This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6094.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9273.65 1092.66 2391.17 12286.57 187.39 3794.97 1671.70 5397.68 192.19 195.63 2895.57 1
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 42
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5586.77 3595.76 23
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7774.62 11388.90 2093.85 5275.75 2096.00 5087.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030488.08 1488.08 1788.08 1489.67 11772.04 4892.26 3389.26 17984.19 285.01 5795.18 1369.93 7297.20 1491.63 295.60 2994.99 9
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 6096.67 2987.67 2996.37 1494.09 51
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 50
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5196.93 1985.53 3995.79 2294.32 43
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6296.00 5088.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8694.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5395.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6396.61 3284.53 5094.89 4193.66 70
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6596.82 2284.18 5795.01 3793.90 60
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 39
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 9096.65 3084.53 5094.90 4094.00 55
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7494.52 2169.09 8296.70 2784.37 5294.83 4494.03 54
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18892.02 9079.45 1985.88 4894.80 1768.07 9596.21 4286.69 3695.34 3393.23 92
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8793.95 5169.77 7596.01 4985.15 4094.66 4694.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3586.95 3185.90 6490.76 9367.57 14192.83 1793.30 3279.67 1784.57 7292.27 8671.47 5695.02 9084.24 5593.46 6695.13 6
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8894.46 2567.93 9795.95 5484.20 5694.39 5393.23 92
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8994.17 3667.45 10296.60 3383.06 6494.50 5094.07 52
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10194.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7074.50 11486.84 4494.65 2067.31 10495.77 5684.80 4692.85 7092.84 108
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7893.36 6371.44 5796.76 2580.82 9095.33 3494.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test86.29 4286.48 3785.71 6891.02 8467.21 15392.36 2993.78 1878.97 2883.51 9291.20 11470.65 6695.15 8181.96 7894.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 9289.31 13566.27 17092.32 3093.63 2179.37 2084.17 8091.88 9369.04 8695.43 6883.93 5893.77 6493.01 104
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8376.87 6282.81 10294.25 3466.44 11296.24 4182.88 6994.28 5893.38 86
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8594.42 2967.87 9996.64 3182.70 7494.57 4993.66 70
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9968.69 23885.00 5993.10 6774.43 2695.41 7084.97 4195.71 2593.02 103
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9591.07 11975.94 1895.19 7979.94 9994.38 5693.55 81
PHI-MVS86.43 3986.17 4387.24 4190.88 8870.96 6592.27 3294.07 972.45 15585.22 5691.90 9269.47 7796.42 3783.28 6395.94 1994.35 41
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19986.47 19191.87 10173.63 13386.60 4593.02 7276.57 1591.87 21983.36 6192.15 7895.35 3
CANet86.45 3886.10 4587.51 3790.09 10470.94 6789.70 8292.59 6981.78 481.32 11791.43 10770.34 6797.23 1384.26 5393.36 6794.37 40
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6987.65 20267.22 15288.69 11993.04 3879.64 1885.33 5492.54 8373.30 3594.50 10983.49 6091.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf_n85.92 4686.04 4785.57 7285.03 25669.51 9089.62 8690.58 13773.42 14087.75 3294.02 4472.85 4193.24 16390.37 390.75 9793.96 56
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 6083.04 6692.51 7493.53 83
sasdasda85.91 4785.87 4986.04 6089.84 11469.44 9590.45 6593.00 4376.70 6988.01 2891.23 11173.28 3693.91 13281.50 8188.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11469.44 9590.45 6593.00 4376.70 6988.01 2891.23 11173.28 3693.91 13281.50 8188.80 12494.77 22
MSLP-MVS++85.43 5885.76 5184.45 10691.93 7270.24 7690.71 5792.86 5477.46 4784.22 7892.81 7867.16 10692.94 18380.36 9594.35 5790.16 199
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7382.99 30169.39 9789.65 8390.29 15073.31 14387.77 3194.15 3871.72 5293.23 16490.31 490.67 9993.89 61
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7973.53 13885.69 5194.45 2665.00 13095.56 6182.75 7091.87 8392.50 119
MGCFI-Net85.06 6585.51 5483.70 14389.42 12763.01 24089.43 9092.62 6876.43 7387.53 3591.34 10972.82 4293.42 15881.28 8588.74 12794.66 27
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 7973.53 13885.69 5194.45 2663.87 13682.75 7091.87 8392.50 119
iter_conf0585.49 5585.43 5685.67 7091.09 8166.55 16587.18 16892.08 8972.89 15482.90 9891.71 9671.85 4996.03 4684.77 4794.39 5394.42 36
ACMMPcopyleft85.89 4985.39 5787.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12693.82 5364.33 13296.29 3982.67 7590.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192085.29 6185.34 5885.13 8386.12 23569.93 8388.65 12190.78 13369.97 20688.27 2393.98 4971.39 5891.54 23188.49 2390.45 10193.91 58
TSAR-MVS + GP.85.71 5285.33 5986.84 4791.34 7872.50 3689.07 10587.28 23376.41 7485.80 4990.22 14074.15 3195.37 7581.82 7991.88 8292.65 114
alignmvs85.48 5685.32 6085.96 6389.51 12369.47 9289.74 8092.47 7176.17 8287.73 3491.46 10670.32 6893.78 13881.51 8088.95 12194.63 28
DELS-MVS85.41 5985.30 6185.77 6788.49 16767.93 13385.52 22093.44 2778.70 2983.63 9189.03 16974.57 2495.71 5980.26 9794.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 5185.29 6287.17 4393.49 4771.08 6188.58 12392.42 7568.32 24584.61 7093.48 5872.32 4496.15 4579.00 10195.43 3194.28 45
casdiffmvspermissive85.11 6385.14 6385.01 8687.20 21765.77 18287.75 15392.83 5677.84 3784.36 7792.38 8572.15 4693.93 13181.27 8690.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 6784.98 6484.80 9687.30 21565.39 19087.30 16592.88 5377.62 3984.04 8392.26 8771.81 5093.96 12581.31 8490.30 10395.03 8
UA-Net85.08 6484.96 6585.45 7492.07 7068.07 13089.78 7990.86 13282.48 384.60 7193.20 6669.35 7995.22 7871.39 17790.88 9693.07 100
HPM-MVS_fast85.35 6084.95 6686.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10494.09 4062.60 15195.54 6380.93 8892.93 6993.57 79
MVS_111021_HR85.14 6284.75 6786.32 5591.65 7672.70 3085.98 20390.33 14776.11 8382.08 10791.61 10171.36 5994.17 12181.02 8792.58 7392.08 136
MVSMamba_pp84.98 6684.70 6885.80 6689.43 12667.63 13988.44 12692.64 6672.17 16184.54 7390.39 13668.88 8895.28 7681.45 8394.39 5394.49 33
ETV-MVS84.90 6984.67 6985.59 7189.39 13068.66 11788.74 11792.64 6679.97 1584.10 8185.71 25769.32 8095.38 7280.82 9091.37 9092.72 109
fmvsm_l_conf0.5_n84.47 7284.54 7084.27 11785.42 24668.81 10688.49 12587.26 23468.08 24788.03 2793.49 5772.04 4891.77 22188.90 1789.14 12092.24 130
patch_mono-283.65 8184.54 7080.99 22290.06 10965.83 17984.21 24888.74 20371.60 17085.01 5792.44 8474.51 2583.50 33582.15 7792.15 7893.64 76
test_fmvsmconf0.01_n84.73 7184.52 7285.34 7680.25 34169.03 10089.47 8889.65 16773.24 14786.98 4294.27 3266.62 10893.23 16490.26 589.95 11193.78 67
iter_conf05_1184.86 7084.52 7285.87 6590.86 8967.18 15489.63 8592.15 8771.48 17384.64 6990.81 12868.82 8996.00 5078.50 10793.84 6394.43 35
3Dnovator+77.84 485.48 5684.47 7488.51 791.08 8273.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19596.75 2677.20 12293.73 6595.29 5
DPM-MVS84.93 6784.29 7586.84 4790.20 10273.04 2387.12 17093.04 3869.80 21082.85 10091.22 11373.06 3996.02 4876.72 12994.63 4791.46 154
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13386.85 24267.48 25487.48 3693.40 6170.89 6191.61 22588.38 2589.22 11992.16 134
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14187.96 21770.01 20483.95 8493.23 6568.80 9191.51 23488.61 2089.96 11092.57 115
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7788.18 17867.85 13487.66 15589.73 16580.05 1482.95 9689.59 15470.74 6494.82 9980.66 9484.72 17693.28 91
fmvsm_s_conf0.5_n83.80 7883.71 7984.07 12786.69 22767.31 14889.46 8983.07 29571.09 18186.96 4393.70 5569.02 8791.47 23688.79 1884.62 17893.44 85
nrg03083.88 7683.53 8084.96 8886.77 22569.28 9990.46 6492.67 6274.79 10882.95 9691.33 11072.70 4393.09 17780.79 9279.28 25492.50 119
MG-MVS83.41 8883.45 8183.28 15592.74 6262.28 25188.17 13989.50 17075.22 9881.49 11692.74 8266.75 10795.11 8472.85 16591.58 8792.45 122
fmvsm_s_conf0.5_n_a83.63 8383.41 8284.28 11586.14 23468.12 12889.43 9082.87 30070.27 20087.27 3993.80 5469.09 8291.58 22788.21 2683.65 19793.14 98
fmvsm_s_conf0.1_n83.56 8583.38 8384.10 12284.86 25867.28 14989.40 9483.01 29670.67 18987.08 4093.96 5068.38 9391.45 23788.56 2284.50 17993.56 80
EI-MVSNet-UG-set83.81 7783.38 8385.09 8487.87 19167.53 14287.44 16189.66 16679.74 1682.23 10689.41 16370.24 6994.74 10279.95 9883.92 18992.99 105
CPTT-MVS83.73 7983.33 8584.92 9193.28 4970.86 6992.09 3790.38 14368.75 23779.57 13792.83 7660.60 19193.04 18180.92 8991.56 8890.86 171
HQP_MVS83.64 8283.14 8685.14 8190.08 10568.71 11391.25 5092.44 7279.12 2378.92 14691.00 12460.42 19395.38 7278.71 10586.32 15791.33 155
Effi-MVS+83.62 8483.08 8785.24 7988.38 17367.45 14388.89 11089.15 18575.50 9482.27 10588.28 18969.61 7694.45 11177.81 11587.84 13693.84 64
MVS_Test83.15 9383.06 8883.41 15286.86 22163.21 23686.11 20192.00 9274.31 11882.87 9989.44 16270.03 7093.21 16677.39 12188.50 13293.81 65
EPP-MVSNet83.40 8983.02 8984.57 10090.13 10364.47 20992.32 3090.73 13474.45 11779.35 14091.10 11769.05 8595.12 8272.78 16687.22 14494.13 49
fmvsm_s_conf0.1_n_a83.32 9182.99 9084.28 11583.79 27968.07 13089.34 9682.85 30169.80 21087.36 3894.06 4268.34 9491.56 22987.95 2783.46 20393.21 95
OPM-MVS83.50 8682.95 9185.14 8188.79 15670.95 6689.13 10491.52 11277.55 4480.96 12491.75 9560.71 18694.50 10979.67 10086.51 15589.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 8082.92 9286.14 5984.22 27069.48 9191.05 5485.27 26281.30 676.83 19391.65 9866.09 11795.56 6176.00 13593.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 9382.81 9384.18 12089.94 11263.30 23491.59 4388.46 20979.04 2579.49 13892.16 8865.10 12794.28 11467.71 21291.86 8594.95 10
EIA-MVS83.31 9282.80 9484.82 9489.59 11965.59 18588.21 13792.68 6174.66 11178.96 14486.42 24469.06 8495.26 7775.54 14190.09 10793.62 77
Vis-MVSNetpermissive83.46 8782.80 9485.43 7590.25 10168.74 11190.30 6990.13 15476.33 8080.87 12592.89 7461.00 18394.20 11972.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 10882.42 9681.04 22188.80 15558.34 29188.26 13693.49 2676.93 6078.47 15791.04 12069.92 7392.34 20269.87 19384.97 17392.44 123
VNet82.21 10582.41 9781.62 20390.82 9060.93 26584.47 23989.78 16276.36 7984.07 8291.88 9364.71 13190.26 26170.68 18388.89 12293.66 70
PAPM_NR83.02 9782.41 9784.82 9492.47 6766.37 16887.93 14891.80 10473.82 12977.32 18290.66 13067.90 9894.90 9570.37 18689.48 11693.19 96
VDD-MVS83.01 9882.36 9984.96 8891.02 8466.40 16788.91 10988.11 21277.57 4184.39 7693.29 6452.19 25493.91 13277.05 12488.70 12894.57 31
3Dnovator76.31 583.38 9082.31 10086.59 5287.94 18972.94 2890.64 5892.14 8877.21 5275.47 22392.83 7658.56 20294.72 10373.24 16292.71 7292.13 135
h-mvs3383.15 9382.19 10186.02 6290.56 9570.85 7088.15 14189.16 18476.02 8584.67 6691.39 10861.54 16995.50 6482.71 7275.48 30191.72 144
MVS_111021_LR82.61 10282.11 10284.11 12188.82 15371.58 5385.15 22386.16 25274.69 11080.47 12891.04 12062.29 15890.55 25980.33 9690.08 10890.20 198
DP-MVS Recon83.11 9682.09 10386.15 5894.44 1970.92 6888.79 11392.20 8470.53 19479.17 14291.03 12264.12 13496.03 4668.39 20990.14 10691.50 150
MVSFormer82.85 9982.05 10485.24 7987.35 20970.21 7790.50 6190.38 14368.55 24081.32 11789.47 15761.68 16693.46 15578.98 10290.26 10492.05 137
FC-MVSNet-test81.52 12282.02 10580.03 24288.42 17255.97 32987.95 14693.42 2977.10 5677.38 18090.98 12669.96 7191.79 22068.46 20884.50 17992.33 124
HQP-MVS82.61 10282.02 10584.37 10889.33 13266.98 15789.17 9992.19 8576.41 7477.23 18590.23 13960.17 19695.11 8477.47 11985.99 16591.03 165
OMC-MVS82.69 10081.97 10784.85 9388.75 15867.42 14487.98 14490.87 13174.92 10579.72 13591.65 9862.19 16193.96 12575.26 14386.42 15693.16 97
diffmvspermissive82.10 10681.88 10882.76 18583.00 29963.78 22283.68 25589.76 16372.94 15282.02 10889.85 14665.96 12190.79 25582.38 7687.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 10181.83 10984.96 8890.80 9169.76 8788.74 11791.70 10869.39 21878.96 14488.46 18465.47 12494.87 9874.42 14888.57 12990.24 197
CLD-MVS82.31 10481.65 11084.29 11488.47 16867.73 13785.81 21192.35 7775.78 8878.33 16086.58 23964.01 13594.35 11276.05 13487.48 14190.79 172
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 11281.54 11182.92 17488.46 16963.46 23087.13 16992.37 7680.19 1278.38 15889.14 16571.66 5593.05 17970.05 18976.46 28492.25 128
PS-MVSNAJss82.07 10881.31 11284.34 11186.51 23067.27 15089.27 9791.51 11371.75 16579.37 13990.22 14063.15 14594.27 11577.69 11682.36 21791.49 151
LPG-MVS_test82.08 10781.27 11384.50 10389.23 13968.76 10990.22 7091.94 9675.37 9676.64 19991.51 10354.29 23594.91 9278.44 10883.78 19089.83 220
bld_raw_dy_0_6482.00 11081.23 11484.34 11188.75 15866.52 16681.95 28091.90 9863.91 30075.26 23790.15 14269.37 7895.74 5877.66 11792.08 8090.76 174
LFMVS81.82 11481.23 11483.57 14791.89 7363.43 23289.84 7581.85 31277.04 5883.21 9393.10 6752.26 25393.43 15771.98 17289.95 11193.85 62
API-MVS81.99 11181.23 11484.26 11890.94 8670.18 8291.10 5389.32 17571.51 17278.66 15188.28 18965.26 12595.10 8764.74 23991.23 9287.51 280
UniMVSNet (Re)81.60 12181.11 11783.09 16588.38 17364.41 21187.60 15693.02 4278.42 3278.56 15488.16 19369.78 7493.26 16269.58 19676.49 28391.60 145
xiu_mvs_v2_base81.69 11781.05 11883.60 14589.15 14268.03 13284.46 24190.02 15670.67 18981.30 12086.53 24263.17 14494.19 12075.60 14088.54 13088.57 262
PS-MVSNAJ81.69 11781.02 11983.70 14389.51 12368.21 12784.28 24790.09 15570.79 18681.26 12185.62 26263.15 14594.29 11375.62 13988.87 12388.59 261
GeoE81.71 11681.01 12083.80 14289.51 12364.45 21088.97 10788.73 20471.27 17778.63 15289.76 14866.32 11493.20 16969.89 19286.02 16493.74 68
hse-mvs281.72 11580.94 12184.07 12788.72 16067.68 13885.87 20787.26 23476.02 8584.67 6688.22 19261.54 16993.48 15382.71 7273.44 32991.06 163
PAPR81.66 12080.89 12283.99 13790.27 10064.00 21786.76 18491.77 10768.84 23677.13 19189.50 15567.63 10094.88 9767.55 21488.52 13193.09 99
mvsmamba81.69 11780.74 12384.56 10187.45 20866.72 16191.26 4885.89 25674.66 11178.23 16290.56 13254.33 23494.91 9280.73 9383.54 20192.04 139
MAR-MVS81.84 11380.70 12485.27 7891.32 7971.53 5489.82 7690.92 12869.77 21278.50 15586.21 24862.36 15794.52 10865.36 23392.05 8189.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 12280.67 12584.05 13290.44 9864.13 21689.73 8185.91 25571.11 18083.18 9493.48 5850.54 27893.49 15273.40 15988.25 13494.54 32
ACMP74.13 681.51 12480.57 12684.36 10989.42 12768.69 11689.97 7491.50 11674.46 11675.04 24590.41 13553.82 24094.54 10677.56 11882.91 20989.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 14380.55 12780.76 22888.07 18560.80 26886.86 17891.58 11175.67 9280.24 13089.45 16163.34 13990.25 26270.51 18579.22 25591.23 158
DU-MVS81.12 12980.52 12882.90 17587.80 19463.46 23087.02 17391.87 10179.01 2678.38 15889.07 16765.02 12893.05 17970.05 18976.46 28492.20 131
test_yl81.17 12780.47 12983.24 15889.13 14363.62 22386.21 19889.95 15972.43 15881.78 11389.61 15257.50 21293.58 14670.75 18186.90 14892.52 117
DCV-MVSNet81.17 12780.47 12983.24 15889.13 14363.62 22386.21 19889.95 15972.43 15881.78 11389.61 15257.50 21293.58 14670.75 18186.90 14892.52 117
PVSNet_Blended80.98 13080.34 13182.90 17588.85 15065.40 18884.43 24392.00 9267.62 25178.11 16685.05 27666.02 11994.27 11571.52 17489.50 11589.01 244
TranMVSNet+NR-MVSNet80.84 13380.31 13282.42 19087.85 19262.33 24987.74 15491.33 11880.55 977.99 17089.86 14565.23 12692.62 18967.05 22175.24 31192.30 126
jason81.39 12580.29 13384.70 9886.63 22969.90 8585.95 20486.77 24363.24 30381.07 12389.47 15761.08 18292.15 20878.33 11190.07 10992.05 137
jason: jason.
lupinMVS81.39 12580.27 13484.76 9787.35 20970.21 7785.55 21686.41 24762.85 31081.32 11788.61 17961.68 16692.24 20678.41 11090.26 10491.83 141
SDMVSNet80.38 14880.18 13580.99 22289.03 14864.94 19980.45 30589.40 17275.19 10076.61 20189.98 14360.61 19087.69 30376.83 12783.55 19990.33 193
PVSNet_BlendedMVS80.60 14380.02 13682.36 19288.85 15065.40 18886.16 20092.00 9269.34 22078.11 16686.09 25266.02 11994.27 11571.52 17482.06 22087.39 282
EI-MVSNet80.52 14679.98 13782.12 19384.28 26863.19 23886.41 19288.95 19574.18 12278.69 14987.54 20966.62 10892.43 19672.57 16980.57 23890.74 177
Fast-Effi-MVS+80.81 13579.92 13883.47 14888.85 15064.51 20685.53 21889.39 17370.79 18678.49 15685.06 27567.54 10193.58 14667.03 22286.58 15392.32 125
FA-MVS(test-final)80.96 13179.91 13984.10 12288.30 17665.01 19784.55 23890.01 15773.25 14679.61 13687.57 20658.35 20494.72 10371.29 17886.25 15992.56 116
CANet_DTU80.61 14279.87 14082.83 17785.60 24363.17 23987.36 16288.65 20576.37 7875.88 21688.44 18553.51 24393.07 17873.30 16089.74 11492.25 128
ACMM73.20 880.78 14079.84 14183.58 14689.31 13568.37 12289.99 7391.60 11070.28 19977.25 18389.66 15053.37 24593.53 15174.24 15182.85 21088.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 13579.76 14283.96 13985.60 24368.78 10883.54 26190.50 14070.66 19276.71 19791.66 9760.69 18791.26 24276.94 12581.58 22591.83 141
xiu_mvs_v1_base_debu80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
xiu_mvs_v1_base80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
xiu_mvs_v1_base_debi80.80 13779.72 14384.03 13487.35 20970.19 7985.56 21388.77 19969.06 23081.83 10988.16 19350.91 27292.85 18578.29 11287.56 13889.06 239
UGNet80.83 13479.59 14684.54 10288.04 18668.09 12989.42 9288.16 21176.95 5976.22 20989.46 15949.30 29393.94 12868.48 20790.31 10291.60 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 14179.51 14784.20 11994.09 3867.27 15089.64 8491.11 12558.75 34774.08 25790.72 12958.10 20595.04 8969.70 19489.42 11790.30 195
QAPM80.88 13279.50 14885.03 8588.01 18868.97 10491.59 4392.00 9266.63 26575.15 24192.16 8857.70 20995.45 6663.52 24588.76 12690.66 179
AdaColmapbinary80.58 14579.42 14984.06 12993.09 5468.91 10589.36 9588.97 19469.27 22175.70 21989.69 14957.20 21695.77 5663.06 25088.41 13387.50 281
NR-MVSNet80.23 15279.38 15082.78 18387.80 19463.34 23386.31 19591.09 12679.01 2672.17 27989.07 16767.20 10592.81 18866.08 22875.65 29792.20 131
IterMVS-LS80.06 15579.38 15082.11 19485.89 23863.20 23786.79 18189.34 17474.19 12175.45 22686.72 22966.62 10892.39 19872.58 16876.86 27890.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf80.30 15179.32 15283.27 15683.98 27665.37 19190.50 6190.38 14368.55 24076.19 21088.70 17556.44 22093.46 15578.98 10280.14 24490.97 168
v2v48280.23 15279.29 15383.05 16883.62 28264.14 21587.04 17289.97 15873.61 13478.18 16587.22 21761.10 18193.82 13676.11 13276.78 28191.18 159
ECVR-MVScopyleft79.61 16179.26 15480.67 23090.08 10554.69 34387.89 15077.44 35174.88 10680.27 12992.79 7948.96 29992.45 19568.55 20692.50 7594.86 17
XVG-OURS80.41 14779.23 15583.97 13885.64 24269.02 10283.03 27290.39 14271.09 18177.63 17691.49 10554.62 23391.35 24075.71 13783.47 20291.54 148
WR-MVS79.49 16579.22 15680.27 23888.79 15658.35 29085.06 22588.61 20778.56 3077.65 17588.34 18763.81 13890.66 25864.98 23777.22 27391.80 143
test111179.43 16879.18 15780.15 24089.99 11053.31 35687.33 16477.05 35475.04 10380.23 13192.77 8148.97 29892.33 20368.87 20392.40 7794.81 20
mvs_anonymous79.42 16979.11 15880.34 23684.45 26757.97 29782.59 27487.62 22667.40 25576.17 21388.56 18268.47 9289.59 27470.65 18486.05 16393.47 84
v114480.03 15679.03 15983.01 17083.78 28064.51 20687.11 17190.57 13971.96 16478.08 16886.20 24961.41 17393.94 12874.93 14477.23 27290.60 182
v879.97 15879.02 16082.80 18084.09 27364.50 20887.96 14590.29 15074.13 12475.24 23886.81 22662.88 15093.89 13574.39 14975.40 30690.00 211
ab-mvs79.51 16478.97 16181.14 21888.46 16960.91 26683.84 25389.24 18170.36 19679.03 14388.87 17263.23 14390.21 26365.12 23582.57 21592.28 127
Anonymous2024052980.19 15478.89 16284.10 12290.60 9464.75 20388.95 10890.90 12965.97 27380.59 12791.17 11649.97 28393.73 14469.16 20082.70 21493.81 65
PCF-MVS73.52 780.38 14878.84 16385.01 8687.71 19968.99 10383.65 25691.46 11763.00 30777.77 17490.28 13766.10 11695.09 8861.40 26988.22 13590.94 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v1079.74 16078.67 16482.97 17384.06 27464.95 19887.88 15190.62 13673.11 14875.11 24286.56 24061.46 17294.05 12473.68 15475.55 29989.90 217
VPNet78.69 18878.66 16578.76 26588.31 17555.72 33284.45 24286.63 24576.79 6478.26 16190.55 13359.30 19889.70 27366.63 22377.05 27590.88 170
BH-untuned79.47 16678.60 16682.05 19589.19 14165.91 17786.07 20288.52 20872.18 16075.42 22787.69 20361.15 18093.54 15060.38 27686.83 15086.70 301
Effi-MVS+-dtu80.03 15678.57 16784.42 10785.13 25468.74 11188.77 11488.10 21374.99 10474.97 24683.49 30457.27 21593.36 15973.53 15680.88 23291.18 159
WR-MVS_H78.51 19278.49 16878.56 26988.02 18756.38 32388.43 12792.67 6277.14 5473.89 25887.55 20866.25 11589.24 28058.92 28973.55 32790.06 209
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16351.78 36586.70 18579.63 33674.14 12375.11 24290.83 12761.29 17789.75 27158.10 29891.60 8692.69 112
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13165.93 17684.95 22887.15 23773.56 13678.19 16489.79 14756.67 21993.36 15959.53 28386.74 15190.13 201
v119279.59 16378.43 17183.07 16783.55 28464.52 20586.93 17690.58 13770.83 18577.78 17385.90 25359.15 19993.94 12873.96 15377.19 27490.76 174
v14419279.47 16678.37 17282.78 18383.35 28763.96 21886.96 17490.36 14669.99 20577.50 17785.67 26060.66 18893.77 14074.27 15076.58 28290.62 180
CP-MVSNet78.22 19778.34 17377.84 28187.83 19354.54 34587.94 14791.17 12277.65 3873.48 26288.49 18362.24 16088.43 29462.19 26074.07 32090.55 184
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 23956.21 32786.78 18285.76 25873.60 13577.93 17187.57 20665.02 12888.99 28467.14 22075.33 30887.63 276
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12585.17 25069.91 8490.57 5990.97 12766.70 25972.17 27991.91 9154.70 23193.96 12561.81 26690.95 9588.41 265
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22260.24 27787.28 16688.79 19874.25 12076.84 19290.53 13449.48 28991.56 22967.98 21082.15 21893.29 90
V4279.38 17278.24 17682.83 17781.10 33365.50 18785.55 21689.82 16171.57 17178.21 16386.12 25160.66 18893.18 17275.64 13875.46 30389.81 222
mamv476.81 23078.23 17872.54 33486.12 23565.75 18378.76 32782.07 30964.12 29372.97 26891.02 12367.97 9668.08 39683.04 6678.02 26683.80 344
PS-CasMVS78.01 20678.09 17977.77 28387.71 19954.39 34788.02 14391.22 11977.50 4673.26 26488.64 17860.73 18588.41 29561.88 26473.88 32490.53 185
v192192079.22 17478.03 18082.80 18083.30 28963.94 21986.80 18090.33 14769.91 20877.48 17885.53 26358.44 20393.75 14273.60 15576.85 27990.71 178
jajsoiax79.29 17377.96 18183.27 15684.68 26166.57 16489.25 9890.16 15369.20 22675.46 22589.49 15645.75 32393.13 17576.84 12680.80 23490.11 203
TAPA-MVS73.13 979.15 17677.94 18282.79 18289.59 11962.99 24488.16 14091.51 11365.77 27477.14 19091.09 11860.91 18493.21 16650.26 34487.05 14692.17 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 17077.91 18383.90 14188.10 18363.84 22088.37 13284.05 27871.45 17476.78 19589.12 16649.93 28694.89 9670.18 18883.18 20792.96 106
c3_l78.75 18577.91 18381.26 21482.89 30361.56 26084.09 25189.13 18769.97 20675.56 22184.29 28766.36 11392.09 21073.47 15875.48 30190.12 202
MVSTER79.01 18077.88 18582.38 19183.07 29664.80 20284.08 25288.95 19569.01 23378.69 14987.17 22054.70 23192.43 19674.69 14580.57 23889.89 218
tt080578.73 18677.83 18681.43 20885.17 25060.30 27689.41 9390.90 12971.21 17877.17 18988.73 17446.38 31293.21 16672.57 16978.96 25690.79 172
X-MVStestdata80.37 15077.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8912.47 40867.45 10296.60 3383.06 6494.50 5094.07 52
v14878.72 18777.80 18881.47 20782.73 30661.96 25586.30 19688.08 21473.26 14576.18 21185.47 26562.46 15592.36 20071.92 17373.82 32590.09 205
v124078.99 18177.78 18982.64 18683.21 29163.54 22786.62 18790.30 14969.74 21577.33 18185.68 25957.04 21793.76 14173.13 16376.92 27690.62 180
mvs_tets79.13 17777.77 19083.22 16084.70 26066.37 16889.17 9990.19 15269.38 21975.40 22889.46 15944.17 33293.15 17376.78 12880.70 23690.14 200
miper_ehance_all_eth78.59 19177.76 19181.08 22082.66 30861.56 26083.65 25689.15 18568.87 23575.55 22283.79 29866.49 11192.03 21173.25 16176.39 28689.64 226
thisisatest053079.40 17077.76 19184.31 11387.69 20165.10 19687.36 16284.26 27670.04 20377.42 17988.26 19149.94 28494.79 10170.20 18784.70 17793.03 102
CDS-MVSNet79.07 17977.70 19383.17 16287.60 20368.23 12684.40 24586.20 25167.49 25376.36 20686.54 24161.54 16990.79 25561.86 26587.33 14290.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 18277.69 19482.81 17990.54 9664.29 21390.11 7291.51 11365.01 28376.16 21488.13 19850.56 27793.03 18269.68 19577.56 27191.11 161
PEN-MVS77.73 21277.69 19477.84 28187.07 22053.91 35087.91 14991.18 12177.56 4373.14 26688.82 17361.23 17889.17 28159.95 27972.37 33590.43 189
AUN-MVS79.21 17577.60 19684.05 13288.71 16167.61 14085.84 20987.26 23469.08 22977.23 18588.14 19753.20 24793.47 15475.50 14273.45 32891.06 163
v7n78.97 18277.58 19783.14 16383.45 28665.51 18688.32 13491.21 12073.69 13272.41 27686.32 24757.93 20693.81 13769.18 19975.65 29790.11 203
TAMVS78.89 18477.51 19883.03 16987.80 19467.79 13684.72 23285.05 26567.63 25076.75 19687.70 20262.25 15990.82 25458.53 29487.13 14590.49 187
sd_testset77.70 21577.40 19978.60 26889.03 14860.02 27979.00 32385.83 25775.19 10076.61 20189.98 14354.81 22685.46 32162.63 25683.55 19990.33 193
GBi-Net78.40 19377.40 19981.40 21087.60 20363.01 24088.39 12989.28 17671.63 16775.34 23087.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
test178.40 19377.40 19981.40 21087.60 20363.01 24088.39 12989.28 17671.63 16775.34 23087.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
BH-w/o78.21 19877.33 20280.84 22688.81 15465.13 19584.87 22987.85 22269.75 21374.52 25384.74 28061.34 17593.11 17658.24 29785.84 16784.27 336
FMVSNet278.20 19977.21 20381.20 21687.60 20362.89 24587.47 16089.02 19071.63 16775.29 23687.28 21354.80 22791.10 24862.38 25779.38 25289.61 227
anonymousdsp78.60 19077.15 20482.98 17280.51 33967.08 15587.24 16789.53 16965.66 27675.16 24087.19 21952.52 24892.25 20577.17 12379.34 25389.61 227
HY-MVS69.67 1277.95 20777.15 20480.36 23587.57 20760.21 27883.37 26387.78 22466.11 26975.37 22987.06 22463.27 14190.48 26061.38 27082.43 21690.40 191
cl2278.07 20377.01 20681.23 21582.37 31561.83 25783.55 26087.98 21668.96 23475.06 24483.87 29461.40 17491.88 21873.53 15676.39 28689.98 214
Anonymous20240521178.25 19677.01 20681.99 19791.03 8360.67 27084.77 23183.90 28070.65 19380.00 13391.20 11441.08 35091.43 23865.21 23485.26 17193.85 62
MVS78.19 20076.99 20881.78 20085.66 24166.99 15684.66 23390.47 14155.08 36772.02 28185.27 26863.83 13794.11 12366.10 22789.80 11384.24 337
LCM-MVSNet-Re77.05 22576.94 20977.36 28987.20 21751.60 36680.06 30980.46 32675.20 9967.69 32286.72 22962.48 15488.98 28563.44 24789.25 11891.51 149
miper_enhance_ethall77.87 21076.86 21080.92 22581.65 32261.38 26282.68 27388.98 19265.52 27875.47 22382.30 32165.76 12392.00 21372.95 16476.39 28689.39 232
FMVSNet377.88 20976.85 21180.97 22486.84 22362.36 24886.52 19088.77 19971.13 17975.34 23086.66 23554.07 23891.10 24862.72 25279.57 24889.45 231
DTE-MVSNet76.99 22676.80 21277.54 28886.24 23253.06 35887.52 15890.66 13577.08 5772.50 27488.67 17760.48 19289.52 27557.33 30570.74 34690.05 210
CNLPA78.08 20276.79 21381.97 19890.40 9971.07 6287.59 15784.55 27066.03 27272.38 27789.64 15157.56 21186.04 31459.61 28283.35 20488.79 255
cl____77.72 21376.76 21480.58 23182.49 31260.48 27383.09 26887.87 22069.22 22474.38 25585.22 27162.10 16291.53 23271.09 17975.41 30589.73 225
DIV-MVS_self_test77.72 21376.76 21480.58 23182.48 31360.48 27383.09 26887.86 22169.22 22474.38 25585.24 26962.10 16291.53 23271.09 17975.40 30689.74 224
baseline176.98 22776.75 21677.66 28488.13 18155.66 33385.12 22481.89 31073.04 15076.79 19488.90 17062.43 15687.78 30263.30 24971.18 34489.55 229
eth_miper_zixun_eth77.92 20876.69 21781.61 20583.00 29961.98 25483.15 26689.20 18369.52 21774.86 24884.35 28661.76 16592.56 19271.50 17672.89 33390.28 196
pm-mvs177.25 22476.68 21878.93 26384.22 27058.62 28986.41 19288.36 21071.37 17573.31 26388.01 19961.22 17989.15 28264.24 24373.01 33289.03 243
ET-MVSNet_ETH3D78.63 18976.63 21984.64 9986.73 22669.47 9285.01 22684.61 26969.54 21666.51 34086.59 23750.16 28191.75 22276.26 13184.24 18692.69 112
test250677.30 22376.49 22079.74 24890.08 10552.02 35987.86 15263.10 39474.88 10680.16 13292.79 7938.29 36392.35 20168.74 20592.50 7594.86 17
Fast-Effi-MVS+-dtu78.02 20576.49 22082.62 18783.16 29566.96 15986.94 17587.45 23172.45 15571.49 28684.17 29154.79 23091.58 22767.61 21380.31 24189.30 235
1112_ss77.40 22176.43 22280.32 23789.11 14760.41 27583.65 25687.72 22562.13 32073.05 26786.72 22962.58 15389.97 26762.11 26380.80 23490.59 183
PAPM77.68 21676.40 22381.51 20687.29 21661.85 25683.78 25489.59 16864.74 28571.23 28788.70 17562.59 15293.66 14552.66 32987.03 14789.01 244
PLCcopyleft70.83 1178.05 20476.37 22483.08 16691.88 7467.80 13588.19 13889.46 17164.33 29169.87 30488.38 18653.66 24193.58 14658.86 29082.73 21287.86 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21976.18 22581.20 21688.24 17763.24 23584.61 23686.40 24867.55 25277.81 17286.48 24354.10 23793.15 17357.75 30182.72 21387.20 287
FMVSNet177.44 21976.12 22681.40 21086.81 22463.01 24088.39 12989.28 17670.49 19574.39 25487.28 21349.06 29791.11 24560.91 27378.52 25990.09 205
test_vis1_n_192075.52 25175.78 22774.75 31579.84 34757.44 30783.26 26485.52 26062.83 31179.34 14186.17 25045.10 32779.71 35478.75 10481.21 22987.10 294
CHOSEN 1792x268877.63 21775.69 22883.44 14989.98 11168.58 11978.70 32887.50 22956.38 36275.80 21886.84 22558.67 20191.40 23961.58 26885.75 16990.34 192
FE-MVS77.78 21175.68 22984.08 12688.09 18466.00 17483.13 26787.79 22368.42 24478.01 16985.23 27045.50 32595.12 8259.11 28785.83 16891.11 161
WTY-MVS75.65 24975.68 22975.57 30586.40 23156.82 31477.92 33882.40 30565.10 28076.18 21187.72 20163.13 14880.90 35060.31 27781.96 22189.00 246
testing9176.54 23375.66 23179.18 26088.43 17155.89 33081.08 29283.00 29773.76 13175.34 23084.29 28746.20 31790.07 26564.33 24184.50 17991.58 147
XXY-MVS75.41 25475.56 23274.96 31183.59 28357.82 30180.59 30283.87 28166.54 26674.93 24788.31 18863.24 14280.09 35362.16 26176.85 27986.97 295
thres100view90076.50 23575.55 23379.33 25689.52 12256.99 31285.83 21083.23 29173.94 12676.32 20787.12 22151.89 26391.95 21448.33 35383.75 19389.07 237
thres600view776.50 23575.44 23479.68 25089.40 12957.16 30985.53 21883.23 29173.79 13076.26 20887.09 22251.89 26391.89 21748.05 35883.72 19690.00 211
Test_1112_low_res76.40 23975.44 23479.27 25789.28 13758.09 29381.69 28487.07 23859.53 33972.48 27586.67 23461.30 17689.33 27860.81 27580.15 24390.41 190
HyFIR lowres test77.53 21875.40 23683.94 14089.59 11966.62 16280.36 30688.64 20656.29 36376.45 20385.17 27257.64 21093.28 16161.34 27183.10 20891.91 140
thisisatest051577.33 22275.38 23783.18 16185.27 24963.80 22182.11 27983.27 29065.06 28175.91 21583.84 29649.54 28894.27 11567.24 21886.19 16091.48 152
tfpn200view976.42 23875.37 23879.55 25589.13 14357.65 30385.17 22183.60 28373.41 14176.45 20386.39 24552.12 25591.95 21448.33 35383.75 19389.07 237
thres40076.50 23575.37 23879.86 24589.13 14357.65 30385.17 22183.60 28373.41 14176.45 20386.39 24552.12 25591.95 21448.33 35383.75 19390.00 211
131476.53 23475.30 24080.21 23983.93 27762.32 25084.66 23388.81 19760.23 33270.16 29884.07 29355.30 22490.73 25767.37 21683.21 20687.59 279
GA-MVS76.87 22975.17 24181.97 19882.75 30562.58 24681.44 28986.35 25072.16 16374.74 24982.89 31346.20 31792.02 21268.85 20481.09 23091.30 157
testing9976.09 24475.12 24279.00 26188.16 17955.50 33580.79 29681.40 31673.30 14475.17 23984.27 28944.48 33090.02 26664.28 24284.22 18791.48 152
EPNet_dtu75.46 25274.86 24377.23 29282.57 31054.60 34486.89 17783.09 29471.64 16666.25 34285.86 25555.99 22188.04 29954.92 31886.55 15489.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 22874.82 24483.37 15390.45 9767.36 14789.15 10386.94 24061.87 32269.52 30790.61 13151.71 26694.53 10746.38 36586.71 15288.21 267
cascas76.72 23274.64 24582.99 17185.78 24065.88 17882.33 27689.21 18260.85 32872.74 27081.02 33247.28 30693.75 14267.48 21585.02 17289.34 234
DP-MVS76.78 23174.57 24683.42 15093.29 4869.46 9488.55 12483.70 28263.98 29870.20 29588.89 17154.01 23994.80 10046.66 36281.88 22386.01 313
TransMVSNet (Re)75.39 25574.56 24777.86 28085.50 24557.10 31186.78 18286.09 25472.17 16171.53 28587.34 21263.01 14989.31 27956.84 31061.83 37287.17 288
LTVRE_ROB69.57 1376.25 24174.54 24881.41 20988.60 16464.38 21279.24 31989.12 18870.76 18869.79 30687.86 20049.09 29693.20 16956.21 31580.16 24286.65 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 25074.47 24978.82 26487.78 19757.85 30083.07 27083.51 28672.44 15775.84 21784.42 28252.08 25891.75 22247.41 36083.64 19886.86 297
MVP-Stereo76.12 24274.46 25081.13 21985.37 24869.79 8684.42 24487.95 21865.03 28267.46 32585.33 26753.28 24691.73 22458.01 29983.27 20581.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 24074.33 25182.50 18989.28 13766.95 16088.41 12889.03 18964.05 29666.83 33288.61 17946.78 31092.89 18457.48 30278.55 25887.67 275
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20383.20 29264.67 20483.60 25989.75 16469.75 21371.85 28287.09 22232.78 37592.11 20969.99 19180.43 24088.09 268
testing1175.14 25774.01 25378.53 27188.16 17956.38 32380.74 29980.42 32770.67 18972.69 27383.72 30043.61 33589.86 26862.29 25983.76 19289.36 233
ACMH+68.96 1476.01 24574.01 25382.03 19688.60 16465.31 19288.86 11187.55 22770.25 20167.75 32187.47 21141.27 34893.19 17158.37 29575.94 29487.60 277
ACMH67.68 1675.89 24673.93 25581.77 20188.71 16166.61 16388.62 12289.01 19169.81 20966.78 33386.70 23341.95 34791.51 23455.64 31678.14 26587.17 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 25673.90 25679.27 25782.65 30958.27 29280.80 29582.73 30361.57 32375.33 23483.13 30955.52 22291.07 25164.98 23778.34 26488.45 263
IterMVS-SCA-FT75.43 25373.87 25780.11 24182.69 30764.85 20181.57 28683.47 28769.16 22770.49 29284.15 29251.95 26188.15 29769.23 19872.14 33887.34 284
baseline275.70 24873.83 25881.30 21383.26 29061.79 25882.57 27580.65 32266.81 25666.88 33183.42 30557.86 20892.19 20763.47 24679.57 24889.91 216
test_cas_vis1_n_192073.76 26973.74 25973.81 32375.90 36859.77 28180.51 30382.40 30558.30 34981.62 11585.69 25844.35 33176.41 37276.29 13078.61 25785.23 324
sss73.60 27073.64 26073.51 32582.80 30455.01 34176.12 34581.69 31362.47 31674.68 25085.85 25657.32 21478.11 36160.86 27480.93 23187.39 282
pmmvs674.69 25973.39 26178.61 26781.38 32857.48 30686.64 18687.95 21864.99 28470.18 29686.61 23650.43 27989.52 27562.12 26270.18 34888.83 253
IB-MVS68.01 1575.85 24773.36 26283.31 15484.76 25966.03 17283.38 26285.06 26470.21 20269.40 30881.05 33145.76 32294.66 10565.10 23675.49 30089.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 25873.21 26379.64 25279.81 34862.56 24780.34 30787.35 23264.37 29068.86 31382.66 31746.37 31390.10 26467.91 21181.24 22886.25 306
tfpnnormal74.39 26073.16 26478.08 27886.10 23758.05 29484.65 23587.53 22870.32 19871.22 28885.63 26154.97 22589.86 26843.03 37675.02 31386.32 305
miper_lstm_enhance74.11 26473.11 26577.13 29380.11 34359.62 28372.23 36586.92 24166.76 25870.40 29382.92 31256.93 21882.92 33969.06 20172.63 33488.87 251
IterMVS74.29 26172.94 26678.35 27481.53 32563.49 22981.58 28582.49 30468.06 24869.99 30183.69 30151.66 26785.54 31965.85 23071.64 34186.01 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 26872.67 26777.30 29183.87 27866.02 17381.82 28184.66 26861.37 32668.61 31682.82 31547.29 30588.21 29659.27 28484.32 18577.68 376
testing22274.04 26572.66 26878.19 27687.89 19055.36 33681.06 29379.20 34071.30 17674.65 25183.57 30339.11 35988.67 29151.43 33685.75 16990.53 185
CVMVSNet72.99 27972.58 26974.25 31984.28 26850.85 37186.41 19283.45 28844.56 38673.23 26587.54 20949.38 29185.70 31665.90 22978.44 26186.19 308
test-LLR72.94 28072.43 27074.48 31681.35 32958.04 29578.38 33177.46 34966.66 26069.95 30279.00 35248.06 30279.24 35566.13 22584.83 17486.15 309
OurMVSNet-221017-074.26 26272.42 27179.80 24783.76 28159.59 28485.92 20686.64 24466.39 26766.96 33087.58 20539.46 35691.60 22665.76 23169.27 35188.22 266
SCA74.22 26372.33 27279.91 24484.05 27562.17 25279.96 31279.29 33966.30 26872.38 27780.13 34151.95 26188.60 29259.25 28577.67 27088.96 248
tpmrst72.39 28272.13 27373.18 32980.54 33849.91 37579.91 31379.08 34163.11 30571.69 28479.95 34355.32 22382.77 34065.66 23273.89 32386.87 296
pmmvs474.03 26771.91 27480.39 23481.96 31868.32 12381.45 28882.14 30759.32 34069.87 30485.13 27352.40 25188.13 29860.21 27874.74 31684.73 333
EG-PatchMatch MVS74.04 26571.82 27580.71 22984.92 25767.42 14485.86 20888.08 21466.04 27164.22 35483.85 29535.10 37292.56 19257.44 30380.83 23382.16 361
tpm72.37 28471.71 27674.35 31882.19 31652.00 36079.22 32077.29 35264.56 28772.95 26983.68 30251.35 26883.26 33858.33 29675.80 29587.81 273
WB-MVSnew71.96 28971.65 27772.89 33084.67 26451.88 36382.29 27777.57 34862.31 31773.67 26083.00 31053.49 24481.10 34945.75 36982.13 21985.70 318
UWE-MVS72.13 28771.49 27874.03 32186.66 22847.70 37981.40 29076.89 35663.60 30275.59 22084.22 29039.94 35585.62 31848.98 35086.13 16288.77 256
CL-MVSNet_self_test72.37 28471.46 27975.09 31079.49 35453.53 35280.76 29885.01 26669.12 22870.51 29182.05 32557.92 20784.13 33052.27 33166.00 36487.60 277
tpm273.26 27571.46 27978.63 26683.34 28856.71 31780.65 30180.40 32856.63 36173.55 26182.02 32651.80 26591.24 24356.35 31478.42 26287.95 269
RPSCF73.23 27671.46 27978.54 27082.50 31159.85 28082.18 27882.84 30258.96 34471.15 28989.41 16345.48 32684.77 32758.82 29171.83 34091.02 167
PatchmatchNetpermissive73.12 27771.33 28278.49 27383.18 29360.85 26779.63 31478.57 34364.13 29271.73 28379.81 34651.20 27085.97 31557.40 30476.36 29188.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 27271.27 28379.67 25181.32 33165.19 19375.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30859.84 28077.71 26887.11 292
SixPastTwentyTwo73.37 27271.26 28479.70 24985.08 25557.89 29985.57 21283.56 28571.03 18365.66 34485.88 25442.10 34592.57 19159.11 28763.34 37088.65 260
ETVMVS72.25 28671.05 28575.84 30187.77 19851.91 36279.39 31774.98 36369.26 22273.71 25982.95 31140.82 35286.14 31346.17 36684.43 18489.47 230
MSDG73.36 27470.99 28680.49 23384.51 26665.80 18080.71 30086.13 25365.70 27565.46 34583.74 29944.60 32890.91 25351.13 33776.89 27784.74 332
PatchMatch-RL72.38 28370.90 28776.80 29688.60 16467.38 14679.53 31576.17 36062.75 31369.36 30982.00 32745.51 32484.89 32653.62 32480.58 23778.12 375
PVSNet64.34 1872.08 28870.87 28875.69 30386.21 23356.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33754.77 31984.45 18387.32 285
dmvs_re71.14 29370.58 28972.80 33181.96 31859.68 28275.60 35179.34 33868.55 24069.27 31180.72 33749.42 29076.54 36952.56 33077.79 26782.19 360
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29478.77 34251.21 37978.58 15384.41 28331.20 38076.94 36775.88 13680.12 24584.47 335
RPMNet73.51 27170.49 29182.58 18881.32 33165.19 19375.92 34792.27 7957.60 35572.73 27176.45 36852.30 25295.43 6848.14 35777.71 26887.11 292
test_040272.79 28170.44 29279.84 24688.13 18165.99 17585.93 20584.29 27465.57 27767.40 32785.49 26446.92 30992.61 19035.88 38874.38 31980.94 367
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22787.13 21965.63 18488.30 13584.19 27762.96 30863.80 35887.69 20338.04 36492.56 19246.66 36274.91 31484.24 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 29170.39 29474.48 31681.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35566.13 22584.83 17486.15 309
test_fmvs1_n70.86 29770.24 29572.73 33272.51 38955.28 33881.27 29179.71 33551.49 37878.73 14884.87 27727.54 38577.02 36676.06 13379.97 24685.88 316
pmmvs571.55 29070.20 29675.61 30477.83 36156.39 32281.74 28380.89 31857.76 35367.46 32584.49 28149.26 29485.32 32357.08 30775.29 30985.11 328
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30751.60 33478.51 260
MIMVSNet70.69 29969.30 29874.88 31284.52 26556.35 32575.87 34979.42 33764.59 28667.76 32082.41 31941.10 34981.54 34646.64 36481.34 22686.75 300
tpmvs71.09 29469.29 29976.49 29782.04 31756.04 32878.92 32581.37 31764.05 29667.18 32978.28 35849.74 28789.77 27049.67 34772.37 33583.67 345
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28776.21 35952.03 37575.30 23583.20 30828.97 38376.22 37474.60 14678.41 26383.81 343
Patchmtry70.74 29869.16 30175.49 30780.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 30953.37 32671.09 34585.87 317
TESTMET0.1,169.89 30869.00 30272.55 33379.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36863.92 24484.09 18884.10 340
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36061.16 27282.77 21173.90 382
K. test v371.19 29268.51 30479.21 25983.04 29857.78 30284.35 24676.91 35572.90 15362.99 36182.86 31439.27 35791.09 25061.65 26752.66 38888.75 257
USDC70.33 30368.37 30576.21 29980.60 33756.23 32679.19 32186.49 24660.89 32761.29 36585.47 26531.78 37889.47 27753.37 32676.21 29282.94 355
tpm cat170.57 30068.31 30677.35 29082.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30151.77 33272.07 33986.25 306
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28580.26 34059.41 28685.01 22682.96 29958.76 34665.43 34682.33 32037.63 36691.23 24445.34 37276.03 29382.32 358
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36356.58 31275.26 31087.13 291
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29873.15 38557.55 30579.47 31683.92 27948.02 38256.48 38284.81 27843.13 33786.42 31162.67 25581.81 22484.89 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 29568.09 31079.58 25385.15 25263.62 22384.58 23779.83 33362.31 31760.32 36986.73 22732.02 37688.96 28750.28 34271.57 34286.15 309
gg-mvs-nofinetune69.95 30767.96 31175.94 30083.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29053.88 32387.76 13784.62 334
FMVSNet569.50 31067.96 31174.15 32082.97 30255.35 33780.01 31182.12 30862.56 31563.02 35981.53 32836.92 36781.92 34448.42 35274.06 32185.17 327
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26366.74 33479.46 34752.11 25782.30 34232.89 39176.38 28982.75 356
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34550.58 33874.83 31585.34 322
pmmvs-eth3d70.50 30267.83 31578.52 27277.37 36466.18 17181.82 28181.51 31458.90 34563.90 35780.42 33942.69 34086.28 31258.56 29365.30 36683.11 351
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35743.62 37575.70 29683.36 348
Patchmatch-RL test70.24 30467.78 31777.61 28677.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32069.58 19666.58 36187.77 274
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26066.56 33682.29 32248.06 30275.87 37644.97 37374.51 31883.41 347
testing368.56 31867.67 31971.22 34587.33 21442.87 39383.06 27171.54 37570.36 19669.08 31284.38 28430.33 38285.69 31737.50 38775.45 30485.09 329
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 23984.27 27542.27 38966.44 34184.79 27940.44 35383.76 33258.76 29268.54 35683.17 349
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 23963.12 30463.99 35678.99 35442.32 34284.77 32756.55 31364.09 36987.16 290
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31076.38 35849.33 38174.65 25184.38 28423.30 39375.40 38174.51 14775.17 31285.60 319
ppachtmachnet_test70.04 30667.34 32378.14 27779.80 34961.13 26379.19 32180.59 32359.16 34265.27 34779.29 34946.75 31187.29 30549.33 34866.72 35986.00 315
Anonymous2024052168.80 31567.22 32473.55 32474.33 37554.11 34883.18 26585.61 25958.15 35061.68 36480.94 33430.71 38181.27 34857.00 30873.34 33185.28 323
our_test_369.14 31267.00 32575.57 30579.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33151.71 33367.58 35883.93 342
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26063.01 36083.80 29747.02 30878.40 35942.53 37868.86 35583.58 346
MIMVSNet168.58 31766.78 32773.98 32280.07 34451.82 36480.77 29784.37 27164.40 28959.75 37282.16 32436.47 36883.63 33442.73 37770.33 34786.48 304
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 26965.20 35086.59 23735.72 37174.71 38343.71 37473.38 33084.84 331
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26366.74 33479.46 34731.53 37982.30 34239.43 38476.38 28982.75 356
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26365.20 27960.78 36780.93 33642.35 34177.20 36557.12 30653.69 38785.44 321
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35148.86 35166.58 36183.16 350
TinyColmap67.30 32764.81 33274.76 31481.92 32056.68 31880.29 30881.49 31560.33 33056.27 38383.22 30624.77 38987.66 30445.52 37069.47 35079.95 371
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38255.25 31779.68 24776.88 378
TDRefinement67.49 32464.34 33476.92 29473.47 38261.07 26484.86 23082.98 29859.77 33658.30 37685.13 27326.06 38687.89 30047.92 35960.59 37781.81 363
PM-MVS66.41 33364.14 33573.20 32873.92 37756.45 32078.97 32464.96 39263.88 30164.72 35180.24 34019.84 39683.44 33666.24 22464.52 36879.71 372
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 24960.34 36876.01 37053.56 24273.94 38731.79 39267.65 35775.88 380
KD-MVS_2432*160066.22 33563.89 33773.21 32675.47 37353.42 35470.76 37184.35 27264.10 29466.52 33878.52 35634.55 37384.98 32450.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32675.47 37353.42 35470.76 37184.35 27264.10 29466.52 33878.52 35634.55 37384.98 32450.40 34050.33 39181.23 365
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30279.28 35660.56 27273.92 36178.35 34464.43 28850.13 39079.87 34544.02 33383.67 33346.10 36756.86 38083.03 353
ADS-MVSNet266.20 33763.33 34074.82 31379.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35241.57 37968.91 35385.18 325
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39040.66 38173.57 32687.90 271
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38549.89 34661.55 37382.99 354
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38449.95 34561.52 37483.05 352
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38641.57 37968.91 35385.18 325
JIA-IIPM66.32 33462.82 34576.82 29577.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31051.45 33569.22 35282.21 359
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37053.06 32866.66 36078.68 374
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 38972.77 16766.02 36383.99 341
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37145.95 36857.67 37984.13 339
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35849.26 34952.21 38980.63 368
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36447.01 36135.91 39771.55 385
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39462.80 25169.48 34973.25 383
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34139.53 38273.95 32264.62 391
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39538.78 38572.37 33576.97 377
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37717.31 40435.07 39870.12 386
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 37945.45 37155.25 38672.90 384
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38016.20 40732.28 40069.20 387
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39324.24 40065.42 36558.40 396
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37334.64 39055.36 38563.86 392
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36248.24 35651.20 39080.57 369
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30467.75 3850.07 4110.43 41275.85 37324.26 39081.54 34628.82 39462.25 37159.16 394
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38831.22 39315.89 40879.18 373
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39126.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39126.39 39846.73 39555.04 397
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37822.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37517.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1790.00 4140.00 41588.61 17961.62 1680.00 4150.00 4140.00 4130.00 411
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
PC_three_145268.21 24692.02 1294.00 4682.09 595.98 5384.58 4996.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS94.38 2572.22 4492.67 6270.98 18487.75 3294.07 4174.01 3296.70 2784.66 4894.84 43
IU-MVS95.30 271.25 5792.95 5266.81 25692.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5996.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 46
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6391.17 12274.31 118
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 47
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 248
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26988.96 248
sam_mvs50.01 282
ambc75.24 30973.16 38450.51 37363.05 39687.47 23064.28 35377.81 36217.80 39889.73 27257.88 30060.64 37685.49 320
MTGPAbinary92.02 90
test_post178.90 3265.43 41048.81 30185.44 32259.25 285
test_post5.46 40950.36 28084.24 329
patchmatchnet-post74.00 37751.12 27188.60 292
GG-mvs-BLEND75.38 30881.59 32455.80 33179.32 31869.63 38067.19 32873.67 37843.24 33688.90 28950.41 33984.50 17981.45 364
MTMP92.18 3532.83 413
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19863.40 248
test9_res84.90 4295.70 2692.87 107
TEST993.26 5072.96 2588.75 11591.89 9968.44 24385.00 5993.10 6774.36 2895.41 70
test_893.13 5272.57 3588.68 12091.84 10368.69 23884.87 6393.10 6774.43 2695.16 80
agg_prior282.91 6895.45 3092.70 110
agg_prior92.85 5971.94 5191.78 10684.41 7594.93 91
TestCases79.58 25385.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28750.28 34271.57 34286.15 309
test_prior472.60 3489.01 106
test_prior288.85 11275.41 9584.91 6193.54 5674.28 2983.31 6295.86 20
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6593.91 58
旧先验286.56 18958.10 35187.04 4188.98 28574.07 152
新几何286.29 197
新几何183.42 15093.13 5270.71 7185.48 26157.43 35781.80 11291.98 9063.28 14092.27 20464.60 24092.99 6887.27 286
旧先验191.96 7165.79 18186.37 24993.08 7169.31 8192.74 7188.74 258
无先验87.48 15988.98 19260.00 33494.12 12267.28 21788.97 247
原ACMM286.86 178
原ACMM184.35 11093.01 5768.79 10792.44 7263.96 29981.09 12291.57 10266.06 11895.45 6667.19 21994.82 4588.81 254
test22291.50 7768.26 12584.16 24983.20 29354.63 36879.74 13491.63 10058.97 20091.42 8986.77 299
testdata291.01 25262.37 258
segment_acmp73.08 38
testdata79.97 24390.90 8764.21 21484.71 26759.27 34185.40 5392.91 7362.02 16489.08 28368.95 20291.37 9086.63 303
testdata184.14 25075.71 89
test1286.80 4992.63 6470.70 7291.79 10582.71 10371.67 5496.16 4494.50 5093.54 82
plane_prior790.08 10568.51 120
plane_prior689.84 11468.70 11560.42 193
plane_prior592.44 7295.38 7278.71 10586.32 15791.33 155
plane_prior491.00 124
plane_prior368.60 11878.44 3178.92 146
plane_prior291.25 5079.12 23
plane_prior189.90 113
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 420
nn0.00 420
door-mid69.98 379
lessismore_v078.97 26281.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24159.67 28146.92 39488.43 264
LGP-MVS_train84.50 10389.23 13968.76 10991.94 9675.37 9676.64 19991.51 10354.29 23594.91 9278.44 10883.78 19089.83 220
test1192.23 82
door69.44 382
HQP5-MVS66.98 157
HQP-NCC89.33 13289.17 9976.41 7477.23 185
ACMP_Plane89.33 13289.17 9976.41 7477.23 185
BP-MVS77.47 119
HQP4-MVS77.24 18495.11 8491.03 165
HQP3-MVS92.19 8585.99 165
HQP2-MVS60.17 196
NP-MVS89.62 11868.32 12390.24 138
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 270
ACMMP++_ref81.95 222
ACMMP++81.25 227
Test By Simon64.33 132
ITE_SJBPF78.22 27581.77 32160.57 27183.30 28969.25 22367.54 32387.20 21836.33 36987.28 30654.34 32174.62 31786.80 298
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404