This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UA-Net97.96 5997.62 6598.98 6598.86 12197.47 8498.89 8499.08 2196.67 6098.72 5699.54 193.15 10599.81 7194.87 16898.83 12399.65 67
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2699.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7398.80 8793.67 19899.37 1399.52 396.52 1799.89 3598.06 3499.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072699.72 1299.25 299.06 5298.88 4997.62 1199.56 599.50 497.42 6
DeepC-MVS95.98 397.88 6597.58 6798.77 7599.25 8696.93 10598.83 9698.75 10296.96 5196.89 15099.50 490.46 15999.87 4497.84 4999.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5998.87 5597.65 999.73 199.48 697.53 499.94 398.43 1999.81 1099.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1999.80 1799.83 5
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9998.81 7695.80 9299.16 2699.47 895.37 5799.92 2197.89 4499.75 3899.79 10
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6998.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1699.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 2999.45 999.46 997.88 199.94 398.47 1699.86 199.85 2
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17298.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6399.84 899.83 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.31 5297.92 5899.49 999.72 1298.88 1498.43 17098.78 9594.10 16897.69 11899.42 1295.25 6699.92 2198.09 3399.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4798.87 5597.38 2699.35 1499.40 1397.78 399.87 4497.77 5299.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19998.52 15897.95 399.32 1599.39 1496.22 2099.84 5397.72 5599.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5498.81 7695.12 12999.32 1599.39 1496.22 2099.84 5397.72 5599.73 4399.67 61
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15498.74 10497.27 3598.02 9399.39 1494.81 7799.96 197.91 4199.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 8098.74 10497.27 3598.02 9399.39 1494.81 7799.96 197.91 4199.79 1999.77 20
VDDNet95.36 18294.53 19997.86 13598.10 18495.13 18698.85 9297.75 26790.46 29898.36 7999.39 1473.27 34899.64 12697.98 3796.58 19098.81 168
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 8098.85 6497.28 3199.72 399.39 1496.63 1597.60 32198.17 2999.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS96.37 297.93 6498.48 1796.30 24599.00 11089.54 31597.43 26898.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2799.77 2699.72 40
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 19398.68 12197.17 4198.74 5399.37 2295.25 6699.79 9298.57 899.54 8499.73 36
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3798.81 7696.24 7699.20 2299.37 2295.30 6299.80 8097.73 5499.67 5499.72 40
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 4198.82 7096.14 8099.26 1899.37 2293.33 10299.93 1596.96 9299.67 5499.69 51
LS3D97.16 10796.66 11698.68 7998.53 14997.19 9798.93 7798.90 4492.83 23295.99 18499.37 2292.12 12299.87 4493.67 21099.57 7598.97 158
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 19098.69 11897.21 3898.84 4699.36 2695.41 5499.78 9698.62 699.65 5899.80 9
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5699.41 695.98 8697.60 12699.36 2694.45 8899.93 1597.14 8498.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.34 5999.82 6497.72 5599.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.29 6397.72 5599.65 5899.71 44
DP-MVS96.59 12795.93 13998.57 8599.34 6296.19 13998.70 12898.39 18589.45 31794.52 20999.35 2891.85 12899.85 5092.89 23598.88 11999.68 57
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4898.83 6896.52 6699.05 3299.34 3195.34 5999.82 6497.86 4699.64 6299.73 36
VDD-MVS95.82 15895.23 16997.61 15898.84 12493.98 23298.68 13197.40 29595.02 13597.95 10199.34 3174.37 34699.78 9698.64 496.80 18399.08 149
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4898.82 7096.58 6399.10 2999.32 3395.39 5599.82 6497.70 6099.63 6499.72 40
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6599.49 595.43 11099.03 3399.32 3395.56 4799.94 396.80 10799.77 2699.78 13
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3898.66 13296.84 5399.56 599.31 3596.34 1999.70 11598.32 2699.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17498.68 12197.43 2299.06 3199.31 3595.80 4399.77 10198.62 699.76 3299.78 13
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17498.79 9297.46 2199.09 3099.31 3595.86 4299.80 8098.64 499.76 3299.79 10
XVG-OURS96.55 13096.41 12396.99 18798.75 12993.76 23897.50 26598.52 15895.67 9896.83 15199.30 3888.95 19399.53 14395.88 13896.26 20497.69 214
9.1498.06 4999.47 4898.71 12498.82 7094.36 16299.16 2699.29 3996.05 3299.81 7197.00 8899.71 50
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12499.05 2497.28 3198.84 4699.28 4096.47 1899.40 15598.52 1499.70 5199.47 98
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16198.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7199.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF94.87 21295.40 15693.26 32298.89 11882.06 35398.33 18298.06 25090.30 30396.56 16399.26 4287.09 23399.49 14693.82 20596.32 19998.24 197
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13498.84 6594.66 15299.11 2899.25 4395.46 5199.81 7196.80 10799.73 4399.63 73
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10698.82 7094.52 15799.23 2099.25 4395.54 4999.80 8096.52 11799.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2798.79 9296.13 8197.92 10699.23 4594.54 8399.94 396.74 11199.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1898.81 7696.24 7698.35 8099.23 4595.46 5199.94 397.42 7699.81 1099.77 20
MG-MVS97.81 6897.60 6698.44 9899.12 10395.97 14897.75 25198.78 9596.89 5298.46 7199.22 4793.90 9899.68 12194.81 17299.52 8799.67 61
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17698.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2199.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17698.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2399.73 4399.75 28
casdiffmvs97.63 7797.41 8098.28 10898.33 16496.14 14098.82 9998.32 19596.38 7397.95 10199.21 4891.23 14599.23 16798.12 3198.37 14499.48 96
Vis-MVSNetpermissive97.42 9397.11 9198.34 10598.66 13996.23 13699.22 2799.00 2796.63 6298.04 9199.21 4888.05 21499.35 15896.01 13599.21 10799.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7199.20 5295.90 4099.89 3597.85 4799.74 4199.78 13
LFMVS95.86 15594.98 18198.47 9698.87 12096.32 13398.84 9596.02 33293.40 20898.62 6499.20 5274.99 34299.63 12997.72 5597.20 17799.46 102
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 16098.94 3999.20 5295.16 6999.74 10797.58 6799.85 399.77 20
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2398.95 3496.10 8498.93 4399.19 5595.70 4499.94 397.62 6499.79 1999.78 13
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9698.86 6195.48 10798.91 4599.17 5695.48 5099.93 1595.80 14299.53 8599.76 26
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2398.96 3296.10 8498.94 3999.17 5696.06 3099.92 2197.62 6499.78 2399.75 28
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2398.93 3796.15 7998.94 3999.17 5695.91 3999.94 397.55 7199.79 1999.78 13
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6898.96 3295.65 10098.94 3999.17 5696.06 3099.92 2197.21 8399.78 2399.75 28
baseline97.64 7697.44 7998.25 11298.35 15896.20 13799.00 6398.32 19596.33 7598.03 9299.17 5691.35 14199.16 17398.10 3298.29 14999.39 109
OPU-MVS99.37 2099.24 9299.05 1099.02 5999.16 6197.81 299.37 15797.24 8199.73 4399.70 48
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16498.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3499.66 5799.69 51
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 20297.64 7799.35 1199.06 2297.02 4993.75 24999.16 6189.25 18099.92 2197.22 8299.75 3899.64 70
ETH3D cwj APD-0.1697.96 5997.52 7299.29 3199.05 10598.52 2798.33 18298.68 12193.18 21698.68 5799.13 6494.62 8199.83 5696.45 11999.55 8399.52 85
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1298.87 5595.96 8798.60 6699.13 6496.05 3299.94 397.77 5299.86 199.77 20
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 20098.52 2799.37 898.71 11497.09 4792.99 27599.13 6489.36 17799.89 3596.97 9099.57 7599.71 44
EPNet97.28 10096.87 10398.51 9294.98 32996.14 14098.90 8097.02 31298.28 195.99 18499.11 6791.36 14099.89 3596.98 8999.19 10999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9298.90 4484.80 34297.77 11199.11 6792.84 10799.66 12394.85 16999.77 2699.47 98
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3398.86 6195.77 9398.31 8399.10 6995.46 5199.93 1597.57 7099.81 1099.74 33
testdata98.26 11199.20 9795.36 17598.68 12191.89 26298.60 6699.10 6994.44 8999.82 6494.27 19199.44 9599.58 82
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5499.09 2093.32 21198.83 4899.10 6996.54 1699.83 5697.70 6099.76 3299.59 80
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 19398.59 14295.52 10697.97 10099.10 6993.28 10499.49 14695.09 16598.88 11999.19 133
COLMAP_ROBcopyleft93.27 1295.33 18594.87 18696.71 20699.29 7893.24 26198.58 14698.11 23489.92 30993.57 25399.10 6986.37 24799.79 9290.78 27798.10 15397.09 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9099.61 75
XVG-OURS-SEG-HR96.51 13196.34 12597.02 18698.77 12893.76 23897.79 24998.50 16695.45 10996.94 14599.09 7487.87 21999.55 14296.76 11095.83 21397.74 211
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4398.81 7692.34 24798.09 8799.08 7693.01 10699.92 2196.06 13299.77 2699.75 28
EPP-MVSNet97.46 8797.28 8597.99 12998.64 14195.38 17499.33 1598.31 19793.61 20197.19 13499.07 7794.05 9499.23 16796.89 9798.43 14399.37 111
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4898.82 7095.71 9698.73 5599.06 7895.27 6499.93 1597.07 8799.63 6499.72 40
OpenMVScopyleft93.04 1395.83 15795.00 17998.32 10697.18 25097.32 8899.21 3098.97 3089.96 30891.14 30999.05 7986.64 24199.92 2193.38 21699.47 9097.73 212
EI-MVSNet95.96 15095.83 14296.36 24197.93 19493.70 24498.12 21698.27 20693.70 19395.07 19399.02 8092.23 11898.54 24894.68 17493.46 24296.84 252
CVMVSNet95.43 17596.04 13693.57 31697.93 19483.62 34898.12 21698.59 14295.68 9796.56 16399.02 8087.51 22597.51 32593.56 21497.44 17399.60 78
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21898.29 20597.19 4098.99 3899.02 8096.22 2099.67 12298.52 1498.56 13599.51 89
QAPM96.29 13895.40 15698.96 6797.85 19997.60 8099.23 2398.93 3789.76 31293.11 27299.02 8089.11 18599.93 1591.99 25899.62 6699.34 112
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 23199.58 397.14 4398.44 7599.01 8495.03 7399.62 13197.91 4199.75 3899.50 91
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23599.58 397.20 3998.33 8199.00 8595.99 3599.64 12698.05 3699.76 3299.69 51
IS-MVSNet97.22 10296.88 10298.25 11298.85 12396.36 13199.19 3397.97 25595.39 11297.23 13398.99 8691.11 14798.93 20994.60 17898.59 13399.47 98
ZD-MVS99.46 5198.70 1998.79 9293.21 21598.67 5898.97 8795.70 4499.83 5696.07 12999.58 74
Anonymous2024052995.10 19794.22 21697.75 14599.01 10994.26 22698.87 8998.83 6885.79 33996.64 15998.97 8778.73 32199.85 5096.27 12494.89 21799.12 143
原ACMM198.65 8199.32 6896.62 11698.67 12993.27 21497.81 11098.97 8795.18 6899.83 5693.84 20499.46 9399.50 91
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20698.68 12190.14 30698.01 9798.97 8794.80 7999.87 4493.36 21899.46 9399.61 75
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15398.61 6598.97 8795.13 7099.77 10197.65 6299.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 25198.89 4697.71 898.33 8198.97 8794.97 7499.88 4398.42 2199.76 3299.42 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet98.05 5697.76 6298.90 7198.73 13097.27 9198.35 17998.78 9597.37 2897.72 11698.96 9391.53 13899.92 2198.79 299.65 5899.51 89
test22299.23 9397.17 9897.40 26998.66 13288.68 32398.05 8998.96 9394.14 9399.53 8599.61 75
新几何199.16 5099.34 6298.01 6298.69 11890.06 30798.13 8598.95 9594.60 8299.89 3591.97 25999.47 9099.59 80
DP-MVS Recon97.86 6697.46 7799.06 6199.53 3698.35 4398.33 18298.89 4692.62 23698.05 8998.94 9695.34 5999.65 12496.04 13399.42 9799.19 133
CANet_DTU96.96 11496.55 11998.21 11498.17 17996.07 14297.98 22998.21 21397.24 3797.13 13698.93 9786.88 23899.91 3095.00 16799.37 10298.66 180
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16598.76 9997.82 598.45 7498.93 9796.65 1499.83 5697.38 7899.41 9899.71 44
CSCG97.85 6797.74 6398.20 11599.67 2695.16 18299.22 2799.32 793.04 22297.02 14398.92 9995.36 5899.91 3097.43 7599.64 6299.52 85
CHOSEN 1792x268897.12 10996.80 10498.08 12499.30 7594.56 21598.05 22299.71 193.57 20297.09 13798.91 10088.17 20999.89 3596.87 10399.56 8099.81 8
diffmvs97.58 8297.40 8198.13 12098.32 16695.81 16198.06 22198.37 18896.20 7898.74 5398.89 10191.31 14399.25 16498.16 3098.52 13699.34 112
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 14099.16 1794.48 15997.67 11998.88 10292.80 10899.91 3097.11 8599.12 11199.50 91
GeoE96.58 12996.07 13498.10 12398.35 15895.89 15899.34 1298.12 23193.12 22096.09 18098.87 10389.71 17198.97 20092.95 23198.08 15499.43 106
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13798.73 13095.46 17299.20 3198.30 20394.96 13896.60 16298.87 10390.05 16598.59 24493.67 21098.60 13299.46 102
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 20298.81 7691.63 27098.44 7598.85 10593.98 9799.82 6494.11 19799.69 5299.64 70
CDPH-MVS97.94 6397.49 7599.28 3599.47 4898.44 3197.91 23598.67 12992.57 23998.77 5198.85 10595.93 3899.72 10995.56 15299.69 5299.68 57
VNet97.79 6997.40 8198.96 6798.88 11997.55 8198.63 14098.93 3796.74 5799.02 3498.84 10790.33 16299.83 5698.53 1096.66 18799.50 91
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12398.66 13297.51 1698.15 8498.83 10895.70 4499.92 2197.53 7399.67 5499.66 65
MVSFormer97.57 8397.49 7597.84 13698.07 18595.76 16299.47 298.40 18394.98 13698.79 4998.83 10892.34 11398.41 26796.91 9499.59 7199.34 112
jason97.32 9997.08 9398.06 12697.45 23195.59 16597.87 24197.91 26194.79 14498.55 6998.83 10891.12 14699.23 16797.58 6799.60 6899.34 112
jason: jason.
Anonymous20240521195.28 18794.49 20197.67 15399.00 11093.75 24098.70 12897.04 30990.66 29496.49 17098.80 11178.13 32699.83 5696.21 12795.36 21699.44 105
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17398.68 12197.04 4898.52 7098.80 11196.78 1299.83 5697.93 4099.61 6799.74 33
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 2098.88 4997.52 1599.41 1198.78 11396.00 3499.79 9297.79 5199.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OPM-MVS95.69 16595.33 16496.76 20396.16 30294.63 20898.43 17098.39 18596.64 6195.02 19598.78 11385.15 26699.05 18995.21 16494.20 22396.60 280
AllTest95.24 18994.65 19496.99 18799.25 8693.21 26298.59 14498.18 21991.36 27793.52 25598.77 11584.67 27499.72 10989.70 29597.87 16098.02 204
TestCases96.99 18799.25 8693.21 26298.18 21991.36 27793.52 25598.77 11584.67 27499.72 10989.70 29597.87 16098.02 204
LPG-MVS_test95.62 16895.34 16296.47 23297.46 22793.54 24798.99 6598.54 15494.67 15094.36 21998.77 11585.39 26199.11 18295.71 14794.15 22696.76 260
LGP-MVS_train96.47 23297.46 22793.54 24798.54 15494.67 15094.36 21998.77 11585.39 26199.11 18295.71 14794.15 22696.76 260
MSDG95.93 15295.30 16797.83 13798.90 11795.36 17596.83 31498.37 18891.32 28194.43 21698.73 11990.27 16399.60 13290.05 28898.82 12498.52 187
hse-mvs396.17 14395.62 15297.81 14099.03 10894.45 21798.64 13998.75 10297.48 1898.67 5898.72 12089.76 16999.86 4997.95 3881.59 34099.11 144
test_prior398.22 5597.90 5999.19 4399.31 7098.22 5097.80 24798.84 6596.12 8297.89 10898.69 12195.96 3699.70 11596.89 9799.60 6899.65 67
test_prior297.80 24796.12 8297.89 10898.69 12195.96 3696.89 9799.60 68
TEST999.31 7098.50 2997.92 23398.73 10892.63 23597.74 11498.68 12396.20 2399.80 80
train_agg97.97 5897.52 7299.33 2799.31 7098.50 2997.92 23398.73 10892.98 22497.74 11498.68 12396.20 2399.80 8096.59 11399.57 7599.68 57
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22698.89 4694.44 16196.83 15198.68 12390.69 15699.76 10394.36 18699.29 10698.98 157
test_899.29 7898.44 3197.89 23998.72 11092.98 22497.70 11798.66 12696.20 2399.80 80
agg_prior197.95 6297.51 7499.28 3599.30 7598.38 3597.81 24698.72 11093.16 21897.57 12798.66 12696.14 2699.81 7196.63 11299.56 8099.66 65
tttt051796.07 14595.51 15597.78 14298.41 15594.84 19999.28 1894.33 35194.26 16597.64 12398.64 12884.05 28699.47 15195.34 15697.60 17199.03 152
cdsmvs_eth3d_5k23.98 33431.98 3360.00 3500.00 3710.00 3720.00 36298.59 1420.00 3670.00 36898.61 12990.60 1570.00 3680.00 3660.00 3660.00 364
lupinMVS97.44 9197.22 8898.12 12298.07 18595.76 16297.68 25597.76 26694.50 15898.79 4998.61 12992.34 11399.30 16197.58 6799.59 7199.31 118
BH-RMVSNet95.92 15395.32 16597.69 15198.32 16694.64 20798.19 20697.45 29194.56 15496.03 18298.61 12985.02 26799.12 17990.68 27999.06 11299.30 121
TAMVS97.02 11296.79 10697.70 15098.06 18795.31 17998.52 15698.31 19793.95 17797.05 14298.61 12993.49 10198.52 25095.33 15797.81 16299.29 123
TAPA-MVS93.98 795.35 18394.56 19897.74 14699.13 10294.83 20198.33 18298.64 13786.62 33196.29 17698.61 12994.00 9699.29 16280.00 34699.41 9899.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D94.24 25193.33 26796.97 19097.19 24993.38 25698.74 11598.57 14891.21 28893.81 24698.58 13472.85 34998.77 22995.05 16693.93 23498.77 171
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 29098.35 19194.85 14397.93 10598.58 13495.07 7299.71 11492.60 23999.34 10399.43 106
F-COLMAP97.09 11196.80 10497.97 13099.45 5594.95 19698.55 15498.62 13993.02 22396.17 17998.58 13494.01 9599.81 7193.95 20198.90 11799.14 141
WTY-MVS97.37 9796.92 10198.72 7798.86 12196.89 10998.31 18898.71 11495.26 12197.67 11998.56 13792.21 11999.78 9695.89 13796.85 18299.48 96
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 22098.53 15695.32 11896.80 15598.53 13893.32 10399.72 10994.31 19099.31 10599.02 153
ACMP93.49 1095.34 18494.98 18196.43 23797.67 20993.48 25198.73 11998.44 17594.94 14192.53 28898.53 13884.50 27899.14 17795.48 15594.00 23196.66 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH92.88 1694.55 23293.95 23596.34 24397.63 21293.26 26098.81 10598.49 17093.43 20789.74 32198.53 13881.91 30199.08 18793.69 20793.30 24896.70 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-094.21 25294.00 23194.85 29495.60 31889.22 32098.89 8497.43 29395.29 11992.18 29898.52 14182.86 29698.59 24493.46 21591.76 26396.74 262
CS-MVS98.04 5797.95 5598.32 10698.14 18197.15 9999.39 598.41 18096.51 6798.59 6898.51 14293.89 9999.03 19398.66 399.43 9698.77 171
CDS-MVSNet96.99 11396.69 11397.90 13498.05 18895.98 14398.20 20298.33 19493.67 19896.95 14498.49 14393.54 10098.42 26095.24 16397.74 16699.31 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss97.39 9596.98 9998.61 8398.60 14596.61 11898.22 19898.93 3793.97 17698.01 9798.48 14491.98 12699.85 5096.45 11998.15 15199.39 109
ACMH+92.99 1494.30 24793.77 24895.88 26397.81 20192.04 27798.71 12498.37 18893.99 17590.60 31598.47 14580.86 30999.05 18992.75 23792.40 25796.55 288
ACMM93.85 995.69 16595.38 16096.61 21697.61 21393.84 23698.91 7998.44 17595.25 12294.28 22398.47 14586.04 25499.12 17995.50 15493.95 23396.87 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS96.04 14795.53 15397.56 16197.07 25797.32 8898.57 15198.09 24195.15 12795.02 19598.44 14788.20 20898.58 24696.17 12893.09 25196.79 256
1112_ss96.63 12496.00 13898.50 9398.56 14696.37 13098.18 21098.10 23692.92 22794.84 19998.43 14892.14 12199.58 13494.35 18796.51 19399.56 84
ab-mvs-re8.20 33710.94 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36898.43 1480.00 3730.00 3680.00 3660.00 3660.00 364
test_yl97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16598.31 19794.70 14698.02 9398.42 15090.80 15399.70 11596.81 10596.79 18499.34 112
DCV-MVSNet97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16598.31 19794.70 14698.02 9398.42 15090.80 15399.70 11596.81 10596.79 18499.34 112
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
xiu_mvs_v1_base97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
mvs_tets95.41 17895.00 17996.65 21195.58 31994.42 21999.00 6398.55 15295.73 9593.21 26798.38 15583.45 29598.63 23997.09 8694.00 23196.91 243
FC-MVSNet-test96.42 13496.05 13597.53 16396.95 26297.27 9199.36 999.23 1295.83 9193.93 23998.37 15692.00 12598.32 27696.02 13492.72 25597.00 232
jajsoiax95.45 17495.03 17896.73 20595.42 32694.63 20899.14 3898.52 15895.74 9493.22 26698.36 15783.87 29198.65 23896.95 9394.04 22996.91 243
nrg03096.28 14095.72 14497.96 13296.90 26798.15 5699.39 598.31 19795.47 10894.42 21798.35 15892.09 12398.69 23297.50 7489.05 30097.04 230
FIs96.51 13196.12 13397.67 15397.13 25397.54 8299.36 999.22 1495.89 8894.03 23798.35 15891.98 12698.44 25896.40 12292.76 25497.01 231
ITE_SJBPF95.44 27797.42 23291.32 29297.50 28695.09 13393.59 25198.35 15881.70 30298.88 21789.71 29493.39 24696.12 315
LTVRE_ROB92.95 1594.60 22793.90 23896.68 21097.41 23594.42 21998.52 15698.59 14291.69 26891.21 30898.35 15884.87 27099.04 19291.06 27293.44 24596.60 280
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-MVSNAJss96.43 13396.26 12996.92 19695.84 31395.08 18899.16 3698.50 16695.87 9093.84 24598.34 16294.51 8498.61 24096.88 10093.45 24497.06 229
EPNet_dtu95.21 19194.95 18395.99 25596.17 30090.45 30698.16 21297.27 30196.77 5593.14 27198.33 16390.34 16198.42 26085.57 32698.81 12599.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS93.45 1194.68 22193.43 26598.42 10198.62 14396.77 11295.48 33998.20 21584.63 34393.34 26398.32 16488.55 20199.81 7184.80 33398.96 11598.68 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053096.01 14895.36 16197.97 13098.38 15695.52 17098.88 8794.19 35394.04 17097.64 12398.31 16583.82 29399.46 15295.29 16097.70 16898.93 162
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 21398.76 9992.41 24596.39 17498.31 16594.92 7699.78 9694.06 19998.77 12699.23 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP_MVS96.14 14495.90 14096.85 19997.42 23294.60 21398.80 10698.56 15097.28 3195.34 18998.28 16787.09 23399.03 19396.07 12994.27 22096.92 238
plane_prior498.28 167
API-MVS97.41 9497.25 8697.91 13398.70 13596.80 11098.82 9998.69 11894.53 15598.11 8698.28 16794.50 8799.57 13594.12 19699.49 8897.37 222
mvs_anonymous96.70 12396.53 12197.18 17798.19 17593.78 23798.31 18898.19 21694.01 17394.47 21198.27 17092.08 12498.46 25597.39 7797.91 15899.31 118
XXY-MVS95.20 19294.45 20697.46 16496.75 27596.56 12298.86 9198.65 13693.30 21393.27 26598.27 17084.85 27198.87 21894.82 17191.26 27196.96 235
SixPastTwentyTwo93.34 27692.86 27594.75 29895.67 31689.41 31898.75 11296.67 32993.89 17990.15 31998.25 17280.87 30898.27 28690.90 27590.64 27896.57 284
VPNet94.99 20394.19 21897.40 16997.16 25196.57 12198.71 12498.97 3095.67 9894.84 19998.24 17380.36 31298.67 23696.46 11887.32 32096.96 235
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17797.28 28299.26 893.13 21997.94 10398.21 17492.74 10999.81 7196.88 10099.40 10099.27 125
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16797.38 27199.65 292.34 24797.61 12598.20 17589.29 17999.10 18596.97 9097.60 17199.77 20
baseline195.84 15695.12 17498.01 12898.49 15295.98 14398.73 11997.03 31095.37 11596.22 17798.19 17689.96 16799.16 17394.60 17887.48 31798.90 164
ab-mvs96.42 13495.71 14798.55 8798.63 14296.75 11397.88 24098.74 10493.84 18296.54 16798.18 17785.34 26499.75 10595.93 13696.35 19799.15 139
xiu_mvs_v2_base97.66 7597.70 6497.56 16198.61 14495.46 17297.44 26698.46 17197.15 4298.65 6398.15 17894.33 9099.80 8097.84 4998.66 13197.41 218
USDC93.33 27792.71 27895.21 28296.83 27190.83 29996.91 30497.50 28693.84 18290.72 31398.14 17977.69 32998.82 22489.51 29993.21 25095.97 319
EU-MVSNet93.66 27094.14 22392.25 32895.96 30983.38 34998.52 15698.12 23194.69 14892.61 28598.13 18087.36 23096.39 34491.82 26190.00 28596.98 233
CHOSEN 280x42097.18 10697.18 8997.20 17598.81 12693.27 25995.78 33499.15 1895.25 12296.79 15698.11 18192.29 11599.07 18898.56 999.85 399.25 127
MVSTER96.06 14695.72 14497.08 18498.23 17095.93 15498.73 11998.27 20694.86 14295.07 19398.09 18288.21 20798.54 24896.59 11393.46 24296.79 256
MVS_Test97.28 10097.00 9798.13 12098.33 16495.97 14898.74 11598.07 24594.27 16498.44 7598.07 18392.48 11199.26 16396.43 12198.19 15099.16 138
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 14098.60 14095.18 12597.06 14198.06 18494.26 9299.57 13593.80 20698.87 12199.52 85
PatchMatch-RL96.59 12796.03 13798.27 10999.31 7096.51 12497.91 23599.06 2293.72 19096.92 14898.06 18488.50 20399.65 12491.77 26399.00 11498.66 180
Effi-MVS+97.12 10996.69 11398.39 10398.19 17596.72 11497.37 27398.43 17893.71 19197.65 12298.02 18692.20 12099.25 16496.87 10397.79 16399.19 133
MVS94.67 22493.54 26198.08 12496.88 26896.56 12298.19 20698.50 16678.05 35192.69 28398.02 18691.07 14999.63 12990.09 28598.36 14698.04 203
BH-untuned95.95 15195.72 14496.65 21198.55 14892.26 27298.23 19797.79 26593.73 18994.62 20698.01 18888.97 19299.00 19993.04 22898.51 13798.68 177
CLD-MVS95.62 16895.34 16296.46 23597.52 22493.75 24097.27 28398.46 17195.53 10494.42 21798.00 18986.21 24998.97 20096.25 12694.37 21896.66 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs295.71 16295.30 16796.93 19398.50 15093.53 24998.36 17898.10 23697.48 1898.67 5897.99 19089.76 16999.02 19797.95 3880.91 34498.22 198
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15397.00 10298.14 21398.21 21393.95 17796.72 15797.99 19091.58 13399.76 10394.51 18396.54 19298.95 161
AUN-MVS94.53 23493.73 25296.92 19698.50 15093.52 25098.34 18098.10 23693.83 18495.94 18697.98 19285.59 25999.03 19394.35 18780.94 34398.22 198
MAR-MVS96.91 11696.40 12498.45 9798.69 13796.90 10798.66 13798.68 12192.40 24697.07 14097.96 19391.54 13799.75 10593.68 20898.92 11698.69 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-CasMVS94.67 22493.99 23396.71 20696.68 27995.26 18099.13 4199.03 2593.68 19692.33 29597.95 19485.35 26398.10 29593.59 21288.16 31296.79 256
mvs-test196.60 12596.68 11596.37 24097.89 19791.81 27998.56 15298.10 23696.57 6496.52 16997.94 19590.81 15199.45 15395.72 14598.01 15597.86 208
TranMVSNet+NR-MVSNet95.14 19594.48 20297.11 18296.45 29096.36 13199.03 5699.03 2595.04 13493.58 25297.93 19688.27 20698.03 30294.13 19586.90 32696.95 237
testgi93.06 28492.45 28394.88 29396.43 29189.90 30998.75 11297.54 28395.60 10191.63 30697.91 19774.46 34597.02 33186.10 32293.67 23797.72 213
CP-MVSNet94.94 20994.30 21396.83 20096.72 27795.56 16799.11 4498.95 3493.89 17992.42 29497.90 19887.19 23198.12 29494.32 18988.21 31096.82 255
XVG-ACMP-BASELINE94.54 23394.14 22395.75 26896.55 28491.65 28598.11 21898.44 17594.96 13894.22 22797.90 19879.18 31999.11 18294.05 20093.85 23596.48 301
test_part194.82 21393.82 24397.82 13998.84 12497.82 7299.03 5698.81 7692.31 25192.51 29097.89 20081.96 30098.67 23694.80 17388.24 30996.98 233
PS-MVSNAJ97.73 7197.77 6197.62 15798.68 13895.58 16697.34 27798.51 16197.29 3098.66 6297.88 20194.51 8499.90 3397.87 4599.17 11097.39 220
RRT_test8_iter0594.56 23194.19 21895.67 27097.60 21491.34 28998.93 7798.42 17994.75 14593.39 26197.87 20279.00 32098.61 24096.78 10990.99 27597.07 228
TransMVSNet (Re)92.67 28891.51 29396.15 25096.58 28394.65 20698.90 8096.73 32590.86 29389.46 32597.86 20385.62 25898.09 29786.45 32081.12 34195.71 324
test_djsdf96.00 14995.69 14996.93 19395.72 31595.49 17199.47 298.40 18394.98 13694.58 20797.86 20389.16 18398.41 26796.91 9494.12 22896.88 247
TinyColmap92.31 29191.53 29294.65 30196.92 26489.75 31196.92 30296.68 32890.45 29989.62 32297.85 20576.06 33898.81 22586.74 31892.51 25695.41 328
pm-mvs193.94 26893.06 27296.59 21996.49 28895.16 18298.95 7398.03 25292.32 24991.08 31097.84 20684.54 27798.41 26792.16 25186.13 33296.19 314
UGNet96.78 12196.30 12798.19 11798.24 16995.89 15898.88 8798.93 3797.39 2596.81 15497.84 20682.60 29799.90 3396.53 11699.49 8898.79 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TDRefinement91.06 30189.68 30695.21 28285.35 35891.49 28898.51 16097.07 30791.47 27388.83 33097.84 20677.31 33399.09 18692.79 23677.98 34795.04 336
PEN-MVS94.42 24193.73 25296.49 23096.28 29694.84 19999.17 3599.00 2793.51 20392.23 29797.83 20986.10 25197.90 31192.55 24486.92 32596.74 262
131496.25 14295.73 14397.79 14197.13 25395.55 16998.19 20698.59 14293.47 20592.03 30197.82 21091.33 14299.49 14694.62 17798.44 14198.32 196
DTE-MVSNet93.98 26793.26 27096.14 25196.06 30594.39 22199.20 3198.86 6193.06 22191.78 30397.81 21185.87 25597.58 32290.53 28086.17 33096.46 303
PAPM94.95 20794.00 23197.78 14297.04 25895.65 16496.03 33098.25 21191.23 28694.19 22997.80 21291.27 14498.86 22082.61 34097.61 17098.84 167
PVSNet91.96 1896.35 13696.15 13296.96 19199.17 9892.05 27696.08 32798.68 12193.69 19497.75 11397.80 21288.86 19499.69 12094.26 19299.01 11399.15 139
CMPMVSbinary66.06 2189.70 31189.67 30789.78 33293.19 34576.56 35597.00 29898.35 19180.97 34881.57 34997.75 21474.75 34398.61 24089.85 29193.63 23994.17 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NP-MVS97.28 24094.51 21697.73 215
HQP-MVS95.72 16195.40 15696.69 20997.20 24694.25 22798.05 22298.46 17196.43 7094.45 21297.73 21586.75 23998.96 20495.30 15894.18 22496.86 251
UniMVSNet_NR-MVSNet95.71 16295.15 17297.40 16996.84 27096.97 10398.74 11599.24 1095.16 12693.88 24297.72 21791.68 13198.31 27895.81 14087.25 32196.92 238
DU-MVS95.42 17694.76 18997.40 16996.53 28596.97 10398.66 13798.99 2995.43 11093.88 24297.69 21888.57 19998.31 27895.81 14087.25 32196.92 238
WR-MVS95.15 19494.46 20497.22 17496.67 28096.45 12698.21 19998.81 7694.15 16693.16 26897.69 21887.51 22598.30 28095.29 16088.62 30696.90 245
NR-MVSNet94.98 20594.16 22197.44 16596.53 28597.22 9698.74 11598.95 3494.96 13889.25 32697.69 21889.32 17898.18 28994.59 18087.40 31996.92 238
Fast-Effi-MVS+-dtu95.87 15495.85 14195.91 26097.74 20691.74 28398.69 13098.15 22795.56 10394.92 19797.68 22188.98 19198.79 22793.19 22397.78 16497.20 226
alignmvs97.56 8497.07 9499.01 6298.66 13998.37 4198.83 9698.06 25096.74 5798.00 9997.65 22290.80 15399.48 15098.37 2496.56 19199.19 133
LF4IMVS93.14 28392.79 27794.20 31195.88 31188.67 32897.66 25797.07 30793.81 18591.71 30497.65 22277.96 32898.81 22591.47 26891.92 26295.12 333
lessismore_v094.45 30994.93 33188.44 33291.03 36086.77 33897.64 22476.23 33798.42 26090.31 28385.64 33396.51 297
TR-MVS94.94 20994.20 21797.17 17897.75 20394.14 22997.59 26197.02 31292.28 25295.75 18797.64 22483.88 29098.96 20489.77 29296.15 20898.40 191
ET-MVSNet_ETH3D94.13 25892.98 27397.58 15998.22 17196.20 13797.31 28095.37 34094.53 15579.56 35197.63 22686.51 24297.53 32496.91 9490.74 27799.02 153
Baseline_NR-MVSNet94.35 24493.81 24495.96 25896.20 29894.05 23198.61 14396.67 32991.44 27593.85 24497.60 22788.57 19998.14 29294.39 18586.93 32495.68 325
pmmvs494.69 21993.99 23396.81 20195.74 31495.94 15197.40 26997.67 27090.42 30093.37 26297.59 22889.08 18698.20 28892.97 23091.67 26496.30 311
K. test v392.55 28991.91 29194.48 30695.64 31789.24 31999.07 5194.88 34594.04 17086.78 33797.59 22877.64 33297.64 32092.08 25389.43 29596.57 284
Anonymous2023121194.10 26193.26 27096.61 21699.11 10494.28 22499.01 6198.88 4986.43 33392.81 27897.57 23081.66 30398.68 23594.83 17089.02 30296.88 247
PAPR96.84 11996.24 13098.65 8198.72 13496.92 10697.36 27598.57 14893.33 21096.67 15897.57 23094.30 9199.56 13791.05 27498.59 13399.47 98
pmmvs691.77 29490.63 29895.17 28494.69 33591.24 29498.67 13497.92 26086.14 33589.62 32297.56 23275.79 33998.34 27490.75 27884.56 33495.94 320
EIA-MVS97.75 7097.58 6798.27 10998.38 15696.44 12799.01 6198.60 14095.88 8997.26 13297.53 23394.97 7499.33 16097.38 7899.20 10899.05 151
bset_n11_16_dypcd94.89 21194.27 21496.76 20394.41 33695.15 18495.67 33595.64 33995.53 10494.65 20597.52 23487.10 23298.29 28396.58 11591.35 26796.83 254
MS-PatchMatch93.84 26993.63 25794.46 30896.18 29989.45 31697.76 25098.27 20692.23 25392.13 29997.49 23579.50 31698.69 23289.75 29399.38 10195.25 330
IterMVS-SCA-FT94.11 26093.87 24094.85 29497.98 19390.56 30597.18 28898.11 23493.75 18692.58 28697.48 23683.97 28897.41 32692.48 24891.30 26996.58 282
anonymousdsp95.42 17694.91 18496.94 19295.10 32895.90 15799.14 3898.41 18093.75 18693.16 26897.46 23787.50 22798.41 26795.63 15194.03 23096.50 299
PVSNet_BlendedMVS96.73 12296.60 11797.12 18199.25 8695.35 17798.26 19699.26 894.28 16397.94 10397.46 23792.74 10999.81 7196.88 10093.32 24796.20 313
PMMVS96.60 12596.33 12697.41 16797.90 19693.93 23397.35 27698.41 18092.84 23197.76 11297.45 23991.10 14899.20 17096.26 12597.91 15899.11 144
ETV-MVS97.96 5997.81 6098.40 10298.42 15497.27 9198.73 11998.55 15296.84 5398.38 7897.44 24095.39 5599.35 15897.62 6498.89 11898.58 186
thisisatest051595.61 17094.89 18597.76 14498.15 18095.15 18496.77 31594.41 34992.95 22697.18 13597.43 24184.78 27299.45 15394.63 17597.73 16798.68 177
baseline295.11 19694.52 20096.87 19896.65 28193.56 24698.27 19594.10 35593.45 20692.02 30297.43 24187.45 22999.19 17193.88 20397.41 17597.87 207
canonicalmvs97.67 7497.23 8798.98 6598.70 13598.38 3599.34 1298.39 18596.76 5697.67 11997.40 24392.26 11699.49 14698.28 2896.28 20399.08 149
tfpnnormal93.66 27092.70 27996.55 22696.94 26395.94 15198.97 6999.19 1591.04 29191.38 30797.34 24484.94 26998.61 24085.45 32889.02 30295.11 334
IterMVS94.09 26293.85 24294.80 29797.99 19190.35 30797.18 28898.12 23193.68 19692.46 29397.34 24484.05 28697.41 32692.51 24691.33 26896.62 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet95.75 16095.11 17597.69 15197.24 24297.27 9198.94 7599.23 1295.13 12895.51 18897.32 24685.73 25698.91 21197.33 8089.55 29296.89 246
IterMVS-LS95.46 17295.21 17096.22 24898.12 18293.72 24398.32 18798.13 23093.71 19194.26 22497.31 24792.24 11798.10 29594.63 17590.12 28396.84 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res96.34 13795.66 15198.36 10498.56 14695.94 15197.71 25398.07 24592.10 25794.79 20397.29 24891.75 13099.56 13794.17 19496.50 19499.58 82
ppachtmachnet_test93.22 28092.63 28094.97 29095.45 32490.84 29896.88 31097.88 26290.60 29592.08 30097.26 24988.08 21397.86 31685.12 33090.33 28096.22 312
pmmvs593.65 27292.97 27495.68 26995.49 32292.37 27198.20 20297.28 30089.66 31492.58 28697.26 24982.14 29898.09 29793.18 22490.95 27696.58 282
MDTV_nov1_ep1395.40 15697.48 22588.34 33396.85 31297.29 29993.74 18897.48 13097.26 24989.18 18299.05 18991.92 26097.43 174
Fast-Effi-MVS+96.28 14095.70 14898.03 12798.29 16895.97 14898.58 14698.25 21191.74 26595.29 19297.23 25291.03 15099.15 17692.90 23397.96 15798.97 158
BH-w/o95.38 17995.08 17696.26 24798.34 16391.79 28097.70 25497.43 29392.87 23094.24 22697.22 25388.66 19798.84 22191.55 26797.70 16898.16 201
eth_miper_zixun_eth94.68 22194.41 20995.47 27597.64 21191.71 28496.73 31898.07 24592.71 23493.64 25097.21 25490.54 15898.17 29093.38 21689.76 28796.54 289
v192192094.20 25393.47 26496.40 23995.98 30894.08 23098.52 15698.15 22791.33 28094.25 22597.20 25586.41 24698.42 26090.04 28989.39 29696.69 274
v2v48294.69 21994.03 22796.65 21196.17 30094.79 20498.67 13498.08 24392.72 23394.00 23897.16 25687.69 22498.45 25692.91 23288.87 30496.72 265
v7n94.19 25493.43 26596.47 23295.90 31094.38 22299.26 2098.34 19391.99 25992.76 28097.13 25788.31 20598.52 25089.48 30087.70 31596.52 294
cl-mvsnet194.52 23594.03 22795.99 25597.57 22093.38 25697.05 29597.94 25891.74 26592.81 27897.10 25889.12 18498.07 29992.60 23990.30 28196.53 291
SCA95.46 17295.13 17396.46 23597.67 20991.29 29397.33 27897.60 27594.68 14996.92 14897.10 25883.97 28898.89 21592.59 24198.32 14899.20 130
Patchmatch-test94.42 24193.68 25696.63 21497.60 21491.76 28194.83 34597.49 28889.45 31794.14 23197.10 25888.99 18898.83 22385.37 32998.13 15299.29 123
FMVSNet394.97 20694.26 21597.11 18298.18 17796.62 11698.56 15298.26 21093.67 19894.09 23397.10 25884.25 28198.01 30392.08 25392.14 25896.70 269
MVP-Stereo94.28 25093.92 23695.35 27994.95 33092.60 27097.97 23097.65 27191.61 27190.68 31497.09 26286.32 24898.42 26089.70 29599.34 10395.02 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet294.47 23993.61 25897.04 18598.21 17296.43 12898.79 11098.27 20692.46 24093.50 25897.09 26281.16 30498.00 30591.09 27091.93 26196.70 269
cl-mvsnet____94.51 23694.01 23096.02 25497.58 21693.40 25597.05 29597.96 25791.73 26792.76 28097.08 26489.06 18798.13 29392.61 23890.29 28296.52 294
GBi-Net94.49 23793.80 24596.56 22398.21 17295.00 19098.82 9998.18 21992.46 24094.09 23397.07 26581.16 30497.95 30792.08 25392.14 25896.72 265
test194.49 23793.80 24596.56 22398.21 17295.00 19098.82 9998.18 21992.46 24094.09 23397.07 26581.16 30497.95 30792.08 25392.14 25896.72 265
FMVSNet193.19 28292.07 28796.56 22397.54 22195.00 19098.82 9998.18 21990.38 30192.27 29697.07 26573.68 34797.95 30789.36 30291.30 26996.72 265
v119294.32 24693.58 25996.53 22796.10 30394.45 21798.50 16198.17 22491.54 27294.19 22997.06 26886.95 23798.43 25990.14 28489.57 29096.70 269
V4294.78 21794.14 22396.70 20896.33 29595.22 18198.97 6998.09 24192.32 24994.31 22297.06 26888.39 20498.55 24792.90 23388.87 30496.34 307
cl_fuxian94.79 21694.43 20895.89 26297.75 20393.12 26597.16 29198.03 25292.23 25393.46 26097.05 27091.39 13998.01 30393.58 21389.21 29896.53 291
GA-MVS94.81 21594.03 22797.14 17997.15 25293.86 23596.76 31697.58 27694.00 17494.76 20497.04 27180.91 30798.48 25291.79 26296.25 20599.09 146
UniMVSNet (Re)95.78 15995.19 17197.58 15996.99 26197.47 8498.79 11099.18 1695.60 10193.92 24097.04 27191.68 13198.48 25295.80 14287.66 31696.79 256
v14419294.39 24393.70 25496.48 23196.06 30594.35 22398.58 14698.16 22691.45 27494.33 22197.02 27387.50 22798.45 25691.08 27189.11 29996.63 277
v114494.59 22993.92 23696.60 21896.21 29794.78 20598.59 14498.14 22991.86 26494.21 22897.02 27387.97 21598.41 26791.72 26489.57 29096.61 279
v124094.06 26593.29 26996.34 24396.03 30793.90 23498.44 16898.17 22491.18 28994.13 23297.01 27586.05 25298.42 26089.13 30589.50 29496.70 269
v1094.29 24893.55 26096.51 22996.39 29294.80 20398.99 6598.19 21691.35 27993.02 27496.99 27688.09 21298.41 26790.50 28188.41 30896.33 309
test_040291.32 29790.27 30294.48 30696.60 28291.12 29598.50 16197.22 30386.10 33688.30 33296.98 27777.65 33197.99 30678.13 35292.94 25394.34 341
miper_lstm_enhance94.33 24594.07 22695.11 28697.75 20390.97 29797.22 28598.03 25291.67 26992.76 28096.97 27890.03 16697.78 31792.51 24689.64 28996.56 286
v894.47 23993.77 24896.57 22296.36 29394.83 20199.05 5398.19 21691.92 26193.16 26896.97 27888.82 19698.48 25291.69 26587.79 31496.39 305
miper_ehance_all_eth95.01 20194.69 19395.97 25797.70 20893.31 25897.02 29798.07 24592.23 25393.51 25796.96 28091.85 12898.15 29193.68 20891.16 27296.44 304
PatchmatchNetpermissive95.71 16295.52 15496.29 24697.58 21690.72 30296.84 31397.52 28494.06 16997.08 13896.96 28089.24 18198.90 21492.03 25798.37 14499.26 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14894.29 24893.76 25095.91 26096.10 30392.93 26798.58 14697.97 25592.59 23893.47 25996.95 28288.53 20298.32 27692.56 24387.06 32396.49 300
gm-plane-assit95.88 31187.47 34089.74 31396.94 28399.19 17193.32 220
tpmrst95.63 16795.69 14995.44 27797.54 22188.54 33096.97 29997.56 27793.50 20497.52 12996.93 28489.49 17399.16 17395.25 16296.42 19698.64 182
thres600view795.49 17194.77 18897.67 15398.98 11395.02 18998.85 9296.90 31895.38 11396.63 16096.90 28584.29 27999.59 13388.65 30896.33 19898.40 191
our_test_393.65 27293.30 26894.69 29995.45 32489.68 31496.91 30497.65 27191.97 26091.66 30596.88 28689.67 17297.93 31088.02 31291.49 26696.48 301
thres100view90095.38 17994.70 19297.41 16798.98 11394.92 19798.87 8996.90 31895.38 11396.61 16196.88 28684.29 27999.56 13788.11 30996.29 20097.76 209
cl-mvsnet294.68 22194.19 21896.13 25298.11 18393.60 24596.94 30198.31 19792.43 24493.32 26496.87 28886.51 24298.28 28594.10 19891.16 27296.51 297
LCM-MVSNet-Re95.22 19095.32 16594.91 29198.18 17787.85 33998.75 11295.66 33895.11 13088.96 32796.85 28990.26 16497.65 31995.65 15098.44 14199.22 129
WR-MVS_H95.05 20094.46 20496.81 20196.86 26995.82 16099.24 2299.24 1093.87 18192.53 28896.84 29090.37 16098.24 28793.24 22187.93 31396.38 306
EPMVS94.99 20394.48 20296.52 22897.22 24491.75 28297.23 28491.66 35994.11 16797.28 13196.81 29185.70 25798.84 22193.04 22897.28 17698.97 158
tpm294.19 25493.76 25095.46 27697.23 24389.04 32397.31 28096.85 32487.08 33096.21 17896.79 29283.75 29498.74 23092.43 24996.23 20698.59 184
D2MVS95.18 19395.08 17695.48 27497.10 25592.07 27598.30 19099.13 1994.02 17292.90 27696.73 29389.48 17498.73 23194.48 18493.60 24195.65 326
CostFormer94.95 20794.73 19195.60 27297.28 24089.06 32297.53 26496.89 32089.66 31496.82 15396.72 29486.05 25298.95 20895.53 15396.13 20998.79 169
test20.0390.89 30390.38 30192.43 32693.48 34488.14 33698.33 18297.56 27793.40 20887.96 33396.71 29580.69 31194.13 35479.15 34986.17 33095.01 338
Effi-MVS+-dtu96.29 13896.56 11895.51 27397.89 19790.22 30898.80 10698.10 23696.57 6496.45 17396.66 29690.81 15198.91 21195.72 14597.99 15697.40 219
test0.0.03 194.08 26393.51 26295.80 26595.53 32192.89 26897.38 27195.97 33495.11 13092.51 29096.66 29687.71 22196.94 33387.03 31793.67 23797.57 216
miper_enhance_ethall95.10 19794.75 19096.12 25397.53 22393.73 24296.61 32198.08 24392.20 25693.89 24196.65 29892.44 11298.30 28094.21 19391.16 27296.34 307
ADS-MVSNet294.58 23094.40 21095.11 28698.00 18988.74 32796.04 32897.30 29890.15 30496.47 17196.64 29987.89 21797.56 32390.08 28697.06 17899.02 153
ADS-MVSNet95.00 20294.45 20696.63 21498.00 18991.91 27896.04 32897.74 26890.15 30496.47 17196.64 29987.89 21798.96 20490.08 28697.06 17899.02 153
dp94.15 25793.90 23894.90 29297.31 23986.82 34496.97 29997.19 30491.22 28796.02 18396.61 30185.51 26099.02 19790.00 29094.30 21998.85 165
tfpn200view995.32 18694.62 19597.43 16698.94 11594.98 19398.68 13196.93 31695.33 11696.55 16596.53 30284.23 28299.56 13788.11 30996.29 20097.76 209
thres40095.38 17994.62 19597.65 15698.94 11594.98 19398.68 13196.93 31695.33 11696.55 16596.53 30284.23 28299.56 13788.11 30996.29 20098.40 191
EG-PatchMatch MVS91.13 30090.12 30394.17 31394.73 33489.00 32498.13 21597.81 26489.22 32085.32 34496.46 30467.71 35298.42 26087.89 31493.82 23695.08 335
TESTMET0.1,194.18 25693.69 25595.63 27196.92 26489.12 32196.91 30494.78 34693.17 21794.88 19896.45 30578.52 32298.92 21093.09 22598.50 13898.85 165
DWT-MVSNet_test94.82 21394.36 21196.20 24997.35 23790.79 30098.34 18096.57 33192.91 22895.33 19196.44 30682.00 29999.12 17994.52 18295.78 21498.70 175
tpmvs94.60 22794.36 21195.33 28097.46 22788.60 32996.88 31097.68 26991.29 28393.80 24796.42 30788.58 19899.24 16691.06 27296.04 21198.17 200
Anonymous2023120691.66 29591.10 29593.33 32094.02 34287.35 34198.58 14697.26 30290.48 29790.16 31896.31 30883.83 29296.53 34279.36 34889.90 28696.12 315
tpm94.13 25893.80 24595.12 28596.50 28787.91 33897.44 26695.89 33792.62 23696.37 17596.30 30984.13 28598.30 28093.24 22191.66 26599.14 141
CR-MVSNet94.76 21894.15 22296.59 21997.00 25993.43 25294.96 34197.56 27792.46 24096.93 14696.24 31088.15 21097.88 31587.38 31596.65 18898.46 189
Patchmtry93.22 28092.35 28495.84 26496.77 27293.09 26694.66 34697.56 27787.37 32992.90 27696.24 31088.15 21097.90 31187.37 31690.10 28496.53 291
tmp_tt68.90 32866.97 33074.68 34350.78 36859.95 36487.13 35683.47 36638.80 36362.21 35996.23 31264.70 35676.91 36488.91 30630.49 36287.19 354
cascas94.63 22693.86 24196.93 19396.91 26694.27 22596.00 33198.51 16185.55 34094.54 20896.23 31284.20 28498.87 21895.80 14296.98 18197.66 215
thres20095.25 18894.57 19797.28 17298.81 12694.92 19798.20 20297.11 30595.24 12496.54 16796.22 31484.58 27699.53 14387.93 31396.50 19497.39 220
UnsupCasMVSNet_eth90.99 30289.92 30594.19 31294.08 33989.83 31097.13 29398.67 12993.69 19485.83 34296.19 31575.15 34196.74 33689.14 30479.41 34596.00 318
MDA-MVSNet-bldmvs89.97 31088.35 31594.83 29695.21 32791.34 28997.64 25897.51 28588.36 32571.17 35796.13 31679.22 31896.63 34183.65 33786.27 32996.52 294
MIMVSNet93.26 27992.21 28696.41 23897.73 20793.13 26495.65 33697.03 31091.27 28594.04 23696.06 31775.33 34097.19 32986.56 31996.23 20698.92 163
tpm cat193.36 27492.80 27695.07 28897.58 21687.97 33796.76 31697.86 26382.17 34793.53 25496.04 31886.13 25099.13 17889.24 30395.87 21298.10 202
N_pmnet87.12 32087.77 31985.17 33795.46 32361.92 36297.37 27370.66 36885.83 33888.73 33196.04 31885.33 26597.76 31880.02 34590.48 27995.84 321
MIMVSNet189.67 31288.28 31693.82 31492.81 34891.08 29698.01 22697.45 29187.95 32687.90 33495.87 32067.63 35394.56 35378.73 35188.18 31195.83 322
YYNet190.70 30589.39 30894.62 30294.79 33390.65 30397.20 28697.46 28987.54 32872.54 35595.74 32186.51 24296.66 34086.00 32386.76 32896.54 289
DSMNet-mixed92.52 29092.58 28192.33 32794.15 33882.65 35198.30 19094.26 35289.08 32192.65 28495.73 32285.01 26895.76 34686.24 32197.76 16598.59 184
IB-MVS91.98 1793.27 27891.97 28997.19 17697.47 22693.41 25497.09 29495.99 33393.32 21192.47 29295.73 32278.06 32799.53 14394.59 18082.98 33598.62 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR95.10 19794.87 18695.80 26596.77 27289.70 31296.91 30495.21 34195.11 13094.83 20195.72 32487.71 22198.97 20093.06 22698.50 13898.72 173
test-mter94.08 26393.51 26295.80 26596.77 27289.70 31296.91 30495.21 34192.89 22994.83 20195.72 32477.69 32998.97 20093.06 22698.50 13898.72 173
MDA-MVSNet_test_wron90.71 30489.38 30994.68 30094.83 33290.78 30197.19 28797.46 28987.60 32772.41 35695.72 32486.51 24296.71 33985.92 32486.80 32796.56 286
MVS_030492.81 28692.01 28895.23 28197.46 22791.33 29198.17 21198.81 7691.13 29093.80 24795.68 32766.08 35598.06 30090.79 27696.13 20996.32 310
FMVSNet591.81 29390.92 29694.49 30597.21 24592.09 27498.00 22897.55 28289.31 31990.86 31295.61 32874.48 34495.32 34985.57 32689.70 28896.07 317
test_method79.03 32278.17 32581.63 33986.06 35754.40 36782.75 35996.89 32039.54 36280.98 35095.57 32958.37 35894.73 35284.74 33478.61 34695.75 323
PVSNet_088.72 1991.28 29890.03 30495.00 28997.99 19187.29 34294.84 34498.50 16692.06 25889.86 32095.19 33079.81 31599.39 15692.27 25069.79 35498.33 195
DeepMVS_CXcopyleft86.78 33497.09 25672.30 35895.17 34475.92 35284.34 34695.19 33070.58 35095.35 34779.98 34789.04 30192.68 351
patchmatchnet-post95.10 33289.42 17698.89 215
Anonymous2024052191.18 29990.44 30093.42 31793.70 34388.47 33198.94 7597.56 27788.46 32489.56 32495.08 33377.15 33596.97 33283.92 33689.55 29294.82 339
Patchmatch-RL test91.49 29690.85 29793.41 31891.37 35184.40 34692.81 35195.93 33691.87 26387.25 33594.87 33488.99 18896.53 34292.54 24582.00 33799.30 121
OpenMVS_ROBcopyleft86.42 2089.00 31687.43 32193.69 31593.08 34689.42 31797.91 23596.89 32078.58 35085.86 34194.69 33569.48 35198.29 28377.13 35393.29 24993.36 350
CL-MVSNet_2432*160090.11 30889.14 31193.02 32491.86 35088.23 33596.51 32498.07 24590.49 29690.49 31694.41 33684.75 27395.34 34880.79 34474.95 35195.50 327
FPMVS77.62 32677.14 32679.05 34179.25 36260.97 36395.79 33395.94 33565.96 35567.93 35894.40 33737.73 36488.88 35968.83 35688.46 30787.29 353
KD-MVS_2432*160089.61 31387.96 31794.54 30394.06 34091.59 28695.59 33797.63 27389.87 31088.95 32894.38 33878.28 32496.82 33484.83 33168.05 35595.21 331
miper_refine_blended89.61 31387.96 31794.54 30394.06 34091.59 28695.59 33797.63 27389.87 31088.95 32894.38 33878.28 32496.82 33484.83 33168.05 35595.21 331
GG-mvs-BLEND96.59 21996.34 29494.98 19396.51 32488.58 36393.10 27394.34 34080.34 31398.05 30189.53 29896.99 18096.74 262
DIV-MVS_2432*160090.38 30689.38 30993.40 31992.85 34788.94 32597.95 23197.94 25890.35 30290.25 31793.96 34179.82 31495.94 34584.62 33576.69 34995.33 329
new_pmnet90.06 30989.00 31393.22 32394.18 33788.32 33496.42 32696.89 32086.19 33485.67 34393.62 34277.18 33497.10 33081.61 34289.29 29794.23 342
PM-MVS87.77 31886.55 32291.40 33191.03 35383.36 35096.92 30295.18 34391.28 28486.48 34093.42 34353.27 35996.74 33689.43 30181.97 33894.11 344
pmmvs-eth3d90.36 30789.05 31294.32 31091.10 35292.12 27397.63 26096.95 31588.86 32284.91 34593.13 34478.32 32396.74 33688.70 30781.81 33994.09 345
new-patchmatchnet88.50 31787.45 32091.67 33090.31 35485.89 34597.16 29197.33 29789.47 31683.63 34792.77 34576.38 33695.06 35182.70 33977.29 34894.06 346
pmmvs386.67 32184.86 32492.11 32988.16 35587.19 34396.63 32094.75 34779.88 34987.22 33692.75 34666.56 35495.20 35081.24 34376.56 35093.96 347
ambc89.49 33386.66 35675.78 35692.66 35296.72 32686.55 33992.50 34746.01 36097.90 31190.32 28282.09 33694.80 340
PatchT93.06 28491.97 28996.35 24296.69 27892.67 26994.48 34797.08 30686.62 33197.08 13892.23 34887.94 21697.90 31178.89 35096.69 18698.49 188
RPMNet92.81 28691.34 29497.24 17397.00 25993.43 25294.96 34198.80 8782.27 34696.93 14692.12 34986.98 23699.82 6476.32 35496.65 18898.46 189
UnsupCasMVSNet_bld87.17 31985.12 32393.31 32191.94 34988.77 32694.92 34398.30 20384.30 34482.30 34890.04 35063.96 35797.25 32885.85 32574.47 35393.93 348
LCM-MVSNet78.70 32376.24 32886.08 33577.26 36471.99 35994.34 34896.72 32661.62 35776.53 35289.33 35133.91 36692.78 35681.85 34174.60 35293.46 349
PMMVS277.95 32575.44 32985.46 33682.54 35974.95 35794.23 34993.08 35772.80 35474.68 35387.38 35236.36 36591.56 35773.95 35563.94 35789.87 352
JIA-IIPM93.35 27592.49 28295.92 25996.48 28990.65 30395.01 34096.96 31485.93 33796.08 18187.33 35387.70 22398.78 22891.35 26995.58 21598.34 194
PMVScopyleft61.03 2365.95 32963.57 33373.09 34457.90 36751.22 36885.05 35893.93 35654.45 35844.32 36483.57 35413.22 36889.15 35858.68 35981.00 34278.91 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet89.46 31588.40 31492.64 32597.58 21682.15 35294.16 35093.05 35875.73 35390.90 31182.52 35579.42 31798.33 27583.53 33898.68 12797.43 217
gg-mvs-nofinetune92.21 29290.58 29997.13 18096.75 27595.09 18795.85 33289.40 36285.43 34194.50 21081.98 35680.80 31098.40 27392.16 25198.33 14797.88 206
Gipumacopyleft78.40 32476.75 32783.38 33895.54 32080.43 35479.42 36097.40 29564.67 35673.46 35480.82 35745.65 36193.14 35566.32 35787.43 31876.56 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 32765.37 33180.22 34065.99 36671.96 36090.91 35590.09 36182.62 34549.93 36378.39 35829.36 36781.75 36062.49 35838.52 36186.95 355
E-PMN64.94 33064.25 33267.02 34582.28 36059.36 36591.83 35485.63 36452.69 35960.22 36077.28 35941.06 36380.12 36246.15 36141.14 35961.57 360
EMVS64.07 33163.26 33466.53 34681.73 36158.81 36691.85 35384.75 36551.93 36159.09 36175.13 36043.32 36279.09 36342.03 36239.47 36061.69 359
MVEpermissive62.14 2263.28 33259.38 33574.99 34274.33 36565.47 36185.55 35780.50 36752.02 36051.10 36275.00 36110.91 37180.50 36151.60 36053.40 35878.99 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
X-MVStestdata94.06 26592.30 28599.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7143.50 36295.90 4099.89 3597.85 4799.74 4199.78 13
testmvs21.48 33524.95 33811.09 34914.89 3696.47 37196.56 3229.87 3707.55 36517.93 36539.02 3639.43 3725.90 36716.56 36512.72 36420.91 362
test12320.95 33623.72 33912.64 34813.54 3708.19 37096.55 3236.13 3717.48 36616.74 36637.98 36412.97 3696.05 36616.69 3645.43 36523.68 361
test_post31.83 36588.83 19598.91 211
test_post196.68 31930.43 36687.85 22098.69 23292.59 241
wuyk23d30.17 33330.18 33730.16 34778.61 36343.29 36966.79 36114.21 36917.31 36414.82 36711.93 36711.55 37041.43 36537.08 36319.30 3635.76 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.88 33810.50 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36894.51 840.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
IU-MVS99.71 2099.23 698.64 13795.28 12099.63 498.35 2599.81 1099.83 5
save fliter99.46 5198.38 3598.21 19998.71 11497.95 3
test_0728_SECOND99.71 199.72 1299.35 198.97 6998.88 4999.94 398.47 1699.81 1099.84 4
GSMVS99.20 130
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17599.20 130
sam_mvs88.99 188
MTGPAbinary98.74 104
MTMP98.89 8494.14 354
test9_res96.39 12399.57 7599.69 51
agg_prior295.87 13999.57 7599.68 57
agg_prior99.30 7598.38 3598.72 11097.57 12799.81 71
test_prior498.01 6297.86 242
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
旧先验297.57 26391.30 28298.67 5899.80 8095.70 149
新几何297.64 258
无先验97.58 26298.72 11091.38 27699.87 4493.36 21899.60 78
原ACMM297.67 256
testdata299.89 3591.65 266
segment_acmp96.85 11
testdata197.32 27996.34 74
test1299.18 4799.16 9998.19 5298.53 15698.07 8895.13 7099.72 10999.56 8099.63 73
plane_prior797.42 23294.63 208
plane_prior697.35 23794.61 21187.09 233
plane_prior598.56 15099.03 19396.07 12994.27 22096.92 238
plane_prior394.61 21197.02 4995.34 189
plane_prior298.80 10697.28 31
plane_prior197.37 236
plane_prior94.60 21398.44 16896.74 5794.22 222
n20.00 372
nn0.00 372
door-mid94.37 350
test1198.66 132
door94.64 348
HQP5-MVS94.25 227
HQP-NCC97.20 24698.05 22296.43 7094.45 212
ACMP_Plane97.20 24698.05 22296.43 7094.45 212
BP-MVS95.30 158
HQP4-MVS94.45 21298.96 20496.87 249
HQP3-MVS98.46 17194.18 224
HQP2-MVS86.75 239
MDTV_nov1_ep13_2view84.26 34796.89 30990.97 29297.90 10789.89 16893.91 20299.18 137
ACMMP++_ref92.97 252
ACMMP++93.61 240
Test By Simon94.64 80