This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
test_fmvsmvis_n_192096.70 4096.84 2696.31 9496.62 17691.73 10197.98 5998.30 2596.19 496.10 8398.95 189.42 7999.76 3398.90 399.08 7697.43 184
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 3895.42 1097.94 6698.18 4990.57 18098.85 1098.94 293.33 2199.83 2596.72 3099.68 499.63 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsm_n_192097.55 997.89 396.53 7398.41 7491.73 10198.01 5699.02 196.37 399.30 198.92 392.39 3599.79 3199.16 299.46 3998.08 155
test072699.45 395.36 1398.31 2998.29 2794.92 2598.99 598.92 395.08 8
APDe-MVS97.82 597.73 598.08 1799.15 3394.82 2698.81 798.30 2594.76 3698.30 1898.90 593.77 1799.68 4897.93 499.69 399.75 5
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3295.13 1999.19 298.89 695.54 599.85 1797.52 1299.66 1099.56 26
test_241102_TWO98.27 3295.13 1998.93 798.89 694.99 1199.85 1797.52 1299.65 1299.74 7
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2994.78 3498.93 798.87 896.04 299.86 897.45 1699.58 2199.59 20
test_one_060199.32 2295.20 2098.25 3795.13 1998.48 1798.87 895.16 7
DVP-MVScopyleft97.91 397.81 498.22 1299.45 395.36 1398.21 4397.85 10894.92 2598.73 1198.87 895.08 899.84 2297.52 1299.67 699.48 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 3498.73 1198.87 895.87 499.84 2297.45 1699.72 299.77 1
test_241102_ONE99.42 795.30 1798.27 3295.09 2299.19 298.81 1295.54 599.65 52
DPE-MVScopyleft97.86 497.65 698.47 599.17 3295.78 797.21 14998.35 2195.16 1898.71 1398.80 1395.05 1099.89 396.70 3199.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030497.04 2396.73 3497.96 2297.60 12994.36 3398.01 5694.09 33497.33 196.29 7698.79 1489.73 7899.86 899.36 199.42 4599.67 11
MP-MVS-pluss96.70 4096.27 5297.98 2099.23 3094.71 2796.96 16798.06 7490.67 17195.55 10398.78 1591.07 6099.86 896.58 3499.55 2499.38 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.20 1696.86 2498.23 1199.09 3495.16 2297.60 10598.19 4792.82 10897.93 2698.74 1691.60 4999.86 896.26 4099.52 2899.67 11
patch_mono-296.83 3597.44 1095.01 16299.05 3985.39 28796.98 16598.77 694.70 3897.99 2498.66 1793.61 1999.91 197.67 899.50 3399.72 10
DeepC-MVS93.07 396.06 5695.66 6097.29 5197.96 10593.17 6797.30 13998.06 7493.92 5993.38 14898.66 1786.83 11699.73 3695.60 7499.22 6598.96 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.39 1297.13 1398.17 1499.02 4295.28 1998.23 4098.27 3292.37 11998.27 1998.65 1993.33 2199.72 3996.49 3799.52 2899.51 34
MTAPA97.08 2096.78 3297.97 2199.37 1694.42 3297.24 14398.08 6695.07 2396.11 8298.59 2090.88 6599.90 296.18 4999.50 3399.58 22
SteuartSystems-ACMMP97.62 797.53 897.87 2398.39 7794.25 3798.43 2498.27 3295.34 1398.11 2098.56 2194.53 1299.71 4096.57 3599.62 1599.65 13
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS93.97 196.61 4597.09 1495.15 15398.09 9986.63 26796.00 24298.15 5495.43 1097.95 2598.56 2193.40 2099.36 10496.77 2899.48 3799.45 42
SD-MVS97.41 1197.53 897.06 6198.57 6994.46 3097.92 6898.14 5694.82 3199.01 498.55 2394.18 1497.41 30996.94 2499.64 1399.32 56
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize96.81 3696.71 3697.12 5999.01 4592.31 8797.98 5998.06 7493.11 9497.44 3398.55 2390.93 6399.55 7796.06 5099.25 6399.51 34
dcpmvs_296.37 5197.05 1794.31 20198.96 4684.11 30597.56 10997.51 14493.92 5997.43 3598.52 2592.75 2799.32 10797.32 2099.50 3399.51 34
SR-MVS-dyc-post96.88 3196.80 3197.11 6099.02 4292.34 8597.98 5998.03 8393.52 7597.43 3598.51 2691.40 5399.56 7596.05 5199.26 6199.43 46
RE-MVS-def96.72 3599.02 4292.34 8597.98 5998.03 8393.52 7597.43 3598.51 2690.71 6796.05 5199.26 6199.43 46
test_vis1_n_192094.17 10494.58 8792.91 26597.42 13582.02 32597.83 7697.85 10894.68 3998.10 2198.49 2870.15 32399.32 10797.91 598.82 8697.40 185
mvsany_test193.93 11893.98 10193.78 23194.94 26786.80 26094.62 28692.55 35188.77 23196.85 5098.49 2888.98 8498.08 23395.03 8695.62 17096.46 215
EI-MVSNet-Vis-set96.51 4796.47 4596.63 6898.24 8691.20 12996.89 17197.73 11794.74 3796.49 6898.49 2890.88 6599.58 6796.44 3898.32 10499.13 71
SR-MVS97.01 2596.86 2497.47 4599.09 3493.27 6597.98 5998.07 7193.75 6497.45 3298.48 3191.43 5299.59 6496.22 4399.27 5999.54 30
EI-MVSNet-UG-set96.34 5296.30 5196.47 8198.20 9190.93 14196.86 17397.72 11994.67 4096.16 8198.46 3290.43 7099.58 6796.23 4297.96 11598.90 96
VDDNet93.05 15492.07 16896.02 11296.84 16390.39 16098.08 5195.85 26986.22 29095.79 9598.46 3267.59 33599.19 11894.92 8994.85 18198.47 129
9.1496.75 3398.93 4797.73 8598.23 4291.28 15197.88 2798.44 3493.00 2499.65 5295.76 6399.47 38
VDD-MVS93.82 12393.08 13096.02 11297.88 11289.96 17097.72 8895.85 26992.43 11795.86 9298.44 3468.42 33299.39 10196.31 3994.85 18198.71 112
PGM-MVS96.81 3696.53 4297.65 4099.35 2093.53 5797.65 9698.98 292.22 12197.14 4298.44 3491.17 5999.85 1794.35 10399.46 3999.57 23
MSLP-MVS++96.94 2897.06 1596.59 7198.72 5591.86 10097.67 9398.49 1494.66 4197.24 3998.41 3792.31 3898.94 14996.61 3399.46 3998.96 88
ACMMPcopyleft96.27 5495.93 5697.28 5299.24 2892.62 7898.25 3698.81 492.99 9794.56 12198.39 3888.96 8599.85 1794.57 10297.63 12299.36 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast93.89 296.93 2996.64 3897.78 3098.64 6494.30 3497.41 12498.04 8194.81 3296.59 6498.37 3991.24 5699.64 5995.16 8399.52 2899.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_cas_vis1_n_192094.48 9894.55 9194.28 20396.78 16886.45 26997.63 10297.64 12993.32 8497.68 3098.36 4073.75 30399.08 13496.73 2999.05 7797.31 190
TSAR-MVS + MP.97.42 1097.33 1297.69 3999.25 2794.24 3898.07 5297.85 10893.72 6598.57 1498.35 4193.69 1899.40 10097.06 2299.46 3999.44 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UA-Net95.95 6195.53 6297.20 5797.67 12192.98 7197.65 9698.13 5794.81 3296.61 6298.35 4188.87 8699.51 8690.36 17997.35 13299.11 75
HPM-MVS_fast96.51 4796.27 5297.22 5599.32 2292.74 7598.74 998.06 7490.57 18096.77 5398.35 4190.21 7299.53 8194.80 9499.63 1499.38 52
region2R97.07 2196.84 2697.77 3299.46 293.79 5198.52 1698.24 3993.19 8997.14 4298.34 4491.59 5099.87 795.46 7799.59 1799.64 14
MP-MVScopyleft96.77 3896.45 4897.72 3699.39 1393.80 5098.41 2598.06 7493.37 8195.54 10598.34 4490.59 6999.88 494.83 9199.54 2699.49 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D93.57 13292.61 15296.47 8197.59 13091.61 10897.67 9397.72 11985.17 30690.29 21498.34 4484.60 14499.73 3683.85 29698.27 10598.06 156
ACMMPR97.07 2196.84 2697.79 2999.44 693.88 4998.52 1698.31 2493.21 8697.15 4198.33 4791.35 5499.86 895.63 7099.59 1799.62 16
mPP-MVS96.86 3296.60 3997.64 4299.40 1193.44 5898.50 1998.09 6593.27 8595.95 9098.33 4791.04 6199.88 495.20 8299.57 2399.60 19
APD-MVScopyleft96.95 2796.60 3998.01 1899.03 4194.93 2597.72 8898.10 6491.50 14198.01 2398.32 4992.33 3699.58 6794.85 9099.51 3199.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LFMVS93.60 12992.63 14996.52 7498.13 9891.27 12497.94 6693.39 34490.57 18096.29 7698.31 5069.00 32899.16 12294.18 10695.87 16399.12 74
CNVR-MVS97.68 697.44 1098.37 798.90 5095.86 697.27 14198.08 6695.81 797.87 2898.31 5094.26 1399.68 4897.02 2399.49 3699.57 23
CP-MVS97.02 2496.81 3097.64 4299.33 2193.54 5698.80 898.28 2992.99 9796.45 7298.30 5291.90 4399.85 1795.61 7299.68 499.54 30
HFP-MVS97.14 1996.92 2397.83 2599.42 794.12 4398.52 1698.32 2393.21 8697.18 4098.29 5392.08 4099.83 2595.63 7099.59 1799.54 30
XVS97.18 1796.96 2297.81 2799.38 1494.03 4798.59 1298.20 4494.85 2796.59 6498.29 5391.70 4699.80 2995.66 6599.40 4899.62 16
PC_three_145290.77 16598.89 998.28 5596.24 198.35 20495.76 6399.58 2199.59 20
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5696.04 299.24 11495.36 7999.59 1799.56 26
test250691.60 20890.78 21694.04 21397.66 12383.81 30898.27 3375.53 38493.43 7995.23 10998.21 5767.21 33899.07 13893.01 13498.49 9799.25 62
test111193.19 14592.82 14094.30 20297.58 13284.56 30098.21 4389.02 36893.53 7494.58 12098.21 5772.69 30699.05 14193.06 13098.48 9999.28 59
ECVR-MVScopyleft93.19 14592.73 14694.57 19097.66 12385.41 28598.21 4388.23 36993.43 7994.70 11898.21 5772.57 30799.07 13893.05 13198.49 9799.25 62
test_fmvs1_n92.73 17092.88 13792.29 28296.08 21381.05 33397.98 5997.08 19290.72 16896.79 5298.18 6063.07 35498.45 19497.62 1098.42 10297.36 186
ZNCC-MVS96.96 2696.67 3797.85 2499.37 1694.12 4398.49 2098.18 4992.64 11496.39 7498.18 6091.61 4899.88 495.59 7599.55 2499.57 23
Vis-MVSNetpermissive95.23 7894.81 8096.51 7797.18 14191.58 11198.26 3598.12 5994.38 4994.90 11498.15 6282.28 19198.92 15191.45 16398.58 9599.01 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ZD-MVS99.05 3994.59 2898.08 6689.22 21197.03 4798.10 6392.52 3399.65 5294.58 10199.31 57
MG-MVS95.61 6895.38 6896.31 9498.42 7390.53 15496.04 23997.48 14793.47 7795.67 10098.10 6389.17 8299.25 11391.27 16698.77 8899.13 71
旧先验198.38 7893.38 6097.75 11498.09 6592.30 3999.01 8099.16 67
testdata95.46 14598.18 9588.90 20897.66 12582.73 33497.03 4798.07 6690.06 7398.85 15689.67 19298.98 8198.64 116
GST-MVS96.85 3496.52 4397.82 2699.36 1894.14 4298.29 3198.13 5792.72 11196.70 5698.06 6791.35 5499.86 894.83 9199.28 5899.47 41
3Dnovator91.36 595.19 8194.44 9697.44 4696.56 18393.36 6298.65 1198.36 1894.12 5489.25 25498.06 6782.20 19399.77 3293.41 12399.32 5699.18 66
test_fmvs193.21 14393.53 11392.25 28496.55 18581.20 33297.40 12896.96 20590.68 17096.80 5198.04 6969.25 32798.40 19797.58 1198.50 9697.16 195
CS-MVS96.86 3297.06 1596.26 10098.16 9691.16 13499.09 397.87 10395.30 1497.06 4698.03 7091.72 4498.71 17297.10 2199.17 6998.90 96
CPTT-MVS95.57 7095.19 7396.70 6599.27 2691.48 11598.33 2898.11 6287.79 25795.17 11198.03 7087.09 11499.61 6093.51 11999.42 4599.02 80
3Dnovator+91.43 495.40 7294.48 9498.16 1596.90 16095.34 1698.48 2197.87 10394.65 4288.53 26998.02 7283.69 15799.71 4093.18 12698.96 8299.44 44
PHI-MVS96.77 3896.46 4797.71 3898.40 7594.07 4598.21 4398.45 1789.86 19297.11 4498.01 7392.52 3399.69 4696.03 5499.53 2799.36 54
HPM-MVScopyleft96.69 4296.45 4897.40 4799.36 1893.11 6898.87 698.06 7491.17 15696.40 7397.99 7490.99 6299.58 6795.61 7299.61 1699.49 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvspermissive95.64 6795.49 6396.08 10796.76 17390.45 15797.29 14097.44 16194.00 5695.46 10797.98 7587.52 10798.73 16895.64 6997.33 13399.08 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test96.89 3097.04 1896.45 8498.29 8291.66 10799.03 497.85 10895.84 696.90 4997.97 7691.24 5698.75 16696.92 2599.33 5598.94 91
OMC-MVS95.09 8294.70 8496.25 10398.46 7091.28 12396.43 21097.57 13792.04 13094.77 11797.96 7787.01 11599.09 13291.31 16596.77 14698.36 141
test_vis1_n92.37 18092.26 16592.72 27294.75 27982.64 31798.02 5596.80 22291.18 15597.77 2997.93 7858.02 36198.29 20997.63 998.21 10797.23 194
casdiffmvs_mvgpermissive95.81 6495.57 6196.51 7796.87 16191.49 11497.50 11597.56 14093.99 5795.13 11297.92 7987.89 9998.78 16195.97 5597.33 13399.26 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS++copyleft97.34 1496.97 2198.47 599.08 3696.16 497.55 11297.97 9395.59 896.61 6297.89 8092.57 3299.84 2295.95 5699.51 3199.40 49
CDPH-MVS95.97 6095.38 6897.77 3298.93 4794.44 3196.35 22097.88 10186.98 27696.65 6097.89 8091.99 4299.47 9292.26 13999.46 3999.39 50
NCCC97.30 1597.03 1998.11 1698.77 5395.06 2497.34 13498.04 8195.96 597.09 4597.88 8293.18 2399.71 4095.84 6199.17 6999.56 26
DP-MVS92.76 16991.51 19196.52 7498.77 5390.99 13797.38 13196.08 26182.38 33589.29 25197.87 8383.77 15699.69 4681.37 31796.69 15098.89 99
RPSCF90.75 25090.86 21190.42 32296.84 16376.29 36095.61 25996.34 24983.89 32291.38 19197.87 8376.45 27998.78 16187.16 24992.23 21696.20 219
XVG-OURS93.72 12793.35 12494.80 17997.07 14888.61 21394.79 28397.46 15291.97 13393.99 13397.86 8581.74 20298.88 15592.64 13892.67 21296.92 202
新几何197.32 4998.60 6593.59 5597.75 11481.58 34195.75 9697.85 8690.04 7499.67 5086.50 25799.13 7398.69 113
baseline95.58 6995.42 6796.08 10796.78 16890.41 15997.16 15397.45 15793.69 6895.65 10197.85 8687.29 11198.68 17495.66 6597.25 13799.13 71
test22298.24 8692.21 9095.33 26997.60 13379.22 35495.25 10897.84 8888.80 8899.15 7198.72 110
CANet96.39 5096.02 5597.50 4497.62 12693.38 6097.02 16097.96 9495.42 1194.86 11597.81 8987.38 11099.82 2796.88 2699.20 6799.29 57
MSP-MVS97.59 897.54 797.73 3599.40 1193.77 5398.53 1598.29 2795.55 998.56 1597.81 8993.90 1599.65 5296.62 3299.21 6699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EPNet95.20 8094.56 8897.14 5892.80 33592.68 7797.85 7494.87 31996.64 292.46 16497.80 9186.23 12399.65 5293.72 11798.62 9399.10 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM93.45 13692.27 16496.98 6396.77 17092.62 7898.39 2698.12 5984.50 31688.27 27697.77 9282.39 19099.81 2885.40 27698.81 8798.51 123
OpenMVScopyleft89.19 1292.86 16491.68 18396.40 8795.34 24292.73 7698.27 3398.12 5984.86 31185.78 31297.75 9378.89 25399.74 3587.50 24198.65 9296.73 207
IS-MVSNet94.90 8994.52 9296.05 11097.67 12190.56 15398.44 2396.22 25593.21 8693.99 13397.74 9485.55 13498.45 19489.98 18397.86 11699.14 70
MVS_111021_HR96.68 4496.58 4196.99 6298.46 7092.31 8796.20 23398.90 394.30 5195.86 9297.74 9492.33 3699.38 10396.04 5399.42 4599.28 59
MCST-MVS97.18 1796.84 2698.20 1399.30 2495.35 1597.12 15698.07 7193.54 7396.08 8497.69 9693.86 1699.71 4096.50 3699.39 5099.55 29
原ACMM196.38 9098.59 6691.09 13697.89 9987.41 26895.22 11097.68 9790.25 7199.54 7987.95 22599.12 7498.49 126
XVG-OURS-SEG-HR93.86 12193.55 11194.81 17697.06 15188.53 21895.28 27297.45 15791.68 13894.08 13297.68 9782.41 18998.90 15493.84 11592.47 21396.98 198
EC-MVSNet96.42 4996.47 4596.26 10097.01 15691.52 11398.89 597.75 11494.42 4696.64 6197.68 9789.32 8098.60 18297.45 1699.11 7598.67 115
TSAR-MVS + GP.96.69 4296.49 4497.27 5398.31 8193.39 5996.79 17996.72 22594.17 5397.44 3397.66 10092.76 2699.33 10596.86 2797.76 12199.08 77
DELS-MVS96.61 4596.38 5097.30 5097.79 11693.19 6695.96 24498.18 4995.23 1595.87 9197.65 10191.45 5199.70 4595.87 5799.44 4499.00 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon95.68 6695.12 7697.37 4899.19 3194.19 3997.03 15898.08 6688.35 24195.09 11397.65 10189.97 7599.48 9192.08 14898.59 9498.44 134
MVS_111021_LR96.24 5596.19 5496.39 8998.23 9091.35 12196.24 23198.79 593.99 5795.80 9497.65 10189.92 7699.24 11495.87 5799.20 6798.58 117
EI-MVSNet93.03 15592.88 13793.48 24595.77 22186.98 25796.44 20897.12 18790.66 17391.30 19697.64 10486.56 11898.05 24089.91 18590.55 25095.41 260
CVMVSNet91.23 23091.75 17989.67 32995.77 22174.69 36296.44 20894.88 31685.81 29592.18 17297.64 10479.07 24595.58 34988.06 22395.86 16498.74 109
EPP-MVSNet95.22 7995.04 7795.76 12197.49 13489.56 18098.67 1097.00 20390.69 16994.24 12797.62 10689.79 7798.81 15993.39 12496.49 15498.92 94
VNet95.89 6295.45 6597.21 5698.07 10392.94 7297.50 11598.15 5493.87 6197.52 3197.61 10785.29 13699.53 8195.81 6295.27 17599.16 67
test_prior296.35 22092.80 10996.03 8597.59 10892.01 4195.01 8799.38 51
114514_t93.95 11693.06 13196.63 6899.07 3791.61 10897.46 12397.96 9477.99 35893.00 15697.57 10986.14 12899.33 10589.22 20599.15 7198.94 91
CSCG96.05 5795.91 5796.46 8399.24 2890.47 15698.30 3098.57 1389.01 21793.97 13597.57 10992.62 3199.76 3394.66 9799.27 5999.15 69
TEST998.70 5694.19 3996.41 21298.02 8688.17 24596.03 8597.56 11192.74 2899.59 64
train_agg96.30 5395.83 5997.72 3698.70 5694.19 3996.41 21298.02 8688.58 23496.03 8597.56 11192.73 2999.59 6495.04 8599.37 5499.39 50
test_898.67 5894.06 4696.37 21998.01 8988.58 23495.98 8997.55 11392.73 2999.58 67
h-mvs3394.15 10693.52 11596.04 11197.81 11590.22 16197.62 10497.58 13695.19 1696.74 5497.45 11483.67 15899.61 6095.85 5979.73 34598.29 144
Anonymous20240521192.07 19590.83 21595.76 12198.19 9388.75 21097.58 10795.00 30986.00 29393.64 14097.45 11466.24 34699.53 8190.68 17692.71 21099.01 83
Vis-MVSNet (Re-imp)94.15 10693.88 10394.95 16897.61 12787.92 23798.10 4995.80 27192.22 12193.02 15597.45 11484.53 14697.91 26688.24 22197.97 11499.02 80
Anonymous2024052991.98 19890.73 21995.73 12698.14 9789.40 18997.99 5897.72 11979.63 35293.54 14397.41 11769.94 32599.56 7591.04 17091.11 24098.22 146
diffmvspermissive95.25 7795.13 7595.63 13196.43 19389.34 19295.99 24397.35 17392.83 10796.31 7597.37 11886.44 12198.67 17596.26 4097.19 13998.87 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer95.37 7395.16 7495.99 11496.34 19791.21 12798.22 4197.57 13791.42 14596.22 7997.32 11986.20 12697.92 26394.07 10799.05 7798.85 102
jason94.84 9294.39 9796.18 10595.52 23090.93 14196.09 23796.52 24189.28 20996.01 8897.32 11984.70 14398.77 16495.15 8498.91 8598.85 102
jason: jason.
SDMVSNet94.17 10493.61 10995.86 11898.09 9991.37 12097.35 13398.20 4493.18 9091.79 18297.28 12179.13 24498.93 15094.61 10092.84 20797.28 191
sd_testset93.10 15092.45 16095.05 15898.09 9989.21 19996.89 17197.64 12993.18 9091.79 18297.28 12175.35 29198.65 17788.99 21192.84 20797.28 191
PVSNet_Blended_VisFu95.27 7694.91 7996.38 9098.20 9190.86 14397.27 14198.25 3790.21 18594.18 12997.27 12387.48 10899.73 3693.53 11897.77 12098.55 118
OPM-MVS93.28 14192.76 14294.82 17494.63 28590.77 14896.65 19497.18 18293.72 6591.68 18497.26 12479.33 24198.63 17992.13 14592.28 21595.07 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CNLPA94.28 10193.53 11396.52 7498.38 7892.55 8096.59 20396.88 21690.13 18891.91 17997.24 12585.21 13799.09 13287.64 23797.83 11797.92 159
TAPA-MVS90.10 792.30 18591.22 20295.56 13598.33 8089.60 17896.79 17997.65 12781.83 33991.52 18897.23 12687.94 9898.91 15371.31 36198.37 10398.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE93.89 11993.28 12695.72 12796.96 15989.75 17498.24 3996.92 21289.47 20492.12 17597.21 12784.42 14798.39 20187.71 23196.50 15399.01 83
COLMAP_ROBcopyleft87.81 1590.40 26089.28 27193.79 23097.95 10687.13 25596.92 16995.89 26882.83 33386.88 30597.18 12873.77 30299.29 11178.44 33493.62 20094.95 284
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LPG-MVS_test92.94 16092.56 15394.10 20996.16 20688.26 22597.65 9697.46 15291.29 14890.12 22297.16 12979.05 24698.73 16892.25 14191.89 22495.31 269
LGP-MVS_train94.10 20996.16 20688.26 22597.46 15291.29 14890.12 22297.16 12979.05 24698.73 16892.25 14191.89 22495.31 269
BH-RMVSNet92.72 17191.97 17394.97 16697.16 14287.99 23596.15 23595.60 28190.62 17691.87 18097.15 13178.41 25998.57 18683.16 29897.60 12398.36 141
CHOSEN 1792x268894.15 10693.51 11696.06 10998.27 8389.38 19095.18 27898.48 1685.60 29893.76 13997.11 13283.15 16899.61 6091.33 16498.72 9099.19 65
F-COLMAP93.58 13192.98 13395.37 14798.40 7588.98 20697.18 15197.29 17887.75 26090.49 20997.10 13385.21 13799.50 8986.70 25496.72 14997.63 173
DPM-MVS95.69 6594.92 7898.01 1898.08 10295.71 995.27 27497.62 13290.43 18395.55 10397.07 13491.72 4499.50 8989.62 19498.94 8398.82 105
AdaColmapbinary94.34 10093.68 10796.31 9498.59 6691.68 10696.59 20397.81 11289.87 19192.15 17397.06 13583.62 16099.54 7989.34 20098.07 11297.70 171
RRT_MVS93.10 15092.83 13993.93 22494.76 27788.04 23398.47 2296.55 24093.44 7890.01 22897.04 13680.64 21797.93 26294.33 10490.21 25595.83 235
CANet_DTU94.37 9993.65 10896.55 7296.46 19192.13 9396.21 23296.67 23294.38 4993.53 14497.03 13779.34 24099.71 4090.76 17398.45 10197.82 167
tttt051792.96 15892.33 16394.87 17297.11 14687.16 25497.97 6592.09 35490.63 17593.88 13797.01 13876.50 27899.06 14090.29 18195.45 17298.38 139
mvsmamba93.83 12293.46 11894.93 17194.88 27290.85 14498.55 1495.49 28794.24 5291.29 19996.97 13983.04 17298.14 22195.56 7691.17 23895.78 240
test_yl94.78 9494.23 9896.43 8597.74 11891.22 12596.85 17497.10 18991.23 15395.71 9796.93 14084.30 14999.31 10993.10 12795.12 17798.75 107
DCV-MVSNet94.78 9494.23 9896.43 8597.74 11891.22 12596.85 17497.10 18991.23 15395.71 9796.93 14084.30 14999.31 10993.10 12795.12 17798.75 107
WTY-MVS94.71 9694.02 10096.79 6497.71 12092.05 9596.59 20397.35 17390.61 17794.64 11996.93 14086.41 12299.39 10191.20 16894.71 18798.94 91
UniMVSNet_ETH3D91.34 22690.22 24194.68 18494.86 27387.86 24097.23 14797.46 15287.99 24989.90 23096.92 14366.35 34498.23 21290.30 18090.99 24397.96 157
TAMVS94.01 11593.46 11895.64 13096.16 20690.45 15796.71 18796.89 21589.27 21093.46 14696.92 14387.29 11197.94 25988.70 21795.74 16698.53 120
cdsmvs_eth3d_5k23.24 35130.99 3530.00 3690.00 3920.00 3930.00 38097.63 1310.00 3870.00 38896.88 14584.38 1480.00 3880.00 3860.00 3860.00 384
lupinMVS94.99 8794.56 8896.29 9896.34 19791.21 12795.83 24996.27 25288.93 22296.22 7996.88 14586.20 12698.85 15695.27 8199.05 7798.82 105
sss94.51 9793.80 10496.64 6697.07 14891.97 9896.32 22398.06 7488.94 22194.50 12296.78 14784.60 14499.27 11291.90 14996.02 15998.68 114
AllTest90.23 26488.98 27593.98 21697.94 10786.64 26496.51 20795.54 28485.38 30185.49 31596.77 14870.28 32099.15 12380.02 32492.87 20596.15 223
TestCases93.98 21697.94 10786.64 26495.54 28485.38 30185.49 31596.77 14870.28 32099.15 12380.02 32492.87 20596.15 223
API-MVS94.84 9294.49 9395.90 11697.90 11192.00 9797.80 7997.48 14789.19 21294.81 11696.71 15088.84 8799.17 12188.91 21398.76 8996.53 210
PLCcopyleft91.00 694.11 11093.43 12196.13 10698.58 6891.15 13596.69 19097.39 16787.29 27191.37 19296.71 15088.39 9499.52 8587.33 24497.13 14197.73 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 11193.70 10695.27 14995.70 22392.03 9698.10 4998.68 993.36 8390.39 21296.70 15287.63 10497.94 25992.25 14190.50 25295.84 234
FC-MVSNet-test93.94 11793.57 11095.04 15995.48 23291.45 11898.12 4898.71 793.37 8190.23 21596.70 15287.66 10297.85 26991.49 16190.39 25395.83 235
1112_ss93.37 13892.42 16196.21 10497.05 15390.99 13796.31 22496.72 22586.87 27989.83 23396.69 15486.51 12099.14 12588.12 22293.67 19898.50 124
ab-mvs-re8.06 35410.74 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38896.69 1540.00 3920.00 3880.00 3860.00 3860.00 384
bld_raw_dy_0_6492.37 18091.69 18294.39 19694.28 29989.73 17597.71 9093.65 34192.78 11090.46 21096.67 15675.88 28497.97 25192.92 13690.89 24695.48 254
ACMM89.79 892.96 15892.50 15894.35 19896.30 19988.71 21197.58 10797.36 17291.40 14790.53 20896.65 15779.77 23498.75 16691.24 16791.64 22695.59 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf_final93.60 12993.11 12995.04 15997.13 14591.30 12297.92 6895.65 28092.98 10291.60 18596.64 15879.28 24298.13 22295.34 8091.49 23095.70 248
nrg03094.05 11393.31 12596.27 9995.22 25394.59 2898.34 2797.46 15292.93 10591.21 20296.64 15887.23 11398.22 21394.99 8885.80 29495.98 230
iter_conf0593.18 14892.63 14994.83 17396.64 17590.69 15097.60 10595.53 28692.52 11591.58 18696.64 15876.35 28298.13 22295.43 7891.42 23395.68 250
HQP_MVS93.78 12593.43 12194.82 17496.21 20189.99 16697.74 8397.51 14494.85 2791.34 19396.64 15881.32 20798.60 18293.02 13292.23 21695.86 231
plane_prior496.64 158
ACMP89.59 1092.62 17292.14 16794.05 21296.40 19488.20 22897.36 13297.25 18191.52 14088.30 27496.64 15878.46 25898.72 17191.86 15291.48 23195.23 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
xiu_mvs_v1_base_debu95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
xiu_mvs_v1_base95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
xiu_mvs_v1_base_debi95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
VPNet92.23 19091.31 19694.99 16395.56 22890.96 13997.22 14897.86 10792.96 10490.96 20496.62 16775.06 29298.20 21591.90 14983.65 32795.80 238
PAPM_NR95.01 8394.59 8696.26 10098.89 5190.68 15197.24 14397.73 11791.80 13592.93 16196.62 16789.13 8399.14 12589.21 20697.78 11998.97 87
PCF-MVS89.48 1191.56 21289.95 25196.36 9296.60 17892.52 8192.51 34397.26 17979.41 35388.90 25896.56 16984.04 15499.55 7777.01 34397.30 13597.01 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-MVSNAJss93.74 12693.51 11694.44 19393.91 30789.28 19797.75 8297.56 14092.50 11689.94 22996.54 17088.65 9098.18 21893.83 11690.90 24595.86 231
CDS-MVSNet94.14 10993.54 11295.93 11596.18 20491.46 11796.33 22297.04 19988.97 22093.56 14196.51 17187.55 10597.89 26789.80 18895.95 16198.44 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
jajsoiax92.42 17791.89 17694.03 21493.33 32788.50 21997.73 8597.53 14292.00 13288.85 26196.50 17275.62 28998.11 22893.88 11491.56 22995.48 254
MSDG91.42 21990.24 23894.96 16797.15 14488.91 20793.69 32196.32 25085.72 29786.93 30396.47 17380.24 22598.98 14780.57 32095.05 18096.98 198
mvs_tets92.31 18491.76 17893.94 22293.41 32488.29 22397.63 10297.53 14292.04 13088.76 26496.45 17474.62 29598.09 23293.91 11291.48 23195.45 259
XXY-MVS92.16 19291.23 20194.95 16894.75 27990.94 14097.47 12197.43 16489.14 21388.90 25896.43 17579.71 23598.24 21189.56 19587.68 27795.67 251
thisisatest053093.03 15592.21 16695.49 14197.07 14889.11 20497.49 12092.19 35390.16 18794.09 13196.41 17676.43 28199.05 14190.38 17895.68 16998.31 143
alignmvs95.87 6395.23 7297.78 3097.56 13395.19 2197.86 7197.17 18494.39 4896.47 7096.40 17785.89 12999.20 11796.21 4795.11 17998.95 90
ITE_SJBPF92.43 27895.34 24285.37 28895.92 26491.47 14287.75 28796.39 17871.00 31697.96 25682.36 30889.86 25893.97 326
mvs_anonymous93.82 12393.74 10594.06 21196.44 19285.41 28595.81 25097.05 19789.85 19490.09 22596.36 17987.44 10997.75 27993.97 10996.69 15099.02 80
baseline192.82 16791.90 17595.55 13797.20 14090.77 14897.19 15094.58 32492.20 12392.36 16896.34 18084.16 15298.21 21489.20 20783.90 32597.68 172
OurMVSNet-221017-090.51 25890.19 24391.44 30593.41 32481.25 33096.98 16596.28 25191.68 13886.55 30796.30 18174.20 29897.98 24888.96 21287.40 28295.09 279
ab-mvs93.57 13292.55 15496.64 6697.28 13791.96 9995.40 26697.45 15789.81 19693.22 15496.28 18279.62 23799.46 9390.74 17493.11 20498.50 124
ACMH87.59 1690.53 25789.42 26893.87 22696.21 20187.92 23797.24 14396.94 20788.45 23883.91 33396.27 18371.92 30998.62 18184.43 28789.43 26295.05 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs289.77 27689.93 25289.31 33293.68 31576.37 35997.64 10095.90 26689.84 19591.49 18996.26 18458.77 36097.10 31994.65 9891.13 23994.46 313
ACMH+87.92 1490.20 26689.18 27393.25 25396.48 19086.45 26996.99 16496.68 23088.83 22684.79 32296.22 18570.16 32298.53 18884.42 28888.04 27494.77 305
xiu_mvs_v2_base95.32 7595.29 7195.40 14697.22 13890.50 15595.44 26597.44 16193.70 6796.46 7196.18 18688.59 9399.53 8194.79 9697.81 11896.17 221
UGNet94.04 11493.28 12696.31 9496.85 16291.19 13097.88 7097.68 12494.40 4793.00 15696.18 18673.39 30599.61 6091.72 15598.46 10098.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned92.94 16092.62 15193.92 22597.22 13886.16 27796.40 21696.25 25490.06 18989.79 23496.17 18883.19 16698.35 20487.19 24797.27 13697.24 193
hse-mvs293.45 13692.99 13294.81 17697.02 15588.59 21496.69 19096.47 24495.19 1696.74 5496.16 18983.67 15898.48 19395.85 5979.13 34997.35 188
AUN-MVS91.76 20390.75 21894.81 17697.00 15788.57 21596.65 19496.49 24389.63 19892.15 17396.12 19078.66 25598.50 19090.83 17179.18 34897.36 186
canonicalmvs96.02 5895.45 6597.75 3497.59 13095.15 2398.28 3297.60 13394.52 4496.27 7896.12 19087.65 10399.18 12096.20 4894.82 18398.91 95
TranMVSNet+NR-MVSNet92.50 17391.63 18495.14 15494.76 27792.07 9497.53 11398.11 6292.90 10689.56 24296.12 19083.16 16797.60 29289.30 20183.20 33195.75 245
MVS_Test94.89 9094.62 8595.68 12996.83 16589.55 18196.70 18897.17 18491.17 15695.60 10296.11 19387.87 10098.76 16593.01 13497.17 14098.72 110
PVSNet_Blended94.87 9194.56 8895.81 12098.27 8389.46 18795.47 26498.36 1888.84 22594.36 12496.09 19488.02 9699.58 6793.44 12198.18 10998.40 137
EU-MVSNet88.72 28888.90 27688.20 33693.15 33074.21 36396.63 19994.22 33385.18 30587.32 29595.97 19576.16 28394.98 35485.27 27786.17 29095.41 260
MVSTER93.20 14492.81 14194.37 19796.56 18389.59 17997.06 15797.12 18791.24 15291.30 19695.96 19682.02 19698.05 24093.48 12090.55 25095.47 257
EPNet_dtu91.71 20491.28 19892.99 26293.76 31283.71 31196.69 19095.28 29693.15 9287.02 30195.95 19783.37 16497.38 31179.46 32996.84 14497.88 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+94.93 8894.45 9596.36 9296.61 17791.47 11696.41 21297.41 16691.02 16194.50 12295.92 19887.53 10698.78 16193.89 11396.81 14598.84 104
LTVRE_ROB88.41 1390.99 24189.92 25394.19 20596.18 20489.55 18196.31 22497.09 19187.88 25385.67 31395.91 19978.79 25498.57 18681.50 31289.98 25694.44 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
NP-MVS95.99 21589.81 17395.87 200
HQP-MVS93.19 14592.74 14594.54 19195.86 21689.33 19396.65 19497.39 16793.55 7090.14 21695.87 20080.95 21098.50 19092.13 14592.10 22195.78 240
MAR-MVS94.22 10293.46 11896.51 7798.00 10492.19 9297.67 9397.47 15088.13 24893.00 15695.84 20284.86 14299.51 8687.99 22498.17 11097.83 166
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi87.97 29487.21 29490.24 32492.86 33380.76 33496.67 19394.97 31191.74 13685.52 31495.83 20362.66 35694.47 35876.25 34488.36 27395.48 254
PAPR94.18 10393.42 12396.48 8097.64 12591.42 11995.55 26097.71 12388.99 21892.34 17095.82 20489.19 8199.11 12886.14 26397.38 13098.90 96
PS-CasMVS91.55 21390.84 21493.69 23694.96 26488.28 22497.84 7598.24 3991.46 14388.04 28295.80 20579.67 23697.48 30287.02 25184.54 31695.31 269
UniMVSNet_NR-MVSNet93.37 13892.67 14895.47 14495.34 24292.83 7397.17 15298.58 1292.98 10290.13 22095.80 20588.37 9597.85 26991.71 15683.93 32295.73 247
PAPM91.52 21590.30 23495.20 15195.30 24889.83 17293.38 32996.85 21986.26 28988.59 26795.80 20584.88 14198.15 22075.67 34795.93 16297.63 173
HY-MVS89.66 993.87 12092.95 13496.63 6897.10 14792.49 8295.64 25896.64 23389.05 21693.00 15695.79 20885.77 13299.45 9589.16 20994.35 18997.96 157
HyFIR lowres test93.66 12892.92 13595.87 11798.24 8689.88 17194.58 28898.49 1485.06 30893.78 13895.78 20982.86 17798.67 17591.77 15495.71 16899.07 79
CP-MVSNet91.89 20091.24 20093.82 22895.05 26188.57 21597.82 7798.19 4791.70 13788.21 27895.76 21081.96 19797.52 30087.86 22684.65 31195.37 266
PEN-MVS91.20 23290.44 22893.48 24594.49 28987.91 23997.76 8198.18 4991.29 14887.78 28695.74 21180.35 22397.33 31385.46 27582.96 33295.19 278
DU-MVS92.90 16292.04 16995.49 14194.95 26592.83 7397.16 15398.24 3993.02 9690.13 22095.71 21283.47 16197.85 26991.71 15683.93 32295.78 240
NR-MVSNet92.34 18291.27 19995.53 13894.95 26593.05 6997.39 12998.07 7192.65 11384.46 32395.71 21285.00 14097.77 27889.71 19083.52 32895.78 240
PS-MVSNAJ95.37 7395.33 7095.49 14197.35 13690.66 15295.31 27197.48 14793.85 6296.51 6795.70 21488.65 9099.65 5294.80 9498.27 10596.17 221
DTE-MVSNet90.56 25689.75 26193.01 26193.95 30587.25 24997.64 10097.65 12790.74 16687.12 29795.68 21579.97 23197.00 32583.33 29781.66 33894.78 304
PatchMatch-RL92.90 16292.02 17195.56 13598.19 9390.80 14695.27 27497.18 18287.96 25091.86 18195.68 21580.44 22198.99 14684.01 29297.54 12496.89 203
tt080591.09 23690.07 24894.16 20795.61 22588.31 22297.56 10996.51 24289.56 20089.17 25595.64 21767.08 34298.38 20291.07 16988.44 27295.80 238
CLD-MVS92.98 15792.53 15694.32 20096.12 21089.20 20095.28 27297.47 15092.66 11289.90 23095.62 21880.58 21898.40 19792.73 13792.40 21495.38 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS91.71 20490.44 22895.51 13995.20 25591.59 11096.04 23997.45 15773.44 36687.36 29495.60 21985.42 13599.10 12985.97 26897.46 12595.83 235
SixPastTwentyTwo89.15 28188.54 28190.98 31293.49 32180.28 34396.70 18894.70 32090.78 16484.15 32895.57 22071.78 31197.71 28284.63 28585.07 30694.94 286
USDC88.94 28387.83 28892.27 28394.66 28384.96 29593.86 31595.90 26687.34 27083.40 33595.56 22167.43 33698.19 21782.64 30789.67 26093.66 329
test_djsdf93.07 15392.76 14294.00 21593.49 32188.70 21298.22 4197.57 13791.42 14590.08 22695.55 22282.85 17897.92 26394.07 10791.58 22895.40 263
WR-MVS92.34 18291.53 18894.77 18195.13 25890.83 14596.40 21697.98 9291.88 13489.29 25195.54 22382.50 18697.80 27489.79 18985.27 30295.69 249
TR-MVS91.48 21790.59 22494.16 20796.40 19487.33 24695.67 25595.34 29587.68 26291.46 19095.52 22476.77 27698.35 20482.85 30293.61 20196.79 206
ET-MVSNet_ETH3D91.49 21690.11 24495.63 13196.40 19491.57 11295.34 26893.48 34390.60 17975.58 36295.49 22580.08 22896.79 33094.25 10589.76 25998.52 121
pm-mvs190.72 25289.65 26593.96 21994.29 29889.63 17697.79 8096.82 22189.07 21486.12 31195.48 22678.61 25697.78 27686.97 25281.67 33794.46 313
XVG-ACMP-BASELINE90.93 24590.21 24293.09 25994.31 29785.89 27895.33 26997.26 17991.06 16089.38 24795.44 22768.61 33098.60 18289.46 19791.05 24194.79 302
VPA-MVSNet93.24 14292.48 15995.51 13995.70 22392.39 8497.86 7198.66 1192.30 12092.09 17795.37 22880.49 22098.40 19793.95 11085.86 29395.75 245
131492.81 16892.03 17095.14 15495.33 24589.52 18496.04 23997.44 16187.72 26186.25 30995.33 22983.84 15598.79 16089.26 20397.05 14297.11 196
CHOSEN 280x42093.12 14992.72 14794.34 19996.71 17487.27 24890.29 35797.72 11986.61 28391.34 19395.29 23084.29 15198.41 19693.25 12598.94 8397.35 188
TransMVSNet (Re)88.94 28387.56 28993.08 26094.35 29488.45 22197.73 8595.23 30087.47 26684.26 32695.29 23079.86 23397.33 31379.44 33074.44 36093.45 333
MS-PatchMatch90.27 26289.77 25991.78 29794.33 29584.72 29995.55 26096.73 22486.17 29186.36 30895.28 23271.28 31497.80 27484.09 29198.14 11192.81 340
FA-MVS(test-final)93.52 13492.92 13595.31 14896.77 17088.54 21794.82 28296.21 25789.61 19994.20 12895.25 23383.24 16599.14 12590.01 18296.16 15898.25 145
PVSNet_BlendedMVS94.06 11293.92 10294.47 19298.27 8389.46 18796.73 18498.36 1890.17 18694.36 12495.24 23488.02 9699.58 6793.44 12190.72 24894.36 317
Test_1112_low_res92.84 16691.84 17795.85 11997.04 15489.97 16995.53 26296.64 23385.38 30189.65 23995.18 23585.86 13099.10 12987.70 23293.58 20398.49 126
pmmvs490.93 24589.85 25594.17 20693.34 32690.79 14794.60 28796.02 26284.62 31487.45 29095.15 23681.88 20097.45 30587.70 23287.87 27694.27 322
Fast-Effi-MVS+-dtu92.29 18691.99 17293.21 25695.27 24985.52 28397.03 15896.63 23692.09 12889.11 25795.14 23780.33 22498.08 23387.54 24094.74 18696.03 229
Baseline_NR-MVSNet91.20 23290.62 22292.95 26493.83 31088.03 23497.01 16395.12 30588.42 23989.70 23695.13 23883.47 16197.44 30689.66 19383.24 33093.37 334
PMMVS92.86 16492.34 16294.42 19594.92 26886.73 26394.53 29096.38 24884.78 31394.27 12695.12 23983.13 16998.40 19791.47 16296.49 15498.12 150
EIA-MVS95.53 7195.47 6495.71 12897.06 15189.63 17697.82 7797.87 10393.57 6993.92 13695.04 24090.61 6898.95 14894.62 9998.68 9198.54 119
FE-MVS92.05 19691.05 20695.08 15796.83 16587.93 23693.91 31495.70 27486.30 28794.15 13094.97 24176.59 27799.21 11684.10 29096.86 14398.09 154
Anonymous2023121190.63 25589.42 26894.27 20498.24 8689.19 20298.05 5397.89 9979.95 35088.25 27794.96 24272.56 30898.13 22289.70 19185.14 30495.49 253
TDRefinement86.53 30484.76 31591.85 29282.23 37584.25 30296.38 21895.35 29284.97 31084.09 33094.94 24365.76 34998.34 20784.60 28674.52 35992.97 337
CMPMVSbinary62.92 2185.62 31684.92 31387.74 33889.14 36273.12 36694.17 30496.80 22273.98 36473.65 36594.93 24466.36 34397.61 29183.95 29491.28 23692.48 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres600view792.49 17591.60 18595.18 15297.91 11089.47 18597.65 9694.66 32192.18 12793.33 14994.91 24578.06 26699.10 12981.61 31194.06 19596.98 198
thres100view90092.43 17691.58 18694.98 16597.92 10989.37 19197.71 9094.66 32192.20 12393.31 15094.90 24678.06 26699.08 13481.40 31494.08 19296.48 213
v2v48291.59 20990.85 21393.80 22993.87 30988.17 23096.94 16896.88 21689.54 20189.53 24394.90 24681.70 20398.02 24589.25 20485.04 30895.20 277
PVSNet86.66 1892.24 18991.74 18193.73 23297.77 11783.69 31292.88 33896.72 22587.91 25293.00 15694.86 24878.51 25799.05 14186.53 25597.45 12998.47 129
anonymousdsp92.16 19291.55 18793.97 21892.58 33989.55 18197.51 11497.42 16589.42 20688.40 27194.84 24980.66 21697.88 26891.87 15191.28 23694.48 312
UniMVSNet (Re)93.31 14092.55 15495.61 13395.39 23693.34 6397.39 12998.71 793.14 9390.10 22494.83 25087.71 10198.03 24491.67 15983.99 32195.46 258
BH-w/o92.14 19491.75 17993.31 25196.99 15885.73 28095.67 25595.69 27688.73 23289.26 25394.82 25182.97 17598.07 23785.26 27896.32 15796.13 225
IterMVS-LS92.29 18691.94 17493.34 25096.25 20086.97 25896.57 20697.05 19790.67 17189.50 24594.80 25286.59 11797.64 28789.91 18586.11 29295.40 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVP-Stereo90.74 25190.08 24592.71 27393.19 32988.20 22895.86 24896.27 25286.07 29284.86 32194.76 25377.84 26997.75 27983.88 29598.01 11392.17 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet291.31 22790.08 24594.99 16396.51 18792.21 9097.41 12496.95 20688.82 22788.62 26694.75 25473.87 29997.42 30885.20 27988.55 27195.35 267
LF4IMVS87.94 29587.25 29289.98 32692.38 34480.05 34694.38 29695.25 29987.59 26484.34 32494.74 25564.31 35197.66 28684.83 28187.45 27992.23 348
baseline291.63 20790.86 21193.94 22294.33 29586.32 27195.92 24691.64 35889.37 20786.94 30294.69 25681.62 20498.69 17388.64 21894.57 18896.81 205
WR-MVS_H92.00 19791.35 19393.95 22095.09 26089.47 18598.04 5498.68 991.46 14388.34 27294.68 25785.86 13097.56 29485.77 27184.24 31994.82 297
TinyColmap86.82 30385.35 30991.21 30994.91 27082.99 31693.94 31194.02 33783.58 32781.56 34394.68 25762.34 35798.13 22275.78 34587.35 28392.52 345
FMVSNet391.78 20290.69 22195.03 16196.53 18692.27 8997.02 16096.93 20889.79 19789.35 24894.65 25977.01 27497.47 30386.12 26488.82 26695.35 267
tfpnnormal89.70 27788.40 28293.60 23995.15 25690.10 16297.56 10998.16 5387.28 27286.16 31094.63 26077.57 27198.05 24074.48 34984.59 31492.65 343
LCM-MVSNet-Re92.50 17392.52 15792.44 27796.82 16781.89 32696.92 16993.71 34092.41 11884.30 32594.60 26185.08 13997.03 32291.51 16097.36 13198.40 137
thisisatest051592.29 18691.30 19795.25 15096.60 17888.90 20894.36 29792.32 35287.92 25193.43 14794.57 26277.28 27399.00 14589.42 19895.86 16497.86 163
ETV-MVS96.02 5895.89 5896.40 8797.16 14292.44 8397.47 12197.77 11394.55 4396.48 6994.51 26391.23 5898.92 15195.65 6898.19 10897.82 167
pmmvs589.86 27488.87 27792.82 26992.86 33386.23 27496.26 22795.39 28984.24 31887.12 29794.51 26374.27 29797.36 31287.61 23987.57 27894.86 293
GBi-Net91.35 22490.27 23694.59 18596.51 18791.18 13197.50 11596.93 20888.82 22789.35 24894.51 26373.87 29997.29 31586.12 26488.82 26695.31 269
test191.35 22490.27 23694.59 18596.51 18791.18 13197.50 11596.93 20888.82 22789.35 24894.51 26373.87 29997.29 31586.12 26488.82 26695.31 269
FMVSNet189.88 27388.31 28394.59 18595.41 23591.18 13197.50 11596.93 20886.62 28287.41 29294.51 26365.94 34897.29 31583.04 30087.43 28095.31 269
tfpn200view992.38 17991.52 18994.95 16897.85 11389.29 19597.41 12494.88 31692.19 12593.27 15294.46 26878.17 26299.08 13481.40 31494.08 19296.48 213
thres40092.42 17791.52 18995.12 15697.85 11389.29 19597.41 12494.88 31692.19 12593.27 15294.46 26878.17 26299.08 13481.40 31494.08 19296.98 198
v114491.37 22390.60 22393.68 23793.89 30888.23 22796.84 17697.03 20188.37 24089.69 23794.39 27082.04 19597.98 24887.80 22885.37 29994.84 294
lessismore_v090.45 32191.96 34779.09 35487.19 37380.32 35094.39 27066.31 34597.55 29584.00 29376.84 35494.70 307
pmmvs687.81 29786.19 30192.69 27491.32 34986.30 27297.34 13496.41 24780.59 34984.05 33294.37 27267.37 33797.67 28484.75 28379.51 34794.09 325
v192192090.85 24790.03 25093.29 25293.55 31786.96 25996.74 18397.04 19987.36 26989.52 24494.34 27380.23 22697.97 25186.27 25985.21 30394.94 286
eth_miper_zixun_eth91.02 24090.59 22492.34 28195.33 24584.35 30194.10 30696.90 21388.56 23688.84 26294.33 27484.08 15397.60 29288.77 21684.37 31895.06 281
V4291.58 21190.87 21093.73 23294.05 30488.50 21997.32 13796.97 20488.80 23089.71 23594.33 27482.54 18598.05 24089.01 21085.07 30694.64 310
v119291.07 23790.23 23993.58 24193.70 31387.82 24196.73 18497.07 19487.77 25889.58 24094.32 27680.90 21497.97 25186.52 25685.48 29794.95 284
v124090.70 25389.85 25593.23 25493.51 32086.80 26096.61 20097.02 20287.16 27489.58 24094.31 27779.55 23897.98 24885.52 27485.44 29894.90 291
v14419291.06 23890.28 23593.39 24893.66 31687.23 25196.83 17797.07 19487.43 26789.69 23794.28 27881.48 20598.00 24787.18 24884.92 31094.93 288
IterMVS-SCA-FT90.31 26189.81 25791.82 29495.52 23084.20 30494.30 30096.15 25990.61 17787.39 29394.27 27975.80 28696.44 33387.34 24386.88 28894.82 297
Fast-Effi-MVS+93.46 13592.75 14495.59 13496.77 17090.03 16396.81 17897.13 18688.19 24491.30 19694.27 27986.21 12598.63 17987.66 23696.46 15698.12 150
v891.29 22990.53 22793.57 24294.15 30088.12 23297.34 13497.06 19688.99 21888.32 27394.26 28183.08 17098.01 24687.62 23883.92 32494.57 311
DIV-MVS_self_test90.97 24390.33 23192.88 26795.36 24086.19 27694.46 29396.63 23687.82 25488.18 27994.23 28282.99 17397.53 29887.72 22985.57 29694.93 288
c3_l91.38 22190.89 20992.88 26795.58 22786.30 27294.68 28596.84 22088.17 24588.83 26394.23 28285.65 13397.47 30389.36 19984.63 31294.89 292
v1091.04 23990.23 23993.49 24494.12 30188.16 23197.32 13797.08 19288.26 24388.29 27594.22 28482.17 19497.97 25186.45 25884.12 32094.33 318
cl____90.96 24490.32 23292.89 26695.37 23986.21 27594.46 29396.64 23387.82 25488.15 28094.18 28582.98 17497.54 29687.70 23285.59 29594.92 290
ppachtmachnet_test88.35 29287.29 29191.53 30292.45 34283.57 31393.75 31895.97 26384.28 31785.32 31894.18 28579.00 25296.93 32675.71 34684.99 30994.10 323
IterMVS90.15 26889.67 26391.61 30195.48 23283.72 31094.33 29996.12 26089.99 19087.31 29694.15 28775.78 28896.27 33686.97 25286.89 28794.83 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
K. test v387.64 29886.75 29990.32 32393.02 33279.48 35096.61 20092.08 35590.66 17380.25 35194.09 28867.21 33896.65 33285.96 26980.83 34194.83 295
v7n90.76 24989.86 25493.45 24793.54 31887.60 24597.70 9297.37 17088.85 22487.65 28894.08 28981.08 20998.10 22984.68 28483.79 32694.66 309
miper_ehance_all_eth91.59 20991.13 20592.97 26395.55 22986.57 26894.47 29196.88 21687.77 25888.88 26094.01 29086.22 12497.54 29689.49 19686.93 28494.79 302
thres20092.23 19091.39 19294.75 18397.61 12789.03 20596.60 20295.09 30692.08 12993.28 15194.00 29178.39 26099.04 14481.26 31894.18 19196.19 220
cl2291.21 23190.56 22693.14 25896.09 21286.80 26094.41 29596.58 23987.80 25688.58 26893.99 29280.85 21597.62 29089.87 18786.93 28494.99 283
test_040286.46 30584.79 31491.45 30495.02 26285.55 28296.29 22694.89 31580.90 34382.21 34193.97 29368.21 33397.29 31562.98 37088.68 27091.51 355
v14890.99 24190.38 23092.81 27093.83 31085.80 27996.78 18196.68 23089.45 20588.75 26593.93 29482.96 17697.82 27387.83 22783.25 32994.80 300
GA-MVS91.38 22190.31 23394.59 18594.65 28487.62 24494.34 29896.19 25890.73 16790.35 21393.83 29571.84 31097.96 25687.22 24693.61 20198.21 147
MDTV_nov1_ep1390.76 21795.22 25380.33 34193.03 33695.28 29688.14 24792.84 16293.83 29581.34 20698.08 23382.86 30194.34 190
D2MVS91.30 22890.95 20892.35 27994.71 28285.52 28396.18 23498.21 4388.89 22386.60 30693.82 29779.92 23297.95 25889.29 20290.95 24493.56 330
miper_lstm_enhance90.50 25990.06 24991.83 29395.33 24583.74 30993.86 31596.70 22987.56 26587.79 28593.81 29883.45 16396.92 32787.39 24284.62 31394.82 297
CostFormer91.18 23590.70 22092.62 27694.84 27481.76 32794.09 30794.43 32684.15 31992.72 16393.77 29979.43 23998.20 21590.70 17592.18 21997.90 160
our_test_388.78 28787.98 28791.20 31092.45 34282.53 31993.61 32595.69 27685.77 29684.88 32093.71 30079.99 23096.78 33179.47 32886.24 28994.28 321
SCA91.84 20191.18 20493.83 22795.59 22684.95 29694.72 28495.58 28390.82 16392.25 17193.69 30175.80 28698.10 22986.20 26195.98 16098.45 131
Patchmatch-test89.42 27987.99 28693.70 23595.27 24985.11 29288.98 36494.37 32981.11 34287.10 29993.69 30182.28 19197.50 30174.37 35194.76 18498.48 128
PatchmatchNetpermissive91.91 19991.35 19393.59 24095.38 23784.11 30593.15 33395.39 28989.54 20192.10 17693.68 30382.82 17998.13 22284.81 28295.32 17498.52 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 21891.32 19591.79 29695.15 25679.20 35293.42 32895.37 29188.55 23793.49 14593.67 30482.49 18798.27 21090.41 17789.34 26397.90 160
test0.0.03 189.37 28088.70 27891.41 30692.47 34185.63 28195.22 27792.70 34991.11 15886.91 30493.65 30579.02 24893.19 36678.00 33689.18 26495.41 260
test20.0386.14 31185.40 30888.35 33490.12 35580.06 34595.90 24795.20 30188.59 23381.29 34493.62 30671.43 31392.65 36771.26 36281.17 34092.34 347
dmvs_re90.21 26589.50 26792.35 27995.47 23485.15 29195.70 25494.37 32990.94 16288.42 27093.57 30774.63 29495.67 34682.80 30389.57 26196.22 218
gm-plane-assit93.22 32878.89 35584.82 31293.52 30898.64 17887.72 229
EG-PatchMatch MVS87.02 30285.44 30691.76 29992.67 33785.00 29496.08 23896.45 24583.41 33079.52 35393.49 30957.10 36397.72 28179.34 33190.87 24792.56 344
EPMVS90.70 25389.81 25793.37 24994.73 28184.21 30393.67 32288.02 37089.50 20392.38 16793.49 30977.82 27097.78 27686.03 26792.68 21198.11 153
Effi-MVS+-dtu93.08 15293.21 12892.68 27596.02 21483.25 31597.14 15596.72 22593.85 6291.20 20393.44 31183.08 17098.30 20891.69 15895.73 16796.50 212
tpm289.96 27089.21 27292.23 28594.91 27081.25 33093.78 31794.42 32780.62 34891.56 18793.44 31176.44 28097.94 25985.60 27392.08 22397.49 182
miper_enhance_ethall91.54 21491.01 20793.15 25795.35 24187.07 25693.97 30996.90 21386.79 28089.17 25593.43 31386.55 11997.64 28789.97 18486.93 28494.74 306
tpm90.25 26389.74 26291.76 29993.92 30679.73 34893.98 30893.54 34288.28 24291.99 17893.25 31477.51 27297.44 30687.30 24587.94 27598.12 150
dp88.90 28588.26 28590.81 31594.58 28876.62 35892.85 33994.93 31385.12 30790.07 22793.07 31575.81 28598.12 22780.53 32187.42 28197.71 170
Anonymous2023120687.09 30186.14 30289.93 32791.22 35080.35 34096.11 23695.35 29283.57 32884.16 32793.02 31673.54 30495.61 34772.16 35886.14 29193.84 328
cascas91.20 23290.08 24594.58 18994.97 26389.16 20393.65 32397.59 13579.90 35189.40 24692.92 31775.36 29098.36 20392.14 14494.75 18596.23 217
DSMNet-mixed86.34 30786.12 30387.00 34289.88 35870.43 36794.93 28190.08 36677.97 35985.42 31792.78 31874.44 29693.96 36174.43 35095.14 17696.62 209
MDA-MVSNet-bldmvs85.00 31882.95 32391.17 31193.13 33183.33 31494.56 28995.00 30984.57 31565.13 37192.65 31970.45 31995.85 34173.57 35477.49 35294.33 318
tpmvs89.83 27589.15 27491.89 29194.92 26880.30 34293.11 33495.46 28886.28 28888.08 28192.65 31980.44 22198.52 18981.47 31389.92 25796.84 204
APD_test179.31 33377.70 33684.14 34689.11 36369.07 37192.36 34691.50 35969.07 36873.87 36492.63 32139.93 37394.32 35970.54 36580.25 34389.02 366
MIMVSNet88.50 29086.76 29893.72 23494.84 27487.77 24291.39 34894.05 33586.41 28687.99 28392.59 32263.27 35395.82 34377.44 33792.84 20797.57 180
IB-MVS87.33 1789.91 27188.28 28494.79 18095.26 25287.70 24395.12 28093.95 33889.35 20887.03 30092.49 32370.74 31899.19 11889.18 20881.37 33997.49 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,190.06 26989.42 26891.97 28994.41 29380.62 33794.29 30191.97 35687.28 27290.44 21192.47 32468.79 32997.67 28488.50 22096.60 15297.61 177
test-LLR91.42 21991.19 20392.12 28694.59 28680.66 33594.29 30192.98 34691.11 15890.76 20692.37 32579.02 24898.07 23788.81 21496.74 14797.63 173
test-mter90.19 26789.54 26692.12 28694.59 28680.66 33594.29 30192.98 34687.68 26290.76 20692.37 32567.67 33498.07 23788.81 21496.74 14797.63 173
UnsupCasMVSNet_eth85.99 31284.45 31690.62 31989.97 35782.40 32293.62 32497.37 17089.86 19278.59 35792.37 32565.25 35095.35 35382.27 30970.75 36694.10 323
YYNet185.87 31484.23 31890.78 31892.38 34482.46 32193.17 33195.14 30482.12 33767.69 36692.36 32878.16 26495.50 35177.31 33979.73 34594.39 316
CR-MVSNet90.82 24889.77 25993.95 22094.45 29187.19 25290.23 35895.68 27886.89 27892.40 16592.36 32880.91 21297.05 32181.09 31993.95 19697.60 178
Patchmtry88.64 28987.25 29292.78 27194.09 30286.64 26489.82 36195.68 27880.81 34687.63 28992.36 32880.91 21297.03 32278.86 33285.12 30594.67 308
MDA-MVSNet_test_wron85.87 31484.23 31890.80 31792.38 34482.57 31893.17 33195.15 30382.15 33667.65 36792.33 33178.20 26195.51 35077.33 33879.74 34494.31 320
MIMVSNet184.93 31983.05 32190.56 32089.56 36084.84 29895.40 26695.35 29283.91 32180.38 34992.21 33257.23 36293.34 36570.69 36482.75 33593.50 331
tpm cat188.36 29187.21 29491.81 29595.13 25880.55 33892.58 34295.70 27474.97 36387.45 29091.96 33378.01 26898.17 21980.39 32288.74 26996.72 208
FMVSNet587.29 30085.79 30491.78 29794.80 27687.28 24795.49 26395.28 29684.09 32083.85 33491.82 33462.95 35594.17 36078.48 33385.34 30193.91 327
ADS-MVSNet289.45 27888.59 28092.03 28895.86 21682.26 32390.93 35394.32 33283.23 33191.28 20091.81 33579.01 25095.99 33879.52 32691.39 23497.84 164
ADS-MVSNet89.89 27288.68 27993.53 24395.86 21684.89 29790.93 35395.07 30783.23 33191.28 20091.81 33579.01 25097.85 26979.52 32691.39 23497.84 164
N_pmnet78.73 33478.71 33578.79 35292.80 33546.50 38694.14 30543.71 38978.61 35680.83 34591.66 33774.94 29396.36 33467.24 36784.45 31793.50 331
OpenMVS_ROBcopyleft81.14 2084.42 32282.28 32890.83 31490.06 35684.05 30795.73 25394.04 33673.89 36580.17 35291.53 33859.15 35997.64 28766.92 36889.05 26590.80 361
Anonymous2024052186.42 30685.44 30689.34 33190.33 35479.79 34796.73 18495.92 26483.71 32683.25 33691.36 33963.92 35296.01 33778.39 33585.36 30092.22 349
dmvs_testset81.38 33082.60 32677.73 35391.74 34851.49 38393.03 33684.21 37989.07 21478.28 35891.25 34076.97 27588.53 37456.57 37582.24 33693.16 335
EGC-MVSNET68.77 34163.01 34686.07 34592.49 34082.24 32493.96 31090.96 3630.71 3862.62 38790.89 34153.66 36593.46 36357.25 37484.55 31582.51 369
CL-MVSNet_self_test86.31 30885.15 31089.80 32888.83 36481.74 32893.93 31296.22 25586.67 28185.03 31990.80 34278.09 26594.50 35674.92 34871.86 36593.15 336
KD-MVS_self_test85.95 31384.95 31288.96 33389.55 36179.11 35395.13 27996.42 24685.91 29484.07 33190.48 34370.03 32494.82 35580.04 32372.94 36392.94 338
patchmatchnet-post90.45 34482.65 18498.10 229
mvsany_test383.59 32382.44 32787.03 34183.80 37173.82 36493.70 31990.92 36486.42 28582.51 34090.26 34546.76 37095.71 34490.82 17276.76 35591.57 354
KD-MVS_2432*160084.81 32082.64 32491.31 30791.07 35185.34 28991.22 35095.75 27285.56 29983.09 33790.21 34667.21 33895.89 33977.18 34162.48 37492.69 341
miper_refine_blended84.81 32082.64 32491.31 30791.07 35185.34 28991.22 35095.75 27285.56 29983.09 33790.21 34667.21 33895.89 33977.18 34162.48 37492.69 341
PVSNet_082.17 1985.46 31783.64 32090.92 31395.27 24979.49 34990.55 35695.60 28183.76 32583.00 33989.95 34871.09 31597.97 25182.75 30560.79 37695.31 269
PM-MVS83.48 32481.86 33088.31 33587.83 36877.59 35793.43 32791.75 35786.91 27780.63 34789.91 34944.42 37195.84 34285.17 28076.73 35691.50 356
GG-mvs-BLEND93.62 23893.69 31489.20 20092.39 34583.33 38087.98 28489.84 35071.00 31696.87 32882.08 31095.40 17394.80 300
pmmvs-eth3d86.22 30984.45 31691.53 30288.34 36687.25 24994.47 29195.01 30883.47 32979.51 35489.61 35169.75 32695.71 34483.13 29976.73 35691.64 352
test_fmvs383.21 32583.02 32283.78 34786.77 37068.34 37296.76 18294.91 31486.49 28484.14 32989.48 35236.04 37591.73 36991.86 15280.77 34291.26 359
Patchmatch-RL test87.38 29986.24 30090.81 31588.74 36578.40 35688.12 36893.17 34587.11 27582.17 34289.29 35381.95 19895.60 34888.64 21877.02 35398.41 136
test_vis1_rt86.16 31085.06 31189.46 33093.47 32380.46 33996.41 21286.61 37585.22 30479.15 35588.64 35452.41 36797.06 32093.08 12990.57 24990.87 360
ambc86.56 34383.60 37270.00 36985.69 37094.97 31180.60 34888.45 35537.42 37496.84 32982.69 30675.44 35892.86 339
new-patchmatchnet83.18 32681.87 32987.11 34086.88 36975.99 36193.70 31995.18 30285.02 30977.30 36088.40 35665.99 34793.88 36274.19 35370.18 36791.47 357
FPMVS71.27 33769.85 33975.50 35774.64 38059.03 38191.30 34991.50 35958.80 37257.92 37688.28 35729.98 37985.53 37753.43 37682.84 33481.95 370
new_pmnet82.89 32781.12 33288.18 33789.63 35980.18 34491.77 34792.57 35076.79 36275.56 36388.23 35861.22 35894.48 35771.43 36082.92 33389.87 364
PatchT88.87 28687.42 29093.22 25594.08 30385.10 29389.51 36294.64 32381.92 33892.36 16888.15 35980.05 22997.01 32472.43 35793.65 19997.54 181
test_method66.11 34364.89 34569.79 36072.62 38335.23 39065.19 37892.83 34820.35 38165.20 37088.08 36043.14 37282.70 37873.12 35663.46 37391.45 358
DeepMVS_CXcopyleft74.68 35990.84 35364.34 37881.61 38265.34 37067.47 36888.01 36148.60 36980.13 38062.33 37173.68 36279.58 371
test_f80.57 33179.62 33383.41 34883.38 37367.80 37493.57 32693.72 33980.80 34777.91 35987.63 36233.40 37692.08 36887.14 25079.04 35090.34 363
RPMNet88.98 28287.05 29694.77 18194.45 29187.19 25290.23 35898.03 8377.87 36092.40 16587.55 36380.17 22799.51 8668.84 36693.95 19697.60 178
pmmvs379.97 33277.50 33787.39 33982.80 37479.38 35192.70 34190.75 36570.69 36778.66 35687.47 36451.34 36893.40 36473.39 35569.65 36889.38 365
tmp_tt51.94 34953.82 34946.29 36533.73 38945.30 38878.32 37567.24 38818.02 38250.93 37887.05 36552.99 36653.11 38470.76 36325.29 38240.46 380
testf169.31 33966.76 34276.94 35578.61 37761.93 37988.27 36686.11 37655.62 37359.69 37385.31 36620.19 38589.32 37157.62 37269.44 36979.58 371
APD_test269.31 33966.76 34276.94 35578.61 37761.93 37988.27 36686.11 37655.62 37359.69 37385.31 36620.19 38589.32 37157.62 37269.44 36979.58 371
UnsupCasMVSNet_bld82.13 32979.46 33490.14 32588.00 36782.47 32090.89 35596.62 23878.94 35575.61 36184.40 36856.63 36496.31 33577.30 34066.77 37291.63 353
LCM-MVSNet72.55 33669.39 34082.03 34970.81 38565.42 37790.12 36094.36 33155.02 37565.88 36981.72 36924.16 38389.96 37074.32 35268.10 37190.71 362
JIA-IIPM88.26 29387.04 29791.91 29093.52 31981.42 32989.38 36394.38 32880.84 34590.93 20580.74 37079.22 24397.92 26382.76 30491.62 22796.38 216
PMMVS270.19 33866.92 34180.01 35076.35 37965.67 37686.22 36987.58 37264.83 37162.38 37280.29 37126.78 38188.49 37563.79 36954.07 37785.88 367
gg-mvs-nofinetune87.82 29685.61 30594.44 19394.46 29089.27 19891.21 35284.61 37880.88 34489.89 23274.98 37271.50 31297.53 29885.75 27297.21 13896.51 211
PMVScopyleft53.92 2258.58 34555.40 34868.12 36151.00 38848.64 38478.86 37487.10 37446.77 37735.84 38374.28 3738.76 38786.34 37642.07 37973.91 36169.38 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet82.47 32881.21 33186.26 34495.38 23769.21 37088.96 36589.49 36766.28 36980.79 34674.08 37468.48 33197.39 31071.93 35995.47 17192.18 350
test_vis3_rt72.73 33570.55 33879.27 35180.02 37668.13 37393.92 31374.30 38676.90 36158.99 37573.58 37520.29 38495.37 35284.16 28972.80 36474.31 374
ANet_high63.94 34459.58 34777.02 35461.24 38766.06 37585.66 37187.93 37178.53 35742.94 37971.04 37625.42 38280.71 37952.60 37730.83 38084.28 368
Gipumacopyleft67.86 34265.41 34475.18 35892.66 33873.45 36566.50 37794.52 32553.33 37657.80 37766.07 37730.81 37789.20 37348.15 37878.88 35162.90 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive50.73 2353.25 34748.81 35266.58 36265.34 38657.50 38272.49 37670.94 38740.15 38039.28 38263.51 3786.89 38973.48 38338.29 38042.38 37868.76 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 34652.56 35055.43 36374.43 38147.13 38583.63 37376.30 38342.23 37842.59 38062.22 37928.57 38074.40 38131.53 38131.51 37944.78 378
EMVS52.08 34851.31 35154.39 36472.62 38345.39 38783.84 37275.51 38541.13 37940.77 38159.65 38030.08 37873.60 38228.31 38229.90 38144.18 379
X-MVStestdata91.71 20489.67 26397.81 2799.38 1494.03 4798.59 1298.20 4494.85 2796.59 6432.69 38191.70 4699.80 2995.66 6599.40 4899.62 16
testmvs13.36 35216.33 3554.48 3685.04 3902.26 39293.18 3303.28 3912.70 3848.24 38521.66 3822.29 3912.19 3867.58 3842.96 3849.00 382
test12313.04 35315.66 3565.18 3674.51 3913.45 39192.50 3441.81 3922.50 3857.58 38620.15 3833.67 3902.18 3877.13 3851.07 3859.90 381
test_post17.58 38481.76 20198.08 233
test_post192.81 34016.58 38580.53 21997.68 28386.20 261
wuyk23d25.11 35024.57 35426.74 36673.98 38239.89 38957.88 3799.80 39012.27 38310.39 3846.97 3867.03 38836.44 38525.43 38317.39 3833.89 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.39 3559.85 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38788.65 900.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.55 193.34 6399.29 198.35 2194.98 2498.49 16
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9799.86 897.68 699.67 699.77 1
No_MVS98.86 198.67 5896.94 197.93 9799.86 897.68 699.67 699.77 1
eth-test20.00 392
eth-test0.00 392
IU-MVS99.42 795.39 1197.94 9690.40 18498.94 697.41 1999.66 1099.74 7
save fliter98.91 4994.28 3597.02 16098.02 8695.35 12
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2999.86 897.52 1299.67 699.75 5
GSMVS98.45 131
test_part299.28 2595.74 898.10 21
sam_mvs182.76 18098.45 131
sam_mvs81.94 199
MTGPAbinary98.08 66
MTMP97.86 7182.03 381
test9_res94.81 9399.38 5199.45 42
agg_prior293.94 11199.38 5199.50 37
agg_prior98.67 5893.79 5198.00 9095.68 9999.57 74
test_prior493.66 5496.42 211
test_prior97.23 5498.67 5892.99 7098.00 9099.41 9999.29 57
旧先验295.94 24581.66 34097.34 3898.82 15892.26 139
新几何295.79 251
无先验95.79 25197.87 10383.87 32499.65 5287.68 23598.89 99
原ACMM295.67 255
testdata299.67 5085.96 269
segment_acmp92.89 25
testdata195.26 27693.10 95
test1297.65 4098.46 7094.26 3697.66 12595.52 10690.89 6499.46 9399.25 6399.22 64
plane_prior796.21 20189.98 168
plane_prior696.10 21190.00 16481.32 207
plane_prior597.51 14498.60 18293.02 13292.23 21695.86 231
plane_prior390.00 16494.46 4591.34 193
plane_prior297.74 8394.85 27
plane_prior196.14 209
plane_prior89.99 16697.24 14394.06 5592.16 220
n20.00 393
nn0.00 393
door-mid91.06 362
test1197.88 101
door91.13 361
HQP5-MVS89.33 193
HQP-NCC95.86 21696.65 19493.55 7090.14 216
ACMP_Plane95.86 21696.65 19493.55 7090.14 216
BP-MVS92.13 145
HQP4-MVS90.14 21698.50 19095.78 240
HQP3-MVS97.39 16792.10 221
HQP2-MVS80.95 210
MDTV_nov1_ep13_2view70.35 36893.10 33583.88 32393.55 14282.47 18886.25 26098.38 139
ACMMP++_ref90.30 254
ACMMP++91.02 242
Test By Simon88.73 89