This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 47
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5266.81 25692.39 688.94 1696.63 494.85 19
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
test_part295.06 872.65 3291.80 13
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 42
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 9096.65 3084.53 5094.90 4094.00 55
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7494.52 2169.09 8296.70 2784.37 5294.83 4494.03 54
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5996.48 894.88 14
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6396.61 3284.53 5094.89 4193.66 70
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 39
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS Recon83.11 9682.09 10386.15 5894.44 1970.92 6888.79 11392.20 8470.53 19479.17 14291.03 12264.12 13496.03 4668.39 20990.14 10691.50 150
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8994.17 3667.45 10296.60 3383.06 6494.50 5094.07 52
X-MVStestdata80.37 15077.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8912.47 40867.45 10296.60 3383.06 6494.50 5094.07 52
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8376.87 6282.81 10294.25 3466.44 11296.24 4182.88 6994.28 5893.38 86
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 50
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5196.93 1985.53 3995.79 2294.32 43
ZD-MVS94.38 2572.22 4492.67 6270.98 18487.75 3294.07 4174.01 3296.70 2784.66 4894.84 43
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8694.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6094.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5395.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8594.42 2967.87 9996.64 3182.70 7494.57 4993.66 70
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8894.46 2567.93 9795.95 5484.20 5694.39 5393.23 92
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18892.02 9079.45 1985.88 4894.80 1768.07 9596.21 4286.69 3695.34 3393.23 92
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6596.82 2284.18 5795.01 3793.90 60
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7074.50 11486.84 4494.65 2067.31 10495.77 5684.80 4692.85 7092.84 108
114514_t80.68 14179.51 14784.20 11994.09 3867.27 15089.64 8491.11 12558.75 34774.08 25790.72 12958.10 20595.04 8969.70 19489.42 11790.30 195
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8793.95 5169.77 7596.01 4985.15 4094.66 4694.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
save fliter93.80 4072.35 4290.47 6391.17 12274.31 118
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 6096.67 2987.67 2996.37 1494.09 51
HPM-MVS_fast85.35 6084.95 6686.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10494.09 4062.60 15195.54 6380.93 8892.93 6993.57 79
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7774.62 11388.90 2093.85 5275.75 2096.00 5087.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6296.00 5088.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft85.89 4985.39 5787.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12693.82 5364.33 13296.29 3982.67 7590.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7893.36 6371.44 5796.76 2580.82 9095.33 3494.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS85.76 5185.29 6287.17 4393.49 4771.08 6188.58 12392.42 7568.32 24584.61 7093.48 5872.32 4496.15 4579.00 10195.43 3194.28 45
DP-MVS76.78 23174.57 24683.42 15093.29 4869.46 9488.55 12483.70 28263.98 29870.20 29588.89 17154.01 23994.80 10046.66 36281.88 22386.01 313
CPTT-MVS83.73 7983.33 8584.92 9193.28 4970.86 6992.09 3790.38 14368.75 23779.57 13792.83 7660.60 19193.04 18180.92 8991.56 8890.86 171
TEST993.26 5072.96 2588.75 11591.89 9968.44 24385.00 5993.10 6774.36 2895.41 70
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9968.69 23885.00 5993.10 6774.43 2695.41 7084.97 4195.71 2593.02 103
test_893.13 5272.57 3588.68 12091.84 10368.69 23884.87 6393.10 6774.43 2695.16 80
新几何183.42 15093.13 5270.71 7185.48 26157.43 35781.80 11291.98 9063.28 14092.27 20464.60 24092.99 6887.27 286
AdaColmapbinary80.58 14579.42 14984.06 12993.09 5468.91 10589.36 9588.97 19469.27 22175.70 21989.69 14957.20 21695.77 5663.06 25088.41 13387.50 281
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7973.53 13885.69 5194.45 2665.00 13095.56 6182.75 7091.87 8392.50 119
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 7973.53 13885.69 5194.45 2663.87 13682.75 7091.87 8392.50 119
原ACMM184.35 11093.01 5768.79 10792.44 7263.96 29981.09 12291.57 10266.06 11895.45 6667.19 21994.82 4588.81 254
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9591.07 11975.94 1895.19 7979.94 9994.38 5693.55 81
agg_prior92.85 5971.94 5191.78 10684.41 7594.93 91
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5586.77 3595.76 23
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
MG-MVS83.41 8883.45 8183.28 15592.74 6262.28 25188.17 13989.50 17075.22 9881.49 11692.74 8266.75 10795.11 8472.85 16591.58 8792.45 122
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 6083.04 6692.51 7493.53 83
test1286.80 4992.63 6470.70 7291.79 10582.71 10371.67 5496.16 4494.50 5093.54 82
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6593.91 58
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PAPM_NR83.02 9782.41 9784.82 9492.47 6766.37 16887.93 14891.80 10473.82 12977.32 18290.66 13067.90 9894.90 9570.37 18689.48 11693.19 96
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
UA-Net85.08 6484.96 6585.45 7492.07 7068.07 13089.78 7990.86 13282.48 384.60 7193.20 6669.35 7995.22 7871.39 17790.88 9693.07 100
旧先验191.96 7165.79 18186.37 24993.08 7169.31 8192.74 7188.74 258
MSLP-MVS++85.43 5885.76 5184.45 10691.93 7270.24 7690.71 5792.86 5477.46 4784.22 7892.81 7867.16 10692.94 18380.36 9594.35 5790.16 199
LFMVS81.82 11481.23 11483.57 14791.89 7363.43 23289.84 7581.85 31277.04 5883.21 9393.10 6752.26 25393.43 15771.98 17289.95 11193.85 62
PLCcopyleft70.83 1178.05 20476.37 22483.08 16691.88 7467.80 13588.19 13889.46 17164.33 29169.87 30488.38 18653.66 24193.58 14658.86 29082.73 21287.86 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19986.47 19191.87 10173.63 13386.60 4593.02 7276.57 1591.87 21983.36 6192.15 7895.35 3
MVS_111021_HR85.14 6284.75 6786.32 5591.65 7672.70 3085.98 20390.33 14776.11 8382.08 10791.61 10171.36 5994.17 12181.02 8792.58 7392.08 136
test22291.50 7768.26 12584.16 24983.20 29354.63 36879.74 13491.63 10058.97 20091.42 8986.77 299
TSAR-MVS + GP.85.71 5285.33 5986.84 4791.34 7872.50 3689.07 10587.28 23376.41 7485.80 4990.22 14074.15 3195.37 7581.82 7991.88 8292.65 114
MAR-MVS81.84 11380.70 12485.27 7891.32 7971.53 5489.82 7690.92 12869.77 21278.50 15586.21 24862.36 15794.52 10865.36 23392.05 8189.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10194.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf0585.49 5585.43 5685.67 7091.09 8166.55 16587.18 16892.08 8972.89 15482.90 9891.71 9671.85 4996.03 4684.77 4794.39 5394.42 36
3Dnovator+77.84 485.48 5684.47 7488.51 791.08 8273.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19596.75 2677.20 12293.73 6595.29 5
Anonymous20240521178.25 19677.01 20681.99 19791.03 8360.67 27084.77 23183.90 28070.65 19380.00 13391.20 11441.08 35091.43 23865.21 23485.26 17193.85 62
CS-MVS-test86.29 4286.48 3785.71 6891.02 8467.21 15392.36 2993.78 1878.97 2883.51 9291.20 11470.65 6695.15 8181.96 7894.89 4194.77 22
VDD-MVS83.01 9882.36 9984.96 8891.02 8466.40 16788.91 10988.11 21277.57 4184.39 7693.29 6452.19 25493.91 13277.05 12488.70 12894.57 31
API-MVS81.99 11181.23 11484.26 11890.94 8670.18 8291.10 5389.32 17571.51 17278.66 15188.28 18965.26 12595.10 8764.74 23991.23 9287.51 280
testdata79.97 24390.90 8764.21 21484.71 26759.27 34185.40 5392.91 7362.02 16489.08 28368.95 20291.37 9086.63 303
PHI-MVS86.43 3986.17 4387.24 4190.88 8870.96 6592.27 3294.07 972.45 15585.22 5691.90 9269.47 7796.42 3783.28 6395.94 1994.35 41
iter_conf05_1184.86 7084.52 7285.87 6590.86 8967.18 15489.63 8592.15 8771.48 17384.64 6990.81 12868.82 8996.00 5078.50 10793.84 6394.43 35
VNet82.21 10582.41 9781.62 20390.82 9060.93 26584.47 23989.78 16276.36 7984.07 8291.88 9364.71 13190.26 26170.68 18388.89 12293.66 70
PVSNet_Blended_VisFu82.62 10181.83 10984.96 8890.80 9169.76 8788.74 11791.70 10869.39 21878.96 14488.46 18465.47 12494.87 9874.42 14888.57 12990.24 197
MM89.16 689.23 788.97 490.79 9273.65 1092.66 2391.17 12286.57 187.39 3794.97 1671.70 5397.68 192.19 195.63 2895.57 1
CS-MVS86.69 3586.95 3185.90 6490.76 9367.57 14192.83 1793.30 3279.67 1784.57 7292.27 8671.47 5695.02 9084.24 5593.46 6695.13 6
Anonymous2024052980.19 15478.89 16284.10 12290.60 9464.75 20388.95 10890.90 12965.97 27380.59 12791.17 11649.97 28393.73 14469.16 20082.70 21493.81 65
h-mvs3383.15 9382.19 10186.02 6290.56 9570.85 7088.15 14189.16 18476.02 8584.67 6691.39 10861.54 16995.50 6482.71 7275.48 30191.72 144
Anonymous2023121178.97 18277.69 19482.81 17990.54 9664.29 21390.11 7291.51 11365.01 28376.16 21488.13 19850.56 27793.03 18269.68 19577.56 27191.11 161
LS3D76.95 22874.82 24483.37 15390.45 9767.36 14789.15 10386.94 24061.87 32269.52 30790.61 13151.71 26694.53 10746.38 36586.71 15288.21 267
VDDNet81.52 12280.67 12584.05 13290.44 9864.13 21689.73 8185.91 25571.11 18083.18 9493.48 5850.54 27893.49 15273.40 15988.25 13494.54 32
CNLPA78.08 20276.79 21381.97 19890.40 9971.07 6287.59 15784.55 27066.03 27272.38 27789.64 15157.56 21186.04 31459.61 28283.35 20488.79 255
PAPR81.66 12080.89 12283.99 13790.27 10064.00 21786.76 18491.77 10768.84 23677.13 19189.50 15567.63 10094.88 9767.55 21488.52 13193.09 99
Vis-MVSNetpermissive83.46 8782.80 9485.43 7590.25 10168.74 11190.30 6990.13 15476.33 8080.87 12592.89 7461.00 18394.20 11972.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS84.93 6784.29 7586.84 4790.20 10273.04 2387.12 17093.04 3869.80 21082.85 10091.22 11373.06 3996.02 4876.72 12994.63 4791.46 154
EPP-MVSNet83.40 8983.02 8984.57 10090.13 10364.47 20992.32 3090.73 13474.45 11779.35 14091.10 11769.05 8595.12 8272.78 16687.22 14494.13 49
CANet86.45 3886.10 4587.51 3790.09 10470.94 6789.70 8292.59 6981.78 481.32 11791.43 10770.34 6797.23 1384.26 5393.36 6794.37 40
test250677.30 22376.49 22079.74 24890.08 10552.02 35987.86 15263.10 39474.88 10680.16 13292.79 7938.29 36392.35 20168.74 20592.50 7594.86 17
ECVR-MVScopyleft79.61 16179.26 15480.67 23090.08 10554.69 34387.89 15077.44 35174.88 10680.27 12992.79 7948.96 29992.45 19568.55 20692.50 7594.86 17
HQP_MVS83.64 8283.14 8685.14 8190.08 10568.71 11391.25 5092.44 7279.12 2378.92 14691.00 12460.42 19395.38 7278.71 10586.32 15791.33 155
plane_prior790.08 10568.51 120
patch_mono-283.65 8184.54 7080.99 22290.06 10965.83 17984.21 24888.74 20371.60 17085.01 5792.44 8474.51 2583.50 33582.15 7792.15 7893.64 76
test111179.43 16879.18 15780.15 24089.99 11053.31 35687.33 16477.05 35475.04 10380.23 13192.77 8148.97 29892.33 20368.87 20392.40 7794.81 20
CHOSEN 1792x268877.63 21775.69 22883.44 14989.98 11168.58 11978.70 32887.50 22956.38 36275.80 21886.84 22558.67 20191.40 23961.58 26885.75 16990.34 192
IS-MVSNet83.15 9382.81 9384.18 12089.94 11263.30 23491.59 4388.46 20979.04 2579.49 13892.16 8865.10 12794.28 11467.71 21291.86 8594.95 10
plane_prior189.90 113
sasdasda85.91 4785.87 4986.04 6089.84 11469.44 9590.45 6593.00 4376.70 6988.01 2891.23 11173.28 3693.91 13281.50 8188.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11469.44 9590.45 6593.00 4376.70 6988.01 2891.23 11173.28 3693.91 13281.50 8188.80 12494.77 22
plane_prior689.84 11468.70 11560.42 193
MVS_030488.08 1488.08 1788.08 1489.67 11772.04 4892.26 3389.26 17984.19 285.01 5795.18 1369.93 7297.20 1491.63 295.60 2994.99 9
NP-MVS89.62 11868.32 12390.24 138
EIA-MVS83.31 9282.80 9484.82 9489.59 11965.59 18588.21 13792.68 6174.66 11178.96 14486.42 24469.06 8495.26 7775.54 14190.09 10793.62 77
HyFIR lowres test77.53 21875.40 23683.94 14089.59 11966.62 16280.36 30688.64 20656.29 36376.45 20385.17 27257.64 21093.28 16161.34 27183.10 20891.91 140
TAPA-MVS73.13 979.15 17677.94 18282.79 18289.59 11962.99 24488.16 14091.51 11365.77 27477.14 19091.09 11860.91 18493.21 16650.26 34487.05 14692.17 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres100view90076.50 23575.55 23379.33 25689.52 12256.99 31285.83 21083.23 29173.94 12676.32 20787.12 22151.89 26391.95 21448.33 35383.75 19389.07 237
GeoE81.71 11681.01 12083.80 14289.51 12364.45 21088.97 10788.73 20471.27 17778.63 15289.76 14866.32 11493.20 16969.89 19286.02 16493.74 68
alignmvs85.48 5685.32 6085.96 6389.51 12369.47 9289.74 8092.47 7176.17 8287.73 3491.46 10670.32 6893.78 13881.51 8088.95 12194.63 28
PS-MVSNAJ81.69 11781.02 11983.70 14389.51 12368.21 12784.28 24790.09 15570.79 18681.26 12185.62 26263.15 14594.29 11375.62 13988.87 12388.59 261
MVSMamba_pp84.98 6684.70 6885.80 6689.43 12667.63 13988.44 12692.64 6672.17 16184.54 7390.39 13668.88 8895.28 7681.45 8394.39 5394.49 33
MGCFI-Net85.06 6585.51 5483.70 14389.42 12763.01 24089.43 9092.62 6876.43 7387.53 3591.34 10972.82 4293.42 15881.28 8588.74 12794.66 27
ACMP74.13 681.51 12480.57 12684.36 10989.42 12768.69 11689.97 7491.50 11674.46 11675.04 24590.41 13553.82 24094.54 10677.56 11882.91 20989.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres600view776.50 23575.44 23479.68 25089.40 12957.16 30985.53 21883.23 29173.79 13076.26 20887.09 22251.89 26391.89 21748.05 35883.72 19690.00 211
ETV-MVS84.90 6984.67 6985.59 7189.39 13068.66 11788.74 11792.64 6679.97 1584.10 8185.71 25769.32 8095.38 7280.82 9091.37 9092.72 109
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13165.93 17684.95 22887.15 23773.56 13678.19 16489.79 14756.67 21993.36 15959.53 28386.74 15190.13 201
HQP-NCC89.33 13289.17 9976.41 7477.23 185
ACMP_Plane89.33 13289.17 9976.41 7477.23 185
HQP-MVS82.61 10282.02 10584.37 10889.33 13266.98 15789.17 9992.19 8576.41 7477.23 18590.23 13960.17 19695.11 8477.47 11985.99 16591.03 165
EC-MVSNet86.01 4386.38 3884.91 9289.31 13566.27 17092.32 3093.63 2179.37 2084.17 8091.88 9369.04 8695.43 6883.93 5893.77 6493.01 104
ACMM73.20 880.78 14079.84 14183.58 14689.31 13568.37 12289.99 7391.60 11070.28 19977.25 18389.66 15053.37 24593.53 15174.24 15182.85 21088.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 23975.44 23479.27 25789.28 13758.09 29381.69 28487.07 23859.53 33972.48 27586.67 23461.30 17689.33 27860.81 27580.15 24390.41 190
F-COLMAP76.38 24074.33 25182.50 18989.28 13766.95 16088.41 12889.03 18964.05 29666.83 33288.61 17946.78 31092.89 18457.48 30278.55 25887.67 275
LPG-MVS_test82.08 10781.27 11384.50 10389.23 13968.76 10990.22 7091.94 9675.37 9676.64 19991.51 10354.29 23594.91 9278.44 10883.78 19089.83 220
LGP-MVS_train84.50 10389.23 13968.76 10991.94 9675.37 9676.64 19991.51 10354.29 23594.91 9278.44 10883.78 19089.83 220
BH-untuned79.47 16678.60 16682.05 19589.19 14165.91 17786.07 20288.52 20872.18 16075.42 22787.69 20361.15 18093.54 15060.38 27686.83 15086.70 301
xiu_mvs_v2_base81.69 11781.05 11883.60 14589.15 14268.03 13284.46 24190.02 15670.67 18981.30 12086.53 24263.17 14494.19 12075.60 14088.54 13088.57 262
test_yl81.17 12780.47 12983.24 15889.13 14363.62 22386.21 19889.95 15972.43 15881.78 11389.61 15257.50 21293.58 14670.75 18186.90 14892.52 117
DCV-MVSNet81.17 12780.47 12983.24 15889.13 14363.62 22386.21 19889.95 15972.43 15881.78 11389.61 15257.50 21293.58 14670.75 18186.90 14892.52 117
tfpn200view976.42 23875.37 23879.55 25589.13 14357.65 30385.17 22183.60 28373.41 14176.45 20386.39 24552.12 25591.95 21448.33 35383.75 19389.07 237
thres40076.50 23575.37 23879.86 24589.13 14357.65 30385.17 22183.60 28373.41 14176.45 20386.39 24552.12 25591.95 21448.33 35383.75 19390.00 211
1112_ss77.40 22176.43 22280.32 23789.11 14760.41 27583.65 25687.72 22562.13 32073.05 26786.72 22962.58 15389.97 26762.11 26380.80 23490.59 183
SDMVSNet80.38 14880.18 13580.99 22289.03 14864.94 19980.45 30589.40 17275.19 10076.61 20189.98 14360.61 19087.69 30376.83 12783.55 19990.33 193
sd_testset77.70 21577.40 19978.60 26889.03 14860.02 27979.00 32385.83 25775.19 10076.61 20189.98 14354.81 22685.46 32162.63 25683.55 19990.33 193
Fast-Effi-MVS+80.81 13579.92 13883.47 14888.85 15064.51 20685.53 21889.39 17370.79 18678.49 15685.06 27567.54 10193.58 14667.03 22286.58 15392.32 125
PVSNet_BlendedMVS80.60 14380.02 13682.36 19288.85 15065.40 18886.16 20092.00 9269.34 22078.11 16686.09 25266.02 11994.27 11571.52 17482.06 22087.39 282
PVSNet_Blended80.98 13080.34 13182.90 17588.85 15065.40 18884.43 24392.00 9267.62 25178.11 16685.05 27666.02 11994.27 11571.52 17489.50 11589.01 244
MVS_111021_LR82.61 10282.11 10284.11 12188.82 15371.58 5385.15 22386.16 25274.69 11080.47 12891.04 12062.29 15890.55 25980.33 9690.08 10890.20 198
BH-w/o78.21 19877.33 20280.84 22688.81 15465.13 19584.87 22987.85 22269.75 21374.52 25384.74 28061.34 17593.11 17658.24 29785.84 16784.27 336
FIs82.07 10882.42 9681.04 22188.80 15558.34 29188.26 13693.49 2676.93 6078.47 15791.04 12069.92 7392.34 20269.87 19384.97 17392.44 123
OPM-MVS83.50 8682.95 9185.14 8188.79 15670.95 6689.13 10491.52 11277.55 4480.96 12491.75 9560.71 18694.50 10979.67 10086.51 15589.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS79.49 16579.22 15680.27 23888.79 15658.35 29085.06 22588.61 20778.56 3077.65 17588.34 18763.81 13890.66 25864.98 23777.22 27391.80 143
bld_raw_dy_0_6482.00 11081.23 11484.34 11188.75 15866.52 16681.95 28091.90 9863.91 30075.26 23790.15 14269.37 7895.74 5877.66 11792.08 8090.76 174
OMC-MVS82.69 10081.97 10784.85 9388.75 15867.42 14487.98 14490.87 13174.92 10579.72 13591.65 9862.19 16193.96 12575.26 14386.42 15693.16 97
hse-mvs281.72 11580.94 12184.07 12788.72 16067.68 13885.87 20787.26 23476.02 8584.67 6688.22 19261.54 16993.48 15382.71 7273.44 32991.06 163
AUN-MVS79.21 17577.60 19684.05 13288.71 16167.61 14085.84 20987.26 23469.08 22977.23 18588.14 19753.20 24793.47 15475.50 14273.45 32891.06 163
ACMH67.68 1675.89 24673.93 25581.77 20188.71 16166.61 16388.62 12289.01 19169.81 20966.78 33386.70 23341.95 34791.51 23455.64 31678.14 26587.17 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16351.78 36586.70 18579.63 33674.14 12375.11 24290.83 12761.29 17789.75 27158.10 29891.60 8692.69 112
PatchMatch-RL72.38 28370.90 28776.80 29688.60 16467.38 14679.53 31576.17 36062.75 31369.36 30982.00 32745.51 32484.89 32653.62 32480.58 23778.12 375
ACMH+68.96 1476.01 24574.01 25382.03 19688.60 16465.31 19288.86 11187.55 22770.25 20167.75 32187.47 21141.27 34893.19 17158.37 29575.94 29487.60 277
LTVRE_ROB69.57 1376.25 24174.54 24881.41 20988.60 16464.38 21279.24 31989.12 18870.76 18869.79 30687.86 20049.09 29693.20 16956.21 31580.16 24286.65 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DELS-MVS85.41 5985.30 6185.77 6788.49 16767.93 13385.52 22093.44 2778.70 2983.63 9189.03 16974.57 2495.71 5980.26 9794.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS82.31 10481.65 11084.29 11488.47 16867.73 13785.81 21192.35 7775.78 8878.33 16086.58 23964.01 13594.35 11276.05 13487.48 14190.79 172
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 11281.54 11182.92 17488.46 16963.46 23087.13 16992.37 7680.19 1278.38 15889.14 16571.66 5593.05 17970.05 18976.46 28492.25 128
ab-mvs79.51 16478.97 16181.14 21888.46 16960.91 26683.84 25389.24 18170.36 19679.03 14388.87 17263.23 14390.21 26365.12 23582.57 21592.28 127
testing9176.54 23375.66 23179.18 26088.43 17155.89 33081.08 29283.00 29773.76 13175.34 23084.29 28746.20 31790.07 26564.33 24184.50 17991.58 147
FC-MVSNet-test81.52 12282.02 10580.03 24288.42 17255.97 32987.95 14693.42 2977.10 5677.38 18090.98 12669.96 7191.79 22068.46 20884.50 17992.33 124
Effi-MVS+83.62 8483.08 8785.24 7988.38 17367.45 14388.89 11089.15 18575.50 9482.27 10588.28 18969.61 7694.45 11177.81 11587.84 13693.84 64
UniMVSNet (Re)81.60 12181.11 11783.09 16588.38 17364.41 21187.60 15693.02 4278.42 3278.56 15488.16 19369.78 7493.26 16269.58 19676.49 28391.60 145
VPNet78.69 18878.66 16578.76 26588.31 17555.72 33284.45 24286.63 24576.79 6478.26 16190.55 13359.30 19889.70 27366.63 22377.05 27590.88 170
FA-MVS(test-final)80.96 13179.91 13984.10 12288.30 17665.01 19784.55 23890.01 15773.25 14679.61 13687.57 20658.35 20494.72 10371.29 17886.25 15992.56 116
TR-MVS77.44 21976.18 22581.20 21688.24 17763.24 23584.61 23686.40 24867.55 25277.81 17286.48 24354.10 23793.15 17357.75 30182.72 21387.20 287
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7788.18 17867.85 13487.66 15589.73 16580.05 1482.95 9689.59 15470.74 6494.82 9980.66 9484.72 17693.28 91
testing1175.14 25774.01 25378.53 27188.16 17956.38 32380.74 29980.42 32770.67 18972.69 27383.72 30043.61 33589.86 26862.29 25983.76 19289.36 233
testing9976.09 24475.12 24279.00 26188.16 17955.50 33580.79 29681.40 31673.30 14475.17 23984.27 28944.48 33090.02 26664.28 24284.22 18791.48 152
baseline176.98 22776.75 21677.66 28488.13 18155.66 33385.12 22481.89 31073.04 15076.79 19488.90 17062.43 15687.78 30263.30 24971.18 34489.55 229
test_040272.79 28170.44 29279.84 24688.13 18165.99 17585.93 20584.29 27465.57 27767.40 32785.49 26446.92 30992.61 19035.88 38874.38 31980.94 367
tttt051779.40 17077.91 18383.90 14188.10 18363.84 22088.37 13284.05 27871.45 17476.78 19589.12 16649.93 28694.89 9670.18 18883.18 20792.96 106
FE-MVS77.78 21175.68 22984.08 12688.09 18466.00 17483.13 26787.79 22368.42 24478.01 16985.23 27045.50 32595.12 8259.11 28785.83 16891.11 161
VPA-MVSNet80.60 14380.55 12780.76 22888.07 18560.80 26886.86 17891.58 11175.67 9280.24 13089.45 16163.34 13990.25 26270.51 18579.22 25591.23 158
UGNet80.83 13479.59 14684.54 10288.04 18668.09 12989.42 9288.16 21176.95 5976.22 20989.46 15949.30 29393.94 12868.48 20790.31 10291.60 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H78.51 19278.49 16878.56 26988.02 18756.38 32388.43 12792.67 6277.14 5473.89 25887.55 20866.25 11589.24 28058.92 28973.55 32790.06 209
QAPM80.88 13279.50 14885.03 8588.01 18868.97 10491.59 4392.00 9266.63 26575.15 24192.16 8857.70 20995.45 6663.52 24588.76 12690.66 179
3Dnovator76.31 583.38 9082.31 10086.59 5287.94 18972.94 2890.64 5892.14 8877.21 5275.47 22392.83 7658.56 20294.72 10373.24 16292.71 7292.13 135
testing22274.04 26572.66 26878.19 27687.89 19055.36 33681.06 29379.20 34071.30 17674.65 25183.57 30339.11 35988.67 29151.43 33685.75 16990.53 185
EI-MVSNet-UG-set83.81 7783.38 8385.09 8487.87 19167.53 14287.44 16189.66 16679.74 1682.23 10689.41 16370.24 6994.74 10279.95 9883.92 18992.99 105
TranMVSNet+NR-MVSNet80.84 13380.31 13282.42 19087.85 19262.33 24987.74 15491.33 11880.55 977.99 17089.86 14565.23 12692.62 18967.05 22175.24 31192.30 126
CP-MVSNet78.22 19778.34 17377.84 28187.83 19354.54 34587.94 14791.17 12277.65 3873.48 26288.49 18362.24 16088.43 29462.19 26074.07 32090.55 184
DU-MVS81.12 12980.52 12882.90 17587.80 19463.46 23087.02 17391.87 10179.01 2678.38 15889.07 16765.02 12893.05 17970.05 18976.46 28492.20 131
NR-MVSNet80.23 15279.38 15082.78 18387.80 19463.34 23386.31 19591.09 12679.01 2672.17 27989.07 16767.20 10592.81 18866.08 22875.65 29792.20 131
TAMVS78.89 18477.51 19883.03 16987.80 19467.79 13684.72 23285.05 26567.63 25076.75 19687.70 20262.25 15990.82 25458.53 29487.13 14590.49 187
thres20075.55 25074.47 24978.82 26487.78 19757.85 30083.07 27083.51 28672.44 15775.84 21784.42 28252.08 25891.75 22247.41 36083.64 19886.86 297
ETVMVS72.25 28671.05 28575.84 30187.77 19851.91 36279.39 31774.98 36369.26 22273.71 25982.95 31140.82 35286.14 31346.17 36684.43 18489.47 230
PS-CasMVS78.01 20678.09 17977.77 28387.71 19954.39 34788.02 14391.22 11977.50 4673.26 26488.64 17860.73 18588.41 29561.88 26473.88 32490.53 185
PCF-MVS73.52 780.38 14878.84 16385.01 8687.71 19968.99 10383.65 25691.46 11763.00 30777.77 17490.28 13766.10 11695.09 8861.40 26988.22 13590.94 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053079.40 17077.76 19184.31 11387.69 20165.10 19687.36 16284.26 27670.04 20377.42 17988.26 19149.94 28494.79 10170.20 18784.70 17793.03 102
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6987.65 20267.22 15288.69 11993.04 3879.64 1885.33 5492.54 8373.30 3594.50 10983.49 6091.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net78.40 19377.40 19981.40 21087.60 20363.01 24088.39 12989.28 17671.63 16775.34 23087.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
test178.40 19377.40 19981.40 21087.60 20363.01 24088.39 12989.28 17671.63 16775.34 23087.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
FMVSNet278.20 19977.21 20381.20 21687.60 20362.89 24587.47 16089.02 19071.63 16775.29 23687.28 21354.80 22791.10 24862.38 25779.38 25289.61 227
CDS-MVSNet79.07 17977.70 19383.17 16287.60 20368.23 12684.40 24586.20 25167.49 25376.36 20686.54 24161.54 16990.79 25561.86 26587.33 14290.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS69.67 1277.95 20777.15 20480.36 23587.57 20760.21 27883.37 26387.78 22466.11 26975.37 22987.06 22463.27 14190.48 26061.38 27082.43 21690.40 191
mvsmamba81.69 11780.74 12384.56 10187.45 20866.72 16191.26 4885.89 25674.66 11178.23 16290.56 13254.33 23494.91 9280.73 9383.54 20192.04 139
xiu_mvs_v1_base_debu80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
xiu_mvs_v1_base80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
xiu_mvs_v1_base_debi80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
MVSFormer82.85 9982.05 10485.24 7987.35 20970.21 7790.50 6190.38 14368.55 24081.32 11789.47 15761.68 16693.46 15578.98 10290.26 10492.05 137
lupinMVS81.39 12580.27 13484.76 9787.35 20970.21 7785.55 21686.41 24762.85 31081.32 11788.61 17961.68 16692.24 20678.41 11090.26 10491.83 141
testing368.56 31867.67 31971.22 34587.33 21442.87 39383.06 27171.54 37570.36 19669.08 31284.38 28430.33 38285.69 31737.50 38775.45 30485.09 329
baseline84.93 6784.98 6484.80 9687.30 21565.39 19087.30 16592.88 5377.62 3984.04 8392.26 8771.81 5093.96 12581.31 8490.30 10395.03 8
PAPM77.68 21676.40 22381.51 20687.29 21661.85 25683.78 25489.59 16864.74 28571.23 28788.70 17562.59 15293.66 14552.66 32987.03 14789.01 244
LCM-MVSNet-Re77.05 22576.94 20977.36 28987.20 21751.60 36680.06 30980.46 32675.20 9967.69 32286.72 22962.48 15488.98 28563.44 24789.25 11891.51 149
casdiffmvspermissive85.11 6385.14 6385.01 8687.20 21765.77 18287.75 15392.83 5677.84 3784.36 7792.38 8572.15 4693.93 13181.27 8690.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22787.13 21965.63 18488.30 13584.19 27762.96 30863.80 35887.69 20338.04 36492.56 19246.66 36274.91 31484.24 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS77.73 21277.69 19477.84 28187.07 22053.91 35087.91 14991.18 12177.56 4373.14 26688.82 17361.23 17889.17 28159.95 27972.37 33590.43 189
MVS_Test83.15 9383.06 8883.41 15286.86 22163.21 23686.11 20192.00 9274.31 11882.87 9989.44 16270.03 7093.21 16677.39 12188.50 13293.81 65
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22260.24 27787.28 16688.79 19874.25 12076.84 19290.53 13449.48 28991.56 22967.98 21082.15 21893.29 90
FMVSNet377.88 20976.85 21180.97 22486.84 22362.36 24886.52 19088.77 19971.13 17975.34 23086.66 23554.07 23891.10 24862.72 25279.57 24889.45 231
FMVSNet177.44 21976.12 22681.40 21086.81 22463.01 24088.39 12989.28 17670.49 19574.39 25487.28 21349.06 29791.11 24560.91 27378.52 25990.09 205
nrg03083.88 7683.53 8084.96 8886.77 22569.28 9990.46 6492.67 6274.79 10882.95 9691.33 11072.70 4393.09 17780.79 9279.28 25492.50 119
ET-MVSNet_ETH3D78.63 18976.63 21984.64 9986.73 22669.47 9285.01 22684.61 26969.54 21666.51 34086.59 23750.16 28191.75 22276.26 13184.24 18692.69 112
fmvsm_s_conf0.5_n83.80 7883.71 7984.07 12786.69 22767.31 14889.46 8983.07 29571.09 18186.96 4393.70 5569.02 8791.47 23688.79 1884.62 17893.44 85
UWE-MVS72.13 28771.49 27874.03 32186.66 22847.70 37981.40 29076.89 35663.60 30275.59 22084.22 29039.94 35585.62 31848.98 35086.13 16288.77 256
jason81.39 12580.29 13384.70 9886.63 22969.90 8585.95 20486.77 24363.24 30381.07 12389.47 15761.08 18292.15 20878.33 11190.07 10992.05 137
jason: jason.
PS-MVSNAJss82.07 10881.31 11284.34 11186.51 23067.27 15089.27 9791.51 11371.75 16579.37 13990.22 14063.15 14594.27 11577.69 11682.36 21791.49 151
WTY-MVS75.65 24975.68 22975.57 30586.40 23156.82 31477.92 33882.40 30565.10 28076.18 21187.72 20163.13 14880.90 35060.31 27781.96 22189.00 246
DTE-MVSNet76.99 22676.80 21277.54 28886.24 23253.06 35887.52 15890.66 13577.08 5772.50 27488.67 17760.48 19289.52 27557.33 30570.74 34690.05 210
PVSNet64.34 1872.08 28870.87 28875.69 30386.21 23356.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33754.77 31984.45 18387.32 285
fmvsm_s_conf0.5_n_a83.63 8383.41 8284.28 11586.14 23468.12 12889.43 9082.87 30070.27 20087.27 3993.80 5469.09 8291.58 22788.21 2683.65 19793.14 98
test_fmvsm_n_192085.29 6185.34 5885.13 8386.12 23569.93 8388.65 12190.78 13369.97 20688.27 2393.98 4971.39 5891.54 23188.49 2390.45 10193.91 58
mamv476.81 23078.23 17872.54 33486.12 23565.75 18378.76 32782.07 30964.12 29372.97 26891.02 12367.97 9668.08 39683.04 6678.02 26683.80 344
tfpnnormal74.39 26073.16 26478.08 27886.10 23758.05 29484.65 23587.53 22870.32 19871.22 28885.63 26154.97 22589.86 26843.03 37675.02 31386.32 305
IterMVS-LS80.06 15579.38 15082.11 19485.89 23863.20 23786.79 18189.34 17474.19 12175.45 22686.72 22966.62 10892.39 19872.58 16876.86 27890.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 23956.21 32786.78 18285.76 25873.60 13577.93 17187.57 20665.02 12888.99 28467.14 22075.33 30887.63 276
cascas76.72 23274.64 24582.99 17185.78 24065.88 17882.33 27689.21 18260.85 32872.74 27081.02 33247.28 30693.75 14267.48 21585.02 17289.34 234
MVS78.19 20076.99 20881.78 20085.66 24166.99 15684.66 23390.47 14155.08 36772.02 28185.27 26863.83 13794.11 12366.10 22789.80 11384.24 337
XVG-OURS80.41 14779.23 15583.97 13885.64 24269.02 10283.03 27290.39 14271.09 18177.63 17691.49 10554.62 23391.35 24075.71 13783.47 20291.54 148
CANet_DTU80.61 14279.87 14082.83 17785.60 24363.17 23987.36 16288.65 20576.37 7875.88 21688.44 18553.51 24393.07 17873.30 16089.74 11492.25 128
XVG-OURS-SEG-HR80.81 13579.76 14283.96 13985.60 24368.78 10883.54 26190.50 14070.66 19276.71 19791.66 9760.69 18791.26 24276.94 12581.58 22591.83 141
TransMVSNet (Re)75.39 25574.56 24777.86 28085.50 24557.10 31186.78 18286.09 25472.17 16171.53 28587.34 21263.01 14989.31 27956.84 31061.83 37287.17 288
fmvsm_l_conf0.5_n84.47 7284.54 7084.27 11785.42 24668.81 10688.49 12587.26 23468.08 24788.03 2793.49 5772.04 4891.77 22188.90 1789.14 12092.24 130
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13386.85 24267.48 25487.48 3693.40 6170.89 6191.61 22588.38 2589.22 11992.16 134
MVP-Stereo76.12 24274.46 25081.13 21985.37 24869.79 8684.42 24487.95 21865.03 28267.46 32585.33 26753.28 24691.73 22458.01 29983.27 20581.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thisisatest051577.33 22275.38 23783.18 16185.27 24963.80 22182.11 27983.27 29065.06 28175.91 21583.84 29649.54 28894.27 11567.24 21886.19 16091.48 152
tt080578.73 18677.83 18681.43 20885.17 25060.30 27689.41 9390.90 12971.21 17877.17 18988.73 17446.38 31293.21 16672.57 16978.96 25690.79 172
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12585.17 25069.91 8490.57 5990.97 12766.70 25972.17 27991.91 9154.70 23193.96 12561.81 26690.95 9588.41 265
AllTest70.96 29568.09 31079.58 25385.15 25263.62 22384.58 23779.83 33362.31 31760.32 36986.73 22732.02 37688.96 28750.28 34271.57 34286.15 309
TestCases79.58 25385.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28750.28 34271.57 34286.15 309
Effi-MVS+-dtu80.03 15678.57 16784.42 10785.13 25468.74 11188.77 11488.10 21374.99 10474.97 24683.49 30457.27 21593.36 15973.53 15680.88 23291.18 159
SixPastTwentyTwo73.37 27271.26 28479.70 24985.08 25557.89 29985.57 21283.56 28571.03 18365.66 34485.88 25442.10 34592.57 19159.11 28763.34 37088.65 260
test_fmvsmconf_n85.92 4686.04 4785.57 7285.03 25669.51 9089.62 8690.58 13773.42 14087.75 3294.02 4472.85 4193.24 16390.37 390.75 9793.96 56
EG-PatchMatch MVS74.04 26571.82 27580.71 22984.92 25767.42 14485.86 20888.08 21466.04 27164.22 35483.85 29535.10 37292.56 19257.44 30380.83 23382.16 361
fmvsm_s_conf0.1_n83.56 8583.38 8384.10 12284.86 25867.28 14989.40 9483.01 29670.67 18987.08 4093.96 5068.38 9391.45 23788.56 2284.50 17993.56 80
IB-MVS68.01 1575.85 24773.36 26283.31 15484.76 25966.03 17283.38 26285.06 26470.21 20269.40 30881.05 33145.76 32294.66 10565.10 23675.49 30089.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_tets79.13 17777.77 19083.22 16084.70 26066.37 16889.17 9990.19 15269.38 21975.40 22889.46 15944.17 33293.15 17376.78 12880.70 23690.14 200
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26366.74 33479.46 34752.11 25782.30 34232.89 39176.38 28982.75 356
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26366.74 33479.46 34731.53 37982.30 34239.43 38476.38 28982.75 356
jajsoiax79.29 17377.96 18183.27 15684.68 26166.57 16489.25 9890.16 15369.20 22675.46 22589.49 15645.75 32393.13 17576.84 12680.80 23490.11 203
WB-MVSnew71.96 28971.65 27772.89 33084.67 26451.88 36382.29 27777.57 34862.31 31773.67 26083.00 31053.49 24481.10 34945.75 36982.13 21985.70 318
MIMVSNet70.69 29969.30 29874.88 31284.52 26556.35 32575.87 34979.42 33764.59 28667.76 32082.41 31941.10 34981.54 34646.64 36481.34 22686.75 300
MSDG73.36 27470.99 28680.49 23384.51 26665.80 18080.71 30086.13 25365.70 27565.46 34583.74 29944.60 32890.91 25351.13 33776.89 27784.74 332
mvs_anonymous79.42 16979.11 15880.34 23684.45 26757.97 29782.59 27487.62 22667.40 25576.17 21388.56 18268.47 9289.59 27470.65 18486.05 16393.47 84
EI-MVSNet80.52 14679.98 13782.12 19384.28 26863.19 23886.41 19288.95 19574.18 12278.69 14987.54 20966.62 10892.43 19672.57 16980.57 23890.74 177
CVMVSNet72.99 27972.58 26974.25 31984.28 26850.85 37186.41 19283.45 28844.56 38673.23 26587.54 20949.38 29185.70 31665.90 22978.44 26186.19 308
pm-mvs177.25 22476.68 21878.93 26384.22 27058.62 28986.41 19288.36 21071.37 17573.31 26388.01 19961.22 17989.15 28264.24 24373.01 33289.03 243
EPNet83.72 8082.92 9286.14 5984.22 27069.48 9191.05 5485.27 26281.30 676.83 19391.65 9866.09 11795.56 6176.00 13593.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14187.96 21770.01 20483.95 8493.23 6568.80 9191.51 23488.61 2089.96 11092.57 115
v879.97 15879.02 16082.80 18084.09 27364.50 20887.96 14590.29 15074.13 12475.24 23886.81 22662.88 15093.89 13574.39 14975.40 30690.00 211
v1079.74 16078.67 16482.97 17384.06 27464.95 19887.88 15190.62 13673.11 14875.11 24286.56 24061.46 17294.05 12473.68 15475.55 29989.90 217
SCA74.22 26372.33 27279.91 24484.05 27562.17 25279.96 31279.29 33966.30 26872.38 27780.13 34151.95 26188.60 29259.25 28577.67 27088.96 248
test_djsdf80.30 15179.32 15283.27 15683.98 27665.37 19190.50 6190.38 14368.55 24076.19 21088.70 17556.44 22093.46 15578.98 10280.14 24490.97 168
131476.53 23475.30 24080.21 23983.93 27762.32 25084.66 23388.81 19760.23 33270.16 29884.07 29355.30 22490.73 25767.37 21683.21 20687.59 279
MS-PatchMatch73.83 26872.67 26777.30 29183.87 27866.02 17381.82 28184.66 26861.37 32668.61 31682.82 31547.29 30588.21 29659.27 28484.32 18577.68 376
fmvsm_s_conf0.1_n_a83.32 9182.99 9084.28 11583.79 27968.07 13089.34 9682.85 30169.80 21087.36 3894.06 4268.34 9491.56 22987.95 2783.46 20393.21 95
v114480.03 15679.03 15983.01 17083.78 28064.51 20687.11 17190.57 13971.96 16478.08 16886.20 24961.41 17393.94 12874.93 14477.23 27290.60 182
OurMVSNet-221017-074.26 26272.42 27179.80 24783.76 28159.59 28485.92 20686.64 24466.39 26766.96 33087.58 20539.46 35691.60 22665.76 23169.27 35188.22 266
v2v48280.23 15279.29 15383.05 16883.62 28264.14 21587.04 17289.97 15873.61 13478.18 16587.22 21761.10 18193.82 13676.11 13276.78 28191.18 159
XXY-MVS75.41 25475.56 23274.96 31183.59 28357.82 30180.59 30283.87 28166.54 26674.93 24788.31 18863.24 14280.09 35362.16 26176.85 27986.97 295
v119279.59 16378.43 17183.07 16783.55 28464.52 20586.93 17690.58 13770.83 18577.78 17385.90 25359.15 19993.94 12873.96 15377.19 27490.76 174
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30467.75 3850.07 4110.43 41275.85 37324.26 39081.54 34628.82 39462.25 37159.16 394
v7n78.97 18277.58 19783.14 16383.45 28665.51 18688.32 13491.21 12073.69 13272.41 27686.32 24757.93 20693.81 13769.18 19975.65 29790.11 203
v14419279.47 16678.37 17282.78 18383.35 28763.96 21886.96 17490.36 14669.99 20577.50 17785.67 26060.66 18893.77 14074.27 15076.58 28290.62 180
tpm273.26 27571.46 27978.63 26683.34 28856.71 31780.65 30180.40 32856.63 36173.55 26182.02 32651.80 26591.24 24356.35 31478.42 26287.95 269
v192192079.22 17478.03 18082.80 18083.30 28963.94 21986.80 18090.33 14769.91 20877.48 17885.53 26358.44 20393.75 14273.60 15576.85 27990.71 178
baseline275.70 24873.83 25881.30 21383.26 29061.79 25882.57 27580.65 32266.81 25666.88 33183.42 30557.86 20892.19 20763.47 24679.57 24889.91 216
v124078.99 18177.78 18982.64 18683.21 29163.54 22786.62 18790.30 14969.74 21577.33 18185.68 25957.04 21793.76 14173.13 16376.92 27690.62 180
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20383.20 29264.67 20483.60 25989.75 16469.75 21371.85 28287.09 22232.78 37592.11 20969.99 19180.43 24088.09 268
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30751.60 33478.51 260
PatchmatchNetpermissive73.12 27771.33 28278.49 27383.18 29360.85 26779.63 31478.57 34364.13 29271.73 28379.81 34651.20 27085.97 31557.40 30476.36 29188.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+-dtu78.02 20576.49 22082.62 18783.16 29566.96 15986.94 17587.45 23172.45 15571.49 28684.17 29154.79 23091.58 22767.61 21380.31 24189.30 235
gg-mvs-nofinetune69.95 30767.96 31175.94 30083.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29053.88 32387.76 13784.62 334
MVSTER79.01 18077.88 18582.38 19183.07 29664.80 20284.08 25288.95 19569.01 23378.69 14987.17 22054.70 23192.43 19674.69 14580.57 23889.89 218
K. test v371.19 29268.51 30479.21 25983.04 29857.78 30284.35 24676.91 35572.90 15362.99 36182.86 31439.27 35791.09 25061.65 26752.66 38888.75 257
eth_miper_zixun_eth77.92 20876.69 21781.61 20583.00 29961.98 25483.15 26689.20 18369.52 21774.86 24884.35 28661.76 16592.56 19271.50 17672.89 33390.28 196
diffmvspermissive82.10 10681.88 10882.76 18583.00 29963.78 22283.68 25589.76 16372.94 15282.02 10889.85 14665.96 12190.79 25582.38 7687.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7382.99 30169.39 9789.65 8390.29 15073.31 14387.77 3194.15 3871.72 5293.23 16490.31 490.67 9993.89 61
FMVSNet569.50 31067.96 31174.15 32082.97 30255.35 33780.01 31182.12 30862.56 31563.02 35981.53 32836.92 36781.92 34448.42 35274.06 32185.17 327
c3_l78.75 18577.91 18381.26 21482.89 30361.56 26084.09 25189.13 18769.97 20675.56 22184.29 28766.36 11392.09 21073.47 15875.48 30190.12 202
sss73.60 27073.64 26073.51 32582.80 30455.01 34176.12 34581.69 31362.47 31674.68 25085.85 25657.32 21478.11 36160.86 27480.93 23187.39 282
GA-MVS76.87 22975.17 24181.97 19882.75 30562.58 24681.44 28986.35 25072.16 16374.74 24982.89 31346.20 31792.02 21268.85 20481.09 23091.30 157
v14878.72 18777.80 18881.47 20782.73 30661.96 25586.30 19688.08 21473.26 14576.18 21185.47 26562.46 15592.36 20071.92 17373.82 32590.09 205
IterMVS-SCA-FT75.43 25373.87 25780.11 24182.69 30764.85 20181.57 28683.47 28769.16 22770.49 29284.15 29251.95 26188.15 29769.23 19872.14 33887.34 284
miper_ehance_all_eth78.59 19177.76 19181.08 22082.66 30861.56 26083.65 25689.15 18568.87 23575.55 22283.79 29866.49 11192.03 21173.25 16176.39 28689.64 226
CostFormer75.24 25673.90 25679.27 25782.65 30958.27 29280.80 29582.73 30361.57 32375.33 23483.13 30955.52 22291.07 25164.98 23778.34 26488.45 263
EPNet_dtu75.46 25274.86 24377.23 29282.57 31054.60 34486.89 17783.09 29471.64 16666.25 34285.86 25555.99 22188.04 29954.92 31886.55 15489.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF73.23 27671.46 27978.54 27082.50 31159.85 28082.18 27882.84 30258.96 34471.15 28989.41 16345.48 32684.77 32758.82 29171.83 34091.02 167
cl____77.72 21376.76 21480.58 23182.49 31260.48 27383.09 26887.87 22069.22 22474.38 25585.22 27162.10 16291.53 23271.09 17975.41 30589.73 225
DIV-MVS_self_test77.72 21376.76 21480.58 23182.48 31360.48 27383.09 26887.86 22169.22 22474.38 25585.24 26962.10 16291.53 23271.09 17975.40 30689.74 224
tpm cat170.57 30068.31 30677.35 29082.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30151.77 33272.07 33986.25 306
cl2278.07 20377.01 20681.23 21582.37 31561.83 25783.55 26087.98 21668.96 23475.06 24483.87 29461.40 17491.88 21873.53 15676.39 28689.98 214
tpm72.37 28471.71 27674.35 31882.19 31652.00 36079.22 32077.29 35264.56 28772.95 26983.68 30251.35 26883.26 33858.33 29675.80 29587.81 273
tpmvs71.09 29469.29 29976.49 29782.04 31756.04 32878.92 32581.37 31764.05 29667.18 32978.28 35849.74 28789.77 27049.67 34772.37 33583.67 345
dmvs_re71.14 29370.58 28972.80 33181.96 31859.68 28275.60 35179.34 33868.55 24069.27 31180.72 33749.42 29076.54 36952.56 33077.79 26782.19 360
pmmvs474.03 26771.91 27480.39 23481.96 31868.32 12381.45 28882.14 30759.32 34069.87 30485.13 27352.40 25188.13 29860.21 27874.74 31684.73 333
TinyColmap67.30 32764.81 33274.76 31481.92 32056.68 31880.29 30881.49 31560.33 33056.27 38383.22 30624.77 38987.66 30445.52 37069.47 35079.95 371
ITE_SJBPF78.22 27581.77 32160.57 27183.30 28969.25 22367.54 32387.20 21836.33 36987.28 30654.34 32174.62 31786.80 298
miper_enhance_ethall77.87 21076.86 21080.92 22581.65 32261.38 26282.68 27388.98 19265.52 27875.47 22382.30 32165.76 12392.00 21372.95 16476.39 28689.39 232
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34139.53 38273.95 32264.62 391
GG-mvs-BLEND75.38 30881.59 32455.80 33179.32 31869.63 38067.19 32873.67 37843.24 33688.90 28950.41 33984.50 17981.45 364
IterMVS74.29 26172.94 26678.35 27481.53 32563.49 22981.58 28582.49 30468.06 24869.99 30183.69 30151.66 26785.54 31965.85 23071.64 34186.01 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38255.25 31779.68 24776.88 378
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19863.40 248
pmmvs674.69 25973.39 26178.61 26781.38 32857.48 30686.64 18687.95 21864.99 28470.18 29686.61 23650.43 27989.52 27562.12 26270.18 34888.83 253
test-LLR72.94 28072.43 27074.48 31681.35 32958.04 29578.38 33177.46 34966.66 26069.95 30279.00 35248.06 30279.24 35566.13 22584.83 17486.15 309
test-mter71.41 29170.39 29474.48 31681.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35566.13 22584.83 17486.15 309
CR-MVSNet73.37 27271.27 28379.67 25181.32 33165.19 19375.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30859.84 28077.71 26887.11 292
RPMNet73.51 27170.49 29182.58 18881.32 33165.19 19375.92 34792.27 7957.60 35572.73 27176.45 36852.30 25295.43 6848.14 35777.71 26887.11 292
V4279.38 17278.24 17682.83 17781.10 33365.50 18785.55 21689.82 16171.57 17178.21 16386.12 25160.66 18893.18 17275.64 13875.46 30389.81 222
lessismore_v078.97 26281.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24159.67 28146.92 39488.43 264
Patchmtry70.74 29869.16 30175.49 30780.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 30953.37 32671.09 34585.87 317
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34550.58 33874.83 31585.34 322
USDC70.33 30368.37 30576.21 29980.60 33756.23 32679.19 32186.49 24660.89 32761.29 36585.47 26531.78 37889.47 27753.37 32676.21 29282.94 355
tpmrst72.39 28272.13 27373.18 32980.54 33849.91 37579.91 31379.08 34163.11 30571.69 28479.95 34355.32 22382.77 34065.66 23273.89 32386.87 296
anonymousdsp78.60 19077.15 20482.98 17280.51 33967.08 15587.24 16789.53 16965.66 27675.16 24087.19 21952.52 24892.25 20577.17 12379.34 25389.61 227
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28580.26 34059.41 28685.01 22682.96 29958.76 34665.43 34682.33 32037.63 36691.23 24445.34 37276.03 29382.32 358
test_fmvsmconf0.01_n84.73 7184.52 7285.34 7680.25 34169.03 10089.47 8889.65 16773.24 14786.98 4294.27 3266.62 10893.23 16490.26 589.95 11193.78 67
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35743.62 37575.70 29683.36 348
miper_lstm_enhance74.11 26473.11 26577.13 29380.11 34359.62 28372.23 36586.92 24166.76 25870.40 29382.92 31256.93 21882.92 33969.06 20172.63 33488.87 251
MIMVSNet168.58 31766.78 32773.98 32280.07 34451.82 36480.77 29784.37 27164.40 28959.75 37282.16 32436.47 36883.63 33442.73 37770.33 34786.48 304
ADS-MVSNet266.20 33763.33 34074.82 31379.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35241.57 37968.91 35385.18 325
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38641.57 37968.91 35385.18 325
test_vis1_n_192075.52 25175.78 22774.75 31579.84 34757.44 30783.26 26485.52 26062.83 31179.34 14186.17 25045.10 32779.71 35478.75 10481.21 22987.10 294
D2MVS74.82 25873.21 26379.64 25279.81 34862.56 24780.34 30787.35 23264.37 29068.86 31382.66 31746.37 31390.10 26467.91 21181.24 22886.25 306
our_test_369.14 31267.00 32575.57 30579.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33151.71 33367.58 35883.93 342
ppachtmachnet_test70.04 30667.34 32378.14 27779.80 34961.13 26379.19 32180.59 32359.16 34265.27 34779.29 34946.75 31187.29 30549.33 34866.72 35986.00 315
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35148.86 35166.58 36183.16 350
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36356.58 31275.26 31087.13 291
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36447.01 36135.91 39771.55 385
CL-MVSNet_self_test72.37 28471.46 27975.09 31079.49 35453.53 35280.76 29885.01 26669.12 22870.51 29182.05 32557.92 20784.13 33052.27 33166.00 36487.60 277
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39040.66 38173.57 32687.90 271
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30279.28 35660.56 27273.92 36178.35 34464.43 28850.13 39079.87 34544.02 33383.67 33346.10 36756.86 38083.03 353
TESTMET0.1,169.89 30869.00 30272.55 33379.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36863.92 24484.09 18884.10 340
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 24960.34 36876.01 37053.56 24273.94 38731.79 39267.65 35775.88 380
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 23984.27 27542.27 38966.44 34184.79 27940.44 35383.76 33258.76 29268.54 35683.17 349
pmmvs571.55 29070.20 29675.61 30477.83 36156.39 32281.74 28380.89 31857.76 35367.46 32584.49 28149.26 29485.32 32357.08 30775.29 30985.11 328
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26066.56 33682.29 32248.06 30275.87 37644.97 37374.51 31883.41 347
Patchmatch-RL test70.24 30467.78 31777.61 28677.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32069.58 19666.58 36187.77 274
pmmvs-eth3d70.50 30267.83 31578.52 27277.37 36466.18 17181.82 28181.51 31458.90 34563.90 35780.42 33942.69 34086.28 31258.56 29365.30 36683.11 351
JIA-IIPM66.32 33462.82 34576.82 29577.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31051.45 33569.22 35282.21 359
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37822.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38549.89 34661.55 37382.99 354
test_cas_vis1_n_192073.76 26973.74 25973.81 32375.90 36859.77 28180.51 30382.40 30558.30 34981.62 11585.69 25844.35 33176.41 37276.29 13078.61 25785.23 324
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38449.95 34561.52 37483.05 352
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36061.16 27282.77 21173.90 382
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 26965.20 35086.59 23735.72 37174.71 38343.71 37473.38 33084.84 331
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26063.01 36083.80 29747.02 30878.40 35942.53 37868.86 35583.58 346
KD-MVS_2432*160066.22 33563.89 33773.21 32675.47 37353.42 35470.76 37184.35 27264.10 29466.52 33878.52 35634.55 37384.98 32450.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32675.47 37353.42 35470.76 37184.35 27264.10 29466.52 33878.52 35634.55 37384.98 32450.40 34050.33 39181.23 365
Anonymous2024052168.80 31567.22 32473.55 32474.33 37554.11 34883.18 26585.61 25958.15 35061.68 36480.94 33430.71 38181.27 34857.00 30873.34 33185.28 323
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 23963.12 30463.99 35678.99 35442.32 34284.77 32756.55 31364.09 36987.16 290
PM-MVS66.41 33364.14 33573.20 32873.92 37756.45 32078.97 32464.96 39263.88 30164.72 35180.24 34019.84 39683.44 33666.24 22464.52 36879.71 372
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29478.77 34251.21 37978.58 15384.41 28331.20 38076.94 36775.88 13680.12 24584.47 335
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35849.26 34952.21 38980.63 368
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37717.31 40435.07 39870.12 386
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26365.20 27960.78 36780.93 33642.35 34177.20 36557.12 30653.69 38785.44 321
TDRefinement67.49 32464.34 33476.92 29473.47 38261.07 26484.86 23082.98 29859.77 33658.30 37685.13 27326.06 38687.89 30047.92 35960.59 37781.81 363
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
ambc75.24 30973.16 38450.51 37363.05 39687.47 23064.28 35377.81 36217.80 39889.73 27257.88 30060.64 37685.49 320
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29873.15 38557.55 30579.47 31683.92 27948.02 38256.48 38284.81 27843.13 33786.42 31162.67 25581.81 22484.89 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38016.20 40732.28 40069.20 387
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37145.95 36857.67 37984.13 339
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28776.21 35952.03 37575.30 23583.20 30828.97 38376.22 37474.60 14678.41 26383.81 343
test_fmvs1_n70.86 29770.24 29572.73 33272.51 38955.28 33881.27 29179.71 33551.49 37878.73 14884.87 27727.54 38577.02 36676.06 13379.97 24685.88 316
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37053.06 32866.66 36078.68 374
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31076.38 35849.33 38174.65 25184.38 28423.30 39375.40 38174.51 14775.17 31285.60 319
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39538.78 38572.37 33576.97 377
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39462.80 25169.48 34973.25 383
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37334.64 39055.36 38563.86 392
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39324.24 40065.42 36558.40 396
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 37945.45 37155.25 38672.90 384
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 38972.77 16766.02 36383.99 341
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39126.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39126.39 39846.73 39555.04 397
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36248.24 35651.20 39080.57 369
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38831.22 39315.89 40879.18 373
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37517.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1790.00 4140.00 41588.61 17961.62 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
PC_three_145268.21 24692.02 1294.00 4682.09 595.98 5384.58 4996.68 294.95 10
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 46
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
GSMVS88.96 248
sam_mvs151.32 26988.96 248
sam_mvs50.01 282
MTGPAbinary92.02 90
test_post178.90 3265.43 41048.81 30185.44 32259.25 285
test_post5.46 40950.36 28084.24 329
patchmatchnet-post74.00 37751.12 27188.60 292
MTMP92.18 3532.83 413
test9_res84.90 4295.70 2692.87 107
agg_prior282.91 6895.45 3092.70 110
test_prior472.60 3489.01 106
test_prior288.85 11275.41 9584.91 6193.54 5674.28 2983.31 6295.86 20
旧先验286.56 18958.10 35187.04 4188.98 28574.07 152
新几何286.29 197
无先验87.48 15988.98 19260.00 33494.12 12267.28 21788.97 247
原ACMM286.86 178
testdata291.01 25262.37 258
segment_acmp73.08 38
testdata184.14 25075.71 89
plane_prior592.44 7295.38 7278.71 10586.32 15791.33 155
plane_prior491.00 124
plane_prior368.60 11878.44 3178.92 146
plane_prior291.25 5079.12 23
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 420
nn0.00 420
door-mid69.98 379
test1192.23 82
door69.44 382
HQP5-MVS66.98 157
BP-MVS77.47 119
HQP4-MVS77.24 18495.11 8491.03 165
HQP3-MVS92.19 8585.99 165
HQP2-MVS60.17 196
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 270
ACMMP++_ref81.95 222
ACMMP++81.25 227
Test By Simon64.33 132