This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
fmvsm_s_conf0.1_n_a98.08 6198.04 6198.21 11997.66 24395.39 18298.89 10499.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11199.35 115
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 13198.54 16495.24 19298.87 11399.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9499.21 139
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19198.85 11899.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9799.25 134
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18198.86 11699.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10999.49 96
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12997.25 9198.82 12699.34 1098.75 399.80 599.61 495.16 7099.95 799.70 699.80 2299.93 1
test_fmvsmconf0.01_n97.86 7297.54 8298.83 6995.48 35996.83 10898.95 9098.60 14298.58 698.93 5899.55 688.57 21299.91 3999.54 1199.61 7799.77 27
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18396.15 14698.97 8499.15 2898.55 798.45 9199.55 694.26 9399.97 199.65 799.66 6698.57 214
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23797.15 9698.84 12298.97 4298.75 399.43 2799.54 893.29 10599.93 2599.64 999.79 2899.89 5
UA-Net97.96 6797.62 7598.98 5998.86 13297.47 8098.89 10499.08 3296.67 8298.72 7499.54 893.15 10799.81 8194.87 19698.83 14199.65 69
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1198.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2399.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32598.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1899.86 199.82 16
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 6499.81 1599.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 13098.96 8999.36 998.63 599.86 299.51 1395.91 4099.97 199.72 599.75 4598.94 180
mvsany_test197.69 8297.70 7397.66 16898.24 19094.18 24497.53 30197.53 30295.52 13199.66 1599.51 1394.30 9199.56 14698.38 4998.62 15099.23 136
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
DeepC-MVS95.98 397.88 7197.58 7798.77 7199.25 8196.93 10398.83 12498.75 10696.96 6796.89 17399.50 1590.46 17199.87 5897.84 7999.76 4099.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_298.08 6198.59 1496.56 24499.57 3390.34 33299.15 4998.38 19996.82 7399.29 3499.49 1795.78 4499.57 14398.94 2199.86 199.77 27
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4699.81 1599.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4699.80 2299.83 13
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9597.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6199.91 2
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 4299.72 5699.74 37
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5799.92 3197.89 7599.75 4599.79 19
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 15097.62 2499.45 2599.46 2497.42 999.94 898.47 4299.81 1599.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 4299.86 199.85 10
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1299.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10995.32 37798.86 298.53 8699.44 2794.38 8999.94 899.86 199.70 5999.90 3
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10999.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2299.89 5
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10499.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 5099.90 3
MP-MVS-pluss98.31 5697.92 6799.49 1299.72 1298.88 1898.43 20398.78 10094.10 19997.69 13999.42 2995.25 6599.92 3198.09 6399.80 2299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8299.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2799.84 6797.72 8599.73 5399.67 65
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11399.39 3294.81 7999.96 497.91 7399.79 2899.77 27
VDDNet95.36 20394.53 22097.86 14598.10 20795.13 19898.85 11897.75 28390.46 33598.36 9699.39 3273.27 37999.64 13197.98 6796.58 21698.81 189
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5999.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS96.37 297.93 7098.48 2396.30 26999.00 11489.54 34497.43 30798.87 6998.16 1199.26 3699.38 3796.12 3299.64 13198.30 5499.77 3499.72 45
test_vis1_n_192096.71 13696.84 11696.31 26899.11 10489.74 33999.05 6598.58 15098.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6199.27 129
EI-MVSNet-UG-set98.41 4598.34 3598.61 7999.45 5296.32 13998.28 22098.68 12497.17 5598.74 7199.37 3895.25 6599.79 9898.57 3199.54 9499.73 42
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 9999.20 3899.37 3895.30 6199.80 8897.73 8499.67 6499.72 45
LS3D97.16 11796.66 12998.68 7598.53 16597.19 9498.93 9598.90 5792.83 27095.99 20899.37 3892.12 12999.87 5893.67 23999.57 8598.97 176
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12798.30 21798.69 12197.21 5298.84 6399.36 4295.41 5499.78 10198.62 2999.65 6999.80 18
ACMMPcopyleft98.23 5797.95 6599.09 5299.74 797.62 7399.03 7199.41 695.98 10997.60 14899.36 4294.45 8799.93 2597.14 11498.85 14099.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_cas_vis1_n_192097.38 10697.36 9397.45 17798.95 12393.25 27999.00 7898.53 16397.70 2099.77 799.35 4484.71 29299.85 6398.57 3199.66 6699.26 132
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.34 5999.82 7697.72 8599.65 6999.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.29 6297.72 8599.65 6999.71 49
DP-MVS96.59 14095.93 15698.57 8399.34 5796.19 14598.70 16098.39 19589.45 35494.52 24099.35 4491.85 13799.85 6392.89 26398.88 13799.68 61
VDD-MVS95.82 17795.23 18897.61 17198.84 13593.98 24898.68 16397.40 31695.02 16097.95 11999.34 4874.37 37699.78 10198.64 2896.80 20999.08 164
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5599.82 7697.70 8999.63 7499.72 45
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8199.49 595.43 13599.03 4799.32 4995.56 4999.94 896.80 13799.77 3499.78 21
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13296.84 7199.56 2099.31 5196.34 2599.70 11998.32 5399.73 5399.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-OURS96.55 14496.41 13796.99 20698.75 14093.76 25497.50 30498.52 16695.67 12596.83 17499.30 5288.95 20699.53 15595.88 16496.26 23397.69 246
9.1498.06 5999.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3499.81 8197.00 11899.71 58
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6399.28 5496.47 2399.40 17698.52 4099.70 5999.47 100
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6099.28 5495.27 6399.82 7697.55 10099.77 3499.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test111195.94 16995.78 16096.41 26198.99 11890.12 33499.04 6892.45 39996.99 6698.03 11199.27 5681.40 32499.48 16696.87 13299.04 12899.63 73
test_fmvs1_n95.90 17295.99 15495.63 29598.67 15188.32 36699.26 2898.22 22696.40 9499.67 1499.26 5773.91 37799.70 11999.02 2099.50 9998.87 184
test250694.44 26493.91 26196.04 27799.02 11188.99 35499.06 6379.47 41396.96 6798.36 9699.26 5777.21 35899.52 15896.78 13899.04 12899.59 79
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32099.03 7191.80 40096.96 6798.10 10599.26 5781.31 32599.51 15996.90 12699.04 12899.59 79
RPSCF94.87 23495.40 17593.26 35298.89 12782.06 39098.33 21098.06 26490.30 34096.56 18799.26 5787.09 24699.49 16193.82 23496.32 22598.24 227
APD-MVScopyleft98.35 5298.00 6499.42 1699.51 3998.72 2198.80 13598.82 8194.52 18799.23 3799.25 6195.54 5199.80 8896.52 14499.77 3499.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.33 5598.01 6399.28 3299.75 398.18 5199.22 3798.79 9896.13 10597.92 12499.23 6294.54 8299.94 896.74 14099.78 3299.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2598.81 8696.24 9998.35 9899.23 6295.46 5299.94 897.42 10799.81 1599.77 27
MG-MVS97.81 7597.60 7698.44 9999.12 10295.97 15597.75 28598.78 10096.89 7098.46 8899.22 6493.90 9999.68 12594.81 20099.52 9799.67 65
casdiffmvspermissive97.63 8797.41 9098.28 11198.33 18396.14 14798.82 12698.32 20896.38 9697.95 11999.21 6591.23 15699.23 19298.12 6198.37 16499.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive97.42 10397.11 10498.34 10798.66 15296.23 14299.22 3799.00 3996.63 8498.04 11099.21 6588.05 22899.35 18196.01 16199.21 12299.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs196.42 14896.67 12895.66 29498.82 13688.53 36298.80 13598.20 22996.39 9599.64 1799.20 6780.35 33599.67 12699.04 1999.57 8598.78 193
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 8899.20 6795.90 4299.89 4797.85 7799.74 5099.78 21
LFMVS95.86 17494.98 20198.47 9598.87 13196.32 13998.84 12296.02 36793.40 24498.62 8199.20 6774.99 37199.63 13497.72 8597.20 19999.46 104
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1098.82 8194.46 19098.94 5499.20 6795.16 7099.74 11197.58 9699.85 599.77 27
casdiffmvs_mvgpermissive97.72 7997.48 8698.44 9998.42 17096.59 12198.92 9798.44 18596.20 10197.76 13199.20 6791.66 14299.23 19298.27 5898.41 16399.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10798.93 5899.19 7295.70 4699.94 897.62 9399.79 2899.78 21
test_vis1_n95.47 19295.13 19296.49 25297.77 23290.41 33099.27 2798.11 24996.58 8599.66 1599.18 7367.00 39099.62 13799.21 1699.40 11499.44 107
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10798.94 5499.17 7496.06 3399.92 3197.62 9399.78 3299.75 35
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10498.94 5499.17 7495.91 4099.94 897.55 10099.79 2899.78 21
baseline97.64 8697.44 8998.25 11698.35 17696.20 14399.00 7898.32 20896.33 9898.03 11199.17 7491.35 15199.16 19998.10 6298.29 17099.39 112
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 28597.52 10399.72 5699.74 37
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 18097.24 11299.73 5399.70 53
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7099.16 7797.05 1399.78 10198.06 6499.66 6699.69 56
3Dnovator94.51 597.46 9796.93 11299.07 5397.78 23197.64 7199.35 1699.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4599.64 71
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17497.45 3598.88 6199.14 8195.25 6599.15 20298.83 2599.56 9199.20 140
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1798.87 6995.96 11098.60 8399.13 8296.05 3499.94 897.77 8299.86 199.77 27
3Dnovator+94.38 697.43 10296.78 12099.38 1897.83 22898.52 2899.37 1398.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8599.71 49
EPNet97.28 11096.87 11598.51 9094.98 36896.14 14798.90 9997.02 34098.28 1095.99 20899.11 8491.36 15099.89 4796.98 11999.19 12499.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.93 12796.27 14398.92 6499.50 4197.63 7298.85 11898.90 5784.80 38397.77 13099.11 8492.84 11199.66 12894.85 19799.77 3499.47 100
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 11998.31 10199.10 8695.46 5299.93 2597.57 9999.81 1599.74 37
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 18097.17 5598.94 5499.10 8695.73 4599.13 20598.71 2799.49 10199.09 160
testdata98.26 11599.20 9295.36 18498.68 12491.89 30098.60 8399.10 8694.44 8899.82 7694.27 21999.44 10899.58 83
PHI-MVS98.34 5398.06 5999.18 4299.15 10098.12 5799.04 6899.09 3193.32 24798.83 6699.10 8696.54 2199.83 6997.70 8999.76 4099.59 79
OMC-MVS97.55 9597.34 9498.20 12199.33 5995.92 16298.28 22098.59 14595.52 13197.97 11899.10 8693.28 10699.49 16195.09 19198.88 13799.19 144
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28098.58 18098.11 24989.92 34593.57 28699.10 8686.37 26099.79 9890.78 31098.10 17497.09 262
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
旧先验199.29 7397.48 7898.70 12099.09 9295.56 4999.47 10499.61 75
XVG-OURS-SEG-HR96.51 14596.34 13997.02 20598.77 13993.76 25497.79 28398.50 17495.45 13496.94 16899.09 9287.87 23399.55 15396.76 13995.83 24597.74 243
CPTT-MVS97.72 7997.32 9598.92 6499.64 2897.10 9799.12 5598.81 8692.34 28698.09 10699.08 9493.01 10899.92 3196.06 15899.77 3499.75 35
EPP-MVSNet97.46 9797.28 9697.99 13998.64 15595.38 18399.33 2198.31 21093.61 23697.19 15799.07 9594.05 9699.23 19296.89 12798.43 16299.37 114
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12398.73 7399.06 9695.27 6399.93 2597.07 11799.63 7499.72 45
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28397.32 8399.21 4098.97 4289.96 34491.14 34299.05 9786.64 25499.92 3193.38 24599.47 10497.73 244
EI-MVSNet95.96 16695.83 15996.36 26497.93 22393.70 26098.12 24298.27 21993.70 22795.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 286
CVMVSNet95.43 19696.04 15193.57 34697.93 22383.62 38498.12 24298.59 14595.68 12496.56 18799.02 9887.51 23997.51 35893.56 24397.44 19599.60 77
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9198.11 24498.29 21897.19 5498.99 5299.02 9896.22 2799.67 12698.52 4098.56 15499.51 89
QAPM96.29 15495.40 17598.96 6297.85 22797.60 7499.23 3398.93 5089.76 34893.11 30699.02 9889.11 19899.93 2591.99 28699.62 7699.34 116
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26199.58 397.14 5898.44 9399.01 10295.03 7599.62 13797.91 7399.75 4599.50 91
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8397.91 26699.58 397.20 5398.33 9999.00 10395.99 3799.64 13198.05 6699.76 4099.69 56
IS-MVSNet97.22 11296.88 11498.25 11698.85 13496.36 13799.19 4497.97 27095.39 13797.23 15698.99 10491.11 15998.93 23894.60 20798.59 15299.47 100
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7598.97 10595.70 4699.83 6996.07 15599.58 84
Anonymous2024052995.10 21894.22 23797.75 15699.01 11394.26 24198.87 11398.83 8085.79 37996.64 18298.97 10578.73 34399.85 6396.27 15094.89 25199.12 156
原ACMM198.65 7799.32 6296.62 11698.67 12993.27 25197.81 12998.97 10595.18 6999.83 6993.84 23399.46 10799.50 91
HPM-MVScopyleft98.36 5098.10 5899.13 4899.74 797.82 6899.53 798.80 9394.63 18098.61 8298.97 10595.13 7299.77 10697.65 9199.83 1499.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28598.89 5997.71 1998.33 9998.97 10594.97 7699.88 5698.42 4899.76 4099.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet98.05 6397.76 7198.90 6798.73 14197.27 8698.35 20898.78 10097.37 4197.72 13798.96 11091.53 14899.92 3198.79 2699.65 6999.51 89
test22299.23 8897.17 9597.40 30898.66 13288.68 36398.05 10898.96 11094.14 9599.53 9699.61 75
新几何199.16 4599.34 5798.01 6198.69 12190.06 34398.13 10398.95 11294.60 8199.89 4791.97 28899.47 10499.59 79
DP-MVS Recon97.86 7297.46 8799.06 5499.53 3698.35 4298.33 21098.89 5992.62 27598.05 10898.94 11395.34 5999.65 12996.04 15999.42 11099.19 144
CANet_DTU96.96 12696.55 13298.21 11998.17 20396.07 14997.98 25998.21 22797.24 5097.13 15998.93 11486.88 25199.91 3995.00 19499.37 11798.66 205
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9198.93 11496.65 1999.83 6997.38 10999.41 11199.71 49
CSCG97.85 7497.74 7298.20 12199.67 2595.16 19599.22 3799.32 1193.04 26197.02 16698.92 11695.36 5899.91 3997.43 10699.64 7399.52 86
CHOSEN 1792x268897.12 12096.80 11798.08 13399.30 6894.56 22998.05 25199.71 193.57 23797.09 16098.91 11788.17 22299.89 4796.87 13299.56 9199.81 17
iter_conf0598.16 6098.02 6298.59 8298.96 12297.07 9898.90 9998.57 15294.81 17297.84 12798.90 11895.22 6899.59 14099.15 1799.84 1299.12 156
mamv497.13 11998.11 5694.17 34298.97 12183.70 38398.66 16898.71 11694.63 18097.83 12898.90 11896.25 2699.55 15399.27 1599.76 4099.27 129
diffmvspermissive97.58 9297.40 9198.13 12798.32 18695.81 16898.06 25098.37 20196.20 10198.74 7198.89 12091.31 15499.25 18998.16 6098.52 15599.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu97.70 8197.46 8798.44 9999.27 7895.91 16398.63 17499.16 2794.48 18997.67 14098.88 12192.80 11299.91 3997.11 11599.12 12699.50 91
GeoE96.58 14296.07 14998.10 13298.35 17695.89 16599.34 1798.12 24693.12 25896.09 20498.87 12289.71 18398.97 22892.95 25998.08 17599.43 109
Vis-MVSNet (Re-imp)96.87 13096.55 13297.83 14798.73 14195.46 17999.20 4298.30 21694.96 16496.60 18698.87 12290.05 17798.59 27493.67 23998.60 15199.46 104
CDPH-MVS97.94 6997.49 8499.28 3299.47 4798.44 3197.91 26698.67 12992.57 27898.77 6998.85 12495.93 3999.72 11395.56 17799.69 6199.68 61
VNet97.79 7697.40 9198.96 6298.88 12997.55 7598.63 17498.93 5096.74 7899.02 4898.84 12590.33 17499.83 6998.53 3496.66 21399.50 91
EC-MVSNet98.21 5898.11 5698.49 9398.34 18197.26 9099.61 598.43 18996.78 7498.87 6298.84 12593.72 10099.01 22698.91 2299.50 9999.19 144
bld_raw_dy_0_6497.09 12296.76 12498.08 13398.89 12796.54 12598.17 23798.52 16688.80 36295.67 21598.83 12793.32 10399.48 16698.86 2399.75 4598.21 231
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13297.51 3098.15 10298.83 12795.70 4699.92 3197.53 10299.67 6499.66 68
MVSFormer97.57 9397.49 8497.84 14698.07 20895.76 16999.47 898.40 19394.98 16298.79 6798.83 12792.34 11998.41 29896.91 12399.59 8199.34 116
jason97.32 10997.08 10698.06 13697.45 26295.59 17297.87 27497.91 27694.79 17398.55 8598.83 12791.12 15899.23 19297.58 9699.60 7999.34 116
jason: jason.
Anonymous20240521195.28 20894.49 22297.67 16599.00 11493.75 25698.70 16097.04 33790.66 33196.49 19398.80 13178.13 35099.83 6996.21 15495.36 25099.44 107
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12497.04 6398.52 8798.80 13196.78 1699.83 6997.93 7199.61 7799.74 37
iter_conf05_1198.04 6497.94 6698.34 10798.60 15996.38 13499.24 3198.57 15295.90 11398.99 5298.79 13392.97 10999.47 16998.58 3099.85 599.17 150
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2898.88 6297.52 2999.41 2898.78 13496.00 3699.79 9897.79 8199.59 8199.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22298.43 20398.39 19596.64 8395.02 22898.78 13485.15 28299.05 21795.21 19094.20 25796.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28198.59 17898.18 23491.36 31493.52 28898.77 13684.67 29399.72 11389.70 32897.87 18198.02 236
TestCases96.99 20699.25 8193.21 28198.18 23491.36 31493.52 28898.77 13684.67 29399.72 11389.70 32897.87 18198.02 236
LPG-MVS_test95.62 18795.34 18196.47 25597.46 25993.54 26398.99 8198.54 16194.67 17894.36 25198.77 13685.39 27599.11 20995.71 17294.15 26096.76 292
LGP-MVS_train96.47 25597.46 25993.54 26398.54 16194.67 17894.36 25198.77 13685.39 27599.11 20995.71 17294.15 26096.76 292
SDMVSNet96.85 13196.42 13698.14 12499.30 6896.38 13499.21 4099.23 2095.92 11195.96 21098.76 14085.88 26899.44 17497.93 7195.59 24698.60 209
sd_testset96.17 15995.76 16197.42 18099.30 6894.34 23898.82 12699.08 3295.92 11195.96 21098.76 14082.83 31899.32 18495.56 17795.59 24698.60 209
MSDG95.93 17095.30 18697.83 14798.90 12695.36 18496.83 35698.37 20191.32 31894.43 24798.73 14290.27 17599.60 13990.05 32198.82 14298.52 215
MVSMamba_pp98.02 6597.82 6898.61 7998.25 18997.32 8398.73 15098.56 15696.18 10398.84 6398.72 14392.90 11099.45 17298.37 5099.85 599.07 168
h-mvs3396.17 15995.62 17297.81 15099.03 11094.45 23198.64 17198.75 10697.48 3298.67 7598.72 14389.76 18199.86 6297.95 6981.59 38199.11 158
test_prior297.80 28196.12 10697.89 12698.69 14595.96 3896.89 12799.60 79
TEST999.31 6498.50 2997.92 26498.73 11192.63 27497.74 13498.68 14696.20 2999.80 88
train_agg97.97 6697.52 8399.33 2699.31 6498.50 2997.92 26498.73 11192.98 26397.74 13498.68 14696.20 2999.80 8896.59 14199.57 8599.68 61
AdaColmapbinary97.15 11896.70 12598.48 9499.16 9896.69 11598.01 25598.89 5994.44 19196.83 17498.68 14690.69 16899.76 10794.36 21499.29 12198.98 175
test_899.29 7398.44 3197.89 27298.72 11392.98 26397.70 13898.66 14996.20 2999.80 88
tttt051796.07 16295.51 17497.78 15298.41 17294.84 21299.28 2594.33 38894.26 19697.64 14598.64 15084.05 30799.47 16995.34 18297.60 19299.03 170
mvsmamba96.57 14396.32 14197.32 18796.60 31696.43 13099.54 697.98 26996.49 8895.20 22498.64 15090.82 16398.55 27697.97 6893.65 27496.98 267
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1450.00 4140.00 41598.61 15290.60 1690.00 4150.00 4140.00 4130.00 411
lupinMVS97.44 10197.22 10098.12 13098.07 20895.76 16997.68 29097.76 28294.50 18898.79 6798.61 15292.34 11999.30 18597.58 9699.59 8199.31 122
BH-RMVSNet95.92 17195.32 18497.69 16298.32 18694.64 22198.19 23197.45 31294.56 18396.03 20698.61 15285.02 28399.12 20790.68 31299.06 12799.30 125
TAMVS97.02 12496.79 11997.70 16198.06 21195.31 18998.52 18998.31 21093.95 20897.05 16598.61 15293.49 10298.52 28095.33 18397.81 18399.29 127
TAPA-MVS93.98 795.35 20494.56 21997.74 15799.13 10194.83 21498.33 21098.64 13786.62 37196.29 20098.61 15294.00 9899.29 18680.00 38599.41 11199.09 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28293.38 27398.74 14698.57 15291.21 32593.81 27998.58 15772.85 38098.77 26095.05 19393.93 26898.77 195
DPM-MVS97.55 9596.99 11099.23 3899.04 10998.55 2797.17 33198.35 20494.85 17197.93 12398.58 15795.07 7499.71 11892.60 26799.34 11899.43 109
F-COLMAP97.09 12296.80 11797.97 14099.45 5294.95 20898.55 18798.62 14193.02 26296.17 20398.58 15794.01 9799.81 8193.95 22998.90 13599.14 154
WTY-MVS97.37 10896.92 11398.72 7398.86 13296.89 10798.31 21598.71 11695.26 14697.67 14098.56 16092.21 12699.78 10195.89 16396.85 20899.48 98
CNLPA97.45 10097.03 10898.73 7299.05 10897.44 8298.07 24998.53 16395.32 14396.80 17898.53 16193.32 10399.72 11394.31 21899.31 12099.02 171
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24193.48 26798.73 15098.44 18594.94 16792.53 32298.53 16184.50 29899.14 20495.48 18194.00 26596.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH92.88 1694.55 25293.95 25896.34 26697.63 24593.26 27898.81 13498.49 17993.43 24389.74 35498.53 16181.91 32199.08 21593.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-094.21 27794.00 25494.85 32295.60 35489.22 34998.89 10497.43 31495.29 14492.18 33198.52 16482.86 31798.59 27493.46 24491.76 30096.74 294
CDS-MVSNet96.99 12596.69 12697.90 14498.05 21295.98 15098.20 22898.33 20793.67 23296.95 16798.49 16593.54 10198.42 29195.24 18997.74 18799.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss97.39 10596.98 11198.61 7998.60 15996.61 11898.22 22598.93 5093.97 20798.01 11698.48 16691.98 13499.85 6396.45 14698.15 17299.39 112
ACMH+92.99 1494.30 27193.77 27395.88 28797.81 23092.04 30098.71 15698.37 20193.99 20690.60 34898.47 16780.86 33199.05 21792.75 26592.40 29496.55 320
ACMM93.85 995.69 18495.38 17996.61 23797.61 24693.84 25298.91 9898.44 18595.25 14794.28 25598.47 16786.04 26799.12 20795.50 18093.95 26796.87 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
1112_ss96.63 13896.00 15398.50 9198.56 16196.37 13698.18 23698.10 25292.92 26694.84 23198.43 16992.14 12899.58 14294.35 21596.51 21999.56 85
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
test_yl97.22 11296.78 12098.54 8798.73 14196.60 11998.45 19898.31 21094.70 17498.02 11398.42 17190.80 16599.70 11996.81 13596.79 21099.34 116
DCV-MVSNet97.22 11296.78 12098.54 8798.73 14196.60 11998.45 19898.31 21094.70 17498.02 11398.42 17190.80 16599.70 11996.81 13596.79 21099.34 116
xiu_mvs_v1_base_debu97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
xiu_mvs_v1_base97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
xiu_mvs_v1_base_debi97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23399.00 7898.55 15995.73 12293.21 30198.38 17683.45 31698.63 27097.09 11694.00 26596.91 277
FC-MVSNet-test96.42 14896.05 15097.53 17596.95 29597.27 8699.36 1499.23 2095.83 11793.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 266
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22299.14 5198.52 16695.74 12093.22 30098.36 17883.87 31298.65 26996.95 12294.04 26396.91 277
nrg03096.28 15695.72 16397.96 14296.90 30098.15 5499.39 1198.31 21095.47 13394.42 24898.35 17992.09 13198.69 26497.50 10489.05 33797.04 264
FIs96.51 14596.12 14897.67 16597.13 28697.54 7699.36 1499.22 2395.89 11494.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 265
ITE_SJBPF95.44 30397.42 26491.32 31297.50 30595.09 15793.59 28498.35 17981.70 32298.88 24789.71 32793.39 28296.12 348
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26794.42 23398.52 18998.59 14591.69 30691.21 34198.35 17984.87 28699.04 22091.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 20099.16 4898.50 17495.87 11693.84 27898.34 18394.51 8398.61 27196.88 12993.45 28097.06 263
EPNet_dtu95.21 21294.95 20395.99 27996.17 33590.45 32998.16 23897.27 32396.77 7593.14 30598.33 18490.34 17398.42 29185.57 36398.81 14399.09 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15796.77 11195.48 38098.20 22984.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13398.68 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053096.01 16495.36 18097.97 14098.38 17395.52 17798.88 10994.19 39094.04 20197.64 14598.31 18683.82 31499.46 17195.29 18697.70 18998.93 181
PLCcopyleft95.07 497.20 11596.78 12098.44 9999.29 7396.31 14198.14 23998.76 10492.41 28496.39 19898.31 18694.92 7899.78 10194.06 22798.77 14499.23 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP_MVS96.14 16195.90 15796.85 21897.42 26494.60 22798.80 13598.56 15697.28 4595.34 21998.28 18887.09 24699.03 22196.07 15594.27 25496.92 272
plane_prior498.28 188
API-MVS97.41 10497.25 9797.91 14398.70 14696.80 10998.82 12698.69 12194.53 18598.11 10498.28 18894.50 8699.57 14394.12 22499.49 10197.37 257
test_fmvs293.43 30193.58 28492.95 35696.97 29483.91 38299.19 4497.24 32595.74 12095.20 22498.27 19169.65 38398.72 26396.26 15193.73 27196.24 344
mvs_anonymous96.70 13796.53 13497.18 19498.19 19893.78 25398.31 21598.19 23194.01 20494.47 24298.27 19192.08 13298.46 28697.39 10897.91 17999.31 122
XXY-MVS95.20 21394.45 22797.46 17696.75 30996.56 12398.86 11698.65 13693.30 24993.27 29998.27 19184.85 28798.87 24894.82 19991.26 30896.96 269
SixPastTwentyTwo93.34 30492.86 30394.75 32695.67 35289.41 34798.75 14396.67 35893.89 21190.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
VPNet94.99 22594.19 23997.40 18397.16 28496.57 12298.71 15698.97 4295.67 12594.84 23198.24 19580.36 33498.67 26896.46 14587.32 35796.96 269
PVSNet_Blended97.38 10697.12 10398.14 12499.25 8195.35 18697.28 32199.26 1593.13 25797.94 12198.21 19692.74 11399.81 8196.88 12999.40 11499.27 129
HyFIR lowres test96.90 12996.49 13598.14 12499.33 5995.56 17497.38 31099.65 292.34 28697.61 14798.20 19789.29 19299.10 21396.97 12097.60 19299.77 27
baseline195.84 17595.12 19498.01 13898.49 16895.98 15098.73 15097.03 33895.37 14096.22 20198.19 19889.96 17999.16 19994.60 20787.48 35398.90 183
ab-mvs96.42 14895.71 16698.55 8598.63 15696.75 11297.88 27398.74 10893.84 21496.54 19198.18 19985.34 27899.75 10995.93 16296.35 22399.15 152
xiu_mvs_v2_base97.66 8597.70 7397.56 17498.61 15895.46 17997.44 30598.46 18197.15 5798.65 8098.15 20094.33 9099.80 8897.84 7998.66 14997.41 253
USDC93.33 30592.71 30695.21 30996.83 30490.83 32296.91 34697.50 30593.84 21490.72 34698.14 20177.69 35398.82 25589.51 33293.21 28695.97 352
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24694.69 17692.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 267
CHOSEN 280x42097.18 11697.18 10297.20 19198.81 13793.27 27795.78 37699.15 2895.25 14796.79 17998.11 20392.29 12199.07 21698.56 3399.85 599.25 134
MVSTER96.06 16395.72 16397.08 20298.23 19295.93 16198.73 15098.27 21994.86 16995.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 289
MVS_Test97.28 11097.00 10998.13 12798.33 18395.97 15598.74 14698.07 25994.27 19598.44 9398.07 20592.48 11699.26 18896.43 14798.19 17199.16 151
PAPM_NR97.46 9797.11 10498.50 9199.50 4196.41 13398.63 17498.60 14295.18 15097.06 16498.06 20694.26 9399.57 14393.80 23598.87 13999.52 86
PatchMatch-RL96.59 14096.03 15298.27 11299.31 6496.51 12697.91 26699.06 3493.72 22496.92 17198.06 20688.50 21799.65 12991.77 29299.00 13298.66 205
tt080594.54 25393.85 26796.63 23497.98 21893.06 28798.77 14297.84 27993.67 23293.80 28098.04 20876.88 36398.96 23294.79 20192.86 28997.86 240
Effi-MVS+97.12 12096.69 12698.39 10598.19 19896.72 11497.37 31298.43 18993.71 22597.65 14498.02 20992.20 12799.25 18996.87 13297.79 18499.19 144
MVS94.67 24593.54 28798.08 13396.88 30196.56 12398.19 23198.50 17478.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16698.04 235
BH-untuned95.95 16795.72 16396.65 23098.55 16392.26 29498.23 22497.79 28193.73 22294.62 23798.01 21188.97 20599.00 22793.04 25698.51 15698.68 201
CLD-MVS95.62 18795.34 18196.46 25897.52 25693.75 25697.27 32298.46 18195.53 13094.42 24898.00 21286.21 26298.97 22896.25 15394.37 25296.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs295.71 18195.30 18696.93 21298.50 16693.53 26598.36 20798.10 25297.48 3298.67 7597.99 21389.76 18199.02 22497.95 6980.91 38698.22 229
HY-MVS93.96 896.82 13396.23 14698.57 8398.46 16997.00 10098.14 23998.21 22793.95 20896.72 18097.99 21391.58 14399.76 10794.51 21196.54 21898.95 179
AUN-MVS94.53 25593.73 27796.92 21598.50 16693.52 26698.34 20998.10 25293.83 21695.94 21297.98 21585.59 27399.03 22194.35 21580.94 38598.22 229
MAR-MVS96.91 12896.40 13898.45 9798.69 14996.90 10598.66 16898.68 12492.40 28597.07 16397.96 21691.54 14799.75 10993.68 23798.92 13498.69 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-CasMVS94.67 24593.99 25696.71 22596.68 31395.26 19099.13 5499.03 3793.68 23092.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 289
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13799.03 7199.03 3795.04 15993.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 271
testgi93.06 31392.45 31394.88 32196.43 32689.90 33698.75 14397.54 30195.60 12791.63 33997.91 21974.46 37597.02 36586.10 35993.67 27297.72 245
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
CP-MVSNet94.94 23294.30 23396.83 21996.72 31195.56 17499.11 5698.95 4693.89 21192.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 288
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29296.55 31991.65 30798.11 24498.44 18594.96 16494.22 25997.90 22079.18 34299.11 20994.05 22893.85 26996.48 334
PS-MVSNAJ97.73 7897.77 7097.62 17098.68 15095.58 17397.34 31698.51 16997.29 4498.66 7997.88 22394.51 8399.90 4597.87 7699.17 12597.39 255
TransMVSNet (Re)92.67 31791.51 32396.15 27396.58 31894.65 22098.90 9996.73 35490.86 33089.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17899.47 898.40 19394.98 16294.58 23897.86 22489.16 19698.41 29896.91 12394.12 26296.88 281
TinyColmap92.31 32191.53 32294.65 33096.92 29789.75 33896.92 34496.68 35790.45 33689.62 35597.85 22676.06 36798.81 25686.74 35592.51 29395.41 361
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19598.95 9098.03 26692.32 28891.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
UGNet96.78 13496.30 14298.19 12398.24 19095.89 16598.88 10998.93 5097.39 3896.81 17797.84 22782.60 31999.90 4596.53 14399.49 10198.79 190
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TDRefinement91.06 33289.68 33795.21 30985.35 40691.49 31098.51 19397.07 33491.47 31088.83 36497.84 22777.31 35799.09 21492.79 26477.98 39495.04 369
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21299.17 4799.00 3993.51 23892.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
131496.25 15895.73 16297.79 15197.13 28695.55 17698.19 23198.59 14593.47 24192.03 33497.82 23191.33 15299.49 16194.62 20698.44 16098.32 226
DTE-MVSNet93.98 29493.26 29796.14 27496.06 34094.39 23599.20 4298.86 7593.06 26091.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
PAPM94.95 23094.00 25497.78 15297.04 29095.65 17196.03 37298.25 22491.23 32394.19 26197.80 23391.27 15598.86 25082.61 37997.61 19198.84 187
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 29996.08 36998.68 12493.69 22897.75 13397.80 23388.86 20799.69 12494.26 22099.01 13199.15 152
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20480.97 39181.57 39097.75 23574.75 37298.61 27189.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NP-MVS97.28 27394.51 23097.73 236
HQP-MVS95.72 18095.40 17596.69 22897.20 27994.25 24298.05 25198.46 18196.43 9194.45 24397.73 23686.75 25298.96 23295.30 18494.18 25896.86 285
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18396.84 30396.97 10198.74 14699.24 1795.16 15193.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 272
FE-MVS95.62 18794.90 20597.78 15298.37 17594.92 20997.17 33197.38 31890.95 32997.73 13697.70 23985.32 28099.63 13491.18 30098.33 16798.79 190
FA-MVS(test-final)96.41 15195.94 15597.82 14998.21 19495.20 19497.80 28197.58 29293.21 25297.36 15397.70 23989.47 18799.56 14694.12 22497.99 17698.71 199
DU-MVS95.42 19794.76 21097.40 18396.53 32096.97 10198.66 16898.99 4195.43 13593.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 272
WR-MVS95.15 21594.46 22597.22 19096.67 31496.45 12898.21 22698.81 8694.15 19793.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 279
NR-MVSNet94.98 22794.16 24297.44 17896.53 32097.22 9398.74 14698.95 4694.96 16489.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 272
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28497.74 23691.74 30598.69 16298.15 24295.56 12994.92 22997.68 24488.98 20498.79 25893.19 25197.78 18597.20 261
alignmvs97.56 9497.07 10799.01 5698.66 15298.37 4098.83 12498.06 26496.74 7898.00 11797.65 24590.80 16599.48 16698.37 5096.56 21799.19 144
LF4IMVS93.14 31292.79 30594.20 34095.88 34788.67 35997.66 29297.07 33493.81 21791.71 33797.65 24577.96 35298.81 25691.47 29791.92 29995.12 366
lessismore_v094.45 33894.93 37088.44 36491.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
TR-MVS94.94 23294.20 23897.17 19597.75 23394.14 24597.59 29897.02 34092.28 29095.75 21497.64 24783.88 31198.96 23289.77 32596.15 23898.40 220
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17298.22 19396.20 14397.31 31995.37 37694.53 18579.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 171
Baseline_NR-MVSNet94.35 26893.81 26995.96 28296.20 33394.05 24798.61 17796.67 35891.44 31293.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15897.40 30897.67 28690.42 33793.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
K. test v392.55 31891.91 32194.48 33595.64 35389.24 34899.07 6294.88 38294.04 20186.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23999.01 7698.88 6286.43 37392.81 31297.57 25381.66 32398.68 26794.83 19889.02 33996.88 281
PAPR96.84 13296.24 14598.65 7798.72 14596.92 10497.36 31498.57 15293.33 24696.67 18197.57 25394.30 9199.56 14691.05 30798.59 15299.47 100
pmmvs691.77 32490.63 32995.17 31194.69 37591.24 31498.67 16697.92 27586.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
EIA-MVS97.75 7797.58 7798.27 11298.38 17396.44 12999.01 7698.60 14295.88 11597.26 15597.53 25694.97 7699.33 18397.38 10999.20 12399.05 169
MS-PatchMatch93.84 29693.63 28294.46 33796.18 33489.45 34597.76 28498.27 21992.23 29192.13 33297.49 25779.50 33998.69 26489.75 32699.38 11695.25 363
IterMVS-SCA-FT94.11 28793.87 26594.85 32297.98 21890.56 32897.18 32998.11 24993.75 21992.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16499.14 5198.41 19193.75 21993.16 30297.46 25987.50 24198.41 29895.63 17694.03 26496.50 331
PVSNet_BlendedMVS96.73 13596.60 13097.12 19999.25 8195.35 18698.26 22399.26 1594.28 19497.94 12197.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
PMMVS96.60 13996.33 14097.41 18197.90 22593.93 24997.35 31598.41 19192.84 26997.76 13197.45 26191.10 16099.20 19696.26 15197.91 17999.11 158
ETV-MVS97.96 6797.81 6998.40 10498.42 17097.27 8698.73 15098.55 15996.84 7198.38 9597.44 26295.39 5599.35 18197.62 9398.89 13698.58 213
thisisatest051595.61 19094.89 20697.76 15598.15 20495.15 19796.77 35794.41 38692.95 26597.18 15897.43 26384.78 28999.45 17294.63 20497.73 18898.68 201
baseline295.11 21794.52 22196.87 21796.65 31593.56 26298.27 22294.10 39293.45 24292.02 33597.43 26387.45 24399.19 19793.88 23297.41 19797.87 239
MGCFI-Net97.62 8897.19 10198.92 6498.66 15298.20 4999.32 2298.38 19996.69 8197.58 14997.42 26592.10 13099.50 16098.28 5596.25 23499.08 164
sasdasda97.67 8397.23 9898.98 5998.70 14698.38 3599.34 1798.39 19596.76 7697.67 14097.40 26692.26 12299.49 16198.28 5596.28 23199.08 164
canonicalmvs97.67 8397.23 9898.98 5998.70 14698.38 3599.34 1798.39 19596.76 7697.67 14097.40 26692.26 12299.49 16198.28 5596.28 23199.08 164
tfpnnormal93.66 29792.70 30796.55 24896.94 29695.94 15898.97 8499.19 2491.04 32791.38 34097.34 26884.94 28598.61 27185.45 36589.02 33995.11 367
IterMVS94.09 28993.85 26794.80 32597.99 21690.35 33197.18 32998.12 24693.68 23092.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet95.75 17995.11 19597.69 16297.24 27597.27 8698.94 9399.23 2095.13 15295.51 21797.32 27085.73 27098.91 24197.33 11189.55 32996.89 280
IterMVS-LS95.46 19395.21 18996.22 27298.12 20593.72 25998.32 21498.13 24593.71 22594.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res96.34 15395.66 17198.36 10698.56 16195.94 15897.71 28898.07 25992.10 29594.79 23597.29 27291.75 13999.56 14694.17 22296.50 22099.58 83
ppachtmachnet_test93.22 30892.63 30894.97 31795.45 36190.84 32196.88 35297.88 27790.60 33292.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
pmmvs593.65 29992.97 30295.68 29395.49 35892.37 29298.20 22897.28 32289.66 35092.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
MDTV_nov1_ep1395.40 17597.48 25788.34 36596.85 35497.29 32193.74 22197.48 15297.26 27389.18 19599.05 21791.92 28997.43 196
dmvs_re94.48 26194.18 24195.37 30597.68 24090.11 33598.54 18897.08 33294.56 18394.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 227
Fast-Effi-MVS+96.28 15695.70 16898.03 13798.29 18895.97 15598.58 18098.25 22491.74 30395.29 22397.23 27791.03 16299.15 20292.90 26197.96 17898.97 176
BH-w/o95.38 20095.08 19696.26 27198.34 18191.79 30297.70 28997.43 31492.87 26894.24 25897.22 27888.66 21098.84 25191.55 29697.70 18998.16 233
eth_miper_zixun_eth94.68 24294.41 23095.47 30197.64 24491.71 30696.73 36098.07 25992.71 27393.64 28397.21 27990.54 17098.17 32093.38 24589.76 32496.54 321
v192192094.20 27893.47 29096.40 26395.98 34394.08 24698.52 18998.15 24291.33 31794.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21798.67 16698.08 25792.72 27294.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
v7n94.19 27993.43 29296.47 25595.90 34694.38 23699.26 2898.34 20691.99 29792.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
DIV-MVS_self_test94.52 25694.03 25095.99 27997.57 25293.38 27397.05 33797.94 27391.74 30392.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
SCA95.46 19395.13 19296.46 25897.67 24191.29 31397.33 31797.60 29194.68 17796.92 17197.10 28383.97 30998.89 24592.59 26998.32 16999.20 140
Patchmatch-test94.42 26593.68 28196.63 23497.60 24791.76 30394.83 38697.49 30789.45 35494.14 26397.10 28388.99 20198.83 25485.37 36698.13 17399.29 127
FMVSNet394.97 22994.26 23597.11 20098.18 20096.62 11698.56 18698.26 22393.67 23294.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
MVP-Stereo94.28 27593.92 25995.35 30694.95 36992.60 29197.97 26097.65 28791.61 30890.68 34797.09 28786.32 26198.42 29189.70 32899.34 11895.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet294.47 26293.61 28397.04 20498.21 19496.43 13098.79 14098.27 21992.46 27993.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
cl____94.51 25794.01 25396.02 27897.58 24893.40 27297.05 33797.96 27291.73 30592.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
UWE-MVS94.30 27193.89 26495.53 29897.83 22888.95 35597.52 30393.25 39494.44 19196.63 18397.07 29078.70 34499.28 18791.99 28697.56 19498.36 223
GBi-Net94.49 25993.80 27096.56 24498.21 19495.00 20298.82 12698.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19495.00 20298.82 12698.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet193.19 31092.07 31796.56 24497.54 25395.00 20298.82 12698.18 23490.38 33892.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
v119294.32 27093.58 28496.53 24996.10 33894.45 23198.50 19498.17 23991.54 30994.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
V4294.78 23894.14 24496.70 22796.33 33095.22 19398.97 8498.09 25692.32 28894.31 25497.06 29488.39 21898.55 27692.90 26188.87 34196.34 340
c3_l94.79 23794.43 22995.89 28697.75 23393.12 28597.16 33398.03 26692.23 29193.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
testing393.19 31092.48 31295.30 30898.07 20892.27 29398.64 17197.17 32893.94 21093.98 27197.04 29767.97 38796.01 38288.40 34497.14 20097.63 248
GA-MVS94.81 23694.03 25097.14 19797.15 28593.86 25196.76 35897.58 29294.00 20594.76 23697.04 29780.91 32998.48 28291.79 29196.25 23499.09 160
UniMVSNet (Re)95.78 17895.19 19097.58 17296.99 29397.47 8098.79 14099.18 2595.60 12793.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 289
v14419294.39 26793.70 27996.48 25496.06 34094.35 23798.58 18098.16 24191.45 31194.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
v114494.59 25093.92 25996.60 23996.21 33294.78 21898.59 17898.14 24491.86 30294.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
v124094.06 29293.29 29696.34 26696.03 34293.90 25098.44 20198.17 23991.18 32694.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
v1094.29 27393.55 28696.51 25196.39 32794.80 21698.99 8198.19 23191.35 31693.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
test_040291.32 32790.27 33394.48 33596.60 31691.12 31598.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
miper_lstm_enhance94.33 26994.07 24895.11 31397.75 23390.97 31797.22 32498.03 26691.67 30792.76 31496.97 30590.03 17897.78 34892.51 27489.64 32696.56 318
v894.47 26293.77 27396.57 24396.36 32894.83 21499.05 6598.19 23191.92 29993.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
miper_ehance_all_eth95.01 22294.69 21495.97 28197.70 23993.31 27697.02 33998.07 25992.23 29193.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
PatchmatchNetpermissive95.71 18195.52 17396.29 27097.58 24890.72 32496.84 35597.52 30394.06 20097.08 16196.96 30789.24 19498.90 24492.03 28598.37 16499.26 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14894.29 27393.76 27595.91 28496.10 33892.93 28898.58 18097.97 27092.59 27793.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
gm-plane-assit95.88 34787.47 37389.74 34996.94 31099.19 19793.32 248
tpmrst95.63 18695.69 16995.44 30397.54 25388.54 36196.97 34197.56 29593.50 23997.52 15196.93 31189.49 18599.16 19995.25 18896.42 22298.64 207
thres600view795.49 19194.77 20997.67 16598.98 11995.02 20198.85 11896.90 34795.38 13896.63 18396.90 31284.29 29999.59 14088.65 34396.33 22498.40 220
our_test_393.65 29993.30 29594.69 32795.45 36189.68 34296.91 34697.65 28791.97 29891.66 33896.88 31389.67 18497.93 34088.02 34991.49 30496.48 334
thres100view90095.38 20094.70 21397.41 18198.98 11994.92 20998.87 11396.90 34795.38 13896.61 18596.88 31384.29 29999.56 14688.11 34696.29 22897.76 241
cl2294.68 24294.19 23996.13 27598.11 20693.60 26196.94 34398.31 21092.43 28393.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
LCM-MVSNet-Re95.22 21195.32 18494.91 31898.18 20087.85 37298.75 14395.66 37495.11 15488.96 36096.85 31690.26 17697.65 35195.65 17598.44 16099.22 138
WR-MVS_H95.05 22194.46 22596.81 22196.86 30295.82 16799.24 3199.24 1793.87 21392.53 32296.84 31790.37 17298.24 31793.24 24987.93 34996.38 339
EPMVS94.99 22594.48 22396.52 25097.22 27791.75 30497.23 32391.66 40194.11 19897.28 15496.81 31885.70 27198.84 25193.04 25697.28 19898.97 176
tpm294.19 27993.76 27595.46 30297.23 27689.04 35297.31 31996.85 35387.08 37096.21 20296.79 31983.75 31598.74 26192.43 27796.23 23698.59 211
WB-MVSnew94.19 27994.04 24994.66 32996.82 30592.14 29597.86 27595.96 37093.50 23995.64 21696.77 32088.06 22797.99 33584.87 36896.86 20793.85 385
D2MVS95.18 21495.08 19695.48 30097.10 28892.07 29898.30 21799.13 3094.02 20392.90 31096.73 32189.48 18698.73 26294.48 21293.60 27795.65 359
CostFormer94.95 23094.73 21295.60 29797.28 27389.06 35197.53 30196.89 34989.66 35096.82 17696.72 32286.05 26598.95 23795.53 17996.13 23998.79 190
test20.0390.89 33490.38 33292.43 35893.48 38388.14 36998.33 21097.56 29593.40 24487.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
Effi-MVS+-dtu96.29 15496.56 13195.51 29997.89 22690.22 33398.80 13598.10 25296.57 8796.45 19696.66 32490.81 16498.91 24195.72 17197.99 17697.40 254
test0.0.03 194.08 29093.51 28895.80 28995.53 35792.89 28997.38 31095.97 36995.11 15492.51 32496.66 32487.71 23596.94 36787.03 35493.67 27297.57 251
miper_enhance_ethall95.10 21894.75 21196.12 27697.53 25593.73 25896.61 36398.08 25792.20 29493.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
ADS-MVSNet294.58 25194.40 23195.11 31398.00 21488.74 35896.04 37097.30 32090.15 34196.47 19496.64 32787.89 23197.56 35690.08 31997.06 20199.02 171
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21491.91 30196.04 37097.74 28490.15 34196.47 19496.64 32787.89 23198.96 23290.08 31997.06 20199.02 171
dp94.15 28393.90 26294.90 31997.31 27286.82 37796.97 34197.19 32791.22 32496.02 20796.61 32985.51 27499.02 22490.00 32394.30 25398.85 185
tfpn200view995.32 20794.62 21697.43 17998.94 12494.98 20598.68 16396.93 34595.33 14196.55 18996.53 33084.23 30399.56 14688.11 34696.29 22897.76 241
thres40095.38 20094.62 21697.65 16998.94 12494.98 20598.68 16396.93 34595.33 14196.55 18996.53 33084.23 30399.56 14688.11 34696.29 22898.40 220
EG-PatchMatch MVS91.13 33190.12 33494.17 34294.73 37489.00 35398.13 24197.81 28089.22 35885.32 38496.46 33267.71 38898.42 29187.89 35193.82 27095.08 368
TESTMET0.1,194.18 28293.69 28095.63 29596.92 29789.12 35096.91 34694.78 38393.17 25494.88 23096.45 33378.52 34598.92 23993.09 25398.50 15798.85 185
tpmvs94.60 24894.36 23295.33 30797.46 25988.60 36096.88 35297.68 28591.29 32093.80 28096.42 33488.58 21199.24 19191.06 30596.04 24098.17 232
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37498.58 18097.26 32490.48 33490.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
tpm94.13 28493.80 27095.12 31296.50 32287.91 37197.44 30595.89 37392.62 27596.37 19996.30 33684.13 30698.30 31193.24 24991.66 30399.14 154
CR-MVSNet94.76 23994.15 24396.59 24097.00 29193.43 26894.96 38297.56 29592.46 27996.93 16996.24 33788.15 22397.88 34587.38 35296.65 21498.46 218
Patchmtry93.22 30892.35 31495.84 28896.77 30693.09 28694.66 38997.56 29587.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
cascas94.63 24793.86 26696.93 21296.91 29994.27 24096.00 37398.51 16985.55 38094.54 23996.23 33984.20 30598.87 24895.80 16896.98 20697.66 247
thres20095.25 20994.57 21897.28 18898.81 13794.92 20998.20 22897.11 33095.24 14996.54 19196.22 34184.58 29699.53 15587.93 35096.50 22097.39 255
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34194.08 37889.83 33797.13 33598.67 12993.69 22885.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
testing1195.00 22394.28 23497.16 19697.96 22093.36 27598.09 24797.06 33694.94 16795.33 22296.15 34376.89 36299.40 17695.77 17096.30 22798.72 196
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32495.21 36591.34 31197.64 29497.51 30488.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
MIMVSNet93.26 30792.21 31696.41 26197.73 23793.13 28395.65 37797.03 33891.27 32294.04 26896.06 34675.33 36997.19 36386.56 35696.23 23698.92 182
testing9194.98 22794.25 23697.20 19197.94 22193.41 27098.00 25797.58 29294.99 16195.45 21896.04 34777.20 35999.42 17594.97 19596.02 24198.78 193
tpm cat193.36 30292.80 30495.07 31597.58 24887.97 37096.76 35897.86 27882.17 39093.53 28796.04 34786.13 26399.13 20589.24 33695.87 24498.10 234
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
testing9994.83 23594.08 24797.07 20397.94 22193.13 28398.10 24697.17 32894.86 16995.34 21996.00 35076.31 36599.40 17695.08 19295.90 24298.68 201
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 25985.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31698.01 25597.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
testing22294.12 28693.03 30097.37 18698.02 21394.66 21997.94 26396.65 36094.63 18095.78 21395.76 35371.49 38198.92 23991.17 30195.88 24398.52 215
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34397.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
YYNet190.70 33689.39 33994.62 33194.79 37390.65 32697.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 35992.65 31895.73 35685.01 28495.76 38486.24 35897.76 18698.59 211
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25893.41 27097.09 33695.99 36893.32 24792.47 32595.73 35678.06 35199.53 15594.59 20982.98 37698.62 208
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR95.10 21894.87 20795.80 28996.77 30689.70 34096.91 34695.21 37895.11 15494.83 23395.72 35887.71 23598.97 22893.06 25498.50 15798.72 196
test-mter94.08 29093.51 28895.80 28996.77 30689.70 34096.91 34695.21 37892.89 26794.83 23395.72 35877.69 35398.97 22893.06 25498.50 15798.72 196
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32894.83 37190.78 32397.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
FMVSNet591.81 32390.92 32694.49 33497.21 27892.09 29798.00 25797.55 30089.31 35790.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
ETVMVS94.50 25893.44 29197.68 16498.18 20095.35 18698.19 23197.11 33093.73 22296.40 19795.39 36374.53 37398.84 25191.10 30296.31 22698.84 187
Syy-MVS92.55 31892.61 30992.38 35997.39 26883.41 38597.91 26697.46 30893.16 25593.42 29495.37 36484.75 29096.12 38077.00 39396.99 20397.60 249
myMVS_eth3d92.73 31692.01 31894.89 32097.39 26890.94 31897.91 26697.46 30893.16 25593.42 29495.37 36468.09 38696.12 38088.34 34596.99 20397.60 249
PVSNet_088.72 1991.28 32990.03 33595.00 31697.99 21687.29 37594.84 38598.50 17492.06 29689.86 35395.19 36679.81 33899.39 17992.27 27869.79 40198.33 225
DeepMVS_CXcopyleft86.78 37297.09 28972.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390
patchmatchnet-post95.10 36889.42 18998.89 245
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36398.94 9397.56 29588.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38092.81 39695.93 37291.87 30187.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34697.91 26696.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35281.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24896.30 36689.04 36081.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36896.51 36698.07 25990.49 33390.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
KD-MVS_2432*160089.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28989.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28989.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
GG-mvs-BLEND96.59 24096.34 32994.98 20596.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20396.74 294
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35697.95 26197.94 27390.35 33990.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 28095.49 37593.81 21787.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36696.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
test_vis1_rt91.29 32890.65 32893.19 35497.45 26286.25 37898.57 18590.90 40493.30 24986.94 37393.59 38262.07 39699.11 20997.48 10595.58 24894.22 377
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32186.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
pmmvs-eth3d90.36 33889.05 34394.32 33991.10 39392.12 29697.63 29796.95 34488.86 36184.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6596.61 36192.79 27188.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 37997.16 33397.33 31989.47 35383.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37696.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
PatchT93.06 31391.97 31996.35 26596.69 31292.67 29094.48 39297.08 33286.62 37197.08 16192.23 39287.94 23097.90 34178.89 38996.69 21298.49 217
RPMNet92.81 31591.34 32497.24 18997.00 29193.43 26894.96 38298.80 9382.27 38996.93 16992.12 39386.98 24999.82 7676.32 39496.65 21498.46 218
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28796.33 36589.41 35685.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35794.92 38498.30 21684.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
JIA-IIPM93.35 30392.49 31195.92 28396.48 32490.65 32695.01 38196.96 34385.93 37796.08 20587.33 39887.70 23798.78 25991.35 29895.58 24898.34 224
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24882.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14597.43 252
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 30995.09 19995.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16797.88 238
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 8843.50 40895.90 4299.89 4797.85 7799.74 5099.78 21
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
test_post31.83 41188.83 20898.91 241
test_post196.68 36130.43 41287.85 23498.69 26492.59 269
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 830.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.94 31888.66 342
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13999.94 898.53 3499.80 2299.86 8
No_MVS99.62 699.17 9499.08 1198.63 13999.94 898.53 3499.80 2299.86 8
eth-test20.00 419
eth-test0.00 419
IU-MVS99.71 1999.23 798.64 13795.28 14599.63 1898.35 5299.81 1599.83 13
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 4299.81 1599.84 12
GSMVS99.20 140
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18899.20 140
sam_mvs88.99 201
MTGPAbinary98.74 108
MTMP98.89 10494.14 391
test9_res96.39 14999.57 8599.69 56
agg_prior295.87 16599.57 8599.68 61
agg_prior99.30 6898.38 3598.72 11397.57 15099.81 81
test_prior498.01 6197.86 275
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
旧先验297.57 30091.30 31998.67 7599.80 8895.70 174
新几何297.64 294
无先验97.58 29998.72 11391.38 31399.87 5893.36 24799.60 77
原ACMM297.67 291
testdata299.89 4791.65 295
segment_acmp96.85 14
testdata197.32 31896.34 97
test1299.18 4299.16 9898.19 5098.53 16398.07 10795.13 7299.72 11399.56 9199.63 73
plane_prior797.42 26494.63 222
plane_prior697.35 27194.61 22587.09 246
plane_prior598.56 15699.03 22196.07 15594.27 25496.92 272
plane_prior394.61 22597.02 6495.34 219
plane_prior298.80 13597.28 45
plane_prior197.37 270
plane_prior94.60 22798.44 20196.74 7894.22 256
n20.00 420
nn0.00 420
door-mid94.37 387
test1198.66 132
door94.64 385
HQP5-MVS94.25 242
HQP-NCC97.20 27998.05 25196.43 9194.45 243
ACMP_Plane97.20 27998.05 25196.43 9194.45 243
BP-MVS95.30 184
HQP4-MVS94.45 24398.96 23296.87 283
HQP3-MVS98.46 18194.18 258
HQP2-MVS86.75 252
MDTV_nov1_ep13_2view84.26 38196.89 35190.97 32897.90 12589.89 18093.91 23199.18 149
ACMMP++_ref92.97 287
ACMMP++93.61 276
Test By Simon94.64 80