This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25290.69 16297.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11898.18 162
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18890.25 17497.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10698.15 166
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 13190.72 16198.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11698.25 156
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 6998.76 894.93 3098.84 1699.06 488.80 9599.65 5899.06 798.63 10498.18 162
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14692.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5499.80 3099.12 699.46 4299.69 12
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24492.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 8099.78 3599.06 799.41 5299.59 22
test_fmvsmconf0.01_n96.15 6695.85 7297.03 6992.66 36091.83 10897.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8599.48 44
test_fmvsmvis_n_192096.70 4796.84 3396.31 10396.62 18991.73 11097.98 6398.30 3296.19 596.10 9798.95 889.42 8599.76 3898.90 1099.08 8597.43 205
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19498.85 1598.94 993.33 2399.83 2696.72 4299.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11098.01 5999.02 196.37 499.30 198.92 1092.39 3899.79 3399.16 599.46 4298.08 173
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2499.66 1199.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2499.65 1399.74 8
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2899.58 2399.59 22
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2499.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2899.72 299.77 2
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8199.50 40
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
MM97.29 1996.98 2698.23 1198.01 10895.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4399.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030497.04 2896.73 4297.96 2397.60 13794.36 3698.01 5994.09 35197.33 296.29 8898.79 2489.73 8499.86 899.36 299.42 4999.67 13
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 17998.06 8290.67 18595.55 11798.78 2591.07 6599.86 896.58 4699.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5299.86 896.26 5599.52 3199.67 13
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 2099.50 3699.72 11
DeepC-MVS93.07 396.06 6895.66 7497.29 5597.96 11193.17 7097.30 14998.06 8293.92 7193.38 16498.66 2786.83 13299.73 4295.60 9199.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 5099.52 3199.51 37
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9698.59 3090.88 7099.90 296.18 6699.50 3699.58 25
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4799.62 1799.65 15
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28196.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 4099.48 4099.45 47
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3699.64 1499.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6899.55 8796.06 6799.25 6999.51 37
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32297.56 11897.51 15993.92 7197.43 4598.52 3592.75 3099.32 11797.32 3299.50 3699.51 37
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5799.56 8596.05 6899.26 6799.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7296.05 6899.26 6799.43 51
test_vis1_n_192094.17 12194.58 10392.91 28297.42 14782.02 34397.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1798.82 9797.40 207
mvsany_test193.93 13593.98 11793.78 24894.94 29086.80 27494.62 30992.55 37388.77 25096.85 6198.49 3888.98 9198.08 25195.03 10195.62 18596.46 238
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18397.73 12994.74 4496.49 8098.49 3890.88 7099.58 7796.44 5198.32 11899.13 77
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5699.59 7496.22 5899.27 6599.54 33
EI-MVSNet-UG-set96.34 6196.30 6096.47 9098.20 9390.93 15196.86 18597.72 13194.67 4796.16 9598.46 4290.43 7599.58 7796.23 5797.96 13098.90 104
VDDNet93.05 16892.07 18296.02 12696.84 17590.39 17298.08 5395.85 28486.22 31295.79 10998.46 4267.59 35699.19 12894.92 10494.85 19798.47 140
9.1496.75 4198.93 4797.73 9698.23 5091.28 16397.88 3598.44 4493.00 2699.65 5895.76 8099.47 41
VDD-MVS93.82 14093.08 14696.02 12697.88 11889.96 18497.72 9995.85 28492.43 12795.86 10698.44 4468.42 35399.39 11196.31 5394.85 19798.71 121
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13197.14 5398.44 4491.17 6499.85 1894.35 11899.46 4299.57 26
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10797.67 10398.49 1994.66 4897.24 5098.41 4792.31 4198.94 16696.61 4599.46 4298.96 94
ACMMPcopyleft96.27 6395.93 6897.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9299.85 1894.57 11797.63 13799.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 6199.64 6695.16 9899.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_cas_vis1_n_192094.48 11494.55 10794.28 22196.78 18186.45 28597.63 11297.64 14293.32 9597.68 3898.36 5073.75 32099.08 14996.73 4199.05 8797.31 212
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3499.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UA-Net95.95 7595.53 7697.20 6397.67 12792.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9399.51 9690.36 19497.35 14799.11 81
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19496.77 6598.35 5190.21 7799.53 9194.80 10999.63 1699.38 58
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5399.87 795.46 9499.59 1999.64 16
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 11998.34 5490.59 7499.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D93.57 14892.61 16696.47 9097.59 13891.61 11797.67 10397.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 12098.06 174
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5899.86 895.63 8799.59 1999.62 18
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10498.33 5791.04 6699.88 495.20 9799.57 2599.60 21
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15398.01 3198.32 5992.33 3999.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LFMVS93.60 14692.63 16496.52 8298.13 10091.27 13397.94 7393.39 36490.57 19496.29 8898.31 6069.00 34699.16 13594.18 12095.87 17899.12 80
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3599.49 3999.57 26
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8498.30 6291.90 4699.85 1895.61 8999.68 499.54 33
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4399.83 2695.63 8799.59 1999.54 33
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4999.80 3095.66 8299.40 5399.62 18
PC_three_145290.77 17998.89 1498.28 6596.24 198.35 22495.76 8099.58 2399.59 22
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9599.59 1999.56 29
test250691.60 22490.78 23094.04 23197.66 12983.81 32598.27 3375.53 40993.43 9095.23 12398.21 6767.21 35999.07 15393.01 14898.49 11099.25 68
test111193.19 16192.82 15594.30 22097.58 14284.56 31798.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15793.06 14498.48 11299.28 65
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12985.41 30298.21 4388.23 39493.43 9094.70 13298.21 6772.57 32499.07 15393.05 14598.49 11099.25 68
test_fmvs1_n92.73 18492.88 15392.29 29996.08 23181.05 35197.98 6397.08 20890.72 18296.79 6398.18 7063.07 37698.45 21497.62 2298.42 11597.36 208
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8698.18 7091.61 5199.88 495.59 9299.55 2799.57 26
Vis-MVSNetpermissive95.23 9394.81 9696.51 8597.18 15391.58 12098.26 3598.12 6794.38 6094.90 12898.15 7282.28 20898.92 16891.45 17698.58 10899.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5898.10 7392.52 3699.65 5894.58 11699.31 63
MG-MVS95.61 8395.38 8496.31 10398.42 7390.53 16696.04 25297.48 16293.47 8995.67 11498.10 7389.17 8899.25 12391.27 17998.77 9999.13 77
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4299.01 9099.16 73
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5898.07 7690.06 7898.85 17589.67 20898.98 9298.64 125
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5899.86 894.83 10699.28 6499.47 46
3Dnovator91.36 595.19 9694.44 11297.44 4996.56 19693.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
test_fmvs193.21 15993.53 13092.25 30196.55 19881.20 35097.40 13796.96 22190.68 18496.80 6298.04 7969.25 34598.40 21797.58 2398.50 10997.16 217
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4798.71 19297.10 3399.17 7698.90 104
CPTT-MVS95.57 8595.19 8996.70 7399.27 2691.48 12498.33 2798.11 7087.79 27995.17 12598.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
3Dnovator+91.43 495.40 8794.48 11098.16 1696.90 17295.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9399.44 49
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5598.01 8392.52 3699.69 5296.03 7199.53 3099.36 60
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 16896.40 8597.99 8490.99 6799.58 7795.61 8999.61 1899.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvspermissive95.64 8295.49 7796.08 12096.76 18690.45 16997.29 15097.44 17794.00 6895.46 12197.98 8587.52 12298.73 18895.64 8697.33 14899.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test96.89 3597.04 2396.45 9398.29 8291.66 11699.03 497.85 11695.84 796.90 6097.97 8691.24 6198.75 18696.92 3799.33 6198.94 97
OMC-MVS95.09 9794.70 10096.25 11398.46 7091.28 13296.43 22397.57 15192.04 14094.77 13197.96 8787.01 13199.09 14691.31 17896.77 16198.36 152
test_vis1_n92.37 19492.26 17992.72 28994.75 30182.64 33598.02 5896.80 23891.18 16797.77 3797.93 8858.02 38498.29 22997.63 2198.21 12297.23 216
casdiffmvs_mvgpermissive95.81 7995.57 7596.51 8596.87 17391.49 12397.50 12497.56 15593.99 6995.13 12697.92 8987.89 11298.78 18195.97 7297.33 14899.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3599.84 2395.95 7399.51 3499.40 54
CDPH-MVS95.97 7495.38 8497.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4599.47 10292.26 15299.46 4299.39 56
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7899.17 7699.56 29
DP-MVS92.76 18391.51 20496.52 8298.77 5390.99 14697.38 14096.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16598.89 107
RPSCF90.75 26690.86 22590.42 34196.84 17576.29 38295.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18187.16 26592.23 24396.20 242
XVG-OURS93.72 14493.35 14194.80 19397.07 15988.61 22694.79 30697.46 16891.97 14393.99 14997.86 9581.74 21998.88 17292.64 15192.67 23996.92 224
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11097.85 9690.04 7999.67 5686.50 27399.13 8198.69 122
baseline95.58 8495.42 8296.08 12096.78 18190.41 17197.16 16497.45 17393.69 8095.65 11597.85 9687.29 12798.68 19495.66 8297.25 15299.13 77
test22298.24 8792.21 9695.33 28897.60 14679.22 37995.25 12297.84 9888.80 9599.15 7998.72 119
CANet96.39 5996.02 6797.50 4797.62 13493.38 6397.02 17297.96 10295.42 1594.86 12997.81 9987.38 12699.82 2896.88 3899.20 7499.29 63
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4499.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EPNet95.20 9594.56 10497.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 18097.80 10186.23 13999.65 5893.72 13198.62 10599.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM93.45 15292.27 17896.98 7196.77 18392.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9898.51 134
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9695.34 26392.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10396.73 230
IS-MVSNet94.90 10494.52 10896.05 12397.67 12790.56 16598.44 2296.22 27093.21 9793.99 14997.74 10485.55 15098.45 21489.98 19997.86 13199.14 76
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10697.74 10492.33 3999.38 11396.04 7099.42 4999.28 65
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9897.69 10693.86 1699.71 4696.50 4999.39 5599.55 32
原ACMM196.38 9998.59 6691.09 14597.89 10787.41 29095.22 12497.68 10790.25 7699.54 8987.95 24199.12 8398.49 137
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16288.53 23195.28 29197.45 17391.68 14994.08 14897.68 10782.41 20698.90 17193.84 12992.47 24096.98 220
EC-MVSNet96.42 5796.47 5396.26 11097.01 16791.52 12298.89 597.75 12694.42 5696.64 7397.68 10789.32 8698.60 20297.45 2899.11 8498.67 124
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24194.17 6497.44 4397.66 11092.76 2999.33 11596.86 3997.76 13699.08 83
DELS-MVS96.61 5296.38 5997.30 5497.79 12293.19 6995.96 25798.18 5795.23 1995.87 10597.65 11191.45 5499.70 5195.87 7499.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon95.68 8195.12 9297.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12797.65 11189.97 8199.48 10192.08 16198.59 10798.44 145
MVS_111021_LR96.24 6496.19 6396.39 9898.23 9191.35 13196.24 24498.79 693.99 6995.80 10897.65 11189.92 8299.24 12495.87 7499.20 7498.58 128
EI-MVSNet93.03 16992.88 15393.48 26295.77 24086.98 27196.44 22197.12 20390.66 18791.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
CVMVSNet91.23 24691.75 19389.67 35095.77 24074.69 38496.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17998.74 118
EPP-MVSNet95.22 9495.04 9395.76 13697.49 14489.56 19398.67 1097.00 21990.69 18394.24 14397.62 11689.79 8398.81 17993.39 13896.49 16998.92 100
VNet95.89 7795.45 7997.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7995.27 19199.16 73
test_prior296.35 23392.80 11996.03 9997.59 11892.01 4495.01 10299.38 56
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11797.46 13297.96 10277.99 38393.00 17297.57 11986.14 14499.33 11589.22 22199.15 7998.94 97
CSCG96.05 7095.91 7096.46 9299.24 2890.47 16898.30 2998.57 1889.01 23693.97 15197.57 11992.62 3499.76 3894.66 11299.27 6599.15 75
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 9997.56 12192.74 3199.59 74
train_agg96.30 6295.83 7397.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 9997.56 12192.73 3299.59 7495.04 10099.37 5999.39 56
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10397.55 12392.73 3299.58 77
iter_conf0596.12 6796.06 6696.29 10798.07 10591.48 12497.25 15397.65 13990.43 19794.65 13397.52 12491.29 6099.19 12898.12 1599.56 2698.22 158
h-mvs3394.15 12393.52 13296.04 12497.81 12190.22 17597.62 11497.58 15095.19 2096.74 6697.45 12583.67 17599.61 6995.85 7679.73 36898.29 155
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11695.00 32486.00 31593.64 15697.45 12566.24 36799.53 9190.68 19092.71 23799.01 89
Vis-MVSNet (Re-imp)94.15 12393.88 12094.95 18397.61 13587.92 24998.10 5195.80 28692.22 13193.02 17197.45 12584.53 16297.91 28588.24 23797.97 12999.02 86
mamv494.66 11296.10 6590.37 34298.01 10873.41 38896.82 19097.78 12389.95 20794.52 13797.43 12892.91 2799.09 14698.28 1499.16 7898.60 126
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6297.72 13179.63 37793.54 15997.41 12969.94 34299.56 8591.04 18491.11 26598.22 158
diffmvspermissive95.25 9295.13 9195.63 14696.43 21089.34 20595.99 25697.35 18992.83 11796.31 8797.37 13086.44 13798.67 19596.26 5597.19 15498.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer95.37 8895.16 9095.99 12996.34 21491.21 13698.22 4197.57 15191.42 15796.22 9297.32 13186.20 14297.92 28294.07 12199.05 8798.85 110
jason94.84 10794.39 11396.18 11795.52 25090.93 15196.09 25096.52 25689.28 22796.01 10297.32 13184.70 15998.77 18495.15 9998.91 9698.85 110
jason: jason.
iter_conf05_1196.17 6596.16 6496.21 11497.48 14590.74 16098.14 4997.80 12292.80 11997.34 4897.29 13388.54 10299.10 14296.40 5299.64 1498.80 115
SDMVSNet94.17 12193.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20197.28 13479.13 26098.93 16794.61 11592.84 23497.28 213
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18397.64 14293.18 10191.79 20197.28 13475.35 30698.65 19788.99 22792.84 23497.28 213
PVSNet_Blended_VisFu95.27 9194.91 9596.38 9998.20 9390.86 15397.27 15198.25 4590.21 20094.18 14597.27 13687.48 12399.73 4293.53 13297.77 13598.55 129
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19893.72 7791.68 20597.26 13779.33 25898.63 19992.13 15892.28 24295.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CNLPA94.28 11893.53 13096.52 8298.38 7892.55 8596.59 21696.88 23290.13 20491.91 19797.24 13885.21 15399.09 14687.64 25397.83 13297.92 179
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 13987.94 11198.91 17071.31 38498.37 11698.17 165
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE93.89 13693.28 14395.72 14296.96 17189.75 18898.24 3996.92 22889.47 22292.12 19397.21 14084.42 16398.39 22187.71 24796.50 16899.01 89
MVSMamba_pp96.06 6895.92 6996.50 8897.00 16891.81 10997.33 14697.77 12492.49 12696.78 6497.19 14188.50 10399.07 15396.54 4899.67 698.60 126
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24797.95 11287.13 26996.92 18195.89 28382.83 35586.88 32897.18 14273.77 31999.29 12178.44 35393.62 22794.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22388.26 23897.65 10697.46 16891.29 16090.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
LGP-MVS_train94.10 22796.16 22388.26 23897.46 16891.29 16090.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15487.99 24796.15 24895.60 29790.62 19091.87 19997.15 14578.41 27598.57 20683.16 31597.60 13898.36 152
CHOSEN 1792x268894.15 12393.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15597.11 14683.15 18599.61 6991.33 17798.72 10199.19 71
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16297.29 19487.75 28290.49 23197.10 14785.21 15399.50 9986.70 27096.72 16497.63 194
DPM-MVS95.69 8094.92 9498.01 1998.08 10495.71 995.27 29397.62 14590.43 19795.55 11797.07 14891.72 4799.50 9989.62 21098.94 9498.82 113
AdaColmapbinary94.34 11693.68 12496.31 10398.59 6691.68 11596.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12797.70 192
CANet_DTU94.37 11593.65 12596.55 8096.46 20892.13 10096.21 24596.67 24894.38 6093.53 16097.03 15079.34 25799.71 4690.76 18798.45 11497.82 187
tttt051792.96 17292.33 17794.87 18797.11 15787.16 26897.97 6992.09 37690.63 18993.88 15397.01 15176.50 29499.06 15690.29 19695.45 18898.38 150
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24195.56 9391.17 26395.78 262
test_yl94.78 10994.23 11496.43 9497.74 12491.22 13496.85 18697.10 20591.23 16595.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
DCV-MVSNet94.78 10994.23 11496.43 9497.74 12491.22 13496.85 18697.10 20591.23 16595.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
WTY-MVS94.71 11194.02 11696.79 7297.71 12692.05 10296.59 21697.35 18990.61 19194.64 13496.93 15386.41 13899.39 11191.20 18194.71 20598.94 97
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25297.23 15897.46 16887.99 27089.90 25096.92 15666.35 36598.23 23290.30 19590.99 26897.96 177
TAMVS94.01 13293.46 13595.64 14596.16 22390.45 16996.71 20096.89 23189.27 22893.46 16296.92 15687.29 12797.94 27988.70 23395.74 18198.53 131
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1440.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
lupinMVS94.99 10294.56 10496.29 10796.34 21491.21 13695.83 26496.27 26788.93 24196.22 9296.88 15886.20 14298.85 17595.27 9699.05 8798.82 113
bld_raw_dy_0_6494.33 11793.90 11995.62 14897.64 13190.95 14995.17 29897.47 16582.34 35991.28 21996.84 16089.10 9099.04 16096.27 5499.00 9196.85 226
sss94.51 11393.80 12196.64 7497.07 15991.97 10596.32 23698.06 8288.94 24094.50 13896.78 16184.60 16099.27 12291.90 16296.02 17498.68 123
AllTest90.23 28288.98 29493.98 23497.94 11386.64 27896.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13680.02 34392.87 23296.15 246
TestCases93.98 23497.94 11386.64 27895.54 30085.38 32385.49 33896.77 16270.28 33799.15 13680.02 34392.87 23296.15 246
API-MVS94.84 10794.49 10995.90 13197.90 11792.00 10497.80 9097.48 16289.19 23094.81 13096.71 16488.84 9499.17 13388.91 22998.76 10096.53 233
PLCcopyleft91.00 694.11 12793.43 13896.13 11998.58 6891.15 14496.69 20397.39 18387.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15697.73 190
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 12893.70 12395.27 16595.70 24292.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 257
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25291.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 258
1112_ss93.37 15492.42 17596.21 11497.05 16490.99 14696.31 23796.72 24186.87 30189.83 25396.69 16886.51 13699.14 13888.12 23893.67 22598.50 135
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
ACMM89.79 892.96 17292.50 17294.35 21496.30 21688.71 22497.58 11697.36 18891.40 15990.53 23096.65 17079.77 25098.75 18691.24 18091.64 25395.59 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03094.05 13093.31 14296.27 10995.22 27494.59 3198.34 2697.46 16892.93 11591.21 22396.64 17187.23 12998.22 23394.99 10385.80 31795.98 253
HQP_MVS93.78 14293.43 13894.82 18896.21 21889.99 18097.74 9497.51 15994.85 3491.34 21296.64 17181.32 22498.60 20293.02 14692.23 24395.86 254
plane_prior496.64 171
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21188.20 24197.36 14197.25 19791.52 15288.30 29496.64 17178.46 27498.72 19191.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
xiu_mvs_v1_base_debu95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base_debi95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
VPNet92.23 20391.31 20994.99 17895.56 24890.96 14897.22 15997.86 11592.96 11490.96 22596.62 17875.06 30798.20 23591.90 16283.65 35095.80 260
PAPM_NR95.01 9894.59 10296.26 11098.89 5190.68 16397.24 15497.73 12991.80 14592.93 17796.62 17889.13 8999.14 13889.21 22297.78 13498.97 93
PCF-MVS89.48 1191.56 22889.95 26796.36 10196.60 19192.52 8692.51 36897.26 19579.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 15097.01 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9397.56 15592.50 12589.94 24996.54 18188.65 9898.18 23893.83 13090.90 27095.86 254
CDS-MVSNet94.14 12693.54 12995.93 13096.18 22191.46 12796.33 23597.04 21588.97 23993.56 15796.51 18287.55 11997.89 28689.80 20495.95 17698.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
jajsoiax92.42 19191.89 19094.03 23293.33 34988.50 23297.73 9697.53 15792.00 14288.85 28196.50 18375.62 30498.11 24693.88 12891.56 25695.48 274
MSDG91.42 23590.24 25494.96 18297.15 15688.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16480.57 33995.05 19696.98 220
mvs_tets92.31 19791.76 19293.94 24093.41 34688.29 23697.63 11297.53 15792.04 14088.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13097.43 18089.14 23188.90 27896.43 18679.71 25198.24 23189.56 21187.68 30095.67 271
thisisatest053093.03 16992.21 18095.49 15797.07 15989.11 21797.49 12992.19 37590.16 20294.09 14796.41 18776.43 29799.05 15790.38 19395.68 18498.31 154
alignmvs95.87 7895.23 8897.78 3197.56 14395.19 2197.86 8097.17 20094.39 5996.47 8296.40 18885.89 14599.20 12796.21 6295.11 19598.95 96
ITE_SJBPF92.43 29595.34 26385.37 30595.92 27991.47 15487.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
mvs_anonymous93.82 14093.74 12294.06 22996.44 20985.41 30295.81 26597.05 21389.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16599.02 86
baseline192.82 18191.90 18995.55 15397.20 15290.77 15897.19 16194.58 34092.20 13392.36 18496.34 19184.16 16998.21 23489.20 22383.90 34897.68 193
OurMVSNet-221017-090.51 27590.19 25991.44 32293.41 34681.25 34896.98 17796.28 26691.68 14986.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
ab-mvs93.57 14892.55 16896.64 7497.28 14991.96 10695.40 28597.45 17389.81 21393.22 17096.28 19379.62 25499.46 10390.74 18893.11 23198.50 135
ACMH87.59 1690.53 27389.42 28693.87 24396.21 21887.92 24997.24 15496.94 22388.45 25983.91 35696.27 19471.92 32698.62 20184.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38197.64 11095.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
ACMH+87.92 1490.20 28489.18 29193.25 27096.48 20686.45 28596.99 17696.68 24688.83 24584.79 34596.22 19670.16 33998.53 20884.42 30488.04 29794.77 327
xiu_mvs_v2_base95.32 9095.29 8795.40 16297.22 15090.50 16795.44 28497.44 17793.70 7996.46 8396.18 19788.59 10199.53 9194.79 11197.81 13396.17 244
UGNet94.04 13193.28 14396.31 10396.85 17491.19 13997.88 7997.68 13694.40 5893.00 17296.18 19773.39 32299.61 6991.72 16898.46 11398.13 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned92.94 17492.62 16593.92 24297.22 15086.16 29396.40 22996.25 26990.06 20589.79 25496.17 19983.19 18398.35 22487.19 26397.27 15197.24 215
MGCFI-Net95.94 7695.40 8397.56 4697.59 13894.62 3098.21 4397.57 15194.41 5796.17 9496.16 20087.54 12099.17 13396.19 6594.73 20498.91 101
hse-mvs293.45 15292.99 14894.81 19097.02 16688.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21395.85 7679.13 37297.35 210
sasdasda96.02 7195.45 7997.75 3597.59 13895.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13196.20 6394.82 19998.91 101
AUN-MVS91.76 21790.75 23294.81 19097.00 16888.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 21090.83 18579.18 37197.36 208
canonicalmvs96.02 7195.45 7997.75 3597.59 13895.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13196.20 6394.82 19998.91 101
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 267
MVS_Test94.89 10594.62 10195.68 14496.83 17789.55 19496.70 20197.17 20091.17 16895.60 11696.11 20687.87 11398.76 18593.01 14897.17 15598.72 119
PVSNet_Blended94.87 10694.56 10495.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 14096.09 20788.02 10999.58 7793.44 13598.18 12498.40 148
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38596.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
MVSTER93.20 16092.81 15694.37 21396.56 19689.59 19297.06 16997.12 20391.24 16491.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
EPNet_dtu91.71 21891.28 21192.99 27993.76 33483.71 32896.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15997.88 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+94.93 10394.45 11196.36 10196.61 19091.47 12696.41 22597.41 18291.02 17494.50 13895.92 21187.53 12198.78 18193.89 12796.81 16098.84 112
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22189.55 19496.31 23797.09 20787.88 27485.67 33695.91 21278.79 27098.57 20681.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
NP-MVS95.99 23389.81 18795.87 213
HQP-MVS93.19 16192.74 16094.54 20695.86 23589.33 20696.65 20797.39 18393.55 8290.14 23795.87 21380.95 22798.50 21092.13 15892.10 24895.78 262
MAR-MVS94.22 11993.46 13596.51 8598.00 11092.19 9997.67 10397.47 16588.13 26993.00 17295.84 21584.86 15899.51 9687.99 24098.17 12597.83 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi87.97 31487.21 31490.24 34492.86 35580.76 35296.67 20694.97 32691.74 14785.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
PAPR94.18 12093.42 14096.48 8997.64 13191.42 12995.55 27897.71 13588.99 23792.34 18795.82 21789.19 8799.11 14186.14 27997.38 14598.90 104
PS-CasMVS91.55 22990.84 22893.69 25394.96 28788.28 23797.84 8498.24 4791.46 15588.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26392.83 7697.17 16398.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 269
PAPM91.52 23190.30 25095.20 16795.30 26989.83 18693.38 35496.85 23586.26 31188.59 28795.80 21884.88 15798.15 24075.67 36795.93 17797.63 194
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15892.49 8795.64 27696.64 24989.05 23593.00 17295.79 22185.77 14899.45 10589.16 22594.35 20797.96 177
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15495.78 22282.86 19498.67 19591.77 16795.71 18399.07 85
CP-MVSNet91.89 21491.24 21393.82 24595.05 28488.57 22897.82 8798.19 5591.70 14888.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
PEN-MVS91.20 24890.44 24493.48 26294.49 31287.91 25197.76 9298.18 5791.29 16087.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16498.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 262
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 262
PS-MVSNAJ95.37 8895.33 8695.49 15797.35 14890.66 16495.31 29097.48 16293.85 7496.51 7995.70 22788.65 9899.65 5894.80 10998.27 12096.17 244
DTE-MVSNet90.56 27289.75 27793.01 27893.95 32787.25 26397.64 11097.65 13990.74 18087.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19887.96 27191.86 20095.68 22880.44 23798.99 16384.01 30897.54 13996.89 225
tt080591.09 25290.07 26494.16 22595.61 24588.31 23597.56 11896.51 25789.56 21889.17 27595.64 23067.08 36398.38 22291.07 18388.44 29595.80 260
CLD-MVS92.98 17192.53 17094.32 21796.12 22889.20 21395.28 29197.47 16592.66 12289.90 25095.62 23180.58 23498.40 21792.73 15092.40 24195.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS91.71 21890.44 24495.51 15595.20 27691.59 11996.04 25297.45 17373.44 39287.36 31595.60 23285.42 15199.10 14285.97 28497.46 14095.83 258
SixPastTwentyTwo89.15 30188.54 30190.98 33093.49 34380.28 36296.70 20194.70 33690.78 17884.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
USDC88.94 30387.83 30892.27 30094.66 30584.96 31293.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23782.64 32589.67 28393.66 351
test_djsdf93.07 16792.76 15794.00 23393.49 34388.70 22598.22 4197.57 15191.42 15790.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
WR-MVS92.34 19591.53 20194.77 19595.13 28190.83 15596.40 22997.98 10091.88 14489.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 270
TR-MVS91.48 23390.59 24094.16 22596.40 21187.33 25995.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22482.85 32093.61 22896.79 229
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21191.57 12195.34 28793.48 36390.60 19375.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
pm-mvs190.72 26889.65 28193.96 23794.29 32189.63 18997.79 9196.82 23789.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27694.31 32085.89 29595.33 28897.26 19591.06 17389.38 26795.44 24068.61 34998.60 20289.46 21391.05 26694.79 324
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24292.39 8997.86 8098.66 1692.30 13092.09 19595.37 24180.49 23698.40 21793.95 12485.86 31695.75 267
131492.81 18292.03 18495.14 17095.33 26689.52 19796.04 25297.44 17787.72 28386.25 33295.33 24283.84 17298.79 18089.26 21997.05 15797.11 218
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18787.27 26290.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21693.25 13998.94 9497.35 210
TransMVSNet (Re)88.94 30387.56 30993.08 27794.35 31788.45 23497.73 9695.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
MS-PatchMatch90.27 28089.77 27591.78 31494.33 31884.72 31695.55 27896.73 24086.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12692.81 362
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18388.54 23094.82 30596.21 27289.61 21794.20 14495.25 24683.24 18299.14 13890.01 19896.16 17398.25 156
PVSNet_BlendedMVS94.06 12993.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20194.36 14095.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16589.97 18395.53 28096.64 24985.38 32389.65 25995.18 24885.86 14699.10 14287.70 24893.58 23098.49 137
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27395.27 27085.52 30097.03 17096.63 25292.09 13889.11 27795.14 25080.33 24098.08 25187.54 25694.74 20396.03 252
Baseline_NR-MVSNet91.20 24890.62 23892.95 28193.83 33288.03 24697.01 17595.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27794.53 31396.38 26384.78 33594.27 14295.12 25283.13 18698.40 21791.47 17596.49 16998.12 168
EIA-MVS95.53 8695.47 7895.71 14397.06 16289.63 18997.82 8797.87 11193.57 8193.92 15295.04 25390.61 7398.95 16594.62 11498.68 10298.54 130
FE-MVS92.05 20991.05 21995.08 17396.83 17787.93 24893.91 33995.70 29086.30 30994.15 14694.97 25476.59 29399.21 12684.10 30696.86 15898.09 172
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24289.70 20785.14 32795.49 273
TDRefinement86.53 32784.76 33891.85 30982.23 40284.25 31996.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22784.60 30274.52 38292.97 359
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23873.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres600view792.49 18991.60 19895.18 16897.91 11689.47 19897.65 10694.66 33792.18 13793.33 16594.91 25878.06 28299.10 14281.61 32994.06 22096.98 220
thres100view90092.43 19091.58 19994.98 18097.92 11589.37 20497.71 10194.66 33792.20 13393.31 16694.90 25978.06 28299.08 14981.40 33294.08 21696.48 236
v2v48291.59 22590.85 22793.80 24693.87 33188.17 24396.94 18096.88 23289.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
PVSNet86.66 1892.24 20291.74 19593.73 24997.77 12383.69 32992.88 36396.72 24187.91 27393.00 17294.86 26178.51 27399.05 15786.53 27197.45 14498.47 140
anonymousdsp92.16 20591.55 20093.97 23692.58 36289.55 19497.51 12397.42 18189.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25793.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
BH-w/o92.14 20791.75 19393.31 26896.99 17085.73 29795.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17296.13 248
IterMVS-LS92.29 19991.94 18893.34 26796.25 21786.97 27296.57 21997.05 21390.67 18589.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVP-Stereo90.74 26790.08 26192.71 29093.19 35188.20 24195.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12892.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet291.31 24390.08 26194.99 17896.51 20392.21 9697.41 13396.95 22288.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36594.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
baseline291.63 22290.86 22593.94 24094.33 31886.32 28795.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19388.64 23494.57 20696.81 228
WR-MVS_H92.00 21091.35 20693.95 23895.09 28389.47 19898.04 5798.68 1391.46 15588.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
TinyColmap86.82 32685.35 33291.21 32694.91 29382.99 33493.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24275.78 36587.35 30692.52 368
FMVSNet391.78 21690.69 23795.03 17696.53 20192.27 9597.02 17296.93 22489.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
tfpnnormal89.70 29788.40 30293.60 25695.15 27990.10 17697.56 11898.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
LCM-MVSNet-Re92.50 18792.52 17192.44 29496.82 17981.89 34496.92 18193.71 36192.41 12884.30 34894.60 27485.08 15597.03 34191.51 17397.36 14698.40 148
thisisatest051592.29 19991.30 21095.25 16696.60 19188.90 22194.36 32192.32 37487.92 27293.43 16394.57 27577.28 28999.00 16289.42 21495.86 17997.86 183
testing387.67 31886.88 31990.05 34696.14 22680.71 35397.10 16892.85 36890.15 20387.54 31094.55 27655.70 38994.10 38173.77 37694.10 21595.35 286
UWE-MVS89.91 28989.48 28591.21 32695.88 23478.23 37894.91 30490.26 38889.11 23292.35 18694.52 27768.76 34897.96 27483.95 31095.59 18697.42 206
ETV-MVS96.02 7195.89 7196.40 9697.16 15492.44 8897.47 13097.77 12494.55 5096.48 8194.51 27891.23 6398.92 16895.65 8598.19 12397.82 187
pmmvs589.86 29488.87 29792.82 28692.86 35586.23 29096.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
GBi-Net91.35 24090.27 25294.59 20096.51 20391.18 14097.50 12496.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20391.18 14097.50 12496.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet189.88 29288.31 30394.59 20095.41 25691.18 14097.50 12496.93 22486.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
tfpn200view992.38 19391.52 20294.95 18397.85 11989.29 20897.41 13394.88 33192.19 13593.27 16894.46 28378.17 27899.08 14981.40 33294.08 21696.48 236
thres40092.42 19191.52 20295.12 17297.85 11989.29 20897.41 13394.88 33192.19 13593.27 16894.46 28378.17 27899.08 14981.40 33294.08 21696.98 220
v114491.37 23990.60 23993.68 25493.89 33088.23 24096.84 18897.03 21788.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
lessismore_v090.45 34091.96 37079.09 37587.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
pmmvs687.81 31786.19 32492.69 29191.32 37286.30 28897.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
v192192090.85 26390.03 26693.29 26993.55 33986.96 27396.74 19697.04 21587.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
eth_miper_zixun_eth91.02 25690.59 24092.34 29895.33 26684.35 31894.10 33196.90 22988.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
V4291.58 22790.87 22493.73 24994.05 32688.50 23297.32 14796.97 22088.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
v119291.07 25390.23 25593.58 25893.70 33587.82 25496.73 19797.07 21087.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
v124090.70 26989.85 27193.23 27193.51 34286.80 27496.61 21397.02 21887.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
v14419291.06 25490.28 25193.39 26593.66 33887.23 26596.83 18997.07 21087.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
IterMVS-SCA-FT90.31 27889.81 27391.82 31195.52 25084.20 32194.30 32596.15 27490.61 19187.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18390.03 17796.81 19197.13 20288.19 26591.30 21594.27 29486.21 14198.63 19987.66 25296.46 17198.12 168
v891.29 24590.53 24393.57 25994.15 32288.12 24597.34 14397.06 21288.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
DIV-MVS_self_test90.97 25990.33 24792.88 28495.36 26186.19 29294.46 31796.63 25287.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
c3_l91.38 23790.89 22392.88 28495.58 24786.30 28894.68 30896.84 23688.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
v1091.04 25590.23 25593.49 26194.12 32388.16 24497.32 14797.08 20888.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
cl____90.96 26090.32 24892.89 28395.37 26086.21 29194.46 31796.64 24987.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
ppachtmachnet_test88.35 31287.29 31191.53 31992.45 36583.57 33093.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
IterMVS90.15 28689.67 27991.61 31895.48 25283.72 32794.33 32396.12 27589.99 20687.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVSnew89.88 29289.56 28290.82 33394.57 31183.06 33395.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21192.54 367
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37196.61 21392.08 37790.66 18780.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
v7n90.76 26589.86 27093.45 26493.54 34087.60 25897.70 10297.37 18688.85 24387.65 30894.08 30581.08 22698.10 24784.68 30083.79 34994.66 331
miper_ehance_all_eth91.59 22591.13 21892.97 28095.55 24986.57 28294.47 31596.88 23287.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
thres20092.23 20391.39 20594.75 19797.61 13589.03 21896.60 21595.09 32192.08 13993.28 16794.00 30778.39 27699.04 16081.26 33794.18 21296.19 243
cl2291.21 24790.56 24293.14 27596.09 23086.80 27494.41 31996.58 25587.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
test_040286.46 32884.79 33791.45 32195.02 28585.55 29996.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
v14890.99 25790.38 24692.81 28793.83 33285.80 29696.78 19496.68 24689.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25794.34 32296.19 27390.73 18190.35 23493.83 31171.84 32797.96 27487.22 26293.61 22898.21 160
MDTV_nov1_ep1390.76 23195.22 27480.33 36093.03 36195.28 31188.14 26892.84 17893.83 31181.34 22398.08 25182.86 31894.34 208
D2MVS91.30 24490.95 22292.35 29694.71 30485.52 30096.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
miper_lstm_enhance90.50 27690.06 26591.83 31095.33 26683.74 32693.86 34096.70 24587.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
CostFormer91.18 25190.70 23692.62 29394.84 29781.76 34594.09 33294.43 34384.15 34192.72 17993.77 31579.43 25698.20 23590.70 18992.18 24697.90 180
our_test_388.78 30787.98 30791.20 32892.45 36582.53 33793.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
SCA91.84 21591.18 21793.83 24495.59 24684.95 31394.72 30795.58 29990.82 17792.25 18993.69 31775.80 30198.10 24786.20 27795.98 17598.45 142
Patchmatch-test89.42 29987.99 30693.70 25295.27 27085.11 30988.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20198.48 139
PatchmatchNetpermissive91.91 21291.35 20693.59 25795.38 25884.11 32293.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24284.81 29895.32 19098.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 23491.32 20891.79 31395.15 27979.20 37393.42 35395.37 30688.55 25693.49 16193.67 32082.49 20498.27 23090.41 19289.34 28697.90 180
test0.0.03 189.37 30088.70 29891.41 32392.47 36485.63 29895.22 29692.70 37191.11 17086.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36495.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
testing1191.68 22190.75 23294.47 20896.53 20186.56 28395.76 26994.51 34291.10 17291.24 22293.59 32368.59 35098.86 17391.10 18294.29 20998.00 176
dmvs_re90.21 28389.50 28492.35 29695.47 25585.15 30895.70 27194.37 34690.94 17688.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 241
gm-plane-assit93.22 35078.89 37684.82 33493.52 32598.64 19887.72 245
EG-PatchMatch MVS87.02 32585.44 32991.76 31692.67 35985.00 31196.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
EPMVS90.70 26989.81 27393.37 26694.73 30384.21 32093.67 34788.02 39589.50 22192.38 18393.49 32677.82 28697.78 29586.03 28392.68 23898.11 171
testing9191.90 21391.02 22094.53 20796.54 19986.55 28495.86 26295.64 29691.77 14691.89 19893.47 32869.94 34298.86 17390.23 19793.86 22398.18 162
testing9991.62 22390.72 23594.32 21796.48 20686.11 29495.81 26594.76 33591.55 15191.75 20393.44 32968.55 35198.82 17790.43 19193.69 22498.04 175
Effi-MVS+-dtu93.08 16693.21 14592.68 29296.02 23283.25 33297.14 16696.72 24193.85 7491.20 22493.44 32983.08 18798.30 22891.69 17195.73 18296.50 235
tpm289.96 28889.21 29092.23 30294.91 29381.25 34893.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 25097.49 203
miper_enhance_ethall91.54 23091.01 22193.15 27495.35 26287.07 27093.97 33496.90 22986.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
tpm90.25 28189.74 27891.76 31693.92 32879.73 36793.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 168
dp88.90 30588.26 30590.81 33494.58 31076.62 38092.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24580.53 34087.42 30497.71 191
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 35996.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
testing22290.31 27888.96 29594.35 21496.54 19987.29 26095.50 28193.84 35990.97 17591.75 20392.96 33662.18 38098.00 26582.86 31894.08 21697.76 189
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14979.90 37689.40 26692.92 33775.36 30598.36 22392.14 15794.75 20296.23 240
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19296.62 232
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 32993.13 35383.33 33194.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
tpmvs89.83 29589.15 29291.89 30894.92 29180.30 36193.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20981.47 33189.92 28096.84 227
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
MIMVSNet88.50 31086.76 32093.72 25194.84 29787.77 25591.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23497.57 201
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27387.70 25695.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ETVMVS90.52 27489.14 29394.67 19996.81 18087.85 25395.91 26093.97 35589.71 21592.34 18792.48 34465.41 37197.96 27481.37 33594.27 21098.21 160
TESTMET0.1,190.06 28789.42 28691.97 30694.41 31680.62 35694.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16797.61 198
test-LLR91.42 23591.19 21692.12 30394.59 30880.66 35494.29 32692.98 36691.11 17090.76 22892.37 34679.02 26498.07 25588.81 23096.74 16297.63 194
test-mter90.19 28589.54 28392.12 30394.59 30880.66 35494.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16297.63 194
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33889.97 38082.40 34093.62 34997.37 18689.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
YYNet185.87 33784.23 34190.78 33792.38 36782.46 33993.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
CR-MVSNet90.82 26489.77 27593.95 23894.45 31487.19 26690.23 38395.68 29486.89 30092.40 18192.36 34980.91 22997.05 34081.09 33893.95 22197.60 199
Patchmtry88.64 30987.25 31292.78 28894.09 32486.64 27889.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33692.38 36782.57 33693.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
MIMVSNet184.93 34283.05 34490.56 33989.56 38384.84 31595.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
Syy-MVS87.13 32387.02 31887.47 36195.16 27773.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21395.20 297
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27779.53 36895.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21395.20 297
tpm cat188.36 31187.21 31491.81 31295.13 28180.55 35792.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23980.39 34188.74 29296.72 231
FMVSNet587.29 32185.79 32791.78 31494.80 29987.28 26195.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
ADS-MVSNet289.45 29888.59 30092.03 30595.86 23582.26 34190.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 184
ADS-MVSNet89.89 29188.68 29993.53 26095.86 23584.89 31490.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 184
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33290.06 37984.05 32495.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36696.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34293.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34693.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37495.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
patchmatchnet-post90.45 36782.65 20198.10 247
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38693.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
KD-MVS_2432*160084.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
PVSNet_082.17 1985.46 34083.64 34390.92 33195.27 27079.49 37090.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 37993.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
GG-mvs-BLEND93.62 25593.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18994.80 322
pmmvs-eth3d86.22 33284.45 33991.53 31988.34 39087.25 26394.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
Patchmatch-RL test87.38 32086.24 32390.81 33488.74 38978.40 37788.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35896.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38393.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36391.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
PatchT88.87 30687.42 31093.22 27294.08 32585.10 31089.51 38894.64 33981.92 36292.36 18488.15 38480.05 24597.01 34372.43 38093.65 22697.54 202
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26690.23 38398.03 9177.87 38592.40 18187.55 38880.17 24399.51 9668.84 38993.95 22197.60 199
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37292.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33890.89 38096.62 25478.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
JIA-IIPM88.26 31387.04 31791.91 30793.52 34181.42 34789.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 239
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15396.51 234
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25869.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18792.18 373
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38766.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4999.80 3095.66 8299.40 5399.62 18
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
test_post17.58 41181.76 21898.08 251
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 980.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36875.56 368
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1899.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1899.67 699.77 2
eth-test20.00 419
eth-test0.00 419
IU-MVS99.42 795.39 1197.94 10490.40 19998.94 897.41 3199.66 1199.74 8
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2499.67 699.75 6
GSMVS98.45 142
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
MTGPAbinary98.08 74
MTMP97.86 8082.03 406
test9_res94.81 10899.38 5699.45 47
agg_prior293.94 12599.38 5699.50 40
agg_prior98.67 5893.79 5498.00 9895.68 11399.57 84
test_prior493.66 5796.42 224
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
旧先验295.94 25881.66 36597.34 4898.82 17792.26 152
新几何295.79 267
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
原ACMM295.67 272
testdata299.67 5685.96 285
segment_acmp92.89 28
testdata195.26 29593.10 106
test1297.65 4298.46 7094.26 3997.66 13795.52 12090.89 6999.46 10399.25 6999.22 70
plane_prior796.21 21889.98 182
plane_prior696.10 22990.00 17881.32 224
plane_prior597.51 15998.60 20293.02 14692.23 24395.86 254
plane_prior390.00 17894.46 5591.34 212
plane_prior297.74 9494.85 34
plane_prior196.14 226
plane_prior89.99 18097.24 15494.06 6792.16 247
n20.00 420
nn0.00 420
door-mid91.06 384
test1197.88 109
door91.13 383
HQP5-MVS89.33 206
HQP-NCC95.86 23596.65 20793.55 8290.14 237
ACMP_Plane95.86 23596.65 20793.55 8290.14 237
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 21095.78 262
HQP3-MVS97.39 18392.10 248
HQP2-MVS80.95 227
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15882.47 20586.25 27698.38 150
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 97