This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
MM89.16 689.23 788.97 490.79 9273.65 1092.66 2391.17 12286.57 187.39 3794.97 1671.70 5397.68 192.19 195.63 2895.57 1
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6987.65 20267.22 15288.69 11993.04 3879.64 1885.33 5492.54 8373.30 3594.50 10983.49 6091.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19986.47 19191.87 10173.63 13386.60 4593.02 7276.57 1591.87 21983.36 6192.15 7895.35 3
casdiffmvspermissive85.11 6385.14 6385.01 8687.20 21765.77 18287.75 15392.83 5677.84 3784.36 7792.38 8572.15 4693.93 13181.27 8690.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+77.84 485.48 5684.47 7488.51 791.08 8273.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19596.75 2677.20 12293.73 6595.29 5
CS-MVS86.69 3586.95 3185.90 6490.76 9367.57 14192.83 1793.30 3279.67 1784.57 7292.27 8671.47 5695.02 9084.24 5593.46 6695.13 6
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7774.62 11388.90 2093.85 5275.75 2096.00 5087.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline84.93 6784.98 6484.80 9687.30 21565.39 19087.30 16592.88 5377.62 3984.04 8392.26 8771.81 5093.96 12581.31 8490.30 10395.03 8
MVS_030488.08 1488.08 1788.08 1489.67 11772.04 4892.26 3389.26 17984.19 285.01 5795.18 1369.93 7297.20 1491.63 295.60 2994.99 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
PC_three_145268.21 24692.02 1294.00 4682.09 595.98 5384.58 4996.68 294.95 10
IS-MVSNet83.15 9382.81 9384.18 12089.94 11263.30 23491.59 4388.46 20979.04 2579.49 13892.16 8865.10 12794.28 11467.71 21291.86 8594.95 10
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5996.48 894.88 14
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test250677.30 22376.49 22079.74 24890.08 10552.02 35987.86 15263.10 39474.88 10680.16 13292.79 7938.29 36392.35 20168.74 20592.50 7594.86 17
ECVR-MVScopyleft79.61 16179.26 15480.67 23090.08 10554.69 34387.89 15077.44 35174.88 10680.27 12992.79 7948.96 29992.45 19568.55 20692.50 7594.86 17
IU-MVS95.30 271.25 5792.95 5266.81 25692.39 688.94 1696.63 494.85 19
test111179.43 16879.18 15780.15 24089.99 11053.31 35687.33 16477.05 35475.04 10380.23 13192.77 8148.97 29892.33 20368.87 20392.40 7794.81 20
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
sasdasda85.91 4785.87 4986.04 6089.84 11469.44 9590.45 6593.00 4376.70 6988.01 2891.23 11173.28 3693.91 13281.50 8188.80 12494.77 22
CS-MVS-test86.29 4286.48 3785.71 6891.02 8467.21 15392.36 2993.78 1878.97 2883.51 9291.20 11470.65 6695.15 8181.96 7894.89 4194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11469.44 9590.45 6593.00 4376.70 6988.01 2891.23 11173.28 3693.91 13281.50 8188.80 12494.77 22
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6094.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MGCFI-Net85.06 6585.51 5483.70 14389.42 12763.01 24089.43 9092.62 6876.43 7387.53 3591.34 10972.82 4293.42 15881.28 8588.74 12794.66 27
alignmvs85.48 5685.32 6085.96 6389.51 12369.47 9289.74 8092.47 7176.17 8287.73 3491.46 10670.32 6893.78 13881.51 8088.95 12194.63 28
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6296.00 5088.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
VDD-MVS83.01 9882.36 9984.96 8891.02 8466.40 16788.91 10988.11 21277.57 4184.39 7693.29 6452.19 25493.91 13277.05 12488.70 12894.57 31
VDDNet81.52 12280.67 12584.05 13290.44 9864.13 21689.73 8185.91 25571.11 18083.18 9493.48 5850.54 27893.49 15273.40 15988.25 13494.54 32
MVSMamba_pp84.98 6684.70 6885.80 6689.43 12667.63 13988.44 12692.64 6672.17 16184.54 7390.39 13668.88 8895.28 7681.45 8394.39 5394.49 33
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
iter_conf05_1184.86 7084.52 7285.87 6590.86 8967.18 15489.63 8592.15 8771.48 17384.64 6990.81 12868.82 8996.00 5078.50 10793.84 6394.43 35
iter_conf0585.49 5585.43 5685.67 7091.09 8166.55 16587.18 16892.08 8972.89 15482.90 9891.71 9671.85 4996.03 4684.77 4794.39 5394.42 36
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 39
CANet86.45 3886.10 4587.51 3790.09 10470.94 6789.70 8292.59 6981.78 481.32 11791.43 10770.34 6797.23 1384.26 5393.36 6794.37 40
PHI-MVS86.43 3986.17 4387.24 4190.88 8870.96 6592.27 3294.07 972.45 15585.22 5691.90 9269.47 7796.42 3783.28 6395.94 1994.35 41
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 42
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5196.93 1985.53 3995.79 2294.32 43
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8793.95 5169.77 7596.01 4985.15 4094.66 4694.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS85.76 5185.29 6287.17 4393.49 4771.08 6188.58 12392.42 7568.32 24584.61 7093.48 5872.32 4496.15 4579.00 10195.43 3194.28 45
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 46
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 47
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7893.36 6371.44 5796.76 2580.82 9095.33 3494.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet83.40 8983.02 8984.57 10090.13 10364.47 20992.32 3090.73 13474.45 11779.35 14091.10 11769.05 8595.12 8272.78 16687.22 14494.13 49
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 50
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 6096.67 2987.67 2996.37 1494.09 51
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8994.17 3667.45 10296.60 3383.06 6494.50 5094.07 52
X-MVStestdata80.37 15077.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8912.47 40867.45 10296.60 3383.06 6494.50 5094.07 52
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7494.52 2169.09 8296.70 2784.37 5294.83 4494.03 54
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 9096.65 3084.53 5094.90 4094.00 55
test_fmvsmconf_n85.92 4686.04 4785.57 7285.03 25669.51 9089.62 8690.58 13773.42 14087.75 3294.02 4472.85 4193.24 16390.37 390.75 9793.96 56
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsm_n_192085.29 6185.34 5885.13 8386.12 23569.93 8388.65 12190.78 13369.97 20688.27 2393.98 4971.39 5891.54 23188.49 2390.45 10193.91 58
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6593.91 58
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6596.82 2284.18 5795.01 3793.90 60
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7382.99 30169.39 9789.65 8390.29 15073.31 14387.77 3194.15 3871.72 5293.23 16490.31 490.67 9993.89 61
Anonymous20240521178.25 19677.01 20681.99 19791.03 8360.67 27084.77 23183.90 28070.65 19380.00 13391.20 11441.08 35091.43 23865.21 23485.26 17193.85 62
LFMVS81.82 11481.23 11483.57 14791.89 7363.43 23289.84 7581.85 31277.04 5883.21 9393.10 6752.26 25393.43 15771.98 17289.95 11193.85 62
Effi-MVS+83.62 8483.08 8785.24 7988.38 17367.45 14388.89 11089.15 18575.50 9482.27 10588.28 18969.61 7694.45 11177.81 11587.84 13693.84 64
Anonymous2024052980.19 15478.89 16284.10 12290.60 9464.75 20388.95 10890.90 12965.97 27380.59 12791.17 11649.97 28393.73 14469.16 20082.70 21493.81 65
MVS_Test83.15 9383.06 8883.41 15286.86 22163.21 23686.11 20192.00 9274.31 11882.87 9989.44 16270.03 7093.21 16677.39 12188.50 13293.81 65
test_fmvsmconf0.01_n84.73 7184.52 7285.34 7680.25 34169.03 10089.47 8889.65 16773.24 14786.98 4294.27 3266.62 10893.23 16490.26 589.95 11193.78 67
GeoE81.71 11681.01 12083.80 14289.51 12364.45 21088.97 10788.73 20471.27 17778.63 15289.76 14866.32 11493.20 16969.89 19286.02 16493.74 68
diffmvspermissive82.10 10681.88 10882.76 18583.00 29963.78 22283.68 25589.76 16372.94 15282.02 10889.85 14665.96 12190.79 25582.38 7687.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6396.61 3284.53 5094.89 4193.66 70
VNet82.21 10582.41 9781.62 20390.82 9060.93 26584.47 23989.78 16276.36 7984.07 8291.88 9364.71 13190.26 26170.68 18388.89 12293.66 70
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8594.42 2967.87 9996.64 3182.70 7494.57 4993.66 70
DELS-MVS85.41 5985.30 6185.77 6788.49 16767.93 13385.52 22093.44 2778.70 2983.63 9189.03 16974.57 2495.71 5980.26 9794.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10194.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-283.65 8184.54 7080.99 22290.06 10965.83 17984.21 24888.74 20371.60 17085.01 5792.44 8474.51 2583.50 33582.15 7792.15 7893.64 76
EIA-MVS83.31 9282.80 9484.82 9489.59 11965.59 18588.21 13792.68 6174.66 11178.96 14486.42 24469.06 8495.26 7775.54 14190.09 10793.62 77
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8694.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast85.35 6084.95 6686.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10494.09 4062.60 15195.54 6380.93 8892.93 6993.57 79
fmvsm_s_conf0.1_n83.56 8583.38 8384.10 12284.86 25867.28 14989.40 9483.01 29670.67 18987.08 4093.96 5068.38 9391.45 23788.56 2284.50 17993.56 80
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9591.07 11975.94 1895.19 7979.94 9994.38 5693.55 81
test1286.80 4992.63 6470.70 7291.79 10582.71 10371.67 5496.16 4494.50 5093.54 82
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 6083.04 6692.51 7493.53 83
mvs_anonymous79.42 16979.11 15880.34 23684.45 26757.97 29782.59 27487.62 22667.40 25576.17 21388.56 18268.47 9289.59 27470.65 18486.05 16393.47 84
fmvsm_s_conf0.5_n83.80 7883.71 7984.07 12786.69 22767.31 14889.46 8983.07 29571.09 18186.96 4393.70 5569.02 8791.47 23688.79 1884.62 17893.44 85
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8376.87 6282.81 10294.25 3466.44 11296.24 4182.88 6994.28 5893.38 86
EPNet83.72 8082.92 9286.14 5984.22 27069.48 9191.05 5485.27 26281.30 676.83 19391.65 9866.09 11795.56 6176.00 13593.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive83.46 8782.80 9485.43 7590.25 10168.74 11190.30 6990.13 15476.33 8080.87 12592.89 7461.00 18394.20 11972.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22260.24 27787.28 16688.79 19874.25 12076.84 19290.53 13449.48 28991.56 22967.98 21082.15 21893.29 90
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7788.18 17867.85 13487.66 15589.73 16580.05 1482.95 9689.59 15470.74 6494.82 9980.66 9484.72 17693.28 91
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18892.02 9079.45 1985.88 4894.80 1768.07 9596.21 4286.69 3695.34 3393.23 92
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8894.46 2567.93 9795.95 5484.20 5694.39 5393.23 92
ACMMPcopyleft85.89 4985.39 5787.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12693.82 5364.33 13296.29 3982.67 7590.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.1_n_a83.32 9182.99 9084.28 11583.79 27968.07 13089.34 9682.85 30169.80 21087.36 3894.06 4268.34 9491.56 22987.95 2783.46 20393.21 95
PAPM_NR83.02 9782.41 9784.82 9492.47 6766.37 16887.93 14891.80 10473.82 12977.32 18290.66 13067.90 9894.90 9570.37 18689.48 11693.19 96
OMC-MVS82.69 10081.97 10784.85 9388.75 15867.42 14487.98 14490.87 13174.92 10579.72 13591.65 9862.19 16193.96 12575.26 14386.42 15693.16 97
fmvsm_s_conf0.5_n_a83.63 8383.41 8284.28 11586.14 23468.12 12889.43 9082.87 30070.27 20087.27 3993.80 5469.09 8291.58 22788.21 2683.65 19793.14 98
PAPR81.66 12080.89 12283.99 13790.27 10064.00 21786.76 18491.77 10768.84 23677.13 19189.50 15567.63 10094.88 9767.55 21488.52 13193.09 99
UA-Net85.08 6484.96 6585.45 7492.07 7068.07 13089.78 7990.86 13282.48 384.60 7193.20 6669.35 7995.22 7871.39 17790.88 9693.07 100
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
thisisatest053079.40 17077.76 19184.31 11387.69 20165.10 19687.36 16284.26 27670.04 20377.42 17988.26 19149.94 28494.79 10170.20 18784.70 17793.03 102
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9968.69 23885.00 5993.10 6774.43 2695.41 7084.97 4195.71 2593.02 103
EC-MVSNet86.01 4386.38 3884.91 9289.31 13566.27 17092.32 3093.63 2179.37 2084.17 8091.88 9369.04 8695.43 6883.93 5893.77 6493.01 104
EI-MVSNet-UG-set83.81 7783.38 8385.09 8487.87 19167.53 14287.44 16189.66 16679.74 1682.23 10689.41 16370.24 6994.74 10279.95 9883.92 18992.99 105
tttt051779.40 17077.91 18383.90 14188.10 18363.84 22088.37 13284.05 27871.45 17476.78 19589.12 16649.93 28694.89 9670.18 18883.18 20792.96 106
test9_res84.90 4295.70 2692.87 107
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7074.50 11486.84 4494.65 2067.31 10495.77 5684.80 4692.85 7092.84 108
ETV-MVS84.90 6984.67 6985.59 7189.39 13068.66 11788.74 11792.64 6679.97 1584.10 8185.71 25769.32 8095.38 7280.82 9091.37 9092.72 109
agg_prior282.91 6895.45 3092.70 110
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5395.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ET-MVSNet_ETH3D78.63 18976.63 21984.64 9986.73 22669.47 9285.01 22684.61 26969.54 21666.51 34086.59 23750.16 28191.75 22276.26 13184.24 18692.69 112
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16351.78 36586.70 18579.63 33674.14 12375.11 24290.83 12761.29 17789.75 27158.10 29891.60 8692.69 112
TSAR-MVS + GP.85.71 5285.33 5986.84 4791.34 7872.50 3689.07 10587.28 23376.41 7485.80 4990.22 14074.15 3195.37 7581.82 7991.88 8292.65 114
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14187.96 21770.01 20483.95 8493.23 6568.80 9191.51 23488.61 2089.96 11092.57 115
FA-MVS(test-final)80.96 13179.91 13984.10 12288.30 17665.01 19784.55 23890.01 15773.25 14679.61 13687.57 20658.35 20494.72 10371.29 17886.25 15992.56 116
test_yl81.17 12780.47 12983.24 15889.13 14363.62 22386.21 19889.95 15972.43 15881.78 11389.61 15257.50 21293.58 14670.75 18186.90 14892.52 117
DCV-MVSNet81.17 12780.47 12983.24 15889.13 14363.62 22386.21 19889.95 15972.43 15881.78 11389.61 15257.50 21293.58 14670.75 18186.90 14892.52 117
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7973.53 13885.69 5194.45 2665.00 13095.56 6182.75 7091.87 8392.50 119
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 7973.53 13885.69 5194.45 2663.87 13682.75 7091.87 8392.50 119
nrg03083.88 7683.53 8084.96 8886.77 22569.28 9990.46 6492.67 6274.79 10882.95 9691.33 11072.70 4393.09 17780.79 9279.28 25492.50 119
MG-MVS83.41 8883.45 8183.28 15592.74 6262.28 25188.17 13989.50 17075.22 9881.49 11692.74 8266.75 10795.11 8472.85 16591.58 8792.45 122
FIs82.07 10882.42 9681.04 22188.80 15558.34 29188.26 13693.49 2676.93 6078.47 15791.04 12069.92 7392.34 20269.87 19384.97 17392.44 123
FC-MVSNet-test81.52 12282.02 10580.03 24288.42 17255.97 32987.95 14693.42 2977.10 5677.38 18090.98 12669.96 7191.79 22068.46 20884.50 17992.33 124
Fast-Effi-MVS+80.81 13579.92 13883.47 14888.85 15064.51 20685.53 21889.39 17370.79 18678.49 15685.06 27567.54 10193.58 14667.03 22286.58 15392.32 125
TranMVSNet+NR-MVSNet80.84 13380.31 13282.42 19087.85 19262.33 24987.74 15491.33 11880.55 977.99 17089.86 14565.23 12692.62 18967.05 22175.24 31192.30 126
ab-mvs79.51 16478.97 16181.14 21888.46 16960.91 26683.84 25389.24 18170.36 19679.03 14388.87 17263.23 14390.21 26365.12 23582.57 21592.28 127
CANet_DTU80.61 14279.87 14082.83 17785.60 24363.17 23987.36 16288.65 20576.37 7875.88 21688.44 18553.51 24393.07 17873.30 16089.74 11492.25 128
UniMVSNet_NR-MVSNet81.88 11281.54 11182.92 17488.46 16963.46 23087.13 16992.37 7680.19 1278.38 15889.14 16571.66 5593.05 17970.05 18976.46 28492.25 128
fmvsm_l_conf0.5_n84.47 7284.54 7084.27 11785.42 24668.81 10688.49 12587.26 23468.08 24788.03 2793.49 5772.04 4891.77 22188.90 1789.14 12092.24 130
DU-MVS81.12 12980.52 12882.90 17587.80 19463.46 23087.02 17391.87 10179.01 2678.38 15889.07 16765.02 12893.05 17970.05 18976.46 28492.20 131
NR-MVSNet80.23 15279.38 15082.78 18387.80 19463.34 23386.31 19591.09 12679.01 2672.17 27989.07 16767.20 10592.81 18866.08 22875.65 29792.20 131
TAPA-MVS73.13 979.15 17677.94 18282.79 18289.59 11962.99 24488.16 14091.51 11365.77 27477.14 19091.09 11860.91 18493.21 16650.26 34487.05 14692.17 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13386.85 24267.48 25487.48 3693.40 6170.89 6191.61 22588.38 2589.22 11992.16 134
3Dnovator76.31 583.38 9082.31 10086.59 5287.94 18972.94 2890.64 5892.14 8877.21 5275.47 22392.83 7658.56 20294.72 10373.24 16292.71 7292.13 135
MVS_111021_HR85.14 6284.75 6786.32 5591.65 7672.70 3085.98 20390.33 14776.11 8382.08 10791.61 10171.36 5994.17 12181.02 8792.58 7392.08 136
MVSFormer82.85 9982.05 10485.24 7987.35 20970.21 7790.50 6190.38 14368.55 24081.32 11789.47 15761.68 16693.46 15578.98 10290.26 10492.05 137
jason81.39 12580.29 13384.70 9886.63 22969.90 8585.95 20486.77 24363.24 30381.07 12389.47 15761.08 18292.15 20878.33 11190.07 10992.05 137
jason: jason.
mvsmamba81.69 11780.74 12384.56 10187.45 20866.72 16191.26 4885.89 25674.66 11178.23 16290.56 13254.33 23494.91 9280.73 9383.54 20192.04 139
HyFIR lowres test77.53 21875.40 23683.94 14089.59 11966.62 16280.36 30688.64 20656.29 36376.45 20385.17 27257.64 21093.28 16161.34 27183.10 20891.91 140
XVG-OURS-SEG-HR80.81 13579.76 14283.96 13985.60 24368.78 10883.54 26190.50 14070.66 19276.71 19791.66 9760.69 18791.26 24276.94 12581.58 22591.83 141
lupinMVS81.39 12580.27 13484.76 9787.35 20970.21 7785.55 21686.41 24762.85 31081.32 11788.61 17961.68 16692.24 20678.41 11090.26 10491.83 141
WR-MVS79.49 16579.22 15680.27 23888.79 15658.35 29085.06 22588.61 20778.56 3077.65 17588.34 18763.81 13890.66 25864.98 23777.22 27391.80 143
h-mvs3383.15 9382.19 10186.02 6290.56 9570.85 7088.15 14189.16 18476.02 8584.67 6691.39 10861.54 16995.50 6482.71 7275.48 30191.72 144
UniMVSNet (Re)81.60 12181.11 11783.09 16588.38 17364.41 21187.60 15693.02 4278.42 3278.56 15488.16 19369.78 7493.26 16269.58 19676.49 28391.60 145
UGNet80.83 13479.59 14684.54 10288.04 18668.09 12989.42 9288.16 21176.95 5976.22 20989.46 15949.30 29393.94 12868.48 20790.31 10291.60 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testing9176.54 23375.66 23179.18 26088.43 17155.89 33081.08 29283.00 29773.76 13175.34 23084.29 28746.20 31790.07 26564.33 24184.50 17991.58 147
XVG-OURS80.41 14779.23 15583.97 13885.64 24269.02 10283.03 27290.39 14271.09 18177.63 17691.49 10554.62 23391.35 24075.71 13783.47 20291.54 148
LCM-MVSNet-Re77.05 22576.94 20977.36 28987.20 21751.60 36680.06 30980.46 32675.20 9967.69 32286.72 22962.48 15488.98 28563.44 24789.25 11891.51 149
DP-MVS Recon83.11 9682.09 10386.15 5894.44 1970.92 6888.79 11392.20 8470.53 19479.17 14291.03 12264.12 13496.03 4668.39 20990.14 10691.50 150
PS-MVSNAJss82.07 10881.31 11284.34 11186.51 23067.27 15089.27 9791.51 11371.75 16579.37 13990.22 14063.15 14594.27 11577.69 11682.36 21791.49 151
testing9976.09 24475.12 24279.00 26188.16 17955.50 33580.79 29681.40 31673.30 14475.17 23984.27 28944.48 33090.02 26664.28 24284.22 18791.48 152
thisisatest051577.33 22275.38 23783.18 16185.27 24963.80 22182.11 27983.27 29065.06 28175.91 21583.84 29649.54 28894.27 11567.24 21886.19 16091.48 152
DPM-MVS84.93 6784.29 7586.84 4790.20 10273.04 2387.12 17093.04 3869.80 21082.85 10091.22 11373.06 3996.02 4876.72 12994.63 4791.46 154
HQP_MVS83.64 8283.14 8685.14 8190.08 10568.71 11391.25 5092.44 7279.12 2378.92 14691.00 12460.42 19395.38 7278.71 10586.32 15791.33 155
plane_prior592.44 7295.38 7278.71 10586.32 15791.33 155
GA-MVS76.87 22975.17 24181.97 19882.75 30562.58 24681.44 28986.35 25072.16 16374.74 24982.89 31346.20 31792.02 21268.85 20481.09 23091.30 157
VPA-MVSNet80.60 14380.55 12780.76 22888.07 18560.80 26886.86 17891.58 11175.67 9280.24 13089.45 16163.34 13990.25 26270.51 18579.22 25591.23 158
Effi-MVS+-dtu80.03 15678.57 16784.42 10785.13 25468.74 11188.77 11488.10 21374.99 10474.97 24683.49 30457.27 21593.36 15973.53 15680.88 23291.18 159
v2v48280.23 15279.29 15383.05 16883.62 28264.14 21587.04 17289.97 15873.61 13478.18 16587.22 21761.10 18193.82 13676.11 13276.78 28191.18 159
FE-MVS77.78 21175.68 22984.08 12688.09 18466.00 17483.13 26787.79 22368.42 24478.01 16985.23 27045.50 32595.12 8259.11 28785.83 16891.11 161
Anonymous2023121178.97 18277.69 19482.81 17990.54 9664.29 21390.11 7291.51 11365.01 28376.16 21488.13 19850.56 27793.03 18269.68 19577.56 27191.11 161
hse-mvs281.72 11580.94 12184.07 12788.72 16067.68 13885.87 20787.26 23476.02 8584.67 6688.22 19261.54 16993.48 15382.71 7273.44 32991.06 163
AUN-MVS79.21 17577.60 19684.05 13288.71 16167.61 14085.84 20987.26 23469.08 22977.23 18588.14 19753.20 24793.47 15475.50 14273.45 32891.06 163
HQP4-MVS77.24 18495.11 8491.03 165
HQP-MVS82.61 10282.02 10584.37 10889.33 13266.98 15789.17 9992.19 8576.41 7477.23 18590.23 13960.17 19695.11 8477.47 11985.99 16591.03 165
RPSCF73.23 27671.46 27978.54 27082.50 31159.85 28082.18 27882.84 30258.96 34471.15 28989.41 16345.48 32684.77 32758.82 29171.83 34091.02 167
test_djsdf80.30 15179.32 15283.27 15683.98 27665.37 19190.50 6190.38 14368.55 24076.19 21088.70 17556.44 22093.46 15578.98 10280.14 24490.97 168
PCF-MVS73.52 780.38 14878.84 16385.01 8687.71 19968.99 10383.65 25691.46 11763.00 30777.77 17490.28 13766.10 11695.09 8861.40 26988.22 13590.94 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPNet78.69 18878.66 16578.76 26588.31 17555.72 33284.45 24286.63 24576.79 6478.26 16190.55 13359.30 19889.70 27366.63 22377.05 27590.88 170
CPTT-MVS83.73 7983.33 8584.92 9193.28 4970.86 6992.09 3790.38 14368.75 23779.57 13792.83 7660.60 19193.04 18180.92 8991.56 8890.86 171
tt080578.73 18677.83 18681.43 20885.17 25060.30 27689.41 9390.90 12971.21 17877.17 18988.73 17446.38 31293.21 16672.57 16978.96 25690.79 172
CLD-MVS82.31 10481.65 11084.29 11488.47 16867.73 13785.81 21192.35 7775.78 8878.33 16086.58 23964.01 13594.35 11276.05 13487.48 14190.79 172
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
bld_raw_dy_0_6482.00 11081.23 11484.34 11188.75 15866.52 16681.95 28091.90 9863.91 30075.26 23790.15 14269.37 7895.74 5877.66 11792.08 8090.76 174
v119279.59 16378.43 17183.07 16783.55 28464.52 20586.93 17690.58 13770.83 18577.78 17385.90 25359.15 19993.94 12873.96 15377.19 27490.76 174
IterMVS-LS80.06 15579.38 15082.11 19485.89 23863.20 23786.79 18189.34 17474.19 12175.45 22686.72 22966.62 10892.39 19872.58 16876.86 27890.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14679.98 13782.12 19384.28 26863.19 23886.41 19288.95 19574.18 12278.69 14987.54 20966.62 10892.43 19672.57 16980.57 23890.74 177
v192192079.22 17478.03 18082.80 18083.30 28963.94 21986.80 18090.33 14769.91 20877.48 17885.53 26358.44 20393.75 14273.60 15576.85 27990.71 178
QAPM80.88 13279.50 14885.03 8588.01 18868.97 10491.59 4392.00 9266.63 26575.15 24192.16 8857.70 20995.45 6663.52 24588.76 12690.66 179
v14419279.47 16678.37 17282.78 18383.35 28763.96 21886.96 17490.36 14669.99 20577.50 17785.67 26060.66 18893.77 14074.27 15076.58 28290.62 180
v124078.99 18177.78 18982.64 18683.21 29163.54 22786.62 18790.30 14969.74 21577.33 18185.68 25957.04 21793.76 14173.13 16376.92 27690.62 180
v114480.03 15679.03 15983.01 17083.78 28064.51 20687.11 17190.57 13971.96 16478.08 16886.20 24961.41 17393.94 12874.93 14477.23 27290.60 182
1112_ss77.40 22176.43 22280.32 23789.11 14760.41 27583.65 25687.72 22562.13 32073.05 26786.72 22962.58 15389.97 26762.11 26380.80 23490.59 183
CP-MVSNet78.22 19778.34 17377.84 28187.83 19354.54 34587.94 14791.17 12277.65 3873.48 26288.49 18362.24 16088.43 29462.19 26074.07 32090.55 184
testing22274.04 26572.66 26878.19 27687.89 19055.36 33681.06 29379.20 34071.30 17674.65 25183.57 30339.11 35988.67 29151.43 33685.75 16990.53 185
PS-CasMVS78.01 20678.09 17977.77 28387.71 19954.39 34788.02 14391.22 11977.50 4673.26 26488.64 17860.73 18588.41 29561.88 26473.88 32490.53 185
CDS-MVSNet79.07 17977.70 19383.17 16287.60 20368.23 12684.40 24586.20 25167.49 25376.36 20686.54 24161.54 16990.79 25561.86 26587.33 14290.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS78.89 18477.51 19883.03 16987.80 19467.79 13684.72 23285.05 26567.63 25076.75 19687.70 20262.25 15990.82 25458.53 29487.13 14590.49 187
PEN-MVS77.73 21277.69 19477.84 28187.07 22053.91 35087.91 14991.18 12177.56 4373.14 26688.82 17361.23 17889.17 28159.95 27972.37 33590.43 189
Test_1112_low_res76.40 23975.44 23479.27 25789.28 13758.09 29381.69 28487.07 23859.53 33972.48 27586.67 23461.30 17689.33 27860.81 27580.15 24390.41 190
HY-MVS69.67 1277.95 20777.15 20480.36 23587.57 20760.21 27883.37 26387.78 22466.11 26975.37 22987.06 22463.27 14190.48 26061.38 27082.43 21690.40 191
CHOSEN 1792x268877.63 21775.69 22883.44 14989.98 11168.58 11978.70 32887.50 22956.38 36275.80 21886.84 22558.67 20191.40 23961.58 26885.75 16990.34 192
SDMVSNet80.38 14880.18 13580.99 22289.03 14864.94 19980.45 30589.40 17275.19 10076.61 20189.98 14360.61 19087.69 30376.83 12783.55 19990.33 193
sd_testset77.70 21577.40 19978.60 26889.03 14860.02 27979.00 32385.83 25775.19 10076.61 20189.98 14354.81 22685.46 32162.63 25683.55 19990.33 193
114514_t80.68 14179.51 14784.20 11994.09 3867.27 15089.64 8491.11 12558.75 34774.08 25790.72 12958.10 20595.04 8969.70 19489.42 11790.30 195
eth_miper_zixun_eth77.92 20876.69 21781.61 20583.00 29961.98 25483.15 26689.20 18369.52 21774.86 24884.35 28661.76 16592.56 19271.50 17672.89 33390.28 196
PVSNet_Blended_VisFu82.62 10181.83 10984.96 8890.80 9169.76 8788.74 11791.70 10869.39 21878.96 14488.46 18465.47 12494.87 9874.42 14888.57 12990.24 197
MVS_111021_LR82.61 10282.11 10284.11 12188.82 15371.58 5385.15 22386.16 25274.69 11080.47 12891.04 12062.29 15890.55 25980.33 9690.08 10890.20 198
MSLP-MVS++85.43 5885.76 5184.45 10691.93 7270.24 7690.71 5792.86 5477.46 4784.22 7892.81 7867.16 10692.94 18380.36 9594.35 5790.16 199
mvs_tets79.13 17777.77 19083.22 16084.70 26066.37 16889.17 9990.19 15269.38 21975.40 22889.46 15944.17 33293.15 17376.78 12880.70 23690.14 200
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13165.93 17684.95 22887.15 23773.56 13678.19 16489.79 14756.67 21993.36 15959.53 28386.74 15190.13 201
c3_l78.75 18577.91 18381.26 21482.89 30361.56 26084.09 25189.13 18769.97 20675.56 22184.29 28766.36 11392.09 21073.47 15875.48 30190.12 202
v7n78.97 18277.58 19783.14 16383.45 28665.51 18688.32 13491.21 12073.69 13272.41 27686.32 24757.93 20693.81 13769.18 19975.65 29790.11 203
jajsoiax79.29 17377.96 18183.27 15684.68 26166.57 16489.25 9890.16 15369.20 22675.46 22589.49 15645.75 32393.13 17576.84 12680.80 23490.11 203
v14878.72 18777.80 18881.47 20782.73 30661.96 25586.30 19688.08 21473.26 14576.18 21185.47 26562.46 15592.36 20071.92 17373.82 32590.09 205
GBi-Net78.40 19377.40 19981.40 21087.60 20363.01 24088.39 12989.28 17671.63 16775.34 23087.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
test178.40 19377.40 19981.40 21087.60 20363.01 24088.39 12989.28 17671.63 16775.34 23087.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
FMVSNet177.44 21976.12 22681.40 21086.81 22463.01 24088.39 12989.28 17670.49 19574.39 25487.28 21349.06 29791.11 24560.91 27378.52 25990.09 205
WR-MVS_H78.51 19278.49 16878.56 26988.02 18756.38 32388.43 12792.67 6277.14 5473.89 25887.55 20866.25 11589.24 28058.92 28973.55 32790.06 209
DTE-MVSNet76.99 22676.80 21277.54 28886.24 23253.06 35887.52 15890.66 13577.08 5772.50 27488.67 17760.48 19289.52 27557.33 30570.74 34690.05 210
v879.97 15879.02 16082.80 18084.09 27364.50 20887.96 14590.29 15074.13 12475.24 23886.81 22662.88 15093.89 13574.39 14975.40 30690.00 211
thres600view776.50 23575.44 23479.68 25089.40 12957.16 30985.53 21883.23 29173.79 13076.26 20887.09 22251.89 26391.89 21748.05 35883.72 19690.00 211
thres40076.50 23575.37 23879.86 24589.13 14357.65 30385.17 22183.60 28373.41 14176.45 20386.39 24552.12 25591.95 21448.33 35383.75 19390.00 211
cl2278.07 20377.01 20681.23 21582.37 31561.83 25783.55 26087.98 21668.96 23475.06 24483.87 29461.40 17491.88 21873.53 15676.39 28689.98 214
OPM-MVS83.50 8682.95 9185.14 8188.79 15670.95 6689.13 10491.52 11277.55 4480.96 12491.75 9560.71 18694.50 10979.67 10086.51 15589.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline275.70 24873.83 25881.30 21383.26 29061.79 25882.57 27580.65 32266.81 25666.88 33183.42 30557.86 20892.19 20763.47 24679.57 24889.91 216
v1079.74 16078.67 16482.97 17384.06 27464.95 19887.88 15190.62 13673.11 14875.11 24286.56 24061.46 17294.05 12473.68 15475.55 29989.90 217
MVSTER79.01 18077.88 18582.38 19183.07 29664.80 20284.08 25288.95 19569.01 23378.69 14987.17 22054.70 23192.43 19674.69 14580.57 23889.89 218
ACMP74.13 681.51 12480.57 12684.36 10989.42 12768.69 11689.97 7491.50 11674.46 11675.04 24590.41 13553.82 24094.54 10677.56 11882.91 20989.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test82.08 10781.27 11384.50 10389.23 13968.76 10990.22 7091.94 9675.37 9676.64 19991.51 10354.29 23594.91 9278.44 10883.78 19089.83 220
LGP-MVS_train84.50 10389.23 13968.76 10991.94 9675.37 9676.64 19991.51 10354.29 23594.91 9278.44 10883.78 19089.83 220
V4279.38 17278.24 17682.83 17781.10 33365.50 18785.55 21689.82 16171.57 17178.21 16386.12 25160.66 18893.18 17275.64 13875.46 30389.81 222
MAR-MVS81.84 11380.70 12485.27 7891.32 7971.53 5489.82 7690.92 12869.77 21278.50 15586.21 24862.36 15794.52 10865.36 23392.05 8189.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DIV-MVS_self_test77.72 21376.76 21480.58 23182.48 31360.48 27383.09 26887.86 22169.22 22474.38 25585.24 26962.10 16291.53 23271.09 17975.40 30689.74 224
cl____77.72 21376.76 21480.58 23182.49 31260.48 27383.09 26887.87 22069.22 22474.38 25585.22 27162.10 16291.53 23271.09 17975.41 30589.73 225
miper_ehance_all_eth78.59 19177.76 19181.08 22082.66 30861.56 26083.65 25689.15 18568.87 23575.55 22283.79 29866.49 11192.03 21173.25 16176.39 28689.64 226
anonymousdsp78.60 19077.15 20482.98 17280.51 33967.08 15587.24 16789.53 16965.66 27675.16 24087.19 21952.52 24892.25 20577.17 12379.34 25389.61 227
FMVSNet278.20 19977.21 20381.20 21687.60 20362.89 24587.47 16089.02 19071.63 16775.29 23687.28 21354.80 22791.10 24862.38 25779.38 25289.61 227
baseline176.98 22776.75 21677.66 28488.13 18155.66 33385.12 22481.89 31073.04 15076.79 19488.90 17062.43 15687.78 30263.30 24971.18 34489.55 229
ETVMVS72.25 28671.05 28575.84 30187.77 19851.91 36279.39 31774.98 36369.26 22273.71 25982.95 31140.82 35286.14 31346.17 36684.43 18489.47 230
FMVSNet377.88 20976.85 21180.97 22486.84 22362.36 24886.52 19088.77 19971.13 17975.34 23086.66 23554.07 23891.10 24862.72 25279.57 24889.45 231
miper_enhance_ethall77.87 21076.86 21080.92 22581.65 32261.38 26282.68 27388.98 19265.52 27875.47 22382.30 32165.76 12392.00 21372.95 16476.39 28689.39 232
testing1175.14 25774.01 25378.53 27188.16 17956.38 32380.74 29980.42 32770.67 18972.69 27383.72 30043.61 33589.86 26862.29 25983.76 19289.36 233
cascas76.72 23274.64 24582.99 17185.78 24065.88 17882.33 27689.21 18260.85 32872.74 27081.02 33247.28 30693.75 14267.48 21585.02 17289.34 234
Fast-Effi-MVS+-dtu78.02 20576.49 22082.62 18783.16 29566.96 15986.94 17587.45 23172.45 15571.49 28684.17 29154.79 23091.58 22767.61 21380.31 24189.30 235
IB-MVS68.01 1575.85 24773.36 26283.31 15484.76 25966.03 17283.38 26285.06 26470.21 20269.40 30881.05 33145.76 32294.66 10565.10 23675.49 30089.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90076.50 23575.55 23379.33 25689.52 12256.99 31285.83 21083.23 29173.94 12676.32 20787.12 22151.89 26391.95 21448.33 35383.75 19389.07 237
tfpn200view976.42 23875.37 23879.55 25589.13 14357.65 30385.17 22183.60 28373.41 14176.45 20386.39 24552.12 25591.95 21448.33 35383.75 19389.07 237
xiu_mvs_v1_base_debu80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
xiu_mvs_v1_base80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
xiu_mvs_v1_base_debi80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
EPNet_dtu75.46 25274.86 24377.23 29282.57 31054.60 34486.89 17783.09 29471.64 16666.25 34285.86 25555.99 22188.04 29954.92 31886.55 15489.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs177.25 22476.68 21878.93 26384.22 27058.62 28986.41 19288.36 21071.37 17573.31 26388.01 19961.22 17989.15 28264.24 24373.01 33289.03 243
PVSNet_Blended80.98 13080.34 13182.90 17588.85 15065.40 18884.43 24392.00 9267.62 25178.11 16685.05 27666.02 11994.27 11571.52 17489.50 11589.01 244
PAPM77.68 21676.40 22381.51 20687.29 21661.85 25683.78 25489.59 16864.74 28571.23 28788.70 17562.59 15293.66 14552.66 32987.03 14789.01 244
WTY-MVS75.65 24975.68 22975.57 30586.40 23156.82 31477.92 33882.40 30565.10 28076.18 21187.72 20163.13 14880.90 35060.31 27781.96 22189.00 246
无先验87.48 15988.98 19260.00 33494.12 12267.28 21788.97 247
GSMVS88.96 248
sam_mvs151.32 26988.96 248
SCA74.22 26372.33 27279.91 24484.05 27562.17 25279.96 31279.29 33966.30 26872.38 27780.13 34151.95 26188.60 29259.25 28577.67 27088.96 248
miper_lstm_enhance74.11 26473.11 26577.13 29380.11 34359.62 28372.23 36586.92 24166.76 25870.40 29382.92 31256.93 21882.92 33969.06 20172.63 33488.87 251
ACMM73.20 880.78 14079.84 14183.58 14689.31 13568.37 12289.99 7391.60 11070.28 19977.25 18389.66 15053.37 24593.53 15174.24 15182.85 21088.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs674.69 25973.39 26178.61 26781.38 32857.48 30686.64 18687.95 21864.99 28470.18 29686.61 23650.43 27989.52 27562.12 26270.18 34888.83 253
原ACMM184.35 11093.01 5768.79 10792.44 7263.96 29981.09 12291.57 10266.06 11895.45 6667.19 21994.82 4588.81 254
CNLPA78.08 20276.79 21381.97 19890.40 9971.07 6287.59 15784.55 27066.03 27272.38 27789.64 15157.56 21186.04 31459.61 28283.35 20488.79 255
UWE-MVS72.13 28771.49 27874.03 32186.66 22847.70 37981.40 29076.89 35663.60 30275.59 22084.22 29039.94 35585.62 31848.98 35086.13 16288.77 256
K. test v371.19 29268.51 30479.21 25983.04 29857.78 30284.35 24676.91 35572.90 15362.99 36182.86 31439.27 35791.09 25061.65 26752.66 38888.75 257
旧先验191.96 7165.79 18186.37 24993.08 7169.31 8192.74 7188.74 258
PatchmatchNetpermissive73.12 27771.33 28278.49 27383.18 29360.85 26779.63 31478.57 34364.13 29271.73 28379.81 34651.20 27085.97 31557.40 30476.36 29188.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SixPastTwentyTwo73.37 27271.26 28479.70 24985.08 25557.89 29985.57 21283.56 28571.03 18365.66 34485.88 25442.10 34592.57 19159.11 28763.34 37088.65 260
PS-MVSNAJ81.69 11781.02 11983.70 14389.51 12368.21 12784.28 24790.09 15570.79 18681.26 12185.62 26263.15 14594.29 11375.62 13988.87 12388.59 261
xiu_mvs_v2_base81.69 11781.05 11883.60 14589.15 14268.03 13284.46 24190.02 15670.67 18981.30 12086.53 24263.17 14494.19 12075.60 14088.54 13088.57 262
CostFormer75.24 25673.90 25679.27 25782.65 30958.27 29280.80 29582.73 30361.57 32375.33 23483.13 30955.52 22291.07 25164.98 23778.34 26488.45 263
lessismore_v078.97 26281.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24159.67 28146.92 39488.43 264
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12585.17 25069.91 8490.57 5990.97 12766.70 25972.17 27991.91 9154.70 23193.96 12561.81 26690.95 9588.41 265
OurMVSNet-221017-074.26 26272.42 27179.80 24783.76 28159.59 28485.92 20686.64 24466.39 26766.96 33087.58 20539.46 35691.60 22665.76 23169.27 35188.22 266
LS3D76.95 22874.82 24483.37 15390.45 9767.36 14789.15 10386.94 24061.87 32269.52 30790.61 13151.71 26694.53 10746.38 36586.71 15288.21 267
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20383.20 29264.67 20483.60 25989.75 16469.75 21371.85 28287.09 22232.78 37592.11 20969.99 19180.43 24088.09 268
tpm273.26 27571.46 27978.63 26683.34 28856.71 31780.65 30180.40 32856.63 36173.55 26182.02 32651.80 26591.24 24356.35 31478.42 26287.95 269
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 270
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39040.66 38173.57 32687.90 271
PLCcopyleft70.83 1178.05 20476.37 22483.08 16691.88 7467.80 13588.19 13889.46 17164.33 29169.87 30488.38 18653.66 24193.58 14658.86 29082.73 21287.86 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm72.37 28471.71 27674.35 31882.19 31652.00 36079.22 32077.29 35264.56 28772.95 26983.68 30251.35 26883.26 33858.33 29675.80 29587.81 273
Patchmatch-RL test70.24 30467.78 31777.61 28677.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32069.58 19666.58 36187.77 274
F-COLMAP76.38 24074.33 25182.50 18989.28 13766.95 16088.41 12889.03 18964.05 29666.83 33288.61 17946.78 31092.89 18457.48 30278.55 25887.67 275
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 23956.21 32786.78 18285.76 25873.60 13577.93 17187.57 20665.02 12888.99 28467.14 22075.33 30887.63 276
CL-MVSNet_self_test72.37 28471.46 27975.09 31079.49 35453.53 35280.76 29885.01 26669.12 22870.51 29182.05 32557.92 20784.13 33052.27 33166.00 36487.60 277
ACMH+68.96 1476.01 24574.01 25382.03 19688.60 16465.31 19288.86 11187.55 22770.25 20167.75 32187.47 21141.27 34893.19 17158.37 29575.94 29487.60 277
131476.53 23475.30 24080.21 23983.93 27762.32 25084.66 23388.81 19760.23 33270.16 29884.07 29355.30 22490.73 25767.37 21683.21 20687.59 279
API-MVS81.99 11181.23 11484.26 11890.94 8670.18 8291.10 5389.32 17571.51 17278.66 15188.28 18965.26 12595.10 8764.74 23991.23 9287.51 280
AdaColmapbinary80.58 14579.42 14984.06 12993.09 5468.91 10589.36 9588.97 19469.27 22175.70 21989.69 14957.20 21695.77 5663.06 25088.41 13387.50 281
PVSNet_BlendedMVS80.60 14380.02 13682.36 19288.85 15065.40 18886.16 20092.00 9269.34 22078.11 16686.09 25266.02 11994.27 11571.52 17482.06 22087.39 282
sss73.60 27073.64 26073.51 32582.80 30455.01 34176.12 34581.69 31362.47 31674.68 25085.85 25657.32 21478.11 36160.86 27480.93 23187.39 282
IterMVS-SCA-FT75.43 25373.87 25780.11 24182.69 30764.85 20181.57 28683.47 28769.16 22770.49 29284.15 29251.95 26188.15 29769.23 19872.14 33887.34 284
PVSNet64.34 1872.08 28870.87 28875.69 30386.21 23356.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33754.77 31984.45 18387.32 285
新几何183.42 15093.13 5270.71 7185.48 26157.43 35781.80 11291.98 9063.28 14092.27 20464.60 24092.99 6887.27 286
TR-MVS77.44 21976.18 22581.20 21688.24 17763.24 23584.61 23686.40 24867.55 25277.81 17286.48 24354.10 23793.15 17357.75 30182.72 21387.20 287
TransMVSNet (Re)75.39 25574.56 24777.86 28085.50 24557.10 31186.78 18286.09 25472.17 16171.53 28587.34 21263.01 14989.31 27956.84 31061.83 37287.17 288
ACMH67.68 1675.89 24673.93 25581.77 20188.71 16166.61 16388.62 12289.01 19169.81 20966.78 33386.70 23341.95 34791.51 23455.64 31678.14 26587.17 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 23963.12 30463.99 35678.99 35442.32 34284.77 32756.55 31364.09 36987.16 290
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36356.58 31275.26 31087.13 291
CR-MVSNet73.37 27271.27 28379.67 25181.32 33165.19 19375.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30859.84 28077.71 26887.11 292
RPMNet73.51 27170.49 29182.58 18881.32 33165.19 19375.92 34792.27 7957.60 35572.73 27176.45 36852.30 25295.43 6848.14 35777.71 26887.11 292
test_vis1_n_192075.52 25175.78 22774.75 31579.84 34757.44 30783.26 26485.52 26062.83 31179.34 14186.17 25045.10 32779.71 35478.75 10481.21 22987.10 294
XXY-MVS75.41 25475.56 23274.96 31183.59 28357.82 30180.59 30283.87 28166.54 26674.93 24788.31 18863.24 14280.09 35362.16 26176.85 27986.97 295
tpmrst72.39 28272.13 27373.18 32980.54 33849.91 37579.91 31379.08 34163.11 30571.69 28479.95 34355.32 22382.77 34065.66 23273.89 32386.87 296
thres20075.55 25074.47 24978.82 26487.78 19757.85 30083.07 27083.51 28672.44 15775.84 21784.42 28252.08 25891.75 22247.41 36083.64 19886.86 297
ITE_SJBPF78.22 27581.77 32160.57 27183.30 28969.25 22367.54 32387.20 21836.33 36987.28 30654.34 32174.62 31786.80 298
test22291.50 7768.26 12584.16 24983.20 29354.63 36879.74 13491.63 10058.97 20091.42 8986.77 299
MIMVSNet70.69 29969.30 29874.88 31284.52 26556.35 32575.87 34979.42 33764.59 28667.76 32082.41 31941.10 34981.54 34646.64 36481.34 22686.75 300
BH-untuned79.47 16678.60 16682.05 19589.19 14165.91 17786.07 20288.52 20872.18 16075.42 22787.69 20361.15 18093.54 15060.38 27686.83 15086.70 301
LTVRE_ROB69.57 1376.25 24174.54 24881.41 20988.60 16464.38 21279.24 31989.12 18870.76 18869.79 30687.86 20049.09 29693.20 16956.21 31580.16 24286.65 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata79.97 24390.90 8764.21 21484.71 26759.27 34185.40 5392.91 7362.02 16489.08 28368.95 20291.37 9086.63 303
MIMVSNet168.58 31766.78 32773.98 32280.07 34451.82 36480.77 29784.37 27164.40 28959.75 37282.16 32436.47 36883.63 33442.73 37770.33 34786.48 304
tfpnnormal74.39 26073.16 26478.08 27886.10 23758.05 29484.65 23587.53 22870.32 19871.22 28885.63 26154.97 22589.86 26843.03 37675.02 31386.32 305
D2MVS74.82 25873.21 26379.64 25279.81 34862.56 24780.34 30787.35 23264.37 29068.86 31382.66 31746.37 31390.10 26467.91 21181.24 22886.25 306
tpm cat170.57 30068.31 30677.35 29082.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30151.77 33272.07 33986.25 306
CVMVSNet72.99 27972.58 26974.25 31984.28 26850.85 37186.41 19283.45 28844.56 38673.23 26587.54 20949.38 29185.70 31665.90 22978.44 26186.19 308
AllTest70.96 29568.09 31079.58 25385.15 25263.62 22384.58 23779.83 33362.31 31760.32 36986.73 22732.02 37688.96 28750.28 34271.57 34286.15 309
TestCases79.58 25385.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28750.28 34271.57 34286.15 309
test-LLR72.94 28072.43 27074.48 31681.35 32958.04 29578.38 33177.46 34966.66 26069.95 30279.00 35248.06 30279.24 35566.13 22584.83 17486.15 309
test-mter71.41 29170.39 29474.48 31681.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35566.13 22584.83 17486.15 309
IterMVS74.29 26172.94 26678.35 27481.53 32563.49 22981.58 28582.49 30468.06 24869.99 30183.69 30151.66 26785.54 31965.85 23071.64 34186.01 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS76.78 23174.57 24683.42 15093.29 4869.46 9488.55 12483.70 28263.98 29870.20 29588.89 17154.01 23994.80 10046.66 36281.88 22386.01 313
ppachtmachnet_test70.04 30667.34 32378.14 27779.80 34961.13 26379.19 32180.59 32359.16 34265.27 34779.29 34946.75 31187.29 30549.33 34866.72 35986.00 315
test_fmvs1_n70.86 29770.24 29572.73 33272.51 38955.28 33881.27 29179.71 33551.49 37878.73 14884.87 27727.54 38577.02 36676.06 13379.97 24685.88 316
Patchmtry70.74 29869.16 30175.49 30780.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 30953.37 32671.09 34585.87 317
WB-MVSnew71.96 28971.65 27772.89 33084.67 26451.88 36382.29 27777.57 34862.31 31773.67 26083.00 31053.49 24481.10 34945.75 36982.13 21985.70 318
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31076.38 35849.33 38174.65 25184.38 28423.30 39375.40 38174.51 14775.17 31285.60 319
ambc75.24 30973.16 38450.51 37363.05 39687.47 23064.28 35377.81 36217.80 39889.73 27257.88 30060.64 37685.49 320
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26365.20 27960.78 36780.93 33642.35 34177.20 36557.12 30653.69 38785.44 321
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34550.58 33874.83 31585.34 322
Anonymous2024052168.80 31567.22 32473.55 32474.33 37554.11 34883.18 26585.61 25958.15 35061.68 36480.94 33430.71 38181.27 34857.00 30873.34 33185.28 323
test_cas_vis1_n_192073.76 26973.74 25973.81 32375.90 36859.77 28180.51 30382.40 30558.30 34981.62 11585.69 25844.35 33176.41 37276.29 13078.61 25785.23 324
ADS-MVSNet266.20 33763.33 34074.82 31379.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35241.57 37968.91 35385.18 325
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38641.57 37968.91 35385.18 325
FMVSNet569.50 31067.96 31174.15 32082.97 30255.35 33780.01 31182.12 30862.56 31563.02 35981.53 32836.92 36781.92 34448.42 35274.06 32185.17 327
pmmvs571.55 29070.20 29675.61 30477.83 36156.39 32281.74 28380.89 31857.76 35367.46 32584.49 28149.26 29485.32 32357.08 30775.29 30985.11 328
testing368.56 31867.67 31971.22 34587.33 21442.87 39383.06 27171.54 37570.36 19669.08 31284.38 28430.33 38285.69 31737.50 38775.45 30485.09 329
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29873.15 38557.55 30579.47 31683.92 27948.02 38256.48 38284.81 27843.13 33786.42 31162.67 25581.81 22484.89 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 26965.20 35086.59 23735.72 37174.71 38343.71 37473.38 33084.84 331
MSDG73.36 27470.99 28680.49 23384.51 26665.80 18080.71 30086.13 25365.70 27565.46 34583.74 29944.60 32890.91 25351.13 33776.89 27784.74 332
pmmvs474.03 26771.91 27480.39 23481.96 31868.32 12381.45 28882.14 30759.32 34069.87 30485.13 27352.40 25188.13 29860.21 27874.74 31684.73 333
gg-mvs-nofinetune69.95 30767.96 31175.94 30083.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29053.88 32387.76 13784.62 334
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29478.77 34251.21 37978.58 15384.41 28331.20 38076.94 36775.88 13680.12 24584.47 335
BH-w/o78.21 19877.33 20280.84 22688.81 15465.13 19584.87 22987.85 22269.75 21374.52 25384.74 28061.34 17593.11 17658.24 29785.84 16784.27 336
MVS78.19 20076.99 20881.78 20085.66 24166.99 15684.66 23390.47 14155.08 36772.02 28185.27 26863.83 13794.11 12366.10 22789.80 11384.24 337
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22787.13 21965.63 18488.30 13584.19 27762.96 30863.80 35887.69 20338.04 36492.56 19246.66 36274.91 31484.24 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37145.95 36857.67 37984.13 339
TESTMET0.1,169.89 30869.00 30272.55 33379.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36863.92 24484.09 18884.10 340
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 38972.77 16766.02 36383.99 341
our_test_369.14 31267.00 32575.57 30579.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33151.71 33367.58 35883.93 342
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28776.21 35952.03 37575.30 23583.20 30828.97 38376.22 37474.60 14678.41 26383.81 343
mamv476.81 23078.23 17872.54 33486.12 23565.75 18378.76 32782.07 30964.12 29372.97 26891.02 12367.97 9668.08 39683.04 6678.02 26683.80 344
tpmvs71.09 29469.29 29976.49 29782.04 31756.04 32878.92 32581.37 31764.05 29667.18 32978.28 35849.74 28789.77 27049.67 34772.37 33583.67 345
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26063.01 36083.80 29747.02 30878.40 35942.53 37868.86 35583.58 346
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26066.56 33682.29 32248.06 30275.87 37644.97 37374.51 31883.41 347
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35743.62 37575.70 29683.36 348
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 23984.27 27542.27 38966.44 34184.79 27940.44 35383.76 33258.76 29268.54 35683.17 349
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35148.86 35166.58 36183.16 350
pmmvs-eth3d70.50 30267.83 31578.52 27277.37 36466.18 17181.82 28181.51 31458.90 34563.90 35780.42 33942.69 34086.28 31258.56 29365.30 36683.11 351
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38449.95 34561.52 37483.05 352
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30279.28 35660.56 27273.92 36178.35 34464.43 28850.13 39079.87 34544.02 33383.67 33346.10 36756.86 38083.03 353
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38549.89 34661.55 37382.99 354
USDC70.33 30368.37 30576.21 29980.60 33756.23 32679.19 32186.49 24660.89 32761.29 36585.47 26531.78 37889.47 27753.37 32676.21 29282.94 355
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26366.74 33479.46 34752.11 25782.30 34232.89 39176.38 28982.75 356
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26366.74 33479.46 34731.53 37982.30 34239.43 38476.38 28982.75 356
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28580.26 34059.41 28685.01 22682.96 29958.76 34665.43 34682.33 32037.63 36691.23 24445.34 37276.03 29382.32 358
JIA-IIPM66.32 33462.82 34576.82 29577.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31051.45 33569.22 35282.21 359
dmvs_re71.14 29370.58 28972.80 33181.96 31859.68 28275.60 35179.34 33868.55 24069.27 31180.72 33749.42 29076.54 36952.56 33077.79 26782.19 360
EG-PatchMatch MVS74.04 26571.82 27580.71 22984.92 25767.42 14485.86 20888.08 21466.04 27164.22 35483.85 29535.10 37292.56 19257.44 30380.83 23382.16 361
MVP-Stereo76.12 24274.46 25081.13 21985.37 24869.79 8684.42 24487.95 21865.03 28267.46 32585.33 26753.28 24691.73 22458.01 29983.27 20581.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement67.49 32464.34 33476.92 29473.47 38261.07 26484.86 23082.98 29859.77 33658.30 37685.13 27326.06 38687.89 30047.92 35960.59 37781.81 363
GG-mvs-BLEND75.38 30881.59 32455.80 33179.32 31869.63 38067.19 32873.67 37843.24 33688.90 28950.41 33984.50 17981.45 364
KD-MVS_2432*160066.22 33563.89 33773.21 32675.47 37353.42 35470.76 37184.35 27264.10 29466.52 33878.52 35634.55 37384.98 32450.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32675.47 37353.42 35470.76 37184.35 27264.10 29466.52 33878.52 35634.55 37384.98 32450.40 34050.33 39181.23 365
test_040272.79 28170.44 29279.84 24688.13 18165.99 17585.93 20584.29 27465.57 27767.40 32785.49 26446.92 30992.61 19035.88 38874.38 31980.94 367
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35849.26 34952.21 38980.63 368
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36248.24 35651.20 39080.57 369
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
TinyColmap67.30 32764.81 33274.76 31481.92 32056.68 31880.29 30881.49 31560.33 33056.27 38383.22 30624.77 38987.66 30445.52 37069.47 35079.95 371
PM-MVS66.41 33364.14 33573.20 32873.92 37756.45 32078.97 32464.96 39263.88 30164.72 35180.24 34019.84 39683.44 33666.24 22464.52 36879.71 372
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38831.22 39315.89 40879.18 373
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37053.06 32866.66 36078.68 374
PatchMatch-RL72.38 28370.90 28776.80 29688.60 16467.38 14679.53 31576.17 36062.75 31369.36 30982.00 32745.51 32484.89 32653.62 32480.58 23778.12 375
MS-PatchMatch73.83 26872.67 26777.30 29183.87 27866.02 17381.82 28184.66 26861.37 32668.61 31682.82 31547.29 30588.21 29659.27 28484.32 18577.68 376
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39538.78 38572.37 33576.97 377
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38255.25 31779.68 24776.88 378
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 24960.34 36876.01 37053.56 24273.94 38731.79 39267.65 35775.88 380
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36061.16 27282.77 21173.90 382
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39462.80 25169.48 34973.25 383
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 37945.45 37155.25 38672.90 384
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36447.01 36135.91 39771.55 385
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37717.31 40435.07 39870.12 386
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38016.20 40732.28 40069.20 387
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34139.53 38273.95 32264.62 391
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37334.64 39055.36 38563.86 392
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30467.75 3850.07 4110.43 41275.85 37324.26 39081.54 34628.82 39462.25 37159.16 394
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39324.24 40065.42 36558.40 396
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39126.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39126.39 39846.73 39555.04 397
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37517.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37822.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1790.00 4140.00 41588.61 17961.62 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS94.38 2572.22 4492.67 6270.98 18487.75 3294.07 4174.01 3296.70 2784.66 4894.84 43
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5586.77 3595.76 23
save fliter93.80 4072.35 4290.47 6391.17 12274.31 118
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_part295.06 872.65 3291.80 13
sam_mvs50.01 282
MTGPAbinary92.02 90
test_post178.90 3265.43 41048.81 30185.44 32259.25 285
test_post5.46 40950.36 28084.24 329
patchmatchnet-post74.00 37751.12 27188.60 292
MTMP92.18 3532.83 413
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19863.40 248
TEST993.26 5072.96 2588.75 11591.89 9968.44 24385.00 5993.10 6774.36 2895.41 70
test_893.13 5272.57 3588.68 12091.84 10368.69 23884.87 6393.10 6774.43 2695.16 80
agg_prior92.85 5971.94 5191.78 10684.41 7594.93 91
test_prior472.60 3489.01 106
test_prior288.85 11275.41 9584.91 6193.54 5674.28 2983.31 6295.86 20
旧先验286.56 18958.10 35187.04 4188.98 28574.07 152
新几何286.29 197
原ACMM286.86 178
testdata291.01 25262.37 258
segment_acmp73.08 38
testdata184.14 25075.71 89
plane_prior790.08 10568.51 120
plane_prior689.84 11468.70 11560.42 193
plane_prior491.00 124
plane_prior368.60 11878.44 3178.92 146
plane_prior291.25 5079.12 23
plane_prior189.90 113
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 420
nn0.00 420
door-mid69.98 379
test1192.23 82
door69.44 382
HQP5-MVS66.98 157
HQP-NCC89.33 13289.17 9976.41 7477.23 185
ACMP_Plane89.33 13289.17 9976.41 7477.23 185
BP-MVS77.47 119
HQP3-MVS92.19 8585.99 165
HQP2-MVS60.17 196
NP-MVS89.62 11868.32 12390.24 138
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30751.60 33478.51 260
ACMMP++_ref81.95 222
ACMMP++81.25 227
Test By Simon64.33 132