This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 46
IU-MVS95.30 271.25 5792.95 5266.81 25692.39 688.94 1696.63 494.85 19
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
PC_three_145268.21 24692.02 1294.00 4682.09 595.98 5384.58 4996.68 294.95 10
test_part295.06 872.65 3291.80 13
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6094.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7774.62 11388.90 2093.85 5275.75 2096.00 5087.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5395.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5586.77 3595.76 23
test_fmvsm_n_192085.29 6185.34 5885.13 8386.12 23569.93 8388.65 12190.78 13369.97 20688.27 2393.98 4971.39 5891.54 23188.49 2390.45 10193.91 58
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 6096.67 2987.67 2996.37 1494.09 51
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 42
fmvsm_l_conf0.5_n84.47 7284.54 7084.27 11785.42 24668.81 10688.49 12587.26 23468.08 24788.03 2793.49 5772.04 4891.77 22188.90 1789.14 12092.24 130
sasdasda85.91 4785.87 4986.04 6089.84 11469.44 9590.45 6593.00 4376.70 6988.01 2891.23 11173.28 3693.91 13281.50 8188.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11469.44 9590.45 6593.00 4376.70 6988.01 2891.23 11173.28 3693.91 13281.50 8188.80 12494.77 22
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7382.99 30169.39 9789.65 8390.29 15073.31 14387.77 3194.15 3871.72 5293.23 16490.31 490.67 9993.89 61
test_fmvsmconf_n85.92 4686.04 4785.57 7285.03 25669.51 9089.62 8690.58 13773.42 14087.75 3294.02 4472.85 4193.24 16390.37 390.75 9793.96 56
ZD-MVS94.38 2572.22 4492.67 6270.98 18487.75 3294.07 4174.01 3296.70 2784.66 4894.84 43
alignmvs85.48 5685.32 6085.96 6389.51 12369.47 9289.74 8092.47 7176.17 8287.73 3491.46 10670.32 6893.78 13881.51 8088.95 12194.63 28
MGCFI-Net85.06 6585.51 5483.70 14389.42 12763.01 24089.43 9092.62 6876.43 7387.53 3591.34 10972.82 4293.42 15881.28 8588.74 12794.66 27
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13386.85 24267.48 25487.48 3693.40 6170.89 6191.61 22588.38 2589.22 11992.16 134
MM89.16 689.23 788.97 490.79 9273.65 1092.66 2391.17 12286.57 187.39 3794.97 1671.70 5397.68 192.19 195.63 2895.57 1
fmvsm_s_conf0.1_n_a83.32 9182.99 9084.28 11583.79 27968.07 13089.34 9682.85 30169.80 21087.36 3894.06 4268.34 9491.56 22987.95 2783.46 20393.21 95
fmvsm_s_conf0.5_n_a83.63 8383.41 8284.28 11586.14 23468.12 12889.43 9082.87 30070.27 20087.27 3993.80 5469.09 8291.58 22788.21 2683.65 19793.14 98
fmvsm_s_conf0.1_n83.56 8583.38 8384.10 12284.86 25867.28 14989.40 9483.01 29670.67 18987.08 4093.96 5068.38 9391.45 23788.56 2284.50 17993.56 80
旧先验286.56 18958.10 35187.04 4188.98 28574.07 152
test_fmvsmconf0.01_n84.73 7184.52 7285.34 7680.25 34169.03 10089.47 8889.65 16773.24 14786.98 4294.27 3266.62 10893.23 16490.26 589.95 11193.78 67
fmvsm_s_conf0.5_n83.80 7883.71 7984.07 12786.69 22767.31 14889.46 8983.07 29571.09 18186.96 4393.70 5569.02 8791.47 23688.79 1884.62 17893.44 85
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7074.50 11486.84 4494.65 2067.31 10495.77 5684.80 4692.85 7092.84 108
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19986.47 19191.87 10173.63 13386.60 4593.02 7276.57 1591.87 21983.36 6192.15 7895.35 3
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6296.00 5088.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 6083.04 6692.51 7493.53 83
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18892.02 9079.45 1985.88 4894.80 1768.07 9596.21 4286.69 3695.34 3393.23 92
TSAR-MVS + GP.85.71 5285.33 5986.84 4791.34 7872.50 3689.07 10587.28 23376.41 7485.80 4990.22 14074.15 3195.37 7581.82 7991.88 8292.65 114
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 50
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7973.53 13885.69 5194.45 2665.00 13095.56 6182.75 7091.87 8392.50 119
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 7973.53 13885.69 5194.45 2663.87 13682.75 7091.87 8392.50 119
testdata79.97 24390.90 8764.21 21484.71 26759.27 34185.40 5392.91 7362.02 16489.08 28368.95 20291.37 9086.63 303
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6987.65 20267.22 15288.69 11993.04 3879.64 1885.33 5492.54 8373.30 3594.50 10983.49 6091.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5196.93 1985.53 3995.79 2294.32 43
PHI-MVS86.43 3986.17 4387.24 4190.88 8870.96 6592.27 3294.07 972.45 15585.22 5691.90 9269.47 7796.42 3783.28 6395.94 1994.35 41
patch_mono-283.65 8184.54 7080.99 22290.06 10965.83 17984.21 24888.74 20371.60 17085.01 5792.44 8474.51 2583.50 33582.15 7792.15 7893.64 76
MVS_030488.08 1488.08 1788.08 1489.67 11772.04 4892.26 3389.26 17984.19 285.01 5795.18 1369.93 7297.20 1491.63 295.60 2994.99 9
TEST993.26 5072.96 2588.75 11591.89 9968.44 24385.00 5993.10 6774.36 2895.41 70
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9968.69 23885.00 5993.10 6774.43 2695.41 7084.97 4195.71 2593.02 103
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6396.61 3284.53 5094.89 4193.66 70
test_prior288.85 11275.41 9584.91 6193.54 5674.28 2983.31 6295.86 20
test_893.13 5272.57 3588.68 12091.84 10368.69 23884.87 6393.10 6774.43 2695.16 80
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 39
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6596.82 2284.18 5795.01 3793.90 60
h-mvs3383.15 9382.19 10186.02 6290.56 9570.85 7088.15 14189.16 18476.02 8584.67 6691.39 10861.54 16995.50 6482.71 7275.48 30191.72 144
hse-mvs281.72 11580.94 12184.07 12788.72 16067.68 13885.87 20787.26 23476.02 8584.67 6688.22 19261.54 16993.48 15382.71 7273.44 32991.06 163
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 9096.65 3084.53 5094.90 4094.00 55
iter_conf05_1184.86 7084.52 7285.87 6590.86 8967.18 15489.63 8592.15 8771.48 17384.64 6990.81 12868.82 8996.00 5078.50 10793.84 6394.43 35
CDPH-MVS85.76 5185.29 6287.17 4393.49 4771.08 6188.58 12392.42 7568.32 24584.61 7093.48 5872.32 4496.15 4579.00 10195.43 3194.28 45
UA-Net85.08 6484.96 6585.45 7492.07 7068.07 13089.78 7990.86 13282.48 384.60 7193.20 6669.35 7995.22 7871.39 17790.88 9693.07 100
CS-MVS86.69 3586.95 3185.90 6490.76 9367.57 14192.83 1793.30 3279.67 1784.57 7292.27 8671.47 5695.02 9084.24 5593.46 6695.13 6
MVSMamba_pp84.98 6684.70 6885.80 6689.43 12667.63 13988.44 12692.64 6672.17 16184.54 7390.39 13668.88 8895.28 7681.45 8394.39 5394.49 33
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7494.52 2169.09 8296.70 2784.37 5294.83 4494.03 54
agg_prior92.85 5971.94 5191.78 10684.41 7594.93 91
VDD-MVS83.01 9882.36 9984.96 8891.02 8466.40 16788.91 10988.11 21277.57 4184.39 7693.29 6452.19 25493.91 13277.05 12488.70 12894.57 31
casdiffmvspermissive85.11 6385.14 6385.01 8687.20 21765.77 18287.75 15392.83 5677.84 3784.36 7792.38 8572.15 4693.93 13181.27 8690.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++85.43 5885.76 5184.45 10691.93 7270.24 7690.71 5792.86 5477.46 4784.22 7892.81 7867.16 10692.94 18380.36 9594.35 5790.16 199
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7893.36 6371.44 5796.76 2580.82 9095.33 3494.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet86.01 4386.38 3884.91 9289.31 13566.27 17092.32 3093.63 2179.37 2084.17 8091.88 9369.04 8695.43 6883.93 5893.77 6493.01 104
ETV-MVS84.90 6984.67 6985.59 7189.39 13068.66 11788.74 11792.64 6679.97 1584.10 8185.71 25769.32 8095.38 7280.82 9091.37 9092.72 109
VNet82.21 10582.41 9781.62 20390.82 9060.93 26584.47 23989.78 16276.36 7984.07 8291.88 9364.71 13190.26 26170.68 18388.89 12293.66 70
baseline84.93 6784.98 6484.80 9687.30 21565.39 19087.30 16592.88 5377.62 3984.04 8392.26 8771.81 5093.96 12581.31 8490.30 10395.03 8
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14187.96 21770.01 20483.95 8493.23 6568.80 9191.51 23488.61 2089.96 11092.57 115
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8594.42 2967.87 9996.64 3182.70 7494.57 4993.66 70
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8694.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8793.95 5169.77 7596.01 4985.15 4094.66 4694.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8894.46 2567.93 9795.95 5484.20 5694.39 5393.23 92
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8994.17 3667.45 10296.60 3383.06 6494.50 5094.07 52
X-MVStestdata80.37 15077.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8912.47 40867.45 10296.60 3383.06 6494.50 5094.07 52
DELS-MVS85.41 5985.30 6185.77 6788.49 16767.93 13385.52 22093.44 2778.70 2983.63 9189.03 16974.57 2495.71 5980.26 9794.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4286.48 3785.71 6891.02 8467.21 15392.36 2993.78 1878.97 2883.51 9291.20 11470.65 6695.15 8181.96 7894.89 4194.77 22
LFMVS81.82 11481.23 11483.57 14791.89 7363.43 23289.84 7581.85 31277.04 5883.21 9393.10 6752.26 25393.43 15771.98 17289.95 11193.85 62
VDDNet81.52 12280.67 12584.05 13290.44 9864.13 21689.73 8185.91 25571.11 18083.18 9493.48 5850.54 27893.49 15273.40 15988.25 13494.54 32
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9591.07 11975.94 1895.19 7979.94 9994.38 5693.55 81
nrg03083.88 7683.53 8084.96 8886.77 22569.28 9990.46 6492.67 6274.79 10882.95 9691.33 11072.70 4393.09 17780.79 9279.28 25492.50 119
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7788.18 17867.85 13487.66 15589.73 16580.05 1482.95 9689.59 15470.74 6494.82 9980.66 9484.72 17693.28 91
iter_conf0585.49 5585.43 5685.67 7091.09 8166.55 16587.18 16892.08 8972.89 15482.90 9891.71 9671.85 4996.03 4684.77 4794.39 5394.42 36
MVS_Test83.15 9383.06 8883.41 15286.86 22163.21 23686.11 20192.00 9274.31 11882.87 9989.44 16270.03 7093.21 16677.39 12188.50 13293.81 65
DPM-MVS84.93 6784.29 7586.84 4790.20 10273.04 2387.12 17093.04 3869.80 21082.85 10091.22 11373.06 3996.02 4876.72 12994.63 4791.46 154
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10194.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8376.87 6282.81 10294.25 3466.44 11296.24 4182.88 6994.28 5893.38 86
test1286.80 4992.63 6470.70 7291.79 10582.71 10371.67 5496.16 4494.50 5093.54 82
HPM-MVS_fast85.35 6084.95 6686.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10494.09 4062.60 15195.54 6380.93 8892.93 6993.57 79
Effi-MVS+83.62 8483.08 8785.24 7988.38 17367.45 14388.89 11089.15 18575.50 9482.27 10588.28 18969.61 7694.45 11177.81 11587.84 13693.84 64
EI-MVSNet-UG-set83.81 7783.38 8385.09 8487.87 19167.53 14287.44 16189.66 16679.74 1682.23 10689.41 16370.24 6994.74 10279.95 9883.92 18992.99 105
MVS_111021_HR85.14 6284.75 6786.32 5591.65 7672.70 3085.98 20390.33 14776.11 8382.08 10791.61 10171.36 5994.17 12181.02 8792.58 7392.08 136
diffmvspermissive82.10 10681.88 10882.76 18583.00 29963.78 22283.68 25589.76 16372.94 15282.02 10889.85 14665.96 12190.79 25582.38 7687.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
xiu_mvs_v1_base80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
xiu_mvs_v1_base_debi80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
新几何183.42 15093.13 5270.71 7185.48 26157.43 35781.80 11291.98 9063.28 14092.27 20464.60 24092.99 6887.27 286
test_yl81.17 12780.47 12983.24 15889.13 14363.62 22386.21 19889.95 15972.43 15881.78 11389.61 15257.50 21293.58 14670.75 18186.90 14892.52 117
DCV-MVSNet81.17 12780.47 12983.24 15889.13 14363.62 22386.21 19889.95 15972.43 15881.78 11389.61 15257.50 21293.58 14670.75 18186.90 14892.52 117
test_cas_vis1_n_192073.76 26973.74 25973.81 32375.90 36859.77 28180.51 30382.40 30558.30 34981.62 11585.69 25844.35 33176.41 37276.29 13078.61 25785.23 324
MG-MVS83.41 8883.45 8183.28 15592.74 6262.28 25188.17 13989.50 17075.22 9881.49 11692.74 8266.75 10795.11 8472.85 16591.58 8792.45 122
CANet86.45 3886.10 4587.51 3790.09 10470.94 6789.70 8292.59 6981.78 481.32 11791.43 10770.34 6797.23 1384.26 5393.36 6794.37 40
MVSFormer82.85 9982.05 10485.24 7987.35 20970.21 7790.50 6190.38 14368.55 24081.32 11789.47 15761.68 16693.46 15578.98 10290.26 10492.05 137
lupinMVS81.39 12580.27 13484.76 9787.35 20970.21 7785.55 21686.41 24762.85 31081.32 11788.61 17961.68 16692.24 20678.41 11090.26 10491.83 141
xiu_mvs_v2_base81.69 11781.05 11883.60 14589.15 14268.03 13284.46 24190.02 15670.67 18981.30 12086.53 24263.17 14494.19 12075.60 14088.54 13088.57 262
PS-MVSNAJ81.69 11781.02 11983.70 14389.51 12368.21 12784.28 24790.09 15570.79 18681.26 12185.62 26263.15 14594.29 11375.62 13988.87 12388.59 261
原ACMM184.35 11093.01 5768.79 10792.44 7263.96 29981.09 12291.57 10266.06 11895.45 6667.19 21994.82 4588.81 254
jason81.39 12580.29 13384.70 9886.63 22969.90 8585.95 20486.77 24363.24 30381.07 12389.47 15761.08 18292.15 20878.33 11190.07 10992.05 137
jason: jason.
OPM-MVS83.50 8682.95 9185.14 8188.79 15670.95 6689.13 10491.52 11277.55 4480.96 12491.75 9560.71 18694.50 10979.67 10086.51 15589.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8782.80 9485.43 7590.25 10168.74 11190.30 6990.13 15476.33 8080.87 12592.89 7461.00 18394.20 11972.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPcopyleft85.89 4985.39 5787.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12693.82 5364.33 13296.29 3982.67 7590.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2024052980.19 15478.89 16284.10 12290.60 9464.75 20388.95 10890.90 12965.97 27380.59 12791.17 11649.97 28393.73 14469.16 20082.70 21493.81 65
MVS_111021_LR82.61 10282.11 10284.11 12188.82 15371.58 5385.15 22386.16 25274.69 11080.47 12891.04 12062.29 15890.55 25980.33 9690.08 10890.20 198
ECVR-MVScopyleft79.61 16179.26 15480.67 23090.08 10554.69 34387.89 15077.44 35174.88 10680.27 12992.79 7948.96 29992.45 19568.55 20692.50 7594.86 17
VPA-MVSNet80.60 14380.55 12780.76 22888.07 18560.80 26886.86 17891.58 11175.67 9280.24 13089.45 16163.34 13990.25 26270.51 18579.22 25591.23 158
test111179.43 16879.18 15780.15 24089.99 11053.31 35687.33 16477.05 35475.04 10380.23 13192.77 8148.97 29892.33 20368.87 20392.40 7794.81 20
test250677.30 22376.49 22079.74 24890.08 10552.02 35987.86 15263.10 39474.88 10680.16 13292.79 7938.29 36392.35 20168.74 20592.50 7594.86 17
Anonymous20240521178.25 19677.01 20681.99 19791.03 8360.67 27084.77 23183.90 28070.65 19380.00 13391.20 11441.08 35091.43 23865.21 23485.26 17193.85 62
test22291.50 7768.26 12584.16 24983.20 29354.63 36879.74 13491.63 10058.97 20091.42 8986.77 299
OMC-MVS82.69 10081.97 10784.85 9388.75 15867.42 14487.98 14490.87 13174.92 10579.72 13591.65 9862.19 16193.96 12575.26 14386.42 15693.16 97
FA-MVS(test-final)80.96 13179.91 13984.10 12288.30 17665.01 19784.55 23890.01 15773.25 14679.61 13687.57 20658.35 20494.72 10371.29 17886.25 15992.56 116
CPTT-MVS83.73 7983.33 8584.92 9193.28 4970.86 6992.09 3790.38 14368.75 23779.57 13792.83 7660.60 19193.04 18180.92 8991.56 8890.86 171
IS-MVSNet83.15 9382.81 9384.18 12089.94 11263.30 23491.59 4388.46 20979.04 2579.49 13892.16 8865.10 12794.28 11467.71 21291.86 8594.95 10
PS-MVSNAJss82.07 10881.31 11284.34 11186.51 23067.27 15089.27 9791.51 11371.75 16579.37 13990.22 14063.15 14594.27 11577.69 11682.36 21791.49 151
EPP-MVSNet83.40 8983.02 8984.57 10090.13 10364.47 20992.32 3090.73 13474.45 11779.35 14091.10 11769.05 8595.12 8272.78 16687.22 14494.13 49
test_vis1_n_192075.52 25175.78 22774.75 31579.84 34757.44 30783.26 26485.52 26062.83 31179.34 14186.17 25045.10 32779.71 35478.75 10481.21 22987.10 294
DP-MVS Recon83.11 9682.09 10386.15 5894.44 1970.92 6888.79 11392.20 8470.53 19479.17 14291.03 12264.12 13496.03 4668.39 20990.14 10691.50 150
ab-mvs79.51 16478.97 16181.14 21888.46 16960.91 26683.84 25389.24 18170.36 19679.03 14388.87 17263.23 14390.21 26365.12 23582.57 21592.28 127
EIA-MVS83.31 9282.80 9484.82 9489.59 11965.59 18588.21 13792.68 6174.66 11178.96 14486.42 24469.06 8495.26 7775.54 14190.09 10793.62 77
PVSNet_Blended_VisFu82.62 10181.83 10984.96 8890.80 9169.76 8788.74 11791.70 10869.39 21878.96 14488.46 18465.47 12494.87 9874.42 14888.57 12990.24 197
HQP_MVS83.64 8283.14 8685.14 8190.08 10568.71 11391.25 5092.44 7279.12 2378.92 14691.00 12460.42 19395.38 7278.71 10586.32 15791.33 155
plane_prior368.60 11878.44 3178.92 146
test_fmvs1_n70.86 29770.24 29572.73 33272.51 38955.28 33881.27 29179.71 33551.49 37878.73 14884.87 27727.54 38577.02 36676.06 13379.97 24685.88 316
EI-MVSNet80.52 14679.98 13782.12 19384.28 26863.19 23886.41 19288.95 19574.18 12278.69 14987.54 20966.62 10892.43 19672.57 16980.57 23890.74 177
MVSTER79.01 18077.88 18582.38 19183.07 29664.80 20284.08 25288.95 19569.01 23378.69 14987.17 22054.70 23192.43 19674.69 14580.57 23889.89 218
API-MVS81.99 11181.23 11484.26 11890.94 8670.18 8291.10 5389.32 17571.51 17278.66 15188.28 18965.26 12595.10 8764.74 23991.23 9287.51 280
GeoE81.71 11681.01 12083.80 14289.51 12364.45 21088.97 10788.73 20471.27 17778.63 15289.76 14866.32 11493.20 16969.89 19286.02 16493.74 68
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29478.77 34251.21 37978.58 15384.41 28331.20 38076.94 36775.88 13680.12 24584.47 335
UniMVSNet (Re)81.60 12181.11 11783.09 16588.38 17364.41 21187.60 15693.02 4278.42 3278.56 15488.16 19369.78 7493.26 16269.58 19676.49 28391.60 145
MAR-MVS81.84 11380.70 12485.27 7891.32 7971.53 5489.82 7690.92 12869.77 21278.50 15586.21 24862.36 15794.52 10865.36 23392.05 8189.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+80.81 13579.92 13883.47 14888.85 15064.51 20685.53 21889.39 17370.79 18678.49 15685.06 27567.54 10193.58 14667.03 22286.58 15392.32 125
FIs82.07 10882.42 9681.04 22188.80 15558.34 29188.26 13693.49 2676.93 6078.47 15791.04 12069.92 7392.34 20269.87 19384.97 17392.44 123
UniMVSNet_NR-MVSNet81.88 11281.54 11182.92 17488.46 16963.46 23087.13 16992.37 7680.19 1278.38 15889.14 16571.66 5593.05 17970.05 18976.46 28492.25 128
DU-MVS81.12 12980.52 12882.90 17587.80 19463.46 23087.02 17391.87 10179.01 2678.38 15889.07 16765.02 12893.05 17970.05 18976.46 28492.20 131
CLD-MVS82.31 10481.65 11084.29 11488.47 16867.73 13785.81 21192.35 7775.78 8878.33 16086.58 23964.01 13594.35 11276.05 13487.48 14190.79 172
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPNet78.69 18878.66 16578.76 26588.31 17555.72 33284.45 24286.63 24576.79 6478.26 16190.55 13359.30 19889.70 27366.63 22377.05 27590.88 170
mvsmamba81.69 11780.74 12384.56 10187.45 20866.72 16191.26 4885.89 25674.66 11178.23 16290.56 13254.33 23494.91 9280.73 9383.54 20192.04 139
V4279.38 17278.24 17682.83 17781.10 33365.50 18785.55 21689.82 16171.57 17178.21 16386.12 25160.66 18893.18 17275.64 13875.46 30389.81 222
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13165.93 17684.95 22887.15 23773.56 13678.19 16489.79 14756.67 21993.36 15959.53 28386.74 15190.13 201
v2v48280.23 15279.29 15383.05 16883.62 28264.14 21587.04 17289.97 15873.61 13478.18 16587.22 21761.10 18193.82 13676.11 13276.78 28191.18 159
PVSNet_BlendedMVS80.60 14380.02 13682.36 19288.85 15065.40 18886.16 20092.00 9269.34 22078.11 16686.09 25266.02 11994.27 11571.52 17482.06 22087.39 282
PVSNet_Blended80.98 13080.34 13182.90 17588.85 15065.40 18884.43 24392.00 9267.62 25178.11 16685.05 27666.02 11994.27 11571.52 17489.50 11589.01 244
v114480.03 15679.03 15983.01 17083.78 28064.51 20687.11 17190.57 13971.96 16478.08 16886.20 24961.41 17393.94 12874.93 14477.23 27290.60 182
FE-MVS77.78 21175.68 22984.08 12688.09 18466.00 17483.13 26787.79 22368.42 24478.01 16985.23 27045.50 32595.12 8259.11 28785.83 16891.11 161
TranMVSNet+NR-MVSNet80.84 13380.31 13282.42 19087.85 19262.33 24987.74 15491.33 11880.55 977.99 17089.86 14565.23 12692.62 18967.05 22175.24 31192.30 126
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 23956.21 32786.78 18285.76 25873.60 13577.93 17187.57 20665.02 12888.99 28467.14 22075.33 30887.63 276
TR-MVS77.44 21976.18 22581.20 21688.24 17763.24 23584.61 23686.40 24867.55 25277.81 17286.48 24354.10 23793.15 17357.75 30182.72 21387.20 287
v119279.59 16378.43 17183.07 16783.55 28464.52 20586.93 17690.58 13770.83 18577.78 17385.90 25359.15 19993.94 12873.96 15377.19 27490.76 174
PCF-MVS73.52 780.38 14878.84 16385.01 8687.71 19968.99 10383.65 25691.46 11763.00 30777.77 17490.28 13766.10 11695.09 8861.40 26988.22 13590.94 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS79.49 16579.22 15680.27 23888.79 15658.35 29085.06 22588.61 20778.56 3077.65 17588.34 18763.81 13890.66 25864.98 23777.22 27391.80 143
XVG-OURS80.41 14779.23 15583.97 13885.64 24269.02 10283.03 27290.39 14271.09 18177.63 17691.49 10554.62 23391.35 24075.71 13783.47 20291.54 148
v14419279.47 16678.37 17282.78 18383.35 28763.96 21886.96 17490.36 14669.99 20577.50 17785.67 26060.66 18893.77 14074.27 15076.58 28290.62 180
v192192079.22 17478.03 18082.80 18083.30 28963.94 21986.80 18090.33 14769.91 20877.48 17885.53 26358.44 20393.75 14273.60 15576.85 27990.71 178
thisisatest053079.40 17077.76 19184.31 11387.69 20165.10 19687.36 16284.26 27670.04 20377.42 17988.26 19149.94 28494.79 10170.20 18784.70 17793.03 102
FC-MVSNet-test81.52 12282.02 10580.03 24288.42 17255.97 32987.95 14693.42 2977.10 5677.38 18090.98 12669.96 7191.79 22068.46 20884.50 17992.33 124
v124078.99 18177.78 18982.64 18683.21 29163.54 22786.62 18790.30 14969.74 21577.33 18185.68 25957.04 21793.76 14173.13 16376.92 27690.62 180
PAPM_NR83.02 9782.41 9784.82 9492.47 6766.37 16887.93 14891.80 10473.82 12977.32 18290.66 13067.90 9894.90 9570.37 18689.48 11693.19 96
ACMM73.20 880.78 14079.84 14183.58 14689.31 13568.37 12289.99 7391.60 11070.28 19977.25 18389.66 15053.37 24593.53 15174.24 15182.85 21088.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP4-MVS77.24 18495.11 8491.03 165
AUN-MVS79.21 17577.60 19684.05 13288.71 16167.61 14085.84 20987.26 23469.08 22977.23 18588.14 19753.20 24793.47 15475.50 14273.45 32891.06 163
HQP-NCC89.33 13289.17 9976.41 7477.23 185
ACMP_Plane89.33 13289.17 9976.41 7477.23 185
HQP-MVS82.61 10282.02 10584.37 10889.33 13266.98 15789.17 9992.19 8576.41 7477.23 18590.23 13960.17 19695.11 8477.47 11985.99 16591.03 165
tt080578.73 18677.83 18681.43 20885.17 25060.30 27689.41 9390.90 12971.21 17877.17 18988.73 17446.38 31293.21 16672.57 16978.96 25690.79 172
TAPA-MVS73.13 979.15 17677.94 18282.79 18289.59 11962.99 24488.16 14091.51 11365.77 27477.14 19091.09 11860.91 18493.21 16650.26 34487.05 14692.17 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPR81.66 12080.89 12283.99 13790.27 10064.00 21786.76 18491.77 10768.84 23677.13 19189.50 15567.63 10094.88 9767.55 21488.52 13193.09 99
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22260.24 27787.28 16688.79 19874.25 12076.84 19290.53 13449.48 28991.56 22967.98 21082.15 21893.29 90
EPNet83.72 8082.92 9286.14 5984.22 27069.48 9191.05 5485.27 26281.30 676.83 19391.65 9866.09 11795.56 6176.00 13593.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline176.98 22776.75 21677.66 28488.13 18155.66 33385.12 22481.89 31073.04 15076.79 19488.90 17062.43 15687.78 30263.30 24971.18 34489.55 229
tttt051779.40 17077.91 18383.90 14188.10 18363.84 22088.37 13284.05 27871.45 17476.78 19589.12 16649.93 28694.89 9670.18 18883.18 20792.96 106
TAMVS78.89 18477.51 19883.03 16987.80 19467.79 13684.72 23285.05 26567.63 25076.75 19687.70 20262.25 15990.82 25458.53 29487.13 14590.49 187
XVG-OURS-SEG-HR80.81 13579.76 14283.96 13985.60 24368.78 10883.54 26190.50 14070.66 19276.71 19791.66 9760.69 18791.26 24276.94 12581.58 22591.83 141
3Dnovator+77.84 485.48 5684.47 7488.51 791.08 8273.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19596.75 2677.20 12293.73 6595.29 5
LPG-MVS_test82.08 10781.27 11384.50 10389.23 13968.76 10990.22 7091.94 9675.37 9676.64 19991.51 10354.29 23594.91 9278.44 10883.78 19089.83 220
LGP-MVS_train84.50 10389.23 13968.76 10991.94 9675.37 9676.64 19991.51 10354.29 23594.91 9278.44 10883.78 19089.83 220
SDMVSNet80.38 14880.18 13580.99 22289.03 14864.94 19980.45 30589.40 17275.19 10076.61 20189.98 14360.61 19087.69 30376.83 12783.55 19990.33 193
sd_testset77.70 21577.40 19978.60 26889.03 14860.02 27979.00 32385.83 25775.19 10076.61 20189.98 14354.81 22685.46 32162.63 25683.55 19990.33 193
tfpn200view976.42 23875.37 23879.55 25589.13 14357.65 30385.17 22183.60 28373.41 14176.45 20386.39 24552.12 25591.95 21448.33 35383.75 19389.07 237
thres40076.50 23575.37 23879.86 24589.13 14357.65 30385.17 22183.60 28373.41 14176.45 20386.39 24552.12 25591.95 21448.33 35383.75 19390.00 211
HyFIR lowres test77.53 21875.40 23683.94 14089.59 11966.62 16280.36 30688.64 20656.29 36376.45 20385.17 27257.64 21093.28 16161.34 27183.10 20891.91 140
CDS-MVSNet79.07 17977.70 19383.17 16287.60 20368.23 12684.40 24586.20 25167.49 25376.36 20686.54 24161.54 16990.79 25561.86 26587.33 14290.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres100view90076.50 23575.55 23379.33 25689.52 12256.99 31285.83 21083.23 29173.94 12676.32 20787.12 22151.89 26391.95 21448.33 35383.75 19389.07 237
thres600view776.50 23575.44 23479.68 25089.40 12957.16 30985.53 21883.23 29173.79 13076.26 20887.09 22251.89 26391.89 21748.05 35883.72 19690.00 211
UGNet80.83 13479.59 14684.54 10288.04 18668.09 12989.42 9288.16 21176.95 5976.22 20989.46 15949.30 29393.94 12868.48 20790.31 10291.60 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_djsdf80.30 15179.32 15283.27 15683.98 27665.37 19190.50 6190.38 14368.55 24076.19 21088.70 17556.44 22093.46 15578.98 10280.14 24490.97 168
v14878.72 18777.80 18881.47 20782.73 30661.96 25586.30 19688.08 21473.26 14576.18 21185.47 26562.46 15592.36 20071.92 17373.82 32590.09 205
WTY-MVS75.65 24975.68 22975.57 30586.40 23156.82 31477.92 33882.40 30565.10 28076.18 21187.72 20163.13 14880.90 35060.31 27781.96 22189.00 246
mvs_anonymous79.42 16979.11 15880.34 23684.45 26757.97 29782.59 27487.62 22667.40 25576.17 21388.56 18268.47 9289.59 27470.65 18486.05 16393.47 84
Anonymous2023121178.97 18277.69 19482.81 17990.54 9664.29 21390.11 7291.51 11365.01 28376.16 21488.13 19850.56 27793.03 18269.68 19577.56 27191.11 161
thisisatest051577.33 22275.38 23783.18 16185.27 24963.80 22182.11 27983.27 29065.06 28175.91 21583.84 29649.54 28894.27 11567.24 21886.19 16091.48 152
CANet_DTU80.61 14279.87 14082.83 17785.60 24363.17 23987.36 16288.65 20576.37 7875.88 21688.44 18553.51 24393.07 17873.30 16089.74 11492.25 128
thres20075.55 25074.47 24978.82 26487.78 19757.85 30083.07 27083.51 28672.44 15775.84 21784.42 28252.08 25891.75 22247.41 36083.64 19886.86 297
CHOSEN 1792x268877.63 21775.69 22883.44 14989.98 11168.58 11978.70 32887.50 22956.38 36275.80 21886.84 22558.67 20191.40 23961.58 26885.75 16990.34 192
AdaColmapbinary80.58 14579.42 14984.06 12993.09 5468.91 10589.36 9588.97 19469.27 22175.70 21989.69 14957.20 21695.77 5663.06 25088.41 13387.50 281
UWE-MVS72.13 28771.49 27874.03 32186.66 22847.70 37981.40 29076.89 35663.60 30275.59 22084.22 29039.94 35585.62 31848.98 35086.13 16288.77 256
c3_l78.75 18577.91 18381.26 21482.89 30361.56 26084.09 25189.13 18769.97 20675.56 22184.29 28766.36 11392.09 21073.47 15875.48 30190.12 202
miper_ehance_all_eth78.59 19177.76 19181.08 22082.66 30861.56 26083.65 25689.15 18568.87 23575.55 22283.79 29866.49 11192.03 21173.25 16176.39 28689.64 226
miper_enhance_ethall77.87 21076.86 21080.92 22581.65 32261.38 26282.68 27388.98 19265.52 27875.47 22382.30 32165.76 12392.00 21372.95 16476.39 28689.39 232
3Dnovator76.31 583.38 9082.31 10086.59 5287.94 18972.94 2890.64 5892.14 8877.21 5275.47 22392.83 7658.56 20294.72 10373.24 16292.71 7292.13 135
jajsoiax79.29 17377.96 18183.27 15684.68 26166.57 16489.25 9890.16 15369.20 22675.46 22589.49 15645.75 32393.13 17576.84 12680.80 23490.11 203
IterMVS-LS80.06 15579.38 15082.11 19485.89 23863.20 23786.79 18189.34 17474.19 12175.45 22686.72 22966.62 10892.39 19872.58 16876.86 27890.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16678.60 16682.05 19589.19 14165.91 17786.07 20288.52 20872.18 16075.42 22787.69 20361.15 18093.54 15060.38 27686.83 15086.70 301
mvs_tets79.13 17777.77 19083.22 16084.70 26066.37 16889.17 9990.19 15269.38 21975.40 22889.46 15944.17 33293.15 17376.78 12880.70 23690.14 200
HY-MVS69.67 1277.95 20777.15 20480.36 23587.57 20760.21 27883.37 26387.78 22466.11 26975.37 22987.06 22463.27 14190.48 26061.38 27082.43 21690.40 191
testing9176.54 23375.66 23179.18 26088.43 17155.89 33081.08 29283.00 29773.76 13175.34 23084.29 28746.20 31790.07 26564.33 24184.50 17991.58 147
GBi-Net78.40 19377.40 19981.40 21087.60 20363.01 24088.39 12989.28 17671.63 16775.34 23087.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
test178.40 19377.40 19981.40 21087.60 20363.01 24088.39 12989.28 17671.63 16775.34 23087.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
FMVSNet377.88 20976.85 21180.97 22486.84 22362.36 24886.52 19088.77 19971.13 17975.34 23086.66 23554.07 23891.10 24862.72 25279.57 24889.45 231
CostFormer75.24 25673.90 25679.27 25782.65 30958.27 29280.80 29582.73 30361.57 32375.33 23483.13 30955.52 22291.07 25164.98 23778.34 26488.45 263
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28776.21 35952.03 37575.30 23583.20 30828.97 38376.22 37474.60 14678.41 26383.81 343
FMVSNet278.20 19977.21 20381.20 21687.60 20362.89 24587.47 16089.02 19071.63 16775.29 23687.28 21354.80 22791.10 24862.38 25779.38 25289.61 227
bld_raw_dy_0_6482.00 11081.23 11484.34 11188.75 15866.52 16681.95 28091.90 9863.91 30075.26 23790.15 14269.37 7895.74 5877.66 11792.08 8090.76 174
v879.97 15879.02 16082.80 18084.09 27364.50 20887.96 14590.29 15074.13 12475.24 23886.81 22662.88 15093.89 13574.39 14975.40 30690.00 211
testing9976.09 24475.12 24279.00 26188.16 17955.50 33580.79 29681.40 31673.30 14475.17 23984.27 28944.48 33090.02 26664.28 24284.22 18791.48 152
anonymousdsp78.60 19077.15 20482.98 17280.51 33967.08 15587.24 16789.53 16965.66 27675.16 24087.19 21952.52 24892.25 20577.17 12379.34 25389.61 227
QAPM80.88 13279.50 14885.03 8588.01 18868.97 10491.59 4392.00 9266.63 26575.15 24192.16 8857.70 20995.45 6663.52 24588.76 12690.66 179
v1079.74 16078.67 16482.97 17384.06 27464.95 19887.88 15190.62 13673.11 14875.11 24286.56 24061.46 17294.05 12473.68 15475.55 29989.90 217
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16351.78 36586.70 18579.63 33674.14 12375.11 24290.83 12761.29 17789.75 27158.10 29891.60 8692.69 112
cl2278.07 20377.01 20681.23 21582.37 31561.83 25783.55 26087.98 21668.96 23475.06 24483.87 29461.40 17491.88 21873.53 15676.39 28689.98 214
ACMP74.13 681.51 12480.57 12684.36 10989.42 12768.69 11689.97 7491.50 11674.46 11675.04 24590.41 13553.82 24094.54 10677.56 11882.91 20989.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu80.03 15678.57 16784.42 10785.13 25468.74 11188.77 11488.10 21374.99 10474.97 24683.49 30457.27 21593.36 15973.53 15680.88 23291.18 159
XXY-MVS75.41 25475.56 23274.96 31183.59 28357.82 30180.59 30283.87 28166.54 26674.93 24788.31 18863.24 14280.09 35362.16 26176.85 27986.97 295
eth_miper_zixun_eth77.92 20876.69 21781.61 20583.00 29961.98 25483.15 26689.20 18369.52 21774.86 24884.35 28661.76 16592.56 19271.50 17672.89 33390.28 196
GA-MVS76.87 22975.17 24181.97 19882.75 30562.58 24681.44 28986.35 25072.16 16374.74 24982.89 31346.20 31792.02 21268.85 20481.09 23091.30 157
sss73.60 27073.64 26073.51 32582.80 30455.01 34176.12 34581.69 31362.47 31674.68 25085.85 25657.32 21478.11 36160.86 27480.93 23187.39 282
testing22274.04 26572.66 26878.19 27687.89 19055.36 33681.06 29379.20 34071.30 17674.65 25183.57 30339.11 35988.67 29151.43 33685.75 16990.53 185
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31076.38 35849.33 38174.65 25184.38 28423.30 39375.40 38174.51 14775.17 31285.60 319
BH-w/o78.21 19877.33 20280.84 22688.81 15465.13 19584.87 22987.85 22269.75 21374.52 25384.74 28061.34 17593.11 17658.24 29785.84 16784.27 336
FMVSNet177.44 21976.12 22681.40 21086.81 22463.01 24088.39 12989.28 17670.49 19574.39 25487.28 21349.06 29791.11 24560.91 27378.52 25990.09 205
cl____77.72 21376.76 21480.58 23182.49 31260.48 27383.09 26887.87 22069.22 22474.38 25585.22 27162.10 16291.53 23271.09 17975.41 30589.73 225
DIV-MVS_self_test77.72 21376.76 21480.58 23182.48 31360.48 27383.09 26887.86 22169.22 22474.38 25585.24 26962.10 16291.53 23271.09 17975.40 30689.74 224
114514_t80.68 14179.51 14784.20 11994.09 3867.27 15089.64 8491.11 12558.75 34774.08 25790.72 12958.10 20595.04 8969.70 19489.42 11790.30 195
WR-MVS_H78.51 19278.49 16878.56 26988.02 18756.38 32388.43 12792.67 6277.14 5473.89 25887.55 20866.25 11589.24 28058.92 28973.55 32790.06 209
ETVMVS72.25 28671.05 28575.84 30187.77 19851.91 36279.39 31774.98 36369.26 22273.71 25982.95 31140.82 35286.14 31346.17 36684.43 18489.47 230
WB-MVSnew71.96 28971.65 27772.89 33084.67 26451.88 36382.29 27777.57 34862.31 31773.67 26083.00 31053.49 24481.10 34945.75 36982.13 21985.70 318
tpm273.26 27571.46 27978.63 26683.34 28856.71 31780.65 30180.40 32856.63 36173.55 26182.02 32651.80 26591.24 24356.35 31478.42 26287.95 269
CP-MVSNet78.22 19778.34 17377.84 28187.83 19354.54 34587.94 14791.17 12277.65 3873.48 26288.49 18362.24 16088.43 29462.19 26074.07 32090.55 184
pm-mvs177.25 22476.68 21878.93 26384.22 27058.62 28986.41 19288.36 21071.37 17573.31 26388.01 19961.22 17989.15 28264.24 24373.01 33289.03 243
PS-CasMVS78.01 20678.09 17977.77 28387.71 19954.39 34788.02 14391.22 11977.50 4673.26 26488.64 17860.73 18588.41 29561.88 26473.88 32490.53 185
CVMVSNet72.99 27972.58 26974.25 31984.28 26850.85 37186.41 19283.45 28844.56 38673.23 26587.54 20949.38 29185.70 31665.90 22978.44 26186.19 308
PEN-MVS77.73 21277.69 19477.84 28187.07 22053.91 35087.91 14991.18 12177.56 4373.14 26688.82 17361.23 17889.17 28159.95 27972.37 33590.43 189
1112_ss77.40 22176.43 22280.32 23789.11 14760.41 27583.65 25687.72 22562.13 32073.05 26786.72 22962.58 15389.97 26762.11 26380.80 23490.59 183
mamv476.81 23078.23 17872.54 33486.12 23565.75 18378.76 32782.07 30964.12 29372.97 26891.02 12367.97 9668.08 39683.04 6678.02 26683.80 344
tpm72.37 28471.71 27674.35 31882.19 31652.00 36079.22 32077.29 35264.56 28772.95 26983.68 30251.35 26883.26 33858.33 29675.80 29587.81 273
cascas76.72 23274.64 24582.99 17185.78 24065.88 17882.33 27689.21 18260.85 32872.74 27081.02 33247.28 30693.75 14267.48 21585.02 17289.34 234
CR-MVSNet73.37 27271.27 28379.67 25181.32 33165.19 19375.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30859.84 28077.71 26887.11 292
RPMNet73.51 27170.49 29182.58 18881.32 33165.19 19375.92 34792.27 7957.60 35572.73 27176.45 36852.30 25295.43 6848.14 35777.71 26887.11 292
testing1175.14 25774.01 25378.53 27188.16 17956.38 32380.74 29980.42 32770.67 18972.69 27383.72 30043.61 33589.86 26862.29 25983.76 19289.36 233
DTE-MVSNet76.99 22676.80 21277.54 28886.24 23253.06 35887.52 15890.66 13577.08 5772.50 27488.67 17760.48 19289.52 27557.33 30570.74 34690.05 210
Test_1112_low_res76.40 23975.44 23479.27 25789.28 13758.09 29381.69 28487.07 23859.53 33972.48 27586.67 23461.30 17689.33 27860.81 27580.15 24390.41 190
v7n78.97 18277.58 19783.14 16383.45 28665.51 18688.32 13491.21 12073.69 13272.41 27686.32 24757.93 20693.81 13769.18 19975.65 29790.11 203
SCA74.22 26372.33 27279.91 24484.05 27562.17 25279.96 31279.29 33966.30 26872.38 27780.13 34151.95 26188.60 29259.25 28577.67 27088.96 248
CNLPA78.08 20276.79 21381.97 19890.40 9971.07 6287.59 15784.55 27066.03 27272.38 27789.64 15157.56 21186.04 31459.61 28283.35 20488.79 255
NR-MVSNet80.23 15279.38 15082.78 18387.80 19463.34 23386.31 19591.09 12679.01 2672.17 27989.07 16767.20 10592.81 18866.08 22875.65 29792.20 131
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12585.17 25069.91 8490.57 5990.97 12766.70 25972.17 27991.91 9154.70 23193.96 12561.81 26690.95 9588.41 265
MVS78.19 20076.99 20881.78 20085.66 24166.99 15684.66 23390.47 14155.08 36772.02 28185.27 26863.83 13794.11 12366.10 22789.80 11384.24 337
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20383.20 29264.67 20483.60 25989.75 16469.75 21371.85 28287.09 22232.78 37592.11 20969.99 19180.43 24088.09 268
PatchmatchNetpermissive73.12 27771.33 28278.49 27383.18 29360.85 26779.63 31478.57 34364.13 29271.73 28379.81 34651.20 27085.97 31557.40 30476.36 29188.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst72.39 28272.13 27373.18 32980.54 33849.91 37579.91 31379.08 34163.11 30571.69 28479.95 34355.32 22382.77 34065.66 23273.89 32386.87 296
TransMVSNet (Re)75.39 25574.56 24777.86 28085.50 24557.10 31186.78 18286.09 25472.17 16171.53 28587.34 21263.01 14989.31 27956.84 31061.83 37287.17 288
Fast-Effi-MVS+-dtu78.02 20576.49 22082.62 18783.16 29566.96 15986.94 17587.45 23172.45 15571.49 28684.17 29154.79 23091.58 22767.61 21380.31 24189.30 235
PAPM77.68 21676.40 22381.51 20687.29 21661.85 25683.78 25489.59 16864.74 28571.23 28788.70 17562.59 15293.66 14552.66 32987.03 14789.01 244
tfpnnormal74.39 26073.16 26478.08 27886.10 23758.05 29484.65 23587.53 22870.32 19871.22 28885.63 26154.97 22589.86 26843.03 37675.02 31386.32 305
RPSCF73.23 27671.46 27978.54 27082.50 31159.85 28082.18 27882.84 30258.96 34471.15 28989.41 16345.48 32684.77 32758.82 29171.83 34091.02 167
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34550.58 33874.83 31585.34 322
CL-MVSNet_self_test72.37 28471.46 27975.09 31079.49 35453.53 35280.76 29885.01 26669.12 22870.51 29182.05 32557.92 20784.13 33052.27 33166.00 36487.60 277
IterMVS-SCA-FT75.43 25373.87 25780.11 24182.69 30764.85 20181.57 28683.47 28769.16 22770.49 29284.15 29251.95 26188.15 29769.23 19872.14 33887.34 284
miper_lstm_enhance74.11 26473.11 26577.13 29380.11 34359.62 28372.23 36586.92 24166.76 25870.40 29382.92 31256.93 21882.92 33969.06 20172.63 33488.87 251
gg-mvs-nofinetune69.95 30767.96 31175.94 30083.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29053.88 32387.76 13784.62 334
DP-MVS76.78 23174.57 24683.42 15093.29 4869.46 9488.55 12483.70 28263.98 29870.20 29588.89 17154.01 23994.80 10046.66 36281.88 22386.01 313
pmmvs674.69 25973.39 26178.61 26781.38 32857.48 30686.64 18687.95 21864.99 28470.18 29686.61 23650.43 27989.52 27562.12 26270.18 34888.83 253
PVSNet64.34 1872.08 28870.87 28875.69 30386.21 23356.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33754.77 31984.45 18387.32 285
131476.53 23475.30 24080.21 23983.93 27762.32 25084.66 23388.81 19760.23 33270.16 29884.07 29355.30 22490.73 25767.37 21683.21 20687.59 279
Patchmtry70.74 29869.16 30175.49 30780.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 30953.37 32671.09 34585.87 317
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36356.58 31275.26 31087.13 291
IterMVS74.29 26172.94 26678.35 27481.53 32563.49 22981.58 28582.49 30468.06 24869.99 30183.69 30151.66 26785.54 31965.85 23071.64 34186.01 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR72.94 28072.43 27074.48 31681.35 32958.04 29578.38 33177.46 34966.66 26069.95 30279.00 35248.06 30279.24 35566.13 22584.83 17486.15 309
test-mter71.41 29170.39 29474.48 31681.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35566.13 22584.83 17486.15 309
pmmvs474.03 26771.91 27480.39 23481.96 31868.32 12381.45 28882.14 30759.32 34069.87 30485.13 27352.40 25188.13 29860.21 27874.74 31684.73 333
PLCcopyleft70.83 1178.05 20476.37 22483.08 16691.88 7467.80 13588.19 13889.46 17164.33 29169.87 30488.38 18653.66 24193.58 14658.86 29082.73 21287.86 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB69.57 1376.25 24174.54 24881.41 20988.60 16464.38 21279.24 31989.12 18870.76 18869.79 30687.86 20049.09 29693.20 16956.21 31580.16 24286.65 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D76.95 22874.82 24483.37 15390.45 9767.36 14789.15 10386.94 24061.87 32269.52 30790.61 13151.71 26694.53 10746.38 36586.71 15288.21 267
IB-MVS68.01 1575.85 24773.36 26283.31 15484.76 25966.03 17283.38 26285.06 26470.21 20269.40 30881.05 33145.76 32294.66 10565.10 23675.49 30089.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL72.38 28370.90 28776.80 29688.60 16467.38 14679.53 31576.17 36062.75 31369.36 30982.00 32745.51 32484.89 32653.62 32480.58 23778.12 375
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30751.60 33478.51 260
dmvs_re71.14 29370.58 28972.80 33181.96 31859.68 28275.60 35179.34 33868.55 24069.27 31180.72 33749.42 29076.54 36952.56 33077.79 26782.19 360
testing368.56 31867.67 31971.22 34587.33 21442.87 39383.06 27171.54 37570.36 19669.08 31284.38 28430.33 38285.69 31737.50 38775.45 30485.09 329
D2MVS74.82 25873.21 26379.64 25279.81 34862.56 24780.34 30787.35 23264.37 29068.86 31382.66 31746.37 31390.10 26467.91 21181.24 22886.25 306
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36061.16 27282.77 21173.90 382
Patchmatch-RL test70.24 30467.78 31777.61 28677.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32069.58 19666.58 36187.77 274
MS-PatchMatch73.83 26872.67 26777.30 29183.87 27866.02 17381.82 28184.66 26861.37 32668.61 31682.82 31547.29 30588.21 29659.27 28484.32 18577.68 376
tpm cat170.57 30068.31 30677.35 29082.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30151.77 33272.07 33986.25 306
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
TESTMET0.1,169.89 30869.00 30272.55 33379.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36863.92 24484.09 18884.10 340
MIMVSNet70.69 29969.30 29874.88 31284.52 26556.35 32575.87 34979.42 33764.59 28667.76 32082.41 31941.10 34981.54 34646.64 36481.34 22686.75 300
ACMH+68.96 1476.01 24574.01 25382.03 19688.60 16465.31 19288.86 11187.55 22770.25 20167.75 32187.47 21141.27 34893.19 17158.37 29575.94 29487.60 277
LCM-MVSNet-Re77.05 22576.94 20977.36 28987.20 21751.60 36680.06 30980.46 32675.20 9967.69 32286.72 22962.48 15488.98 28563.44 24789.25 11891.51 149
ITE_SJBPF78.22 27581.77 32160.57 27183.30 28969.25 22367.54 32387.20 21836.33 36987.28 30654.34 32174.62 31786.80 298
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 38972.77 16766.02 36383.99 341
pmmvs571.55 29070.20 29675.61 30477.83 36156.39 32281.74 28380.89 31857.76 35367.46 32584.49 28149.26 29485.32 32357.08 30775.29 30985.11 328
MVP-Stereo76.12 24274.46 25081.13 21985.37 24869.79 8684.42 24487.95 21865.03 28267.46 32585.33 26753.28 24691.73 22458.01 29983.27 20581.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_040272.79 28170.44 29279.84 24688.13 18165.99 17585.93 20584.29 27465.57 27767.40 32785.49 26446.92 30992.61 19035.88 38874.38 31980.94 367
GG-mvs-BLEND75.38 30881.59 32455.80 33179.32 31869.63 38067.19 32873.67 37843.24 33688.90 28950.41 33984.50 17981.45 364
tpmvs71.09 29469.29 29976.49 29782.04 31756.04 32878.92 32581.37 31764.05 29667.18 32978.28 35849.74 28789.77 27049.67 34772.37 33583.67 345
OurMVSNet-221017-074.26 26272.42 27179.80 24783.76 28159.59 28485.92 20686.64 24466.39 26766.96 33087.58 20539.46 35691.60 22665.76 23169.27 35188.22 266
baseline275.70 24873.83 25881.30 21383.26 29061.79 25882.57 27580.65 32266.81 25666.88 33183.42 30557.86 20892.19 20763.47 24679.57 24889.91 216
F-COLMAP76.38 24074.33 25182.50 18989.28 13766.95 16088.41 12889.03 18964.05 29666.83 33288.61 17946.78 31092.89 18457.48 30278.55 25887.67 275
ACMH67.68 1675.89 24673.93 25581.77 20188.71 16166.61 16388.62 12289.01 19169.81 20966.78 33386.70 23341.95 34791.51 23455.64 31678.14 26587.17 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26366.74 33479.46 34752.11 25782.30 34232.89 39176.38 28982.75 356
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26366.74 33479.46 34731.53 37982.30 34239.43 38476.38 28982.75 356
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26066.56 33682.29 32248.06 30275.87 37644.97 37374.51 31883.41 347
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 270
KD-MVS_2432*160066.22 33563.89 33773.21 32675.47 37353.42 35470.76 37184.35 27264.10 29466.52 33878.52 35634.55 37384.98 32450.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32675.47 37353.42 35470.76 37184.35 27264.10 29466.52 33878.52 35634.55 37384.98 32450.40 34050.33 39181.23 365
ET-MVSNet_ETH3D78.63 18976.63 21984.64 9986.73 22669.47 9285.01 22684.61 26969.54 21666.51 34086.59 23750.16 28191.75 22276.26 13184.24 18692.69 112
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 23984.27 27542.27 38966.44 34184.79 27940.44 35383.76 33258.76 29268.54 35683.17 349
EPNet_dtu75.46 25274.86 24377.23 29282.57 31054.60 34486.89 17783.09 29471.64 16666.25 34285.86 25555.99 22188.04 29954.92 31886.55 15489.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35743.62 37575.70 29683.36 348
SixPastTwentyTwo73.37 27271.26 28479.70 24985.08 25557.89 29985.57 21283.56 28571.03 18365.66 34485.88 25442.10 34592.57 19159.11 28763.34 37088.65 260
MSDG73.36 27470.99 28680.49 23384.51 26665.80 18080.71 30086.13 25365.70 27565.46 34583.74 29944.60 32890.91 25351.13 33776.89 27784.74 332
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28580.26 34059.41 28685.01 22682.96 29958.76 34665.43 34682.33 32037.63 36691.23 24445.34 37276.03 29382.32 358
ppachtmachnet_test70.04 30667.34 32378.14 27779.80 34961.13 26379.19 32180.59 32359.16 34265.27 34779.29 34946.75 31187.29 30549.33 34866.72 35986.00 315
ADS-MVSNet266.20 33763.33 34074.82 31379.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35241.57 37968.91 35385.18 325
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38641.57 37968.91 35385.18 325
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 26965.20 35086.59 23735.72 37174.71 38343.71 37473.38 33084.84 331
PM-MVS66.41 33364.14 33573.20 32873.92 37756.45 32078.97 32464.96 39263.88 30164.72 35180.24 34019.84 39683.44 33666.24 22464.52 36879.71 372
JIA-IIPM66.32 33462.82 34576.82 29577.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31051.45 33569.22 35282.21 359
ambc75.24 30973.16 38450.51 37363.05 39687.47 23064.28 35377.81 36217.80 39889.73 27257.88 30060.64 37685.49 320
EG-PatchMatch MVS74.04 26571.82 27580.71 22984.92 25767.42 14485.86 20888.08 21466.04 27164.22 35483.85 29535.10 37292.56 19257.44 30380.83 23382.16 361
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35148.86 35166.58 36183.16 350
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 23963.12 30463.99 35678.99 35442.32 34284.77 32756.55 31364.09 36987.16 290
pmmvs-eth3d70.50 30267.83 31578.52 27277.37 36466.18 17181.82 28181.51 31458.90 34563.90 35780.42 33942.69 34086.28 31258.56 29365.30 36683.11 351
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22787.13 21965.63 18488.30 13584.19 27762.96 30863.80 35887.69 20338.04 36492.56 19246.66 36274.91 31484.24 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet569.50 31067.96 31174.15 32082.97 30255.35 33780.01 31182.12 30862.56 31563.02 35981.53 32836.92 36781.92 34448.42 35274.06 32185.17 327
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26063.01 36083.80 29747.02 30878.40 35942.53 37868.86 35583.58 346
K. test v371.19 29268.51 30479.21 25983.04 29857.78 30284.35 24676.91 35572.90 15362.99 36182.86 31439.27 35791.09 25061.65 26752.66 38888.75 257
our_test_369.14 31267.00 32575.57 30579.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33151.71 33367.58 35883.93 342
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38255.25 31779.68 24776.88 378
Anonymous2024052168.80 31567.22 32473.55 32474.33 37554.11 34883.18 26585.61 25958.15 35061.68 36480.94 33430.71 38181.27 34857.00 30873.34 33185.28 323
USDC70.33 30368.37 30576.21 29980.60 33756.23 32679.19 32186.49 24660.89 32761.29 36585.47 26531.78 37889.47 27753.37 32676.21 29282.94 355
lessismore_v078.97 26281.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24159.67 28146.92 39488.43 264
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26365.20 27960.78 36780.93 33642.35 34177.20 36557.12 30653.69 38785.44 321
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 24960.34 36876.01 37053.56 24273.94 38731.79 39267.65 35775.88 380
AllTest70.96 29568.09 31079.58 25385.15 25263.62 22384.58 23779.83 33362.31 31760.32 36986.73 22732.02 37688.96 28750.28 34271.57 34286.15 309
TestCases79.58 25385.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28750.28 34271.57 34286.15 309
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39040.66 38173.57 32687.90 271
MIMVSNet168.58 31766.78 32773.98 32280.07 34451.82 36480.77 29784.37 27164.40 28959.75 37282.16 32436.47 36883.63 33442.73 37770.33 34786.48 304
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39462.80 25169.48 34973.25 383
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37053.06 32866.66 36078.68 374
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36447.01 36135.91 39771.55 385
TDRefinement67.49 32464.34 33476.92 29473.47 38261.07 26484.86 23082.98 29859.77 33658.30 37685.13 27326.06 38687.89 30047.92 35960.59 37781.81 363
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35849.26 34952.21 38980.63 368
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39538.78 38572.37 33576.97 377
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37145.95 36857.67 37984.13 339
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29873.15 38557.55 30579.47 31683.92 27948.02 38256.48 38284.81 27843.13 33786.42 31162.67 25581.81 22484.89 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap67.30 32764.81 33274.76 31481.92 32056.68 31880.29 30881.49 31560.33 33056.27 38383.22 30624.77 38987.66 30445.52 37069.47 35079.95 371
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38449.95 34561.52 37483.05 352
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38549.89 34661.55 37382.99 354
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 37945.45 37155.25 38672.90 384
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34139.53 38273.95 32264.62 391
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37717.31 40435.07 39870.12 386
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30279.28 35660.56 27273.92 36178.35 34464.43 28850.13 39079.87 34544.02 33383.67 33346.10 36756.86 38083.03 353
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38016.20 40732.28 40069.20 387
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39324.24 40065.42 36558.40 396
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37334.64 39055.36 38563.86 392
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36248.24 35651.20 39080.57 369
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38831.22 39315.89 40879.18 373
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39126.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39126.39 39846.73 39555.04 397
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37822.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37517.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30467.75 3850.07 4110.43 41275.85 37324.26 39081.54 34628.82 39462.25 37159.16 394
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1790.00 4140.00 41588.61 17961.62 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
eth-test20.00 419
eth-test0.00 419
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5996.48 894.88 14
save fliter93.80 4072.35 4290.47 6391.17 12274.31 118
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 47
GSMVS88.96 248
sam_mvs151.32 26988.96 248
sam_mvs50.01 282
MTGPAbinary92.02 90
test_post178.90 3265.43 41048.81 30185.44 32259.25 285
test_post5.46 40950.36 28084.24 329
patchmatchnet-post74.00 37751.12 27188.60 292
MTMP92.18 3532.83 413
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19863.40 248
test9_res84.90 4295.70 2692.87 107
agg_prior282.91 6895.45 3092.70 110
test_prior472.60 3489.01 106
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6593.91 58
新几何286.29 197
旧先验191.96 7165.79 18186.37 24993.08 7169.31 8192.74 7188.74 258
无先验87.48 15988.98 19260.00 33494.12 12267.28 21788.97 247
原ACMM286.86 178
testdata291.01 25262.37 258
segment_acmp73.08 38
testdata184.14 25075.71 89
plane_prior790.08 10568.51 120
plane_prior689.84 11468.70 11560.42 193
plane_prior592.44 7295.38 7278.71 10586.32 15791.33 155
plane_prior491.00 124
plane_prior291.25 5079.12 23
plane_prior189.90 113
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 420
nn0.00 420
door-mid69.98 379
test1192.23 82
door69.44 382
HQP5-MVS66.98 157
BP-MVS77.47 119
HQP3-MVS92.19 8585.99 165
HQP2-MVS60.17 196
NP-MVS89.62 11868.32 12390.24 138
ACMMP++_ref81.95 222
ACMMP++81.25 227
Test By Simon64.33 132