| HPM-MVS++ |  | | 87.09 9 | 88.92 13 | 84.95 6 | 92.61 1 | 87.91 40 | 90.23 15 | 76.06 5 | 88.85 12 | 81.20 9 | 87.33 13 | 87.93 12 | 79.47 9 | 88.59 9 | 88.23 5 | 90.15 34 | 93.60 20 |
|
| DVP-MVS++ | | | 89.14 1 | 91.86 1 | 85.97 1 | 92.55 2 | 92.38 1 | 91.69 4 | 76.31 3 | 93.31 1 | 83.11 3 | 92.44 4 | 91.18 1 | 81.17 2 | 89.55 2 | 87.93 8 | 91.01 7 | 96.21 1 |
|
| SMA-MVS |  | | 87.56 7 | 90.17 7 | 84.52 9 | 91.71 3 | 90.57 9 | 90.77 8 | 75.19 13 | 90.67 7 | 80.50 13 | 86.59 17 | 88.86 8 | 78.09 15 | 89.92 1 | 89.41 1 | 90.84 10 | 95.19 5 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| NCCC | | | 85.34 19 | 86.59 24 | 83.88 15 | 91.48 4 | 88.88 25 | 89.79 17 | 75.54 11 | 86.67 20 | 77.94 22 | 76.55 34 | 84.99 25 | 78.07 16 | 88.04 12 | 87.68 12 | 90.46 26 | 93.31 21 |
|
| CNVR-MVS | | | 86.36 14 | 88.19 17 | 84.23 11 | 91.33 5 | 89.84 14 | 90.34 11 | 75.56 10 | 87.36 17 | 78.97 17 | 81.19 28 | 86.76 18 | 78.74 11 | 89.30 5 | 88.58 2 | 90.45 27 | 94.33 10 |
|
| SF-MVS | | | 87.47 8 | 89.70 8 | 84.86 8 | 91.26 6 | 91.10 8 | 90.90 6 | 75.65 8 | 89.21 9 | 81.25 7 | 91.12 8 | 88.93 7 | 78.82 10 | 87.42 19 | 86.23 30 | 91.28 3 | 93.90 13 |
|
| APDe-MVS |  | | 88.00 6 | 90.50 6 | 85.08 5 | 90.95 7 | 91.58 7 | 92.03 1 | 75.53 12 | 91.15 5 | 80.10 14 | 92.27 5 | 88.34 11 | 80.80 5 | 88.00 14 | 86.99 18 | 91.09 5 | 95.16 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DPE-MVS |  | | 88.63 4 | 91.29 4 | 85.53 3 | 90.87 8 | 92.20 4 | 91.98 2 | 76.00 6 | 90.55 8 | 82.09 6 | 93.85 1 | 90.75 2 | 81.25 1 | 88.62 8 | 87.59 14 | 90.96 9 | 95.48 4 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| HFP-MVS | | | 86.15 15 | 87.95 18 | 84.06 13 | 90.80 9 | 89.20 23 | 89.62 19 | 74.26 16 | 87.52 14 | 80.63 11 | 86.82 16 | 84.19 28 | 78.22 14 | 87.58 17 | 87.19 16 | 90.81 12 | 93.13 24 |
|
| SteuartSystems-ACMMP | | | 85.99 16 | 88.31 16 | 83.27 20 | 90.73 10 | 89.84 14 | 90.27 14 | 74.31 15 | 84.56 29 | 75.88 30 | 87.32 14 | 85.04 24 | 77.31 23 | 89.01 7 | 88.46 3 | 91.14 4 | 93.96 12 |
| Skip Steuart: Steuart Systems R&D Blog. |
| APD-MVS |  | | 86.84 12 | 88.91 14 | 84.41 10 | 90.66 11 | 90.10 12 | 90.78 7 | 75.64 9 | 87.38 16 | 78.72 18 | 90.68 10 | 86.82 17 | 80.15 7 | 87.13 24 | 86.45 28 | 90.51 21 | 93.83 14 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MP-MVS |  | | 85.50 18 | 87.40 21 | 83.28 19 | 90.65 12 | 89.51 19 | 89.16 23 | 74.11 18 | 83.70 33 | 78.06 21 | 85.54 20 | 84.89 27 | 77.31 23 | 87.40 21 | 87.14 17 | 90.41 28 | 93.65 19 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| train_agg | | | 84.86 24 | 87.21 22 | 82.11 26 | 90.59 13 | 85.47 55 | 89.81 16 | 73.55 25 | 83.95 31 | 73.30 38 | 89.84 12 | 87.23 15 | 75.61 33 | 86.47 33 | 85.46 38 | 89.78 40 | 92.06 31 |
|
| MCST-MVS | | | 85.13 22 | 86.62 23 | 83.39 17 | 90.55 14 | 89.82 16 | 89.29 21 | 73.89 22 | 84.38 30 | 76.03 29 | 79.01 31 | 85.90 21 | 78.47 12 | 87.81 16 | 86.11 33 | 92.11 1 | 93.29 22 |
|
| SED-MVS | | | 88.85 2 | 91.59 3 | 85.67 2 | 90.54 15 | 92.29 3 | 91.71 3 | 76.40 2 | 92.41 3 | 83.24 2 | 92.50 3 | 90.64 4 | 81.10 3 | 89.53 3 | 88.02 7 | 91.00 8 | 95.73 3 |
|
| DVP-MVS |  | | 88.67 3 | 91.62 2 | 85.22 4 | 90.47 16 | 92.36 2 | 90.69 9 | 76.15 4 | 93.08 2 | 82.75 4 | 92.19 6 | 90.71 3 | 80.45 6 | 89.27 6 | 87.91 9 | 90.82 11 | 95.84 2 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| DeepC-MVS_fast | | 78.24 3 | 84.27 28 | 85.50 30 | 82.85 22 | 90.46 17 | 89.24 21 | 87.83 33 | 74.24 17 | 84.88 25 | 76.23 28 | 75.26 39 | 81.05 43 | 77.62 20 | 88.02 13 | 87.62 13 | 90.69 16 | 92.41 27 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ACMMP_NAP | | | 86.52 13 | 89.01 11 | 83.62 16 | 90.28 18 | 90.09 13 | 90.32 13 | 74.05 19 | 88.32 13 | 79.74 15 | 87.04 15 | 85.59 23 | 76.97 28 | 89.35 4 | 88.44 4 | 90.35 30 | 94.27 11 |
|
| SD-MVS | | | 86.96 10 | 89.45 9 | 84.05 14 | 90.13 19 | 89.23 22 | 89.77 18 | 74.59 14 | 89.17 10 | 80.70 10 | 89.93 11 | 89.67 5 | 78.47 12 | 87.57 18 | 86.79 22 | 90.67 17 | 93.76 16 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ACMMPR | | | 85.52 17 | 87.53 20 | 83.17 21 | 90.13 19 | 89.27 20 | 89.30 20 | 73.97 20 | 86.89 19 | 77.14 24 | 86.09 18 | 83.18 32 | 77.74 19 | 87.42 19 | 87.20 15 | 90.77 13 | 92.63 25 |
|
| TPM-MVS | | | | | | 90.07 21 | 88.36 35 | 88.45 29 | | | 77.10 25 | 75.60 37 | 83.98 29 | 71.33 63 | | | 89.75 43 | 89.62 53 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| PGM-MVS | | | 84.42 27 | 86.29 27 | 82.23 25 | 90.04 22 | 88.82 26 | 89.23 22 | 71.74 35 | 82.82 38 | 74.61 33 | 84.41 23 | 82.09 35 | 77.03 27 | 87.13 24 | 86.73 24 | 90.73 15 | 92.06 31 |
|
| MSP-MVS | | | 88.09 5 | 90.84 5 | 84.88 7 | 90.00 23 | 91.80 6 | 91.63 5 | 75.80 7 | 91.99 4 | 81.23 8 | 92.54 2 | 89.18 6 | 80.89 4 | 87.99 15 | 87.91 9 | 89.70 45 | 94.51 7 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CSCG | | | 85.28 21 | 87.68 19 | 82.49 24 | 89.95 24 | 91.99 5 | 88.82 24 | 71.20 37 | 86.41 21 | 79.63 16 | 79.26 29 | 88.36 10 | 73.94 41 | 86.64 31 | 86.67 25 | 91.40 2 | 94.41 8 |
|
| mPP-MVS | | | | | | 89.90 25 | | | | | | | 81.29 42 | | | | | |
|
| TSAR-MVS + MP. | | | 86.88 11 | 89.23 10 | 84.14 12 | 89.78 26 | 88.67 30 | 90.59 10 | 73.46 26 | 88.99 11 | 80.52 12 | 91.26 7 | 88.65 9 | 79.91 8 | 86.96 29 | 86.22 31 | 90.59 19 | 93.83 14 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| X-MVS | | | 83.23 32 | 85.20 32 | 80.92 33 | 89.71 27 | 88.68 27 | 88.21 32 | 73.60 23 | 82.57 39 | 71.81 45 | 77.07 32 | 81.92 37 | 71.72 58 | 86.98 28 | 86.86 20 | 90.47 23 | 92.36 28 |
|
| DPM-MVS | | | 83.30 31 | 84.33 34 | 82.11 26 | 89.56 28 | 88.49 33 | 90.33 12 | 73.24 27 | 83.85 32 | 76.46 27 | 72.43 52 | 82.65 33 | 73.02 48 | 86.37 35 | 86.91 19 | 90.03 36 | 89.62 53 |
|
| TSAR-MVS + ACMM | | | 85.10 23 | 88.81 15 | 80.77 34 | 89.55 29 | 88.53 32 | 88.59 27 | 72.55 30 | 87.39 15 | 71.90 42 | 90.95 9 | 87.55 13 | 74.57 36 | 87.08 26 | 86.54 26 | 87.47 93 | 93.67 17 |
|
| CP-MVS | | | 84.74 26 | 86.43 26 | 82.77 23 | 89.48 30 | 88.13 39 | 88.64 25 | 73.93 21 | 84.92 24 | 76.77 26 | 81.94 26 | 83.50 30 | 77.29 25 | 86.92 30 | 86.49 27 | 90.49 22 | 93.14 23 |
|
| CDPH-MVS | | | 82.64 33 | 85.03 33 | 79.86 38 | 89.41 31 | 88.31 36 | 88.32 30 | 71.84 34 | 80.11 45 | 67.47 64 | 82.09 25 | 81.44 41 | 71.85 56 | 85.89 41 | 86.15 32 | 90.24 32 | 91.25 37 |
|
| DeepC-MVS | | 78.47 2 | 84.81 25 | 86.03 28 | 83.37 18 | 89.29 32 | 90.38 11 | 88.61 26 | 76.50 1 | 86.25 22 | 77.22 23 | 75.12 40 | 80.28 45 | 77.59 21 | 88.39 10 | 88.17 6 | 91.02 6 | 93.66 18 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| AdaColmap |  | | 79.74 46 | 78.62 64 | 81.05 32 | 89.23 33 | 86.06 52 | 84.95 49 | 71.96 33 | 79.39 48 | 75.51 31 | 63.16 93 | 68.84 97 | 76.51 29 | 83.55 61 | 82.85 59 | 88.13 76 | 86.46 78 |
|
| SR-MVS | | | | | | 88.99 34 | | | 73.57 24 | | | | 87.54 14 | | | | | |
|
| EPNet | | | 79.08 56 | 80.62 53 | 77.28 51 | 88.90 35 | 83.17 82 | 83.65 54 | 72.41 31 | 74.41 58 | 67.15 67 | 76.78 33 | 74.37 66 | 64.43 99 | 83.70 60 | 83.69 53 | 87.15 97 | 88.19 62 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DeepPCF-MVS | | 79.04 1 | 85.30 20 | 88.93 12 | 81.06 31 | 88.77 36 | 90.48 10 | 85.46 46 | 73.08 28 | 90.97 6 | 73.77 37 | 84.81 22 | 85.95 20 | 77.43 22 | 88.22 11 | 87.73 11 | 87.85 86 | 94.34 9 |
|
| ACMMP |  | | 83.42 30 | 85.27 31 | 81.26 30 | 88.47 37 | 88.49 33 | 88.31 31 | 72.09 32 | 83.42 34 | 72.77 40 | 82.65 24 | 78.22 50 | 75.18 34 | 86.24 38 | 85.76 35 | 90.74 14 | 92.13 30 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| 3Dnovator+ | | 75.73 4 | 82.40 34 | 82.76 39 | 81.97 28 | 88.02 38 | 89.67 17 | 86.60 37 | 71.48 36 | 81.28 43 | 78.18 20 | 64.78 87 | 77.96 52 | 77.13 26 | 87.32 22 | 86.83 21 | 90.41 28 | 91.48 35 |
|
| OPM-MVS | | | 79.68 47 | 79.28 62 | 80.15 37 | 87.99 39 | 86.77 46 | 88.52 28 | 72.72 29 | 64.55 100 | 67.65 63 | 67.87 76 | 74.33 67 | 74.31 39 | 86.37 35 | 85.25 40 | 89.73 44 | 89.81 51 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| MAR-MVS | | | 79.21 52 | 80.32 57 | 77.92 49 | 87.46 40 | 88.15 38 | 83.95 53 | 67.48 63 | 74.28 59 | 68.25 59 | 64.70 88 | 77.04 53 | 72.17 52 | 85.42 43 | 85.00 42 | 88.22 72 | 87.62 67 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| HQP-MVS | | | 81.19 40 | 83.27 37 | 78.76 44 | 87.40 41 | 85.45 56 | 86.95 35 | 70.47 40 | 81.31 42 | 66.91 68 | 79.24 30 | 76.63 54 | 71.67 59 | 84.43 54 | 83.78 52 | 89.19 56 | 92.05 33 |
|
| CANet | | | 81.62 39 | 83.41 36 | 79.53 40 | 87.06 42 | 88.59 31 | 85.47 45 | 67.96 57 | 76.59 53 | 74.05 34 | 74.69 41 | 81.98 36 | 72.98 49 | 86.14 39 | 85.47 37 | 89.68 46 | 90.42 46 |
|
| MSLP-MVS++ | | | 82.09 36 | 82.66 40 | 81.42 29 | 87.03 43 | 87.22 43 | 85.82 42 | 70.04 42 | 80.30 44 | 78.66 19 | 68.67 72 | 81.04 44 | 77.81 18 | 85.19 46 | 84.88 43 | 89.19 56 | 91.31 36 |
|
| ACMM | | 72.26 8 | 78.86 57 | 78.13 66 | 79.71 39 | 86.89 44 | 83.40 77 | 86.02 40 | 70.50 39 | 75.28 55 | 71.49 49 | 63.01 94 | 69.26 91 | 73.57 43 | 84.11 56 | 83.98 48 | 89.76 42 | 87.84 65 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| XVS | | | | | | 86.63 45 | 88.68 27 | 85.00 47 | | | 71.81 45 | | 81.92 37 | | | | 90.47 23 | |
|
| X-MVStestdata | | | | | | 86.63 45 | 88.68 27 | 85.00 47 | | | 71.81 45 | | 81.92 37 | | | | 90.47 23 | |
|
| PHI-MVS | | | 82.36 35 | 85.89 29 | 78.24 47 | 86.40 47 | 89.52 18 | 85.52 44 | 69.52 48 | 82.38 41 | 65.67 71 | 81.35 27 | 82.36 34 | 73.07 47 | 87.31 23 | 86.76 23 | 89.24 52 | 91.56 34 |
|
| LGP-MVS_train | | | 79.83 43 | 81.22 49 | 78.22 48 | 86.28 48 | 85.36 58 | 86.76 36 | 69.59 46 | 77.34 50 | 65.14 74 | 75.68 36 | 70.79 81 | 71.37 62 | 84.60 50 | 84.01 47 | 90.18 33 | 90.74 42 |
|
| MVS_0304 | | | 81.73 38 | 83.86 35 | 79.26 41 | 86.22 49 | 89.18 24 | 86.41 38 | 67.15 64 | 75.28 55 | 70.75 52 | 74.59 42 | 83.49 31 | 74.42 38 | 87.05 27 | 86.34 29 | 90.58 20 | 91.08 39 |
|
| CPTT-MVS | | | 81.77 37 | 83.10 38 | 80.21 36 | 85.93 50 | 86.45 49 | 87.72 34 | 70.98 38 | 82.54 40 | 71.53 48 | 74.23 45 | 81.49 40 | 76.31 31 | 82.85 71 | 81.87 67 | 88.79 65 | 92.26 29 |
|
| MVS_111021_HR | | | 80.13 42 | 81.46 46 | 78.58 45 | 85.77 51 | 85.17 59 | 83.45 55 | 69.28 49 | 74.08 62 | 70.31 54 | 74.31 44 | 75.26 63 | 73.13 46 | 86.46 34 | 85.15 41 | 89.53 47 | 89.81 51 |
|
| ACMP | | 73.23 7 | 79.79 44 | 80.53 54 | 78.94 42 | 85.61 52 | 85.68 53 | 85.61 43 | 69.59 46 | 77.33 51 | 71.00 51 | 74.45 43 | 69.16 92 | 71.88 54 | 83.15 67 | 83.37 55 | 89.92 37 | 90.57 45 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| UA-Net | | | 74.47 78 | 77.80 68 | 70.59 92 | 85.33 53 | 85.40 57 | 73.54 145 | 65.98 73 | 60.65 131 | 56.00 110 | 72.11 53 | 79.15 46 | 54.63 170 | 83.13 68 | 82.25 64 | 88.04 80 | 81.92 127 |
|
| TSAR-MVS + GP. | | | 83.69 29 | 86.58 25 | 80.32 35 | 85.14 54 | 86.96 44 | 84.91 50 | 70.25 41 | 84.71 28 | 73.91 36 | 85.16 21 | 85.63 22 | 77.92 17 | 85.44 42 | 85.71 36 | 89.77 41 | 92.45 26 |
|
| LS3D | | | 74.08 80 | 73.39 95 | 74.88 68 | 85.05 55 | 82.62 86 | 79.71 75 | 68.66 52 | 72.82 67 | 58.80 93 | 57.61 125 | 61.31 122 | 71.07 65 | 80.32 103 | 78.87 116 | 86.00 135 | 80.18 144 |
|
| QAPM | | | 78.47 59 | 80.22 58 | 76.43 58 | 85.03 56 | 86.75 47 | 80.62 66 | 66.00 72 | 73.77 64 | 65.35 73 | 65.54 83 | 78.02 51 | 72.69 50 | 83.71 59 | 83.36 56 | 88.87 62 | 90.41 47 |
|
| OpenMVS |  | 70.44 10 | 76.15 71 | 76.82 79 | 75.37 65 | 85.01 57 | 84.79 61 | 78.99 84 | 62.07 122 | 71.27 70 | 67.88 62 | 57.91 124 | 72.36 74 | 70.15 67 | 82.23 76 | 81.41 72 | 88.12 77 | 87.78 66 |
|
| CLD-MVS | | | 79.35 50 | 81.23 48 | 77.16 53 | 85.01 57 | 86.92 45 | 85.87 41 | 60.89 133 | 80.07 47 | 75.35 32 | 72.96 48 | 73.21 71 | 68.43 79 | 85.41 44 | 84.63 44 | 87.41 94 | 85.44 89 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| 3Dnovator | | 73.76 5 | 79.75 45 | 80.52 55 | 78.84 43 | 84.94 59 | 87.35 41 | 84.43 52 | 65.54 75 | 78.29 49 | 73.97 35 | 63.00 95 | 75.62 62 | 74.07 40 | 85.00 47 | 85.34 39 | 90.11 35 | 89.04 56 |
|
| PCF-MVS | | 73.28 6 | 79.42 49 | 80.41 56 | 78.26 46 | 84.88 60 | 88.17 37 | 86.08 39 | 69.85 43 | 75.23 57 | 68.43 58 | 68.03 75 | 78.38 48 | 71.76 57 | 81.26 89 | 80.65 89 | 88.56 68 | 91.18 38 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| DELS-MVS | | | 79.15 55 | 81.07 51 | 76.91 55 | 83.54 61 | 87.31 42 | 84.45 51 | 64.92 80 | 69.98 71 | 69.34 56 | 71.62 56 | 76.26 55 | 69.84 68 | 86.57 32 | 85.90 34 | 89.39 49 | 89.88 50 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| OMC-MVS | | | 80.26 41 | 82.59 41 | 77.54 50 | 83.04 62 | 85.54 54 | 83.25 56 | 65.05 79 | 87.32 18 | 72.42 41 | 72.04 54 | 78.97 47 | 73.30 45 | 83.86 57 | 81.60 71 | 88.15 75 | 88.83 58 |
|
| EC-MVSNet | | | 79.44 48 | 81.35 47 | 77.22 52 | 82.95 63 | 84.67 63 | 81.31 60 | 63.65 92 | 72.47 69 | 68.75 57 | 73.15 47 | 78.33 49 | 75.99 32 | 86.06 40 | 83.96 49 | 90.67 17 | 90.79 41 |
|
| PLC |  | 68.99 11 | 75.68 72 | 75.31 84 | 76.12 60 | 82.94 64 | 81.26 96 | 79.94 71 | 66.10 70 | 77.15 52 | 66.86 69 | 59.13 114 | 68.53 99 | 73.73 42 | 80.38 102 | 79.04 112 | 87.13 101 | 81.68 129 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CNLPA | | | 77.20 65 | 77.54 70 | 76.80 56 | 82.63 65 | 84.31 66 | 79.77 73 | 64.64 81 | 85.17 23 | 73.18 39 | 56.37 131 | 69.81 88 | 74.53 37 | 81.12 92 | 78.69 117 | 86.04 133 | 87.29 70 |
|
| ACMH+ | | 66.54 13 | 71.36 101 | 70.09 119 | 72.85 79 | 82.59 66 | 81.13 98 | 78.56 87 | 68.04 55 | 61.55 124 | 52.52 133 | 51.50 173 | 54.14 158 | 68.56 78 | 78.85 125 | 79.50 107 | 86.82 109 | 83.94 109 |
|
| ACMH | | 65.37 14 | 70.71 105 | 70.00 120 | 71.54 84 | 82.51 67 | 82.47 87 | 77.78 95 | 68.13 54 | 56.19 159 | 46.06 169 | 54.30 143 | 51.20 185 | 68.68 77 | 80.66 98 | 80.72 82 | 86.07 129 | 84.45 106 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EIA-MVS | | | 75.64 73 | 76.60 80 | 74.53 72 | 82.43 68 | 83.84 71 | 78.32 91 | 62.28 120 | 65.96 90 | 63.28 83 | 68.95 68 | 67.54 102 | 71.61 60 | 82.55 73 | 81.63 70 | 89.24 52 | 85.72 83 |
|
| sasdasda | | | 79.16 53 | 82.37 42 | 75.41 63 | 82.33 69 | 86.38 50 | 80.80 63 | 63.18 98 | 82.90 36 | 67.34 65 | 72.79 49 | 76.07 57 | 69.62 69 | 83.46 64 | 84.41 45 | 89.20 54 | 90.60 43 |
|
| canonicalmvs | | | 79.16 53 | 82.37 42 | 75.41 63 | 82.33 69 | 86.38 50 | 80.80 63 | 63.18 98 | 82.90 36 | 67.34 65 | 72.79 49 | 76.07 57 | 69.62 69 | 83.46 64 | 84.41 45 | 89.20 54 | 90.60 43 |
|
| ETV-MVS | | | 77.32 64 | 78.81 63 | 75.58 62 | 82.24 71 | 83.64 75 | 79.98 69 | 64.02 88 | 69.64 76 | 63.90 79 | 70.89 60 | 69.94 87 | 73.41 44 | 85.39 45 | 83.91 51 | 89.92 37 | 88.31 61 |
|
| MSDG | | | 71.52 98 | 69.87 121 | 73.44 77 | 82.21 72 | 79.35 116 | 79.52 77 | 64.59 82 | 66.15 88 | 61.87 84 | 53.21 158 | 56.09 148 | 65.85 97 | 78.94 124 | 78.50 119 | 86.60 118 | 76.85 167 |
|
| MGCFI-Net | | | 76.55 68 | 81.71 44 | 70.52 93 | 81.71 73 | 84.62 64 | 75.02 120 | 62.17 121 | 82.91 35 | 53.58 125 | 72.78 51 | 75.87 61 | 61.75 122 | 82.96 69 | 82.61 62 | 88.86 63 | 90.26 48 |
|
| casdiffmvs_mvg |  | | 77.79 62 | 79.55 61 | 75.73 61 | 81.56 74 | 84.70 62 | 82.12 57 | 64.26 87 | 74.27 60 | 67.93 61 | 70.83 61 | 74.66 65 | 69.19 74 | 83.33 66 | 81.94 66 | 89.29 51 | 87.14 72 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test2506 | | | 71.72 95 | 72.95 99 | 70.29 96 | 81.49 75 | 83.27 78 | 75.74 109 | 67.59 61 | 68.19 79 | 49.81 146 | 61.15 99 | 49.73 193 | 58.82 136 | 84.76 48 | 82.94 57 | 88.27 70 | 80.63 138 |
|
| ECVR-MVS |  | | 72.20 91 | 73.91 91 | 70.20 98 | 81.49 75 | 83.27 78 | 75.74 109 | 67.59 61 | 68.19 79 | 49.31 150 | 55.77 133 | 62.00 120 | 58.82 136 | 84.76 48 | 82.94 57 | 88.27 70 | 80.41 142 |
|
| CS-MVS | | | 79.22 51 | 81.11 50 | 77.01 54 | 81.36 77 | 84.03 67 | 80.35 67 | 63.25 96 | 73.43 66 | 70.37 53 | 74.10 46 | 76.03 59 | 76.40 30 | 86.32 37 | 83.95 50 | 90.34 31 | 89.93 49 |
|
| IS_MVSNet | | | 73.33 84 | 77.34 75 | 68.65 116 | 81.29 78 | 83.47 76 | 74.45 127 | 63.58 94 | 65.75 92 | 48.49 152 | 67.11 80 | 70.61 82 | 54.63 170 | 84.51 52 | 83.58 54 | 89.48 48 | 86.34 79 |
|
| test1111 | | | 71.56 97 | 73.44 94 | 69.38 109 | 81.16 79 | 82.95 83 | 74.99 121 | 67.68 59 | 66.89 84 | 46.33 166 | 55.19 139 | 60.91 123 | 57.99 144 | 84.59 51 | 82.70 61 | 88.12 77 | 80.85 135 |
|
| Effi-MVS+ | | | 75.28 75 | 76.20 81 | 74.20 74 | 81.15 80 | 83.24 80 | 81.11 61 | 63.13 101 | 66.37 86 | 60.27 89 | 64.30 91 | 68.88 96 | 70.93 66 | 81.56 80 | 81.69 69 | 88.61 66 | 87.35 68 |
|
| MVS_111021_LR | | | 78.13 61 | 79.85 60 | 76.13 59 | 81.12 81 | 81.50 92 | 80.28 68 | 65.25 77 | 76.09 54 | 71.32 50 | 76.49 35 | 72.87 73 | 72.21 51 | 82.79 72 | 81.29 73 | 86.59 119 | 87.91 64 |
|
| CS-MVS-test | | | 78.79 58 | 80.72 52 | 76.53 57 | 81.11 82 | 83.88 70 | 79.69 76 | 63.72 91 | 73.80 63 | 69.95 55 | 75.40 38 | 76.17 56 | 74.85 35 | 84.50 53 | 82.78 60 | 89.87 39 | 88.54 60 |
|
| FC-MVSNet-train | | | 72.60 89 | 75.07 85 | 69.71 104 | 81.10 83 | 78.79 123 | 73.74 144 | 65.23 78 | 66.10 89 | 53.34 126 | 70.36 63 | 63.40 116 | 56.92 154 | 81.44 82 | 80.96 78 | 87.93 82 | 84.46 105 |
|
| MS-PatchMatch | | | 70.17 112 | 70.49 116 | 69.79 103 | 80.98 84 | 77.97 135 | 77.51 97 | 58.95 156 | 62.33 118 | 55.22 114 | 53.14 159 | 65.90 108 | 62.03 115 | 79.08 122 | 77.11 142 | 84.08 159 | 77.91 159 |
|
| Anonymous202405211 | | | | 72.16 107 | | 80.85 85 | 81.85 89 | 76.88 105 | 65.40 76 | 62.89 115 | | 46.35 190 | 67.99 101 | 62.05 114 | 81.15 91 | 80.38 93 | 85.97 136 | 84.50 104 |
|
| TAPA-MVS | | 71.42 9 | 77.69 63 | 80.05 59 | 74.94 67 | 80.68 86 | 84.52 65 | 81.36 59 | 63.14 100 | 84.77 26 | 64.82 76 | 68.72 70 | 75.91 60 | 71.86 55 | 81.62 78 | 79.55 106 | 87.80 88 | 85.24 92 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| PVSNet_Blended_VisFu | | | 76.57 67 | 77.90 67 | 75.02 66 | 80.56 87 | 86.58 48 | 79.24 80 | 66.18 69 | 64.81 97 | 68.18 60 | 65.61 81 | 71.45 76 | 67.05 83 | 84.16 55 | 81.80 68 | 88.90 60 | 90.92 40 |
|
| EPP-MVSNet | | | 74.00 81 | 77.41 73 | 70.02 101 | 80.53 88 | 83.91 69 | 74.99 121 | 62.68 113 | 65.06 95 | 49.77 147 | 68.68 71 | 72.09 75 | 63.06 107 | 82.49 75 | 80.73 81 | 89.12 58 | 88.91 57 |
|
| COLMAP_ROB |  | 62.73 15 | 67.66 141 | 66.76 158 | 68.70 115 | 80.49 89 | 77.98 133 | 75.29 113 | 62.95 103 | 63.62 109 | 49.96 144 | 47.32 189 | 50.72 188 | 58.57 138 | 76.87 146 | 75.50 158 | 84.94 153 | 75.33 178 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| GeoE | | | 74.23 79 | 74.84 87 | 73.52 76 | 80.42 90 | 81.46 93 | 79.77 73 | 61.06 131 | 67.23 83 | 63.67 80 | 59.56 111 | 68.74 98 | 67.90 80 | 80.25 107 | 79.37 110 | 88.31 69 | 87.26 71 |
|
| casdiffmvs |  | | 76.76 66 | 78.46 65 | 74.77 69 | 80.32 91 | 83.73 74 | 80.65 65 | 63.24 97 | 73.58 65 | 66.11 70 | 69.39 67 | 74.09 68 | 69.49 72 | 82.52 74 | 79.35 111 | 88.84 64 | 86.52 77 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DCV-MVSNet | | | 73.65 83 | 75.78 83 | 71.16 86 | 80.19 92 | 79.27 117 | 77.45 100 | 61.68 128 | 66.73 85 | 58.72 94 | 65.31 84 | 69.96 86 | 62.19 112 | 81.29 88 | 80.97 77 | 86.74 112 | 86.91 73 |
|
| Anonymous20231211 | | | 71.90 93 | 72.48 104 | 71.21 85 | 80.14 93 | 81.53 91 | 76.92 103 | 62.89 104 | 64.46 102 | 58.94 91 | 43.80 194 | 70.98 80 | 62.22 111 | 80.70 97 | 80.19 96 | 86.18 126 | 85.73 82 |
|
| TSAR-MVS + COLMAP | | | 78.34 60 | 81.64 45 | 74.48 73 | 80.13 94 | 85.01 60 | 81.73 58 | 65.93 74 | 84.75 27 | 61.68 85 | 85.79 19 | 66.27 107 | 71.39 61 | 82.91 70 | 80.78 80 | 86.01 134 | 85.98 80 |
|
| baseline1 | | | 70.10 113 | 72.17 106 | 67.69 125 | 79.74 95 | 76.80 145 | 73.91 138 | 64.38 84 | 62.74 116 | 48.30 154 | 64.94 85 | 64.08 113 | 54.17 172 | 81.46 81 | 78.92 114 | 85.66 141 | 76.22 169 |
|
| EPNet_dtu | | | 68.08 133 | 71.00 112 | 64.67 155 | 79.64 96 | 68.62 187 | 75.05 119 | 63.30 95 | 66.36 87 | 45.27 173 | 67.40 78 | 66.84 106 | 43.64 192 | 75.37 155 | 74.98 161 | 81.15 171 | 77.44 162 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PVSNet_BlendedMVS | | | 76.21 69 | 77.52 71 | 74.69 70 | 79.46 97 | 83.79 72 | 77.50 98 | 64.34 85 | 69.88 72 | 71.88 43 | 68.54 73 | 70.42 83 | 67.05 83 | 83.48 62 | 79.63 102 | 87.89 84 | 86.87 74 |
|
| PVSNet_Blended | | | 76.21 69 | 77.52 71 | 74.69 70 | 79.46 97 | 83.79 72 | 77.50 98 | 64.34 85 | 69.88 72 | 71.88 43 | 68.54 73 | 70.42 83 | 67.05 83 | 83.48 62 | 79.63 102 | 87.89 84 | 86.87 74 |
|
| IB-MVS | | 66.94 12 | 71.21 102 | 71.66 110 | 70.68 89 | 79.18 99 | 82.83 85 | 72.61 151 | 61.77 126 | 59.66 136 | 63.44 82 | 53.26 156 | 59.65 130 | 59.16 135 | 76.78 148 | 82.11 65 | 87.90 83 | 87.33 69 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MVS_Test | | | 75.37 74 | 77.13 77 | 73.31 78 | 79.07 100 | 81.32 95 | 79.98 69 | 60.12 144 | 69.72 74 | 64.11 78 | 70.53 62 | 73.22 70 | 68.90 75 | 80.14 109 | 79.48 108 | 87.67 90 | 85.50 87 |
|
| Effi-MVS+-dtu | | | 71.82 94 | 71.86 109 | 71.78 83 | 78.77 101 | 80.47 105 | 78.55 88 | 61.67 129 | 60.68 130 | 55.49 111 | 58.48 118 | 65.48 109 | 68.85 76 | 76.92 145 | 75.55 157 | 87.35 95 | 85.46 88 |
|
| EG-PatchMatch MVS | | | 67.24 148 | 66.94 156 | 67.60 127 | 78.73 102 | 81.35 94 | 73.28 149 | 59.49 149 | 46.89 201 | 51.42 138 | 43.65 195 | 53.49 166 | 55.50 166 | 81.38 84 | 80.66 88 | 87.15 97 | 81.17 133 |
|
| gg-mvs-nofinetune | | | 62.55 172 | 65.05 170 | 59.62 180 | 78.72 103 | 77.61 139 | 70.83 159 | 53.63 174 | 39.71 213 | 22.04 215 | 36.36 208 | 64.32 112 | 47.53 185 | 81.16 90 | 79.03 113 | 85.00 152 | 77.17 164 |
|
| FA-MVS(training) | | | 73.66 82 | 74.95 86 | 72.15 81 | 78.63 104 | 80.46 106 | 78.92 85 | 54.79 173 | 69.71 75 | 65.37 72 | 62.04 96 | 66.89 105 | 67.10 82 | 80.72 96 | 79.87 99 | 88.10 79 | 84.97 97 |
|
| Vis-MVSNet (Re-imp) | | | 67.83 138 | 73.52 93 | 61.19 171 | 78.37 105 | 76.72 147 | 66.80 177 | 62.96 102 | 65.50 93 | 34.17 198 | 67.19 79 | 69.68 89 | 39.20 201 | 79.39 119 | 79.44 109 | 85.68 140 | 76.73 168 |
|
| DI_MVS_plusplus_trai | | | 75.13 76 | 76.12 82 | 73.96 75 | 78.18 106 | 81.55 90 | 80.97 62 | 62.54 115 | 68.59 77 | 65.13 75 | 61.43 98 | 74.81 64 | 69.32 73 | 81.01 94 | 79.59 104 | 87.64 91 | 85.89 81 |
|
| thres600view7 | | | 67.68 140 | 68.43 142 | 66.80 142 | 77.90 107 | 78.86 121 | 73.84 140 | 62.75 106 | 56.07 160 | 44.70 177 | 52.85 164 | 52.81 175 | 55.58 164 | 80.41 99 | 77.77 128 | 86.05 131 | 80.28 143 |
|
| thres400 | | | 67.95 135 | 68.62 140 | 67.17 135 | 77.90 107 | 78.59 126 | 74.27 133 | 62.72 108 | 56.34 158 | 45.77 171 | 53.00 161 | 53.35 171 | 56.46 156 | 80.21 108 | 78.43 120 | 85.91 138 | 80.43 141 |
|
| thres200 | | | 67.98 134 | 68.55 141 | 67.30 133 | 77.89 109 | 78.86 121 | 74.18 136 | 62.75 106 | 56.35 157 | 46.48 165 | 52.98 162 | 53.54 164 | 56.46 156 | 80.41 99 | 77.97 126 | 86.05 131 | 79.78 148 |
|
| thres100view900 | | | 67.60 144 | 68.02 145 | 67.12 137 | 77.83 110 | 77.75 137 | 73.90 139 | 62.52 116 | 56.64 154 | 46.82 162 | 52.65 166 | 53.47 168 | 55.92 160 | 78.77 126 | 77.62 131 | 85.72 139 | 79.23 152 |
|
| tfpn200view9 | | | 68.11 132 | 68.72 138 | 67.40 130 | 77.83 110 | 78.93 119 | 74.28 132 | 62.81 105 | 56.64 154 | 46.82 162 | 52.65 166 | 53.47 168 | 56.59 155 | 80.41 99 | 78.43 120 | 86.11 127 | 80.52 140 |
|
| Fast-Effi-MVS+ | | | 73.11 86 | 73.66 92 | 72.48 80 | 77.72 112 | 80.88 102 | 78.55 88 | 58.83 159 | 65.19 94 | 60.36 88 | 59.98 108 | 62.42 119 | 71.22 64 | 81.66 77 | 80.61 91 | 88.20 73 | 84.88 100 |
|
| UniMVSNet_NR-MVSNet | | | 70.59 106 | 72.19 105 | 68.72 114 | 77.72 112 | 80.72 103 | 73.81 142 | 69.65 45 | 61.99 120 | 43.23 179 | 60.54 104 | 57.50 139 | 58.57 138 | 79.56 115 | 81.07 76 | 89.34 50 | 83.97 107 |
|
| IterMVS-LS | | | 71.69 96 | 72.82 102 | 70.37 95 | 77.54 114 | 76.34 150 | 75.13 118 | 60.46 139 | 61.53 125 | 57.57 101 | 64.89 86 | 67.33 103 | 66.04 96 | 77.09 144 | 77.37 138 | 85.48 144 | 85.18 93 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| NR-MVSNet | | | 68.79 127 | 70.56 115 | 66.71 145 | 77.48 115 | 79.54 113 | 73.52 146 | 69.20 50 | 61.20 128 | 39.76 186 | 58.52 116 | 50.11 191 | 51.37 179 | 80.26 106 | 80.71 86 | 88.97 59 | 83.59 113 |
|
| TransMVSNet (Re) | | | 64.74 161 | 65.66 164 | 63.66 162 | 77.40 116 | 75.33 159 | 69.86 160 | 62.67 114 | 47.63 199 | 41.21 185 | 50.01 179 | 52.33 178 | 45.31 189 | 79.57 114 | 77.69 130 | 85.49 143 | 77.07 166 |
|
| TranMVSNet+NR-MVSNet | | | 69.25 122 | 70.81 114 | 67.43 129 | 77.23 117 | 79.46 115 | 73.48 147 | 69.66 44 | 60.43 133 | 39.56 187 | 58.82 115 | 53.48 167 | 55.74 163 | 79.59 113 | 81.21 74 | 88.89 61 | 82.70 117 |
|
| CANet_DTU | | | 73.29 85 | 76.96 78 | 69.00 113 | 77.04 118 | 82.06 88 | 79.49 78 | 56.30 170 | 67.85 81 | 53.29 127 | 71.12 59 | 70.37 85 | 61.81 121 | 81.59 79 | 80.96 78 | 86.09 128 | 84.73 101 |
|
| CHOSEN 1792x2688 | | | 69.20 123 | 69.26 130 | 69.13 110 | 76.86 119 | 78.93 119 | 77.27 101 | 60.12 144 | 61.86 122 | 54.42 115 | 42.54 198 | 61.61 121 | 66.91 88 | 78.55 129 | 78.14 124 | 79.23 179 | 83.23 116 |
|
| HyFIR lowres test | | | 69.47 120 | 68.94 134 | 70.09 100 | 76.77 120 | 82.93 84 | 76.63 107 | 60.17 142 | 59.00 139 | 54.03 119 | 40.54 204 | 65.23 110 | 67.89 81 | 76.54 151 | 78.30 122 | 85.03 151 | 80.07 145 |
|
| UniMVSNet (Re) | | | 69.53 118 | 71.90 108 | 66.76 143 | 76.42 121 | 80.93 99 | 72.59 152 | 68.03 56 | 61.75 123 | 41.68 184 | 58.34 122 | 57.23 141 | 53.27 175 | 79.53 116 | 80.62 90 | 88.57 67 | 84.90 99 |
|
| gm-plane-assit | | | 57.00 196 | 57.62 203 | 56.28 192 | 76.10 122 | 62.43 209 | 47.62 217 | 46.57 208 | 33.84 217 | 23.24 211 | 37.52 205 | 40.19 214 | 59.61 134 | 79.81 111 | 77.55 133 | 84.55 156 | 72.03 188 |
|
| DU-MVS | | | 69.63 117 | 70.91 113 | 68.13 120 | 75.99 123 | 79.54 113 | 73.81 142 | 69.20 50 | 61.20 128 | 43.23 179 | 58.52 116 | 53.50 165 | 58.57 138 | 79.22 120 | 80.45 92 | 87.97 81 | 83.97 107 |
|
| Baseline_NR-MVSNet | | | 67.53 145 | 68.77 137 | 66.09 148 | 75.99 123 | 74.75 164 | 72.43 153 | 68.41 53 | 61.33 127 | 38.33 191 | 51.31 174 | 54.13 160 | 56.03 159 | 79.22 120 | 78.19 123 | 85.37 146 | 82.45 119 |
|
| CostFormer | | | 68.92 125 | 69.58 126 | 68.15 119 | 75.98 125 | 76.17 152 | 78.22 93 | 51.86 187 | 65.80 91 | 61.56 86 | 63.57 92 | 62.83 117 | 61.85 119 | 70.40 191 | 68.67 188 | 79.42 177 | 79.62 150 |
|
| dmvs_re | | | 67.22 149 | 67.92 147 | 66.40 146 | 75.94 126 | 70.55 180 | 74.97 123 | 63.87 89 | 57.07 151 | 44.75 175 | 54.29 144 | 56.72 145 | 54.65 169 | 79.53 116 | 77.51 134 | 84.20 158 | 79.78 148 |
|
| tfpnnormal | | | 64.27 164 | 63.64 180 | 65.02 152 | 75.84 127 | 75.61 156 | 71.24 158 | 62.52 116 | 47.79 198 | 42.97 181 | 42.65 197 | 44.49 207 | 52.66 177 | 78.77 126 | 76.86 144 | 84.88 154 | 79.29 151 |
|
| baseline2 | | | 69.69 116 | 70.27 118 | 69.01 112 | 75.72 128 | 77.13 143 | 73.82 141 | 58.94 157 | 61.35 126 | 57.09 104 | 61.68 97 | 57.17 142 | 61.99 116 | 78.10 133 | 76.58 149 | 86.48 122 | 79.85 146 |
|
| diffmvs |  | | 74.86 77 | 77.37 74 | 71.93 82 | 75.62 129 | 80.35 108 | 79.42 79 | 60.15 143 | 72.81 68 | 64.63 77 | 71.51 57 | 73.11 72 | 66.53 93 | 79.02 123 | 77.98 125 | 85.25 148 | 86.83 76 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tpm cat1 | | | 65.41 156 | 63.81 179 | 67.28 134 | 75.61 130 | 72.88 170 | 75.32 112 | 52.85 181 | 62.97 113 | 63.66 81 | 53.24 157 | 53.29 173 | 61.83 120 | 65.54 202 | 64.14 204 | 74.43 199 | 74.60 180 |
|
| CDS-MVSNet | | | 67.65 142 | 69.83 123 | 65.09 151 | 75.39 131 | 76.55 148 | 74.42 130 | 63.75 90 | 53.55 177 | 49.37 149 | 59.41 112 | 62.45 118 | 44.44 190 | 79.71 112 | 79.82 100 | 83.17 165 | 77.36 163 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| Fast-Effi-MVS+-dtu | | | 68.34 130 | 69.47 127 | 67.01 139 | 75.15 132 | 77.97 135 | 77.12 102 | 55.40 172 | 57.87 142 | 46.68 164 | 56.17 132 | 60.39 124 | 62.36 110 | 76.32 152 | 76.25 153 | 85.35 147 | 81.34 131 |
|
| WR-MVS | | | 63.03 168 | 67.40 153 | 57.92 186 | 75.14 133 | 77.60 140 | 60.56 200 | 66.10 70 | 54.11 176 | 23.88 209 | 53.94 150 | 53.58 163 | 34.50 205 | 73.93 164 | 77.71 129 | 87.35 95 | 80.94 134 |
|
| test-LLR | | | 64.42 162 | 64.36 175 | 64.49 156 | 75.02 134 | 63.93 200 | 66.61 179 | 61.96 123 | 54.41 172 | 47.77 157 | 57.46 126 | 60.25 125 | 55.20 167 | 70.80 185 | 69.33 183 | 80.40 175 | 74.38 182 |
|
| test0.0.03 1 | | | 58.80 192 | 61.58 193 | 55.56 194 | 75.02 134 | 68.45 188 | 59.58 204 | 61.96 123 | 52.74 180 | 29.57 202 | 49.75 182 | 54.56 156 | 31.46 208 | 71.19 180 | 69.77 181 | 75.75 192 | 64.57 203 |
|
| v1144 | | | 69.93 115 | 69.36 129 | 70.61 91 | 74.89 136 | 80.93 99 | 79.11 82 | 60.64 135 | 55.97 161 | 55.31 113 | 53.85 151 | 54.14 158 | 66.54 92 | 78.10 133 | 77.44 136 | 87.14 100 | 85.09 94 |
|
| v10 | | | 70.22 111 | 69.76 124 | 70.74 87 | 74.79 137 | 80.30 110 | 79.22 81 | 59.81 147 | 57.71 147 | 56.58 108 | 54.22 149 | 55.31 151 | 66.95 86 | 78.28 131 | 77.47 135 | 87.12 103 | 85.07 95 |
|
| v8 | | | 70.23 110 | 69.86 122 | 70.67 90 | 74.69 138 | 79.82 112 | 78.79 86 | 59.18 152 | 58.80 140 | 58.20 99 | 55.00 140 | 57.33 140 | 66.31 95 | 77.51 138 | 76.71 147 | 86.82 109 | 83.88 110 |
|
| v2v482 | | | 70.05 114 | 69.46 128 | 70.74 87 | 74.62 139 | 80.32 109 | 79.00 83 | 60.62 136 | 57.41 149 | 56.89 105 | 55.43 138 | 55.14 153 | 66.39 94 | 77.25 141 | 77.14 141 | 86.90 106 | 83.57 114 |
|
| v1192 | | | 69.50 119 | 68.83 135 | 70.29 96 | 74.49 140 | 80.92 101 | 78.55 88 | 60.54 137 | 55.04 167 | 54.21 116 | 52.79 165 | 52.33 178 | 66.92 87 | 77.88 135 | 77.35 139 | 87.04 104 | 85.51 86 |
|
| UniMVSNet_ETH3D | | | 67.18 150 | 67.03 155 | 67.36 131 | 74.44 141 | 78.12 128 | 74.07 137 | 66.38 67 | 52.22 184 | 46.87 161 | 48.64 184 | 51.84 182 | 56.96 152 | 77.29 140 | 78.53 118 | 85.42 145 | 82.59 118 |
|
| DTE-MVSNet | | | 61.85 181 | 64.96 172 | 58.22 185 | 74.32 142 | 74.39 166 | 61.01 199 | 67.85 58 | 51.76 189 | 21.91 216 | 53.28 155 | 48.17 196 | 37.74 202 | 72.22 173 | 76.44 150 | 86.52 121 | 78.49 156 |
|
| Vis-MVSNet |  | | 72.77 88 | 77.20 76 | 67.59 128 | 74.19 143 | 84.01 68 | 76.61 108 | 61.69 127 | 60.62 132 | 50.61 142 | 70.25 64 | 71.31 79 | 55.57 165 | 83.85 58 | 82.28 63 | 86.90 106 | 88.08 63 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| v144192 | | | 69.34 121 | 68.68 139 | 70.12 99 | 74.06 144 | 80.54 104 | 78.08 94 | 60.54 137 | 54.99 169 | 54.13 118 | 52.92 163 | 52.80 176 | 66.73 90 | 77.13 143 | 76.72 146 | 87.15 97 | 85.63 84 |
|
| v1921920 | | | 69.03 124 | 68.32 143 | 69.86 102 | 74.03 145 | 80.37 107 | 77.55 96 | 60.25 141 | 54.62 171 | 53.59 124 | 52.36 169 | 51.50 184 | 66.75 89 | 77.17 142 | 76.69 148 | 86.96 105 | 85.56 85 |
|
| PEN-MVS | | | 62.96 169 | 65.77 163 | 59.70 179 | 73.98 146 | 75.45 157 | 63.39 193 | 67.61 60 | 52.49 182 | 25.49 208 | 53.39 153 | 49.12 195 | 40.85 198 | 71.94 176 | 77.26 140 | 86.86 108 | 80.72 137 |
|
| v1240 | | | 68.64 129 | 67.89 149 | 69.51 107 | 73.89 147 | 80.26 111 | 76.73 106 | 59.97 146 | 53.43 179 | 53.08 128 | 51.82 172 | 50.84 187 | 66.62 91 | 76.79 147 | 76.77 145 | 86.78 111 | 85.34 90 |
|
| thisisatest0530 | | | 71.48 99 | 73.01 98 | 69.70 105 | 73.83 148 | 78.62 125 | 74.53 126 | 59.12 153 | 64.13 103 | 58.63 95 | 64.60 89 | 58.63 134 | 64.27 100 | 80.28 105 | 80.17 97 | 87.82 87 | 84.64 103 |
|
| GA-MVS | | | 68.14 131 | 69.17 132 | 66.93 141 | 73.77 149 | 78.50 127 | 74.45 127 | 58.28 161 | 55.11 166 | 48.44 153 | 60.08 106 | 53.99 161 | 61.50 124 | 78.43 130 | 77.57 132 | 85.13 149 | 80.54 139 |
|
| tttt0517 | | | 71.41 100 | 72.95 99 | 69.60 106 | 73.70 150 | 78.70 124 | 74.42 130 | 59.12 153 | 63.89 107 | 58.35 98 | 64.56 90 | 58.39 136 | 64.27 100 | 80.29 104 | 80.17 97 | 87.74 89 | 84.69 102 |
|
| pm-mvs1 | | | 65.62 155 | 67.42 152 | 63.53 163 | 73.66 151 | 76.39 149 | 69.66 161 | 60.87 134 | 49.73 194 | 43.97 178 | 51.24 175 | 57.00 144 | 48.16 184 | 79.89 110 | 77.84 127 | 84.85 155 | 79.82 147 |
|
| dps | | | 64.00 166 | 62.99 182 | 65.18 150 | 73.29 152 | 72.07 173 | 68.98 166 | 53.07 180 | 57.74 146 | 58.41 97 | 55.55 136 | 47.74 199 | 60.89 130 | 69.53 194 | 67.14 197 | 76.44 191 | 71.19 190 |
|
| v148 | | | 67.85 137 | 67.53 150 | 68.23 118 | 73.25 153 | 77.57 141 | 74.26 134 | 57.36 167 | 55.70 162 | 57.45 103 | 53.53 152 | 55.42 150 | 61.96 117 | 75.23 156 | 73.92 165 | 85.08 150 | 81.32 132 |
|
| PatchMatch-RL | | | 67.78 139 | 66.65 159 | 69.10 111 | 73.01 154 | 72.69 171 | 68.49 167 | 61.85 125 | 62.93 114 | 60.20 90 | 56.83 130 | 50.42 189 | 69.52 71 | 75.62 154 | 74.46 164 | 81.51 169 | 73.62 186 |
|
| GBi-Net | | | 70.78 103 | 73.37 96 | 67.76 121 | 72.95 155 | 78.00 130 | 75.15 115 | 62.72 108 | 64.13 103 | 51.44 135 | 58.37 119 | 69.02 93 | 57.59 146 | 81.33 85 | 80.72 82 | 86.70 113 | 82.02 121 |
|
| test1 | | | 70.78 103 | 73.37 96 | 67.76 121 | 72.95 155 | 78.00 130 | 75.15 115 | 62.72 108 | 64.13 103 | 51.44 135 | 58.37 119 | 69.02 93 | 57.59 146 | 81.33 85 | 80.72 82 | 86.70 113 | 82.02 121 |
|
| FMVSNet2 | | | 70.39 109 | 72.67 103 | 67.72 124 | 72.95 155 | 78.00 130 | 75.15 115 | 62.69 112 | 63.29 111 | 51.25 139 | 55.64 134 | 68.49 100 | 57.59 146 | 80.91 95 | 80.35 94 | 86.70 113 | 82.02 121 |
|
| FMVSNet3 | | | 70.49 107 | 72.90 101 | 67.67 126 | 72.88 158 | 77.98 133 | 74.96 124 | 62.72 108 | 64.13 103 | 51.44 135 | 58.37 119 | 69.02 93 | 57.43 149 | 79.43 118 | 79.57 105 | 86.59 119 | 81.81 128 |
|
| LTVRE_ROB | | 59.44 16 | 61.82 184 | 62.64 186 | 60.87 173 | 72.83 159 | 77.19 142 | 64.37 189 | 58.97 155 | 33.56 218 | 28.00 205 | 52.59 168 | 42.21 210 | 63.93 103 | 74.52 160 | 76.28 151 | 77.15 186 | 82.13 120 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v7n | | | 67.05 151 | 66.94 156 | 67.17 135 | 72.35 160 | 78.97 118 | 73.26 150 | 58.88 158 | 51.16 190 | 50.90 140 | 48.21 186 | 50.11 191 | 60.96 127 | 77.70 136 | 77.38 137 | 86.68 116 | 85.05 96 |
|
| tpm | | | 62.41 175 | 63.15 181 | 61.55 170 | 72.24 161 | 63.79 202 | 71.31 157 | 46.12 210 | 57.82 143 | 55.33 112 | 59.90 109 | 54.74 155 | 53.63 173 | 67.24 201 | 64.29 203 | 70.65 209 | 74.25 184 |
|
| test20.03 | | | 53.93 204 | 56.28 205 | 51.19 203 | 72.19 162 | 65.83 195 | 53.20 211 | 61.08 130 | 42.74 207 | 22.08 214 | 37.07 207 | 45.76 205 | 24.29 216 | 70.44 189 | 69.04 185 | 74.31 200 | 63.05 207 |
|
| CP-MVSNet | | | 62.68 171 | 65.49 166 | 59.40 182 | 71.84 163 | 75.34 158 | 62.87 195 | 67.04 65 | 52.64 181 | 27.19 206 | 53.38 154 | 48.15 197 | 41.40 196 | 71.26 179 | 75.68 155 | 86.07 129 | 82.00 124 |
|
| PS-CasMVS | | | 62.38 177 | 65.06 169 | 59.25 183 | 71.73 164 | 75.21 162 | 62.77 196 | 66.99 66 | 51.94 188 | 26.96 207 | 52.00 171 | 47.52 200 | 41.06 197 | 71.16 182 | 75.60 156 | 85.97 136 | 81.97 126 |
|
| WR-MVS_H | | | 61.83 183 | 65.87 162 | 57.12 189 | 71.72 165 | 76.87 144 | 61.45 198 | 66.19 68 | 51.97 187 | 22.92 213 | 53.13 160 | 52.30 180 | 33.80 206 | 71.03 183 | 75.00 160 | 86.65 117 | 80.78 136 |
|
| USDC | | | 67.36 147 | 67.90 148 | 66.74 144 | 71.72 165 | 75.23 161 | 71.58 155 | 60.28 140 | 67.45 82 | 50.54 143 | 60.93 100 | 45.20 206 | 62.08 113 | 76.56 150 | 74.50 163 | 84.25 157 | 75.38 177 |
|
| UGNet | | | 72.78 87 | 77.67 69 | 67.07 138 | 71.65 167 | 83.24 80 | 75.20 114 | 63.62 93 | 64.93 96 | 56.72 106 | 71.82 55 | 73.30 69 | 49.02 183 | 81.02 93 | 80.70 87 | 86.22 125 | 88.67 59 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpmrst | | | 62.00 179 | 62.35 190 | 61.58 169 | 71.62 168 | 64.14 199 | 69.07 165 | 48.22 206 | 62.21 119 | 53.93 120 | 58.26 123 | 55.30 152 | 55.81 162 | 63.22 207 | 62.62 206 | 70.85 208 | 70.70 191 |
|
| pmmvs4 | | | 67.89 136 | 67.39 154 | 68.48 117 | 71.60 169 | 73.57 168 | 74.45 127 | 60.98 132 | 64.65 98 | 57.97 100 | 54.95 141 | 51.73 183 | 61.88 118 | 73.78 165 | 75.11 159 | 83.99 161 | 77.91 159 |
|
| testgi | | | 54.39 203 | 57.86 201 | 50.35 204 | 71.59 170 | 67.24 191 | 54.95 209 | 53.25 178 | 43.36 206 | 23.78 210 | 44.64 193 | 47.87 198 | 24.96 213 | 70.45 188 | 68.66 189 | 73.60 202 | 62.78 208 |
|
| pmmvs6 | | | 62.41 175 | 62.88 183 | 61.87 168 | 71.38 171 | 75.18 163 | 67.76 170 | 59.45 151 | 41.64 209 | 42.52 183 | 37.33 206 | 52.91 174 | 46.87 186 | 77.67 137 | 76.26 152 | 83.23 164 | 79.18 153 |
|
| FMVSNet1 | | | 68.84 126 | 70.47 117 | 66.94 140 | 71.35 172 | 77.68 138 | 74.71 125 | 62.35 119 | 56.93 152 | 49.94 145 | 50.01 179 | 64.59 111 | 57.07 151 | 81.33 85 | 80.72 82 | 86.25 124 | 82.00 124 |
|
| IterMVS-SCA-FT | | | 66.89 152 | 69.22 131 | 64.17 157 | 71.30 173 | 75.64 155 | 71.33 156 | 53.17 179 | 57.63 148 | 49.08 151 | 60.72 102 | 60.05 128 | 63.09 106 | 74.99 158 | 73.92 165 | 77.07 187 | 81.57 130 |
|
| PatchmatchNet |  | | 64.21 165 | 64.65 173 | 63.69 161 | 71.29 174 | 68.66 186 | 69.63 162 | 51.70 189 | 63.04 112 | 53.77 122 | 59.83 110 | 58.34 137 | 60.23 133 | 68.54 198 | 66.06 200 | 75.56 194 | 68.08 198 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| baseline | | | 70.45 108 | 74.09 90 | 66.20 147 | 70.95 175 | 75.67 154 | 74.26 134 | 53.57 175 | 68.33 78 | 58.42 96 | 69.87 65 | 71.45 76 | 61.55 123 | 74.84 159 | 74.76 162 | 78.42 181 | 83.72 112 |
|
| SCA | | | 65.40 157 | 66.58 160 | 64.02 159 | 70.65 176 | 73.37 169 | 67.35 171 | 53.46 177 | 63.66 108 | 54.14 117 | 60.84 101 | 60.20 127 | 61.50 124 | 69.96 192 | 68.14 193 | 77.01 188 | 69.91 192 |
|
| CR-MVSNet | | | 64.83 160 | 65.54 165 | 64.01 160 | 70.64 177 | 69.41 182 | 65.97 182 | 52.74 182 | 57.81 144 | 52.65 130 | 54.27 145 | 56.31 147 | 60.92 128 | 72.20 174 | 73.09 170 | 81.12 172 | 75.69 174 |
|
| MVSTER | | | 72.06 92 | 74.24 88 | 69.51 107 | 70.39 178 | 75.97 153 | 76.91 104 | 57.36 167 | 64.64 99 | 61.39 87 | 68.86 69 | 63.76 114 | 63.46 104 | 81.44 82 | 79.70 101 | 87.56 92 | 85.31 91 |
|
| Anonymous20231206 | | | 56.36 198 | 57.80 202 | 54.67 197 | 70.08 179 | 66.39 194 | 60.46 201 | 57.54 164 | 49.50 196 | 29.30 203 | 33.86 211 | 46.64 201 | 35.18 204 | 70.44 189 | 68.88 187 | 75.47 195 | 68.88 197 |
|
| thisisatest0515 | | | 67.40 146 | 68.78 136 | 65.80 149 | 70.02 180 | 75.24 160 | 69.36 164 | 57.37 166 | 54.94 170 | 53.67 123 | 55.53 137 | 54.85 154 | 58.00 143 | 78.19 132 | 78.91 115 | 86.39 123 | 83.78 111 |
|
| CMPMVS |  | 47.78 17 | 62.49 174 | 62.52 187 | 62.46 166 | 70.01 181 | 70.66 179 | 62.97 194 | 51.84 188 | 51.98 186 | 56.71 107 | 42.87 196 | 53.62 162 | 57.80 145 | 72.23 172 | 70.37 180 | 75.45 196 | 75.91 171 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| TDRefinement | | | 66.09 154 | 65.03 171 | 67.31 132 | 69.73 182 | 76.75 146 | 75.33 111 | 64.55 83 | 60.28 134 | 49.72 148 | 45.63 192 | 42.83 209 | 60.46 132 | 75.75 153 | 75.95 154 | 84.08 159 | 78.04 158 |
|
| TinyColmap | | | 62.84 170 | 61.03 195 | 64.96 153 | 69.61 183 | 71.69 174 | 68.48 168 | 59.76 148 | 55.41 163 | 47.69 159 | 47.33 188 | 34.20 218 | 62.76 109 | 74.52 160 | 72.59 173 | 81.44 170 | 71.47 189 |
|
| RPMNet | | | 61.71 185 | 62.88 183 | 60.34 175 | 69.51 184 | 69.41 182 | 63.48 192 | 49.23 198 | 57.81 144 | 45.64 172 | 50.51 177 | 50.12 190 | 53.13 176 | 68.17 200 | 68.49 191 | 81.07 173 | 75.62 176 |
|
| IterMVS | | | 66.36 153 | 68.30 144 | 64.10 158 | 69.48 185 | 74.61 165 | 73.41 148 | 50.79 193 | 57.30 150 | 48.28 155 | 60.64 103 | 59.92 129 | 60.85 131 | 74.14 163 | 72.66 172 | 81.80 168 | 78.82 155 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| SixPastTwentyTwo | | | 61.84 182 | 62.45 188 | 61.12 172 | 69.20 186 | 72.20 172 | 62.03 197 | 57.40 165 | 46.54 202 | 38.03 193 | 57.14 129 | 41.72 211 | 58.12 142 | 69.67 193 | 71.58 176 | 81.94 167 | 78.30 157 |
|
| MDTV_nov1_ep13 | | | 64.37 163 | 65.24 167 | 63.37 165 | 68.94 187 | 70.81 177 | 72.40 154 | 50.29 196 | 60.10 135 | 53.91 121 | 60.07 107 | 59.15 132 | 57.21 150 | 69.43 195 | 67.30 195 | 77.47 184 | 69.78 194 |
|
| EPMVS | | | 60.00 190 | 61.97 191 | 57.71 187 | 68.46 188 | 63.17 206 | 64.54 188 | 48.23 205 | 63.30 110 | 44.72 176 | 60.19 105 | 56.05 149 | 50.85 180 | 65.27 205 | 62.02 207 | 69.44 211 | 63.81 205 |
|
| our_test_3 | | | | | | 67.93 189 | 70.99 176 | 66.89 175 | | | | | | | | | | |
|
| FC-MVSNet-test | | | 56.90 197 | 65.20 168 | 47.21 207 | 66.98 190 | 63.20 205 | 49.11 216 | 58.60 160 | 59.38 138 | 11.50 223 | 65.60 82 | 56.68 146 | 24.66 215 | 71.17 181 | 71.36 178 | 72.38 205 | 69.02 196 |
|
| CVMVSNet | | | 62.55 172 | 65.89 161 | 58.64 184 | 66.95 191 | 69.15 184 | 66.49 181 | 56.29 171 | 52.46 183 | 32.70 199 | 59.27 113 | 58.21 138 | 50.09 181 | 71.77 177 | 71.39 177 | 79.31 178 | 78.99 154 |
|
| FPMVS | | | 51.87 206 | 50.00 211 | 54.07 198 | 66.83 192 | 57.25 213 | 60.25 202 | 50.91 191 | 50.25 192 | 34.36 197 | 36.04 209 | 32.02 220 | 41.49 195 | 58.98 213 | 56.07 213 | 70.56 210 | 59.36 213 |
|
| pmmvs-eth3d | | | 63.52 167 | 62.44 189 | 64.77 154 | 66.82 193 | 70.12 181 | 69.41 163 | 59.48 150 | 54.34 175 | 52.71 129 | 46.24 191 | 44.35 208 | 56.93 153 | 72.37 169 | 73.77 167 | 83.30 163 | 75.91 171 |
|
| TAMVS | | | 59.58 191 | 62.81 185 | 55.81 193 | 66.03 194 | 65.64 197 | 63.86 191 | 48.74 201 | 49.95 193 | 37.07 195 | 54.77 142 | 58.54 135 | 44.44 190 | 72.29 171 | 71.79 174 | 74.70 198 | 66.66 200 |
|
| MDTV_nov1_ep13_2view | | | 60.16 189 | 60.51 197 | 59.75 178 | 65.39 195 | 69.05 185 | 68.00 169 | 48.29 204 | 51.99 185 | 45.95 170 | 48.01 187 | 49.64 194 | 53.39 174 | 68.83 197 | 66.52 199 | 77.47 184 | 69.55 195 |
|
| pmmvs5 | | | 62.37 178 | 64.04 177 | 60.42 174 | 65.03 196 | 71.67 175 | 67.17 173 | 52.70 184 | 50.30 191 | 44.80 174 | 54.23 148 | 51.19 186 | 49.37 182 | 72.88 168 | 73.48 169 | 83.45 162 | 74.55 181 |
|
| ambc | | | | 53.42 206 | | 64.99 197 | 63.36 204 | 49.96 214 | | 47.07 200 | 37.12 194 | 28.97 215 | 16.36 227 | 41.82 194 | 75.10 157 | 67.34 194 | 71.55 207 | 75.72 173 |
|
| V42 | | | 68.76 128 | 69.63 125 | 67.74 123 | 64.93 198 | 78.01 129 | 78.30 92 | 56.48 169 | 58.65 141 | 56.30 109 | 54.26 147 | 57.03 143 | 64.85 98 | 77.47 139 | 77.01 143 | 85.60 142 | 84.96 98 |
|
| pmnet_mix02 | | | 55.30 200 | 57.01 204 | 53.30 202 | 64.14 199 | 59.09 211 | 58.39 206 | 50.24 197 | 53.47 178 | 38.68 190 | 49.75 182 | 45.86 204 | 40.14 200 | 65.38 204 | 60.22 209 | 68.19 213 | 65.33 202 |
|
| PMVS |  | 39.38 18 | 46.06 212 | 43.30 215 | 49.28 206 | 62.93 200 | 38.75 221 | 41.88 219 | 53.50 176 | 33.33 219 | 35.46 196 | 28.90 216 | 31.01 221 | 33.04 207 | 58.61 215 | 54.63 216 | 68.86 212 | 57.88 214 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| new-patchmatchnet | | | 46.97 210 | 49.47 212 | 44.05 211 | 62.82 201 | 56.55 214 | 45.35 218 | 52.01 186 | 42.47 208 | 17.04 221 | 35.73 210 | 35.21 217 | 21.84 219 | 61.27 210 | 54.83 215 | 65.26 215 | 60.26 210 |
|
| ET-MVSNet_ETH3D | | | 72.46 90 | 74.19 89 | 70.44 94 | 62.50 202 | 81.17 97 | 79.90 72 | 62.46 118 | 64.52 101 | 57.52 102 | 71.49 58 | 59.15 132 | 72.08 53 | 78.61 128 | 81.11 75 | 88.16 74 | 83.29 115 |
|
| ADS-MVSNet | | | 55.94 199 | 58.01 200 | 53.54 201 | 62.48 203 | 58.48 212 | 59.12 205 | 46.20 209 | 59.65 137 | 42.88 182 | 52.34 170 | 53.31 172 | 46.31 187 | 62.00 209 | 60.02 210 | 64.23 216 | 60.24 212 |
|
| RPSCF | | | 67.64 143 | 71.25 111 | 63.43 164 | 61.86 204 | 70.73 178 | 67.26 172 | 50.86 192 | 74.20 61 | 58.91 92 | 67.49 77 | 69.33 90 | 64.10 102 | 71.41 178 | 68.45 192 | 77.61 183 | 77.17 164 |
|
| MIMVSNet | | | 58.52 194 | 61.34 194 | 55.22 195 | 60.76 205 | 67.01 192 | 66.81 176 | 49.02 200 | 56.43 156 | 38.90 189 | 40.59 203 | 54.54 157 | 40.57 199 | 73.16 167 | 71.65 175 | 75.30 197 | 66.00 201 |
|
| PatchT | | | 61.97 180 | 64.04 177 | 59.55 181 | 60.49 206 | 67.40 190 | 56.54 207 | 48.65 202 | 56.69 153 | 52.65 130 | 51.10 176 | 52.14 181 | 60.92 128 | 72.20 174 | 73.09 170 | 78.03 182 | 75.69 174 |
|
| N_pmnet | | | 47.35 209 | 50.13 210 | 44.11 210 | 59.98 207 | 51.64 218 | 51.86 212 | 44.80 211 | 49.58 195 | 20.76 217 | 40.65 202 | 40.05 215 | 29.64 209 | 59.84 211 | 55.15 214 | 57.63 217 | 54.00 215 |
|
| MVS-HIRNet | | | 54.41 202 | 52.10 209 | 57.11 190 | 58.99 208 | 56.10 215 | 49.68 215 | 49.10 199 | 46.18 203 | 52.15 134 | 33.18 212 | 46.11 203 | 56.10 158 | 63.19 208 | 59.70 211 | 76.64 190 | 60.25 211 |
|
| PM-MVS | | | 60.48 188 | 60.94 196 | 59.94 177 | 58.85 209 | 66.83 193 | 64.27 190 | 51.39 190 | 55.03 168 | 48.03 156 | 50.00 181 | 40.79 213 | 58.26 141 | 69.20 196 | 67.13 198 | 78.84 180 | 77.60 161 |
|
| WB-MVS | | | 40.01 213 | 45.06 214 | 34.13 213 | 58.84 210 | 53.28 217 | 28.60 222 | 58.10 162 | 32.93 220 | 4.65 228 | 40.92 200 | 28.33 223 | 7.26 222 | 58.86 214 | 56.09 212 | 47.36 220 | 44.98 217 |
|
| anonymousdsp | | | 65.28 158 | 67.98 146 | 62.13 167 | 58.73 211 | 73.98 167 | 67.10 174 | 50.69 194 | 48.41 197 | 47.66 160 | 54.27 145 | 52.75 177 | 61.45 126 | 76.71 149 | 80.20 95 | 87.13 101 | 89.53 55 |
|
| TESTMET0.1,1 | | | 61.10 186 | 64.36 175 | 57.29 188 | 57.53 212 | 63.93 200 | 66.61 179 | 36.22 216 | 54.41 172 | 47.77 157 | 57.46 126 | 60.25 125 | 55.20 167 | 70.80 185 | 69.33 183 | 80.40 175 | 74.38 182 |
|
| EU-MVSNet | | | 54.63 201 | 58.69 199 | 49.90 205 | 56.99 213 | 62.70 208 | 56.41 208 | 50.64 195 | 45.95 204 | 23.14 212 | 50.42 178 | 46.51 202 | 36.63 203 | 65.51 203 | 64.85 202 | 75.57 193 | 74.91 179 |
|
| FMVSNet5 | | | 57.24 195 | 60.02 198 | 53.99 199 | 56.45 214 | 62.74 207 | 65.27 185 | 47.03 207 | 55.14 165 | 39.55 188 | 40.88 201 | 53.42 170 | 41.83 193 | 72.35 170 | 71.10 179 | 73.79 201 | 64.50 204 |
|
| test-mter | | | 60.84 187 | 64.62 174 | 56.42 191 | 55.99 215 | 64.18 198 | 65.39 184 | 34.23 217 | 54.39 174 | 46.21 168 | 57.40 128 | 59.49 131 | 55.86 161 | 71.02 184 | 69.65 182 | 80.87 174 | 76.20 170 |
|
| CHOSEN 280x420 | | | 58.70 193 | 61.88 192 | 54.98 196 | 55.45 216 | 50.55 219 | 64.92 186 | 40.36 213 | 55.21 164 | 38.13 192 | 48.31 185 | 63.76 114 | 63.03 108 | 73.73 166 | 68.58 190 | 68.00 214 | 73.04 187 |
|
| PMMVS | | | 65.06 159 | 69.17 132 | 60.26 176 | 55.25 217 | 63.43 203 | 66.71 178 | 43.01 212 | 62.41 117 | 50.64 141 | 69.44 66 | 67.04 104 | 63.29 105 | 74.36 162 | 73.54 168 | 82.68 166 | 73.99 185 |
|
| Gipuma |  | | 36.38 215 | 35.80 217 | 37.07 212 | 45.76 218 | 33.90 222 | 29.81 221 | 48.47 203 | 39.91 212 | 18.02 220 | 8.00 225 | 8.14 229 | 25.14 212 | 59.29 212 | 61.02 208 | 55.19 219 | 40.31 218 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| pmmvs3 | | | 47.65 208 | 49.08 213 | 45.99 208 | 44.61 219 | 54.79 216 | 50.04 213 | 31.95 220 | 33.91 216 | 29.90 201 | 30.37 213 | 33.53 219 | 46.31 187 | 63.50 206 | 63.67 205 | 73.14 204 | 63.77 206 |
|
| MIMVSNet1 | | | 49.27 207 | 53.25 207 | 44.62 209 | 44.61 219 | 61.52 210 | 53.61 210 | 52.18 185 | 41.62 210 | 18.68 219 | 28.14 217 | 41.58 212 | 25.50 211 | 68.46 199 | 69.04 185 | 73.15 203 | 62.37 209 |
|
| MDA-MVSNet-bldmvs | | | 53.37 205 | 53.01 208 | 53.79 200 | 43.67 221 | 67.95 189 | 59.69 203 | 57.92 163 | 43.69 205 | 32.41 200 | 41.47 199 | 27.89 224 | 52.38 178 | 56.97 216 | 65.99 201 | 76.68 189 | 67.13 199 |
|
| E-PMN | | | 21.77 218 | 18.24 221 | 25.89 215 | 40.22 222 | 19.58 225 | 12.46 227 | 39.87 214 | 18.68 224 | 6.71 225 | 9.57 222 | 4.31 232 | 22.36 218 | 19.89 223 | 27.28 221 | 33.73 223 | 28.34 222 |
|
| EMVS | | | 20.98 219 | 17.15 222 | 25.44 216 | 39.51 223 | 19.37 226 | 12.66 226 | 39.59 215 | 19.10 223 | 6.62 226 | 9.27 223 | 4.40 231 | 22.43 217 | 17.99 224 | 24.40 222 | 31.81 224 | 25.53 223 |
|
| new_pmnet | | | 38.40 214 | 42.64 216 | 33.44 214 | 37.54 224 | 45.00 220 | 36.60 220 | 32.72 219 | 40.27 211 | 12.72 222 | 29.89 214 | 28.90 222 | 24.78 214 | 53.17 217 | 52.90 217 | 56.31 218 | 48.34 216 |
|
| PMMVS2 | | | 25.60 216 | 29.75 218 | 20.76 218 | 28.00 225 | 30.93 223 | 23.10 224 | 29.18 221 | 23.14 222 | 1.46 229 | 18.23 221 | 16.54 226 | 5.08 223 | 40.22 218 | 41.40 219 | 37.76 221 | 37.79 220 |
|
| tmp_tt | | | | | 14.50 221 | 14.68 226 | 7.17 228 | 10.46 229 | 2.21 224 | 37.73 214 | 28.71 204 | 25.26 218 | 16.98 225 | 4.37 224 | 31.49 220 | 29.77 220 | 26.56 225 | |
|
| MVE |  | 19.12 19 | 20.47 220 | 23.27 220 | 17.20 220 | 12.66 227 | 25.41 224 | 10.52 228 | 34.14 218 | 14.79 225 | 6.53 227 | 8.79 224 | 4.68 230 | 16.64 221 | 29.49 221 | 41.63 218 | 22.73 226 | 38.11 219 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 22.26 217 | 25.94 219 | 17.95 219 | 3.24 228 | 7.17 228 | 23.83 223 | 7.27 223 | 37.35 215 | 20.44 218 | 21.87 220 | 39.16 216 | 18.67 220 | 34.56 219 | 20.84 223 | 34.28 222 | 20.64 224 |
|
| GG-mvs-BLEND | | | 46.86 211 | 67.51 151 | 22.75 217 | 0.05 229 | 76.21 151 | 64.69 187 | 0.04 225 | 61.90 121 | 0.09 230 | 55.57 135 | 71.32 78 | 0.08 225 | 70.54 187 | 67.19 196 | 71.58 206 | 69.86 193 |
|
| testmvs | | | 0.09 221 | 0.15 223 | 0.02 222 | 0.01 230 | 0.02 230 | 0.05 231 | 0.01 226 | 0.11 226 | 0.01 231 | 0.26 227 | 0.01 233 | 0.06 227 | 0.10 225 | 0.10 224 | 0.01 228 | 0.43 226 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 231 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 232 | 0.00 228 | 0.00 234 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 231 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 232 | 0.00 228 | 0.00 234 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 231 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 232 | 0.00 228 | 0.00 234 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| test123 | | | 0.09 221 | 0.14 224 | 0.02 222 | 0.00 231 | 0.02 230 | 0.02 232 | 0.01 226 | 0.09 227 | 0.00 232 | 0.30 226 | 0.00 234 | 0.08 225 | 0.03 226 | 0.09 225 | 0.01 228 | 0.45 225 |
|
| RE-MVS-def | | | | | | | | | | | 46.24 167 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 86.88 16 | | | | | |
|
| MTAPA | | | | | | | | | | | 83.48 1 | | 86.45 19 | | | | | |
|
| MTMP | | | | | | | | | | | 82.66 5 | | 84.91 26 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 2.85 230 | | | | | | | | | | |
|
| NP-MVS | | | | | | | | | | 80.10 46 | | | | | | | | |
|
| Patchmtry | | | | | | | 65.80 196 | 65.97 182 | 52.74 182 | | 52.65 130 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 18.74 227 | 18.55 225 | 8.02 222 | 26.96 221 | 7.33 224 | 23.81 219 | 13.05 228 | 25.99 210 | 25.17 222 | | 22.45 227 | 36.25 221 |
|