This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS95.91 296.28 294.80 3198.77 585.99 5097.13 1497.44 1590.31 2797.71 198.07 492.31 499.58 995.66 799.13 398.84 13
test_241102_ONE98.77 585.99 5097.44 1590.26 3297.71 197.96 1092.31 499.38 30
SMA-MVScopyleft95.20 895.07 1195.59 598.14 3588.48 896.26 4697.28 3085.90 14397.67 398.10 288.41 2099.56 1194.66 1699.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072698.78 385.93 5397.19 1197.47 1190.27 3097.64 498.13 191.47 8
DVP-MVS++95.98 196.36 194.82 2997.78 5186.00 4898.29 197.49 690.75 1897.62 598.06 692.59 299.61 395.64 999.02 1298.86 10
test_241102_TWO97.44 1590.31 2797.62 598.07 491.46 1099.58 995.66 799.12 698.98 9
IU-MVS98.77 586.00 4896.84 6481.26 25097.26 795.50 1399.13 399.03 7
test_fmvsm_n_192094.71 1695.11 1093.50 6395.79 11484.62 7396.15 5297.64 289.85 3997.19 897.89 1286.28 4098.71 9197.11 298.08 6497.17 104
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1695.56 8597.51 589.13 6097.14 997.91 1191.64 799.62 194.61 1799.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PC_three_145282.47 21997.09 1097.07 4192.72 198.04 14992.70 4599.02 1298.86 10
DVP-MVScopyleft95.67 396.02 394.64 3798.78 385.93 5397.09 1696.73 7790.27 3097.04 1198.05 891.47 899.55 1595.62 1199.08 798.45 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1897.04 1198.05 892.09 699.55 1595.64 999.13 399.13 2
SD-MVS94.96 1295.33 893.88 5597.25 6986.69 2696.19 4997.11 4290.42 2696.95 1397.27 2889.53 1496.91 23894.38 1998.85 1998.03 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_one_060198.58 1185.83 5897.44 1591.05 1396.78 1498.06 691.45 11
test_part298.55 1287.22 1796.40 15
FOURS198.86 185.54 6498.29 197.49 689.79 4396.29 16
APDe-MVS95.46 595.64 594.91 2098.26 2886.29 4497.46 697.40 2089.03 6396.20 1798.10 289.39 1699.34 3395.88 699.03 1199.10 4
MSP-MVS95.42 695.56 694.98 1898.49 1786.52 3496.91 2597.47 1191.73 996.10 1896.69 5689.90 1299.30 3994.70 1598.04 6599.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.94.85 1394.94 1294.58 4098.25 2986.33 4096.11 5596.62 8688.14 9496.10 1896.96 4589.09 1898.94 7494.48 1898.68 3698.48 29
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS94.97 1194.90 1495.20 1197.84 4787.76 996.65 3497.48 1087.76 10695.71 2097.70 1588.28 2399.35 3293.89 2598.78 2598.48 29
DeepPCF-MVS89.96 194.20 3194.77 1592.49 10496.52 8780.00 20994.00 18497.08 4390.05 3495.65 2197.29 2789.66 1398.97 7193.95 2398.71 3198.50 26
SteuartSystems-ACMMP95.20 895.32 994.85 2496.99 7286.33 4097.33 797.30 2891.38 1195.39 2297.46 2088.98 1999.40 2994.12 2198.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9596.96 5192.09 595.32 2397.08 3989.49 1599.33 3695.10 1498.85 1998.66 19
ACMMP_NAP94.74 1594.56 1795.28 898.02 4187.70 1095.68 7797.34 2288.28 8795.30 2497.67 1685.90 4499.54 1993.91 2498.95 1598.60 22
9.1494.47 1897.79 4996.08 5697.44 1586.13 14195.10 2597.40 2388.34 2299.22 4393.25 3498.70 33
APD-MVScopyleft94.24 2794.07 3494.75 3498.06 3986.90 2195.88 6696.94 5485.68 14995.05 2697.18 3587.31 3399.07 5291.90 7098.61 4598.28 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-293.74 4194.32 2292.01 12097.54 5778.37 24793.40 20897.19 3488.02 9694.99 2797.21 3288.35 2198.44 11294.07 2298.09 6299.23 1
dcpmvs_293.49 4594.19 3191.38 15597.69 5476.78 27994.25 16396.29 10288.33 8494.46 2896.88 4888.07 2598.64 9493.62 2898.09 6298.73 16
旧先验293.36 20971.25 35094.37 2997.13 22486.74 136
SR-MVS94.23 2894.17 3294.43 4598.21 3285.78 6096.40 4096.90 5888.20 9294.33 3097.40 2384.75 6099.03 5793.35 3397.99 6698.48 29
TSAR-MVS + GP.93.66 4393.41 4894.41 4796.59 8286.78 2494.40 15393.93 24089.77 4494.21 3195.59 10587.35 3298.61 9892.72 4396.15 10197.83 80
ZD-MVS98.15 3486.62 3197.07 4483.63 19294.19 3296.91 4787.57 3199.26 4191.99 6498.44 50
alignmvs93.08 5692.50 6394.81 3095.62 12287.61 1295.99 6196.07 12189.77 4494.12 3394.87 12980.56 10298.66 9292.42 4893.10 15998.15 60
canonicalmvs93.27 5392.75 5994.85 2495.70 11987.66 1196.33 4196.41 9690.00 3694.09 3494.60 14482.33 8498.62 9792.40 4992.86 16398.27 51
VNet92.24 6891.91 6993.24 6796.59 8283.43 10694.84 12596.44 9489.19 5894.08 3595.90 9177.85 13798.17 13188.90 10793.38 15398.13 61
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 6596.96 5191.75 894.02 3696.83 5188.12 2499.55 1593.41 3298.94 1698.28 49
NCCC94.81 1494.69 1695.17 1397.83 4887.46 1595.66 7996.93 5592.34 393.94 3796.58 6687.74 2799.44 2892.83 4098.40 5198.62 20
APD-MVS_3200maxsize93.78 4093.77 4293.80 5997.92 4384.19 8896.30 4296.87 6186.96 12093.92 3897.47 1983.88 6898.96 7392.71 4497.87 7098.26 53
SR-MVS-dyc-post93.82 3993.82 3993.82 5797.92 4384.57 7596.28 4496.76 7387.46 11093.75 3997.43 2184.24 6499.01 6292.73 4197.80 7297.88 76
RE-MVS-def93.68 4597.92 4384.57 7596.28 4496.76 7387.46 11093.75 3997.43 2182.94 7792.73 4197.80 7297.88 76
HFP-MVS94.52 1894.40 2094.86 2398.61 1086.81 2396.94 2097.34 2288.63 7693.65 4197.21 3286.10 4299.49 2592.35 5198.77 2798.30 46
testdata90.49 19296.40 8977.89 25995.37 17772.51 34493.63 4296.69 5682.08 9097.65 17283.08 18097.39 7995.94 151
region2R94.43 2294.27 2794.92 1998.65 886.67 2896.92 2497.23 3388.60 7893.58 4397.27 2885.22 5199.54 1992.21 5498.74 3098.56 24
MSLP-MVS++93.72 4294.08 3392.65 9697.31 6583.43 10695.79 7197.33 2490.03 3593.58 4396.96 4584.87 5897.76 16492.19 5698.66 3996.76 121
PHI-MVS93.89 3893.65 4694.62 3996.84 7586.43 3796.69 3297.49 685.15 16393.56 4596.28 7485.60 4699.31 3892.45 4698.79 2398.12 63
ACMMPR94.43 2294.28 2594.91 2098.63 986.69 2696.94 2097.32 2688.63 7693.53 4697.26 3085.04 5499.54 1992.35 5198.78 2598.50 26
CS-MVS94.12 3294.44 1993.17 7096.55 8483.08 11997.63 396.95 5391.71 1093.50 4796.21 7685.61 4598.24 12693.64 2798.17 5798.19 57
GST-MVS94.21 2993.97 3794.90 2298.41 2286.82 2296.54 3697.19 3488.24 8893.26 4896.83 5185.48 4899.59 791.43 7798.40 5198.30 46
PGM-MVS93.96 3793.72 4394.68 3698.43 2086.22 4595.30 9397.78 187.45 11293.26 4897.33 2684.62 6199.51 2390.75 8998.57 4698.32 45
UA-Net92.83 5992.54 6293.68 6196.10 10084.71 7295.66 7996.39 9791.92 693.22 5096.49 6983.16 7498.87 7884.47 16495.47 11097.45 95
ZNCC-MVS94.47 1994.28 2595.03 1598.52 1586.96 1896.85 2897.32 2688.24 8893.15 5197.04 4286.17 4199.62 192.40 4998.81 2298.52 25
MTAPA94.42 2494.22 2895.00 1798.42 2186.95 1994.36 16096.97 4991.07 1293.14 5297.56 1784.30 6399.56 1193.43 3098.75 2998.47 32
h-mvs3390.80 8990.15 9592.75 9096.01 10482.66 13695.43 8795.53 16389.80 4093.08 5395.64 10375.77 15499.00 6692.07 6078.05 33196.60 126
hse-mvs289.88 11689.34 11591.51 14994.83 15581.12 17493.94 18793.91 24389.80 4093.08 5393.60 18475.77 15497.66 17192.07 6077.07 33895.74 161
MVS_030494.60 1794.38 2195.23 1095.41 12887.49 1496.53 3792.75 26793.82 193.07 5597.84 1483.66 7099.59 797.61 198.76 2898.61 21
ETV-MVS92.74 6192.66 6092.97 8195.20 13684.04 9295.07 11196.51 9290.73 2192.96 5691.19 26384.06 6598.34 11991.72 7296.54 9596.54 130
CS-MVS-test94.02 3494.29 2493.24 6796.69 7883.24 11197.49 596.92 5692.14 492.90 5795.77 9885.02 5598.33 12193.03 3798.62 4398.13 61
EC-MVSNet93.44 4793.71 4492.63 9795.21 13582.43 14097.27 996.71 8090.57 2592.88 5895.80 9683.16 7498.16 13293.68 2698.14 5997.31 97
XVS94.45 2094.32 2294.85 2498.54 1386.60 3296.93 2297.19 3490.66 2392.85 5997.16 3785.02 5599.49 2591.99 6498.56 4798.47 32
X-MVStestdata88.31 16486.13 21094.85 2498.54 1386.60 3296.93 2297.19 3490.66 2392.85 5923.41 38185.02 5599.49 2591.99 6498.56 4798.47 32
MP-MVS-pluss94.21 2994.00 3694.85 2498.17 3386.65 2994.82 12697.17 3886.26 13592.83 6197.87 1385.57 4799.56 1194.37 2098.92 1798.34 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_cas_vis1_n_192088.83 15288.85 13088.78 25291.15 28476.72 28093.85 19294.93 19983.23 20592.81 6296.00 8661.17 31594.45 31891.67 7394.84 12195.17 179
DeepC-MVS_fast89.43 294.04 3393.79 4094.80 3197.48 6186.78 2495.65 8196.89 5989.40 5292.81 6296.97 4485.37 5099.24 4290.87 8798.69 3498.38 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TEST997.53 5886.49 3594.07 17696.78 7081.61 24392.77 6496.20 7787.71 2899.12 50
train_agg93.44 4793.08 5394.52 4297.53 5886.49 3594.07 17696.78 7081.86 23692.77 6496.20 7787.63 2999.12 5092.14 5898.69 3497.94 72
CDPH-MVS92.83 5992.30 6594.44 4397.79 4986.11 4794.06 17896.66 8380.09 26392.77 6496.63 6386.62 3699.04 5687.40 12698.66 3998.17 59
CP-MVS94.34 2594.21 2994.74 3598.39 2386.64 3097.60 497.24 3188.53 8092.73 6797.23 3185.20 5299.32 3792.15 5798.83 2198.25 54
test_897.49 6086.30 4394.02 18196.76 7381.86 23692.70 6896.20 7787.63 2999.02 60
test_prior294.12 17087.67 10892.63 6996.39 7286.62 3691.50 7598.67 38
HPM-MVScopyleft94.02 3493.88 3894.43 4598.39 2385.78 6097.25 1097.07 4486.90 12492.62 7096.80 5584.85 5999.17 4692.43 4798.65 4198.33 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS90.74 9189.92 10393.20 6996.27 9383.02 12195.73 7493.86 24488.42 8392.53 7196.84 5062.09 30498.64 9490.95 8592.62 16697.93 74
EI-MVSNet-Vis-set93.01 5792.92 5693.29 6595.01 14283.51 10594.48 14595.77 14490.87 1492.52 7296.67 5884.50 6299.00 6691.99 6494.44 13497.36 96
MCST-MVS94.45 2094.20 3095.19 1298.46 1987.50 1395.00 11597.12 4087.13 11692.51 7396.30 7389.24 1799.34 3393.46 2998.62 4398.73 16
HPM-MVS_fast93.40 5193.22 5193.94 5498.36 2584.83 7097.15 1396.80 6985.77 14692.47 7497.13 3882.38 8299.07 5290.51 9498.40 5197.92 75
test_fmvsmvis_n_192093.44 4793.55 4793.10 7393.67 20784.26 8795.83 6996.14 11589.00 6692.43 7597.50 1883.37 7398.72 9096.61 397.44 7896.32 134
xiu_mvs_v1_base_debu90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
xiu_mvs_v1_base90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
xiu_mvs_v1_base_debi90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
agg_prior97.38 6385.92 5596.72 7992.16 7998.97 71
LFMVS90.08 10689.13 12092.95 8296.71 7782.32 14596.08 5689.91 33786.79 12592.15 8096.81 5362.60 30298.34 11987.18 13093.90 14098.19 57
EI-MVSNet-UG-set92.74 6192.62 6193.12 7294.86 15383.20 11394.40 15395.74 14790.71 2292.05 8196.60 6584.00 6698.99 6891.55 7493.63 14497.17 104
casdiffmvs_mvgpermissive92.96 5892.83 5893.35 6494.59 16583.40 10895.00 11596.34 10090.30 2992.05 8196.05 8583.43 7198.15 13392.07 6095.67 10598.49 28
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft94.25 2694.07 3494.77 3398.47 1886.31 4296.71 3196.98 4889.04 6291.98 8397.19 3485.43 4999.56 1192.06 6398.79 2398.44 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvs187.34 20087.56 16386.68 30690.59 30771.80 33194.01 18294.04 23878.30 28991.97 8495.22 11556.28 33693.71 33292.89 3994.71 12394.52 207
casdiffmvspermissive92.51 6492.43 6492.74 9194.41 17781.98 15094.54 14396.23 10989.57 4891.96 8596.17 8182.58 8098.01 15190.95 8595.45 11298.23 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs1_n87.03 21687.04 17786.97 29889.74 32571.86 32994.55 14294.43 22178.47 28591.95 8695.50 10651.16 35393.81 33093.02 3894.56 12995.26 176
test_vis1_n_192089.39 13389.84 10488.04 27392.97 22872.64 32294.71 13496.03 12686.18 13891.94 8796.56 6861.63 30795.74 29893.42 3195.11 11995.74 161
VDDNet89.56 12388.49 14192.76 8995.07 14182.09 14796.30 4293.19 25781.05 25591.88 8896.86 4961.16 31698.33 12188.43 11392.49 16997.84 79
baseline92.39 6792.29 6692.69 9594.46 17481.77 15594.14 16996.27 10489.22 5691.88 8896.00 8682.35 8397.99 15391.05 8095.27 11798.30 46
PS-MVSNAJ91.18 8590.92 8391.96 12695.26 13382.60 13992.09 25895.70 14986.27 13491.84 9092.46 21979.70 11298.99 6889.08 10595.86 10394.29 223
DELS-MVS93.43 5093.25 5093.97 5295.42 12785.04 6893.06 22697.13 3990.74 2091.84 9095.09 12386.32 3999.21 4491.22 7898.45 4997.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mPP-MVS93.99 3693.78 4194.63 3898.50 1685.90 5796.87 2696.91 5788.70 7491.83 9297.17 3683.96 6799.55 1591.44 7698.64 4298.43 37
MVSFormer91.68 7791.30 7592.80 8793.86 19883.88 9595.96 6395.90 13584.66 17591.76 9394.91 12777.92 13497.30 20889.64 9997.11 8197.24 100
lupinMVS90.92 8890.21 9293.03 7893.86 19883.88 9592.81 23493.86 24479.84 26591.76 9394.29 15477.92 13498.04 14990.48 9597.11 8197.17 104
xiu_mvs_v2_base91.13 8690.89 8591.86 13494.97 14582.42 14192.24 25295.64 15686.11 14291.74 9593.14 19979.67 11598.89 7789.06 10695.46 11194.28 224
DPM-MVS92.58 6391.74 7195.08 1496.19 9589.31 592.66 23796.56 9183.44 19891.68 9695.04 12486.60 3898.99 6885.60 15097.92 6996.93 117
MVS_111021_HR93.45 4693.31 4993.84 5696.99 7284.84 6993.24 21997.24 3188.76 7191.60 9795.85 9386.07 4398.66 9291.91 6898.16 5898.03 69
test_yl90.69 9390.02 10192.71 9295.72 11782.41 14394.11 17195.12 18785.63 15191.49 9894.70 13874.75 16998.42 11486.13 14392.53 16797.31 97
DCV-MVSNet90.69 9390.02 10192.71 9295.72 11782.41 14394.11 17195.12 18785.63 15191.49 9894.70 13874.75 16998.42 11486.13 14392.53 16797.31 97
jason90.80 8990.10 9692.90 8493.04 22483.53 10493.08 22494.15 23380.22 26091.41 10094.91 12776.87 14197.93 15890.28 9696.90 8797.24 100
jason: jason.
diffmvspermissive91.37 8191.23 7791.77 14093.09 22180.27 19592.36 24695.52 16487.03 11991.40 10194.93 12680.08 10697.44 19292.13 5994.56 12997.61 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 8291.11 7991.93 12894.37 17880.14 20093.46 20795.80 14286.46 13191.35 10293.77 18082.21 8798.09 14487.57 12494.95 12097.55 92
新几何193.10 7397.30 6684.35 8695.56 15971.09 35191.26 10396.24 7582.87 7898.86 8079.19 24898.10 6196.07 147
MVS_111021_LR92.47 6592.29 6692.98 8095.99 10884.43 8493.08 22496.09 11988.20 9291.12 10495.72 10181.33 9897.76 16491.74 7197.37 8096.75 122
test1294.34 4897.13 7086.15 4696.29 10291.04 10585.08 5399.01 6298.13 6097.86 78
MG-MVS91.77 7391.70 7292.00 12397.08 7180.03 20793.60 20295.18 18587.85 10490.89 10696.47 7082.06 9198.36 11685.07 15497.04 8497.62 86
test_vis1_n86.56 23086.49 19986.78 30588.51 33472.69 31994.68 13593.78 24879.55 26990.70 10795.31 11148.75 35893.28 33893.15 3593.99 13894.38 219
CANet93.54 4493.20 5294.55 4195.65 12085.73 6294.94 11896.69 8291.89 790.69 10895.88 9281.99 9399.54 1993.14 3697.95 6898.39 38
Effi-MVS+91.59 7891.11 7993.01 7994.35 18183.39 10994.60 13995.10 18987.10 11790.57 10993.10 20181.43 9798.07 14789.29 10394.48 13297.59 89
test250687.21 20986.28 20690.02 21795.62 12273.64 31096.25 4771.38 38187.89 10290.45 11096.65 6055.29 34198.09 14486.03 14596.94 8598.33 42
原ACMM192.01 12097.34 6481.05 17596.81 6878.89 27790.45 11095.92 9082.65 7998.84 8480.68 22798.26 5696.14 141
Vis-MVSNetpermissive91.75 7491.23 7793.29 6595.32 13083.78 9796.14 5395.98 12789.89 3790.45 11096.58 6675.09 16598.31 12484.75 16096.90 8797.78 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS91.99 6991.80 7092.55 10198.24 3181.98 15096.76 3096.49 9381.89 23590.24 11396.44 7178.59 12698.61 9889.68 9897.85 7197.06 109
ECVR-MVScopyleft89.09 14088.53 13790.77 18395.62 12275.89 29196.16 5084.22 36187.89 10290.20 11496.65 6063.19 30098.10 13685.90 14696.94 8598.33 42
test22296.55 8481.70 15692.22 25395.01 19268.36 35790.20 11496.14 8280.26 10597.80 7296.05 149
test111189.10 13888.64 13390.48 19495.53 12574.97 29896.08 5684.89 35988.13 9590.16 11696.65 6063.29 29898.10 13686.14 14196.90 8798.39 38
ACMMPcopyleft93.24 5492.88 5794.30 4998.09 3885.33 6696.86 2797.45 1488.33 8490.15 11797.03 4381.44 9699.51 2390.85 8895.74 10498.04 68
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 5593.05 5493.76 6098.04 4084.07 9096.22 4897.37 2184.15 18090.05 11895.66 10287.77 2699.15 4989.91 9798.27 5598.07 65
DP-MVS Recon91.95 7091.28 7693.96 5398.33 2785.92 5594.66 13796.66 8382.69 21790.03 11995.82 9582.30 8599.03 5784.57 16296.48 9896.91 118
FA-MVS(test-final)89.66 11988.91 12691.93 12894.57 16880.27 19591.36 27294.74 21384.87 16889.82 12092.61 21674.72 17298.47 10783.97 17093.53 14797.04 111
EPP-MVSNet91.70 7691.56 7392.13 11995.88 11180.50 19197.33 795.25 18186.15 13989.76 12195.60 10483.42 7298.32 12387.37 12893.25 15697.56 91
DeepC-MVS88.79 393.31 5292.99 5594.26 5096.07 10285.83 5894.89 12196.99 4789.02 6589.56 12297.37 2582.51 8199.38 3092.20 5598.30 5497.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS91.23 8390.62 8893.08 7596.27 9384.07 9093.52 20495.93 13186.95 12189.51 12396.13 8378.50 12898.35 11885.84 14892.90 16296.83 120
IS-MVSNet91.43 7991.09 8192.46 10595.87 11381.38 16796.95 1993.69 25089.72 4689.50 12495.98 8878.57 12797.77 16383.02 18296.50 9798.22 56
Anonymous20240521187.68 18086.13 21092.31 11396.66 7980.74 18594.87 12391.49 30580.47 25989.46 12595.44 10754.72 34398.23 12782.19 19889.89 19497.97 71
EIA-MVS91.95 7091.94 6891.98 12495.16 13780.01 20895.36 8896.73 7788.44 8189.34 12692.16 22983.82 6998.45 11189.35 10197.06 8397.48 93
PVSNet_Blended_VisFu91.38 8090.91 8492.80 8796.39 9083.17 11494.87 12396.66 8383.29 20289.27 12794.46 14880.29 10499.17 4687.57 12495.37 11396.05 149
API-MVS90.66 9590.07 9792.45 10696.36 9184.57 7596.06 5995.22 18482.39 22089.13 12894.27 15780.32 10398.46 10880.16 23596.71 9294.33 220
PVSNet_BlendedMVS89.98 10989.70 10590.82 18196.12 9781.25 16993.92 18996.83 6583.49 19789.10 12992.26 22781.04 10098.85 8286.72 13887.86 23392.35 305
PVSNet_Blended90.73 9290.32 9191.98 12496.12 9781.25 16992.55 24196.83 6582.04 22989.10 12992.56 21781.04 10098.85 8286.72 13895.91 10295.84 156
Anonymous2024052988.09 17086.59 19492.58 10096.53 8681.92 15295.99 6195.84 14074.11 33089.06 13195.21 11761.44 31098.81 8583.67 17687.47 23697.01 113
WTY-MVS89.60 12188.92 12591.67 14395.47 12681.15 17392.38 24594.78 21183.11 20689.06 13194.32 15278.67 12596.61 25281.57 21290.89 18397.24 100
XVG-OURS89.40 13288.70 13191.52 14894.06 18781.46 16491.27 27496.07 12186.14 14088.89 13395.77 9868.73 25597.26 21487.39 12789.96 19295.83 157
FE-MVS87.40 19886.02 21691.57 14794.56 16979.69 21790.27 28893.72 24980.57 25888.80 13491.62 25265.32 28598.59 10074.97 28994.33 13696.44 131
mvsany_test185.42 25185.30 23885.77 31687.95 34575.41 29787.61 33380.97 36976.82 30388.68 13595.83 9477.44 13890.82 35785.90 14686.51 24791.08 331
sss88.93 14788.26 14990.94 17994.05 18880.78 18491.71 26595.38 17581.55 24488.63 13693.91 17475.04 16695.47 30882.47 19291.61 17496.57 128
XVG-OURS-SEG-HR89.95 11289.45 11091.47 15294.00 19381.21 17291.87 26196.06 12385.78 14588.55 13795.73 10074.67 17397.27 21288.71 11089.64 20195.91 152
ab-mvs89.41 13088.35 14392.60 9895.15 13982.65 13792.20 25495.60 15883.97 18488.55 13793.70 18374.16 18198.21 13082.46 19389.37 20496.94 116
thisisatest053088.67 15487.61 16291.86 13494.87 15280.07 20394.63 13889.90 33884.00 18388.46 13993.78 17966.88 27198.46 10883.30 17892.65 16597.06 109
VPA-MVSNet89.62 12088.96 12391.60 14593.86 19882.89 12795.46 8697.33 2487.91 9988.43 14093.31 19174.17 18097.40 20187.32 12982.86 28194.52 207
nrg03091.08 8790.39 8993.17 7093.07 22286.91 2096.41 3896.26 10588.30 8688.37 14194.85 13282.19 8897.64 17591.09 7982.95 27694.96 187
tfpn200view987.58 19086.64 19090.41 19895.99 10878.64 23894.58 14091.98 29186.94 12288.09 14291.77 24569.18 24998.10 13670.13 31791.10 17794.48 215
thres40087.62 18786.64 19090.57 18695.99 10878.64 23894.58 14091.98 29186.94 12288.09 14291.77 24569.18 24998.10 13670.13 31791.10 17794.96 187
thres600view787.65 18286.67 18990.59 18596.08 10178.72 23694.88 12291.58 30187.06 11888.08 14492.30 22568.91 25298.10 13670.05 32091.10 17794.96 187
thres100view90087.63 18586.71 18790.38 20196.12 9778.55 24095.03 11491.58 30187.15 11588.06 14592.29 22668.91 25298.10 13670.13 31791.10 17794.48 215
tttt051788.61 15687.78 15991.11 16894.96 14677.81 26295.35 8989.69 34185.09 16588.05 14694.59 14566.93 26998.48 10583.27 17992.13 17297.03 112
thres20087.21 20986.24 20890.12 21195.36 12978.53 24193.26 21792.10 28586.42 13288.00 14791.11 26969.24 24898.00 15269.58 32191.04 18293.83 246
OPM-MVS90.12 10589.56 10891.82 13793.14 21983.90 9494.16 16895.74 14788.96 6787.86 14895.43 10972.48 20597.91 15988.10 11890.18 18993.65 259
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MAR-MVS90.30 10189.37 11493.07 7796.61 8184.48 8095.68 7795.67 15182.36 22287.85 14992.85 20676.63 14798.80 8680.01 23696.68 9395.91 152
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)89.59 12289.44 11190.03 21595.74 11675.85 29295.61 8390.80 32287.66 10987.83 15095.40 11076.79 14396.46 26578.37 25296.73 9197.80 81
CDS-MVSNet89.45 12788.51 13892.29 11593.62 20883.61 10393.01 22794.68 21681.95 23187.82 15193.24 19578.69 12496.99 23380.34 23293.23 15796.28 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS89.21 13688.29 14791.96 12693.71 20482.62 13893.30 21494.19 23182.22 22487.78 15293.94 17078.83 12196.95 23577.70 26192.98 16196.32 134
CANet_DTU90.26 10389.41 11392.81 8693.46 21383.01 12293.48 20594.47 22089.43 5187.76 15394.23 15870.54 22999.03 5784.97 15596.39 9996.38 133
HyFIR lowres test88.09 17086.81 18291.93 12896.00 10580.63 18790.01 29995.79 14373.42 33687.68 15492.10 23573.86 18697.96 15580.75 22591.70 17397.19 103
UGNet89.95 11288.95 12492.95 8294.51 17183.31 11095.70 7695.23 18289.37 5387.58 15593.94 17064.00 29398.78 8783.92 17196.31 10096.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
thisisatest051587.33 20185.99 21791.37 15693.49 21179.55 21990.63 28489.56 34480.17 26187.56 15690.86 27467.07 26898.28 12581.50 21393.02 16096.29 136
GeoE90.05 10789.43 11291.90 13395.16 13780.37 19495.80 7094.65 21783.90 18587.55 15794.75 13778.18 13297.62 17781.28 21593.63 14497.71 84
baseline188.10 16987.28 17190.57 18694.96 14680.07 20394.27 16291.29 31086.74 12687.41 15894.00 16776.77 14496.20 27780.77 22479.31 32795.44 170
CHOSEN 1792x268888.84 14987.69 16092.30 11496.14 9681.42 16690.01 29995.86 13974.52 32687.41 15893.94 17075.46 16298.36 11680.36 23195.53 10797.12 108
PAPM_NR91.22 8490.78 8792.52 10397.60 5681.46 16494.37 15996.24 10886.39 13387.41 15894.80 13582.06 9198.48 10582.80 18895.37 11397.61 87
EPNet91.79 7291.02 8294.10 5190.10 31785.25 6796.03 6092.05 28792.83 287.39 16195.78 9779.39 11799.01 6288.13 11697.48 7798.05 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
iter_conf0588.85 14888.08 15291.17 16494.27 18281.64 15795.18 10392.15 28386.23 13787.28 16294.07 16063.89 29697.55 18190.63 9089.00 21394.32 221
EI-MVSNet89.10 13888.86 12989.80 22791.84 25678.30 24993.70 19995.01 19285.73 14787.15 16395.28 11279.87 10997.21 21983.81 17387.36 23993.88 241
MVSTER88.84 14988.29 14790.51 19192.95 22980.44 19293.73 19695.01 19284.66 17587.15 16393.12 20072.79 20197.21 21987.86 11987.36 23993.87 242
iter_conf_final89.42 12988.69 13291.60 14595.12 14082.93 12595.75 7392.14 28487.32 11487.12 16594.07 16067.09 26797.55 18190.61 9189.01 21294.32 221
mvsmamba89.96 11189.50 10991.33 15892.90 23181.82 15396.68 3392.37 27589.03 6387.00 16694.85 13273.05 19797.65 17291.03 8188.63 21794.51 209
VPNet88.20 16787.47 16690.39 19993.56 21079.46 22194.04 17995.54 16288.67 7586.96 16794.58 14669.33 24497.15 22184.05 16980.53 31494.56 205
AUN-MVS87.78 17886.54 19691.48 15194.82 15681.05 17593.91 19193.93 24083.00 20986.93 16893.53 18569.50 24197.67 16986.14 14177.12 33795.73 163
HY-MVS83.01 1289.03 14487.94 15692.29 11594.86 15382.77 12892.08 25994.49 21981.52 24586.93 16892.79 21278.32 13198.23 12779.93 23790.55 18495.88 154
HQP_MVS90.60 9990.19 9391.82 13794.70 16182.73 13295.85 6796.22 11090.81 1686.91 17094.86 13074.23 17798.12 13488.15 11489.99 19094.63 199
plane_prior382.75 12990.26 3286.91 170
BH-RMVSNet88.37 16287.48 16591.02 17395.28 13179.45 22292.89 23193.07 25985.45 15686.91 17094.84 13470.35 23097.76 16473.97 29594.59 12895.85 155
test_fmvs283.98 27284.03 25983.83 33287.16 34867.53 35793.93 18892.89 26277.62 29586.89 17393.53 18547.18 36292.02 34990.54 9286.51 24791.93 312
SDMVSNet90.19 10489.61 10791.93 12896.00 10583.09 11892.89 23195.98 12788.73 7286.85 17495.20 11872.09 20997.08 22688.90 10789.85 19695.63 166
sd_testset88.59 15887.85 15890.83 18096.00 10580.42 19392.35 24794.71 21488.73 7286.85 17495.20 11867.31 26296.43 26779.64 24189.85 19695.63 166
Fast-Effi-MVS+89.41 13088.64 13391.71 14294.74 15780.81 18393.54 20395.10 18983.11 20686.82 17690.67 28079.74 11197.75 16780.51 23093.55 14696.57 128
FIs90.51 10090.35 9090.99 17693.99 19480.98 17795.73 7497.54 489.15 5986.72 17794.68 14081.83 9597.24 21685.18 15388.31 22694.76 197
PAPR90.02 10889.27 11992.29 11595.78 11580.95 17992.68 23696.22 11081.91 23386.66 17893.75 18282.23 8698.44 11279.40 24794.79 12297.48 93
PMMVS85.71 24784.96 24587.95 27588.90 33277.09 27588.68 31990.06 33372.32 34586.47 17990.76 27972.15 20894.40 32081.78 20893.49 14992.36 304
UniMVSNet_NR-MVSNet89.92 11489.29 11791.81 13993.39 21483.72 9894.43 15197.12 4089.80 4086.46 18093.32 19083.16 7497.23 21784.92 15681.02 30594.49 214
DU-MVS89.34 13588.50 13991.85 13693.04 22483.72 9894.47 14896.59 8889.50 4986.46 18093.29 19377.25 13997.23 21784.92 15681.02 30594.59 202
CostFormer85.77 24684.94 24688.26 26791.16 28372.58 32589.47 30791.04 31676.26 30986.45 18289.97 29470.74 22396.86 24182.35 19587.07 24495.34 175
UniMVSNet (Re)89.80 11789.07 12192.01 12093.60 20984.52 7894.78 12997.47 1189.26 5586.44 18392.32 22482.10 8997.39 20484.81 15980.84 30994.12 229
TR-MVS86.78 22285.76 22889.82 22494.37 17878.41 24592.47 24292.83 26481.11 25486.36 18492.40 22168.73 25597.48 18773.75 29889.85 19693.57 261
AdaColmapbinary89.89 11589.07 12192.37 11097.41 6283.03 12094.42 15295.92 13282.81 21486.34 18594.65 14273.89 18599.02 6080.69 22695.51 10895.05 182
FC-MVSNet-test90.27 10290.18 9490.53 18893.71 20479.85 21495.77 7297.59 389.31 5486.27 18694.67 14181.93 9497.01 23284.26 16688.09 22994.71 198
PS-MVSNAJss89.97 11089.62 10691.02 17391.90 25480.85 18295.26 9895.98 12786.26 13586.21 18794.29 15479.70 11297.65 17288.87 10988.10 22794.57 204
TAPA-MVS84.62 688.16 16887.01 17891.62 14496.64 8080.65 18694.39 15596.21 11376.38 30686.19 18895.44 10779.75 11098.08 14662.75 35395.29 11596.13 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CVMVSNet84.69 26684.79 25084.37 32791.84 25664.92 36393.70 19991.47 30666.19 36086.16 18995.28 11267.18 26693.33 33780.89 22390.42 18694.88 192
tpmrst85.35 25384.99 24386.43 30890.88 29867.88 35488.71 31891.43 30780.13 26286.08 19088.80 31273.05 19796.02 28482.48 19183.40 27595.40 172
ACMM84.12 989.14 13788.48 14291.12 16594.65 16481.22 17195.31 9196.12 11885.31 15985.92 19194.34 15070.19 23398.06 14885.65 14988.86 21594.08 233
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t89.51 12488.50 13992.54 10298.11 3681.99 14995.16 10696.36 9970.19 35485.81 19295.25 11476.70 14598.63 9682.07 20096.86 9097.00 114
tpm84.73 26484.02 26086.87 30390.33 31368.90 35089.06 31489.94 33680.85 25685.75 19389.86 29668.54 25795.97 28677.76 26084.05 26595.75 160
Baseline_NR-MVSNet87.07 21486.63 19288.40 26291.44 26977.87 26094.23 16692.57 27284.12 18185.74 19492.08 23677.25 13996.04 28282.29 19779.94 32091.30 323
V4287.68 18086.86 18090.15 20990.58 30880.14 20094.24 16595.28 18083.66 19185.67 19591.33 25874.73 17197.41 19984.43 16581.83 29192.89 288
v114487.61 18886.79 18490.06 21491.01 28879.34 22693.95 18695.42 17483.36 20185.66 19691.31 26174.98 16797.42 19483.37 17782.06 28793.42 268
PatchT82.68 28381.27 28586.89 30290.09 31870.94 34184.06 35690.15 33074.91 32285.63 19783.57 35369.37 24294.87 31765.19 34388.50 22194.84 193
bld_raw_dy_0_6487.60 18986.73 18590.21 20591.72 26180.26 19795.09 11088.61 34685.68 14985.55 19894.38 14963.93 29596.66 24687.73 12187.84 23493.72 256
CR-MVSNet85.35 25383.76 26490.12 21190.58 30879.34 22685.24 34991.96 29378.27 29085.55 19887.87 32771.03 21895.61 30073.96 29689.36 20595.40 172
RPMNet83.95 27481.53 28391.21 16190.58 30879.34 22685.24 34996.76 7371.44 34985.55 19882.97 35770.87 22198.91 7661.01 35789.36 20595.40 172
v2v48287.84 17587.06 17590.17 20790.99 28979.23 23394.00 18495.13 18684.87 16885.53 20192.07 23874.45 17497.45 19084.71 16181.75 29393.85 245
TranMVSNet+NR-MVSNet88.84 14987.95 15591.49 15092.68 23683.01 12294.92 12096.31 10189.88 3885.53 20193.85 17776.63 14796.96 23481.91 20479.87 32294.50 212
v14419287.19 21186.35 20289.74 22890.64 30678.24 25193.92 18995.43 17281.93 23285.51 20391.05 27174.21 17997.45 19082.86 18581.56 29593.53 262
SCA86.32 23785.18 24089.73 23092.15 24576.60 28291.12 27791.69 29883.53 19685.50 20488.81 31066.79 27296.48 26276.65 27190.35 18796.12 143
RRT_MVS89.09 14088.62 13690.49 19292.85 23279.65 21896.41 3894.41 22388.22 9085.50 20494.77 13669.36 24397.31 20789.33 10286.73 24694.51 209
v119287.25 20586.33 20390.00 21990.76 30279.04 23493.80 19395.48 16582.57 21885.48 20691.18 26573.38 19597.42 19482.30 19682.06 28793.53 262
WR-MVS88.38 16187.67 16190.52 19093.30 21680.18 19893.26 21795.96 13088.57 7985.47 20792.81 21076.12 14996.91 23881.24 21682.29 28594.47 217
mvs_anonymous89.37 13489.32 11689.51 23893.47 21274.22 30591.65 26894.83 20782.91 21285.45 20893.79 17881.23 9996.36 27286.47 14094.09 13797.94 72
LPG-MVS_test89.45 12788.90 12791.12 16594.47 17281.49 16295.30 9396.14 11586.73 12785.45 20895.16 12069.89 23598.10 13687.70 12289.23 20893.77 252
LGP-MVS_train91.12 16594.47 17281.49 16296.14 11586.73 12785.45 20895.16 12069.89 23598.10 13687.70 12289.23 20893.77 252
Effi-MVS+-dtu88.65 15588.35 14389.54 23593.33 21576.39 28694.47 14894.36 22587.70 10785.43 21189.56 30273.45 19297.26 21485.57 15191.28 17694.97 184
v124086.78 22285.85 22389.56 23490.45 31277.79 26493.61 20195.37 17781.65 24085.43 21191.15 26771.50 21397.43 19381.47 21482.05 28993.47 266
HQP-NCC94.17 18494.39 15588.81 6885.43 211
ACMP_Plane94.17 18494.39 15588.81 6885.43 211
HQP4-MVS85.43 21197.96 15594.51 209
HQP-MVS89.80 11789.28 11891.34 15794.17 18481.56 15894.39 15596.04 12488.81 6885.43 21193.97 16973.83 18797.96 15587.11 13389.77 19994.50 212
CLD-MVS89.47 12688.90 12791.18 16394.22 18382.07 14892.13 25696.09 11987.90 10085.37 21792.45 22074.38 17597.56 18087.15 13190.43 18593.93 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D87.53 19286.37 20191.00 17592.44 23978.96 23594.74 13195.61 15784.07 18285.36 21894.52 14759.78 32497.34 20682.93 18387.88 23296.71 124
v192192086.97 21786.06 21589.69 23290.53 31178.11 25493.80 19395.43 17281.90 23485.33 21991.05 27172.66 20297.41 19982.05 20181.80 29293.53 262
test_djsdf89.03 14488.64 13390.21 20590.74 30379.28 23095.96 6395.90 13584.66 17585.33 21992.94 20574.02 18397.30 20889.64 9988.53 21994.05 235
GA-MVS86.61 22785.27 23990.66 18491.33 27778.71 23790.40 28793.81 24785.34 15885.12 22189.57 30161.25 31297.11 22580.99 22189.59 20296.15 140
PatchmatchNetpermissive85.85 24484.70 25189.29 24191.76 26075.54 29588.49 32191.30 30981.63 24285.05 22288.70 31471.71 21096.24 27674.61 29289.05 21196.08 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS83.90 27682.70 27887.51 28290.23 31672.67 32088.62 32081.96 36781.37 24785.01 22388.34 31866.31 27994.45 31875.30 28487.12 24295.43 171
PVSNet78.82 1885.55 24884.65 25288.23 26994.72 15971.93 32887.12 33692.75 26778.80 28084.95 22490.53 28264.43 29196.71 24574.74 29093.86 14196.06 148
MDTV_nov1_ep1383.56 26791.69 26569.93 34787.75 32991.54 30378.60 28484.86 22588.90 30969.54 24096.03 28370.25 31488.93 214
IterMVS-LS88.36 16387.91 15789.70 23193.80 20178.29 25093.73 19695.08 19185.73 14784.75 22691.90 24379.88 10896.92 23783.83 17282.51 28293.89 239
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080586.92 21885.74 23090.48 19492.22 24379.98 21095.63 8294.88 20383.83 18884.74 22792.80 21157.61 33297.67 16985.48 15284.42 26193.79 247
tpm284.08 27182.94 27487.48 28591.39 27371.27 33589.23 31190.37 32671.95 34784.64 22889.33 30367.30 26396.55 25975.17 28587.09 24394.63 199
XXY-MVS87.65 18286.85 18190.03 21592.14 24680.60 18993.76 19595.23 18282.94 21184.60 22994.02 16574.27 17695.49 30781.04 21883.68 26994.01 237
MDTV_nov1_ep13_2view55.91 37987.62 33273.32 33784.59 23070.33 23174.65 29195.50 169
test-LLR85.87 24385.41 23487.25 29090.95 29171.67 33389.55 30389.88 33983.41 19984.54 23187.95 32467.25 26495.11 31381.82 20693.37 15494.97 184
test-mter84.54 26783.64 26687.25 29090.95 29171.67 33389.55 30389.88 33979.17 27384.54 23187.95 32455.56 33895.11 31381.82 20693.37 15494.97 184
miper_enhance_ethall86.90 21986.18 20989.06 24791.66 26677.58 27090.22 29494.82 20879.16 27484.48 23389.10 30679.19 11996.66 24684.06 16882.94 27792.94 286
BH-untuned88.60 15788.13 15190.01 21895.24 13478.50 24393.29 21594.15 23384.75 17284.46 23493.40 18775.76 15697.40 20177.59 26294.52 13194.12 229
CNLPA89.07 14287.98 15492.34 11196.87 7484.78 7194.08 17593.24 25581.41 24684.46 23495.13 12275.57 16196.62 24977.21 26693.84 14295.61 168
PCF-MVS84.11 1087.74 17986.08 21492.70 9494.02 18984.43 8489.27 30995.87 13873.62 33584.43 23694.33 15178.48 12998.86 8070.27 31394.45 13394.81 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 20385.98 21891.08 16994.01 19083.10 11595.14 10794.94 19583.57 19384.37 23791.64 24866.59 27696.34 27378.23 25685.36 25493.79 247
test187.26 20385.98 21891.08 16994.01 19083.10 11595.14 10794.94 19583.57 19384.37 23791.64 24866.59 27696.34 27378.23 25685.36 25493.79 247
FMVSNet387.40 19886.11 21291.30 15993.79 20383.64 10194.20 16794.81 20983.89 18684.37 23791.87 24468.45 25896.56 25778.23 25685.36 25493.70 258
v14887.04 21586.32 20489.21 24290.94 29377.26 27393.71 19894.43 22184.84 17084.36 24090.80 27776.04 15197.05 23082.12 19979.60 32493.31 270
c3_l87.14 21386.50 19889.04 24892.20 24477.26 27391.22 27694.70 21582.01 23084.34 24190.43 28478.81 12296.61 25283.70 17581.09 30293.25 273
miper_ehance_all_eth87.22 20886.62 19389.02 24992.13 24777.40 27290.91 28094.81 20981.28 24984.32 24290.08 29179.26 11896.62 24983.81 17382.94 27793.04 283
PatchMatch-RL86.77 22585.54 23190.47 19795.88 11182.71 13490.54 28592.31 27879.82 26684.32 24291.57 25668.77 25496.39 26973.16 30093.48 15192.32 306
3Dnovator86.66 591.73 7590.82 8694.44 4394.59 16586.37 3997.18 1297.02 4689.20 5784.31 24496.66 5973.74 18999.17 4686.74 13697.96 6797.79 82
jajsoiax88.24 16687.50 16490.48 19490.89 29780.14 20095.31 9195.65 15584.97 16784.24 24594.02 16565.31 28697.42 19488.56 11188.52 22093.89 239
mvs_tets88.06 17287.28 17190.38 20190.94 29379.88 21295.22 10095.66 15385.10 16484.21 24693.94 17063.53 29797.40 20188.50 11288.40 22493.87 242
eth_miper_zixun_eth86.50 23385.77 22788.68 25791.94 25375.81 29390.47 28694.89 20182.05 22784.05 24790.46 28375.96 15296.77 24282.76 18979.36 32693.46 267
3Dnovator+87.14 492.42 6691.37 7495.55 695.63 12188.73 697.07 1896.77 7290.84 1584.02 24896.62 6475.95 15399.34 3387.77 12097.68 7598.59 23
PLCcopyleft84.53 789.06 14388.03 15392.15 11897.27 6882.69 13594.29 16195.44 17179.71 26784.01 24994.18 15976.68 14698.75 8877.28 26593.41 15295.02 183
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cl2286.78 22285.98 21889.18 24492.34 24177.62 26990.84 28194.13 23581.33 24883.97 25090.15 28973.96 18496.60 25484.19 16782.94 27793.33 269
FMVSNet287.19 21185.82 22491.30 15994.01 19083.67 10094.79 12894.94 19583.57 19383.88 25192.05 23966.59 27696.51 26077.56 26385.01 25793.73 255
anonymousdsp87.84 17587.09 17490.12 21189.13 32980.54 19094.67 13695.55 16082.05 22783.82 25292.12 23271.47 21497.15 22187.15 13187.80 23592.67 293
1112_ss88.42 16087.33 16991.72 14194.92 14980.98 17792.97 22994.54 21878.16 29383.82 25293.88 17578.78 12397.91 15979.45 24389.41 20396.26 138
WR-MVS_H87.80 17787.37 16889.10 24693.23 21778.12 25395.61 8397.30 2887.90 10083.72 25492.01 24079.65 11696.01 28576.36 27480.54 31393.16 278
BH-w/o87.57 19187.05 17689.12 24594.90 15177.90 25892.41 24393.51 25282.89 21383.70 25591.34 25775.75 15797.07 22875.49 28193.49 14992.39 303
ACMP84.23 889.01 14688.35 14390.99 17694.73 15881.27 16895.07 11195.89 13786.48 13083.67 25694.30 15369.33 24497.99 15387.10 13588.55 21893.72 256
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 22985.13 24190.98 17896.52 8781.50 16096.14 5396.16 11473.78 33383.65 25792.15 23063.26 29997.37 20582.82 18781.74 29494.06 234
v1087.25 20586.38 20089.85 22291.19 28079.50 22094.48 14595.45 16983.79 18983.62 25891.19 26375.13 16497.42 19481.94 20380.60 31192.63 295
v887.50 19586.71 18789.89 22191.37 27479.40 22394.50 14495.38 17584.81 17183.60 25991.33 25876.05 15097.42 19482.84 18680.51 31692.84 290
cascas86.43 23684.98 24490.80 18292.10 24980.92 18090.24 29295.91 13473.10 33983.57 26088.39 31765.15 28797.46 18984.90 15891.43 17594.03 236
Test_1112_low_res87.65 18286.51 19791.08 16994.94 14879.28 23091.77 26394.30 22776.04 31183.51 26192.37 22277.86 13697.73 16878.69 25189.13 21096.22 139
CP-MVSNet87.63 18587.26 17388.74 25693.12 22076.59 28395.29 9596.58 8988.43 8283.49 26292.98 20475.28 16395.83 29378.97 24981.15 30193.79 247
QAPM89.51 12488.15 15093.59 6294.92 14984.58 7496.82 2996.70 8178.43 28783.41 26396.19 8073.18 19699.30 3977.11 26896.54 9596.89 119
TESTMET0.1,183.74 27782.85 27686.42 30989.96 32171.21 33789.55 30387.88 34977.41 29783.37 26487.31 33256.71 33493.65 33480.62 22892.85 16494.40 218
cl____86.52 23285.78 22588.75 25492.03 25176.46 28490.74 28294.30 22781.83 23883.34 26590.78 27875.74 15996.57 25581.74 20981.54 29693.22 275
DIV-MVS_self_test86.53 23185.78 22588.75 25492.02 25276.45 28590.74 28294.30 22781.83 23883.34 26590.82 27675.75 15796.57 25581.73 21081.52 29793.24 274
PS-CasMVS87.32 20286.88 17988.63 25992.99 22776.33 28895.33 9096.61 8788.22 9083.30 26793.07 20273.03 19995.79 29678.36 25381.00 30793.75 254
gg-mvs-nofinetune81.77 29079.37 30388.99 25090.85 29977.73 26786.29 34179.63 37274.88 32483.19 26869.05 37160.34 31996.11 28175.46 28294.64 12793.11 280
XVG-ACMP-BASELINE86.00 24084.84 24989.45 23991.20 27978.00 25591.70 26695.55 16085.05 16682.97 26992.25 22854.49 34497.48 18782.93 18387.45 23892.89 288
LS3D87.89 17486.32 20492.59 9996.07 10282.92 12695.23 9994.92 20075.66 31382.89 27095.98 8872.48 20599.21 4468.43 32795.23 11895.64 165
PEN-MVS86.80 22186.27 20788.40 26292.32 24275.71 29495.18 10396.38 9887.97 9782.82 27193.15 19873.39 19495.92 28876.15 27879.03 32993.59 260
FMVSNet185.85 24484.11 25891.08 16992.81 23383.10 11595.14 10794.94 19581.64 24182.68 27291.64 24859.01 32896.34 27375.37 28383.78 26693.79 247
RPSCF85.07 25984.27 25687.48 28592.91 23070.62 34391.69 26792.46 27376.20 31082.67 27395.22 11563.94 29497.29 21177.51 26485.80 25194.53 206
Fast-Effi-MVS+-dtu87.44 19686.72 18689.63 23392.04 25077.68 26894.03 18093.94 23985.81 14482.42 27491.32 26070.33 23197.06 22980.33 23390.23 18894.14 228
v7n86.81 22085.76 22889.95 22090.72 30479.25 23295.07 11195.92 13284.45 17882.29 27590.86 27472.60 20497.53 18479.42 24680.52 31593.08 282
DTE-MVSNet86.11 23985.48 23387.98 27491.65 26774.92 29994.93 11995.75 14687.36 11382.26 27693.04 20372.85 20095.82 29474.04 29477.46 33593.20 276
ADS-MVSNet281.66 29379.71 30187.50 28391.35 27574.19 30683.33 35988.48 34872.90 34182.24 27785.77 34464.98 28893.20 34064.57 34783.74 26795.12 180
ADS-MVSNet81.56 29579.78 29986.90 30191.35 27571.82 33083.33 35989.16 34572.90 34182.24 27785.77 34464.98 28893.76 33164.57 34783.74 26795.12 180
JIA-IIPM81.04 30178.98 31187.25 29088.64 33373.48 31281.75 36489.61 34373.19 33882.05 27973.71 36866.07 28395.87 29171.18 31084.60 26092.41 302
F-COLMAP87.95 17386.80 18391.40 15496.35 9280.88 18194.73 13295.45 16979.65 26882.04 28094.61 14371.13 21698.50 10476.24 27791.05 18194.80 196
PAPM86.68 22685.39 23590.53 18893.05 22379.33 22989.79 30294.77 21278.82 27981.95 28193.24 19576.81 14297.30 20866.94 33693.16 15894.95 190
DP-MVS87.25 20585.36 23792.90 8497.65 5583.24 11194.81 12792.00 28974.99 32181.92 28295.00 12572.66 20299.05 5466.92 33892.33 17096.40 132
pm-mvs186.61 22785.54 23189.82 22491.44 26980.18 19895.28 9794.85 20583.84 18781.66 28392.62 21572.45 20796.48 26279.67 24078.06 33092.82 291
dmvs_re84.20 27083.22 27187.14 29691.83 25877.81 26290.04 29890.19 32984.70 17481.49 28489.17 30564.37 29291.13 35571.58 30685.65 25392.46 300
MVS87.44 19686.10 21391.44 15392.61 23783.62 10292.63 23895.66 15367.26 35881.47 28592.15 23077.95 13398.22 12979.71 23995.48 10992.47 299
IterMVS-SCA-FT85.45 24984.53 25588.18 27091.71 26376.87 27890.19 29592.65 27185.40 15781.44 28690.54 28166.79 27295.00 31681.04 21881.05 30392.66 294
CHOSEN 280x42085.15 25883.99 26188.65 25892.47 23878.40 24679.68 36992.76 26674.90 32381.41 28789.59 30069.85 23795.51 30479.92 23895.29 11592.03 310
miper_lstm_enhance85.27 25684.59 25487.31 28791.28 27874.63 30087.69 33094.09 23781.20 25381.36 28889.85 29774.97 16894.30 32381.03 22079.84 32393.01 284
Patchmtry82.71 28280.93 28888.06 27290.05 31976.37 28784.74 35491.96 29372.28 34681.32 28987.87 32771.03 21895.50 30668.97 32380.15 31892.32 306
dp81.47 29780.23 29485.17 32289.92 32265.49 36186.74 33890.10 33276.30 30881.10 29087.12 33562.81 30195.92 28868.13 33079.88 32194.09 232
tfpnnormal84.72 26583.23 27089.20 24392.79 23480.05 20594.48 14595.81 14182.38 22181.08 29191.21 26269.01 25196.95 23561.69 35580.59 31290.58 337
IterMVS84.88 26283.98 26287.60 28091.44 26976.03 29090.18 29692.41 27483.24 20481.06 29290.42 28566.60 27594.28 32479.46 24280.98 30892.48 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVScopyleft83.78 1188.74 15387.29 17093.08 7592.70 23585.39 6596.57 3596.43 9578.74 28280.85 29396.07 8469.64 23999.01 6278.01 25996.65 9494.83 194
pmmvs485.43 25083.86 26390.16 20890.02 32082.97 12490.27 28892.67 27075.93 31280.73 29491.74 24771.05 21795.73 29978.85 25083.46 27391.78 314
MIMVSNet82.59 28480.53 28988.76 25391.51 26878.32 24886.57 34090.13 33179.32 27080.70 29588.69 31552.98 35093.07 34266.03 34188.86 21594.90 191
IB-MVS80.51 1585.24 25783.26 26991.19 16292.13 24779.86 21391.75 26491.29 31083.28 20380.66 29688.49 31661.28 31198.46 10880.99 22179.46 32595.25 177
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND87.94 27689.73 32677.91 25787.80 32778.23 37680.58 29783.86 35159.88 32395.33 31071.20 30892.22 17190.60 336
EU-MVSNet81.32 29980.95 28782.42 33888.50 33663.67 36493.32 21091.33 30864.02 36380.57 29892.83 20861.21 31492.27 34776.34 27580.38 31791.32 322
tpmvs83.35 28082.07 27987.20 29491.07 28771.00 34088.31 32491.70 29778.91 27680.49 29987.18 33469.30 24797.08 22668.12 33183.56 27193.51 265
pmmvs584.21 26982.84 27788.34 26588.95 33176.94 27792.41 24391.91 29575.63 31480.28 30091.18 26564.59 29095.57 30177.09 26983.47 27292.53 297
tpm cat181.96 28780.27 29387.01 29791.09 28671.02 33987.38 33491.53 30466.25 35980.17 30186.35 34068.22 26096.15 28069.16 32282.29 28593.86 244
MS-PatchMatch85.05 26084.16 25787.73 27891.42 27278.51 24291.25 27593.53 25177.50 29680.15 30291.58 25461.99 30595.51 30475.69 28094.35 13589.16 348
131487.51 19386.57 19590.34 20392.42 24079.74 21692.63 23895.35 17978.35 28880.14 30391.62 25274.05 18297.15 22181.05 21793.53 14794.12 229
ITE_SJBPF88.24 26891.88 25577.05 27692.92 26185.54 15480.13 30493.30 19257.29 33396.20 27772.46 30384.71 25991.49 319
D2MVS85.90 24285.09 24288.35 26490.79 30077.42 27191.83 26295.70 14980.77 25780.08 30590.02 29266.74 27496.37 27081.88 20587.97 23191.26 324
NR-MVSNet88.58 15987.47 16691.93 12893.04 22484.16 8994.77 13096.25 10789.05 6180.04 30693.29 19379.02 12097.05 23081.71 21180.05 31994.59 202
baseline286.50 23385.39 23589.84 22391.12 28576.70 28191.88 26088.58 34782.35 22379.95 30790.95 27373.42 19397.63 17680.27 23489.95 19395.19 178
test0.0.03 182.41 28581.69 28184.59 32588.23 34072.89 31690.24 29287.83 35083.41 19979.86 30889.78 29867.25 26488.99 36565.18 34483.42 27491.90 313
CL-MVSNet_self_test81.74 29180.53 28985.36 31985.96 35472.45 32690.25 29093.07 25981.24 25179.85 30987.29 33370.93 22092.52 34566.95 33569.23 35691.11 329
TransMVSNet (Re)84.43 26883.06 27388.54 26091.72 26178.44 24495.18 10392.82 26582.73 21679.67 31092.12 23273.49 19195.96 28771.10 31268.73 36091.21 325
LTVRE_ROB82.13 1386.26 23884.90 24790.34 20394.44 17681.50 16092.31 25194.89 20183.03 20879.63 31192.67 21369.69 23897.79 16271.20 30886.26 24991.72 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-085.35 25384.64 25387.49 28490.77 30172.59 32494.01 18294.40 22484.72 17379.62 31293.17 19761.91 30696.72 24381.99 20281.16 29993.16 278
EPNet_dtu86.49 23585.94 22188.14 27190.24 31572.82 31794.11 17192.20 28186.66 12979.42 31392.36 22373.52 19095.81 29571.26 30793.66 14395.80 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LCM-MVSNet-Re88.30 16588.32 14688.27 26694.71 16072.41 32793.15 22090.98 31787.77 10579.25 31491.96 24178.35 13095.75 29783.04 18195.62 10696.65 125
test_fmvs377.67 32277.16 31979.22 34279.52 37061.14 36892.34 24891.64 30073.98 33178.86 31586.59 33627.38 37487.03 36788.12 11775.97 34289.50 342
pmmvs683.42 27881.60 28288.87 25188.01 34377.87 26094.96 11794.24 23074.67 32578.80 31691.09 27060.17 32196.49 26177.06 27075.40 34492.23 308
MVP-Stereo85.97 24184.86 24889.32 24090.92 29582.19 14692.11 25794.19 23178.76 28178.77 31791.63 25168.38 25996.56 25775.01 28893.95 13989.20 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG84.86 26383.09 27290.14 21093.80 20180.05 20589.18 31293.09 25878.89 27778.19 31891.91 24265.86 28497.27 21268.47 32688.45 22293.11 280
testgi80.94 30480.20 29583.18 33387.96 34466.29 35891.28 27390.70 32483.70 19078.12 31992.84 20751.37 35290.82 35763.34 35082.46 28392.43 301
ACMH+81.04 1485.05 26083.46 26889.82 22494.66 16379.37 22494.44 15094.12 23682.19 22578.04 32092.82 20958.23 33097.54 18373.77 29782.90 28092.54 296
COLMAP_ROBcopyleft80.39 1683.96 27382.04 28089.74 22895.28 13179.75 21594.25 16392.28 27975.17 31978.02 32193.77 18058.60 32997.84 16165.06 34685.92 25091.63 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ppachtmachnet_test81.84 28980.07 29787.15 29588.46 33774.43 30489.04 31592.16 28275.33 31777.75 32288.99 30766.20 28095.37 30965.12 34577.60 33391.65 316
Anonymous2023120681.03 30279.77 30084.82 32487.85 34670.26 34591.42 27192.08 28673.67 33477.75 32289.25 30462.43 30393.08 34161.50 35682.00 29091.12 328
SixPastTwentyTwo83.91 27582.90 27586.92 30090.99 28970.67 34293.48 20591.99 29085.54 15477.62 32492.11 23460.59 31896.87 24076.05 27977.75 33293.20 276
ACMH80.38 1785.36 25283.68 26590.39 19994.45 17580.63 18794.73 13294.85 20582.09 22677.24 32592.65 21460.01 32297.58 17872.25 30484.87 25892.96 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-RL test81.67 29279.96 29886.81 30485.42 35971.23 33682.17 36387.50 35378.47 28577.19 32682.50 35870.81 22293.48 33582.66 19072.89 34895.71 164
KD-MVS_2432*160078.50 31876.02 32585.93 31386.22 35274.47 30284.80 35292.33 27679.29 27176.98 32785.92 34253.81 34893.97 32767.39 33357.42 37289.36 343
miper_refine_blended78.50 31876.02 32585.93 31386.22 35274.47 30284.80 35292.33 27679.29 27176.98 32785.92 34253.81 34893.97 32767.39 33357.42 37289.36 343
our_test_381.93 28880.46 29186.33 31088.46 33773.48 31288.46 32291.11 31276.46 30476.69 32988.25 32066.89 27094.36 32168.75 32479.08 32891.14 327
Patchmatch-test81.37 29879.30 30487.58 28190.92 29574.16 30780.99 36587.68 35270.52 35376.63 33088.81 31071.21 21592.76 34460.01 36186.93 24595.83 157
KD-MVS_self_test80.20 30879.24 30583.07 33485.64 35865.29 36291.01 27993.93 24078.71 28376.32 33186.40 33959.20 32792.93 34372.59 30269.35 35591.00 332
FMVSNet581.52 29679.60 30287.27 28891.17 28177.95 25691.49 27092.26 28076.87 30276.16 33287.91 32651.67 35192.34 34667.74 33281.16 29991.52 318
AllTest83.42 27881.39 28489.52 23695.01 14277.79 26493.12 22190.89 32077.41 29776.12 33393.34 18854.08 34697.51 18568.31 32884.27 26393.26 271
TestCases89.52 23695.01 14277.79 26490.89 32077.41 29776.12 33393.34 18854.08 34697.51 18568.31 32884.27 26393.26 271
test_040281.30 30079.17 30887.67 27993.19 21878.17 25292.98 22891.71 29675.25 31876.02 33590.31 28659.23 32696.37 27050.22 36983.63 27088.47 354
DSMNet-mixed76.94 32476.29 32378.89 34383.10 36556.11 37887.78 32879.77 37160.65 36675.64 33688.71 31361.56 30988.34 36660.07 36089.29 20792.21 309
Anonymous2024052180.44 30679.21 30684.11 33085.75 35767.89 35392.86 23393.23 25675.61 31575.59 33787.47 33150.03 35494.33 32271.14 31181.21 29890.12 339
USDC82.76 28181.26 28687.26 28991.17 28174.55 30189.27 30993.39 25478.26 29175.30 33892.08 23654.43 34596.63 24871.64 30585.79 25290.61 334
TDRefinement79.81 31177.34 31587.22 29379.24 37175.48 29693.12 22192.03 28876.45 30575.01 33991.58 25449.19 35796.44 26670.22 31669.18 35789.75 341
LF4IMVS80.37 30779.07 31084.27 32986.64 35069.87 34889.39 30891.05 31576.38 30674.97 34090.00 29347.85 36094.25 32574.55 29380.82 31088.69 352
mvsany_test374.95 32773.26 33180.02 34174.61 37363.16 36685.53 34778.42 37474.16 32974.89 34186.46 33736.02 36989.09 36482.39 19466.91 36187.82 358
PM-MVS78.11 32076.12 32484.09 33183.54 36470.08 34688.97 31685.27 35879.93 26474.73 34286.43 33834.70 37093.48 33579.43 24572.06 35088.72 351
OpenMVS_ROBcopyleft74.94 1979.51 31377.03 32086.93 29987.00 34976.23 28992.33 24990.74 32368.93 35674.52 34388.23 32149.58 35696.62 24957.64 36384.29 26287.94 357
test20.0379.95 31079.08 30982.55 33685.79 35667.74 35591.09 27891.08 31381.23 25274.48 34489.96 29561.63 30790.15 35960.08 35976.38 34089.76 340
ambc83.06 33579.99 36963.51 36577.47 37092.86 26374.34 34584.45 35028.74 37195.06 31573.06 30168.89 35990.61 334
PVSNet_073.20 2077.22 32374.83 32984.37 32790.70 30571.10 33883.09 36189.67 34272.81 34373.93 34683.13 35560.79 31793.70 33368.54 32550.84 37588.30 355
pmmvs-eth3d80.97 30378.72 31287.74 27784.99 36179.97 21190.11 29791.65 29975.36 31673.51 34786.03 34159.45 32593.96 32975.17 28572.21 34989.29 346
K. test v381.59 29480.15 29685.91 31589.89 32369.42 34992.57 24087.71 35185.56 15373.44 34889.71 29955.58 33795.52 30377.17 26769.76 35492.78 292
EG-PatchMatch MVS82.37 28680.34 29288.46 26190.27 31479.35 22592.80 23594.33 22677.14 30173.26 34990.18 28847.47 36196.72 24370.25 31487.32 24189.30 345
lessismore_v086.04 31188.46 33768.78 35180.59 37073.01 35090.11 29055.39 33996.43 26775.06 28765.06 36492.90 287
MIMVSNet179.38 31477.28 31685.69 31786.35 35173.67 30991.61 26992.75 26778.11 29472.64 35188.12 32248.16 35991.97 35160.32 35877.49 33491.43 321
ET-MVSNet_ETH3D87.51 19385.91 22292.32 11293.70 20683.93 9392.33 24990.94 31884.16 17972.09 35292.52 21869.90 23495.85 29289.20 10488.36 22597.17 104
TinyColmap79.76 31277.69 31485.97 31291.71 26373.12 31489.55 30390.36 32775.03 32072.03 35390.19 28746.22 36396.19 27963.11 35181.03 30488.59 353
N_pmnet68.89 33468.44 33670.23 35489.07 33028.79 38888.06 32519.50 38969.47 35571.86 35484.93 34761.24 31391.75 35254.70 36677.15 33690.15 338
UnsupCasMVSNet_eth80.07 30978.27 31385.46 31885.24 36072.63 32388.45 32394.87 20482.99 21071.64 35588.07 32356.34 33591.75 35273.48 29963.36 36792.01 311
test_vis1_rt77.96 32176.46 32182.48 33785.89 35571.74 33290.25 29078.89 37371.03 35271.30 35681.35 36042.49 36691.05 35684.55 16382.37 28484.65 360
dmvs_testset74.57 32875.81 32770.86 35387.72 34740.47 38487.05 33777.90 37782.75 21571.15 35785.47 34667.98 26184.12 37345.26 37176.98 33988.00 356
test_f71.95 33170.87 33375.21 34974.21 37559.37 37185.07 35185.82 35565.25 36170.42 35883.13 35523.62 37582.93 37578.32 25471.94 35183.33 362
new-patchmatchnet76.41 32575.17 32880.13 34082.65 36759.61 37087.66 33191.08 31378.23 29269.85 35983.22 35454.76 34291.63 35464.14 34964.89 36589.16 348
MVS-HIRNet73.70 32972.20 33278.18 34691.81 25956.42 37782.94 36282.58 36555.24 36868.88 36066.48 37255.32 34095.13 31258.12 36288.42 22383.01 363
UnsupCasMVSNet_bld76.23 32673.27 33085.09 32383.79 36372.92 31585.65 34693.47 25371.52 34868.84 36179.08 36349.77 35593.21 33966.81 34060.52 36989.13 350
pmmvs371.81 33268.71 33581.11 33975.86 37270.42 34486.74 33883.66 36258.95 36768.64 36280.89 36136.93 36889.52 36263.10 35263.59 36683.39 361
CMPMVSbinary59.16 2180.52 30579.20 30784.48 32683.98 36267.63 35689.95 30193.84 24664.79 36266.81 36391.14 26857.93 33195.17 31176.25 27688.10 22790.65 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet72.15 33070.13 33478.20 34582.95 36665.68 35983.91 35782.40 36662.94 36564.47 36479.82 36242.85 36586.26 36957.41 36474.44 34582.65 365
YYNet179.22 31577.20 31785.28 32188.20 34272.66 32185.87 34390.05 33574.33 32862.70 36587.61 32966.09 28292.03 34866.94 33672.97 34791.15 326
MDA-MVSNet_test_wron79.21 31677.19 31885.29 32088.22 34172.77 31885.87 34390.06 33374.34 32762.62 36687.56 33066.14 28191.99 35066.90 33973.01 34691.10 330
MDA-MVSNet-bldmvs78.85 31776.31 32286.46 30789.76 32473.88 30888.79 31790.42 32579.16 27459.18 36788.33 31960.20 32094.04 32662.00 35468.96 35891.48 320
APD_test169.04 33366.26 33777.36 34880.51 36862.79 36785.46 34883.51 36354.11 37059.14 36884.79 34923.40 37789.61 36155.22 36570.24 35379.68 368
LCM-MVSNet66.00 33562.16 34077.51 34764.51 38358.29 37283.87 35890.90 31948.17 37254.69 36973.31 36916.83 38386.75 36865.47 34261.67 36887.48 359
test_vis3_rt65.12 33662.60 33872.69 35171.44 37660.71 36987.17 33565.55 38263.80 36453.22 37065.65 37414.54 38489.44 36376.65 27165.38 36367.91 373
FPMVS64.63 33762.55 33970.88 35270.80 37756.71 37384.42 35584.42 36051.78 37149.57 37181.61 35923.49 37681.48 37640.61 37776.25 34174.46 369
PMMVS259.60 33956.40 34169.21 35768.83 38046.58 38273.02 37477.48 37855.07 36949.21 37272.95 37017.43 38280.04 37749.32 37044.33 37780.99 367
DeepMVS_CXcopyleft56.31 36274.23 37451.81 38056.67 38744.85 37348.54 37375.16 36627.87 37358.74 38340.92 37652.22 37458.39 376
testf159.54 34056.11 34369.85 35569.28 37856.61 37580.37 36776.55 37942.58 37545.68 37475.61 36411.26 38584.18 37143.20 37460.44 37068.75 371
APD_test259.54 34056.11 34369.85 35569.28 37856.61 37580.37 36776.55 37942.58 37545.68 37475.61 36411.26 38584.18 37143.20 37460.44 37068.75 371
test_method50.52 34548.47 34756.66 36152.26 38718.98 39041.51 37981.40 36810.10 38144.59 37675.01 36728.51 37268.16 37953.54 36749.31 37682.83 364
Gipumacopyleft57.99 34354.91 34567.24 35888.51 33465.59 36052.21 37790.33 32843.58 37442.84 37751.18 37820.29 38085.07 37034.77 37870.45 35251.05 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high58.88 34254.22 34672.86 35056.50 38656.67 37480.75 36686.00 35473.09 34037.39 37864.63 37522.17 37879.49 37843.51 37323.96 38082.43 366
tmp_tt35.64 34939.24 35124.84 36514.87 38923.90 38962.71 37551.51 3886.58 38336.66 37962.08 37644.37 36430.34 38552.40 36822.00 38220.27 380
PMVScopyleft47.18 2252.22 34448.46 34863.48 35945.72 38846.20 38373.41 37378.31 37541.03 37730.06 38065.68 3736.05 38783.43 37430.04 37965.86 36260.80 374
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 34638.59 35257.77 36056.52 38548.77 38155.38 37658.64 38629.33 38028.96 38152.65 3774.68 38864.62 38228.11 38033.07 37859.93 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 34742.29 34946.03 36365.58 38237.41 38573.51 37264.62 38333.99 37828.47 38247.87 37919.90 38167.91 38022.23 38124.45 37932.77 378
EMVS42.07 34841.12 35044.92 36463.45 38435.56 38773.65 37163.48 38433.05 37926.88 38345.45 38021.27 37967.14 38119.80 38223.02 38132.06 379
wuyk23d21.27 35120.48 35423.63 36668.59 38136.41 38649.57 3786.85 3909.37 3827.89 3844.46 3864.03 38931.37 38417.47 38316.07 3833.12 381
testmvs8.92 35211.52 3551.12 3681.06 3900.46 39286.02 3420.65 3910.62 3842.74 3859.52 3840.31 3910.45 3872.38 3840.39 3842.46 383
test1238.76 35311.22 3561.39 3670.85 3910.97 39185.76 3450.35 3920.54 3852.45 3868.14 3850.60 3900.48 3862.16 3850.17 3852.71 382
EGC-MVSNET61.97 33856.37 34278.77 34489.63 32773.50 31189.12 31382.79 3640.21 3861.24 38784.80 34839.48 36790.04 36044.13 37275.94 34372.79 370
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k22.14 35029.52 3530.00 3690.00 3920.00 3930.00 38095.76 1450.00 3870.00 38894.29 15475.66 1600.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.64 3558.86 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38779.70 1120.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.82 35410.43 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38893.88 1750.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6299.61 396.03 499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6299.61 396.03 499.06 999.07 5
eth-test20.00 392
eth-test0.00 392
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3992.59 298.94 7492.25 5398.99 1498.84 13
save fliter97.85 4685.63 6395.21 10196.82 6789.44 50
test_0728_SECOND95.01 1698.79 286.43 3797.09 1697.49 699.61 395.62 1199.08 798.99 8
GSMVS96.12 143
sam_mvs171.70 21196.12 143
sam_mvs70.60 224
MTGPAbinary96.97 49
test_post188.00 3269.81 38369.31 24695.53 30276.65 271
test_post10.29 38270.57 22895.91 290
patchmatchnet-post83.76 35271.53 21296.48 262
MTMP96.16 5060.64 385
gm-plane-assit89.60 32868.00 35277.28 30088.99 30797.57 17979.44 244
test9_res91.91 6898.71 3198.07 65
agg_prior290.54 9298.68 3698.27 51
test_prior485.96 5294.11 171
test_prior93.82 5797.29 6784.49 7996.88 6098.87 7898.11 64
新几何293.11 223
旧先验196.79 7681.81 15495.67 15196.81 5386.69 3597.66 7696.97 115
无先验93.28 21696.26 10573.95 33299.05 5480.56 22996.59 127
原ACMM292.94 230
testdata298.75 8878.30 255
segment_acmp87.16 34
testdata192.15 25587.94 98
plane_prior794.70 16182.74 131
plane_prior694.52 17082.75 12974.23 177
plane_prior596.22 11098.12 13488.15 11489.99 19094.63 199
plane_prior494.86 130
plane_prior295.85 6790.81 16
plane_prior194.59 165
plane_prior82.73 13295.21 10189.66 4789.88 195
n20.00 393
nn0.00 393
door-mid85.49 356
test1196.57 90
door85.33 357
HQP5-MVS81.56 158
BP-MVS87.11 133
HQP3-MVS96.04 12489.77 199
HQP2-MVS73.83 187
NP-MVS94.37 17882.42 14193.98 168
ACMMP++_ref87.47 236
ACMMP++88.01 230
Test By Simon80.02 107