This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
test_fmvs1_n98.41 17298.14 18399.21 16399.82 4297.71 26099.74 4499.49 14399.32 1499.99 299.95 385.32 37499.97 2199.82 1699.84 7799.96 7
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
test_vis1_n97.92 23197.44 26699.34 13699.53 16398.08 23699.74 4499.49 14399.15 20100.00 199.94 679.51 39199.98 1399.88 1499.76 11099.97 4
OurMVSNet-221017-097.88 23597.77 22698.19 29498.71 34496.53 31599.88 499.00 32097.79 17998.78 27299.94 691.68 31399.35 28697.21 27496.99 29398.69 278
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36399.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
test250696.81 31496.65 31097.29 33999.74 8092.21 38299.60 9585.06 41199.13 2299.77 5199.93 987.82 36399.85 14699.38 4899.38 14999.80 70
test111198.04 21198.11 18797.83 31999.74 8093.82 36799.58 10995.40 40099.12 2599.65 8999.93 990.73 32999.84 15399.43 4699.38 14999.82 54
ECVR-MVScopyleft98.04 21198.05 19698.00 30899.74 8094.37 36299.59 10194.98 40199.13 2299.66 8399.93 990.67 33099.84 15399.40 4799.38 14999.80 70
SixPastTwentyTwo97.50 28797.33 28398.03 30398.65 34996.23 32699.77 3498.68 36397.14 24897.90 33799.93 990.45 33199.18 31897.00 28796.43 30198.67 290
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21299.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
RRT_MVS98.70 15198.66 13998.83 22598.90 31598.45 21899.89 299.28 28197.76 18398.94 24899.92 1496.98 13499.25 30399.28 6397.00 29298.80 252
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test_vis1_n_192098.63 16098.40 16799.31 14399.86 2097.94 24899.67 6499.62 4199.43 799.99 299.91 2087.29 365100.00 199.92 1299.92 2499.98 2
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13698.94 33899.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
test_fmvs198.88 12498.79 12699.16 16899.69 10697.61 26399.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
SD-MVS99.41 4799.52 1199.05 18099.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38598.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMH97.28 898.10 20097.99 20298.44 27299.41 20396.96 29799.60 9599.56 6998.09 14398.15 32799.91 2090.87 32899.70 22398.88 10297.45 27398.67 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
patch_mono-299.26 6999.62 598.16 29699.81 4694.59 35999.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
VDDNet97.55 28297.02 30199.16 16899.49 18198.12 23599.38 22499.30 27595.35 34399.68 7499.90 2682.62 38699.93 8499.31 5898.13 23799.42 193
QAPM98.67 15698.30 17499.80 4699.20 25799.67 5199.77 3499.72 1194.74 35798.73 27699.90 2695.78 17799.98 1396.96 29199.88 5199.76 87
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 27999.66 5399.84 1399.74 1099.09 3298.92 25199.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
Anonymous2024052998.09 20197.68 23799.34 13699.66 12098.44 21999.40 21599.43 20793.67 36799.22 19599.89 3090.23 33699.93 8499.26 6798.33 22099.66 125
mvsmamba98.92 12198.87 11599.08 17599.07 29199.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28999.38 4897.40 27998.73 266
CHOSEN 1792x268899.19 7799.10 7699.45 12399.89 898.52 20999.39 21999.94 198.73 7699.11 21799.89 3095.50 18799.94 6999.50 3699.97 799.89 20
RPSCF98.22 18698.62 14796.99 34599.82 4291.58 38499.72 4999.44 20196.61 29299.66 8399.89 3095.92 17199.82 17397.46 26099.10 17499.57 156
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27199.68 4899.81 2099.51 11599.20 1898.72 27799.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
COLMAP_ROBcopyleft97.56 698.86 12898.75 12999.17 16799.88 1198.53 20599.34 23899.59 5797.55 20798.70 28499.89 3095.83 17599.90 11698.10 19599.90 3999.08 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22699.72 103
sd_testset98.75 14698.57 15699.29 15199.81 4698.26 22799.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13299.54 3098.26 22699.72 103
dcpmvs_299.23 7599.58 798.16 29699.83 3994.68 35799.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
test_djsdf98.67 15698.57 15698.98 19098.70 34598.91 16999.88 499.46 18297.55 20799.22 19599.88 3695.73 17999.28 29899.03 8597.62 25598.75 261
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20799.50 13597.03 26399.04 23399.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
TDRefinement95.42 33694.57 34397.97 31089.83 40496.11 32999.48 17898.75 35296.74 28096.68 36399.88 3688.65 35299.71 21798.37 17682.74 39398.09 360
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14299.81 2099.33 25797.43 22399.60 10699.88 3697.14 12699.84 15399.13 7698.94 18599.69 115
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 29899.53 8299.82 1799.72 1194.56 36098.08 32999.88 3694.73 22199.98 1397.47 25999.76 11099.06 233
bld_raw_dy_0_6498.69 15398.58 15598.99 18898.88 31898.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29599.09 8097.27 28498.71 269
lessismore_v097.79 32398.69 34695.44 34494.75 40295.71 37299.87 4488.69 35099.32 29295.89 32294.93 33898.62 313
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17899.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15399.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+97.24 1097.92 23197.78 22498.32 28499.46 19196.68 31099.56 12299.54 8598.41 10097.79 34399.87 4490.18 33799.66 23498.05 20497.18 28998.62 313
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16699.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19799.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 23198.09 19699.13 17099.73 97
USDC97.34 29897.20 29397.75 32499.07 29195.20 34898.51 37599.04 31697.99 15898.31 31699.86 4989.02 34599.55 25595.67 33097.36 28298.49 333
APD_test195.87 33096.49 31494.00 36499.53 16384.01 39299.54 13999.32 26795.91 33797.99 33499.85 5485.49 37299.88 13291.96 37498.84 19498.12 359
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tmp_tt82.80 36581.52 36886.66 38166.61 41168.44 41092.79 40097.92 38068.96 39980.04 40299.85 5485.77 36996.15 39597.86 21743.89 40495.39 394
AllTest98.87 12598.72 13099.31 14399.86 2098.48 21599.56 12299.61 4897.85 17199.36 16499.85 5495.95 16899.85 14696.66 30799.83 8699.59 150
TestCases99.31 14399.86 2098.48 21599.61 4897.85 17199.36 16499.85 5495.95 16899.85 14696.66 30799.83 8699.59 150
VDD-MVS97.73 26297.35 27898.88 21199.47 19097.12 27999.34 23898.85 34398.19 12799.67 7899.85 5482.98 38499.92 9599.49 4098.32 22499.60 146
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepPCF-MVS98.18 398.81 13999.37 3097.12 34399.60 14691.75 38398.61 36899.44 20199.35 1299.83 3499.85 5498.70 6399.81 17899.02 8799.91 3199.81 61
ACMM97.58 598.37 17798.34 17098.48 26299.41 20397.10 28099.56 12299.45 19398.53 9099.04 23399.85 5493.00 27599.71 21798.74 12797.45 27398.64 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6799.12 7499.74 6199.18 26399.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 18099.84 7799.52 167
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19399.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.73 14998.68 13598.88 21199.70 10197.73 25698.92 34099.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 20098.84 19499.00 238
baseline99.15 8599.02 9199.53 10599.66 12099.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18799.51 3599.14 16999.67 122
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
EI-MVSNet98.67 15698.67 13698.68 24299.35 21997.97 24299.50 16399.38 23196.93 27299.20 20199.83 6897.87 10599.36 28398.38 17497.56 26098.71 269
CVMVSNet98.57 16298.67 13698.30 28699.35 21995.59 33799.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 26198.75 12698.56 21099.85 36
LPG-MVS_test98.22 18698.13 18598.49 26099.33 22597.05 28699.58 10999.55 7797.46 21799.24 19099.83 6892.58 29199.72 21198.09 19697.51 26598.68 283
LGP-MVS_train98.49 26099.33 22597.05 28699.55 7797.46 21799.24 19099.83 6892.58 29199.72 21198.09 19697.51 26598.68 283
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
XXY-MVS98.38 17698.09 19199.24 16099.26 24499.32 10499.56 12299.55 7797.45 22098.71 27899.83 6893.23 27099.63 24798.88 10296.32 30498.76 259
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 22099.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
nrg03098.64 15998.42 16599.28 15599.05 29799.69 4799.81 2099.46 18298.04 15499.01 23699.82 7696.69 14499.38 27499.34 5594.59 34398.78 254
FC-MVSNet-test98.75 14698.62 14799.15 17299.08 29099.45 9399.86 1299.60 5498.23 12198.70 28499.82 7696.80 13999.22 31099.07 8396.38 30298.79 253
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
EU-MVSNet97.98 22298.03 19897.81 32298.72 34296.65 31199.66 6999.66 2898.09 14398.35 31499.82 7695.25 19898.01 37897.41 26495.30 32998.78 254
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16399.50 13597.16 24799.77 5199.82 7698.78 4899.94 6997.56 25099.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 9599.08 8099.24 16099.46 19198.55 20399.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25798.70 13298.93 18699.67 122
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.13 8999.02 9199.45 12399.57 15298.63 19699.07 30599.34 25098.99 4599.61 10399.82 7697.98 10499.87 13797.00 28799.80 9799.85 36
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
OPM-MVS98.19 19098.10 18898.45 26998.88 31897.07 28499.28 25699.38 23198.57 8699.22 19599.81 9092.12 30299.66 23498.08 20097.54 26298.61 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
FIs98.78 14398.63 14299.23 16299.18 26399.54 7999.83 1699.59 5798.28 11398.79 27199.81 9096.75 14299.37 27999.08 8296.38 30298.78 254
mvs_tets98.40 17598.23 17798.91 20498.67 34898.51 21199.66 6999.53 9698.19 12798.65 29399.81 9092.75 28199.44 26699.31 5897.48 27198.77 257
mvs_anonymous99.03 11198.99 9799.16 16899.38 21298.52 20999.51 15699.38 23197.79 17999.38 15899.81 9097.30 12299.45 26199.35 5198.99 18399.51 173
TSAR-MVS + GP.99.36 5599.36 3299.36 13599.67 11198.61 19999.07 30599.33 25799.00 4399.82 3599.81 9099.06 1699.84 15399.09 8099.42 14799.65 129
EPNet98.86 12898.71 13299.30 14897.20 38398.18 23099.62 8898.91 33499.28 1698.63 29599.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ab-mvs98.86 12898.63 14299.54 9799.64 12899.19 12099.44 19499.54 8597.77 18299.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
OMC-MVS99.08 10599.04 8599.20 16499.67 11198.22 22999.28 25699.52 10198.07 14899.66 8399.81 9097.79 10899.78 19297.79 22499.81 9399.60 146
MM99.40 5099.28 5599.74 6199.67 11199.31 10799.52 14898.87 34199.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
test_fmvs297.25 30297.30 28697.09 34499.43 19893.31 37599.73 4798.87 34198.83 6499.28 18099.80 10384.45 37999.66 23497.88 21497.45 27398.30 350
tt080597.97 22597.77 22698.57 25199.59 14896.61 31399.45 18899.08 31098.21 12498.88 25799.80 10388.66 35199.70 22398.58 15297.72 25099.39 198
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11699.54 8597.82 17899.71 6899.80 10398.95 2799.93 8498.19 18999.84 7799.74 92
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
jajsoiax98.43 16998.28 17598.88 21198.60 35598.43 22099.82 1799.53 9698.19 12798.63 29599.80 10393.22 27299.44 26699.22 6997.50 26798.77 257
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17399.71 6899.80 10399.12 1399.97 2198.33 18099.87 5499.83 49
TransMVSNet (Re)97.15 30696.58 31198.86 21999.12 27998.85 17699.49 17498.91 33495.48 34297.16 35799.80 10393.38 26899.11 32994.16 35591.73 37298.62 313
K. test v397.10 30896.79 30898.01 30698.72 34296.33 32299.87 997.05 39097.59 20196.16 36899.80 10388.71 34999.04 33696.69 30596.55 29998.65 300
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31099.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.32 5999.32 4099.32 14299.85 2698.29 22599.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17199.77 10799.79 74
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24699.52 10197.18 24599.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs197.68 27197.28 28998.88 21199.06 29498.62 19799.50 16399.45 19396.32 31297.87 33999.79 11592.47 29599.35 28697.54 25293.54 35998.67 290
LFMVS97.90 23497.35 27899.54 9799.52 16799.01 14899.39 21998.24 37597.10 25599.65 8999.79 11584.79 37799.91 10599.28 6398.38 21799.69 115
TinyColmap97.12 30796.89 30697.83 31999.07 29195.52 34198.57 37198.74 35597.58 20397.81 34299.79 11588.16 35899.56 25395.10 34197.21 28798.39 346
ACMP97.20 1198.06 20597.94 20998.45 26999.37 21597.01 29199.44 19499.49 14397.54 21098.45 30999.79 11591.95 30699.72 21197.91 21297.49 27098.62 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE98.85 13598.62 14799.53 10599.61 14199.08 13999.80 2599.51 11597.10 25599.31 17499.78 12195.23 19999.77 19498.21 18799.03 18099.75 88
9.1499.10 7699.72 9199.40 21599.51 11597.53 21199.64 9399.78 12198.84 4199.91 10597.63 24199.82 90
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38799.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
pmmvs696.53 31896.09 32397.82 32198.69 34695.47 34299.37 22699.47 17393.46 37197.41 34899.78 12187.06 36699.33 28996.92 29692.70 36998.65 300
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14699.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25699.28 6399.84 7799.63 140
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23399.72 103
114514_t98.93 12098.67 13699.72 6599.85 2699.53 8299.62 8899.59 5792.65 37799.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
Vis-MVSNet (Re-imp)98.87 12598.72 13099.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 27097.91 21299.11 17199.62 142
iter_conf_final98.71 15098.61 15398.99 18899.49 18198.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 27499.30 6197.52 26398.64 302
UniMVSNet_ETH3D97.32 29996.81 30798.87 21599.40 20897.46 26699.51 15699.53 9695.86 33898.54 30499.77 12982.44 38799.66 23498.68 13797.52 26399.50 176
anonymousdsp98.44 16898.28 17598.94 19698.50 36098.96 15799.77 3499.50 13597.07 25798.87 26099.77 12994.76 21999.28 29898.66 13997.60 25698.57 328
iter_conf0598.55 16398.44 16398.87 21599.34 22398.60 20099.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 27499.30 6197.48 27198.63 310
CDS-MVSNet99.09 10499.03 8799.25 15899.42 20098.73 18899.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27998.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG98.98 11698.80 12399.53 10599.76 6599.19 12098.75 35799.55 7797.25 23999.47 13199.77 12997.82 10799.87 13796.93 29499.90 3999.54 161
CHOSEN 280x42099.12 9599.13 7399.08 17599.66 12097.89 24998.43 37899.71 1398.88 5999.62 10099.76 13596.63 14599.70 22399.46 4499.99 199.66 125
PS-MVSNAJss98.92 12198.92 10798.90 20698.78 33398.53 20599.78 3299.54 8598.07 14899.00 24099.76 13599.01 1899.37 27999.13 7697.23 28698.81 251
MVS_Test99.10 10398.97 10199.48 11799.49 18199.14 13199.67 6499.34 25097.31 23499.58 11099.76 13597.65 11299.82 17398.87 10599.07 17799.46 186
CANet_DTU98.97 11898.87 11599.25 15899.33 22598.42 22299.08 30499.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 203
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18899.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31899.91 397.67 19699.59 10999.75 13895.90 17399.73 20799.53 3299.02 18299.86 33
ITE_SJBPF98.08 30199.29 23796.37 32098.92 33098.34 10898.83 26599.75 13891.09 32599.62 24895.82 32397.40 27998.25 354
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 198
Anonymous20240521198.30 18297.98 20399.26 15799.57 15298.16 23199.41 20798.55 36896.03 33599.19 20499.74 14391.87 30799.92 9599.16 7598.29 22599.70 113
tttt051798.42 17098.14 18399.28 15599.66 12098.38 22399.74 4496.85 39197.68 19499.79 4299.74 14391.39 32199.89 12798.83 11899.56 13899.57 156
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 21199.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33899.85 698.82 6599.65 8999.74 14398.51 7899.80 18498.83 11899.89 4899.64 136
VPNet97.84 24397.44 26699.01 18499.21 25598.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 27399.19 7193.27 36298.71 269
MVSTER98.49 16498.32 17299.00 18699.35 21999.02 14699.54 13999.38 23197.41 22699.20 20199.73 14993.86 25999.36 28398.87 10597.56 26098.62 313
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33699.85 698.82 6599.54 11999.73 14998.51 7899.74 20198.91 9999.88 5199.77 82
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10999.80 897.12 25199.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
IterMVS-SCA-FT97.82 24897.75 23198.06 30299.57 15296.36 32199.02 31899.49 14397.18 24598.71 27899.72 15392.72 28499.14 32197.44 26295.86 31698.67 290
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 15799.28 25699.49 14398.46 9599.72 6799.71 15496.50 15099.88 13299.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR98.69 15398.62 14798.89 20999.71 9697.74 25599.12 29599.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 238
EPNet_dtu98.03 21397.96 20598.23 29298.27 36595.54 34099.23 27598.75 35299.02 3897.82 34199.71 15496.11 16299.48 25893.04 36699.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27099.52 10198.82 6599.39 15599.71 15498.96 2499.85 14698.59 15199.80 9799.77 82
FE-MVS98.48 16598.17 17999.40 13099.54 16298.96 15799.68 6198.81 34895.54 34199.62 10099.70 15893.82 26099.93 8497.35 26899.46 14499.32 209
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36898.30 18499.80 9799.81 61
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 27198.24 18699.80 9799.79 74
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18799.65 2399.78 10499.41 195
tfpnnormal97.84 24397.47 25898.98 19099.20 25799.22 11999.64 7899.61 4896.32 31298.27 32099.70 15893.35 26999.44 26695.69 32895.40 32798.27 352
v7n97.87 23797.52 25298.92 20098.76 33898.58 20199.84 1399.46 18296.20 32198.91 25299.70 15894.89 20899.44 26696.03 31993.89 35598.75 261
testdata99.54 9799.75 7398.95 16299.51 11597.07 25799.43 14099.70 15898.87 3799.94 6997.76 22999.64 13199.72 103
IterMVS97.83 24597.77 22698.02 30599.58 15096.27 32499.02 31899.48 15597.22 24398.71 27899.70 15892.75 28199.13 32497.46 26096.00 31098.67 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS97.08 1497.66 27597.06 30099.47 12099.61 14199.09 13698.04 39199.25 28791.24 38298.51 30599.70 15894.55 23399.91 10592.76 37199.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB97.16 1298.02 21597.90 21298.40 27799.23 25096.80 30599.70 5299.60 5497.12 25198.18 32699.70 15891.73 31299.72 21198.39 17397.45 27398.68 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 17399.69 1999.85 6999.48 178
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10199.49 14397.03 26399.63 9699.69 16897.27 12499.96 3097.82 22299.84 7799.81 61
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 22399.64 2499.82 9099.54 161
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17499.86 6299.81 61
Anonymous2023121197.88 23597.54 25198.90 20699.71 9698.53 20599.48 17899.57 6494.16 36398.81 26799.68 17493.23 27099.42 27198.84 11594.42 34698.76 259
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
PS-CasMVS97.93 22897.59 24798.95 19598.99 30599.06 14299.68 6199.52 10197.13 24998.31 31699.68 17492.44 29999.05 33598.51 16394.08 35298.75 261
HY-MVS97.30 798.85 13598.64 14199.47 12099.42 20099.08 13999.62 8899.36 24097.39 22899.28 18099.68 17496.44 15499.92 9598.37 17698.22 22899.40 197
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26199.57 6496.40 31099.42 14399.68 17498.75 5599.80 18497.98 20899.72 11899.44 191
ADS-MVSNet298.02 21598.07 19597.87 31599.33 22595.19 34999.23 27599.08 31096.24 31899.10 22099.67 18094.11 24998.93 35596.81 29999.05 17899.48 178
ADS-MVSNet98.20 18998.08 19298.56 25499.33 22596.48 31799.23 27599.15 30296.24 31899.10 22099.67 18094.11 24999.71 21796.81 29999.05 17899.48 178
DTE-MVSNet97.51 28697.19 29498.46 26898.63 35198.13 23499.84 1399.48 15596.68 28497.97 33699.67 18092.92 27798.56 36796.88 29892.60 37098.70 274
Baseline_NR-MVSNet97.76 25597.45 26198.68 24299.09 28798.29 22599.41 20798.85 34395.65 34098.63 29599.67 18094.82 21099.10 33198.07 20392.89 36698.64 302
CMPMVSbinary69.68 2394.13 34894.90 34091.84 37197.24 38280.01 40198.52 37499.48 15589.01 38891.99 38999.67 18085.67 37099.13 32495.44 33497.03 29196.39 389
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21799.12 21599.66 18598.67 6699.91 10597.70 23899.69 12399.71 112
thisisatest053098.35 17898.03 19899.31 14399.63 13198.56 20299.54 13996.75 39397.53 21199.73 6299.65 18691.25 32499.89 12798.62 14399.56 13899.48 178
test22299.75 7399.49 8798.91 34299.49 14396.42 30899.34 17099.65 18698.28 9299.69 12399.72 103
MVSFormer99.17 8199.12 7499.29 15199.51 17098.94 16599.88 499.46 18297.55 20799.80 4099.65 18697.39 11699.28 29899.03 8599.85 6999.65 129
jason99.13 8999.03 8799.45 12399.46 19198.87 17299.12 29599.26 28598.03 15699.79 4299.65 18697.02 13299.85 14699.02 8799.90 3999.65 129
jason: jason.
BH-RMVSNet98.41 17298.08 19299.40 13099.41 20398.83 18099.30 24698.77 35197.70 19298.94 24899.65 18692.91 27999.74 20196.52 31099.55 14099.64 136
sss99.17 8199.05 8399.53 10599.62 13798.97 15399.36 23099.62 4197.83 17499.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
h-mvs3397.70 26897.28 28998.97 19299.70 10197.27 27199.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 39099.65 129
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
新几何199.75 5899.75 7399.59 7099.54 8596.76 27999.29 17999.64 19298.43 8399.94 6996.92 29699.66 12899.72 103
PEN-MVS97.76 25597.44 26698.72 23798.77 33798.54 20499.78 3299.51 11597.06 25998.29 31999.64 19292.63 29098.89 35898.09 19693.16 36398.72 267
CP-MVSNet98.09 20197.78 22499.01 18498.97 31099.24 11799.67 6499.46 18297.25 23998.48 30899.64 19293.79 26199.06 33498.63 14294.10 35198.74 264
LF4IMVS97.52 28497.46 26097.70 32798.98 30895.55 33899.29 25198.82 34698.07 14898.66 28799.64 19289.97 33899.61 24997.01 28696.68 29497.94 371
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20199.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24699.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18599.63 13399.80 70
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
AdaColmapbinary99.01 11598.80 12399.66 6999.56 15699.54 7999.18 28499.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25799.77 10799.55 159
TAPA-MVS97.07 1597.74 26197.34 28198.94 19699.70 10197.53 26499.25 27299.51 11591.90 37999.30 17699.63 19898.78 4899.64 24288.09 38999.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ppachtmachnet_test97.49 29297.45 26197.61 33098.62 35295.24 34798.80 35299.46 18296.11 33098.22 32399.62 20396.45 15398.97 35293.77 35795.97 31498.61 322
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25199.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21599.72 103
MDTV_nov1_ep1398.32 17299.11 28194.44 36199.27 26198.74 35597.51 21499.40 15299.62 20394.78 21599.76 19897.59 24498.81 198
CANet99.25 7399.14 7299.59 8799.41 20399.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
HQP_MVS98.27 18598.22 17898.44 27299.29 23796.97 29599.39 21999.47 17398.97 5199.11 21799.61 20792.71 28699.69 22897.78 22597.63 25398.67 290
plane_prior499.61 207
baseline198.31 18097.95 20799.38 13499.50 17998.74 18799.59 10198.93 32798.41 10099.14 21299.60 21094.59 22999.79 18798.48 16593.29 36199.61 144
TranMVSNet+NR-MVSNet97.93 22897.66 23998.76 23598.78 33398.62 19799.65 7599.49 14397.76 18398.49 30799.60 21094.23 24498.97 35298.00 20792.90 36598.70 274
FA-MVS(test-final)98.75 14698.53 16099.41 12999.55 16099.05 14499.80 2599.01 31996.59 29699.58 11099.59 21295.39 19099.90 11697.78 22599.49 14399.28 212
tpmrst98.33 17998.48 16297.90 31499.16 27394.78 35599.31 24499.11 30697.27 23799.45 13499.59 21295.33 19399.84 15398.48 16598.61 20499.09 226
IterMVS-LS98.46 16798.42 16598.58 25099.59 14898.00 24099.37 22699.43 20796.94 27199.07 22599.59 21297.87 10599.03 33898.32 18295.62 32298.71 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11399.42 20599.54 8597.29 23699.41 14799.59 21298.42 8599.93 8498.19 18999.69 12399.73 97
pmmvs498.13 19797.90 21298.81 22998.61 35498.87 17298.99 32699.21 29596.44 30699.06 23099.58 21695.90 17399.11 32997.18 28096.11 30898.46 339
1112_ss98.98 11698.77 12799.59 8799.68 11099.02 14699.25 27299.48 15597.23 24299.13 21399.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
ab-mvs-re8.30 37611.06 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.58 2160.00 4140.00 4100.00 4090.00 4080.00 406
PatchmatchNetpermissive98.31 18098.36 16898.19 29499.16 27395.32 34699.27 26198.92 33097.37 22999.37 16099.58 21694.90 20799.70 22397.43 26399.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 19098.16 18098.27 29199.30 23395.55 33899.07 30598.97 32397.57 20499.43 14099.57 22092.72 28499.74 20197.58 24599.20 16399.52 167
Patchmatch-test97.93 22897.65 24098.77 23499.18 26397.07 28499.03 31599.14 30496.16 32598.74 27599.57 22094.56 23199.72 21193.36 36299.11 17199.52 167
PVSNet96.02 1798.85 13598.84 12098.89 20999.73 8797.28 27098.32 38499.60 5497.86 16899.50 12699.57 22096.75 14299.86 14098.56 15899.70 12299.54 161
cdsmvs_eth3d_5k24.64 37532.85 3780.00 3910.00 4140.00 4160.00 40299.51 1150.00 4090.00 41099.56 22396.58 1470.00 4100.00 4090.00 4080.00 406
131498.68 15598.54 15999.11 17498.89 31798.65 19499.27 26199.49 14396.89 27397.99 33499.56 22397.72 11199.83 16697.74 23299.27 16098.84 250
lupinMVS99.13 8999.01 9599.46 12299.51 17098.94 16599.05 31099.16 30197.86 16899.80 4099.56 22397.39 11699.86 14098.94 9499.85 6999.58 154
miper_lstm_enhance98.00 22097.91 21198.28 29099.34 22397.43 26798.88 34499.36 24096.48 30398.80 26999.55 22695.98 16698.91 35697.27 27195.50 32698.51 332
DPM-MVS98.95 11998.71 13299.66 6999.63 13199.55 7798.64 36799.10 30797.93 16299.42 14399.55 22698.67 6699.80 18495.80 32599.68 12699.61 144
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28999.41 21296.60 29499.60 10699.55 22698.83 4299.90 11697.48 25799.83 8699.78 80
dp97.75 25997.80 22097.59 33199.10 28493.71 37099.32 24198.88 33996.48 30399.08 22499.55 22692.67 28999.82 17396.52 31098.58 20799.24 215
CLD-MVS98.16 19498.10 18898.33 28299.29 23796.82 30498.75 35799.44 20197.83 17499.13 21399.55 22692.92 27799.67 23198.32 18297.69 25198.48 334
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.71 9699.79 3099.61 4896.84 27699.56 11499.54 23198.58 7299.96 3096.93 29499.75 112
cl____98.01 21897.84 21998.55 25699.25 24897.97 24298.71 36199.34 25096.47 30598.59 30199.54 23195.65 18399.21 31597.21 27495.77 31798.46 339
DIV-MVS_self_test98.01 21897.85 21898.48 26299.24 24997.95 24698.71 36199.35 24696.50 29998.60 30099.54 23195.72 18099.03 33897.21 27495.77 31798.46 339
MVS97.28 30096.55 31299.48 11798.78 33398.95 16299.27 26199.39 22383.53 39498.08 32999.54 23196.97 13599.87 13794.23 35399.16 16599.63 140
pmmvs597.52 28497.30 28698.16 29698.57 35796.73 30699.27 26198.90 33696.14 32898.37 31399.53 23591.54 31999.14 32197.51 25495.87 31598.63 310
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17199.80 9799.79 74
PatchMatch-RL98.84 13898.62 14799.52 11199.71 9699.28 11199.06 30899.77 997.74 18799.50 12699.53 23595.41 18999.84 15397.17 28199.64 13199.44 191
eth_miper_zixun_eth98.05 21097.96 20598.33 28299.26 24497.38 26898.56 37399.31 27196.65 28798.88 25799.52 23896.58 14799.12 32897.39 26595.53 32598.47 336
test_prior298.96 33398.34 10899.01 23699.52 23898.68 6497.96 20999.74 115
test_040296.64 31696.24 31997.85 31698.85 32696.43 31999.44 19499.26 28593.52 36996.98 36199.52 23888.52 35499.20 31792.58 37397.50 26797.93 372
test_yl98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15398.60 14998.33 22099.59 150
DCV-MVSNet98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15398.60 14998.33 22099.59 150
v14897.79 25397.55 24898.50 25998.74 33997.72 25799.54 13999.33 25796.26 31798.90 25499.51 24194.68 22599.14 32197.83 22193.15 36498.63 310
DU-MVS98.08 20397.79 22198.96 19398.87 32298.98 15099.41 20799.45 19397.87 16798.71 27899.50 24494.82 21099.22 31098.57 15592.87 36798.68 283
NR-MVSNet97.97 22597.61 24599.02 18398.87 32299.26 11599.47 18499.42 20997.63 19997.08 35999.50 24495.07 20299.13 32497.86 21793.59 35898.68 283
XVG-ACMP-BASELINE97.83 24597.71 23598.20 29399.11 28196.33 32299.41 20799.52 10198.06 15299.05 23299.50 24489.64 34299.73 20797.73 23397.38 28198.53 330
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST999.67 11199.65 5799.05 31099.41 21296.22 32098.95 24699.49 24798.77 5199.91 105
train_agg99.02 11298.77 12799.77 5599.67 11199.65 5799.05 31099.41 21296.28 31498.95 24699.49 24798.76 5299.91 10597.63 24199.72 11899.75 88
PVSNet_Blended99.08 10598.97 10199.42 12899.76 6598.79 18498.78 35499.91 396.74 28099.67 7899.49 24797.53 11399.88 13298.98 9099.85 6999.60 146
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28699.44 20198.45 9699.19 20499.49 24798.08 10199.89 12797.73 23399.75 11299.48 178
test_899.67 11199.61 6799.03 31599.41 21296.28 31498.93 25099.48 25298.76 5299.91 105
EPMVS97.82 24897.65 24098.35 28198.88 31895.98 33099.49 17494.71 40397.57 20499.26 18899.48 25292.46 29899.71 21797.87 21699.08 17699.35 204
PLCcopyleft97.94 499.02 11298.85 11999.53 10599.66 12099.01 14899.24 27499.52 10196.85 27599.27 18499.48 25298.25 9399.91 10597.76 22999.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
xiu_mvs_v1_base99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
v192192097.80 25297.45 26198.84 22398.80 32998.53 20599.52 14899.34 25096.15 32799.24 19099.47 25593.98 25499.29 29795.40 33695.13 33398.69 278
UniMVSNet_NR-MVSNet98.22 18697.97 20498.96 19398.92 31498.98 15099.48 17899.53 9697.76 18398.71 27899.46 25996.43 15599.22 31098.57 15592.87 36798.69 278
testgi97.65 27697.50 25598.13 30099.36 21896.45 31899.42 20599.48 15597.76 18397.87 33999.45 26091.09 32598.81 36094.53 34898.52 21399.13 221
EIA-MVS99.18 7999.09 7999.45 12399.49 18199.18 12299.67 6499.53 9697.66 19799.40 15299.44 26198.10 9999.81 17898.94 9499.62 13499.35 204
tpm297.44 29497.34 28197.74 32599.15 27794.36 36399.45 18898.94 32693.45 37298.90 25499.44 26191.35 32299.59 25197.31 26998.07 23999.29 211
thisisatest051598.14 19697.79 22199.19 16599.50 17998.50 21298.61 36896.82 39296.95 26999.54 11999.43 26391.66 31699.86 14098.08 20099.51 14299.22 216
WR-MVS98.06 20597.73 23399.06 17898.86 32599.25 11699.19 28299.35 24697.30 23598.66 28799.43 26393.94 25599.21 31598.58 15294.28 34898.71 269
hse-mvs297.50 28797.14 29598.59 24799.49 18197.05 28699.28 25699.22 29298.94 5499.66 8399.42 26594.93 20499.65 23999.48 4183.80 39299.08 227
v897.95 22797.63 24498.93 19898.95 31298.81 18399.80 2599.41 21296.03 33599.10 22099.42 26594.92 20699.30 29696.94 29394.08 35298.66 298
tpmvs97.98 22298.02 20097.84 31899.04 29894.73 35699.31 24499.20 29696.10 33498.76 27499.42 26594.94 20399.81 17896.97 29098.45 21698.97 242
UGNet98.87 12598.69 13499.40 13099.22 25498.72 18999.44 19499.68 2099.24 1799.18 20899.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS96.88 31296.31 31898.59 24799.48 18997.04 28999.27 26199.22 29297.44 22298.51 30599.41 26991.97 30599.66 23497.71 23683.83 39199.07 232
Effi-MVS+98.81 13998.59 15499.48 11799.46 19199.12 13498.08 39099.50 13597.50 21599.38 15899.41 26996.37 15699.81 17899.11 7898.54 21299.51 173
v1097.85 24097.52 25298.86 21998.99 30598.67 19299.75 4199.41 21295.70 33998.98 24299.41 26994.75 22099.23 30796.01 32194.63 34298.67 290
v14419297.92 23197.60 24698.87 21598.83 32898.65 19499.55 13499.34 25096.20 32199.32 17299.40 27294.36 24099.26 30296.37 31595.03 33598.70 274
NP-MVS99.23 25096.92 29899.40 272
HQP-MVS98.02 21597.90 21298.37 28099.19 26096.83 30298.98 32999.39 22398.24 11898.66 28799.40 27292.47 29599.64 24297.19 27897.58 25898.64 302
MAR-MVS98.86 12898.63 14299.54 9799.37 21599.66 5399.45 18899.54 8596.61 29299.01 23699.40 27297.09 12999.86 14097.68 24099.53 14199.10 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS99.04 10999.03 8799.06 17899.40 20899.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 19296.98 28999.78 10498.07 361
CR-MVSNet98.17 19397.93 21098.87 21599.18 26398.49 21399.22 27999.33 25796.96 26799.56 11499.38 27794.33 24199.00 34394.83 34698.58 20799.14 219
Patchmtry97.75 25997.40 27398.81 22999.10 28498.87 17299.11 30199.33 25794.83 35598.81 26799.38 27794.33 24199.02 34096.10 31795.57 32398.53 330
BH-untuned98.42 17098.36 16898.59 24799.49 18196.70 30799.27 26199.13 30597.24 24198.80 26999.38 27795.75 17899.74 20197.07 28599.16 16599.33 208
V4298.06 20597.79 22198.86 21998.98 30898.84 17799.69 5599.34 25096.53 29899.30 17699.37 28094.67 22699.32 29297.57 24994.66 34198.42 342
VPA-MVSNet98.29 18397.95 20799.30 14899.16 27399.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23999.35 5194.46 34498.72 267
PVSNet_BlendedMVS98.86 12898.80 12399.03 18299.76 6598.79 18499.28 25699.91 397.42 22599.67 7899.37 28097.53 11399.88 13298.98 9097.29 28398.42 342
D2MVS98.41 17298.50 16198.15 29999.26 24496.62 31299.40 21599.61 4897.71 18998.98 24299.36 28396.04 16499.67 23198.70 13297.41 27898.15 358
MVP-Stereo97.81 25097.75 23197.99 30997.53 37696.60 31498.96 33398.85 34397.22 24397.23 35499.36 28395.28 19499.46 26095.51 33299.78 10497.92 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124097.69 26997.32 28498.79 23298.85 32698.43 22099.48 17899.36 24096.11 33099.27 18499.36 28393.76 26399.24 30694.46 34995.23 33098.70 274
dmvs_re98.08 20398.16 18097.85 31699.55 16094.67 35899.70 5298.92 33098.15 13399.06 23099.35 28693.67 26599.25 30397.77 22897.25 28599.64 136
v114497.98 22297.69 23698.85 22298.87 32298.66 19399.54 13999.35 24696.27 31699.23 19499.35 28694.67 22699.23 30796.73 30295.16 33298.68 283
v2v48298.06 20597.77 22698.92 20098.90 31598.82 18199.57 11699.36 24096.65 28799.19 20499.35 28694.20 24599.25 30397.72 23594.97 33698.69 278
CostFormer97.72 26497.73 23397.71 32699.15 27794.02 36699.54 13999.02 31894.67 35899.04 23399.35 28692.35 30199.77 19498.50 16497.94 24399.34 207
our_test_397.65 27697.68 23797.55 33298.62 35294.97 35398.84 34899.30 27596.83 27898.19 32599.34 29097.01 13399.02 34095.00 34496.01 30998.64 302
c3_l98.12 19998.04 19798.38 27999.30 23397.69 26198.81 35199.33 25796.67 28598.83 26599.34 29097.11 12898.99 34497.58 24595.34 32898.48 334
Fast-Effi-MVS+-dtu98.77 14598.83 12298.60 24699.41 20396.99 29399.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18797.95 21099.45 14599.02 237
Fast-Effi-MVS+98.70 15198.43 16499.51 11399.51 17099.28 11199.52 14899.47 17396.11 33099.01 23699.34 29096.20 16199.84 15397.88 21498.82 19699.39 198
v119297.81 25097.44 26698.91 20498.88 31898.68 19199.51 15699.34 25096.18 32399.20 20199.34 29094.03 25299.36 28395.32 33895.18 33198.69 278
tpm97.67 27497.55 24898.03 30399.02 30095.01 35299.43 19898.54 36996.44 30699.12 21599.34 29091.83 30999.60 25097.75 23196.46 30099.48 178
PAPM97.59 28097.09 29999.07 17799.06 29498.26 22798.30 38599.10 30794.88 35398.08 32999.34 29096.27 15999.64 24289.87 38298.92 18899.31 210
GBi-Net97.68 27197.48 25698.29 28799.51 17097.26 27399.43 19899.48 15596.49 30099.07 22599.32 29790.26 33398.98 34597.10 28296.65 29598.62 313
test197.68 27197.48 25698.29 28799.51 17097.26 27399.43 19899.48 15596.49 30099.07 22599.32 29790.26 33398.98 34597.10 28296.65 29598.62 313
FMVSNet196.84 31396.36 31798.29 28799.32 23197.26 27399.43 19899.48 15595.11 34798.55 30399.32 29783.95 38198.98 34595.81 32496.26 30598.62 313
MS-PatchMatch97.24 30497.32 28496.99 34598.45 36293.51 37498.82 35099.32 26797.41 22698.13 32899.30 30088.99 34699.56 25395.68 32999.80 9797.90 374
GA-MVS97.85 24097.47 25899.00 18699.38 21297.99 24198.57 37199.15 30297.04 26298.90 25499.30 30089.83 33999.38 27496.70 30498.33 22099.62 142
miper_ehance_all_eth98.18 19298.10 18898.41 27599.23 25097.72 25798.72 36099.31 27196.60 29498.88 25799.29 30297.29 12399.13 32497.60 24395.99 31198.38 347
FMVSNet297.72 26497.36 27698.80 23199.51 17098.84 17799.45 18899.42 20996.49 30098.86 26499.29 30290.26 33398.98 34596.44 31296.56 29898.58 327
TESTMET0.1,197.55 28297.27 29298.40 27798.93 31396.53 31598.67 36397.61 38696.96 26798.64 29499.28 30488.63 35399.45 26197.30 27099.38 14999.21 217
FMVSNet398.03 21397.76 23098.84 22399.39 21198.98 15099.40 21599.38 23196.67 28599.07 22599.28 30492.93 27698.98 34597.10 28296.65 29598.56 329
PAPM_NR99.04 10998.84 12099.66 6999.74 8099.44 9499.39 21999.38 23197.70 19299.28 18099.28 30498.34 8999.85 14696.96 29199.45 14599.69 115
EGC-MVSNET82.80 36577.86 37197.62 32997.91 36996.12 32899.33 24099.28 2818.40 40825.05 40999.27 30784.11 38099.33 28989.20 38498.22 22897.42 382
ETV-MVS99.26 6999.21 6699.40 13099.46 19199.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 14099.10 7999.59 13699.04 234
xiu_mvs_v2_base99.26 6999.25 6299.29 15199.53 16398.91 16999.02 31899.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 241
test20.0396.12 32795.96 32696.63 35497.44 37795.45 34399.51 15699.38 23196.55 29796.16 36899.25 31093.76 26396.17 39487.35 39294.22 34998.27 352
PS-MVSNAJ99.32 5999.32 4099.30 14899.57 15298.94 16598.97 33299.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 242
Test_1112_low_res98.89 12398.66 13999.57 9299.69 10698.95 16299.03 31599.47 17396.98 26599.15 21199.23 31296.77 14199.89 12798.83 11898.78 19999.86 33
cl2297.85 24097.64 24398.48 26299.09 28797.87 25098.60 37099.33 25797.11 25498.87 26099.22 31392.38 30099.17 31998.21 18795.99 31198.42 342
EG-PatchMatch MVS95.97 32995.69 33196.81 35297.78 37292.79 37899.16 28698.93 32796.16 32594.08 38199.22 31382.72 38599.47 25995.67 33097.50 26798.17 357
TR-MVS97.76 25597.41 27298.82 22699.06 29497.87 25098.87 34698.56 36796.63 29198.68 28699.22 31392.49 29499.65 23995.40 33697.79 24898.95 246
ET-MVSNet_ETH3D96.49 31995.64 33399.05 18099.53 16398.82 18198.84 34897.51 38897.63 19984.77 39499.21 31692.09 30398.91 35698.98 9092.21 37199.41 195
WR-MVS_H98.13 19797.87 21798.90 20699.02 30098.84 17799.70 5299.59 5797.27 23798.40 31199.19 31795.53 18699.23 30798.34 17993.78 35798.61 322
miper_enhance_ethall98.16 19498.08 19298.41 27598.96 31197.72 25798.45 37799.32 26796.95 26998.97 24499.17 31897.06 13199.22 31097.86 21795.99 31198.29 351
baseline297.87 23797.55 24898.82 22699.18 26398.02 23999.41 20796.58 39796.97 26696.51 36499.17 31893.43 26799.57 25297.71 23699.03 18098.86 248
MIMVSNet195.51 33495.04 33996.92 35097.38 37895.60 33699.52 14899.50 13593.65 36896.97 36299.17 31885.28 37596.56 39388.36 38895.55 32498.60 325
gm-plane-assit98.54 35992.96 37794.65 35999.15 32199.64 24297.56 250
MIMVSNet97.73 26297.45 26198.57 25199.45 19697.50 26599.02 31898.98 32296.11 33099.41 14799.14 32290.28 33298.74 36395.74 32698.93 18699.47 184
LCM-MVSNet-Re97.83 24598.15 18296.87 35199.30 23392.25 38199.59 10198.26 37397.43 22396.20 36799.13 32396.27 15998.73 36498.17 19298.99 18399.64 136
UniMVSNet (Re)98.29 18398.00 20199.13 17399.00 30299.36 10299.49 17499.51 11597.95 16098.97 24499.13 32396.30 15899.38 27498.36 17893.34 36098.66 298
N_pmnet94.95 34295.83 32992.31 37098.47 36179.33 40299.12 29592.81 40893.87 36597.68 34499.13 32393.87 25899.01 34291.38 37796.19 30698.59 326
PAPR98.63 16098.34 17099.51 11399.40 20899.03 14598.80 35299.36 24096.33 31199.00 24099.12 32698.46 8199.84 15395.23 34099.37 15699.66 125
tpm cat197.39 29697.36 27697.50 33499.17 27193.73 36999.43 19899.31 27191.27 38198.71 27899.08 32794.31 24399.77 19496.41 31498.50 21499.00 238
FMVSNet596.43 32196.19 32097.15 34099.11 28195.89 33299.32 24199.52 10194.47 36298.34 31599.07 32887.54 36497.07 38992.61 37295.72 32098.47 336
PMMVS98.80 14298.62 14799.34 13699.27 24298.70 19098.76 35699.31 27197.34 23199.21 19899.07 32897.20 12599.82 17398.56 15898.87 19199.52 167
Anonymous2023120696.22 32396.03 32496.79 35397.31 38194.14 36599.63 8299.08 31096.17 32497.04 36099.06 33093.94 25597.76 38486.96 39395.06 33498.47 336
DeepMVS_CXcopyleft93.34 36799.29 23782.27 39599.22 29285.15 39296.33 36699.05 33190.97 32799.73 20793.57 36097.77 24998.01 365
YYNet195.36 33794.51 34497.92 31297.89 37097.10 28099.10 30399.23 29093.26 37380.77 39999.04 33292.81 28098.02 37794.30 35094.18 35098.64 302
Anonymous2024052196.20 32595.89 32897.13 34297.72 37594.96 35499.79 3199.29 27993.01 37497.20 35699.03 33389.69 34198.36 37191.16 37896.13 30798.07 361
MDA-MVSNet-bldmvs94.96 34193.98 34897.92 31298.24 36697.27 27199.15 28999.33 25793.80 36680.09 40199.03 33388.31 35697.86 38293.49 36194.36 34798.62 313
test_method91.10 35791.36 35990.31 37695.85 38973.72 40994.89 39799.25 28768.39 40095.82 37199.02 33580.50 39098.95 35493.64 35994.89 34098.25 354
UWE-MVS97.58 28197.29 28898.48 26299.09 28796.25 32599.01 32396.61 39697.86 16899.19 20499.01 33688.72 34899.90 11697.38 26698.69 20299.28 212
BH-w/o98.00 22097.89 21698.32 28499.35 21996.20 32799.01 32398.90 33696.42 30898.38 31299.00 33795.26 19799.72 21196.06 31898.61 20499.03 235
Effi-MVS+-dtu98.78 14398.89 11398.47 26799.33 22596.91 29999.57 11699.30 27598.47 9499.41 14798.99 33896.78 14099.74 20198.73 12999.38 14998.74 264
UnsupCasMVSNet_eth96.44 32096.12 32197.40 33698.65 34995.65 33599.36 23099.51 11597.13 24996.04 37098.99 33888.40 35598.17 37496.71 30390.27 38098.40 345
test0.0.03 197.71 26797.42 27198.56 25498.41 36497.82 25398.78 35498.63 36597.34 23198.05 33398.98 34094.45 23898.98 34595.04 34397.15 29098.89 247
MDA-MVSNet_test_wron95.45 33594.60 34298.01 30698.16 36797.21 27699.11 30199.24 28993.49 37080.73 40098.98 34093.02 27498.18 37394.22 35494.45 34598.64 302
FPMVS84.93 36485.65 36582.75 38586.77 40663.39 41198.35 38098.92 33074.11 39783.39 39698.98 34050.85 40492.40 40084.54 39894.97 33692.46 395
testing397.28 30096.76 30998.82 22699.37 21598.07 23799.45 18899.36 24097.56 20697.89 33898.95 34383.70 38298.82 35996.03 31998.56 21099.58 154
WB-MVSnew97.65 27697.65 24097.63 32898.78 33397.62 26299.13 29298.33 37297.36 23099.07 22598.94 34495.64 18499.15 32092.95 36798.68 20396.12 392
SSC-MVS92.73 35493.73 35089.72 37895.02 39781.38 39899.76 3799.23 29094.87 35492.80 38798.93 34594.71 22391.37 40274.49 40293.80 35696.42 388
testf190.42 35990.68 36189.65 37997.78 37273.97 40799.13 29298.81 34889.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
APD_test290.42 35990.68 36189.65 37997.78 37273.97 40799.13 29298.81 34889.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
alignmvs98.81 13998.56 15899.58 9099.43 19899.42 9699.51 15698.96 32598.61 8499.35 16798.92 34894.78 21599.77 19499.35 5198.11 23899.54 161
WB-MVS93.10 35294.10 34690.12 37795.51 39581.88 39799.73 4799.27 28495.05 35093.09 38698.91 34994.70 22491.89 40176.62 40094.02 35496.58 387
test-LLR98.06 20597.90 21298.55 25698.79 33097.10 28098.67 36397.75 38397.34 23198.61 29898.85 35094.45 23899.45 26197.25 27299.38 14999.10 222
test-mter97.49 29297.13 29798.55 25698.79 33097.10 28098.67 36397.75 38396.65 28798.61 29898.85 35088.23 35799.45 26197.25 27299.38 14999.10 222
dmvs_testset95.02 33996.12 32191.72 37299.10 28480.43 40099.58 10997.87 38297.47 21695.22 37498.82 35293.99 25395.18 39788.09 38994.91 33999.56 158
canonicalmvs99.02 11298.86 11899.51 11399.42 20099.32 10499.80 2599.48 15598.63 8299.31 17498.81 35397.09 12999.75 20099.27 6697.90 24499.47 184
new_pmnet96.38 32296.03 32497.41 33598.13 36895.16 35199.05 31099.20 29693.94 36497.39 35198.79 35491.61 31899.04 33690.43 38095.77 31798.05 363
cascas97.69 26997.43 27098.48 26298.60 35597.30 26998.18 38999.39 22392.96 37598.41 31098.78 35593.77 26299.27 30198.16 19398.61 20498.86 248
PVSNet_094.43 1996.09 32895.47 33497.94 31199.31 23294.34 36497.81 39299.70 1597.12 25197.46 34798.75 35689.71 34099.79 18797.69 23981.69 39499.68 119
patchmatchnet-post98.70 35794.79 21499.74 201
Patchmatch-RL test95.84 33195.81 33095.95 36095.61 39190.57 38698.24 38698.39 37195.10 34995.20 37598.67 35894.78 21597.77 38396.28 31690.02 38199.51 173
thres100view90097.76 25597.45 26198.69 24199.72 9197.86 25299.59 10198.74 35597.93 16299.26 18898.62 35991.75 31099.83 16693.22 36398.18 23398.37 348
thres600view797.86 23997.51 25498.92 20099.72 9197.95 24699.59 10198.74 35597.94 16199.27 18498.62 35991.75 31099.86 14093.73 35898.19 23298.96 244
DSMNet-mixed97.25 30297.35 27896.95 34897.84 37193.61 37399.57 11696.63 39596.13 32998.87 26098.61 36194.59 22997.70 38595.08 34298.86 19299.55 159
IB-MVS95.67 1896.22 32395.44 33698.57 25199.21 25596.70 30798.65 36697.74 38596.71 28297.27 35398.54 36286.03 36899.92 9598.47 16886.30 38899.10 222
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 26998.55 35898.16 23199.43 19893.68 40597.23 35498.46 36389.30 34499.22 31095.43 33598.22 22897.98 369
tfpn200view997.72 26497.38 27498.72 23799.69 10697.96 24499.50 16398.73 36097.83 17499.17 20998.45 36491.67 31499.83 16693.22 36398.18 23398.37 348
thres40097.77 25497.38 27498.92 20099.69 10697.96 24499.50 16398.73 36097.83 17499.17 20998.45 36491.67 31499.83 16693.22 36398.18 23398.96 244
testing1197.50 28797.10 29898.71 23999.20 25796.91 29999.29 25198.82 34697.89 16698.21 32498.40 36685.63 37199.83 16698.45 17098.04 24099.37 202
KD-MVS_2432*160094.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29695.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
miper_refine_blended94.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29695.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
thres20097.61 27997.28 28998.62 24599.64 12898.03 23899.26 27098.74 35597.68 19499.09 22398.32 36991.66 31699.81 17892.88 36898.22 22898.03 364
testing9197.44 29497.02 30198.71 23999.18 26396.89 30199.19 28299.04 31697.78 18198.31 31698.29 37085.41 37399.85 14698.01 20697.95 24299.39 198
testing9997.36 29796.94 30498.63 24499.18 26396.70 30799.30 24698.93 32797.71 18998.23 32198.26 37184.92 37699.84 15398.04 20597.85 24799.35 204
OpenMVS_ROBcopyleft92.34 2094.38 34793.70 35396.41 35797.38 37893.17 37699.06 30898.75 35286.58 39194.84 37998.26 37181.53 38999.32 29289.01 38597.87 24696.76 385
testing22297.16 30596.50 31399.16 16899.16 27398.47 21799.27 26198.66 36497.71 18998.23 32198.15 37382.28 38899.84 15397.36 26797.66 25299.18 218
Syy-MVS97.09 30997.14 29596.95 34899.00 30292.73 37999.29 25199.39 22397.06 25997.41 34898.15 37393.92 25798.68 36591.71 37598.34 21899.45 189
myMVS_eth3d96.89 31196.37 31698.43 27499.00 30297.16 27799.29 25199.39 22397.06 25997.41 34898.15 37383.46 38398.68 36595.27 33998.34 21899.45 189
CL-MVSNet_self_test94.49 34593.97 34996.08 35996.16 38893.67 37298.33 38399.38 23195.13 34597.33 35298.15 37392.69 28896.57 39288.67 38679.87 39697.99 368
test_vis1_rt95.81 33295.65 33296.32 35899.67 11191.35 38599.49 17496.74 39498.25 11795.24 37398.10 37774.96 39299.90 11699.53 3298.85 19397.70 377
ETVMVS97.50 28796.90 30599.29 15199.23 25098.78 18699.32 24198.90 33697.52 21398.56 30298.09 37884.72 37899.69 22897.86 21797.88 24599.39 198
pmmvs394.09 34993.25 35596.60 35594.76 39894.49 36098.92 34098.18 37889.66 38596.48 36598.06 37986.28 36797.33 38789.68 38387.20 38797.97 370
mvsany_test393.77 35093.45 35494.74 36395.78 39088.01 38999.64 7898.25 37498.28 11394.31 38097.97 38068.89 39598.51 36997.50 25590.37 37997.71 375
PM-MVS92.96 35392.23 35795.14 36295.61 39189.98 38899.37 22698.21 37694.80 35695.04 37897.69 38165.06 39697.90 38194.30 35089.98 38297.54 381
pmmvs-eth3d95.34 33894.73 34197.15 34095.53 39395.94 33199.35 23599.10 30795.13 34593.55 38397.54 38288.15 35997.91 38094.58 34789.69 38397.61 378
ambc93.06 36992.68 40082.36 39498.47 37698.73 36095.09 37797.41 38355.55 40199.10 33196.42 31391.32 37397.71 375
RPMNet96.72 31595.90 32799.19 16599.18 26398.49 21399.22 27999.52 10188.72 39099.56 11497.38 38494.08 25199.95 5986.87 39498.58 20799.14 219
new-patchmatchnet94.48 34694.08 34795.67 36195.08 39692.41 38099.18 28499.28 28194.55 36193.49 38497.37 38587.86 36297.01 39091.57 37688.36 38497.61 378
KD-MVS_self_test95.00 34094.34 34596.96 34797.07 38695.39 34599.56 12299.44 20195.11 34797.13 35897.32 38691.86 30897.27 38890.35 38181.23 39598.23 356
PatchT97.03 31096.44 31598.79 23298.99 30598.34 22499.16 28699.07 31392.13 37899.52 12397.31 38794.54 23498.98 34588.54 38798.73 20199.03 235
test_fmvs392.10 35591.77 35893.08 36896.19 38786.25 39099.82 1798.62 36696.65 28795.19 37696.90 38855.05 40395.93 39696.63 30990.92 37897.06 384
UnsupCasMVSNet_bld93.53 35192.51 35696.58 35697.38 37893.82 36798.24 38699.48 15591.10 38393.10 38596.66 38974.89 39398.37 37094.03 35687.71 38697.56 380
LCM-MVSNet86.80 36385.22 36791.53 37387.81 40580.96 39998.23 38898.99 32171.05 39890.13 39396.51 39048.45 40696.88 39190.51 37985.30 38996.76 385
test_f91.90 35691.26 36093.84 36595.52 39485.92 39199.69 5598.53 37095.31 34493.87 38296.37 39155.33 40298.27 37295.70 32790.98 37797.32 383
PMMVS286.87 36285.37 36691.35 37490.21 40383.80 39398.89 34397.45 38983.13 39591.67 39295.03 39248.49 40594.70 39885.86 39777.62 39795.54 393
Gipumacopyleft90.99 35890.15 36393.51 36698.73 34090.12 38793.98 39899.45 19379.32 39692.28 38894.91 39369.61 39497.98 37987.42 39195.67 32192.45 396
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM97.50 28797.02 30198.93 19898.73 34097.80 25499.30 24698.97 32391.73 38098.91 25294.86 39495.10 20199.71 21797.58 24597.98 24199.28 212
PMVScopyleft70.75 2275.98 37174.97 37279.01 38770.98 41055.18 41293.37 39998.21 37665.08 40461.78 40593.83 39521.74 41292.53 39978.59 39991.12 37689.34 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet95.75 33395.16 33897.51 33399.30 23393.69 37198.88 34495.78 39885.09 39398.78 27292.65 39691.29 32399.37 27994.85 34599.85 6999.46 186
E-PMN80.61 36779.88 36982.81 38490.75 40276.38 40597.69 39395.76 39966.44 40283.52 39592.25 39762.54 39887.16 40468.53 40461.40 40184.89 402
test_vis3_rt87.04 36185.81 36490.73 37593.99 39981.96 39699.76 3790.23 41092.81 37681.35 39891.56 39840.06 40799.07 33394.27 35288.23 38591.15 398
EMVS80.02 36879.22 37082.43 38691.19 40176.40 40497.55 39592.49 40966.36 40383.01 39791.27 39964.63 39785.79 40565.82 40560.65 40285.08 401
gg-mvs-nofinetune96.17 32695.32 33798.73 23698.79 33098.14 23399.38 22494.09 40491.07 38498.07 33291.04 40089.62 34399.35 28696.75 30199.09 17598.68 283
ANet_high77.30 36974.86 37384.62 38375.88 40977.61 40397.63 39493.15 40788.81 38964.27 40489.29 40136.51 40883.93 40675.89 40152.31 40392.33 397
MVEpermissive76.82 2176.91 37074.31 37484.70 38285.38 40876.05 40696.88 39693.17 40667.39 40171.28 40389.01 40221.66 41387.69 40371.74 40372.29 40090.35 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 37343.78 37525.37 39036.04 41316.84 41598.36 37926.56 41220.06 40638.51 40767.32 40329.64 41015.30 40937.59 40739.90 40543.98 404
test12339.01 37442.50 37628.53 38939.17 41220.91 41498.75 35719.17 41419.83 40738.57 40666.67 40433.16 40915.42 40837.50 40829.66 40649.26 403
test_post65.99 40594.65 22899.73 207
test_post199.23 27565.14 40694.18 24899.71 21797.58 245
X-MVStestdata96.55 31795.45 33599.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40798.81 4499.94 6998.79 12399.86 6299.84 40
wuyk23d40.18 37241.29 37736.84 38886.18 40749.12 41379.73 40122.81 41327.64 40525.46 40828.45 40821.98 41148.89 40755.80 40623.56 40712.51 405
test_blank0.13 3780.17 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4101.57 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.27 37711.03 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 41099.01 180.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS97.16 27795.47 333
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
eth-test20.00 414
eth-test0.00 414
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
save fliter99.76 6599.59 7099.14 29199.40 22099.00 43
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20999.52 167
sam_mvs94.72 222
MTGPAbinary99.47 173
MTMP99.54 13998.88 339
test9_res97.49 25699.72 11899.75 88
agg_prior297.21 27499.73 11799.75 88
agg_prior99.67 11199.62 6599.40 22098.87 26099.91 105
test_prior499.56 7598.99 326
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16699.74 92
旧先验298.96 33396.70 28399.47 13199.94 6998.19 189
新几何299.01 323
无先验98.99 32699.51 11596.89 27399.93 8497.53 25399.72 103
原ACMM298.95 336
testdata299.95 5996.67 306
segment_acmp98.96 24
testdata198.85 34798.32 111
test1299.75 5899.64 12899.61 6799.29 27999.21 19898.38 8799.89 12799.74 11599.74 92
plane_prior799.29 23797.03 290
plane_prior699.27 24296.98 29492.71 286
plane_prior599.47 17399.69 22897.78 22597.63 25398.67 290
plane_prior397.00 29298.69 7999.11 217
plane_prior299.39 21998.97 51
plane_prior199.26 244
plane_prior96.97 29599.21 28198.45 9697.60 256
n20.00 415
nn0.00 415
door-mid98.05 379
test1199.35 246
door97.92 380
HQP5-MVS96.83 302
HQP-NCC99.19 26098.98 32998.24 11898.66 287
ACMP_Plane99.19 26098.98 32998.24 11898.66 287
BP-MVS97.19 278
HQP4-MVS98.66 28799.64 24298.64 302
HQP3-MVS99.39 22397.58 258
HQP2-MVS92.47 295
MDTV_nov1_ep13_2view95.18 35099.35 23596.84 27699.58 11095.19 20097.82 22299.46 186
ACMMP++_ref97.19 288
ACMMP++97.43 277
Test By Simon98.75 55