This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UA-Net97.96 6497.62 7098.98 6898.86 13397.47 8998.89 9599.08 2296.67 7198.72 6599.54 193.15 11299.81 7594.87 18198.83 13499.65 73
APDe-MVS99.02 498.84 499.55 999.57 3598.96 1699.39 1298.93 3997.38 3099.41 1399.54 196.66 1799.84 5798.86 499.85 599.87 1
patch_mono-298.36 4898.87 396.82 21199.53 3990.68 31498.64 15199.29 897.88 599.19 2999.52 396.80 1599.97 199.11 199.86 199.82 10
SMA-MVScopyleft98.58 2498.25 4399.56 899.51 4399.04 1598.95 8598.80 9193.67 21199.37 1699.52 396.52 2199.89 3998.06 4199.81 1299.76 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072699.72 1399.25 299.06 6198.88 5197.62 1299.56 699.50 597.42 9
DeepC-MVS95.98 397.88 7097.58 7298.77 7899.25 9096.93 11098.83 10898.75 10696.96 5896.89 16399.50 590.46 16799.87 4897.84 5899.76 3699.52 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_298.08 6198.59 1096.56 23499.57 3590.34 32099.15 4398.38 19596.82 6499.29 2099.49 795.78 4899.57 14098.94 299.86 199.77 23
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 7198.87 5897.65 1099.73 199.48 897.53 799.94 498.43 2699.81 1299.70 54
test_241102_TWO98.87 5897.65 1099.53 999.48 897.34 1199.94 498.43 2699.80 1999.83 7
DVP-MVS++99.08 298.89 299.64 399.17 10399.23 799.69 198.88 5197.32 3399.53 999.47 1097.81 399.94 498.47 2299.72 5499.74 37
test_one_060199.66 2899.25 298.86 6497.55 1699.20 2699.47 1097.57 6
ACMMP_NAP98.61 1898.30 3999.55 999.62 3298.95 1798.82 11198.81 8095.80 10799.16 3299.47 1095.37 6399.92 2597.89 5299.75 4299.79 13
DVP-MVScopyleft99.03 398.83 599.63 499.72 1399.25 298.97 8198.58 15397.62 1299.45 1199.46 1397.42 999.94 498.47 2299.81 1299.69 57
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 3399.45 1199.46 1397.88 199.94 498.47 2299.86 199.85 4
DPE-MVScopyleft98.92 598.67 899.65 299.58 3499.20 998.42 18498.91 4597.58 1599.54 899.46 1397.10 1299.94 497.64 7399.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.31 5697.92 6399.49 1299.72 1398.88 1898.43 18298.78 9994.10 18197.69 13099.42 1695.25 7299.92 2598.09 4099.80 1999.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP98.90 698.75 699.36 2499.22 9898.43 3899.10 5598.87 5897.38 3099.35 1799.40 1797.78 599.87 4897.77 6299.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE99.71 2199.24 598.87 5897.62 1299.73 199.39 1897.53 799.74 111
xxxxxxxxxxxxxcwj98.70 1098.50 1799.30 3399.46 5598.38 4098.21 21098.52 16497.95 399.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
SF-MVS98.59 2198.32 3899.41 1999.54 3898.71 2299.04 6498.81 8095.12 14299.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
zzz-MVS98.55 3198.25 4399.46 1599.76 298.64 2798.55 16698.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
MTAPA98.58 2498.29 4099.46 1599.76 298.64 2798.90 9198.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
VDDNet95.36 19594.53 21297.86 14098.10 20095.13 19698.85 10497.75 27890.46 31298.36 8799.39 1873.27 36199.64 13097.98 4496.58 20398.81 180
SD-MVS98.64 1598.68 798.53 9499.33 6998.36 4798.90 9198.85 6897.28 3699.72 399.39 1896.63 1997.60 33598.17 3699.85 599.64 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS96.37 297.93 6998.48 2296.30 25999.00 12189.54 33097.43 28198.87 5898.16 299.26 2299.38 2596.12 3299.64 13098.30 3499.77 3099.72 46
EI-MVSNet-UG-set98.41 4498.34 3398.61 8699.45 5996.32 14198.28 20498.68 12597.17 4698.74 6299.37 2695.25 7299.79 9698.57 1299.54 9199.73 42
APD-MVS_3200maxsize98.53 3598.33 3799.15 5699.50 4597.92 7299.15 4398.81 8096.24 8799.20 2699.37 2695.30 6899.80 8497.73 6499.67 6099.72 46
abl_698.30 5798.03 5799.13 5799.56 3797.76 8099.13 4898.82 7496.14 9199.26 2299.37 2693.33 10999.93 1996.96 10499.67 6099.69 57
LS3D97.16 11296.66 12198.68 8298.53 16197.19 10298.93 8998.90 4692.83 24595.99 19799.37 2692.12 12999.87 4893.67 22399.57 8198.97 170
EI-MVSNet-Vis-set98.47 4098.39 2498.69 8199.46 5596.49 13298.30 20198.69 12297.21 4398.84 5599.36 3095.41 6099.78 10098.62 1099.65 6499.80 12
ACMMPcopyleft98.23 5897.95 6199.09 6299.74 897.62 8499.03 6799.41 695.98 9897.60 13899.36 3094.45 9599.93 1997.14 9698.85 13399.70 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post98.54 3398.35 2999.13 5799.49 4997.86 7399.11 5298.80 9196.49 7899.17 3099.35 3295.34 6599.82 6897.72 6599.65 6499.71 50
RE-MVS-def98.34 3399.49 4997.86 7399.11 5298.80 9196.49 7899.17 3099.35 3295.29 6997.72 6599.65 6499.71 50
DP-MVS96.59 13295.93 14798.57 8899.34 6696.19 14798.70 14098.39 19289.45 33194.52 22399.35 3291.85 13599.85 5492.89 24898.88 13099.68 63
test117298.56 2998.35 2999.16 5399.53 3997.94 7199.09 5698.83 7296.52 7799.05 3899.34 3595.34 6599.82 6897.86 5599.64 6899.73 42
VDD-MVS95.82 16995.23 18197.61 16598.84 13693.98 24498.68 14397.40 30795.02 14997.95 11299.34 3574.37 35999.78 10098.64 896.80 19699.08 161
SR-MVS98.57 2798.35 2999.24 4399.53 3998.18 5899.09 5698.82 7496.58 7499.10 3599.32 3795.39 6199.82 6897.70 7099.63 7099.72 46
PGM-MVS98.49 3798.23 4799.27 4199.72 1398.08 6498.99 7799.49 595.43 12499.03 3999.32 3795.56 5399.94 496.80 12199.77 3099.78 16
TSAR-MVS + MP.98.78 798.62 999.24 4399.69 2698.28 5399.14 4598.66 13696.84 6299.56 699.31 3996.34 2399.70 11998.32 3399.73 4799.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-398.59 2198.50 1798.86 7699.43 6197.05 10598.40 18698.68 12597.43 2699.06 3799.31 3995.80 4799.77 10598.62 1099.76 3699.78 16
Regformer-498.64 1598.53 1498.99 6699.43 6197.37 9298.40 18698.79 9697.46 2399.09 3699.31 3995.86 4699.80 8498.64 899.76 3699.79 13
XVG-OURS96.55 13696.41 12896.99 19798.75 14193.76 25097.50 27898.52 16495.67 11396.83 16499.30 4288.95 20399.53 15095.88 15196.26 21797.69 226
9.1498.06 5599.47 5298.71 13698.82 7494.36 17599.16 3299.29 4396.05 3699.81 7597.00 10099.71 56
MSLP-MVS++98.56 2998.57 1198.55 9099.26 8996.80 11598.71 13699.05 2597.28 3698.84 5599.28 4496.47 2299.40 16598.52 2099.70 5799.47 107
DeepC-MVS_fast96.70 198.55 3198.34 3399.18 5099.25 9098.04 6598.50 17398.78 9997.72 798.92 5199.28 4495.27 7099.82 6897.55 8199.77 3099.69 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test111195.94 16295.78 15296.41 25198.99 12490.12 32299.04 6492.45 37296.99 5798.03 10299.27 4681.40 31599.48 15996.87 11699.04 12199.63 79
test250694.44 25193.91 24896.04 26799.02 11888.99 34099.06 6179.47 38396.96 5898.36 8799.26 4777.21 34699.52 15396.78 12399.04 12199.59 87
ECVR-MVScopyleft95.95 16095.71 15896.65 22199.02 11890.86 30999.03 6791.80 37396.96 5898.10 9699.26 4781.31 31699.51 15496.90 10999.04 12199.59 87
RPSCF94.87 22495.40 16793.26 33598.89 13082.06 36998.33 19398.06 25790.30 31796.56 17699.26 4787.09 24299.49 15593.82 21896.32 21298.24 209
ETH3D-3000-0.198.35 5098.00 5999.38 2099.47 5298.68 2598.67 14698.84 6994.66 16599.11 3499.25 5095.46 5799.81 7596.80 12199.73 4799.63 79
APD-MVScopyleft98.35 5098.00 5999.42 1899.51 4398.72 2198.80 11898.82 7494.52 17099.23 2499.25 5095.54 5599.80 8496.52 13199.77 3099.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.33 5498.01 5899.28 3899.75 498.18 5899.22 3398.79 9696.13 9297.92 11799.23 5294.54 9099.94 496.74 12599.78 2799.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3698.26 4299.25 4299.75 498.04 6599.28 2498.81 8096.24 8798.35 8999.23 5295.46 5799.94 497.42 8799.81 1299.77 23
MG-MVS97.81 7397.60 7198.44 10399.12 11195.97 15797.75 26398.78 9996.89 6198.46 7999.22 5493.90 10599.68 12594.81 18599.52 9499.67 67
Regformer-198.66 1398.51 1699.12 6099.35 6497.81 7998.37 18898.76 10397.49 1999.20 2699.21 5596.08 3399.79 9698.42 2899.73 4799.75 32
Regformer-298.69 1298.52 1599.19 4699.35 6498.01 6798.37 18898.81 8097.48 2099.21 2599.21 5596.13 3199.80 8498.40 3099.73 4799.75 32
casdiffmvs97.63 8297.41 8598.28 11398.33 17996.14 14898.82 11198.32 20396.38 8497.95 11299.21 5591.23 15299.23 17798.12 3898.37 15599.48 105
Vis-MVSNetpermissive97.42 9897.11 9698.34 11098.66 15196.23 14499.22 3399.00 2896.63 7398.04 10199.21 5588.05 22399.35 16896.01 14899.21 11599.45 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS98.70 1098.49 2099.34 2699.70 2498.35 4899.29 2298.88 5197.40 2798.46 7999.20 5995.90 4499.89 3997.85 5699.74 4599.78 16
LFMVS95.86 16694.98 19398.47 10098.87 13296.32 14198.84 10796.02 34693.40 22198.62 7399.20 5974.99 35599.63 13397.72 6597.20 19099.46 111
HPM-MVS_fast98.38 4698.13 5199.12 6099.75 497.86 7399.44 1198.82 7494.46 17398.94 4599.20 5995.16 7699.74 11197.58 7799.85 599.77 23
ACMMPR98.59 2198.36 2799.29 3499.74 898.15 6199.23 2998.95 3596.10 9598.93 5099.19 6295.70 5099.94 497.62 7499.79 2399.78 16
testtj98.33 5497.95 6199.47 1499.49 4998.70 2398.83 10898.86 6495.48 12198.91 5299.17 6395.48 5699.93 1995.80 15599.53 9299.76 30
HFP-MVS98.63 1798.40 2399.32 3199.72 1398.29 5199.23 2998.96 3396.10 9598.94 4599.17 6396.06 3499.92 2597.62 7499.78 2799.75 32
region2R98.61 1898.38 2599.29 3499.74 898.16 6099.23 2998.93 3996.15 9098.94 4599.17 6395.91 4399.94 497.55 8199.79 2399.78 16
#test#98.54 3398.27 4199.32 3199.72 1398.29 5198.98 8098.96 3395.65 11598.94 4599.17 6396.06 3499.92 2597.21 9599.78 2799.75 32
baseline97.64 8197.44 8498.25 11798.35 17296.20 14599.00 7598.32 20396.33 8698.03 10299.17 6391.35 14899.16 18398.10 3998.29 16199.39 118
PC_three_145295.08 14799.60 599.16 6897.86 298.47 26897.52 8499.72 5499.74 37
OPU-MVS99.37 2399.24 9699.05 1499.02 7199.16 6897.81 399.37 16797.24 9299.73 4799.70 54
CNVR-MVS98.78 798.56 1299.45 1799.32 7298.87 1998.47 17698.81 8097.72 798.76 6199.16 6897.05 1399.78 10098.06 4199.66 6399.69 57
3Dnovator94.51 597.46 9296.93 10599.07 6397.78 21897.64 8299.35 1799.06 2397.02 5593.75 26499.16 6889.25 19099.92 2597.22 9499.75 4299.64 76
CS-MVS-test98.49 3798.50 1798.46 10199.20 10197.05 10599.64 498.50 17297.45 2598.88 5399.14 7295.25 7299.15 18698.83 599.56 8699.20 139
ETH3D cwj APD-0.1697.96 6497.52 7799.29 3499.05 11498.52 3298.33 19398.68 12593.18 23098.68 6699.13 7394.62 8899.83 6096.45 13399.55 9099.52 94
CP-MVS98.57 2798.36 2799.19 4699.66 2897.86 7399.34 1898.87 5895.96 10098.60 7599.13 7396.05 3699.94 497.77 6299.86 199.77 23
3Dnovator+94.38 697.43 9796.78 11299.38 2097.83 21698.52 3299.37 1498.71 11897.09 5392.99 28999.13 7389.36 18699.89 3996.97 10299.57 8199.71 50
EPNet97.28 10596.87 10898.51 9594.98 34596.14 14898.90 9197.02 32698.28 195.99 19799.11 7691.36 14799.89 3996.98 10199.19 11799.50 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.93 12096.27 13498.92 7299.50 4597.63 8398.85 10498.90 4684.80 35697.77 12299.11 7692.84 11499.66 12794.85 18299.77 3099.47 107
ZNCC-MVS98.49 3798.20 4999.35 2599.73 1298.39 3999.19 3998.86 6495.77 10898.31 9299.10 7895.46 5799.93 1997.57 8099.81 1299.74 37
CS-MVS98.44 4298.49 2098.31 11299.08 11396.73 11999.67 398.47 17897.17 4698.94 4599.10 7895.73 4999.13 18998.71 799.49 9699.09 157
testdata98.26 11699.20 10195.36 18598.68 12591.89 27598.60 7599.10 7894.44 9699.82 6894.27 20399.44 10499.58 91
PHI-MVS98.34 5298.06 5599.18 5099.15 10998.12 6399.04 6499.09 2193.32 22498.83 5799.10 7896.54 2099.83 6097.70 7099.76 3699.59 87
OMC-MVS97.55 9097.34 8898.20 12099.33 6995.92 16498.28 20498.59 14895.52 12097.97 11199.10 7893.28 11199.49 15595.09 17898.88 13099.19 143
COLMAP_ROBcopyleft93.27 1295.33 19894.87 19996.71 21699.29 8293.24 27398.58 15998.11 24289.92 32393.57 26899.10 7886.37 25699.79 9690.78 29198.10 16597.09 239
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
旧先验199.29 8297.48 8898.70 12199.09 8495.56 5399.47 9999.61 82
XVG-OURS-SEG-HR96.51 13796.34 13097.02 19698.77 14093.76 25097.79 26198.50 17295.45 12396.94 15899.09 8487.87 22899.55 14996.76 12495.83 22697.74 223
CPTT-MVS97.72 7797.32 8998.92 7299.64 3097.10 10499.12 5098.81 8092.34 26098.09 9799.08 8693.01 11399.92 2596.06 14599.77 3099.75 32
EPP-MVSNet97.46 9297.28 9097.99 13498.64 15395.38 18499.33 2198.31 20593.61 21497.19 14799.07 8794.05 10199.23 17796.89 11098.43 15499.37 120
GST-MVS98.43 4398.12 5299.34 2699.72 1398.38 4099.09 5698.82 7495.71 11198.73 6499.06 8895.27 7099.93 1997.07 9999.63 7099.72 46
OpenMVScopyleft93.04 1395.83 16895.00 19198.32 11197.18 26497.32 9399.21 3698.97 3189.96 32291.14 32399.05 8986.64 25099.92 2593.38 22999.47 9997.73 224
EI-MVSNet95.96 15995.83 15096.36 25597.93 21093.70 25698.12 22798.27 21493.70 20695.07 20899.02 9092.23 12598.54 26094.68 18793.46 25896.84 267
CVMVSNet95.43 18896.04 14393.57 32997.93 21083.62 36498.12 22798.59 14895.68 11296.56 17699.02 9087.51 23597.51 33993.56 22797.44 18699.60 85
TSAR-MVS + GP.98.38 4698.24 4698.81 7799.22 9897.25 10098.11 22998.29 21397.19 4598.99 4499.02 9096.22 2499.67 12698.52 2098.56 14699.51 98
QAPM96.29 14695.40 16798.96 7097.85 21597.60 8599.23 2998.93 3989.76 32693.11 28699.02 9089.11 19599.93 1991.99 27199.62 7299.34 121
MVS_111021_LR98.34 5298.23 4798.67 8399.27 8796.90 11297.95 24299.58 397.14 4998.44 8399.01 9495.03 8099.62 13697.91 4999.75 4299.50 100
MVS_111021_HR98.47 4098.34 3398.88 7599.22 9897.32 9397.91 24699.58 397.20 4498.33 9099.00 9595.99 3999.64 13098.05 4399.76 3699.69 57
IS-MVSNet97.22 10796.88 10798.25 11798.85 13596.36 13999.19 3997.97 26595.39 12697.23 14698.99 9691.11 15498.93 22094.60 19198.59 14499.47 107
ZD-MVS99.46 5598.70 2398.79 9693.21 22898.67 6798.97 9795.70 5099.83 6096.07 14299.58 80
Anonymous2024052995.10 21094.22 22797.75 15299.01 12094.26 23798.87 10198.83 7285.79 35396.64 17298.97 9778.73 33399.85 5496.27 13894.89 22999.12 154
原ACMM198.65 8499.32 7296.62 12298.67 13393.27 22797.81 12198.97 9795.18 7599.83 6093.84 21799.46 10299.50 100
112197.37 10296.77 11699.16 5399.34 6697.99 7098.19 21798.68 12590.14 32098.01 10898.97 9794.80 8699.87 4893.36 23199.46 10299.61 82
HPM-MVScopyleft98.36 4898.10 5499.13 5799.74 897.82 7799.53 898.80 9194.63 16698.61 7498.97 9795.13 7799.77 10597.65 7299.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 4598.20 4998.99 6699.00 12197.66 8197.75 26398.89 4897.71 998.33 9098.97 9794.97 8199.88 4798.42 2899.76 3699.42 117
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet98.05 6297.76 6798.90 7498.73 14297.27 9598.35 19198.78 9997.37 3297.72 12898.96 10391.53 14599.92 2598.79 699.65 6499.51 98
test22299.23 9797.17 10397.40 28298.66 13688.68 33798.05 9998.96 10394.14 10099.53 9299.61 82
新几何199.16 5399.34 6698.01 6798.69 12290.06 32198.13 9498.95 10594.60 8999.89 3991.97 27299.47 9999.59 87
DP-MVS Recon97.86 7197.46 8299.06 6499.53 3998.35 4898.33 19398.89 4892.62 24998.05 9998.94 10695.34 6599.65 12896.04 14699.42 10599.19 143
CANet_DTU96.96 11996.55 12498.21 11998.17 19596.07 15097.98 24098.21 22197.24 4297.13 14998.93 10786.88 24799.91 3495.00 18099.37 11098.66 192
NCCC98.61 1898.35 2999.38 2099.28 8698.61 2998.45 17798.76 10397.82 698.45 8298.93 10796.65 1899.83 6097.38 8999.41 10699.71 50
CSCG97.85 7297.74 6898.20 12099.67 2795.16 19399.22 3399.32 793.04 23697.02 15698.92 10995.36 6499.91 3497.43 8699.64 6899.52 94
CHOSEN 1792x268897.12 11496.80 10998.08 12999.30 7994.56 22698.05 23399.71 193.57 21597.09 15098.91 11088.17 21899.89 3996.87 11699.56 8699.81 11
diffmvs97.58 8797.40 8698.13 12598.32 18195.81 17098.06 23298.37 19696.20 8998.74 6298.89 11191.31 15099.25 17498.16 3798.52 14799.34 121
PVSNet_Blended_VisFu97.70 7897.46 8298.44 10399.27 8795.91 16598.63 15399.16 1894.48 17297.67 13198.88 11292.80 11599.91 3497.11 9799.12 11999.50 100
GeoE96.58 13496.07 14198.10 12898.35 17295.89 16799.34 1898.12 23993.12 23496.09 19398.87 11389.71 17998.97 21192.95 24498.08 16699.43 115
Vis-MVSNet (Re-imp)96.87 12396.55 12497.83 14298.73 14295.46 18299.20 3798.30 21194.96 15296.60 17598.87 11390.05 17398.59 25493.67 22398.60 14399.46 111
ETH3 D test640097.59 8697.01 10199.34 2699.40 6398.56 3098.20 21398.81 8091.63 28398.44 8398.85 11593.98 10499.82 6894.11 21099.69 5899.64 76
CDPH-MVS97.94 6897.49 8099.28 3899.47 5298.44 3697.91 24698.67 13392.57 25298.77 6098.85 11595.93 4299.72 11395.56 16599.69 5899.68 63
VNet97.79 7497.40 8698.96 7098.88 13197.55 8698.63 15398.93 3996.74 6899.02 4098.84 11790.33 17099.83 6098.53 1496.66 20099.50 100
DROMVSNet98.21 6098.11 5398.49 9898.34 17797.26 9999.61 598.43 18696.78 6598.87 5498.84 11793.72 10699.01 20998.91 399.50 9599.19 143
HPM-MVS++copyleft98.58 2498.25 4399.55 999.50 4599.08 1198.72 13598.66 13697.51 1898.15 9398.83 11995.70 5099.92 2597.53 8399.67 6099.66 71
MVSFormer97.57 8897.49 8097.84 14198.07 20195.76 17199.47 998.40 19094.98 15098.79 5898.83 11992.34 12098.41 28296.91 10699.59 7799.34 121
jason97.32 10497.08 9898.06 13197.45 24695.59 17597.87 25297.91 27294.79 15898.55 7798.83 11991.12 15399.23 17797.58 7799.60 7499.34 121
jason: jason.
Anonymous20240521195.28 20094.49 21497.67 16099.00 12193.75 25298.70 14097.04 32390.66 30896.49 18398.80 12278.13 33899.83 6096.21 14195.36 22899.44 114
MCST-MVS98.65 1498.37 2699.48 1399.60 3398.87 1998.41 18598.68 12597.04 5498.52 7898.80 12296.78 1699.83 6097.93 4899.61 7399.74 37
MSP-MVS98.74 998.55 1399.29 3499.75 498.23 5499.26 2698.88 5197.52 1799.41 1398.78 12496.00 3899.79 9697.79 6199.59 7799.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OPM-MVS95.69 17795.33 17596.76 21496.16 31894.63 21998.43 18298.39 19296.64 7295.02 21098.78 12485.15 27899.05 20095.21 17794.20 23596.60 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest95.24 20294.65 20796.99 19799.25 9093.21 27498.59 15798.18 22791.36 29093.52 27098.77 12684.67 28699.72 11389.70 30997.87 17398.02 216
TestCases96.99 19799.25 9093.21 27498.18 22791.36 29093.52 27098.77 12684.67 28699.72 11389.70 30997.87 17398.02 216
LPG-MVS_test95.62 18095.34 17396.47 24597.46 24293.54 25998.99 7798.54 16094.67 16394.36 23398.77 12685.39 27299.11 19395.71 16094.15 23896.76 274
LGP-MVS_train96.47 24597.46 24293.54 25998.54 16094.67 16394.36 23398.77 12685.39 27299.11 19395.71 16094.15 23896.76 274
MSDG95.93 16395.30 17997.83 14298.90 12995.36 18596.83 32898.37 19691.32 29494.43 23098.73 13090.27 17199.60 13790.05 30298.82 13598.52 199
h-mvs3396.17 15195.62 16497.81 14699.03 11794.45 22898.64 15198.75 10697.48 2098.67 6798.72 13189.76 17799.86 5397.95 4681.59 35599.11 155
RRT_MVS95.98 15895.78 15296.56 23496.48 30394.22 24099.57 697.92 27095.89 10293.95 25398.70 13289.27 18998.42 27497.23 9393.02 26797.04 241
test_prior398.22 5997.90 6499.19 4699.31 7498.22 5597.80 25898.84 6996.12 9397.89 11998.69 13395.96 4099.70 11996.89 11099.60 7499.65 73
test_prior297.80 25896.12 9397.89 11998.69 13395.96 4096.89 11099.60 74
TEST999.31 7498.50 3497.92 24498.73 11292.63 24897.74 12598.68 13596.20 2799.80 84
train_agg97.97 6397.52 7799.33 3099.31 7498.50 3497.92 24498.73 11292.98 23897.74 12598.68 13596.20 2799.80 8496.59 12799.57 8199.68 63
AdaColmapbinary97.15 11396.70 11798.48 9999.16 10796.69 12198.01 23798.89 4894.44 17496.83 16498.68 13590.69 16499.76 10794.36 19899.29 11498.98 169
test_899.29 8298.44 3697.89 25098.72 11492.98 23897.70 12998.66 13896.20 2799.80 84
agg_prior197.95 6797.51 7999.28 3899.30 7998.38 4097.81 25798.72 11493.16 23297.57 13998.66 13896.14 3099.81 7596.63 12699.56 8699.66 71
tttt051796.07 15495.51 16697.78 14898.41 16894.84 21099.28 2494.33 36494.26 17897.64 13598.64 14084.05 29899.47 16195.34 16997.60 18499.03 164
mvsmamba96.57 13596.32 13297.32 17996.60 29596.43 13599.54 797.98 26396.49 7895.20 20798.64 14090.82 15898.55 25897.97 4593.65 25396.98 245
cdsmvs_eth3d_5k23.98 34631.98 3480.00 3640.00 3870.00 3880.00 37598.59 1480.00 3820.00 38398.61 14290.60 1650.00 3830.00 3810.00 3810.00 379
lupinMVS97.44 9697.22 9398.12 12798.07 20195.76 17197.68 26797.76 27794.50 17198.79 5898.61 14292.34 12099.30 17197.58 7799.59 7799.31 127
BH-RMVSNet95.92 16495.32 17697.69 15898.32 18194.64 21898.19 21797.45 30394.56 16796.03 19598.61 14285.02 27999.12 19190.68 29399.06 12099.30 130
TAMVS97.02 11796.79 11197.70 15798.06 20395.31 18998.52 16898.31 20593.95 19097.05 15598.61 14293.49 10898.52 26295.33 17097.81 17599.29 132
TAPA-MVS93.98 795.35 19694.56 21197.74 15399.13 11094.83 21298.33 19398.64 14186.62 34596.29 18998.61 14294.00 10399.29 17280.00 36099.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D94.24 26293.33 27896.97 20097.19 26393.38 26898.74 12798.57 15491.21 30193.81 26198.58 14772.85 36298.77 24095.05 17993.93 24698.77 184
DPM-MVS97.55 9096.99 10399.23 4599.04 11698.55 3197.17 30398.35 19994.85 15797.93 11698.58 14795.07 7999.71 11892.60 25299.34 11199.43 115
F-COLMAP97.09 11696.80 10997.97 13599.45 5994.95 20698.55 16698.62 14593.02 23796.17 19298.58 14794.01 10299.81 7593.95 21498.90 12899.14 152
WTY-MVS97.37 10296.92 10698.72 8098.86 13396.89 11498.31 19998.71 11895.26 13597.67 13198.56 15092.21 12699.78 10095.89 15096.85 19599.48 105
CNLPA97.45 9597.03 10098.73 7999.05 11497.44 9198.07 23198.53 16295.32 13296.80 16898.53 15193.32 11099.72 11394.31 20299.31 11399.02 165
ACMP93.49 1095.34 19794.98 19396.43 25097.67 22593.48 26398.73 13198.44 18394.94 15592.53 30298.53 15184.50 29099.14 18895.48 16894.00 24396.66 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH92.88 1694.55 24293.95 24596.34 25797.63 22893.26 27298.81 11798.49 17793.43 22089.74 33598.53 15181.91 31299.08 19893.69 22093.30 26496.70 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-094.21 26394.00 24194.85 30795.60 33489.22 33598.89 9597.43 30595.29 13392.18 31298.52 15482.86 30898.59 25493.46 22891.76 27996.74 276
CDS-MVSNet96.99 11896.69 11897.90 13998.05 20495.98 15298.20 21398.33 20293.67 21196.95 15798.49 15593.54 10798.42 27495.24 17697.74 17999.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
bld_raw_dy_0_6495.74 17295.31 17897.03 19596.35 30995.76 17199.12 5097.37 31095.97 9994.70 21998.48 15685.80 26598.49 26496.55 12993.48 25796.84 267
sss97.39 10096.98 10498.61 8698.60 15796.61 12498.22 20998.93 3993.97 18998.01 10898.48 15691.98 13399.85 5496.45 13398.15 16399.39 118
ACMH+92.99 1494.30 25893.77 25995.88 27797.81 21792.04 28998.71 13698.37 19693.99 18890.60 32998.47 15880.86 32299.05 20092.75 25092.40 27396.55 302
ACMM93.85 995.69 17795.38 17196.61 22797.61 22993.84 24898.91 9098.44 18395.25 13694.28 23798.47 15886.04 26399.12 19195.50 16793.95 24596.87 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf_final96.42 14096.12 13997.34 17898.46 16596.55 13099.08 5998.06 25796.03 9795.63 20198.46 16087.72 23098.59 25497.84 5893.80 24996.87 262
iter_conf0596.13 15395.79 15197.15 18798.16 19695.99 15198.88 9897.98 26395.91 10195.58 20298.46 16085.53 27098.59 25497.88 5393.75 25096.86 265
1112_ss96.63 12996.00 14598.50 9698.56 15896.37 13898.18 22198.10 24492.92 24194.84 21398.43 16292.14 12899.58 13994.35 19996.51 20699.56 93
ab-mvs-re8.20 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.43 1620.00 3870.00 3830.00 3810.00 3810.00 379
test_yl97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17798.31 20594.70 15998.02 10498.42 16490.80 16199.70 11996.81 11996.79 19799.34 121
DCV-MVSNet97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17798.31 20594.70 15998.02 10498.42 16490.80 16199.70 11996.81 11996.79 19799.34 121
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
xiu_mvs_v1_base97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
mvs_tets95.41 19195.00 19196.65 22195.58 33594.42 23099.00 7598.55 15895.73 11093.21 28198.38 16983.45 30798.63 25097.09 9894.00 24396.91 256
FC-MVSNet-test96.42 14096.05 14297.53 16996.95 27597.27 9599.36 1599.23 1395.83 10693.93 25498.37 17092.00 13298.32 29196.02 14792.72 27197.00 244
jajsoiax95.45 18795.03 19096.73 21595.42 34294.63 21999.14 4598.52 16495.74 10993.22 28098.36 17183.87 30398.65 24996.95 10594.04 24196.91 256
nrg03096.28 14895.72 15597.96 13796.90 28098.15 6199.39 1298.31 20595.47 12294.42 23198.35 17292.09 13098.69 24397.50 8589.05 31597.04 241
FIs96.51 13796.12 13997.67 16097.13 26797.54 8799.36 1599.22 1595.89 10294.03 25198.35 17291.98 13398.44 27296.40 13692.76 27097.01 243
ITE_SJBPF95.44 29097.42 24791.32 30397.50 29895.09 14693.59 26698.35 17281.70 31398.88 22889.71 30893.39 26296.12 329
LTVRE_ROB92.95 1594.60 23893.90 24996.68 22097.41 25094.42 23098.52 16898.59 14891.69 28191.21 32298.35 17284.87 28299.04 20391.06 28693.44 26196.60 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-MVSNAJss96.43 13996.26 13596.92 20695.84 32995.08 19899.16 4298.50 17295.87 10593.84 26098.34 17694.51 9198.61 25196.88 11393.45 26097.06 240
EPNet_dtu95.21 20494.95 19595.99 26996.17 31690.45 31898.16 22397.27 31596.77 6693.14 28598.33 17790.34 16998.42 27485.57 34098.81 13699.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS93.45 1194.68 23293.43 27698.42 10698.62 15596.77 11795.48 35298.20 22384.63 35793.34 27798.32 17888.55 21199.81 7584.80 34798.96 12698.68 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053096.01 15695.36 17297.97 13598.38 16995.52 18098.88 9894.19 36694.04 18397.64 13598.31 17983.82 30599.46 16295.29 17397.70 18198.93 174
PLCcopyleft95.07 497.20 11096.78 11298.44 10399.29 8296.31 14398.14 22498.76 10392.41 25896.39 18798.31 17994.92 8399.78 10094.06 21298.77 13799.23 137
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP_MVS96.14 15295.90 14896.85 20997.42 24794.60 22498.80 11898.56 15697.28 3695.34 20498.28 18187.09 24299.03 20496.07 14294.27 23296.92 251
plane_prior498.28 181
API-MVS97.41 9997.25 9197.91 13898.70 14796.80 11598.82 11198.69 12294.53 16898.11 9598.28 18194.50 9499.57 14094.12 20899.49 9697.37 234
mvs_anonymous96.70 12896.53 12697.18 18598.19 19193.78 24998.31 19998.19 22494.01 18694.47 22598.27 18492.08 13198.46 26997.39 8897.91 17199.31 127
XXY-MVS95.20 20594.45 21997.46 17096.75 28896.56 12898.86 10398.65 14093.30 22693.27 27998.27 18484.85 28398.87 22994.82 18491.26 28796.96 248
SixPastTwentyTwo93.34 28792.86 28694.75 31195.67 33289.41 33398.75 12496.67 34393.89 19290.15 33398.25 18680.87 32198.27 30090.90 28990.64 29396.57 298
VPNet94.99 21694.19 22997.40 17597.16 26596.57 12798.71 13698.97 3195.67 11394.84 21398.24 18780.36 32598.67 24796.46 13287.32 33596.96 248
PVSNet_Blended97.38 10197.12 9598.14 12399.25 9095.35 18797.28 29599.26 993.13 23397.94 11498.21 18892.74 11699.81 7596.88 11399.40 10899.27 134
HyFIR lowres test96.90 12296.49 12798.14 12399.33 6995.56 17797.38 28499.65 292.34 26097.61 13798.20 18989.29 18899.10 19696.97 10297.60 18499.77 23
baseline195.84 16795.12 18698.01 13398.49 16495.98 15298.73 13197.03 32495.37 12996.22 19098.19 19089.96 17599.16 18394.60 19187.48 33298.90 176
ab-mvs96.42 14095.71 15898.55 9098.63 15496.75 11897.88 25198.74 10893.84 19596.54 18098.18 19185.34 27599.75 10995.93 14996.35 21099.15 150
xiu_mvs_v2_base97.66 8097.70 6997.56 16898.61 15695.46 18297.44 27998.46 17997.15 4898.65 7298.15 19294.33 9799.80 8497.84 5898.66 14297.41 230
USDC93.33 28892.71 28995.21 29596.83 28490.83 31196.91 31897.50 29893.84 19590.72 32798.14 19377.69 34198.82 23589.51 31393.21 26695.97 333
EU-MVSNet93.66 28194.14 23392.25 34295.96 32583.38 36598.52 16898.12 23994.69 16192.61 29998.13 19487.36 24096.39 35891.82 27490.00 30096.98 245
CHOSEN 280x42097.18 11197.18 9497.20 18398.81 13893.27 27195.78 34899.15 1995.25 13696.79 16998.11 19592.29 12299.07 19998.56 1399.85 599.25 136
MVSTER96.06 15595.72 15597.08 19398.23 18595.93 16398.73 13198.27 21494.86 15695.07 20898.09 19688.21 21798.54 26096.59 12793.46 25896.79 271
MVS_Test97.28 10597.00 10298.13 12598.33 17995.97 15798.74 12798.07 25294.27 17798.44 8398.07 19792.48 11899.26 17396.43 13598.19 16299.16 149
PAPM_NR97.46 9297.11 9698.50 9699.50 4596.41 13798.63 15398.60 14695.18 13997.06 15498.06 19894.26 9999.57 14093.80 21998.87 13299.52 94
PatchMatch-RL96.59 13296.03 14498.27 11499.31 7496.51 13197.91 24699.06 2393.72 20396.92 16198.06 19888.50 21399.65 12891.77 27699.00 12598.66 192
Effi-MVS+97.12 11496.69 11898.39 10898.19 19196.72 12097.37 28698.43 18693.71 20497.65 13498.02 20092.20 12799.25 17496.87 11697.79 17699.19 143
MVS94.67 23593.54 27298.08 12996.88 28196.56 12898.19 21798.50 17278.05 36592.69 29798.02 20091.07 15699.63 13390.09 29998.36 15798.04 215
BH-untuned95.95 16095.72 15596.65 22198.55 16092.26 28498.23 20897.79 27693.73 20294.62 22098.01 20288.97 20299.00 21093.04 24198.51 14898.68 189
CLD-MVS95.62 18095.34 17396.46 24897.52 23993.75 25297.27 29698.46 17995.53 11994.42 23198.00 20386.21 25898.97 21196.25 14094.37 23096.66 289
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs295.71 17495.30 17996.93 20398.50 16293.53 26198.36 19098.10 24497.48 2098.67 6797.99 20489.76 17799.02 20797.95 4680.91 35998.22 210
HY-MVS93.96 896.82 12596.23 13798.57 8898.46 16597.00 10798.14 22498.21 22193.95 19096.72 17097.99 20491.58 14099.76 10794.51 19596.54 20598.95 173
AUN-MVS94.53 24493.73 26396.92 20698.50 16293.52 26298.34 19298.10 24493.83 19795.94 19997.98 20685.59 26999.03 20494.35 19980.94 35898.22 210
MAR-MVS96.91 12196.40 12998.45 10298.69 14996.90 11298.66 14998.68 12592.40 25997.07 15397.96 20791.54 14499.75 10993.68 22198.92 12798.69 188
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-CasMVS94.67 23593.99 24396.71 21696.68 29295.26 19099.13 4899.03 2693.68 20992.33 30997.95 20885.35 27498.10 30993.59 22588.16 32796.79 271
mvs-test196.60 13096.68 12096.37 25497.89 21391.81 29198.56 16498.10 24496.57 7596.52 18297.94 20990.81 15999.45 16395.72 15898.01 16797.86 220
TranMVSNet+NR-MVSNet95.14 20894.48 21597.11 19196.45 30596.36 13999.03 6799.03 2695.04 14893.58 26797.93 21088.27 21698.03 31694.13 20786.90 34196.95 250
testgi93.06 29592.45 29494.88 30696.43 30689.90 32398.75 12497.54 29595.60 11691.63 32097.91 21174.46 35897.02 34586.10 33693.67 25197.72 225
CP-MVSNet94.94 22294.30 22596.83 21096.72 29095.56 17799.11 5298.95 3593.89 19292.42 30897.90 21287.19 24198.12 30894.32 20188.21 32596.82 270
XVG-ACMP-BASELINE94.54 24394.14 23395.75 28296.55 29891.65 29798.11 22998.44 18394.96 15294.22 24197.90 21279.18 33299.11 19394.05 21393.85 24796.48 315
test_part194.82 22593.82 25497.82 14498.84 13697.82 7799.03 6798.81 8092.31 26492.51 30497.89 21481.96 31198.67 24794.80 18688.24 32496.98 245
PS-MVSNAJ97.73 7697.77 6697.62 16498.68 15095.58 17697.34 29098.51 16797.29 3598.66 7197.88 21594.51 9199.90 3797.87 5499.17 11897.39 232
TransMVSNet (Re)92.67 29991.51 30496.15 26396.58 29794.65 21798.90 9196.73 33990.86 30789.46 33997.86 21685.62 26898.09 31186.45 33481.12 35695.71 338
test_djsdf96.00 15795.69 16196.93 20395.72 33195.49 18199.47 998.40 19094.98 15094.58 22197.86 21689.16 19398.41 28296.91 10694.12 24096.88 260
TinyColmap92.31 30291.53 30394.65 31496.92 27789.75 32596.92 31696.68 34290.45 31389.62 33697.85 21876.06 35198.81 23686.74 33292.51 27295.41 342
pm-mvs193.94 27993.06 28396.59 23096.49 30295.16 19398.95 8598.03 26092.32 26291.08 32497.84 21984.54 28998.41 28292.16 26486.13 34796.19 328
UGNet96.78 12696.30 13398.19 12298.24 18495.89 16798.88 9898.93 3997.39 2996.81 16797.84 21982.60 30999.90 3796.53 13099.49 9698.79 181
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TDRefinement91.06 31289.68 31795.21 29585.35 37491.49 30098.51 17297.07 32191.47 28688.83 34497.84 21977.31 34599.09 19792.79 24977.98 36295.04 350
PEN-MVS94.42 25293.73 26396.49 24396.28 31294.84 21099.17 4199.00 2893.51 21692.23 31197.83 22286.10 26097.90 32592.55 25786.92 34096.74 276
131496.25 15095.73 15497.79 14797.13 26795.55 17998.19 21798.59 14893.47 21892.03 31597.82 22391.33 14999.49 15594.62 19098.44 15298.32 208
DTE-MVSNet93.98 27893.26 28196.14 26496.06 32194.39 23299.20 3798.86 6493.06 23591.78 31797.81 22485.87 26497.58 33690.53 29486.17 34596.46 317
PAPM94.95 22094.00 24197.78 14897.04 27195.65 17496.03 34498.25 21991.23 29994.19 24397.80 22591.27 15198.86 23182.61 35497.61 18398.84 179
PVSNet91.96 1896.35 14496.15 13896.96 20199.17 10392.05 28896.08 34198.68 12593.69 20797.75 12497.80 22588.86 20499.69 12494.26 20499.01 12499.15 150
CMPMVSbinary66.06 2189.70 32289.67 31889.78 34693.19 36176.56 37197.00 31298.35 19980.97 36281.57 36397.75 22774.75 35698.61 25189.85 30593.63 25494.17 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NP-MVS97.28 25494.51 22797.73 228
HQP-MVS95.72 17395.40 16796.69 21997.20 26094.25 23898.05 23398.46 17996.43 8194.45 22697.73 22886.75 24898.96 21595.30 17194.18 23696.86 265
UniMVSNet_NR-MVSNet95.71 17495.15 18497.40 17596.84 28396.97 10898.74 12799.24 1195.16 14093.88 25797.72 23091.68 13898.31 29395.81 15387.25 33696.92 251
FE-MVS95.62 18094.90 19797.78 14898.37 17194.92 20797.17 30397.38 30990.95 30697.73 12797.70 23185.32 27799.63 13391.18 28398.33 15898.79 181
FA-MVS(test-final)96.41 14395.94 14697.82 14498.21 18795.20 19297.80 25897.58 28793.21 22897.36 14397.70 23189.47 18399.56 14394.12 20897.99 16898.71 187
DU-MVS95.42 18994.76 20297.40 17596.53 29996.97 10898.66 14998.99 3095.43 12493.88 25797.69 23388.57 20998.31 29395.81 15387.25 33696.92 251
WR-MVS95.15 20794.46 21797.22 18296.67 29396.45 13398.21 21098.81 8094.15 17993.16 28297.69 23387.51 23598.30 29595.29 17388.62 32196.90 258
NR-MVSNet94.98 21894.16 23197.44 17196.53 29997.22 10198.74 12798.95 3594.96 15289.25 34097.69 23389.32 18798.18 30394.59 19387.40 33496.92 251
Fast-Effi-MVS+-dtu95.87 16595.85 14995.91 27497.74 22291.74 29598.69 14298.15 23595.56 11894.92 21197.68 23688.98 20198.79 23893.19 23697.78 17797.20 238
alignmvs97.56 8997.07 9999.01 6598.66 15198.37 4698.83 10898.06 25796.74 6898.00 11097.65 23790.80 16199.48 15998.37 3196.56 20499.19 143
LF4IMVS93.14 29492.79 28894.20 32495.88 32788.67 34497.66 26997.07 32193.81 19891.71 31897.65 23777.96 34098.81 23691.47 28191.92 27895.12 347
lessismore_v094.45 32294.93 34788.44 34891.03 37586.77 35297.64 23976.23 35098.42 27490.31 29785.64 34896.51 311
TR-MVS94.94 22294.20 22897.17 18697.75 21994.14 24197.59 27497.02 32692.28 26595.75 20097.64 23983.88 30298.96 21589.77 30696.15 22198.40 203
ET-MVSNet_ETH3D94.13 26992.98 28497.58 16698.22 18696.20 14597.31 29395.37 35394.53 16879.56 36597.63 24186.51 25197.53 33896.91 10690.74 29299.02 165
Baseline_NR-MVSNet94.35 25593.81 25595.96 27296.20 31494.05 24398.61 15696.67 34391.44 28893.85 25997.60 24288.57 20998.14 30694.39 19786.93 33995.68 339
pmmvs494.69 23093.99 24396.81 21295.74 33095.94 16097.40 28297.67 28190.42 31493.37 27697.59 24389.08 19698.20 30292.97 24391.67 28196.30 325
K. test v392.55 30091.91 30294.48 31995.64 33389.24 33499.07 6094.88 35894.04 18386.78 35197.59 24377.64 34497.64 33492.08 26689.43 31096.57 298
Anonymous2023121194.10 27293.26 28196.61 22799.11 11294.28 23599.01 7398.88 5186.43 34792.81 29297.57 24581.66 31498.68 24694.83 18389.02 31796.88 260
PAPR96.84 12496.24 13698.65 8498.72 14696.92 11197.36 28898.57 15493.33 22396.67 17197.57 24594.30 9899.56 14391.05 28898.59 14499.47 107
pmmvs691.77 30590.63 30995.17 29794.69 35291.24 30598.67 14697.92 27086.14 34989.62 33697.56 24775.79 35298.34 28990.75 29284.56 34995.94 334
EIA-MVS97.75 7597.58 7298.27 11498.38 16996.44 13499.01 7398.60 14695.88 10497.26 14597.53 24894.97 8199.33 17097.38 8999.20 11699.05 163
MS-PatchMatch93.84 28093.63 26894.46 32196.18 31589.45 33197.76 26298.27 21492.23 26692.13 31397.49 24979.50 32998.69 24389.75 30799.38 10995.25 344
IterMVS-SCA-FT94.11 27193.87 25194.85 30797.98 20990.56 31797.18 30198.11 24293.75 19992.58 30097.48 25083.97 30097.41 34092.48 26191.30 28596.58 296
anonymousdsp95.42 18994.91 19696.94 20295.10 34495.90 16699.14 4598.41 18893.75 19993.16 28297.46 25187.50 23798.41 28295.63 16494.03 24296.50 313
PVSNet_BlendedMVS96.73 12796.60 12297.12 19099.25 9095.35 18798.26 20799.26 994.28 17697.94 11497.46 25192.74 11699.81 7596.88 11393.32 26396.20 327
PMMVS96.60 13096.33 13197.41 17397.90 21293.93 24597.35 28998.41 18892.84 24497.76 12397.45 25391.10 15599.20 18096.26 13997.91 17199.11 155
ETV-MVS97.96 6497.81 6598.40 10798.42 16797.27 9598.73 13198.55 15896.84 6298.38 8697.44 25495.39 6199.35 16897.62 7498.89 12998.58 198
thisisatest051595.61 18394.89 19897.76 15198.15 19795.15 19596.77 32994.41 36292.95 24097.18 14897.43 25584.78 28499.45 16394.63 18897.73 18098.68 189
baseline295.11 20994.52 21396.87 20896.65 29493.56 25898.27 20694.10 36893.45 21992.02 31697.43 25587.45 23999.19 18193.88 21697.41 18897.87 219
canonicalmvs97.67 7997.23 9298.98 6898.70 14798.38 4099.34 1898.39 19296.76 6797.67 13197.40 25792.26 12399.49 15598.28 3596.28 21699.08 161
tfpnnormal93.66 28192.70 29096.55 23996.94 27695.94 16098.97 8199.19 1691.04 30491.38 32197.34 25884.94 28198.61 25185.45 34289.02 31795.11 348
IterMVS94.09 27393.85 25394.80 31097.99 20790.35 31997.18 30198.12 23993.68 20992.46 30797.34 25884.05 29897.41 34092.51 25991.33 28496.62 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet95.75 17195.11 18797.69 15897.24 25697.27 9598.94 8799.23 1395.13 14195.51 20397.32 26085.73 26698.91 22297.33 9189.55 30796.89 259
IterMVS-LS95.46 18595.21 18296.22 26298.12 19893.72 25598.32 19898.13 23893.71 20494.26 23897.31 26192.24 12498.10 30994.63 18890.12 29896.84 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res96.34 14595.66 16398.36 10998.56 15895.94 16097.71 26598.07 25292.10 27094.79 21797.29 26291.75 13799.56 14394.17 20696.50 20799.58 91
ppachtmachnet_test93.22 29192.63 29194.97 30395.45 34090.84 31096.88 32497.88 27390.60 30992.08 31497.26 26388.08 22297.86 33085.12 34490.33 29596.22 326
pmmvs593.65 28392.97 28595.68 28395.49 33892.37 28398.20 21397.28 31489.66 32892.58 30097.26 26382.14 31098.09 31193.18 23790.95 29196.58 296
MDTV_nov1_ep1395.40 16797.48 24088.34 34996.85 32697.29 31393.74 20197.48 14297.26 26389.18 19299.05 20091.92 27397.43 187
Fast-Effi-MVS+96.28 14895.70 16098.03 13298.29 18395.97 15798.58 15998.25 21991.74 27895.29 20697.23 26691.03 15799.15 18692.90 24697.96 17098.97 170
BH-w/o95.38 19295.08 18896.26 26198.34 17791.79 29297.70 26697.43 30592.87 24394.24 24097.22 26788.66 20798.84 23291.55 28097.70 18198.16 213
eth_miper_zixun_eth94.68 23294.41 22295.47 28897.64 22791.71 29696.73 33298.07 25292.71 24793.64 26597.21 26890.54 16698.17 30493.38 22989.76 30296.54 303
v192192094.20 26493.47 27596.40 25395.98 32494.08 24298.52 16898.15 23591.33 29394.25 23997.20 26986.41 25598.42 27490.04 30389.39 31196.69 288
v2v48294.69 23094.03 23796.65 22196.17 31694.79 21598.67 14698.08 25092.72 24694.00 25297.16 27087.69 23498.45 27092.91 24588.87 31996.72 279
v7n94.19 26593.43 27696.47 24595.90 32694.38 23399.26 2698.34 20191.99 27292.76 29497.13 27188.31 21598.52 26289.48 31487.70 33096.52 308
DIV-MVS_self_test94.52 24594.03 23795.99 26997.57 23593.38 26897.05 30997.94 26891.74 27892.81 29297.10 27289.12 19498.07 31392.60 25290.30 29696.53 305
SCA95.46 18595.13 18596.46 24897.67 22591.29 30497.33 29197.60 28694.68 16296.92 16197.10 27283.97 30098.89 22692.59 25498.32 16099.20 139
Patchmatch-test94.42 25293.68 26796.63 22597.60 23091.76 29394.83 35897.49 30089.45 33194.14 24597.10 27288.99 19898.83 23485.37 34398.13 16499.29 132
FMVSNet394.97 21994.26 22697.11 19198.18 19396.62 12298.56 16498.26 21893.67 21194.09 24797.10 27284.25 29398.01 31792.08 26692.14 27496.70 283
MVP-Stereo94.28 26193.92 24695.35 29294.95 34692.60 28297.97 24197.65 28291.61 28490.68 32897.09 27686.32 25798.42 27489.70 30999.34 11195.02 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet294.47 24993.61 26997.04 19498.21 18796.43 13598.79 12298.27 21492.46 25393.50 27397.09 27681.16 31798.00 31991.09 28491.93 27796.70 283
cl____94.51 24694.01 24096.02 26897.58 23193.40 26797.05 30997.96 26791.73 28092.76 29497.08 27889.06 19798.13 30792.61 25190.29 29796.52 308
GBi-Net94.49 24793.80 25696.56 23498.21 18795.00 20098.82 11198.18 22792.46 25394.09 24797.07 27981.16 31797.95 32192.08 26692.14 27496.72 279
test194.49 24793.80 25696.56 23498.21 18795.00 20098.82 11198.18 22792.46 25394.09 24797.07 27981.16 31797.95 32192.08 26692.14 27496.72 279
FMVSNet193.19 29392.07 29896.56 23497.54 23695.00 20098.82 11198.18 22790.38 31592.27 31097.07 27973.68 36097.95 32189.36 31691.30 28596.72 279
v119294.32 25793.58 27096.53 24096.10 31994.45 22898.50 17398.17 23291.54 28594.19 24397.06 28286.95 24698.43 27390.14 29889.57 30596.70 283
V4294.78 22894.14 23396.70 21896.33 31195.22 19198.97 8198.09 24992.32 26294.31 23697.06 28288.39 21498.55 25892.90 24688.87 31996.34 321
c3_l94.79 22794.43 22195.89 27697.75 21993.12 27797.16 30598.03 26092.23 26693.46 27597.05 28491.39 14698.01 31793.58 22689.21 31396.53 305
GA-MVS94.81 22694.03 23797.14 18897.15 26693.86 24796.76 33097.58 28794.00 18794.76 21897.04 28580.91 32098.48 26591.79 27596.25 21899.09 157
UniMVSNet (Re)95.78 17095.19 18397.58 16696.99 27497.47 8998.79 12299.18 1795.60 11693.92 25597.04 28591.68 13898.48 26595.80 15587.66 33196.79 271
v14419294.39 25493.70 26596.48 24496.06 32194.35 23498.58 15998.16 23491.45 28794.33 23597.02 28787.50 23798.45 27091.08 28589.11 31496.63 291
v114494.59 24093.92 24696.60 22996.21 31394.78 21698.59 15798.14 23791.86 27794.21 24297.02 28787.97 22498.41 28291.72 27789.57 30596.61 293
v124094.06 27693.29 28096.34 25796.03 32393.90 24698.44 18098.17 23291.18 30294.13 24697.01 28986.05 26198.42 27489.13 31989.50 30996.70 283
v1094.29 25993.55 27196.51 24296.39 30794.80 21498.99 7798.19 22491.35 29293.02 28896.99 29088.09 22198.41 28290.50 29588.41 32396.33 323
test_040291.32 30890.27 31394.48 31996.60 29591.12 30698.50 17397.22 31786.10 35088.30 34696.98 29177.65 34397.99 32078.13 36692.94 26994.34 355
miper_lstm_enhance94.33 25694.07 23695.11 29997.75 21990.97 30897.22 29898.03 26091.67 28292.76 29496.97 29290.03 17497.78 33192.51 25989.64 30496.56 300
v894.47 24993.77 25996.57 23396.36 30894.83 21299.05 6398.19 22491.92 27493.16 28296.97 29288.82 20698.48 26591.69 27887.79 32996.39 319
miper_ehance_all_eth95.01 21494.69 20695.97 27197.70 22493.31 27097.02 31198.07 25292.23 26693.51 27296.96 29491.85 13598.15 30593.68 22191.16 28896.44 318
PatchmatchNetpermissive95.71 17495.52 16596.29 26097.58 23190.72 31396.84 32797.52 29694.06 18297.08 15196.96 29489.24 19198.90 22592.03 27098.37 15599.26 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14894.29 25993.76 26195.91 27496.10 31992.93 27998.58 15997.97 26592.59 25193.47 27496.95 29688.53 21298.32 29192.56 25687.06 33896.49 314
gm-plane-assit95.88 32787.47 35689.74 32796.94 29799.19 18193.32 233
tpmrst95.63 17995.69 16195.44 29097.54 23688.54 34696.97 31397.56 28993.50 21797.52 14196.93 29889.49 18199.16 18395.25 17596.42 20998.64 194
thres600view795.49 18494.77 20197.67 16098.98 12595.02 19998.85 10496.90 33295.38 12796.63 17396.90 29984.29 29199.59 13888.65 32296.33 21198.40 203
our_test_393.65 28393.30 27994.69 31295.45 34089.68 32896.91 31897.65 28291.97 27391.66 31996.88 30089.67 18097.93 32488.02 32691.49 28396.48 315
thres100view90095.38 19294.70 20597.41 17398.98 12594.92 20798.87 10196.90 33295.38 12796.61 17496.88 30084.29 29199.56 14388.11 32396.29 21397.76 221
cl2294.68 23294.19 22996.13 26598.11 19993.60 25796.94 31598.31 20592.43 25793.32 27896.87 30286.51 25198.28 29994.10 21191.16 28896.51 311
LCM-MVSNet-Re95.22 20395.32 17694.91 30498.18 19387.85 35598.75 12495.66 35295.11 14388.96 34196.85 30390.26 17297.65 33395.65 16398.44 15299.22 138
WR-MVS_H95.05 21394.46 21796.81 21296.86 28295.82 16999.24 2899.24 1193.87 19492.53 30296.84 30490.37 16898.24 30193.24 23487.93 32896.38 320
EPMVS94.99 21694.48 21596.52 24197.22 25891.75 29497.23 29791.66 37494.11 18097.28 14496.81 30585.70 26798.84 23293.04 24197.28 18998.97 170
tpm294.19 26593.76 26195.46 28997.23 25789.04 33897.31 29396.85 33887.08 34496.21 19196.79 30683.75 30698.74 24192.43 26296.23 21998.59 196
D2MVS95.18 20695.08 18895.48 28797.10 26992.07 28798.30 20199.13 2094.02 18592.90 29096.73 30789.48 18298.73 24294.48 19693.60 25695.65 340
CostFormer94.95 22094.73 20495.60 28597.28 25489.06 33797.53 27796.89 33489.66 32896.82 16696.72 30886.05 26198.95 21995.53 16696.13 22298.79 181
test20.0390.89 31490.38 31292.43 33993.48 36088.14 35298.33 19397.56 28993.40 22187.96 34796.71 30980.69 32494.13 36979.15 36386.17 34595.01 352
Effi-MVS+-dtu96.29 14696.56 12395.51 28697.89 21390.22 32198.80 11898.10 24496.57 7596.45 18696.66 31090.81 15998.91 22295.72 15897.99 16897.40 231
test0.0.03 194.08 27493.51 27395.80 27995.53 33792.89 28097.38 28495.97 34895.11 14392.51 30496.66 31087.71 23196.94 34787.03 33193.67 25197.57 228
miper_enhance_ethall95.10 21094.75 20396.12 26697.53 23893.73 25496.61 33598.08 25092.20 26993.89 25696.65 31292.44 11998.30 29594.21 20591.16 28896.34 321
ADS-MVSNet294.58 24194.40 22395.11 29998.00 20588.74 34396.04 34297.30 31290.15 31896.47 18496.64 31387.89 22697.56 33790.08 30097.06 19199.02 165
ADS-MVSNet95.00 21594.45 21996.63 22598.00 20591.91 29096.04 34297.74 27990.15 31896.47 18496.64 31387.89 22698.96 21590.08 30097.06 19199.02 165
dp94.15 26893.90 24994.90 30597.31 25386.82 36096.97 31397.19 31891.22 30096.02 19696.61 31585.51 27199.02 20790.00 30494.30 23198.85 177
tfpn200view995.32 19994.62 20897.43 17298.94 12794.98 20398.68 14396.93 33095.33 13096.55 17896.53 31684.23 29499.56 14388.11 32396.29 21397.76 221
thres40095.38 19294.62 20897.65 16398.94 12794.98 20398.68 14396.93 33095.33 13096.55 17896.53 31684.23 29499.56 14388.11 32396.29 21398.40 203
EG-PatchMatch MVS91.13 31190.12 31494.17 32694.73 35189.00 33998.13 22697.81 27589.22 33485.32 35896.46 31867.71 36698.42 27487.89 32893.82 24895.08 349
TESTMET0.1,194.18 26793.69 26695.63 28496.92 27789.12 33696.91 31894.78 35993.17 23194.88 21296.45 31978.52 33498.92 22193.09 23898.50 14998.85 177
tpmvs94.60 23894.36 22495.33 29397.46 24288.60 34596.88 32497.68 28091.29 29693.80 26296.42 32088.58 20899.24 17691.06 28696.04 22498.17 212
Anonymous2023120691.66 30691.10 30693.33 33394.02 35887.35 35798.58 15997.26 31690.48 31190.16 33296.31 32183.83 30496.53 35679.36 36289.90 30196.12 329
tpm94.13 26993.80 25695.12 29896.50 30187.91 35497.44 27995.89 35192.62 24996.37 18896.30 32284.13 29798.30 29593.24 23491.66 28299.14 152
CR-MVSNet94.76 22994.15 23296.59 23097.00 27293.43 26494.96 35497.56 28992.46 25396.93 15996.24 32388.15 21997.88 32987.38 32996.65 20198.46 201
Patchmtry93.22 29192.35 29595.84 27896.77 28593.09 27894.66 35997.56 28987.37 34392.90 29096.24 32388.15 21997.90 32587.37 33090.10 29996.53 305
tmp_tt68.90 34066.97 34274.68 35750.78 38459.95 38087.13 36983.47 38138.80 37762.21 37396.23 32564.70 37076.91 37988.91 32030.49 37787.19 369
cascas94.63 23793.86 25296.93 20396.91 27994.27 23696.00 34598.51 16785.55 35494.54 22296.23 32584.20 29698.87 22995.80 15596.98 19497.66 227
thres20095.25 20194.57 21097.28 18098.81 13894.92 20798.20 21397.11 31995.24 13896.54 18096.22 32784.58 28899.53 15087.93 32796.50 20797.39 232
UnsupCasMVSNet_eth90.99 31389.92 31694.19 32594.08 35589.83 32497.13 30798.67 13393.69 20785.83 35696.19 32875.15 35496.74 35089.14 31879.41 36096.00 332
MDA-MVSNet-bldmvs89.97 32188.35 32694.83 30995.21 34391.34 30197.64 27097.51 29788.36 33971.17 37196.13 32979.22 33196.63 35583.65 35186.27 34496.52 308
MIMVSNet93.26 29092.21 29796.41 25197.73 22393.13 27695.65 34997.03 32491.27 29894.04 25096.06 33075.33 35397.19 34386.56 33396.23 21998.92 175
tpm cat193.36 28592.80 28795.07 30197.58 23187.97 35396.76 33097.86 27482.17 36193.53 26996.04 33186.13 25999.13 18989.24 31795.87 22598.10 214
N_pmnet87.12 33187.77 33085.17 35195.46 33961.92 37897.37 28670.66 38485.83 35288.73 34596.04 33185.33 27697.76 33280.02 35990.48 29495.84 335
MIMVSNet189.67 32388.28 32793.82 32792.81 36491.08 30798.01 23797.45 30387.95 34087.90 34895.87 33367.63 36794.56 36878.73 36588.18 32695.83 336
EGC-MVSNET75.22 33869.54 34192.28 34194.81 34989.58 32997.64 27096.50 3451.82 3815.57 38295.74 33468.21 36596.26 35973.80 37091.71 28090.99 366
YYNet190.70 31689.39 31994.62 31594.79 35090.65 31597.20 29997.46 30187.54 34272.54 36995.74 33486.51 25196.66 35486.00 33786.76 34396.54 303
DSMNet-mixed92.52 30192.58 29292.33 34094.15 35482.65 36798.30 20194.26 36589.08 33592.65 29895.73 33685.01 28095.76 36186.24 33597.76 17898.59 196
IB-MVS91.98 1793.27 28991.97 30097.19 18497.47 24193.41 26697.09 30895.99 34793.32 22492.47 30695.73 33678.06 33999.53 15094.59 19382.98 35098.62 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR95.10 21094.87 19995.80 27996.77 28589.70 32696.91 31895.21 35495.11 14394.83 21595.72 33887.71 23198.97 21193.06 23998.50 14998.72 185
test-mter94.08 27493.51 27395.80 27996.77 28589.70 32696.91 31895.21 35492.89 24294.83 21595.72 33877.69 34198.97 21193.06 23998.50 14998.72 185
MDA-MVSNet_test_wron90.71 31589.38 32094.68 31394.83 34890.78 31297.19 30097.46 30187.60 34172.41 37095.72 33886.51 25196.71 35385.92 33886.80 34296.56 300
MVS_030492.81 29792.01 29995.23 29497.46 24291.33 30298.17 22298.81 8091.13 30393.80 26295.68 34166.08 36998.06 31490.79 29096.13 22296.32 324
FMVSNet591.81 30490.92 30794.49 31897.21 25992.09 28698.00 23997.55 29489.31 33390.86 32695.61 34274.48 35795.32 36485.57 34089.70 30396.07 331
test_method79.03 33378.17 33681.63 35386.06 37354.40 38382.75 37296.89 33439.54 37680.98 36495.57 34358.37 37294.73 36784.74 34878.61 36195.75 337
PVSNet_088.72 1991.28 30990.03 31595.00 30297.99 20787.29 35894.84 35798.50 17292.06 27189.86 33495.19 34479.81 32899.39 16692.27 26369.79 36998.33 207
DeepMVS_CXcopyleft86.78 34897.09 27072.30 37495.17 35775.92 36684.34 36095.19 34470.58 36395.35 36279.98 36189.04 31692.68 365
patchmatchnet-post95.10 34689.42 18598.89 226
Anonymous2024052191.18 31090.44 31193.42 33093.70 35988.47 34798.94 8797.56 28988.46 33889.56 33895.08 34777.15 34896.97 34683.92 35089.55 30794.82 353
Patchmatch-RL test91.49 30790.85 30893.41 33191.37 36784.40 36292.81 36495.93 35091.87 27687.25 34994.87 34888.99 19896.53 35692.54 25882.00 35299.30 130
OpenMVS_ROBcopyleft86.42 2089.00 32787.43 33293.69 32893.08 36289.42 33297.91 24696.89 33478.58 36485.86 35594.69 34969.48 36498.29 29877.13 36793.29 26593.36 364
CL-MVSNet_self_test90.11 31989.14 32293.02 33791.86 36688.23 35196.51 33898.07 25290.49 31090.49 33094.41 35084.75 28595.34 36380.79 35874.95 36695.50 341
FPMVS77.62 33777.14 33779.05 35579.25 37860.97 37995.79 34795.94 34965.96 36967.93 37294.40 35137.73 37888.88 37468.83 37188.46 32287.29 368
KD-MVS_2432*160089.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28489.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
miper_refine_blended89.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28489.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
GG-mvs-BLEND96.59 23096.34 31094.98 20396.51 33888.58 37893.10 28794.34 35480.34 32698.05 31589.53 31296.99 19396.74 276
KD-MVS_self_test90.38 31789.38 32093.40 33292.85 36388.94 34197.95 24297.94 26890.35 31690.25 33193.96 35579.82 32795.94 36084.62 34976.69 36495.33 343
new_pmnet90.06 32089.00 32493.22 33694.18 35388.32 35096.42 34096.89 33486.19 34885.67 35793.62 35677.18 34797.10 34481.61 35689.29 31294.23 356
PM-MVS87.77 32986.55 33391.40 34591.03 36983.36 36696.92 31695.18 35691.28 29786.48 35493.42 35753.27 37396.74 35089.43 31581.97 35394.11 358
pmmvs-eth3d90.36 31889.05 32394.32 32391.10 36892.12 28597.63 27396.95 32988.86 33684.91 35993.13 35878.32 33596.74 35088.70 32181.81 35494.09 359
new-patchmatchnet88.50 32887.45 33191.67 34490.31 37085.89 36197.16 30597.33 31189.47 33083.63 36192.77 35976.38 34995.06 36682.70 35377.29 36394.06 360
pmmvs386.67 33284.86 33592.11 34388.16 37187.19 35996.63 33494.75 36079.88 36387.22 35092.75 36066.56 36895.20 36581.24 35776.56 36593.96 361
ambc89.49 34786.66 37275.78 37292.66 36596.72 34086.55 35392.50 36146.01 37497.90 32590.32 29682.09 35194.80 354
PatchT93.06 29591.97 30096.35 25696.69 29192.67 28194.48 36097.08 32086.62 34597.08 15192.23 36287.94 22597.90 32578.89 36496.69 19998.49 200
RPMNet92.81 29791.34 30597.24 18197.00 27293.43 26494.96 35498.80 9182.27 36096.93 15992.12 36386.98 24599.82 6876.32 36896.65 20198.46 201
UnsupCasMVSNet_bld87.17 33085.12 33493.31 33491.94 36588.77 34294.92 35698.30 21184.30 35882.30 36290.04 36463.96 37197.25 34285.85 33974.47 36893.93 362
LCM-MVSNet78.70 33476.24 33986.08 34977.26 38071.99 37594.34 36196.72 34061.62 37176.53 36689.33 36533.91 38092.78 37181.85 35574.60 36793.46 363
PMMVS277.95 33675.44 34085.46 35082.54 37574.95 37394.23 36293.08 37072.80 36874.68 36787.38 36636.36 37991.56 37273.95 36963.94 37289.87 367
JIA-IIPM93.35 28692.49 29395.92 27396.48 30390.65 31595.01 35396.96 32885.93 35196.08 19487.33 36787.70 23398.78 23991.35 28295.58 22798.34 206
PMVScopyleft61.03 2365.95 34163.57 34573.09 35857.90 38351.22 38485.05 37193.93 36954.45 37244.32 37883.57 36813.22 38289.15 37358.68 37481.00 35778.91 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet89.46 32688.40 32592.64 33897.58 23182.15 36894.16 36393.05 37175.73 36790.90 32582.52 36979.42 33098.33 29083.53 35298.68 13897.43 229
gg-mvs-nofinetune92.21 30390.58 31097.13 18996.75 28895.09 19795.85 34689.40 37785.43 35594.50 22481.98 37080.80 32398.40 28892.16 26498.33 15897.88 218
Gipumacopyleft78.40 33576.75 33883.38 35295.54 33680.43 37079.42 37397.40 30764.67 37073.46 36880.82 37145.65 37593.14 37066.32 37287.43 33376.56 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 33965.37 34380.22 35465.99 38271.96 37690.91 36890.09 37682.62 35949.93 37778.39 37229.36 38181.75 37562.49 37338.52 37686.95 370
E-PMN64.94 34264.25 34467.02 35982.28 37659.36 38191.83 36785.63 37952.69 37360.22 37477.28 37341.06 37780.12 37746.15 37641.14 37461.57 375
EMVS64.07 34363.26 34666.53 36081.73 37758.81 38291.85 36684.75 38051.93 37559.09 37575.13 37443.32 37679.09 37842.03 37739.47 37561.69 374
MVEpermissive62.14 2263.28 34459.38 34774.99 35674.33 38165.47 37785.55 37080.50 38252.02 37451.10 37675.00 37510.91 38580.50 37651.60 37553.40 37378.99 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
X-MVStestdata94.06 27692.30 29699.34 2699.70 2498.35 4899.29 2298.88 5197.40 2798.46 7943.50 37695.90 4499.89 3997.85 5699.74 4599.78 16
testmvs21.48 34724.95 35011.09 36314.89 3856.47 38796.56 3369.87 3867.55 37917.93 37939.02 3779.43 3865.90 38216.56 38012.72 37920.91 377
test12320.95 34823.72 35112.64 36213.54 3868.19 38696.55 3376.13 3877.48 38016.74 38037.98 37812.97 3836.05 38116.69 3795.43 38023.68 376
test_post31.83 37988.83 20598.91 222
test_post196.68 33330.43 38087.85 22998.69 24392.59 254
wuyk23d30.17 34530.18 34930.16 36178.61 37943.29 38566.79 37414.21 38517.31 37814.82 38111.93 38111.55 38441.43 38037.08 37819.30 3785.76 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.88 35010.50 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38294.51 910.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.82 198.66 2699.69 198.95 3597.46 2399.39 15
MSC_two_6792asdad99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
No_MVS99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
eth-test20.00 387
eth-test0.00 387
IU-MVS99.71 2199.23 798.64 14195.28 13499.63 498.35 3299.81 1299.83 7
save fliter99.46 5598.38 4098.21 21098.71 11897.95 3
test_0728_SECOND99.71 199.72 1399.35 198.97 8198.88 5199.94 498.47 2299.81 1299.84 6
GSMVS99.20 139
test_part299.63 3199.18 1099.27 21
sam_mvs189.45 18499.20 139
sam_mvs88.99 198
MTGPAbinary98.74 108
MTMP98.89 9594.14 367
test9_res96.39 13799.57 8199.69 57
agg_prior295.87 15299.57 8199.68 63
agg_prior99.30 7998.38 4098.72 11497.57 13999.81 75
test_prior498.01 6797.86 253
test_prior99.19 4699.31 7498.22 5598.84 6999.70 11999.65 73
旧先验297.57 27691.30 29598.67 6799.80 8495.70 162
新几何297.64 270
无先验97.58 27598.72 11491.38 28999.87 4893.36 23199.60 85
原ACMM297.67 268
testdata299.89 3991.65 279
segment_acmp96.85 14
testdata197.32 29296.34 85
test1299.18 5099.16 10798.19 5798.53 16298.07 9895.13 7799.72 11399.56 8699.63 79
plane_prior797.42 24794.63 219
plane_prior697.35 25294.61 22287.09 242
plane_prior598.56 15699.03 20496.07 14294.27 23296.92 251
plane_prior394.61 22297.02 5595.34 204
plane_prior298.80 11897.28 36
plane_prior197.37 251
plane_prior94.60 22498.44 18096.74 6894.22 234
n20.00 388
nn0.00 388
door-mid94.37 363
test1198.66 136
door94.64 361
HQP5-MVS94.25 238
HQP-NCC97.20 26098.05 23396.43 8194.45 226
ACMP_Plane97.20 26098.05 23396.43 8194.45 226
BP-MVS95.30 171
HQP4-MVS94.45 22698.96 21596.87 262
HQP3-MVS98.46 17994.18 236
HQP2-MVS86.75 248
MDTV_nov1_ep13_2view84.26 36396.89 32390.97 30597.90 11889.89 17693.91 21599.18 148
ACMMP++_ref92.97 268
ACMMP++93.61 255
Test By Simon94.64 87