 37298.62 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR95.10 21594.87 20495.80 28796.77 30189.70 33896.91 34395.21 37595.11 15494.83 22895.72 35487.71 23098.97 22193.06 25198.50 15298.72 190
test-mter94.08 28793.51 28595.80 28796.77 30189.70 33896.91 34395.21 37592.89 26594.83 22895.72 35477.69 35098.97 22193.06 25198.50 15298.72 190
MDA-MVSNet_test_wron90.71 33289.38 33794.68 32694.83 36790.78 32197.19 32597.46 30487.60 36472.41 39695.72 35486.51 25096.71 37085.92 35886.80 36196.56 315
FMVSNet591.81 32090.92 32394.49 33297.21 27392.09 29598.00 25497.55 29689.31 35590.86 34295.61 35774.48 37195.32 38585.57 36089.70 32296.07 347
test_method79.03 35878.17 36081.63 38086.06 40054.40 41182.75 39996.89 34639.54 40380.98 38895.57 35858.37 39394.73 38884.74 36978.61 38695.75 353
ETVMVS94.50 25593.44 28897.68 15898.18 19495.35 18398.19 22997.11 32793.73 22096.40 19195.39 35974.53 37098.84 24491.10 29996.31 22198.84 181
Syy-MVS92.55 31592.61 30692.38 35697.39 26383.41 38297.91 26397.46 30493.16 25393.42 29195.37 36084.75 28796.12 37777.00 39096.99 19897.60 242
myMVS_eth3d92.73 31392.01 31594.89 31897.39 26390.94 31697.91 26397.46 30493.16 25393.42 29195.37 36068.09 38396.12 37788.34 34296.99 19897.60 242
PVSNet_088.72 1991.28 32690.03 33295.00 31497.99 21187.29 37394.84 38298.50 16992.06 29489.86 35095.19 36279.81 33599.39 17292.27 27569.79 39698.33 219
DeepMVS_CXcopyleft86.78 36997.09 28472.30 39795.17 37875.92 39184.34 38295.19 36270.58 37995.35 38379.98 38389.04 33592.68 387
patchmatchnet-post95.10 36489.42 18298.89 238
Anonymous2024052191.18 32790.44 32893.42 34493.70 37888.47 36198.94 9397.56 29188.46 36189.56 35495.08 36577.15 35896.97 36383.92 37189.55 32694.82 369
Patchmatch-RL test91.49 32390.85 32493.41 34591.37 38684.40 37892.81 39195.93 36991.87 29987.25 36794.87 36688.99 19596.53 37392.54 27082.00 37499.30 125
OpenMVS_ROBcopyleft86.42 2089.00 34487.43 35293.69 34293.08 38189.42 34497.91 26396.89 34678.58 38985.86 37594.69 36769.48 38198.29 31177.13 38993.29 28193.36 384
WB-MVS84.86 35585.33 35683.46 37589.48 39269.56 40098.19 22996.42 36189.55 35081.79 38594.67 36884.80 28590.12 39852.44 40180.64 38290.69 389
SSC-MVS84.27 35684.71 35982.96 37989.19 39468.83 40198.08 24596.30 36389.04 35881.37 38794.47 36984.60 29289.89 39949.80 40379.52 38490.15 390
CL-MVSNet_self_test90.11 33689.14 33993.02 35291.86 38588.23 36696.51 36398.07 25290.49 33190.49 34694.41 37084.75 28795.34 38480.79 38074.95 39395.50 357
FPMVS77.62 36477.14 36479.05 38279.25 40560.97 40795.79 37295.94 36865.96 39667.93 39894.40 37137.73 40288.88 40168.83 39788.46 34187.29 394
KD-MVS_2432*160089.61 34187.96 34894.54 33094.06 37591.59 30695.59 37597.63 28589.87 34488.95 35894.38 37278.28 34596.82 36584.83 36668.05 39795.21 361
miper_refine_blended89.61 34187.96 34894.54 33094.06 37591.59 30695.59 37597.63 28589.87 34488.95 35894.38 37278.28 34596.82 36584.83 36668.05 39795.21 361
GG-mvs-BLEND96.59 23796.34 32694.98 20296.51 36388.58 40493.10 30494.34 37480.34 33398.05 32789.53 32896.99 19896.74 291
KD-MVS_self_test90.38 33489.38 33793.40 34692.85 38288.94 35497.95 25897.94 26890.35 33790.25 34793.96 37579.82 33495.94 38084.62 37076.69 39195.33 359
mvsany_test388.80 34588.04 34691.09 36389.78 39181.57 38897.83 27795.49 37293.81 21587.53 36693.95 37656.14 39497.43 35694.68 19983.13 37194.26 372
new_pmnet90.06 33789.00 34193.22 35094.18 37288.32 36496.42 36596.89 34686.19 37185.67 37793.62 37777.18 35797.10 36181.61 37889.29 33194.23 373
test_vis1_rt91.29 32590.65 32593.19 35197.45 25786.25 37698.57 18390.90 40193.30 24786.94 36993.59 37862.07 39199.11 20297.48 10095.58 24194.22 374
PM-MVS87.77 34886.55 35491.40 36291.03 38983.36 38496.92 34195.18 37791.28 31986.48 37493.42 37953.27 39596.74 36789.43 33181.97 37594.11 376
testf179.02 35977.70 36182.99 37788.10 39666.90 40294.67 38493.11 39271.08 39474.02 39293.41 38034.15 40493.25 39272.25 39478.50 38788.82 392
APD_test279.02 35977.70 36182.99 37788.10 39666.90 40294.67 38493.11 39271.08 39474.02 39293.41 38034.15 40493.25 39272.25 39478.50 38788.82 392
pmmvs-eth3d90.36 33589.05 34094.32 33791.10 38892.12 29497.63 29496.95 34188.86 35984.91 38193.13 38278.32 34496.74 36788.70 33881.81 37694.09 377
test_fmvs387.17 35087.06 35387.50 36891.21 38775.66 39299.05 6596.61 35892.79 26988.85 36092.78 38343.72 39893.49 39193.95 22684.56 36893.34 385
new-patchmatchnet88.50 34687.45 35191.67 36190.31 39085.89 37797.16 33097.33 31689.47 35183.63 38392.77 38476.38 36195.06 38782.70 37577.29 39094.06 379
pmmvs386.67 35384.86 35892.11 36088.16 39587.19 37496.63 35994.75 38179.88 38887.22 36892.75 38566.56 38895.20 38681.24 37976.56 39293.96 380
ambc89.49 36586.66 39875.78 39192.66 39296.72 35286.55 37392.50 38646.01 39697.90 33890.32 31282.09 37394.80 370
PatchT93.06 31091.97 31696.35 26396.69 30792.67 28894.48 38797.08 32986.62 36897.08 15592.23 38787.94 22497.90 33878.89 38696.69 20798.49 211
RPMNet92.81 31291.34 32197.24 18497.00 28693.43 26694.96 37998.80 9382.27 38596.93 16392.12 38886.98 24499.82 7676.32 39196.65 20998.46 212
test_f86.07 35485.39 35588.10 36789.28 39375.57 39397.73 28496.33 36289.41 35485.35 37991.56 38943.31 40095.53 38291.32 29684.23 37093.21 386
UnsupCasMVSNet_bld87.17 35085.12 35793.31 34891.94 38488.77 35594.92 38198.30 20984.30 38282.30 38490.04 39063.96 39097.25 35985.85 35974.47 39593.93 381
LCM-MVSNet78.70 36176.24 36686.08 37077.26 40771.99 39894.34 38896.72 35261.62 39876.53 39089.33 39133.91 40692.78 39581.85 37774.60 39493.46 383
PMMVS277.95 36375.44 36785.46 37182.54 40274.95 39494.23 38993.08 39472.80 39374.68 39187.38 39236.36 40391.56 39673.95 39263.94 39989.87 391
JIA-IIPM93.35 30092.49 30895.92 28196.48 31990.65 32495.01 37896.96 34085.93 37496.08 19987.33 39387.70 23298.78 25291.35 29595.58 24198.34 218
PMVScopyleft61.03 2365.95 36863.57 37273.09 38557.90 41051.22 41285.05 39893.93 39054.45 39944.32 40583.57 39413.22 40989.15 40058.68 40081.00 37978.91 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet89.46 34388.40 34392.64 35497.58 24382.15 38694.16 39093.05 39575.73 39290.90 34182.52 39579.42 33798.33 30383.53 37398.68 14097.43 245
gg-mvs-nofinetune92.21 31990.58 32797.13 19496.75 30495.09 19695.85 37189.40 40385.43 37894.50 23781.98 39680.80 32998.40 30192.16 27698.33 16297.88 231
test_vis3_rt79.22 35777.40 36384.67 37386.44 39974.85 39597.66 28981.43 40884.98 37967.12 39981.91 39728.09 40897.60 35088.96 33680.04 38381.55 397
Gipumacopyleft78.40 36276.75 36583.38 37695.54 35380.43 38979.42 40097.40 31264.67 39773.46 39480.82 39845.65 39793.14 39466.32 39887.43 35176.56 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 36665.37 37080.22 38165.99 40971.96 39990.91 39590.09 40282.62 38449.93 40478.39 39929.36 40781.75 40262.49 39938.52 40386.95 396
E-PMN64.94 36964.25 37167.02 38682.28 40359.36 40991.83 39485.63 40552.69 40060.22 40177.28 40041.06 40180.12 40446.15 40441.14 40161.57 402
EMVS64.07 37063.26 37366.53 38781.73 40458.81 41091.85 39384.75 40651.93 40259.09 40275.13 40143.32 39979.09 40542.03 40539.47 40261.69 401
MVEpermissive62.14 2263.28 37159.38 37474.99 38374.33 40865.47 40485.55 39780.50 40952.02 40151.10 40375.00 40210.91 41280.50 40351.60 40253.40 40078.99 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
X-MVStestdata94.06 28992.30 31299.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 40395.90 4199.89 4797.85 7199.74 4599.78 21
testmvs21.48 37424.95 37711.09 39014.89 4126.47 41596.56 3619.87 4137.55 40617.93 40639.02 4049.43 4135.90 40916.56 40812.72 40620.91 404
test12320.95 37523.72 37812.64 38913.54 4138.19 41496.55 3626.13 4147.48 40716.74 40737.98 40512.97 4106.05 40816.69 4075.43 40723.68 403
test_post31.83 40688.83 20298.91 234
test_post196.68 35830.43 40787.85 22898.69 25792.59 266
wuyk23d30.17 37230.18 37630.16 38878.61 40643.29 41366.79 40114.21 41217.31 40514.82 40811.93 40811.55 41141.43 40737.08 40619.30 4055.76 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.88 37710.50 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40994.51 810.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.94 31688.66 339
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
eth-test20.00 414
eth-test0.00 414
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
MTGPAbinary98.74 108
MTMP98.89 10394.14 388
test9_res96.39 14699.57 8099.69 56
agg_prior295.87 16299.57 8099.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
test_prior498.01 5997.86 272
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
旧先验297.57 29791.30 31798.67 7399.80 8895.70 171
新几何297.64 291
无先验97.58 29698.72 11391.38 31199.87 5893.36 24499.60 77
原ACMM297.67 288
testdata299.89 4791.65 292
segment_acmp96.85 14
testdata197.32 31596.34 95
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
plane_prior797.42 25994.63 219
plane_prior697.35 26694.61 22287.09 241
plane_prior598.56 15399.03 21496.07 15294.27 24796.92 266
plane_prior394.61 22297.02 6495.34 214
plane_prior298.80 13597.28 45
plane_prior197.37 265
plane_prior94.60 22498.44 19996.74 7794.22 249
n20.00 415
nn0.00 415
door-mid94.37 384
test1198.66 131
door94.64 382
HQP5-MVS94.25 239
HQP-NCC97.20 27498.05 24896.43 8994.45 239
ACMP_Plane97.20 27498.05 24896.43 8994.45 239
BP-MVS95.30 181
HQP4-MVS94.45 23998.96 22596.87 277
HQP3-MVS98.46 17694.18 251
HQP2-MVS86.75 247
MDTV_nov1_ep13_2view84.26 37996.89 34890.97 32697.90 12389.89 17393.91 22899.18 148
ACMMP++_ref92.97 284
ACMMP++93.61 271
Test By Simon94.64 78