This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
test072698.78 385.93 6197.19 997.47 1090.27 3197.64 498.13 191.47 8
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4397.28 3185.90 14497.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 497.40 2089.03 6596.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 3
SED-MVS95.91 296.28 294.80 3698.77 585.99 5897.13 1297.44 1490.31 2997.71 198.07 492.31 499.58 895.66 499.13 398.84 12
test_241102_TWO97.44 1490.31 2997.62 598.07 491.46 1099.58 895.66 499.12 698.98 8
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5698.29 197.49 590.75 2097.62 598.06 692.59 299.61 395.64 699.02 1298.86 9
test_one_060198.58 1285.83 6797.44 1491.05 1596.78 1398.06 691.45 11
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6197.09 1496.73 8190.27 3197.04 1098.05 891.47 899.55 1595.62 899.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 2097.04 1098.05 892.09 699.55 1595.64 699.13 399.13 1
test_241102_ONE98.77 585.99 5897.44 1490.26 3397.71 197.96 1092.31 499.38 32
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8297.51 489.13 6197.14 897.91 1191.64 799.62 194.61 1499.17 298.86 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss94.21 3494.00 3894.85 2998.17 3686.65 3594.82 12797.17 4186.26 13892.83 6897.87 1285.57 5599.56 1094.37 1798.92 1798.34 43
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7295.21 10195.47 17689.44 5095.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3197.48 987.76 10495.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 7597.34 2288.28 8595.30 2497.67 1585.90 5299.54 1993.91 2098.95 1598.60 21
zzz-MVS94.47 1994.30 2295.00 1898.42 2286.95 2095.06 11396.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
MTAPA94.42 2594.22 2695.00 1898.42 2286.95 2094.36 16396.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
APD-MVS_3200maxsize93.78 4693.77 4593.80 7197.92 4784.19 10196.30 3996.87 6486.96 12193.92 4197.47 1883.88 7898.96 8692.71 4197.87 7698.26 56
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8186.33 4797.33 597.30 2991.38 1195.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 14
Skip Steuart: Steuart Systems R&D Blog.
test117293.97 4094.07 3593.66 7498.11 3983.45 12096.26 4396.84 6788.33 8294.19 3497.43 2084.24 7299.01 7393.26 3197.98 7298.52 24
SR-MVS-dyc-post93.82 4593.82 4193.82 6797.92 4784.57 8696.28 4196.76 7787.46 11193.75 4497.43 2084.24 7299.01 7392.73 3897.80 7897.88 84
RE-MVS-def93.68 4897.92 4784.57 8696.28 4196.76 7787.46 11193.75 4497.43 2082.94 8592.73 3897.80 7897.88 84
9.1494.47 1897.79 5496.08 5597.44 1486.13 14295.10 2697.40 2388.34 2199.22 4993.25 3298.70 36
SR-MVS94.23 3294.17 3194.43 5398.21 3585.78 6996.40 3796.90 6088.20 8994.33 3197.40 2384.75 6799.03 6793.35 2997.99 7198.48 28
DeepC-MVS88.79 393.31 5892.99 6294.26 5896.07 11085.83 6794.89 12296.99 5089.02 6689.56 12697.37 2582.51 9099.38 3292.20 5398.30 6197.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS93.96 4193.72 4694.68 4198.43 2186.22 5295.30 9297.78 187.45 11393.26 5597.33 2684.62 6899.51 2490.75 9198.57 5098.32 47
ETH3D-3000-0.194.61 1794.44 1995.12 1397.70 6087.71 1195.98 6297.44 1486.67 13095.25 2597.31 2787.73 2899.24 4793.11 3598.76 3098.40 39
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11496.52 9580.00 21794.00 18797.08 4690.05 3595.65 2197.29 2889.66 1398.97 8393.95 1998.71 3498.50 26
region2R94.43 2394.27 2594.92 2298.65 886.67 3496.92 2297.23 3588.60 7693.58 5197.27 2985.22 5999.54 1992.21 5298.74 3398.56 23
SD-MVS94.96 1295.33 893.88 6597.25 7886.69 3296.19 4797.11 4590.42 2896.95 1297.27 2989.53 1496.91 24694.38 1698.85 1998.03 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR94.43 2394.28 2394.91 2498.63 986.69 3296.94 1897.32 2788.63 7493.53 5497.26 3185.04 6299.54 1992.35 4998.78 2598.50 26
CP-MVS94.34 2794.21 2894.74 4098.39 2586.64 3697.60 397.24 3388.53 7892.73 7397.23 3285.20 6099.32 4092.15 5598.83 2198.25 57
abl_693.18 6393.05 6093.57 7697.52 6584.27 10095.53 8396.67 9087.85 10193.20 5897.22 3380.35 11299.18 5291.91 6697.21 8997.26 108
HFP-MVS94.52 1894.40 2094.86 2798.61 1086.81 2696.94 1897.34 2288.63 7493.65 4797.21 3486.10 4899.49 2692.35 4998.77 2898.30 48
#test#94.32 2994.14 3294.86 2798.61 1086.81 2696.43 3497.34 2287.51 11093.65 4797.21 3486.10 4899.49 2691.68 7398.77 2898.30 48
MP-MVScopyleft94.25 3094.07 3594.77 3898.47 1986.31 4996.71 2996.98 5189.04 6391.98 9097.19 3685.43 5799.56 1092.06 6098.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3194.07 3594.75 3998.06 4386.90 2395.88 6696.94 5785.68 15095.05 2797.18 3787.31 3499.07 6191.90 6998.61 4998.28 52
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS93.99 3993.78 4494.63 4498.50 1785.90 6696.87 2496.91 5988.70 7291.83 9697.17 3883.96 7799.55 1591.44 7898.64 4798.43 38
XVS94.45 2194.32 2194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6697.16 3985.02 6399.49 2691.99 6198.56 5198.47 32
HPM-MVS_fast93.40 5793.22 5693.94 6498.36 2784.83 8197.15 1196.80 7385.77 14792.47 8197.13 4082.38 9199.07 6190.51 9398.40 5797.92 82
ETH3D cwj APD-0.1693.91 4293.53 5195.06 1596.76 8687.78 994.92 12097.21 3784.33 18093.89 4297.09 4187.20 3699.29 4491.90 6998.44 5598.12 66
OPU-MVS96.21 398.00 4690.85 397.13 1297.08 4292.59 298.94 8792.25 5198.99 1498.84 12
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 9596.96 5592.09 395.32 2397.08 4289.49 1599.33 3995.10 1198.85 1998.66 18
PC_three_145282.47 21997.09 997.07 4492.72 198.04 15792.70 4299.02 1298.86 9
ZNCC-MVS94.47 1994.28 2395.03 1698.52 1686.96 1996.85 2697.32 2788.24 8693.15 5997.04 4586.17 4799.62 192.40 4798.81 2298.52 24
testtj94.39 2694.18 3095.00 1898.24 3386.77 3096.16 4897.23 3587.28 11594.85 2897.04 4586.99 4099.52 2391.54 7598.33 6098.71 16
ACMMPcopyleft93.24 6192.88 6594.30 5798.09 4285.33 7796.86 2597.45 1388.33 8290.15 12297.03 4781.44 10599.51 2490.85 8995.74 11598.04 73
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast89.43 294.04 3793.79 4394.80 3697.48 6786.78 2895.65 7996.89 6189.40 5392.81 6996.97 4885.37 5899.24 4790.87 8898.69 3798.38 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5496.62 9488.14 9296.10 1796.96 4989.09 1898.94 8794.48 1598.68 3998.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++93.72 4794.08 3492.65 10697.31 7283.43 12195.79 7097.33 2590.03 3693.58 5196.96 4984.87 6597.76 17392.19 5498.66 4496.76 128
ZD-MVS98.15 3786.62 3797.07 4783.63 19394.19 3496.91 5187.57 3299.26 4691.99 6198.44 55
VDDNet89.56 13088.49 14592.76 9995.07 14982.09 15796.30 3993.19 26281.05 25691.88 9296.86 5261.16 31798.33 13088.43 11392.49 17397.84 87
VDD-MVS90.74 10089.92 11293.20 8096.27 10183.02 13295.73 7293.86 25088.42 8192.53 7896.84 5362.09 30798.64 10790.95 8692.62 17097.93 81
GST-MVS94.21 3493.97 3994.90 2698.41 2486.82 2596.54 3397.19 3888.24 8693.26 5596.83 5485.48 5699.59 791.43 7998.40 5798.30 48
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 6596.96 5591.75 794.02 3996.83 5488.12 2499.55 1593.41 2898.94 1698.28 52
旧先验196.79 8581.81 16395.67 16096.81 5686.69 4197.66 8296.97 122
LFMVS90.08 11589.13 12892.95 9296.71 8782.32 15596.08 5589.91 33786.79 12692.15 8796.81 5662.60 30498.34 12887.18 12993.90 14498.19 60
HPM-MVScopyleft94.02 3893.88 4094.43 5398.39 2585.78 6997.25 897.07 4786.90 12592.62 7796.80 5884.85 6699.17 5392.43 4598.65 4698.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Regformer-393.68 4893.64 5093.81 7095.36 13684.61 8494.68 13595.83 14991.27 1293.60 5096.71 5985.75 5398.86 9492.87 3696.65 10397.96 78
Regformer-493.91 4293.81 4294.19 6095.36 13685.47 7594.68 13596.41 10691.60 1093.75 4496.71 5985.95 5199.10 6093.21 3396.65 10398.01 76
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2397.47 1091.73 896.10 1796.69 6189.90 1299.30 4294.70 1298.04 7099.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata90.49 19896.40 9777.89 26395.37 18872.51 33993.63 4996.69 6182.08 9997.65 18283.08 17797.39 8795.94 159
EI-MVSNet-Vis-set93.01 6592.92 6493.29 7795.01 15083.51 11994.48 14795.77 15390.87 1692.52 7996.67 6384.50 6999.00 7891.99 6194.44 14097.36 104
3Dnovator86.66 591.73 8490.82 9594.44 5194.59 17486.37 4597.18 1097.02 4989.20 5884.31 24196.66 6473.74 19799.17 5386.74 13597.96 7397.79 90
test250687.21 21086.28 20790.02 22195.62 12873.64 31396.25 4571.38 37287.89 9990.45 11596.65 6555.29 34198.09 15086.03 14496.94 9498.33 44
test111189.10 14488.64 13890.48 19995.53 13374.97 30096.08 5584.89 35788.13 9390.16 12196.65 6563.29 30098.10 14286.14 14096.90 9698.39 40
ECVR-MVScopyleft89.09 14688.53 14190.77 18895.62 12875.89 29496.16 4884.22 35987.89 9990.20 11996.65 6563.19 30298.10 14285.90 14596.94 9498.33 44
CDPH-MVS92.83 6692.30 7494.44 5197.79 5486.11 5494.06 18296.66 9180.09 26492.77 7096.63 6886.62 4299.04 6687.40 12598.66 4498.17 61
3Dnovator+87.14 492.42 7591.37 8395.55 695.63 12788.73 697.07 1696.77 7690.84 1784.02 24696.62 6975.95 16299.34 3687.77 12097.68 8198.59 22
EI-MVSNet-UG-set92.74 6892.62 7093.12 8394.86 16283.20 12694.40 15595.74 15690.71 2492.05 8996.60 7084.00 7698.99 8091.55 7493.63 14897.17 113
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 7796.93 5892.34 293.94 4096.58 7187.74 2799.44 3092.83 3798.40 5798.62 20
Vis-MVSNetpermissive91.75 8391.23 8693.29 7795.32 13983.78 11196.14 5195.98 13589.89 3890.45 11596.58 7175.09 17498.31 13284.75 15996.90 9697.78 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Regformer-194.22 3394.13 3394.51 4995.54 13186.36 4694.57 14396.44 10391.69 994.32 3296.56 7387.05 3999.03 6793.35 2997.65 8398.15 63
Regformer-294.33 2894.22 2694.68 4195.54 13186.75 3194.57 14396.70 8691.84 694.41 2996.56 7387.19 3799.13 5793.50 2497.65 8398.16 62
UA-Net92.83 6692.54 7193.68 7396.10 10884.71 8395.66 7796.39 10891.92 493.22 5796.49 7583.16 8298.87 9184.47 16295.47 12097.45 103
MG-MVS91.77 8291.70 8192.00 13597.08 8080.03 21593.60 20495.18 19687.85 10190.89 11296.47 7682.06 10098.36 12585.07 15397.04 9397.62 94
CPTT-MVS91.99 7891.80 7992.55 11198.24 3381.98 16096.76 2896.49 10281.89 23690.24 11896.44 7778.59 13698.61 11089.68 9897.85 7797.06 117
test_prior393.60 5193.53 5193.82 6797.29 7484.49 9094.12 17396.88 6287.67 10792.63 7596.39 7886.62 4298.87 9191.50 7698.67 4198.11 68
test_prior294.12 17387.67 10792.63 7596.39 7886.62 4291.50 7698.67 41
MCST-MVS94.45 2194.20 2995.19 1198.46 2087.50 1595.00 11597.12 4387.13 11792.51 8096.30 8089.24 1799.34 3693.46 2598.62 4898.73 15
ETH3 D test640093.64 5093.22 5694.92 2297.79 5486.84 2495.31 8997.26 3282.67 21793.81 4396.29 8187.29 3599.27 4589.87 9798.67 4198.65 19
PHI-MVS93.89 4493.65 4994.62 4596.84 8486.43 4396.69 3097.49 585.15 16693.56 5396.28 8285.60 5499.31 4192.45 4498.79 2398.12 66
新几何193.10 8497.30 7384.35 9995.56 16871.09 34691.26 10796.24 8382.87 8798.86 9479.19 24498.10 6896.07 155
agg_prior193.29 5992.97 6394.26 5897.38 6985.92 6393.92 19196.72 8381.96 23192.16 8596.23 8487.85 2598.97 8391.95 6598.55 5397.90 83
112190.42 11089.49 11693.20 8097.27 7684.46 9392.63 23995.51 17471.01 34791.20 10896.21 8582.92 8699.05 6380.56 22598.07 6996.10 153
TEST997.53 6386.49 4194.07 18096.78 7481.61 24492.77 7096.20 8687.71 2999.12 58
train_agg93.44 5493.08 5994.52 4897.53 6386.49 4194.07 18096.78 7481.86 23792.77 7096.20 8687.63 3099.12 5892.14 5698.69 3797.94 79
test_897.49 6686.30 5094.02 18596.76 7781.86 23792.70 7496.20 8687.63 3099.02 71
QAPM89.51 13188.15 15493.59 7594.92 15784.58 8596.82 2796.70 8678.43 28783.41 26296.19 8973.18 20599.30 4277.11 26496.54 10696.89 126
casdiffmvs92.51 7392.43 7392.74 10194.41 18381.98 16094.54 14596.23 11889.57 4891.96 9196.17 9082.58 8998.01 16090.95 8695.45 12298.23 58
test22296.55 9381.70 16592.22 25395.01 20368.36 35290.20 11996.14 9180.26 11597.80 7896.05 157
OMC-MVS91.23 9290.62 9793.08 8596.27 10184.07 10393.52 20695.93 13986.95 12289.51 12796.13 9278.50 13898.35 12785.84 14692.90 16696.83 127
OpenMVScopyleft83.78 1188.74 15887.29 17393.08 8592.70 23985.39 7696.57 3296.43 10578.74 28380.85 29196.07 9369.64 24799.01 7378.01 25596.65 10394.83 199
baseline92.39 7692.29 7592.69 10594.46 18081.77 16494.14 17296.27 11389.22 5791.88 9296.00 9482.35 9297.99 16291.05 8295.27 12798.30 48
IS-MVSNet91.43 8891.09 9092.46 11595.87 12081.38 17696.95 1793.69 25589.72 4689.50 12895.98 9578.57 13797.77 17283.02 17996.50 10898.22 59
LS3D87.89 17886.32 20592.59 10996.07 11082.92 13695.23 9994.92 21175.66 31082.89 26995.98 9572.48 21399.21 5068.43 32195.23 12895.64 172
原ACMM192.01 13397.34 7181.05 18596.81 7278.89 27890.45 11595.92 9782.65 8898.84 9980.68 22398.26 6396.14 148
VNet92.24 7791.91 7893.24 7996.59 9183.43 12194.84 12696.44 10389.19 5994.08 3895.90 9877.85 14798.17 13888.90 10793.38 15698.13 65
CANet93.54 5293.20 5894.55 4795.65 12685.73 7194.94 11896.69 8891.89 590.69 11395.88 9981.99 10299.54 1993.14 3497.95 7498.39 40
MVS_111021_HR93.45 5393.31 5493.84 6696.99 8184.84 8093.24 22197.24 3388.76 7191.60 10195.85 10086.07 5098.66 10591.91 6698.16 6598.03 74
DP-MVS Recon91.95 7991.28 8593.96 6398.33 2985.92 6394.66 13896.66 9182.69 21690.03 12495.82 10182.30 9499.03 6784.57 16196.48 10996.91 125
DROMVSNet93.44 5493.71 4792.63 10795.21 14482.43 15097.27 796.71 8590.57 2792.88 6595.80 10283.16 8298.16 13993.68 2398.14 6697.31 105
EPNet91.79 8191.02 9194.10 6190.10 31985.25 7896.03 5992.05 28792.83 187.39 16395.78 10379.39 12799.01 7388.13 11797.48 8598.05 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS89.40 13988.70 13791.52 15794.06 19381.46 17391.27 27496.07 12986.14 14188.89 13795.77 10468.73 26297.26 22087.39 12689.96 19695.83 165
XVG-OURS-SEG-HR89.95 12089.45 11791.47 16194.00 19981.21 18291.87 26196.06 13185.78 14688.55 13995.73 10574.67 18197.27 21888.71 11089.64 20395.91 160
MVS_111021_LR92.47 7492.29 7592.98 9095.99 11484.43 9793.08 22696.09 12788.20 8991.12 10995.72 10681.33 10797.76 17391.74 7197.37 8896.75 129
CSCG93.23 6293.05 6093.76 7298.04 4484.07 10396.22 4697.37 2184.15 18290.05 12395.66 10787.77 2699.15 5689.91 9698.27 6298.07 70
h-mvs3390.80 9890.15 10492.75 10096.01 11282.66 14695.43 8595.53 17289.80 4093.08 6295.64 10875.77 16399.00 7892.07 5878.05 32996.60 134
EPP-MVSNet91.70 8591.56 8292.13 13095.88 11880.50 20297.33 595.25 19286.15 14089.76 12595.60 10983.42 8198.32 13187.37 12793.25 15997.56 99
TSAR-MVS + GP.93.66 4993.41 5394.41 5596.59 9186.78 2894.40 15593.93 24689.77 4494.21 3395.59 11087.35 3398.61 11092.72 4096.15 11297.83 88
Anonymous20240521187.68 18486.13 21192.31 12496.66 8880.74 19594.87 12491.49 30480.47 26089.46 12995.44 11154.72 34398.23 13482.19 19489.89 19897.97 77
TAPA-MVS84.62 688.16 17287.01 18091.62 15496.64 8980.65 19694.39 15796.21 12276.38 30386.19 18695.44 11179.75 12098.08 15362.75 34795.29 12596.13 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS90.12 11489.56 11591.82 14793.14 22583.90 10794.16 17195.74 15688.96 6787.86 15095.43 11372.48 21397.91 16888.10 11890.18 19393.65 259
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNet (Re-imp)89.59 12989.44 11890.03 21995.74 12275.85 29595.61 8090.80 32287.66 10987.83 15295.40 11476.79 15296.46 27278.37 24996.73 10097.80 89
EI-MVSNet89.10 14488.86 13689.80 23191.84 26078.30 25393.70 20195.01 20385.73 14887.15 16495.28 11579.87 11997.21 22583.81 17087.36 23893.88 243
CVMVSNet84.69 26684.79 24984.37 32791.84 26064.92 36193.70 20191.47 30566.19 35586.16 18795.28 11567.18 27193.33 34080.89 21990.42 19094.88 197
114514_t89.51 13188.50 14392.54 11298.11 3981.99 15995.16 10696.36 11070.19 34985.81 19095.25 11776.70 15498.63 10882.07 19696.86 9997.00 121
RPSCF85.07 25884.27 25587.48 29092.91 23670.62 34291.69 26892.46 27676.20 30782.67 27295.22 11863.94 29897.29 21777.51 26085.80 24994.53 213
Anonymous2024052988.09 17486.59 19592.58 11096.53 9481.92 16295.99 6095.84 14874.11 32689.06 13595.21 11961.44 31298.81 10083.67 17387.47 23597.01 120
LPG-MVS_test89.45 13488.90 13491.12 17194.47 17881.49 17195.30 9296.14 12486.73 12885.45 20695.16 12069.89 24398.10 14287.70 12189.23 21093.77 253
LGP-MVS_train91.12 17194.47 17881.49 17196.14 12486.73 12885.45 20695.16 12069.89 24398.10 14287.70 12189.23 21093.77 253
CNLPA89.07 14787.98 15892.34 12296.87 8384.78 8294.08 17993.24 26081.41 24784.46 23195.13 12275.57 17096.62 25677.21 26293.84 14695.61 173
DELS-MVS93.43 5693.25 5593.97 6295.42 13585.04 7993.06 22897.13 4290.74 2291.84 9495.09 12386.32 4699.21 5091.22 8098.45 5497.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DPM-MVS92.58 7091.74 8095.08 1496.19 10389.31 592.66 23896.56 10083.44 19991.68 10095.04 12486.60 4598.99 8085.60 14997.92 7596.93 124
DP-MVS87.25 20685.36 23792.90 9497.65 6183.24 12594.81 12892.00 28974.99 31881.92 28195.00 12572.66 21099.05 6366.92 33292.33 17496.40 139
diffmvs91.37 9091.23 8691.77 15093.09 22780.27 20592.36 24895.52 17387.03 12091.40 10594.93 12680.08 11697.44 19992.13 5794.56 13697.61 95
MVSFormer91.68 8691.30 8492.80 9793.86 20483.88 10895.96 6395.90 14384.66 17691.76 9794.91 12777.92 14497.30 21489.64 9997.11 9097.24 109
jason90.80 9890.10 10592.90 9493.04 23083.53 11893.08 22694.15 24080.22 26191.41 10494.91 12776.87 15097.93 16790.28 9596.90 9697.24 109
jason: jason.
alignmvs93.08 6492.50 7294.81 3595.62 12887.61 1495.99 6096.07 12989.77 4494.12 3694.87 12980.56 11198.66 10592.42 4693.10 16298.15 63
HQP_MVS90.60 10890.19 10291.82 14794.70 17082.73 14295.85 6796.22 11990.81 1886.91 17194.86 13074.23 18598.12 14088.15 11589.99 19494.63 205
plane_prior494.86 130
nrg03091.08 9690.39 9893.17 8293.07 22886.91 2296.41 3696.26 11488.30 8488.37 14394.85 13282.19 9797.64 18491.09 8182.95 27394.96 192
BH-RMVSNet88.37 16687.48 16891.02 17995.28 14079.45 22792.89 23393.07 26485.45 15786.91 17194.84 13370.35 23897.76 17373.97 29094.59 13595.85 163
PAPM_NR91.22 9390.78 9692.52 11397.60 6281.46 17394.37 16296.24 11786.39 13687.41 16094.80 13482.06 10098.48 11682.80 18595.37 12397.61 95
GeoE90.05 11689.43 11991.90 14395.16 14680.37 20495.80 6994.65 22583.90 18787.55 15994.75 13578.18 14297.62 18681.28 21193.63 14897.71 92
test_yl90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17595.12 19885.63 15191.49 10294.70 13674.75 17898.42 12386.13 14292.53 17197.31 105
DCV-MVSNet90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17595.12 19885.63 15191.49 10294.70 13674.75 17898.42 12386.13 14292.53 17197.31 105
FIs90.51 10990.35 9990.99 18293.99 20080.98 18795.73 7297.54 389.15 6086.72 17594.68 13881.83 10497.24 22285.18 15288.31 22594.76 202
FC-MVSNet-test90.27 11290.18 10390.53 19493.71 21079.85 22195.77 7197.59 289.31 5586.27 18494.67 13981.93 10397.01 24084.26 16488.09 22994.71 203
AdaColmapbinary89.89 12389.07 12992.37 12197.41 6883.03 13194.42 15495.92 14082.81 21486.34 18394.65 14073.89 19399.02 7180.69 22295.51 11895.05 187
F-COLMAP87.95 17786.80 18591.40 16396.35 10080.88 19194.73 13395.45 18079.65 27082.04 27994.61 14171.13 22498.50 11576.24 27291.05 18594.80 201
canonicalmvs93.27 6092.75 6794.85 2995.70 12587.66 1396.33 3896.41 10690.00 3794.09 3794.60 14282.33 9398.62 10992.40 4792.86 16798.27 54
tttt051788.61 16187.78 16291.11 17494.96 15477.81 26695.35 8789.69 34185.09 16888.05 14894.59 14366.93 27498.48 11683.27 17692.13 17697.03 119
VPNet88.20 17187.47 16990.39 20393.56 21579.46 22694.04 18395.54 17188.67 7386.96 16894.58 14469.33 25197.15 22784.05 16780.53 31294.56 212
CS-MVS92.55 7192.87 6691.58 15694.21 18980.54 20095.30 9296.68 8988.18 9192.09 8894.57 14584.06 7498.05 15692.56 4398.19 6496.15 146
UniMVSNet_ETH3D87.53 19586.37 20191.00 18192.44 24378.96 24094.74 13295.61 16684.07 18485.36 21694.52 14659.78 32697.34 21382.93 18087.88 23296.71 131
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9883.17 12794.87 12496.66 9183.29 20389.27 13194.46 14780.29 11499.17 5387.57 12395.37 12396.05 157
CS-MVS-test92.55 7192.72 6892.02 13294.87 16081.34 17796.43 3496.57 9889.04 6391.05 11094.41 14883.85 7998.09 15090.83 9097.47 8696.64 133
ACMM84.12 989.14 14388.48 14691.12 17194.65 17381.22 18195.31 8996.12 12685.31 16185.92 18994.34 14970.19 24198.06 15585.65 14888.86 21594.08 234
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS84.11 1087.74 18386.08 21592.70 10494.02 19584.43 9789.27 30695.87 14673.62 33084.43 23394.33 15078.48 13998.86 9470.27 30794.45 13994.81 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WTY-MVS89.60 12888.92 13391.67 15395.47 13481.15 18392.38 24794.78 22183.11 20689.06 13594.32 15178.67 13596.61 25981.57 20890.89 18797.24 109
ACMP84.23 889.01 15188.35 14790.99 18294.73 16781.27 17895.07 11095.89 14586.48 13283.67 25594.30 15269.33 25197.99 16287.10 13488.55 21793.72 257
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
cdsmvs_eth3d_5k22.14 34029.52 3430.00 3590.00 3820.00 3830.00 37095.76 1540.00 3770.00 37894.29 15375.66 1690.00 3780.00 3760.00 3760.00 374
PS-MVSNAJss89.97 11989.62 11491.02 17991.90 25880.85 19295.26 9895.98 13586.26 13886.21 18594.29 15379.70 12297.65 18288.87 10888.10 22794.57 211
lupinMVS90.92 9790.21 10193.03 8893.86 20483.88 10892.81 23593.86 25079.84 26791.76 9794.29 15377.92 14498.04 15790.48 9497.11 9097.17 113
API-MVS90.66 10490.07 10692.45 11696.36 9984.57 8696.06 5895.22 19582.39 22089.13 13294.27 15680.32 11398.46 11880.16 23296.71 10194.33 223
CANet_DTU90.26 11389.41 12092.81 9693.46 21883.01 13393.48 20794.47 22889.43 5287.76 15594.23 15770.54 23799.03 6784.97 15496.39 11096.38 140
PLCcopyleft84.53 789.06 14888.03 15692.15 12997.27 7682.69 14594.29 16595.44 18279.71 26984.01 24794.18 15876.68 15598.75 10377.28 26193.41 15595.02 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
jajsoiax88.24 17087.50 16790.48 19990.89 29980.14 20895.31 8995.65 16484.97 17084.24 24394.02 16265.31 29197.42 20188.56 11188.52 21993.89 241
XXY-MVS87.65 18686.85 18390.03 21992.14 24980.60 19993.76 19795.23 19382.94 21184.60 22694.02 16274.27 18495.49 31381.04 21483.68 26694.01 238
baseline188.10 17387.28 17490.57 19294.96 15480.07 21194.27 16691.29 30986.74 12787.41 16094.00 16476.77 15396.20 28380.77 22079.31 32595.44 177
NP-MVS94.37 18482.42 15193.98 165
HQP-MVS89.80 12589.28 12591.34 16594.17 19081.56 16794.39 15796.04 13388.81 6885.43 20993.97 16673.83 19597.96 16487.11 13289.77 20194.50 216
mvs_tets88.06 17687.28 17490.38 20590.94 29579.88 21995.22 10095.66 16285.10 16784.21 24493.94 16763.53 29997.40 20888.50 11288.40 22393.87 244
CHOSEN 1792x268888.84 15587.69 16392.30 12596.14 10481.42 17590.01 29695.86 14774.52 32387.41 16093.94 16775.46 17198.36 12580.36 22895.53 11797.12 116
UGNet89.95 12088.95 13292.95 9294.51 17783.31 12495.70 7495.23 19389.37 5487.58 15793.94 16764.00 29798.78 10283.92 16896.31 11196.74 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS89.21 14288.29 15191.96 13893.71 21082.62 14893.30 21594.19 23882.22 22487.78 15493.94 16778.83 13196.95 24377.70 25792.98 16596.32 141
sss88.93 15388.26 15390.94 18594.05 19480.78 19491.71 26695.38 18681.55 24588.63 13893.91 17175.04 17595.47 31482.47 18991.61 17896.57 136
1112_ss88.42 16487.33 17291.72 15194.92 15780.98 18792.97 23194.54 22678.16 29283.82 25193.88 17278.78 13397.91 16879.45 23989.41 20596.26 144
ab-mvs-re7.82 34410.43 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37893.88 1720.00 3820.00 3780.00 3760.00 3760.00 374
TranMVSNet+NR-MVSNet88.84 15587.95 15991.49 15992.68 24083.01 13394.92 12096.31 11189.88 3985.53 19993.85 17476.63 15696.96 24281.91 20079.87 32094.50 216
RRT_MVS88.86 15487.68 16492.39 12092.02 25586.09 5594.38 16194.94 20685.45 15787.14 16693.84 17565.88 28997.11 23188.73 10986.77 24593.98 239
mvs_anonymous89.37 14089.32 12389.51 24293.47 21774.22 30791.65 26994.83 21782.91 21285.45 20693.79 17681.23 10896.36 27886.47 13994.09 14297.94 79
thisisatest053088.67 15987.61 16691.86 14494.87 16080.07 21194.63 13989.90 33884.00 18588.46 14193.78 17766.88 27698.46 11883.30 17592.65 16997.06 117
MVS_Test91.31 9191.11 8891.93 14094.37 18480.14 20893.46 20995.80 15186.46 13391.35 10693.77 17882.21 9698.09 15087.57 12394.95 12997.55 100
COLMAP_ROBcopyleft80.39 1683.96 27182.04 27889.74 23295.28 14079.75 22294.25 16792.28 28175.17 31678.02 31993.77 17858.60 33197.84 17065.06 34085.92 24791.63 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PAPR90.02 11789.27 12692.29 12695.78 12180.95 18992.68 23796.22 11981.91 23486.66 17693.75 18082.23 9598.44 12279.40 24394.79 13097.48 101
test_part189.00 15287.99 15792.04 13195.94 11783.81 11096.14 5196.05 13286.44 13485.69 19393.73 18171.57 21997.66 18085.80 14780.54 31094.66 204
ab-mvs89.41 13788.35 14792.60 10895.15 14882.65 14792.20 25495.60 16783.97 18688.55 13993.70 18274.16 18998.21 13782.46 19089.37 20696.94 123
hse-mvs289.88 12489.34 12291.51 15894.83 16481.12 18493.94 19093.91 24989.80 4093.08 6293.60 18375.77 16397.66 18092.07 5877.07 33695.74 169
AUN-MVS87.78 18286.54 19791.48 16094.82 16581.05 18593.91 19493.93 24683.00 20986.93 16993.53 18469.50 24997.67 17986.14 14077.12 33595.73 170
BH-untuned88.60 16288.13 15590.01 22295.24 14378.50 24893.29 21694.15 24084.75 17484.46 23193.40 18575.76 16597.40 20877.59 25894.52 13794.12 230
AllTest83.42 27781.39 28389.52 24095.01 15077.79 26793.12 22390.89 32077.41 29576.12 33193.34 18654.08 34697.51 19268.31 32284.27 26093.26 271
TestCases89.52 24095.01 15077.79 26790.89 32077.41 29576.12 33193.34 18654.08 34697.51 19268.31 32284.27 26093.26 271
UniMVSNet_NR-MVSNet89.92 12289.29 12491.81 14993.39 21983.72 11294.43 15397.12 4389.80 4086.46 17893.32 18883.16 8297.23 22384.92 15581.02 30294.49 218
VPA-MVSNet89.62 12788.96 13191.60 15593.86 20482.89 13795.46 8497.33 2587.91 9688.43 14293.31 18974.17 18897.40 20887.32 12882.86 27894.52 214
ITE_SJBPF88.24 27391.88 25977.05 28192.92 26685.54 15480.13 30393.30 19057.29 33496.20 28372.46 29884.71 25691.49 318
DU-MVS89.34 14188.50 14391.85 14693.04 23083.72 11294.47 15096.59 9689.50 4986.46 17893.29 19177.25 14897.23 22384.92 15581.02 30294.59 209
NR-MVSNet88.58 16387.47 16991.93 14093.04 23084.16 10294.77 13196.25 11689.05 6280.04 30593.29 19179.02 13097.05 23781.71 20780.05 31794.59 209
CDS-MVSNet89.45 13488.51 14292.29 12693.62 21383.61 11793.01 22994.68 22481.95 23287.82 15393.24 19378.69 13496.99 24180.34 22993.23 16096.28 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM86.68 22785.39 23590.53 19493.05 22979.33 23489.79 29994.77 22278.82 28081.95 28093.24 19376.81 15197.30 21466.94 33093.16 16194.95 195
OurMVSNet-221017-085.35 25284.64 25287.49 28990.77 30372.59 32694.01 18694.40 23084.72 17579.62 31193.17 19561.91 30996.72 25181.99 19881.16 29693.16 279
PEN-MVS86.80 22286.27 20888.40 26792.32 24675.71 29795.18 10496.38 10987.97 9482.82 27093.15 19673.39 20395.92 29476.15 27379.03 32793.59 260
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 15382.42 15192.24 25295.64 16586.11 14391.74 9993.14 19779.67 12598.89 9089.06 10695.46 12194.28 225
MVSTER88.84 15588.29 15190.51 19792.95 23580.44 20393.73 19895.01 20384.66 17687.15 16493.12 19872.79 20997.21 22587.86 11987.36 23893.87 244
Effi-MVS+91.59 8791.11 8893.01 8994.35 18783.39 12394.60 14095.10 20087.10 11890.57 11493.10 19981.43 10698.07 15489.29 10394.48 13897.59 97
PS-CasMVS87.32 20386.88 18188.63 26392.99 23476.33 29195.33 8896.61 9588.22 8883.30 26693.07 20073.03 20795.79 30278.36 25081.00 30493.75 255
DTE-MVSNet86.11 23985.48 23387.98 27991.65 26974.92 30194.93 11995.75 15587.36 11482.26 27593.04 20172.85 20895.82 30074.04 28977.46 33393.20 277
CP-MVSNet87.63 18987.26 17688.74 26093.12 22676.59 28695.29 9596.58 9788.43 8083.49 26192.98 20275.28 17295.83 29978.97 24581.15 29893.79 249
test_djsdf89.03 14988.64 13890.21 21090.74 30579.28 23595.96 6395.90 14384.66 17685.33 21792.94 20374.02 19197.30 21489.64 9988.53 21894.05 236
RRT_test8_iter0586.90 21886.36 20288.52 26593.00 23373.27 31794.32 16495.96 13785.50 15684.26 24292.86 20460.76 31997.70 17888.32 11482.29 28194.60 208
MAR-MVS90.30 11189.37 12193.07 8796.61 9084.48 9295.68 7595.67 16082.36 22287.85 15192.85 20576.63 15698.80 10180.01 23396.68 10295.91 160
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi80.94 30380.20 29483.18 33287.96 34566.29 35691.28 27390.70 32483.70 19178.12 31792.84 20651.37 35290.82 35663.34 34482.46 28092.43 301
EU-MVSNet81.32 29880.95 28682.42 33688.50 33663.67 36293.32 21191.33 30764.02 35780.57 29692.83 20761.21 31692.27 34976.34 27080.38 31591.32 321
ACMH+81.04 1485.05 25983.46 26789.82 22894.66 17279.37 22994.44 15294.12 24382.19 22578.04 31892.82 20858.23 33297.54 19073.77 29282.90 27792.54 297
mvs-test189.45 13489.14 12790.38 20593.33 22077.63 27294.95 11794.36 23187.70 10587.10 16792.81 20973.45 20098.03 15985.57 15093.04 16395.48 175
WR-MVS88.38 16587.67 16590.52 19693.30 22280.18 20693.26 21895.96 13788.57 7785.47 20592.81 20976.12 15896.91 24681.24 21282.29 28194.47 221
HY-MVS83.01 1289.03 14987.94 16092.29 12694.86 16282.77 13892.08 25994.49 22781.52 24686.93 16992.79 21178.32 14198.23 13479.93 23490.55 18895.88 162
LTVRE_ROB82.13 1386.26 23884.90 24690.34 20894.44 18281.50 16992.31 25194.89 21283.03 20879.63 31092.67 21269.69 24697.79 17171.20 30286.26 24691.72 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH80.38 1785.36 25183.68 26390.39 20394.45 18180.63 19794.73 13394.85 21582.09 22677.24 32392.65 21360.01 32497.58 18772.25 29984.87 25592.96 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs186.61 22885.54 23189.82 22891.44 27180.18 20695.28 9794.85 21583.84 18981.66 28292.62 21472.45 21596.48 26979.67 23778.06 32892.82 292
PVSNet_Blended90.73 10190.32 10091.98 13696.12 10581.25 17992.55 24396.83 6982.04 22989.10 13392.56 21581.04 10998.85 9786.72 13795.91 11395.84 164
ET-MVSNet_ETH3D87.51 19685.91 22292.32 12393.70 21283.93 10692.33 24990.94 31884.16 18172.09 34992.52 21669.90 24295.85 29889.20 10488.36 22497.17 113
PS-MVSNAJ91.18 9490.92 9291.96 13895.26 14282.60 14992.09 25895.70 15886.27 13791.84 9492.46 21779.70 12298.99 8089.08 10595.86 11494.29 224
CLD-MVS89.47 13388.90 13491.18 17094.22 18882.07 15892.13 25696.09 12787.90 9785.37 21592.45 21874.38 18397.56 18987.15 13090.43 18993.93 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TR-MVS86.78 22385.76 22889.82 22894.37 18478.41 25092.47 24492.83 26881.11 25586.36 18292.40 21968.73 26297.48 19473.75 29389.85 20093.57 261
Test_1112_low_res87.65 18686.51 19891.08 17594.94 15679.28 23591.77 26394.30 23476.04 30883.51 26092.37 22077.86 14697.73 17778.69 24889.13 21296.22 145
EPNet_dtu86.49 23585.94 22188.14 27690.24 31772.82 32194.11 17592.20 28386.66 13179.42 31292.36 22173.52 19895.81 30171.26 30193.66 14795.80 167
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)89.80 12589.07 12992.01 13393.60 21484.52 8994.78 13097.47 1089.26 5686.44 18192.32 22282.10 9897.39 21184.81 15880.84 30694.12 230
thres600view787.65 18686.67 19090.59 19196.08 10978.72 24194.88 12391.58 30087.06 11988.08 14692.30 22368.91 25998.10 14270.05 31491.10 18194.96 192
thres100view90087.63 18986.71 18890.38 20596.12 10578.55 24595.03 11491.58 30087.15 11688.06 14792.29 22468.91 25998.10 14270.13 31191.10 18194.48 219
PVSNet_BlendedMVS89.98 11889.70 11390.82 18696.12 10581.25 17993.92 19196.83 6983.49 19889.10 13392.26 22581.04 10998.85 9786.72 13787.86 23392.35 305
XVG-ACMP-BASELINE86.00 24084.84 24889.45 24391.20 28278.00 25991.70 26795.55 16985.05 16982.97 26892.25 22654.49 34497.48 19482.93 18087.45 23792.89 289
EIA-MVS91.95 7991.94 7791.98 13695.16 14680.01 21695.36 8696.73 8188.44 7989.34 13092.16 22783.82 8098.45 12189.35 10297.06 9297.48 101
Anonymous2023121186.59 23085.13 24090.98 18496.52 9581.50 16996.14 5196.16 12373.78 32883.65 25692.15 22863.26 30197.37 21282.82 18481.74 29194.06 235
MVS87.44 19986.10 21491.44 16292.61 24183.62 11692.63 23995.66 16267.26 35381.47 28392.15 22877.95 14398.22 13679.71 23695.48 11992.47 300
anonymousdsp87.84 17987.09 17790.12 21589.13 33080.54 20094.67 13795.55 16982.05 22783.82 25192.12 23071.47 22297.15 22787.15 13087.80 23492.67 294
TransMVSNet (Re)84.43 26883.06 27188.54 26491.72 26478.44 24995.18 10492.82 26982.73 21579.67 30992.12 23073.49 19995.96 29371.10 30668.73 35491.21 325
SixPastTwentyTwo83.91 27382.90 27386.92 30390.99 29170.67 34193.48 20791.99 29085.54 15477.62 32292.11 23260.59 32096.87 24876.05 27477.75 33093.20 277
HyFIR lowres test88.09 17486.81 18491.93 14096.00 11380.63 19790.01 29695.79 15273.42 33187.68 15692.10 23373.86 19497.96 16480.75 22191.70 17797.19 112
Baseline_NR-MVSNet87.07 21586.63 19388.40 26791.44 27177.87 26494.23 16992.57 27584.12 18385.74 19292.08 23477.25 14896.04 28882.29 19379.94 31891.30 322
USDC82.76 28081.26 28587.26 29491.17 28474.55 30389.27 30693.39 25978.26 29075.30 33692.08 23454.43 34596.63 25571.64 30085.79 25090.61 333
v2v48287.84 17987.06 17890.17 21190.99 29179.23 23894.00 18795.13 19784.87 17185.53 19992.07 23674.45 18297.45 19784.71 16081.75 29093.85 247
FMVSNet287.19 21285.82 22491.30 16694.01 19683.67 11494.79 12994.94 20683.57 19483.88 24992.05 23766.59 28196.51 26777.56 25985.01 25493.73 256
WR-MVS_H87.80 18187.37 17189.10 25093.23 22378.12 25795.61 8097.30 2987.90 9783.72 25392.01 23879.65 12696.01 29176.36 26980.54 31093.16 279
LCM-MVSNet-Re88.30 16988.32 15088.27 27194.71 16972.41 32993.15 22290.98 31687.77 10379.25 31391.96 23978.35 14095.75 30383.04 17895.62 11696.65 132
MSDG84.86 26383.09 27090.14 21493.80 20780.05 21389.18 30993.09 26378.89 27878.19 31691.91 24065.86 29097.27 21868.47 32088.45 22193.11 281
IterMVS-LS88.36 16787.91 16189.70 23593.80 20778.29 25493.73 19895.08 20285.73 14884.75 22491.90 24179.88 11896.92 24583.83 16982.51 27993.89 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet387.40 20186.11 21391.30 16693.79 20983.64 11594.20 17094.81 21983.89 18884.37 23491.87 24268.45 26596.56 26478.23 25285.36 25193.70 258
tfpn200view987.58 19386.64 19190.41 20295.99 11478.64 24394.58 14191.98 29186.94 12388.09 14491.77 24369.18 25698.10 14270.13 31191.10 18194.48 219
thres40087.62 19186.64 19190.57 19295.99 11478.64 24394.58 14191.98 29186.94 12388.09 14491.77 24369.18 25698.10 14270.13 31191.10 18194.96 192
pmmvs485.43 25083.86 26190.16 21290.02 32282.97 13590.27 28892.67 27375.93 30980.73 29291.74 24571.05 22595.73 30478.85 24683.46 27091.78 313
GBi-Net87.26 20485.98 21891.08 17594.01 19683.10 12895.14 10794.94 20683.57 19484.37 23491.64 24666.59 28196.34 27978.23 25285.36 25193.79 249
test187.26 20485.98 21891.08 17594.01 19683.10 12895.14 10794.94 20683.57 19484.37 23491.64 24666.59 28196.34 27978.23 25285.36 25193.79 249
FMVSNet185.85 24484.11 25791.08 17592.81 23783.10 12895.14 10794.94 20681.64 24282.68 27191.64 24659.01 33096.34 27975.37 27983.78 26393.79 249
MVP-Stereo85.97 24184.86 24789.32 24490.92 29782.19 15692.11 25794.19 23878.76 28278.77 31591.63 24968.38 26696.56 26475.01 28493.95 14389.20 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131487.51 19686.57 19690.34 20892.42 24479.74 22392.63 23995.35 19078.35 28880.14 30291.62 25074.05 19097.15 22781.05 21393.53 15194.12 230
MS-PatchMatch85.05 25984.16 25687.73 28391.42 27578.51 24791.25 27593.53 25677.50 29480.15 30191.58 25161.99 30895.51 31075.69 27694.35 14189.16 346
TDRefinement79.81 31077.34 31487.22 29879.24 36675.48 29993.12 22392.03 28876.45 30275.01 33791.58 25149.19 35696.44 27370.22 31069.18 35189.75 340
PatchMatch-RL86.77 22685.54 23190.47 20195.88 11882.71 14490.54 28592.31 28079.82 26884.32 23991.57 25368.77 26196.39 27573.16 29593.48 15492.32 306
BH-w/o87.57 19487.05 17989.12 24994.90 15977.90 26292.41 24593.51 25782.89 21383.70 25491.34 25475.75 16697.07 23575.49 27793.49 15292.39 303
v887.50 19886.71 18889.89 22591.37 27779.40 22894.50 14695.38 18684.81 17383.60 25891.33 25576.05 15997.42 20182.84 18380.51 31492.84 291
V4287.68 18486.86 18290.15 21390.58 31080.14 20894.24 16895.28 19183.66 19285.67 19491.33 25574.73 18097.41 20684.43 16381.83 28892.89 289
Fast-Effi-MVS+-dtu87.44 19986.72 18789.63 23792.04 25377.68 27194.03 18493.94 24585.81 14582.42 27391.32 25770.33 23997.06 23680.33 23090.23 19294.14 229
v114487.61 19286.79 18690.06 21891.01 29079.34 23193.95 18995.42 18583.36 20285.66 19591.31 25874.98 17697.42 20183.37 17482.06 28493.42 268
tfpnnormal84.72 26583.23 26989.20 24792.79 23880.05 21394.48 14795.81 15082.38 22181.08 28991.21 25969.01 25896.95 24361.69 34980.59 30990.58 336
ETV-MVS92.74 6892.66 6992.97 9195.20 14584.04 10595.07 11096.51 10190.73 2392.96 6491.19 26084.06 7498.34 12891.72 7296.54 10696.54 138
v1087.25 20686.38 20089.85 22691.19 28379.50 22594.48 14795.45 18083.79 19083.62 25791.19 26075.13 17397.42 20181.94 19980.60 30892.63 296
pmmvs584.21 26982.84 27588.34 27088.95 33276.94 28292.41 24591.91 29575.63 31180.28 29991.18 26264.59 29595.57 30677.09 26583.47 26992.53 298
v119287.25 20686.33 20490.00 22390.76 30479.04 23993.80 19595.48 17582.57 21885.48 20491.18 26273.38 20497.42 20182.30 19282.06 28493.53 262
v124086.78 22385.85 22389.56 23890.45 31477.79 26793.61 20395.37 18881.65 24185.43 20991.15 26471.50 22197.43 20081.47 21082.05 28693.47 266
CMPMVSbinary59.16 2180.52 30479.20 30684.48 32683.98 35967.63 35589.95 29893.84 25264.79 35666.81 35791.14 26557.93 33395.17 31776.25 27188.10 22790.65 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres20087.21 21086.24 20990.12 21595.36 13678.53 24693.26 21892.10 28586.42 13588.00 14991.11 26669.24 25598.00 16169.58 31591.04 18693.83 248
pmmvs683.42 27781.60 28188.87 25588.01 34477.87 26494.96 11694.24 23774.67 32278.80 31491.09 26760.17 32396.49 26877.06 26675.40 34092.23 308
v14419287.19 21286.35 20389.74 23290.64 30878.24 25593.92 19195.43 18381.93 23385.51 20191.05 26874.21 18797.45 19782.86 18281.56 29293.53 262
v192192086.97 21786.06 21689.69 23690.53 31378.11 25893.80 19595.43 18381.90 23585.33 21791.05 26872.66 21097.41 20682.05 19781.80 28993.53 262
baseline286.50 23385.39 23589.84 22791.12 28776.70 28491.88 26088.58 34682.35 22379.95 30690.95 27073.42 20297.63 18580.27 23189.95 19795.19 184
thisisatest051587.33 20285.99 21791.37 16493.49 21679.55 22490.63 28489.56 34480.17 26287.56 15890.86 27167.07 27398.28 13381.50 20993.02 16496.29 142
v7n86.81 22185.76 22889.95 22490.72 30679.25 23795.07 11095.92 14084.45 17982.29 27490.86 27172.60 21297.53 19179.42 24280.52 31393.08 283
DIV-MVS_self_test86.53 23185.78 22588.75 25892.02 25576.45 28890.74 28294.30 23481.83 23983.34 26490.82 27375.75 16696.57 26281.73 20681.52 29493.24 274
v14887.04 21686.32 20589.21 24690.94 29577.26 27893.71 20094.43 22984.84 17284.36 23790.80 27476.04 16097.05 23782.12 19579.60 32293.31 270
cl____86.52 23285.78 22588.75 25892.03 25476.46 28790.74 28294.30 23481.83 23983.34 26490.78 27575.74 16896.57 26281.74 20581.54 29393.22 276
PMMVS85.71 24784.96 24487.95 28088.90 33377.09 28088.68 31790.06 33372.32 34086.47 17790.76 27672.15 21694.40 32581.78 20493.49 15292.36 304
bset_n11_16_dypcd86.83 22085.55 23090.65 19088.22 34181.70 16588.88 31490.42 32585.26 16285.49 20390.69 27767.11 27297.02 23989.51 10184.39 25893.23 275
Fast-Effi-MVS+89.41 13788.64 13891.71 15294.74 16680.81 19393.54 20595.10 20083.11 20686.82 17490.67 27879.74 12197.75 17680.51 22793.55 15096.57 136
IterMVS-SCA-FT85.45 24984.53 25488.18 27591.71 26576.87 28390.19 29392.65 27485.40 15981.44 28490.54 27966.79 27795.00 32281.04 21481.05 30092.66 295
PVSNet78.82 1885.55 24884.65 25188.23 27494.72 16871.93 33087.12 33292.75 27178.80 28184.95 22290.53 28064.43 29696.71 25374.74 28593.86 14596.06 156
eth_miper_zixun_eth86.50 23385.77 22788.68 26191.94 25775.81 29690.47 28694.89 21282.05 22784.05 24590.46 28175.96 16196.77 25082.76 18679.36 32493.46 267
c3_l87.14 21486.50 19989.04 25292.20 24777.26 27891.22 27694.70 22382.01 23084.34 23890.43 28278.81 13296.61 25983.70 17281.09 29993.25 273
IterMVS84.88 26283.98 26087.60 28591.44 27176.03 29390.18 29492.41 27783.24 20581.06 29090.42 28366.60 28094.28 32979.46 23880.98 30592.48 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_040281.30 29979.17 30787.67 28493.19 22478.17 25692.98 23091.71 29675.25 31576.02 33390.31 28459.23 32896.37 27650.22 36283.63 26788.47 352
TinyColmap79.76 31177.69 31385.97 31391.71 26573.12 31889.55 30090.36 32875.03 31772.03 35090.19 28546.22 36196.19 28563.11 34581.03 30188.59 351
EG-PatchMatch MVS82.37 28580.34 29188.46 26690.27 31679.35 23092.80 23694.33 23377.14 29973.26 34690.18 28647.47 36096.72 25170.25 30887.32 24089.30 343
cl2286.78 22385.98 21889.18 24892.34 24577.62 27390.84 28194.13 24281.33 24983.97 24890.15 28773.96 19296.60 26184.19 16582.94 27493.33 269
lessismore_v086.04 31288.46 33768.78 35080.59 36673.01 34790.11 28855.39 33996.43 27475.06 28365.06 35692.90 288
miper_ehance_all_eth87.22 20986.62 19489.02 25392.13 25077.40 27790.91 28094.81 21981.28 25084.32 23990.08 28979.26 12896.62 25683.81 17082.94 27493.04 284
D2MVS85.90 24285.09 24188.35 26990.79 30277.42 27691.83 26295.70 15880.77 25880.08 30490.02 29066.74 27996.37 27681.88 20187.97 23191.26 323
LF4IMVS80.37 30679.07 30984.27 32986.64 34869.87 34789.39 30591.05 31476.38 30374.97 33890.00 29147.85 35994.25 33074.55 28880.82 30788.69 350
CostFormer85.77 24684.94 24588.26 27291.16 28672.58 32789.47 30491.04 31576.26 30686.45 18089.97 29270.74 23196.86 24982.35 19187.07 24395.34 182
test20.0379.95 30979.08 30882.55 33585.79 35367.74 35491.09 27891.08 31281.23 25374.48 34189.96 29361.63 31090.15 35760.08 35376.38 33789.76 339
tpm84.73 26484.02 25886.87 30690.33 31568.90 34989.06 31189.94 33680.85 25785.75 19189.86 29468.54 26495.97 29277.76 25684.05 26295.75 168
miper_lstm_enhance85.27 25584.59 25387.31 29291.28 28174.63 30287.69 32894.09 24481.20 25481.36 28689.85 29574.97 17794.30 32881.03 21679.84 32193.01 285
test0.0.03 182.41 28481.69 28084.59 32588.23 34072.89 32090.24 29087.83 34983.41 20079.86 30789.78 29667.25 26988.99 36065.18 33883.42 27191.90 312
K. test v381.59 29380.15 29585.91 31689.89 32569.42 34892.57 24287.71 35085.56 15373.44 34589.71 29755.58 33795.52 30977.17 26369.76 34892.78 293
CHOSEN 280x42085.15 25783.99 25988.65 26292.47 24278.40 25179.68 35992.76 27074.90 32081.41 28589.59 29869.85 24595.51 31079.92 23595.29 12592.03 310
GA-MVS86.61 22885.27 23890.66 18991.33 28078.71 24290.40 28793.81 25385.34 16085.12 21989.57 29961.25 31497.11 23180.99 21789.59 20496.15 146
Effi-MVS+-dtu88.65 16088.35 14789.54 23993.33 22076.39 28994.47 15094.36 23187.70 10585.43 20989.56 30073.45 20097.26 22085.57 15091.28 18094.97 189
tpm284.08 27082.94 27287.48 29091.39 27671.27 33489.23 30890.37 32771.95 34284.64 22589.33 30167.30 26896.55 26675.17 28187.09 24294.63 205
Anonymous2023120681.03 30179.77 29984.82 32487.85 34670.26 34491.42 27292.08 28673.67 32977.75 32089.25 30262.43 30693.08 34361.50 35082.00 28791.12 328
miper_enhance_ethall86.90 21886.18 21089.06 25191.66 26877.58 27490.22 29294.82 21879.16 27584.48 23089.10 30379.19 12996.66 25484.06 16682.94 27492.94 287
ppachtmachnet_test81.84 28880.07 29687.15 30088.46 33774.43 30689.04 31292.16 28475.33 31477.75 32088.99 30466.20 28595.37 31565.12 33977.60 33191.65 315
gm-plane-assit89.60 32968.00 35177.28 29888.99 30497.57 18879.44 240
MDTV_nov1_ep1383.56 26691.69 26769.93 34687.75 32791.54 30278.60 28584.86 22388.90 30669.54 24896.03 28970.25 30888.93 214
SCA86.32 23785.18 23989.73 23492.15 24876.60 28591.12 27791.69 29883.53 19785.50 20288.81 30766.79 27796.48 26976.65 26790.35 19196.12 150
Patchmatch-test81.37 29779.30 30387.58 28690.92 29774.16 30980.99 35787.68 35170.52 34876.63 32888.81 30771.21 22392.76 34660.01 35586.93 24495.83 165
tpmrst85.35 25284.99 24286.43 30990.88 30067.88 35388.71 31691.43 30680.13 26386.08 18888.80 30973.05 20696.02 29082.48 18883.40 27295.40 179
DSMNet-mixed76.94 32176.29 32078.89 33983.10 36256.11 36987.78 32679.77 36760.65 35975.64 33488.71 31061.56 31188.34 36160.07 35489.29 20992.21 309
PatchmatchNetpermissive85.85 24484.70 25089.29 24591.76 26375.54 29888.49 31991.30 30881.63 24385.05 22088.70 31171.71 21796.24 28274.61 28789.05 21396.08 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet82.59 28380.53 28888.76 25791.51 27078.32 25286.57 33590.13 33179.32 27180.70 29388.69 31252.98 35093.07 34466.03 33588.86 21594.90 196
IB-MVS80.51 1585.24 25683.26 26891.19 16992.13 25079.86 22091.75 26491.29 30983.28 20480.66 29488.49 31361.28 31398.46 11880.99 21779.46 32395.25 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 23684.98 24390.80 18792.10 25280.92 19090.24 29095.91 14273.10 33483.57 25988.39 31465.15 29297.46 19684.90 15791.43 17994.03 237
EPMVS83.90 27482.70 27687.51 28790.23 31872.67 32388.62 31881.96 36481.37 24885.01 22188.34 31566.31 28494.45 32475.30 28087.12 24195.43 178
MDA-MVSNet-bldmvs78.85 31676.31 31986.46 30889.76 32673.88 31088.79 31590.42 32579.16 27559.18 36188.33 31660.20 32294.04 33162.00 34868.96 35291.48 319
our_test_381.93 28780.46 29086.33 31188.46 33773.48 31588.46 32091.11 31176.46 30176.69 32788.25 31766.89 27594.36 32668.75 31879.08 32691.14 327
OpenMVS_ROBcopyleft74.94 1979.51 31277.03 31886.93 30287.00 34776.23 29292.33 24990.74 32368.93 35174.52 34088.23 31849.58 35596.62 25657.64 35784.29 25987.94 354
MIMVSNet179.38 31377.28 31585.69 31786.35 34973.67 31291.61 27092.75 27178.11 29372.64 34888.12 31948.16 35791.97 35260.32 35277.49 33291.43 320
UnsupCasMVSNet_eth80.07 30878.27 31285.46 31885.24 35772.63 32588.45 32194.87 21482.99 21071.64 35288.07 32056.34 33691.75 35373.48 29463.36 35992.01 311
test-LLR85.87 24385.41 23487.25 29590.95 29371.67 33289.55 30089.88 33983.41 20084.54 22887.95 32167.25 26995.11 31981.82 20293.37 15794.97 189
test-mter84.54 26783.64 26587.25 29590.95 29371.67 33289.55 30089.88 33979.17 27484.54 22887.95 32155.56 33895.11 31981.82 20293.37 15794.97 189
FMVSNet581.52 29579.60 30187.27 29391.17 28477.95 26091.49 27192.26 28276.87 30076.16 33087.91 32351.67 35192.34 34867.74 32681.16 29691.52 317
CR-MVSNet85.35 25283.76 26290.12 21590.58 31079.34 23185.24 34291.96 29378.27 28985.55 19787.87 32471.03 22695.61 30573.96 29189.36 20795.40 179
Patchmtry82.71 28180.93 28788.06 27890.05 32176.37 29084.74 34691.96 29372.28 34181.32 28787.87 32471.03 22695.50 31268.97 31780.15 31692.32 306
YYNet179.22 31477.20 31685.28 32188.20 34372.66 32485.87 33890.05 33574.33 32562.70 35987.61 32666.09 28792.03 35066.94 33072.97 34391.15 326
MDA-MVSNet_test_wron79.21 31577.19 31785.29 32088.22 34172.77 32285.87 33890.06 33374.34 32462.62 36087.56 32766.14 28691.99 35166.90 33373.01 34291.10 330
Anonymous2024052180.44 30579.21 30584.11 33085.75 35467.89 35292.86 23493.23 26175.61 31275.59 33587.47 32850.03 35394.33 32771.14 30581.21 29590.12 338
DWT-MVSNet_test84.95 26183.68 26388.77 25691.43 27473.75 31191.74 26590.98 31680.66 25983.84 25087.36 32962.44 30597.11 23178.84 24785.81 24895.46 176
TESTMET0.1,183.74 27582.85 27486.42 31089.96 32371.21 33689.55 30087.88 34877.41 29583.37 26387.31 33056.71 33593.65 33780.62 22492.85 16894.40 222
CL-MVSNet_self_test81.74 29080.53 28885.36 31985.96 35272.45 32890.25 28993.07 26481.24 25279.85 30887.29 33170.93 22892.52 34766.95 32969.23 35091.11 329
MVS_030483.46 27681.92 27988.10 27790.63 30977.49 27593.26 21893.75 25480.04 26580.44 29887.24 33247.94 35895.55 30775.79 27588.16 22691.26 323
tpmvs83.35 27982.07 27787.20 29991.07 28971.00 33988.31 32291.70 29778.91 27780.49 29787.18 33369.30 25497.08 23468.12 32583.56 26893.51 265
dp81.47 29680.23 29385.17 32289.92 32465.49 35986.74 33390.10 33276.30 30581.10 28887.12 33462.81 30395.92 29468.13 32479.88 31994.09 233
PM-MVS78.11 31976.12 32184.09 33183.54 36170.08 34588.97 31385.27 35679.93 26674.73 33986.43 33534.70 36693.48 33879.43 24172.06 34688.72 349
KD-MVS_self_test80.20 30779.24 30483.07 33385.64 35565.29 36091.01 27993.93 24678.71 28476.32 32986.40 33659.20 32992.93 34572.59 29769.35 34991.00 331
tpm cat181.96 28680.27 29287.01 30191.09 28871.02 33887.38 33191.53 30366.25 35480.17 30086.35 33768.22 26796.15 28669.16 31682.29 28193.86 246
pmmvs-eth3d80.97 30278.72 31187.74 28284.99 35879.97 21890.11 29591.65 29975.36 31373.51 34486.03 33859.45 32793.96 33475.17 28172.21 34589.29 344
KD-MVS_2432*160078.50 31776.02 32285.93 31486.22 35074.47 30484.80 34492.33 27879.29 27276.98 32585.92 33953.81 34893.97 33267.39 32757.42 36289.36 341
miper_refine_blended78.50 31776.02 32285.93 31486.22 35074.47 30484.80 34492.33 27879.29 27276.98 32585.92 33953.81 34893.97 33267.39 32757.42 36289.36 341
ADS-MVSNet281.66 29279.71 30087.50 28891.35 27874.19 30883.33 35188.48 34772.90 33682.24 27685.77 34164.98 29393.20 34264.57 34183.74 26495.12 185
ADS-MVSNet81.56 29479.78 29886.90 30491.35 27871.82 33183.33 35189.16 34572.90 33682.24 27685.77 34164.98 29393.76 33564.57 34183.74 26495.12 185
N_pmnet68.89 32768.44 33070.23 34689.07 33128.79 37888.06 32319.50 37969.47 35071.86 35184.93 34361.24 31591.75 35354.70 35977.15 33490.15 337
EGC-MVSNET61.97 33056.37 33478.77 34089.63 32873.50 31489.12 31082.79 3610.21 3761.24 37784.80 34439.48 36490.04 35844.13 36475.94 33972.79 363
ambc83.06 33479.99 36563.51 36377.47 36092.86 26774.34 34284.45 34528.74 36795.06 32173.06 29668.89 35390.61 333
GG-mvs-BLEND87.94 28189.73 32777.91 26187.80 32578.23 37080.58 29583.86 34659.88 32595.33 31671.20 30292.22 17590.60 335
patchmatchnet-post83.76 34771.53 22096.48 269
PatchT82.68 28281.27 28486.89 30590.09 32070.94 34084.06 34890.15 33074.91 31985.63 19683.57 34869.37 25094.87 32365.19 33788.50 22094.84 198
new-patchmatchnet76.41 32275.17 32480.13 33882.65 36459.61 36487.66 32991.08 31278.23 29169.85 35383.22 34954.76 34291.63 35564.14 34364.89 35789.16 346
PVSNet_073.20 2077.22 32074.83 32584.37 32790.70 30771.10 33783.09 35389.67 34272.81 33873.93 34383.13 35060.79 31893.70 33668.54 31950.84 36588.30 353
RPMNet83.95 27281.53 28291.21 16890.58 31079.34 23185.24 34296.76 7771.44 34485.55 19782.97 35170.87 22998.91 8961.01 35189.36 20795.40 179
Patchmatch-RL test81.67 29179.96 29786.81 30785.42 35671.23 33582.17 35587.50 35278.47 28677.19 32482.50 35270.81 23093.48 33882.66 18772.89 34495.71 171
FPMVS64.63 32962.55 33170.88 34570.80 36956.71 36684.42 34784.42 35851.78 36349.57 36381.61 35323.49 37081.48 36640.61 36776.25 33874.46 362
pmmvs371.81 32668.71 32981.11 33775.86 36770.42 34386.74 33383.66 36058.95 36068.64 35680.89 35436.93 36589.52 35963.10 34663.59 35883.39 356
new_pmnet72.15 32570.13 32878.20 34182.95 36365.68 35783.91 34982.40 36362.94 35864.47 35879.82 35542.85 36386.26 36357.41 35874.44 34182.65 359
UnsupCasMVSNet_bld76.23 32373.27 32685.09 32383.79 36072.92 31985.65 34193.47 25871.52 34368.84 35579.08 35649.77 35493.21 34166.81 33460.52 36189.13 348
DeepMVS_CXcopyleft56.31 35274.23 36851.81 37156.67 37744.85 36548.54 36575.16 35727.87 36958.74 37340.92 36652.22 36458.39 366
test_method50.52 33548.47 33756.66 35152.26 37718.98 38041.51 36981.40 36510.10 37144.59 36675.01 35828.51 36868.16 36953.54 36049.31 36682.83 358
JIA-IIPM81.04 30078.98 31087.25 29588.64 33473.48 31581.75 35689.61 34373.19 33382.05 27873.71 35966.07 28895.87 29771.18 30484.60 25792.41 302
LCM-MVSNet66.00 32862.16 33277.51 34364.51 37358.29 36583.87 35090.90 31948.17 36454.69 36273.31 36016.83 37686.75 36265.47 33661.67 36087.48 355
PMMVS259.60 33156.40 33369.21 34768.83 37046.58 37373.02 36477.48 37155.07 36249.21 36472.95 36117.43 37580.04 36749.32 36344.33 36780.99 361
gg-mvs-nofinetune81.77 28979.37 30288.99 25490.85 30177.73 27086.29 33679.63 36874.88 32183.19 26769.05 36260.34 32196.11 28775.46 27894.64 13493.11 281
MVS-HIRNet73.70 32472.20 32778.18 34291.81 26256.42 36882.94 35482.58 36255.24 36168.88 35466.48 36355.32 34095.13 31858.12 35688.42 22283.01 357
PMVScopyleft47.18 2252.22 33448.46 33863.48 34945.72 37846.20 37473.41 36378.31 36941.03 36730.06 37065.68 3646.05 37783.43 36530.04 36965.86 35560.80 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high58.88 33254.22 33672.86 34456.50 37656.67 36780.75 35886.00 35373.09 33537.39 36864.63 36522.17 37179.49 36843.51 36523.96 37082.43 360
tmp_tt35.64 33939.24 34124.84 35514.87 37923.90 37962.71 36551.51 3786.58 37336.66 36962.08 36644.37 36230.34 37552.40 36122.00 37220.27 370
MVEpermissive39.65 2343.39 33638.59 34257.77 35056.52 37548.77 37255.38 36658.64 37629.33 37028.96 37152.65 3674.68 37864.62 37228.11 37033.07 36859.93 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft57.99 33354.91 33567.24 34888.51 33565.59 35852.21 36790.33 32943.58 36642.84 36751.18 36820.29 37385.07 36434.77 36870.45 34751.05 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 33742.29 33946.03 35365.58 37237.41 37573.51 36264.62 37333.99 36828.47 37247.87 36919.90 37467.91 37022.23 37124.45 36932.77 368
EMVS42.07 33841.12 34044.92 35463.45 37435.56 37773.65 36163.48 37433.05 36926.88 37345.45 37021.27 37267.14 37119.80 37223.02 37132.06 369
X-MVStestdata88.31 16886.13 21194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6623.41 37185.02 6399.49 2691.99 6198.56 5198.47 32
test_post10.29 37270.57 23695.91 296
test_post188.00 3249.81 37369.31 25395.53 30876.65 267
testmvs8.92 34211.52 3451.12 3581.06 3800.46 38286.02 3370.65 3810.62 3742.74 3759.52 3740.31 3810.45 3772.38 3740.39 3742.46 373
test1238.76 34311.22 3461.39 3570.85 3810.97 38185.76 3400.35 3820.54 3752.45 3768.14 3750.60 3800.48 3762.16 3750.17 3752.71 372
wuyk23d21.27 34120.48 34423.63 35668.59 37136.41 37649.57 3686.85 3809.37 3727.89 3744.46 3764.03 37931.37 37417.47 37316.07 3733.12 371
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas6.64 3458.86 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37779.70 1220.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS198.86 185.54 7498.29 197.49 589.79 4396.29 15
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
No_MVS96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
eth-test20.00 382
eth-test0.00 382
IU-MVS98.77 586.00 5696.84 6781.26 25197.26 795.50 1099.13 399.03 6
save fliter97.85 5085.63 7295.21 10196.82 7189.44 50
test_0728_SECOND95.01 1798.79 286.43 4397.09 1497.49 599.61 395.62 899.08 798.99 7
GSMVS96.12 150
test_part298.55 1387.22 1896.40 14
sam_mvs171.70 21896.12 150
sam_mvs70.60 232
MTGPAbinary96.97 52
MTMP96.16 4860.64 375
test9_res91.91 6698.71 3498.07 70
agg_prior290.54 9298.68 3998.27 54
agg_prior97.38 6985.92 6396.72 8392.16 8598.97 83
test_prior485.96 6094.11 175
test_prior93.82 6797.29 7484.49 9096.88 6298.87 9198.11 68
旧先验293.36 21071.25 34594.37 3097.13 23086.74 135
新几何293.11 225
无先验93.28 21796.26 11473.95 32799.05 6380.56 22596.59 135
原ACMM292.94 232
testdata298.75 10378.30 251
segment_acmp87.16 38
testdata192.15 25587.94 95
test1294.34 5697.13 7986.15 5396.29 11291.04 11185.08 6199.01 7398.13 6797.86 86
plane_prior794.70 17082.74 141
plane_prior694.52 17682.75 13974.23 185
plane_prior596.22 11998.12 14088.15 11589.99 19494.63 205
plane_prior382.75 13990.26 3386.91 171
plane_prior295.85 6790.81 18
plane_prior194.59 174
plane_prior82.73 14295.21 10189.66 4789.88 199
n20.00 383
nn0.00 383
door-mid85.49 354
test1196.57 98
door85.33 355
HQP5-MVS81.56 167
HQP-NCC94.17 19094.39 15788.81 6885.43 209
ACMP_Plane94.17 19094.39 15788.81 6885.43 209
BP-MVS87.11 132
HQP4-MVS85.43 20997.96 16494.51 215
HQP3-MVS96.04 13389.77 201
HQP2-MVS73.83 195
MDTV_nov1_ep13_2view55.91 37087.62 33073.32 33284.59 22770.33 23974.65 28695.50 174
ACMMP++_ref87.47 235
ACMMP++88.01 230
Test By Simon80.02 117