This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS81.56 282.30 279.32 1287.77 458.90 6887.82 786.78 1064.18 3185.97 191.84 866.87 390.83 578.63 1690.87 588.23 15
test_241102_ONE87.77 458.90 6886.78 1064.20 3085.97 191.34 1266.87 390.78 7
IU-MVS87.77 459.15 5985.53 2553.93 21584.64 379.07 1090.87 588.37 12
PC_three_145255.09 19684.46 489.84 4266.68 589.41 1774.24 3491.38 288.42 10
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 5988.18 187.15 365.04 1584.26 591.86 667.01 190.84 379.48 591.38 288.42 10
test_241102_TWO86.73 1264.18 3184.26 591.84 865.19 690.83 578.63 1690.70 787.65 34
test072687.75 759.07 6387.86 486.83 864.26 2884.19 791.92 564.82 8
DVP-MVScopyleft80.84 481.64 378.42 3387.75 759.07 6387.85 585.03 3464.26 2883.82 892.00 364.82 890.75 878.66 1490.61 1185.45 110
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD65.04 1583.82 892.00 364.69 1090.75 879.48 590.63 1088.09 20
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1786.83 865.51 1183.81 1090.51 2263.71 1289.23 1981.51 288.44 2788.09 20
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_one_060187.58 959.30 5686.84 765.01 1983.80 1191.86 664.03 11
test_part287.58 960.47 4283.42 12
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4185.71 2586.42 1463.28 4383.27 1391.83 1064.96 790.47 1076.41 2589.67 1886.84 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS80.16 780.59 678.86 2786.64 2160.02 4588.12 386.42 1462.94 5082.40 1492.12 259.64 1889.76 1478.70 1288.32 3186.79 60
SMA-MVScopyleft80.28 680.39 779.95 386.60 2361.95 1986.33 1385.75 2162.49 6182.20 1592.28 156.53 3389.70 1579.85 491.48 188.19 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FOURS186.12 3660.82 3788.18 183.61 6260.87 8381.50 16
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1884.92 5660.32 4483.03 5685.33 2762.86 5380.17 1790.03 3761.76 1488.95 2374.21 3588.67 2688.12 19
SD-MVS77.70 2577.62 2577.93 4184.47 5961.88 2184.55 3383.87 5660.37 9579.89 1889.38 4854.97 4585.58 9676.12 2684.94 6186.33 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 1878.28 1978.90 2584.96 5261.41 2684.03 4483.82 5859.34 11679.37 1989.76 4459.84 1687.62 4676.69 2386.74 5187.68 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS78.82 1279.22 1177.60 4382.88 7457.83 7984.99 3188.13 261.86 7479.16 2090.75 1757.96 2587.09 5977.08 2290.18 1587.87 25
APD-MVScopyleft78.02 2278.04 2277.98 4086.44 2760.81 3885.52 2684.36 4360.61 8879.05 2190.30 2955.54 4088.32 3173.48 4387.03 4484.83 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6065.37 1278.78 2290.64 1858.63 2487.24 5079.00 1190.37 1485.26 120
9.1478.75 1483.10 6984.15 4288.26 159.90 10578.57 2390.36 2657.51 3086.86 6377.39 1989.52 21
ZD-MVS86.64 2160.38 4382.70 8557.95 14178.10 2490.06 3556.12 3788.84 2574.05 3787.00 47
ACMMP_NAP78.77 1478.78 1378.74 2885.44 4561.04 3183.84 4885.16 3062.88 5278.10 2491.26 1352.51 6988.39 2979.34 790.52 1386.78 61
SteuartSystems-ACMMP79.48 1079.31 1079.98 283.01 7262.18 1687.60 985.83 1966.69 878.03 2690.98 1554.26 5190.06 1278.42 1889.02 2387.69 32
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 1784.37 3585.03 3466.96 477.58 2790.06 3559.47 2089.13 2178.67 1389.73 1687.03 52
test_fmvsm_n_192071.73 8871.14 8873.50 12672.52 26656.53 10075.60 18176.16 20348.11 27577.22 2885.56 11353.10 6677.43 25174.86 3177.14 15086.55 66
canonicalmvs74.67 5374.98 4973.71 11778.94 14050.56 19280.23 9583.87 5660.30 9977.15 2986.56 9059.65 1782.00 17366.01 9182.12 8888.58 9
alignmvs73.86 6273.99 5773.45 12978.20 16050.50 19378.57 12282.43 8759.40 11476.57 3086.71 8456.42 3581.23 18965.84 9381.79 9288.62 7
旧先验276.08 17245.32 30276.55 3165.56 31558.75 152
MP-MVS-pluss78.35 1978.46 1778.03 3984.96 5259.52 5282.93 5885.39 2662.15 6676.41 3291.51 1152.47 7186.78 6680.66 389.64 1987.80 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
casdiffmvs_mvgpermissive76.14 4076.30 3575.66 7076.46 20951.83 17679.67 10885.08 3165.02 1875.84 3388.58 5959.42 2185.08 10772.75 4683.93 7190.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA76.90 3376.42 3478.35 3486.08 3763.57 274.92 19880.97 12265.13 1475.77 3490.88 1648.63 11286.66 6977.23 2088.17 3384.81 132
dcpmvs_274.55 5675.23 4772.48 14982.34 7753.34 14777.87 13181.46 10257.80 14575.49 3586.81 7962.22 1377.75 24771.09 5782.02 9086.34 72
CSCG76.92 3276.75 3077.41 4583.96 6259.60 5082.95 5786.50 1360.78 8675.27 3684.83 12360.76 1586.56 7267.86 7487.87 4086.06 84
SR-MVS76.13 4175.70 4277.40 4785.87 4061.20 2985.52 2682.19 9059.99 10475.10 3790.35 2747.66 12486.52 7471.64 5482.99 7784.47 141
ZNCC-MVS78.82 1278.67 1679.30 1386.43 2862.05 1886.62 1186.01 1863.32 4275.08 3890.47 2553.96 5588.68 2676.48 2489.63 2087.16 50
test_prior281.75 7960.37 9575.01 3989.06 5156.22 3672.19 4988.96 24
TEST985.58 4361.59 2481.62 8181.26 11455.65 18574.93 4088.81 5553.70 5984.68 117
train_agg76.27 3876.15 3676.64 5485.58 4361.59 2481.62 8181.26 11455.86 17674.93 4088.81 5553.70 5984.68 11775.24 3088.33 3083.65 172
MCST-MVS77.48 2777.45 2677.54 4486.67 2058.36 7583.22 5486.93 556.91 15674.91 4288.19 6059.15 2287.68 4573.67 4187.45 4186.57 65
h-mvs3372.71 7271.49 7976.40 5781.99 8159.58 5176.92 15776.74 19960.40 9274.81 4385.95 10645.54 15285.76 9270.41 6070.61 22483.86 160
hse-mvs271.04 9769.86 10774.60 9479.58 12357.12 9573.96 21475.25 21760.40 9274.81 4381.95 18945.54 15282.90 15070.41 6066.83 27283.77 165
test_885.40 4660.96 3481.54 8481.18 11755.86 17674.81 4388.80 5753.70 5984.45 121
agg_prior85.04 5059.96 4681.04 12074.68 4684.04 127
NCCC78.58 1678.31 1879.39 1187.51 1262.61 1385.20 3084.42 4266.73 774.67 4789.38 4855.30 4189.18 2074.19 3687.34 4286.38 68
nrg03072.96 6973.01 6672.84 14275.41 22450.24 19580.02 9982.89 8358.36 13274.44 4886.73 8258.90 2380.83 19965.84 9374.46 17087.44 41
casdiffmvspermissive74.80 5074.89 5074.53 9775.59 22150.37 19478.17 12785.06 3362.80 5774.40 4987.86 6757.88 2683.61 13769.46 6582.79 8489.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + GP.74.90 4974.15 5677.17 4882.00 8058.77 7181.80 7878.57 16158.58 12774.32 5084.51 13355.94 3887.22 5167.11 8284.48 6685.52 106
GST-MVS78.14 2177.85 2378.99 2486.05 3861.82 2285.84 2085.21 2963.56 4074.29 5190.03 3752.56 6888.53 2874.79 3288.34 2986.63 64
MVS_030478.73 1578.75 1478.66 2980.82 10057.62 8285.31 2981.31 11170.51 174.17 5291.24 1454.99 4489.56 1682.29 188.13 3488.80 6
CDPH-MVS76.31 3775.67 4378.22 3685.35 4859.14 6181.31 8684.02 4856.32 16874.05 5388.98 5353.34 6387.92 4069.23 6688.42 2887.59 37
baseline74.61 5474.70 5174.34 10175.70 21749.99 20277.54 14084.63 4062.73 5873.98 5487.79 6957.67 2883.82 13369.49 6382.74 8589.20 5
HFP-MVS78.01 2377.65 2479.10 2086.71 1962.81 886.29 1484.32 4462.82 5473.96 5590.50 2353.20 6488.35 3074.02 3887.05 4386.13 82
testdata64.66 26781.52 8652.93 15465.29 30046.09 29673.88 5687.46 7138.08 22966.26 31253.31 19278.48 13574.78 297
DeepC-MVS69.38 278.56 1778.14 2179.83 683.60 6361.62 2384.17 4186.85 663.23 4573.84 5790.25 3157.68 2789.96 1374.62 3389.03 2287.89 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize74.96 4874.39 5476.67 5382.20 7858.24 7683.67 5083.29 7458.41 13073.71 5890.14 3245.62 14985.99 8669.64 6282.85 8385.78 93
MP-MVScopyleft78.35 1978.26 2078.64 3086.54 2563.47 486.02 1983.55 6463.89 3673.60 5990.60 1954.85 4786.72 6777.20 2188.06 3685.74 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR77.71 2477.23 2779.16 1686.75 1862.93 786.29 1484.24 4562.82 5473.55 6090.56 2149.80 9988.24 3274.02 3887.03 4486.32 76
PHI-MVS75.87 4375.36 4477.41 4580.62 10655.91 11284.28 3885.78 2056.08 17473.41 6186.58 8950.94 9288.54 2770.79 5889.71 1787.79 30
CS-MVS76.25 3975.98 3877.06 4980.15 11555.63 11784.51 3483.90 5363.24 4473.30 6287.27 7555.06 4386.30 8271.78 5284.58 6389.25 4
region2R77.67 2677.18 2879.15 1786.76 1762.95 686.29 1484.16 4762.81 5673.30 6290.58 2049.90 9788.21 3373.78 4087.03 4486.29 79
test_fmvsmvis_n_192070.84 10070.38 10072.22 15671.16 28555.39 12375.86 17872.21 25449.03 26473.28 6486.17 9751.83 8077.29 25475.80 2778.05 13883.98 154
VDD-MVS72.50 7472.09 7373.75 11581.58 8549.69 20777.76 13577.63 18463.21 4673.21 6589.02 5242.14 18683.32 14161.72 13082.50 8688.25 14
DELS-MVS74.76 5174.46 5375.65 7177.84 17252.25 16875.59 18284.17 4663.76 3773.15 6682.79 16459.58 1986.80 6567.24 8186.04 5687.89 23
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS-dyc-post74.57 5573.90 5876.58 5583.49 6559.87 4884.29 3681.36 10658.07 13673.14 6790.07 3344.74 16385.84 9068.20 6981.76 9384.03 151
RE-MVS-def73.71 6283.49 6559.87 4884.29 3681.36 10658.07 13673.14 6790.07 3343.06 17868.20 6981.76 9384.03 151
HPM-MVScopyleft77.28 2876.85 2978.54 3185.00 5160.81 3882.91 5985.08 3162.57 5973.09 6989.97 4050.90 9387.48 4875.30 2886.85 4987.33 48
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepC-MVS_fast68.24 377.25 2976.63 3279.12 1986.15 3460.86 3684.71 3284.85 3861.98 7373.06 7088.88 5453.72 5889.06 2268.27 6888.04 3787.42 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet71.81 8571.33 8473.26 13682.80 7547.60 23578.74 11875.27 21659.59 11372.94 7189.40 4741.51 19783.91 13158.75 15282.99 7788.26 13
test1277.76 4284.52 5858.41 7483.36 7172.93 7254.61 4988.05 3688.12 3586.81 59
LFMVS71.78 8671.59 7772.32 15483.40 6746.38 24479.75 10671.08 26164.18 3172.80 7388.64 5842.58 18283.72 13457.41 15884.49 6586.86 57
EC-MVSNet75.84 4475.87 4175.74 6878.86 14152.65 15883.73 4986.08 1763.47 4172.77 7487.25 7653.13 6587.93 3971.97 5185.57 5986.66 63
CP-MVS77.12 3176.68 3178.43 3286.05 3863.18 587.55 1083.45 6762.44 6372.68 7590.50 2348.18 11787.34 4973.59 4285.71 5784.76 135
ETV-MVS74.46 5773.84 6076.33 5979.27 13155.24 12579.22 11485.00 3664.97 2072.65 7679.46 23853.65 6287.87 4167.45 8082.91 8085.89 90
UA-Net73.13 6772.93 6773.76 11383.58 6451.66 17778.75 11777.66 18367.75 372.61 7789.42 4649.82 9883.29 14253.61 18983.14 7486.32 76
OPM-MVS74.73 5274.25 5576.19 6080.81 10159.01 6682.60 6583.64 6163.74 3872.52 7887.49 7047.18 13485.88 8969.47 6480.78 9883.66 171
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DPM-MVS75.47 4775.00 4876.88 5081.38 9159.16 5879.94 10185.71 2256.59 16472.46 7986.76 8056.89 3187.86 4266.36 8788.91 2583.64 173
MVS_Test72.45 7672.46 7172.42 15374.88 22948.50 22376.28 16883.14 7959.40 11472.46 7984.68 12555.66 3981.12 19065.98 9279.66 11487.63 35
PGM-MVS76.77 3476.06 3778.88 2686.14 3562.73 982.55 6683.74 5961.71 7572.45 8190.34 2848.48 11588.13 3472.32 4886.85 4985.78 93
XVS77.17 3076.56 3379.00 2286.32 2962.62 1185.83 2183.92 5164.55 2272.17 8290.01 3947.95 11988.01 3771.55 5586.74 5186.37 70
X-MVStestdata70.21 11367.28 16179.00 2286.32 2962.62 1185.83 2183.92 5164.55 2272.17 826.49 38147.95 11988.01 3771.55 5586.74 5186.37 70
Effi-MVS+73.31 6672.54 7075.62 7277.87 17153.64 13979.62 11079.61 14061.63 7672.02 8482.61 16956.44 3485.97 8763.99 10979.07 12687.25 49
mPP-MVS76.54 3575.93 3978.34 3586.47 2663.50 385.74 2482.28 8962.90 5171.77 8590.26 3046.61 14386.55 7371.71 5385.66 5884.97 128
diffmvspermissive70.69 10470.43 9871.46 16769.45 30648.95 21772.93 23078.46 16757.27 15071.69 8683.97 14451.48 8477.92 24470.70 5977.95 14087.53 39
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set72.42 7771.59 7774.91 8378.47 15254.02 13577.05 15379.33 14665.03 1771.68 8779.35 24152.75 6784.89 11366.46 8674.23 17385.83 92
MSLP-MVS++73.77 6373.47 6374.66 9083.02 7159.29 5782.30 7381.88 9459.34 11671.59 8886.83 7845.94 14783.65 13665.09 10085.22 6081.06 224
CS-MVS-test75.62 4675.31 4676.56 5680.63 10555.13 12683.88 4785.22 2862.05 7071.49 8986.03 10253.83 5786.36 8067.74 7586.91 4888.19 17
EI-MVSNet-UG-set71.92 8471.06 9074.52 9877.98 16953.56 14176.62 16179.16 14764.40 2671.18 9078.95 24652.19 7584.66 11965.47 9773.57 18385.32 117
MG-MVS73.96 6173.89 5974.16 10485.65 4249.69 20781.59 8381.29 11361.45 7771.05 9188.11 6151.77 8187.73 4461.05 13683.09 7585.05 125
patch_mono-269.85 12071.09 8966.16 24979.11 13754.80 13171.97 24674.31 23353.50 22070.90 9284.17 13757.63 2963.31 32066.17 8882.02 9080.38 234
VNet69.68 12770.19 10368.16 22779.73 12141.63 29270.53 26577.38 18960.37 9570.69 9386.63 8651.08 8977.09 25753.61 18981.69 9785.75 98
MVS_111021_HR74.02 6073.46 6475.69 6983.01 7260.63 4077.29 14878.40 17261.18 8170.58 9485.97 10454.18 5384.00 13067.52 7982.98 7982.45 197
HPM-MVS_fast74.30 5973.46 6476.80 5184.45 6059.04 6583.65 5181.05 11960.15 10170.43 9589.84 4241.09 20385.59 9567.61 7882.90 8185.77 96
CLD-MVS73.33 6572.68 6975.29 7978.82 14353.33 14878.23 12684.79 3961.30 8070.41 9681.04 20652.41 7287.12 5764.61 10582.49 8785.41 114
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
新几何170.76 18585.66 4161.13 3066.43 29344.68 30670.29 9786.64 8541.29 19975.23 26949.72 22081.75 9575.93 282
原ACMM174.69 8885.39 4759.40 5383.42 6851.47 24070.27 9886.61 8748.61 11386.51 7553.85 18787.96 3878.16 258
CANet76.46 3675.93 3978.06 3881.29 9257.53 8482.35 6883.31 7367.78 270.09 9986.34 9454.92 4688.90 2472.68 4784.55 6487.76 31
xiu_mvs_v1_base_debu68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
xiu_mvs_v1_base68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
xiu_mvs_v1_base_debi68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
PS-MVSNAJss72.24 7971.21 8675.31 7778.50 15055.93 11181.63 8082.12 9156.24 17170.02 10385.68 11247.05 13684.34 12365.27 9974.41 17285.67 100
test_yl69.69 12569.13 11971.36 17278.37 15545.74 25174.71 20280.20 13357.91 14370.01 10483.83 14642.44 18382.87 15354.97 17679.72 11285.48 108
DCV-MVSNet69.69 12569.13 11971.36 17278.37 15545.74 25174.71 20280.20 13357.91 14370.01 10483.83 14642.44 18382.87 15354.97 17679.72 11285.48 108
xiu_mvs_v2_base70.52 10669.75 10872.84 14281.21 9555.63 11775.11 19278.92 15254.92 20369.96 10679.68 23347.00 14082.09 17261.60 13279.37 11880.81 228
Anonymous2024052969.91 11969.02 12272.56 14780.19 11347.65 23377.56 13980.99 12155.45 18969.88 10786.76 8039.24 21682.18 17154.04 18477.10 15187.85 26
PS-MVSNAJ70.51 10769.70 11072.93 14081.52 8655.79 11374.92 19879.00 15055.04 20169.88 10778.66 24847.05 13682.19 17061.61 13179.58 11580.83 227
ACMMPcopyleft76.02 4275.33 4578.07 3785.20 4961.91 2085.49 2884.44 4163.04 4869.80 10989.74 4545.43 15687.16 5472.01 5082.87 8285.14 121
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PCF-MVS61.88 870.95 9969.49 11475.35 7677.63 17855.71 11476.04 17581.81 9650.30 25469.66 11085.40 11952.51 6984.89 11351.82 20480.24 10885.45 110
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48270.50 10869.45 11673.66 11972.62 26350.03 20177.58 13780.51 12959.90 10569.52 11182.14 18547.53 12784.88 11565.07 10170.17 23286.09 83
MVSFormer71.50 9270.38 10074.88 8478.76 14457.15 9382.79 6078.48 16551.26 24469.49 11283.22 15843.99 17183.24 14366.06 8979.37 11884.23 146
lupinMVS69.57 13068.28 13673.44 13078.76 14457.15 9376.57 16273.29 24646.19 29569.49 11282.18 18143.99 17179.23 22264.66 10379.37 11883.93 155
V4268.65 14867.35 15972.56 14768.93 31250.18 19772.90 23179.47 14356.92 15569.45 11480.26 22246.29 14582.99 14764.07 10667.82 26484.53 138
v114470.42 10969.31 11773.76 11373.22 25150.64 18977.83 13381.43 10358.58 12769.40 11581.16 20347.53 12785.29 10664.01 10870.64 22285.34 116
jason69.65 12868.39 13573.43 13178.27 15956.88 9777.12 15173.71 24246.53 29269.34 11683.22 15843.37 17579.18 22364.77 10279.20 12384.23 146
jason: jason.
HQP_MVS74.31 5873.73 6176.06 6181.41 8956.31 10184.22 3984.01 4964.52 2469.27 11786.10 9945.26 16087.21 5268.16 7180.58 10284.65 136
plane_prior356.09 10763.92 3569.27 117
VPA-MVSNet69.02 14169.47 11567.69 23177.42 18741.00 29774.04 21279.68 13860.06 10269.26 11984.81 12451.06 9077.58 24954.44 18374.43 17184.48 140
Vis-MVSNetpermissive72.18 8071.37 8374.61 9381.29 9255.41 12280.90 8978.28 17460.73 8769.23 12088.09 6244.36 16882.65 16157.68 15581.75 9585.77 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EI-MVSNet69.27 13868.44 13471.73 16174.47 23949.39 21275.20 19078.45 16859.60 11069.16 12176.51 27851.29 8582.50 16559.86 14771.45 21783.30 178
MVSTER67.16 18265.58 19571.88 15870.37 29449.70 20570.25 27078.45 16851.52 23869.16 12180.37 21838.45 22382.50 16560.19 14171.46 21683.44 176
v119269.97 11868.68 12773.85 10873.19 25250.94 18277.68 13681.36 10657.51 14868.95 12380.85 21345.28 15985.33 10562.97 11970.37 22885.27 119
OMC-MVS71.40 9470.60 9573.78 11176.60 20553.15 15179.74 10779.78 13658.37 13168.75 12486.45 9245.43 15680.60 20362.58 12177.73 14187.58 38
Fast-Effi-MVS+70.28 11269.12 12173.73 11678.50 15051.50 17875.01 19579.46 14456.16 17368.59 12579.55 23653.97 5484.05 12653.34 19177.53 14485.65 102
v192192069.47 13368.17 13773.36 13373.06 25550.10 19977.39 14380.56 12756.58 16568.59 12580.37 21844.72 16484.98 11062.47 12469.82 24085.00 126
v14419269.71 12468.51 12973.33 13473.10 25450.13 19877.54 14080.64 12656.65 15868.57 12780.55 21646.87 14184.96 11262.98 11869.66 24584.89 130
TranMVSNet+NR-MVSNet70.36 11070.10 10671.17 17878.64 14842.97 27976.53 16381.16 11866.95 568.53 12885.42 11851.61 8383.07 14652.32 19769.70 24487.46 40
API-MVS72.17 8171.41 8174.45 9981.95 8257.22 8884.03 4480.38 13159.89 10868.40 12982.33 17849.64 10087.83 4351.87 20384.16 7078.30 256
BH-RMVSNet68.81 14467.42 15572.97 13980.11 11652.53 16374.26 20976.29 20258.48 12968.38 13084.20 13642.59 18183.83 13246.53 24575.91 16182.56 192
v124069.24 13967.91 14173.25 13773.02 25749.82 20377.21 15080.54 12856.43 16768.34 13180.51 21743.33 17684.99 10862.03 12869.77 24384.95 129
UniMVSNet_NR-MVSNet71.11 9671.00 9171.44 16879.20 13344.13 26776.02 17682.60 8666.48 1068.20 13284.60 13056.82 3282.82 15754.62 18070.43 22687.36 47
DU-MVS70.01 11669.53 11371.44 16878.05 16644.13 26775.01 19581.51 10164.37 2768.20 13284.52 13149.12 10982.82 15754.62 18070.43 22687.37 45
iter_conf0569.40 13667.62 14674.73 8677.84 17251.13 18079.28 11373.71 24254.62 20668.17 13483.59 15128.68 31587.16 5465.74 9576.95 15285.91 88
UniMVSNet (Re)70.63 10570.20 10271.89 15778.55 14945.29 25875.94 17782.92 8163.68 3968.16 13583.59 15153.89 5683.49 14053.97 18571.12 21986.89 56
Baseline_NR-MVSNet67.05 18467.56 14765.50 26075.65 21837.70 32175.42 18574.65 22959.90 10568.14 13683.15 16149.12 10977.20 25552.23 19869.78 24181.60 209
WR-MVS68.47 15468.47 13268.44 22480.20 11239.84 30173.75 22276.07 20664.68 2168.11 13783.63 15050.39 9679.14 22849.78 21769.66 24586.34 72
MAR-MVS71.51 9170.15 10475.60 7381.84 8359.39 5481.38 8582.90 8254.90 20468.08 13878.70 24747.73 12285.51 9851.68 20784.17 6981.88 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
iter_conf_final69.82 12168.02 14075.23 8079.38 12852.91 15580.11 9873.96 23954.99 20268.04 13983.59 15129.05 31087.16 5465.41 9877.62 14285.63 103
Anonymous20240521166.84 18965.99 18869.40 21180.19 11342.21 28571.11 25971.31 26058.80 12267.90 14086.39 9329.83 30579.65 21549.60 22378.78 13086.33 74
TR-MVS66.59 19665.07 20171.17 17879.18 13449.63 20973.48 22475.20 22052.95 22367.90 14080.33 22139.81 20983.68 13543.20 27773.56 18480.20 236
HQP-NCC80.66 10282.31 7062.10 6767.85 142
ACMP_Plane80.66 10282.31 7062.10 6767.85 142
HQP4-MVS67.85 14286.93 6184.32 143
HQP-MVS73.45 6472.80 6875.40 7580.66 10254.94 12782.31 7083.90 5362.10 6767.85 14285.54 11645.46 15486.93 6167.04 8380.35 10684.32 143
MVS_111021_LR69.50 13268.78 12671.65 16478.38 15459.33 5574.82 20070.11 26858.08 13567.83 14684.68 12541.96 18876.34 26565.62 9677.54 14379.30 250
3Dnovator+66.72 475.84 4474.57 5279.66 882.40 7659.92 4785.83 2186.32 1666.92 667.80 14789.24 5042.03 18789.38 1864.07 10686.50 5489.69 2
VPNet67.52 17368.11 13865.74 25879.18 13436.80 33072.17 24372.83 24962.04 7167.79 14885.83 10948.88 11176.60 26251.30 20872.97 19683.81 161
XVG-OURS68.76 14767.37 15772.90 14174.32 24457.22 8870.09 27178.81 15455.24 19267.79 14885.81 11136.54 24778.28 23962.04 12775.74 16383.19 183
GeoE71.01 9870.15 10473.60 12479.57 12452.17 16978.93 11678.12 17658.02 13867.76 15083.87 14552.36 7382.72 15956.90 16075.79 16285.92 87
FA-MVS(test-final)69.82 12168.48 13073.84 10978.44 15350.04 20075.58 18478.99 15158.16 13467.59 15182.14 18542.66 18085.63 9356.60 16176.19 15985.84 91
test22283.14 6858.68 7272.57 23763.45 31141.78 32667.56 15286.12 9837.13 24178.73 13274.98 293
CPTT-MVS72.78 7072.08 7474.87 8584.88 5761.41 2684.15 4277.86 17955.27 19167.51 15388.08 6341.93 18981.85 17569.04 6780.01 11081.35 217
v14868.24 15967.19 16771.40 17170.43 29247.77 23275.76 18077.03 19458.91 12067.36 15480.10 22548.60 11481.89 17460.01 14366.52 27584.53 138
FIs70.82 10271.43 8068.98 21778.33 15738.14 31576.96 15583.59 6361.02 8267.33 15586.73 8255.07 4281.64 17854.61 18279.22 12287.14 51
Anonymous2023121169.28 13768.47 13271.73 16180.28 10847.18 23979.98 10082.37 8854.61 20767.24 15684.01 14239.43 21282.41 16855.45 17472.83 19785.62 104
ECVR-MVScopyleft67.72 17067.51 15168.35 22579.46 12636.29 33874.79 20166.93 29058.72 12367.19 15788.05 6436.10 24881.38 18452.07 20084.25 6787.39 43
ACMM61.98 770.80 10369.73 10974.02 10580.59 10758.59 7382.68 6382.02 9355.46 18867.18 15884.39 13538.51 22283.17 14560.65 13876.10 16080.30 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_cas_vis1_n_192056.91 27856.71 27557.51 31059.13 35845.40 25763.58 30861.29 32436.24 34667.14 15971.85 31429.89 30456.69 34657.65 15663.58 29670.46 336
mvs_anonymous68.03 16267.51 15169.59 20772.08 27244.57 26571.99 24575.23 21851.67 23467.06 16082.57 17054.68 4877.94 24356.56 16275.71 16486.26 80
XVG-OURS-SEG-HR68.81 14467.47 15472.82 14474.40 24256.87 9870.59 26479.04 14954.77 20566.99 16186.01 10339.57 21178.21 24062.54 12273.33 18983.37 177
test111167.21 17767.14 16867.42 23479.24 13234.76 34373.89 21965.65 29758.71 12566.96 16287.95 6636.09 24980.53 20452.03 20183.79 7286.97 53
mvsmamba71.15 9569.54 11275.99 6277.61 18353.46 14481.95 7775.11 22257.73 14666.95 16385.96 10537.14 24087.56 4767.94 7375.49 16686.97 53
PAPR71.72 8970.82 9374.41 10081.20 9651.17 17979.55 11183.33 7255.81 18066.93 16484.61 12950.95 9186.06 8355.79 16979.20 12386.00 85
DP-MVS Recon72.15 8370.73 9476.40 5786.57 2457.99 7881.15 8882.96 8057.03 15366.78 16585.56 11344.50 16688.11 3551.77 20580.23 10983.10 186
UniMVSNet_ETH3D67.60 17267.07 16969.18 21677.39 18842.29 28374.18 21175.59 21260.37 9566.77 16686.06 10137.64 23178.93 23552.16 19973.49 18586.32 76
test250665.33 21164.61 20467.50 23279.46 12634.19 34874.43 20851.92 35158.72 12366.75 16788.05 6425.99 33380.92 19751.94 20284.25 6787.39 43
AUN-MVS68.45 15566.41 17874.57 9679.53 12557.08 9673.93 21775.23 21854.44 21266.69 16881.85 19137.10 24282.89 15162.07 12666.84 27183.75 166
LPG-MVS_test72.74 7171.74 7675.76 6680.22 11057.51 8582.55 6683.40 6961.32 7866.67 16987.33 7339.15 21786.59 7067.70 7677.30 14883.19 183
LGP-MVS_train75.76 6680.22 11057.51 8583.40 6961.32 7866.67 16987.33 7339.15 21786.59 7067.70 7677.30 14883.19 183
EIA-MVS71.78 8670.60 9575.30 7879.85 11953.54 14277.27 14983.26 7657.92 14266.49 17179.39 23952.07 7786.69 6860.05 14279.14 12585.66 101
IS-MVSNet71.57 9071.00 9173.27 13578.86 14145.63 25580.22 9678.69 15864.14 3466.46 17287.36 7249.30 10385.60 9450.26 21683.71 7388.59 8
v870.33 11169.28 11873.49 12773.15 25350.22 19678.62 12180.78 12560.79 8566.45 17382.11 18749.35 10284.98 11063.58 11468.71 25885.28 118
v1070.21 11369.02 12273.81 11073.51 25050.92 18478.74 11881.39 10460.05 10366.39 17481.83 19247.58 12685.41 10462.80 12068.86 25785.09 124
tt080567.77 16967.24 16569.34 21274.87 23040.08 29977.36 14481.37 10555.31 19066.33 17584.65 12737.35 23582.55 16455.65 17272.28 20885.39 115
PAPM_NR72.63 7371.80 7575.13 8281.72 8453.42 14679.91 10383.28 7559.14 11866.31 17685.90 10751.86 7986.06 8357.45 15780.62 10085.91 88
c3_l68.33 15667.56 14770.62 18870.87 28746.21 24774.47 20778.80 15556.22 17266.19 17778.53 25351.88 7881.40 18362.08 12569.04 25484.25 145
BH-untuned68.27 15767.29 16071.21 17679.74 12053.22 15076.06 17377.46 18857.19 15166.10 17881.61 19645.37 15883.50 13945.42 26076.68 15776.91 277
miper_ehance_all_eth68.03 16267.24 16570.40 19270.54 29046.21 24773.98 21378.68 15955.07 19966.05 17977.80 26252.16 7681.31 18661.53 13569.32 24883.67 169
ab-mvs66.65 19366.42 17767.37 23576.17 21241.73 28970.41 26876.14 20553.99 21465.98 18083.51 15549.48 10176.24 26648.60 23073.46 18784.14 149
EPP-MVSNet72.16 8271.31 8574.71 8778.68 14749.70 20582.10 7581.65 9860.40 9265.94 18185.84 10851.74 8286.37 7955.93 16679.55 11788.07 22
eth_miper_zixun_eth67.63 17166.28 18471.67 16371.60 27848.33 22573.68 22377.88 17855.80 18165.91 18278.62 25147.35 13382.88 15259.45 14966.25 27683.81 161
QAPM70.05 11568.81 12573.78 11176.54 20753.43 14583.23 5383.48 6552.89 22565.90 18386.29 9541.55 19686.49 7651.01 21078.40 13681.42 211
test_vis1_n_192058.86 26459.06 25658.25 30263.76 34043.14 27767.49 28566.36 29440.22 33765.89 18471.95 31331.04 29459.75 33459.94 14464.90 28571.85 325
FC-MVSNet-test69.80 12370.58 9767.46 23377.61 18334.73 34476.05 17483.19 7760.84 8465.88 18586.46 9154.52 5080.76 20252.52 19678.12 13786.91 55
IterMVS-LS69.22 14068.48 13071.43 17074.44 24149.40 21176.23 16977.55 18559.60 11065.85 18681.59 19851.28 8681.58 18159.87 14669.90 23983.30 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_Blended_VisFu71.45 9370.39 9974.65 9182.01 7958.82 7079.93 10280.35 13255.09 19665.82 18782.16 18449.17 10682.64 16260.34 14078.62 13482.50 196
miper_enhance_ethall67.11 18366.09 18770.17 19669.21 30945.98 24972.85 23278.41 17151.38 24165.65 18875.98 28651.17 8881.25 18760.82 13769.32 24883.29 180
RRT_MVS69.42 13567.49 15375.21 8178.01 16852.56 16282.23 7478.15 17555.84 17865.65 18885.07 12030.86 29686.83 6461.56 13470.00 23586.24 81
thisisatest053067.92 16665.78 19174.33 10276.29 21051.03 18176.89 15874.25 23553.67 21865.59 19081.76 19335.15 25685.50 9955.94 16572.47 20286.47 67
cl2267.47 17466.45 17470.54 19069.85 30246.49 24373.85 22077.35 19055.07 19965.51 19177.92 25847.64 12581.10 19161.58 13369.32 24884.01 153
3Dnovator64.47 572.49 7571.39 8275.79 6577.70 17558.99 6780.66 9383.15 7862.24 6565.46 19286.59 8842.38 18585.52 9759.59 14884.72 6282.85 191
test_djsdf69.45 13467.74 14274.58 9574.57 23854.92 12982.79 6078.48 16551.26 24465.41 19383.49 15638.37 22483.24 14366.06 8969.25 25185.56 105
FE-MVS65.91 20263.33 21973.63 12277.36 18951.95 17572.62 23575.81 20853.70 21765.31 19478.96 24528.81 31486.39 7843.93 26973.48 18682.55 193
TAMVS66.78 19165.27 19971.33 17579.16 13653.67 13873.84 22169.59 27252.32 23165.28 19581.72 19444.49 16777.40 25342.32 28478.66 13382.92 188
cl____67.18 18066.26 18569.94 19970.20 29545.74 25173.30 22576.83 19755.10 19465.27 19679.57 23547.39 13180.53 20459.41 15169.22 25283.53 175
DIV-MVS_self_test67.18 18066.26 18569.94 19970.20 29545.74 25173.29 22676.83 19755.10 19465.27 19679.58 23447.38 13280.53 20459.43 15069.22 25283.54 174
EPNet73.09 6872.16 7275.90 6475.95 21556.28 10383.05 5572.39 25266.53 965.27 19687.00 7750.40 9585.47 10162.48 12386.32 5585.94 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu69.64 12967.53 15075.95 6376.10 21362.29 1580.20 9776.06 20759.83 10965.26 19977.09 26841.56 19584.02 12960.60 13971.09 22081.53 210
ACMP63.53 672.30 7871.20 8775.59 7480.28 10857.54 8382.74 6282.84 8460.58 8965.24 20086.18 9639.25 21586.03 8566.95 8576.79 15583.22 181
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS59.36 1066.60 19465.20 20070.81 18476.63 20448.75 21976.52 16480.04 13550.64 25165.24 20084.93 12239.15 21778.54 23636.77 31376.88 15485.14 121
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet266.93 18766.31 18368.79 22077.63 17842.98 27876.11 17177.47 18656.62 16165.22 20282.17 18341.85 19080.18 21247.05 24372.72 20183.20 182
SDMVSNet68.03 16268.10 13967.84 22977.13 19348.72 22165.32 29979.10 14858.02 13865.08 20382.55 17147.83 12173.40 27763.92 11073.92 17681.41 212
sd_testset64.46 22264.45 20564.51 26977.13 19342.25 28462.67 31272.11 25558.02 13865.08 20382.55 17141.22 20269.88 29547.32 23873.92 17681.41 212
GBi-Net67.21 17766.55 17269.19 21377.63 17843.33 27477.31 14577.83 18056.62 16165.04 20582.70 16541.85 19080.33 20947.18 24072.76 19883.92 156
test167.21 17766.55 17269.19 21377.63 17843.33 27477.31 14577.83 18056.62 16165.04 20582.70 16541.85 19080.33 20947.18 24072.76 19883.92 156
FMVSNet366.32 19965.61 19468.46 22376.48 20842.34 28274.98 19777.15 19355.83 17965.04 20581.16 20339.91 20780.14 21347.18 24072.76 19882.90 190
anonymousdsp67.00 18664.82 20373.57 12570.09 29856.13 10676.35 16677.35 19048.43 27164.99 20880.84 21433.01 27880.34 20864.66 10367.64 26684.23 146
BH-w/o66.85 18865.83 19069.90 20279.29 12952.46 16574.66 20476.65 20054.51 21164.85 20978.12 25445.59 15182.95 14943.26 27675.54 16574.27 302
CDS-MVSNet66.80 19065.37 19671.10 18078.98 13953.13 15373.27 22771.07 26252.15 23264.72 21080.23 22343.56 17477.10 25645.48 25878.88 12783.05 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GA-MVS65.53 20763.70 21371.02 18270.87 28748.10 22770.48 26674.40 23156.69 15764.70 21176.77 27333.66 27281.10 19155.42 17570.32 23083.87 159
tttt051767.83 16865.66 19374.33 10276.69 20250.82 18677.86 13273.99 23854.54 21064.64 21282.53 17435.06 25785.50 9955.71 17069.91 23886.67 62
FMVSNet166.70 19265.87 18969.19 21377.49 18643.33 27477.31 14577.83 18056.45 16664.60 21382.70 16538.08 22980.33 20946.08 24972.31 20783.92 156
AdaColmapbinary69.99 11768.66 12873.97 10784.94 5457.83 7982.63 6478.71 15756.28 17064.34 21484.14 13841.57 19487.06 6046.45 24678.88 12777.02 273
jajsoiax68.25 15866.45 17473.66 11975.62 21955.49 12180.82 9078.51 16452.33 23064.33 21584.11 13928.28 31781.81 17763.48 11570.62 22383.67 169
CostFormer64.04 22462.51 22868.61 22271.88 27545.77 25071.30 25470.60 26647.55 28264.31 21676.61 27641.63 19379.62 21749.74 21969.00 25580.42 232
mvs_tets68.18 16066.36 18073.63 12275.61 22055.35 12480.77 9178.56 16252.48 22964.27 21784.10 14027.45 32381.84 17663.45 11670.56 22583.69 168
baseline163.81 22663.87 21163.62 27376.29 21036.36 33371.78 24967.29 28756.05 17564.23 21882.95 16347.11 13574.41 27347.30 23961.85 30980.10 239
PVSNet_BlendedMVS68.56 15367.72 14371.07 18177.03 19750.57 19074.50 20681.52 9953.66 21964.22 21979.72 23249.13 10782.87 15355.82 16773.92 17679.77 245
PVSNet_Blended68.59 14967.72 14371.19 17777.03 19750.57 19072.51 23881.52 9951.91 23364.22 21977.77 26449.13 10782.87 15355.82 16779.58 11580.14 238
thisisatest051565.83 20363.50 21672.82 14473.75 24849.50 21071.32 25373.12 24849.39 26063.82 22176.50 28034.95 25984.84 11653.20 19375.49 16684.13 150
test_fmvs1_n51.37 30950.35 31254.42 32352.85 36437.71 32061.16 32351.93 35028.15 35663.81 22269.73 33113.72 35953.95 35651.16 20960.65 31871.59 327
test_fmvs151.32 31150.48 31153.81 32553.57 36337.51 32260.63 32751.16 35328.02 35863.62 22369.23 33416.41 35553.93 35751.01 21060.70 31769.99 340
HyFIR lowres test65.67 20563.01 22373.67 11879.97 11855.65 11669.07 27875.52 21342.68 32463.53 22477.95 25640.43 20581.64 17846.01 25071.91 21183.73 167
CANet_DTU68.18 16067.71 14569.59 20774.83 23146.24 24678.66 12076.85 19659.60 11063.45 22582.09 18835.25 25577.41 25259.88 14578.76 13185.14 121
UGNet68.81 14467.39 15673.06 13878.33 15754.47 13379.77 10575.40 21560.45 9163.22 22684.40 13432.71 28580.91 19851.71 20680.56 10483.81 161
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS60.68 25561.67 23757.70 30970.43 29238.45 31364.19 30666.47 29248.05 27763.22 22680.86 21249.28 10460.47 32945.25 26267.28 26974.19 303
CHOSEN 1792x268865.08 21562.84 22571.82 15981.49 8856.26 10466.32 29074.20 23640.53 33563.16 22878.65 24941.30 19877.80 24645.80 25274.09 17481.40 214
114514_t70.83 10169.56 11174.64 9286.21 3154.63 13282.34 6981.81 9648.22 27363.01 22985.83 10940.92 20487.10 5857.91 15479.79 11182.18 200
tpm262.07 24460.10 25267.99 22872.79 26043.86 27071.05 26166.85 29143.14 32162.77 23075.39 29238.32 22580.80 20041.69 28868.88 25679.32 249
NR-MVSNet69.54 13168.85 12471.59 16678.05 16643.81 27174.20 21080.86 12465.18 1362.76 23184.52 13152.35 7483.59 13850.96 21270.78 22187.37 45
OpenMVScopyleft61.03 968.85 14367.56 14772.70 14674.26 24553.99 13681.21 8781.34 11052.70 22662.75 23285.55 11538.86 22084.14 12548.41 23283.01 7679.97 240
v7n69.01 14267.36 15873.98 10672.51 26752.65 15878.54 12481.30 11260.26 10062.67 23381.62 19543.61 17384.49 12057.01 15968.70 25984.79 133
WR-MVS_H67.02 18566.92 17067.33 23777.95 17037.75 31977.57 13882.11 9262.03 7262.65 23482.48 17550.57 9479.46 21842.91 28064.01 29184.79 133
tfpn200view963.18 23462.18 23366.21 24876.85 20039.62 30371.96 24769.44 27456.63 15962.61 23579.83 22837.18 23779.17 22431.84 33973.25 19179.83 243
thres40063.31 23062.18 23366.72 24076.85 20039.62 30371.96 24769.44 27456.63 15962.61 23579.83 22837.18 23779.17 22431.84 33973.25 19181.36 215
MVS67.37 17566.33 18170.51 19175.46 22350.94 18273.95 21581.85 9541.57 33062.54 23778.57 25247.98 11885.47 10152.97 19482.05 8975.14 289
CP-MVSNet66.49 19766.41 17866.72 24077.67 17736.33 33576.83 16079.52 14262.45 6262.54 23783.47 15746.32 14478.37 23745.47 25963.43 29885.45 110
PEN-MVS66.60 19466.45 17467.04 23877.11 19536.56 33277.03 15480.42 13062.95 4962.51 23984.03 14146.69 14279.07 22944.22 26463.08 30185.51 107
thres100view90063.28 23262.41 23065.89 25677.31 19038.66 31172.65 23369.11 27857.07 15262.45 24081.03 20737.01 24479.17 22431.84 33973.25 19179.83 243
PS-CasMVS66.42 19866.32 18266.70 24277.60 18536.30 33776.94 15679.61 14062.36 6462.43 24183.66 14945.69 14878.37 23745.35 26163.26 29985.42 113
thres600view763.30 23162.27 23166.41 24477.18 19238.87 30972.35 24069.11 27856.98 15462.37 24280.96 20937.01 24479.00 23331.43 34673.05 19581.36 215
pm-mvs165.24 21264.97 20266.04 25372.38 26839.40 30672.62 23575.63 21155.53 18762.35 24383.18 16047.45 12976.47 26349.06 22766.54 27482.24 199
Fast-Effi-MVS+-dtu67.37 17565.33 19873.48 12872.94 25857.78 8177.47 14276.88 19557.60 14761.97 24476.85 27239.31 21380.49 20754.72 17970.28 23182.17 202
WTY-MVS59.75 26160.39 25057.85 30772.32 27037.83 31861.05 32464.18 30745.95 30061.91 24579.11 24447.01 13960.88 32842.50 28369.49 24774.83 295
thres20062.20 24361.16 24565.34 26375.38 22539.99 30069.60 27469.29 27655.64 18661.87 24676.99 26937.07 24378.96 23431.28 34773.28 19077.06 272
TransMVSNet (Re)64.72 21764.33 20665.87 25775.22 22638.56 31274.66 20475.08 22658.90 12161.79 24782.63 16851.18 8778.07 24243.63 27355.87 33680.99 225
DTE-MVSNet65.58 20665.34 19766.31 24576.06 21434.79 34176.43 16579.38 14562.55 6061.66 24883.83 14645.60 15079.15 22741.64 29160.88 31585.00 126
HY-MVS56.14 1364.55 22163.89 20966.55 24374.73 23541.02 29469.96 27274.43 23049.29 26161.66 24880.92 21047.43 13076.68 26144.91 26371.69 21381.94 205
CNLPA65.43 20864.02 20869.68 20578.73 14658.07 7777.82 13470.71 26551.49 23961.57 25083.58 15438.23 22770.82 28843.90 27070.10 23480.16 237
miper_lstm_enhance62.03 24560.88 24865.49 26166.71 32546.25 24556.29 34275.70 21050.68 24961.27 25175.48 29140.21 20668.03 30256.31 16465.25 28382.18 200
cascas65.98 20163.42 21773.64 12177.26 19152.58 16172.26 24277.21 19248.56 26861.21 25274.60 29832.57 28985.82 9150.38 21576.75 15682.52 195
PAPM67.92 16666.69 17171.63 16578.09 16449.02 21577.09 15281.24 11651.04 24860.91 25383.98 14347.71 12384.99 10840.81 29279.32 12180.90 226
IterMVS-SCA-FT62.49 23861.52 23965.40 26271.99 27450.80 18771.15 25869.63 27145.71 30160.61 25477.93 25737.45 23365.99 31355.67 17163.50 29779.42 248
1112_ss64.00 22563.36 21865.93 25579.28 13042.58 28171.35 25272.36 25346.41 29360.55 25577.89 26046.27 14673.28 27846.18 24869.97 23681.92 206
tfpnnormal62.47 23961.63 23864.99 26674.81 23239.01 30871.22 25573.72 24155.22 19360.21 25680.09 22641.26 20176.98 25930.02 35268.09 26278.97 253
bld_raw_dy_0_6464.87 21663.22 22069.83 20474.79 23353.32 14978.15 12862.02 32151.20 24660.17 25783.12 16224.15 34274.20 27663.08 11772.33 20581.96 204
tpm57.34 27558.16 26454.86 31971.80 27734.77 34267.47 28656.04 34348.20 27460.10 25876.92 27037.17 23953.41 35840.76 29365.01 28476.40 280
ET-MVSNet_ETH3D67.96 16565.72 19274.68 8976.67 20355.62 11975.11 19274.74 22752.91 22460.03 25980.12 22433.68 27182.64 16261.86 12976.34 15885.78 93
131464.61 22063.21 22168.80 21971.87 27647.46 23673.95 21578.39 17342.88 32359.97 26076.60 27738.11 22879.39 22054.84 17872.32 20679.55 246
CL-MVSNet_self_test61.53 25060.94 24763.30 27668.95 31136.93 32967.60 28472.80 25055.67 18459.95 26176.63 27445.01 16272.22 28439.74 29962.09 30880.74 229
XVG-ACMP-BASELINE64.36 22362.23 23270.74 18672.35 26952.45 16670.80 26378.45 16853.84 21659.87 26281.10 20516.24 35679.32 22155.64 17371.76 21280.47 231
IterMVS62.79 23761.27 24267.35 23669.37 30752.04 17371.17 25668.24 28352.63 22859.82 26376.91 27137.32 23672.36 28152.80 19563.19 30077.66 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)63.69 22763.88 21063.14 27874.75 23431.04 36171.16 25763.64 31056.32 16859.80 26484.99 12144.51 16575.46 26839.12 30180.62 10082.92 188
test_fmvs248.69 31847.49 32352.29 33548.63 37033.06 35557.76 33648.05 36225.71 36259.76 26569.60 33211.57 36552.23 36249.45 22456.86 33171.58 328
pmmvs663.69 22762.82 22666.27 24770.63 28939.27 30773.13 22875.47 21452.69 22759.75 26682.30 17939.71 21077.03 25847.40 23764.35 29082.53 194
test_vis1_n49.89 31648.69 31853.50 32853.97 36237.38 32361.53 31747.33 36428.54 35559.62 26767.10 34413.52 36052.27 36149.07 22657.52 32870.84 334
pmmvs461.48 25259.39 25367.76 23071.57 27953.86 13771.42 25165.34 29944.20 31159.46 26877.92 25835.90 25074.71 27143.87 27164.87 28674.71 298
Patchmatch-RL test58.16 26955.49 28366.15 25067.92 31848.89 21860.66 32651.07 35547.86 27959.36 26962.71 35534.02 26872.27 28356.41 16359.40 32277.30 268
CR-MVSNet59.91 25957.90 26765.96 25469.96 30052.07 17165.31 30063.15 31442.48 32559.36 26974.84 29535.83 25170.75 28945.50 25764.65 28875.06 290
RPMNet61.53 25058.42 26170.86 18369.96 30052.07 17165.31 30081.36 10643.20 32059.36 26970.15 32735.37 25485.47 10136.42 32064.65 28875.06 290
SCA60.49 25658.38 26266.80 23974.14 24748.06 22863.35 30963.23 31349.13 26359.33 27272.10 31037.45 23374.27 27444.17 26562.57 30478.05 260
DP-MVS65.68 20463.66 21471.75 16084.93 5556.87 9880.74 9273.16 24753.06 22259.09 27382.35 17736.79 24685.94 8832.82 33569.96 23772.45 316
Test_1112_low_res62.32 24161.77 23664.00 27279.08 13839.53 30568.17 28070.17 26743.25 31959.03 27479.90 22744.08 16971.24 28743.79 27268.42 26081.25 218
PatchmatchNetpermissive59.84 26058.24 26364.65 26873.05 25646.70 24269.42 27662.18 31947.55 28258.88 27571.96 31234.49 26369.16 29742.99 27963.60 29578.07 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_040263.25 23361.01 24669.96 19880.00 11754.37 13476.86 15972.02 25654.58 20958.71 27680.79 21535.00 25884.36 12226.41 36364.71 28771.15 332
LTVRE_ROB55.42 1663.15 23561.23 24468.92 21876.57 20647.80 23059.92 32876.39 20154.35 21358.67 27782.46 17629.44 30881.49 18242.12 28571.14 21877.46 266
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
sss56.17 28556.57 27654.96 31866.93 32336.32 33657.94 33561.69 32241.67 32858.64 27875.32 29338.72 22156.25 34942.04 28666.19 27772.31 321
tpmrst58.24 26858.70 25956.84 31166.97 32234.32 34669.57 27561.14 32547.17 28958.58 27971.60 31541.28 20060.41 33049.20 22562.84 30275.78 284
IB-MVS56.42 1265.40 21062.73 22773.40 13274.89 22852.78 15773.09 22975.13 22155.69 18358.48 28073.73 30332.86 28086.32 8150.63 21370.11 23381.10 223
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet59.63 26259.14 25561.08 29174.47 23938.84 31075.20 19068.74 28031.15 35258.24 28176.51 27832.39 29068.58 30049.77 21865.84 27975.81 283
D2MVS62.30 24260.29 25168.34 22666.46 32848.42 22465.70 29373.42 24447.71 28058.16 28275.02 29430.51 29877.71 24853.96 18671.68 21478.90 254
RPSCF55.80 28754.22 29560.53 29265.13 33542.91 28064.30 30557.62 33636.84 34558.05 28382.28 18028.01 31856.24 35037.14 31158.61 32582.44 198
tpm cat159.25 26356.95 27266.15 25072.19 27146.96 24068.09 28165.76 29640.03 33957.81 28470.56 32238.32 22574.51 27238.26 30561.50 31277.00 274
gg-mvs-nofinetune57.86 27256.43 27862.18 28472.62 26335.35 34066.57 28756.33 34050.65 25057.64 28557.10 36130.65 29776.36 26437.38 30978.88 12774.82 296
ACMH+57.40 1166.12 20064.06 20772.30 15577.79 17452.83 15680.39 9478.03 17757.30 14957.47 28682.55 17127.68 32184.17 12445.54 25669.78 24179.90 241
dmvs_re56.77 27956.83 27456.61 31269.23 30841.02 29458.37 33364.18 30750.59 25257.45 28771.42 31635.54 25358.94 33737.23 31067.45 26769.87 341
MS-PatchMatch62.42 24061.46 24065.31 26475.21 22752.10 17072.05 24474.05 23746.41 29357.42 28874.36 29934.35 26577.57 25045.62 25573.67 18066.26 349
PVSNet50.76 1958.40 26757.39 26861.42 28875.53 22244.04 26961.43 31863.45 31147.04 29056.91 28973.61 30427.00 32764.76 31639.12 30172.40 20375.47 287
Patchmtry57.16 27656.47 27759.23 29569.17 31034.58 34562.98 31063.15 31444.53 30756.83 29074.84 29535.83 25168.71 29940.03 29660.91 31474.39 301
LS3D64.71 21862.50 22971.34 17479.72 12255.71 11479.82 10474.72 22848.50 27056.62 29184.62 12833.59 27382.34 16929.65 35475.23 16875.97 281
ACMH55.70 1565.20 21363.57 21570.07 19778.07 16552.01 17479.48 11279.69 13755.75 18256.59 29280.98 20827.12 32580.94 19542.90 28171.58 21577.25 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo65.41 20963.80 21270.22 19377.62 18255.53 12076.30 16778.53 16350.59 25256.47 29378.65 24939.84 20882.68 16044.10 26872.12 21072.44 317
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVS_ROBcopyleft52.78 1860.03 25858.14 26565.69 25970.47 29144.82 26075.33 18670.86 26445.04 30356.06 29476.00 28326.89 32879.65 21535.36 32567.29 26872.60 313
EG-PatchMatch MVS64.71 21862.87 22470.22 19377.68 17653.48 14377.99 13078.82 15353.37 22156.03 29577.41 26724.75 34084.04 12746.37 24773.42 18873.14 308
PLCcopyleft56.13 1465.09 21463.21 22170.72 18781.04 9854.87 13078.57 12277.47 18648.51 26955.71 29681.89 19033.71 27079.71 21441.66 28970.37 22877.58 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPMVS53.96 29553.69 29854.79 32066.12 33131.96 35962.34 31549.05 35844.42 31055.54 29771.33 31830.22 30156.70 34541.65 29062.54 30575.71 285
MDTV_nov1_ep1357.00 27172.73 26138.26 31465.02 30364.73 30444.74 30555.46 29872.48 30832.61 28870.47 29037.47 30867.75 265
test-LLR58.15 27058.13 26658.22 30368.57 31344.80 26165.46 29657.92 33450.08 25655.44 29969.82 32932.62 28657.44 34249.66 22173.62 18172.41 318
test-mter56.42 28255.82 28158.22 30368.57 31344.80 26165.46 29657.92 33439.94 34055.44 29969.82 32921.92 34757.44 34249.66 22173.62 18172.41 318
ITE_SJBPF62.09 28566.16 33044.55 26664.32 30647.36 28555.31 30180.34 22019.27 35162.68 32336.29 32162.39 30679.04 251
MIMVSNet57.35 27457.07 27058.22 30374.21 24637.18 32462.46 31360.88 32648.88 26655.29 30275.99 28531.68 29362.04 32531.87 33872.35 20475.43 288
Anonymous2023120655.10 29355.30 28554.48 32169.81 30333.94 35062.91 31162.13 32041.08 33255.18 30375.65 28832.75 28456.59 34830.32 35167.86 26372.91 309
KD-MVS_2432*160053.45 29951.50 30759.30 29362.82 34337.14 32555.33 34371.79 25847.34 28655.09 30470.52 32321.91 34870.45 29135.72 32342.97 36170.31 337
miper_refine_blended53.45 29951.50 30759.30 29362.82 34337.14 32555.33 34371.79 25847.34 28655.09 30470.52 32321.91 34870.45 29135.72 32342.97 36170.31 337
pmmvs-eth3d58.81 26556.31 27966.30 24667.61 31952.42 16772.30 24164.76 30343.55 31754.94 30674.19 30128.95 31172.60 28043.31 27457.21 33073.88 306
baseline263.42 22961.26 24369.89 20372.55 26547.62 23471.54 25068.38 28250.11 25554.82 30775.55 29043.06 17880.96 19448.13 23367.16 27081.11 222
OurMVSNet-221017-061.37 25358.63 26069.61 20672.05 27348.06 22873.93 21772.51 25147.23 28854.74 30880.92 21021.49 35081.24 18848.57 23156.22 33579.53 247
GG-mvs-BLEND62.34 28371.36 28437.04 32869.20 27757.33 33754.73 30965.48 34930.37 29977.82 24534.82 32674.93 16972.17 322
tpmvs58.47 26656.95 27263.03 28070.20 29541.21 29367.90 28367.23 28849.62 25954.73 30970.84 32034.14 26676.24 26636.64 31761.29 31371.64 326
EPNet_dtu61.90 24661.97 23561.68 28672.89 25939.78 30275.85 17965.62 29855.09 19654.56 31179.36 24037.59 23267.02 30739.80 29876.95 15278.25 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT53.17 30353.44 30052.33 33468.29 31725.34 37558.21 33454.41 34644.46 30954.56 31169.05 33533.32 27560.94 32736.93 31261.76 31170.73 335
test0.0.03 153.32 30253.59 29952.50 33362.81 34529.45 36459.51 32954.11 34750.08 25654.40 31374.31 30032.62 28655.92 35130.50 35063.95 29372.15 323
ambc65.13 26563.72 34237.07 32747.66 36078.78 15654.37 31471.42 31611.24 36780.94 19545.64 25453.85 34377.38 267
SixPastTwentyTwo61.65 24958.80 25870.20 19575.80 21647.22 23875.59 18269.68 27054.61 20754.11 31579.26 24227.07 32682.96 14843.27 27549.79 35380.41 233
ppachtmachnet_test58.06 27155.38 28466.10 25269.51 30448.99 21668.01 28266.13 29544.50 30854.05 31670.74 32132.09 29272.34 28236.68 31656.71 33476.99 276
TESTMET0.1,155.28 29054.90 28756.42 31366.56 32643.67 27265.46 29656.27 34139.18 34253.83 31767.44 34124.21 34155.46 35348.04 23473.11 19470.13 339
pmmvs556.47 28155.68 28258.86 29961.41 35036.71 33166.37 28962.75 31640.38 33653.70 31876.62 27534.56 26167.05 30640.02 29765.27 28272.83 311
MSDG61.81 24859.23 25469.55 21072.64 26252.63 16070.45 26775.81 20851.38 24153.70 31876.11 28229.52 30681.08 19337.70 30765.79 28074.93 294
test_fmvs344.30 32542.55 32749.55 34042.83 37427.15 37153.03 34944.93 36722.03 36953.69 32064.94 3504.21 37949.63 36447.47 23549.82 35271.88 324
K. test v360.47 25757.11 26970.56 18973.74 24948.22 22675.10 19462.55 31758.27 13353.62 32176.31 28127.81 32081.59 18047.42 23639.18 36681.88 207
PM-MVS52.33 30550.19 31358.75 30062.10 34745.14 25965.75 29240.38 37243.60 31653.52 32272.65 3079.16 37265.87 31450.41 21454.18 34165.24 351
PMMVS53.96 29553.26 30156.04 31462.60 34650.92 18461.17 32256.09 34232.81 35053.51 32366.84 34534.04 26759.93 33344.14 26768.18 26157.27 359
PatchMatch-RL56.25 28454.55 28961.32 29077.06 19656.07 10865.57 29554.10 34844.13 31353.49 32471.27 31925.20 33766.78 30836.52 31963.66 29461.12 353
LCM-MVSNet-Re61.88 24761.35 24163.46 27474.58 23731.48 36061.42 31958.14 33358.71 12553.02 32579.55 23643.07 17776.80 26045.69 25377.96 13982.11 203
F-COLMAP63.05 23660.87 24969.58 20976.99 19953.63 14078.12 12976.16 20347.97 27852.41 32681.61 19627.87 31978.11 24140.07 29566.66 27377.00 274
test20.0353.87 29754.02 29653.41 32961.47 34928.11 36861.30 32059.21 32951.34 24352.09 32777.43 26633.29 27658.55 33929.76 35360.27 32073.58 307
testgi51.90 30652.37 30350.51 33960.39 35623.55 37858.42 33258.15 33249.03 26451.83 32879.21 24322.39 34555.59 35229.24 35662.64 30372.40 320
EU-MVSNet55.61 28854.41 29159.19 29765.41 33433.42 35272.44 23971.91 25728.81 35451.27 32973.87 30224.76 33969.08 29843.04 27858.20 32675.06 290
MDTV_nov1_ep13_2view25.89 37361.22 32140.10 33851.10 33032.97 27938.49 30378.61 255
COLMAP_ROBcopyleft52.97 1761.27 25458.81 25768.64 22174.63 23652.51 16478.42 12573.30 24549.92 25850.96 33181.51 19923.06 34479.40 21931.63 34365.85 27874.01 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_self_test55.22 29153.89 29759.21 29657.80 36127.47 37057.75 33774.32 23247.38 28450.90 33270.00 32828.45 31670.30 29340.44 29457.92 32779.87 242
ADS-MVSNet251.33 31048.76 31759.07 29866.02 33244.60 26450.90 35359.76 32836.90 34350.74 33366.18 34726.38 32963.11 32127.17 35954.76 33969.50 343
ADS-MVSNet48.48 31947.77 32050.63 33866.02 33229.92 36350.90 35350.87 35736.90 34350.74 33366.18 34726.38 32952.47 36027.17 35954.76 33969.50 343
our_test_356.49 28054.42 29062.68 28269.51 30445.48 25666.08 29161.49 32344.11 31450.73 33569.60 33233.05 27768.15 30138.38 30456.86 33174.40 300
FMVSNet555.86 28654.93 28658.66 30171.05 28636.35 33464.18 30762.48 31846.76 29150.66 33674.73 29725.80 33464.04 31833.11 33365.57 28175.59 286
lessismore_v069.91 20171.42 28247.80 23050.90 35650.39 33775.56 28927.43 32481.33 18545.91 25134.10 37280.59 230
UnsupCasMVSNet_eth53.16 30452.47 30255.23 31759.45 35733.39 35359.43 33069.13 27745.98 29750.35 33872.32 30929.30 30958.26 34042.02 28744.30 35974.05 304
dmvs_testset50.16 31451.90 30444.94 34766.49 32711.78 38461.01 32551.50 35251.17 24750.30 33967.44 34139.28 21460.29 33122.38 36657.49 32962.76 352
dp51.89 30751.60 30652.77 33268.44 31632.45 35762.36 31454.57 34544.16 31249.31 34067.91 33728.87 31356.61 34733.89 32954.89 33869.24 346
Anonymous2024052155.30 28954.41 29157.96 30660.92 35541.73 28971.09 26071.06 26341.18 33148.65 34173.31 30516.93 35459.25 33642.54 28264.01 29172.90 310
JIA-IIPM51.56 30847.68 32263.21 27764.61 33750.73 18847.71 35958.77 33142.90 32248.46 34251.72 36524.97 33870.24 29436.06 32253.89 34268.64 347
USDC56.35 28354.24 29462.69 28164.74 33640.31 29865.05 30273.83 24043.93 31547.58 34377.71 26515.36 35875.05 27038.19 30661.81 31072.70 312
UnsupCasMVSNet_bld50.07 31548.87 31653.66 32660.97 35433.67 35157.62 33864.56 30539.47 34147.38 34464.02 35327.47 32259.32 33534.69 32743.68 36067.98 348
AllTest57.08 27754.65 28864.39 27071.44 28049.03 21369.92 27367.30 28545.97 29847.16 34579.77 23017.47 35267.56 30433.65 33059.16 32376.57 278
TestCases64.39 27071.44 28049.03 21367.30 28545.97 29847.16 34579.77 23017.47 35267.56 30433.65 33059.16 32376.57 278
CMPMVSbinary42.80 2157.81 27355.97 28063.32 27560.98 35347.38 23764.66 30469.50 27332.06 35146.83 34777.80 26229.50 30771.36 28648.68 22973.75 17971.21 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet155.17 29254.31 29357.77 30870.03 29932.01 35865.68 29464.81 30249.19 26246.75 34876.00 28325.53 33664.04 31828.65 35762.13 30777.26 270
mvsany_test139.38 33238.16 33543.02 35049.05 36834.28 34744.16 36725.94 38322.74 36746.57 34962.21 35623.85 34341.16 37533.01 33435.91 36953.63 362
PVSNet_043.31 2047.46 32245.64 32552.92 33167.60 32044.65 26354.06 34754.64 34441.59 32946.15 35058.75 35830.99 29558.66 33832.18 33624.81 37455.46 361
Patchmatch-test49.08 31748.28 31951.50 33764.40 33830.85 36245.68 36348.46 36135.60 34746.10 35172.10 31034.47 26446.37 36827.08 36160.65 31877.27 269
YYNet150.73 31248.96 31456.03 31561.10 35241.78 28851.94 35156.44 33940.94 33444.84 35267.80 33930.08 30255.08 35436.77 31350.71 34971.22 330
MDA-MVSNet_test_wron50.71 31348.95 31556.00 31661.17 35141.84 28751.90 35256.45 33840.96 33344.79 35367.84 33830.04 30355.07 35536.71 31550.69 35071.11 333
TDRefinement53.44 30150.72 31061.60 28764.31 33946.96 24070.89 26265.27 30141.78 32644.61 35477.98 25511.52 36666.36 31128.57 35851.59 34771.49 329
new-patchmatchnet47.56 32147.73 32147.06 34258.81 3599.37 38648.78 35759.21 32943.28 31844.22 35568.66 33625.67 33557.20 34431.57 34549.35 35474.62 299
test_vis1_rt41.35 33039.45 33247.03 34346.65 37337.86 31747.76 35838.65 37323.10 36544.21 35651.22 36711.20 36844.08 37039.27 30053.02 34459.14 355
N_pmnet39.35 33340.28 33136.54 35663.76 3401.62 39049.37 3560.76 39034.62 34943.61 35766.38 34626.25 33142.57 37226.02 36451.77 34665.44 350
CHOSEN 280x42047.83 32046.36 32452.24 33667.37 32149.78 20438.91 37143.11 37035.00 34843.27 35863.30 35428.95 31149.19 36536.53 31860.80 31657.76 358
TinyColmap54.14 29451.72 30561.40 28966.84 32441.97 28666.52 28868.51 28144.81 30442.69 35975.77 28711.66 36472.94 27931.96 33756.77 33369.27 345
MDA-MVSNet-bldmvs53.87 29750.81 30963.05 27966.25 32948.58 22256.93 34063.82 30948.09 27641.22 36070.48 32530.34 30068.00 30334.24 32845.92 35872.57 314
pmmvs344.92 32441.95 32953.86 32452.58 36643.55 27362.11 31646.90 36626.05 36140.63 36160.19 35711.08 36957.91 34131.83 34246.15 35760.11 354
LF4IMVS42.95 32642.26 32845.04 34548.30 37132.50 35654.80 34548.49 36028.03 35740.51 36270.16 3269.24 37143.89 37131.63 34349.18 35558.72 356
mvsany_test332.62 33930.57 34338.77 35436.16 38324.20 37738.10 37220.63 38519.14 37140.36 36357.43 3605.06 37636.63 37829.59 35528.66 37355.49 360
DSMNet-mixed39.30 33438.72 33341.03 35151.22 36719.66 38145.53 36431.35 37915.83 37639.80 36467.42 34322.19 34645.13 36922.43 36552.69 34558.31 357
test_f31.86 34131.05 34234.28 35732.33 38621.86 37932.34 37330.46 38016.02 37539.78 36555.45 3624.80 37732.36 38030.61 34937.66 36848.64 364
MVS-HIRNet45.52 32344.48 32648.65 34168.49 31534.05 34959.41 33144.50 36827.03 35937.96 36650.47 36926.16 33264.10 31726.74 36259.52 32147.82 368
FPMVS42.18 32841.11 33045.39 34458.03 36041.01 29649.50 35553.81 34930.07 35333.71 36764.03 35111.69 36352.08 36314.01 37455.11 33743.09 370
test_vis3_rt32.09 34030.20 34437.76 35535.36 38427.48 36940.60 37028.29 38216.69 37432.52 36840.53 3731.96 38537.40 37733.64 33242.21 36348.39 365
new_pmnet34.13 33834.29 33933.64 35852.63 36518.23 38344.43 36633.90 37822.81 36630.89 36953.18 36310.48 37035.72 37920.77 36839.51 36546.98 369
LCM-MVSNet40.30 33135.88 33753.57 32742.24 37529.15 36545.21 36560.53 32722.23 36828.02 37050.98 3683.72 38161.78 32631.22 34838.76 36769.78 342
APD_test137.39 33534.94 33844.72 34848.88 36933.19 35452.95 35044.00 36919.49 37027.28 37158.59 3593.18 38352.84 35918.92 36941.17 36448.14 367
ANet_high41.38 32937.47 33653.11 33039.73 38024.45 37656.94 33969.69 26947.65 28126.04 37252.32 36412.44 36262.38 32421.80 36710.61 38172.49 315
testf131.46 34228.89 34539.16 35241.99 37728.78 36646.45 36137.56 37414.28 37721.10 37348.96 3701.48 38747.11 36613.63 37534.56 37041.60 371
APD_test231.46 34228.89 34539.16 35241.99 37728.78 36646.45 36137.56 37414.28 37721.10 37348.96 3701.48 38747.11 36613.63 37534.56 37041.60 371
PMVScopyleft28.69 2236.22 33633.29 34045.02 34636.82 38235.98 33954.68 34648.74 35926.31 36021.02 37551.61 3662.88 38460.10 3329.99 38047.58 35638.99 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS227.40 34425.91 34731.87 36039.46 3816.57 38731.17 37428.52 38123.96 36320.45 37648.94 3724.20 38037.94 37616.51 37119.97 37651.09 363
Gipumacopyleft34.77 33731.91 34143.33 34962.05 34837.87 31620.39 37667.03 28923.23 36418.41 37725.84 3774.24 37862.73 32214.71 37351.32 34829.38 376
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt9.43 35111.14 3544.30 3662.38 3894.40 38813.62 37816.08 3870.39 38315.89 37813.06 38015.80 3575.54 38512.63 37710.46 3822.95 380
MVEpermissive17.77 2321.41 34717.77 35232.34 35934.34 38525.44 37416.11 37724.11 38411.19 37913.22 37931.92 3751.58 38630.95 38110.47 37817.03 37740.62 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.68 34818.10 35124.41 36313.68 3883.11 38912.06 37942.37 3712.00 38211.97 38036.38 3745.77 37529.35 38215.06 37223.65 37540.76 373
DeepMVS_CXcopyleft12.03 36517.97 38710.91 38510.60 3887.46 38011.07 38128.36 3763.28 38211.29 3848.01 3829.74 38313.89 379
E-PMN23.77 34522.73 34926.90 36142.02 37620.67 38042.66 36835.70 37617.43 37210.28 38225.05 3786.42 37442.39 37310.28 37914.71 37817.63 377
EMVS22.97 34621.84 35026.36 36240.20 37919.53 38241.95 36934.64 37717.09 3739.73 38322.83 3797.29 37342.22 3749.18 38113.66 37917.32 378
wuyk23d13.32 35012.52 35315.71 36447.54 37226.27 37231.06 3751.98 3894.93 3815.18 3841.94 3840.45 38918.54 3836.81 38312.83 3802.33 381
EGC-MVSNET42.47 32738.48 33454.46 32274.33 24348.73 22070.33 26951.10 3540.03 3840.18 38567.78 34013.28 36166.49 31018.91 37050.36 35148.15 366
testmvs4.52 3546.03 3570.01 3680.01 3900.00 39253.86 3480.00 3910.01 3850.04 3860.27 3850.00 3910.00 3860.04 3840.00 3840.03 383
test1234.73 3536.30 3560.02 3670.01 3900.01 39156.36 3410.00 3910.01 3850.04 3860.21 3860.01 3900.00 3860.03 3850.00 3840.04 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
cdsmvs_eth3d_5k17.50 34923.34 3480.00 3690.00 3920.00 3920.00 38078.63 1600.00 3870.00 38882.18 18149.25 1050.00 3860.00 3860.00 3840.00 384
pcd_1.5k_mvsjas3.92 3555.23 3580.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 38747.05 1360.00 3860.00 3860.00 3840.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
ab-mvs-re6.49 3528.65 3550.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 38877.89 2600.00 3910.00 3860.00 3860.00 3840.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
MSC_two_6792asdad79.95 387.24 1461.04 3185.62 2390.96 179.31 890.65 887.85 26
No_MVS79.95 387.24 1461.04 3185.62 2390.96 179.31 890.65 887.85 26
eth-test20.00 392
eth-test0.00 392
OPU-MVS79.83 687.54 1160.93 3587.82 789.89 4167.01 190.33 1173.16 4491.15 488.23 15
save fliter86.17 3361.30 2883.98 4679.66 13959.00 119
test_0728_SECOND79.19 1587.82 359.11 6287.85 587.15 390.84 378.66 1490.61 1187.62 36
GSMVS78.05 260
sam_mvs134.74 26078.05 260
sam_mvs33.43 274
MTGPAbinary80.97 122
test_post168.67 2793.64 38232.39 29069.49 29644.17 265
test_post3.55 38333.90 26966.52 309
patchmatchnet-post64.03 35134.50 26274.27 274
MTMP86.03 1817.08 386
gm-plane-assit71.40 28341.72 29148.85 26773.31 30582.48 16748.90 228
test9_res75.28 2988.31 3283.81 161
agg_prior273.09 4587.93 3984.33 142
test_prior462.51 1482.08 76
test_prior76.69 5284.20 6157.27 8784.88 3786.43 7786.38 68
新几何276.12 170
旧先验183.04 7053.15 15167.52 28487.85 6844.08 16980.76 9978.03 263
无先验79.66 10974.30 23448.40 27280.78 20153.62 18879.03 252
原ACMM279.02 115
testdata272.18 28546.95 244
segment_acmp54.23 52
testdata172.65 23360.50 90
plane_prior781.41 8955.96 110
plane_prior681.20 9656.24 10545.26 160
plane_prior584.01 4987.21 5268.16 7180.58 10284.65 136
plane_prior486.10 99
plane_prior284.22 3964.52 24
plane_prior181.27 94
plane_prior56.31 10183.58 5263.19 4780.48 105
n20.00 391
nn0.00 391
door-mid47.19 365
test1183.47 66
door47.60 363
HQP5-MVS54.94 127
BP-MVS67.04 83
HQP3-MVS83.90 5380.35 106
HQP2-MVS45.46 154
NP-MVS80.98 9956.05 10985.54 116
ACMMP++_ref74.07 175
ACMMP++72.16 209
Test By Simon48.33 116