This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15697.67 398.10 788.41 2099.56 1294.66 2899.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
IU-MVS98.77 586.00 5096.84 6581.26 27097.26 795.50 2399.13 399.03 8
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11784.62 8096.15 5597.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6897.17 113
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2999.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PC_three_145282.47 23697.09 1097.07 5192.72 198.04 16592.70 5799.02 1298.86 11
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25594.38 3198.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 14085.43 6895.68 8696.43 9886.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 9997.16 117
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13984.98 7395.61 9396.28 11286.31 14696.75 1697.86 2187.40 3398.74 9597.07 897.02 9297.07 119
test_part298.55 1287.22 1996.40 17
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2798.04 6999.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6096.62 8888.14 9996.10 2096.96 5589.09 1898.94 7894.48 3098.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9292.49 25683.62 11196.02 6995.72 16486.78 13496.04 2298.19 182.30 9798.43 12996.38 1395.42 12696.86 135
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17684.96 7496.15 5597.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7697.96 75
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 9095.02 15283.67 10896.19 5096.10 13087.27 12195.98 2498.05 1383.07 8498.45 12596.68 1195.51 12096.88 134
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9993.75 22083.13 12696.02 6995.74 16187.68 11495.89 2598.17 282.78 8898.46 12196.71 1096.17 11296.98 127
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9895.62 12883.17 12496.14 5796.12 12888.13 10095.82 2698.04 1683.43 7798.48 11696.97 996.23 11196.92 131
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11295.71 2797.70 2588.28 2399.35 3393.89 3798.78 2598.48 30
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25884.80 7796.18 5296.82 6889.29 5995.68 2898.11 585.10 5798.99 7097.38 497.75 8097.86 83
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11996.52 8880.00 22294.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3598.71 3298.50 27
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3398.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10696.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2598.85 1998.66 20
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3698.95 1598.60 23
9.1494.47 2097.79 4996.08 6197.44 1586.13 15495.10 3397.40 3388.34 2299.22 4493.25 4698.70 34
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16295.05 3497.18 4587.31 3599.07 5391.90 8598.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-293.74 4794.32 2692.01 13597.54 5778.37 25993.40 21997.19 3588.02 10294.99 3597.21 4288.35 2198.44 12794.07 3498.09 6699.23 1
MM95.10 1194.91 1395.68 596.09 10288.34 996.68 3394.37 24095.08 194.68 3697.72 2482.94 8599.64 197.85 198.76 2899.06 7
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35184.42 9396.06 6596.29 10989.06 6694.68 3698.13 379.22 13598.98 7497.22 597.24 8797.74 90
dcpmvs_293.49 5294.19 3691.38 17097.69 5476.78 29194.25 17396.29 10988.33 9094.46 3896.88 5888.07 2598.64 10293.62 4098.09 6698.73 17
旧先验293.36 22071.25 37594.37 3997.13 24086.74 149
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4096.90 5988.20 9794.33 4097.40 3384.75 6699.03 5893.35 4597.99 7098.48 30
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16393.93 25689.77 4794.21 4195.59 11587.35 3498.61 10792.72 5596.15 11397.83 86
ZD-MVS98.15 3486.62 3397.07 4583.63 20894.19 4296.91 5787.57 3199.26 4291.99 7998.44 54
alignmvs93.08 6792.50 7894.81 3295.62 12887.61 1495.99 7196.07 13389.77 4794.12 4394.87 14380.56 11898.66 10092.42 6093.10 17498.15 63
sasdasda93.27 6192.75 7194.85 2595.70 12287.66 1296.33 4196.41 10090.00 3794.09 4494.60 15882.33 9598.62 10592.40 6192.86 17898.27 52
iter_conf05_1192.98 7092.96 6693.03 8695.91 11382.49 15296.06 6596.37 10486.94 12994.09 4495.16 13281.94 10998.67 9991.65 8998.56 4997.95 76
canonicalmvs93.27 6192.75 7194.85 2595.70 12287.66 1296.33 4196.41 10090.00 3794.09 4494.60 15882.33 9598.62 10592.40 6192.86 17898.27 52
VNet92.24 8391.91 8493.24 7596.59 8283.43 11694.84 13496.44 9789.19 6394.08 4795.90 10177.85 15498.17 14788.90 12193.38 16898.13 64
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4896.83 6188.12 2499.55 1693.41 4498.94 1698.28 50
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4996.58 7687.74 2799.44 2992.83 5298.40 5598.62 21
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4396.87 6286.96 12793.92 5097.47 2983.88 7498.96 7792.71 5697.87 7498.26 56
MGCFI-Net93.03 6892.63 7594.23 5395.62 12885.92 5796.08 6196.33 10789.86 4193.89 5194.66 15582.11 10298.50 11492.33 6792.82 18198.27 52
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3184.24 7099.01 6392.73 5397.80 7797.88 81
RE-MVS-def93.68 5297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3182.94 8592.73 5397.80 7797.88 81
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5497.21 4286.10 4599.49 2692.35 6498.77 2798.30 47
testdata90.49 20696.40 9077.89 27195.37 19372.51 36893.63 5596.69 6682.08 10497.65 18883.08 19397.39 8595.94 172
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5697.27 3885.22 5599.54 2092.21 6998.74 3198.56 25
MSLP-MVS++93.72 4894.08 3892.65 11197.31 6583.43 11695.79 8197.33 2590.03 3693.58 5696.96 5584.87 6497.76 18092.19 7198.66 4196.76 138
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17593.56 5896.28 8485.60 5099.31 3992.45 5898.79 2398.12 66
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5997.26 4085.04 5999.54 2092.35 6498.78 2598.50 27
CS-MVS94.12 3794.44 2293.17 7896.55 8583.08 13197.63 396.95 5491.71 1193.50 6096.21 8685.61 4998.24 14293.64 3998.17 6198.19 60
MVSMamba_pp92.75 7592.66 7393.02 8895.09 15082.85 13994.72 14396.46 9686.35 14593.33 6194.96 13981.98 10898.55 11392.35 6498.70 3497.67 92
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6296.83 6185.48 5299.59 891.43 9398.40 5598.30 47
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10497.78 187.45 11993.26 6297.33 3684.62 6799.51 2490.75 10598.57 4898.32 46
UA-Net92.83 7392.54 7793.68 6896.10 10184.71 7995.66 8996.39 10291.92 793.22 6496.49 7983.16 8198.87 8284.47 17795.47 12397.45 103
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6597.04 5286.17 4499.62 292.40 6198.81 2298.52 26
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17096.97 5091.07 1393.14 6697.56 2784.30 6999.56 1293.43 4298.75 3098.47 33
h-mvs3390.80 10590.15 11192.75 10496.01 10682.66 14895.43 9895.53 17989.80 4393.08 6795.64 11375.77 17199.00 6892.07 7578.05 35496.60 144
hse-mvs289.88 13389.34 13291.51 16494.83 16681.12 18893.94 19893.91 25989.80 4393.08 6793.60 19775.77 17197.66 18792.07 7577.07 36195.74 182
MVS_030494.60 1894.38 2595.23 1195.41 13687.49 1696.53 3892.75 28393.82 293.07 6997.84 2283.66 7699.59 897.61 298.76 2898.61 22
ETV-MVS92.74 7692.66 7392.97 9295.20 14684.04 10095.07 12096.51 9490.73 2292.96 7091.19 27684.06 7198.34 13591.72 8796.54 10596.54 149
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 7195.77 10885.02 6098.33 13793.03 4998.62 4598.13 64
EC-MVSNet93.44 5593.71 5192.63 11295.21 14582.43 15497.27 996.71 8290.57 2692.88 7295.80 10683.16 8198.16 14893.68 3898.14 6397.31 105
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7397.16 4785.02 6099.49 2691.99 7998.56 4998.47 33
X-MVStestdata88.31 17886.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7323.41 40885.02 6099.49 2691.99 7998.56 4998.47 33
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13597.17 3986.26 14892.83 7597.87 2085.57 5199.56 1294.37 3298.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_cas_vis1_n_192088.83 16688.85 14788.78 26991.15 30676.72 29293.85 20394.93 21583.23 22292.81 7696.00 9661.17 33394.45 33791.67 8894.84 13695.17 201
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7696.97 5485.37 5499.24 4390.87 10398.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TEST997.53 5886.49 3794.07 18796.78 7281.61 26392.77 7896.20 8787.71 2899.12 51
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25492.77 7896.20 8787.63 2999.12 5192.14 7398.69 3697.94 77
CDPH-MVS92.83 7392.30 8094.44 4597.79 4986.11 4994.06 18996.66 8580.09 28392.77 7896.63 7386.62 3899.04 5787.40 13998.66 4198.17 62
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 8197.23 4185.20 5699.32 3892.15 7298.83 2198.25 57
test_897.49 6086.30 4594.02 19296.76 7581.86 25492.70 8296.20 8787.63 2999.02 61
test_prior294.12 18187.67 11592.63 8396.39 8286.62 3891.50 9198.67 40
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8496.80 6584.85 6599.17 4792.43 5998.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS90.74 10789.92 11993.20 7796.27 9483.02 13395.73 8393.86 26088.42 8992.53 8596.84 6062.09 32198.64 10290.95 10192.62 18397.93 79
EI-MVSNet-Vis-set93.01 6992.92 6793.29 7395.01 15383.51 11594.48 15595.77 15890.87 1592.52 8696.67 6884.50 6899.00 6891.99 7994.44 14997.36 104
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12497.12 4187.13 12392.51 8796.30 8389.24 1799.34 3493.46 4198.62 4598.73 17
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 15992.47 8897.13 4882.38 9399.07 5390.51 10898.40 5597.92 80
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22484.26 9595.83 7996.14 12589.00 7292.43 8997.50 2883.37 8098.72 9696.61 1297.44 8496.32 153
xiu_mvs_v1_base_debu90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
xiu_mvs_v1_base90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
xiu_mvs_v1_base_debi90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
agg_prior97.38 6385.92 5796.72 8192.16 9398.97 75
LFMVS90.08 12389.13 13792.95 9496.71 7782.32 15996.08 6189.91 35486.79 13392.15 9496.81 6362.60 31998.34 13587.18 14393.90 15598.19 60
EI-MVSNet-UG-set92.74 7692.62 7693.12 8094.86 16483.20 12394.40 16395.74 16190.71 2392.05 9596.60 7584.00 7298.99 7091.55 9093.63 15997.17 113
casdiffmvs_mvgpermissive92.96 7192.83 7093.35 7294.59 17783.40 11895.00 12496.34 10690.30 3092.05 9596.05 9583.43 7798.15 14992.07 7595.67 11798.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9797.19 4485.43 5399.56 1292.06 7898.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvs187.34 21387.56 17786.68 32490.59 32971.80 34894.01 19394.04 25478.30 31191.97 9895.22 12756.28 35793.71 35292.89 5194.71 13894.52 230
casdiffmvspermissive92.51 7992.43 7992.74 10594.41 19081.98 16594.54 15396.23 11889.57 5191.96 9996.17 9182.58 9098.01 16790.95 10195.45 12598.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs1_n87.03 23087.04 19186.97 31689.74 34771.86 34694.55 15294.43 23778.47 30791.95 10095.50 11751.16 37693.81 35093.02 5094.56 14495.26 198
test_vis1_n_192089.39 14989.84 12088.04 29192.97 24772.64 33994.71 14496.03 13886.18 15091.94 10196.56 7861.63 32495.74 31693.42 4395.11 13395.74 182
VDDNet89.56 14088.49 15692.76 10395.07 15182.09 16196.30 4393.19 27381.05 27591.88 10296.86 5961.16 33498.33 13788.43 12792.49 18797.84 85
baseline92.39 8292.29 8192.69 11094.46 18681.77 17094.14 18096.27 11389.22 6191.88 10296.00 9682.35 9497.99 16991.05 9695.27 13198.30 47
PS-MVSNAJ91.18 10090.92 9991.96 14195.26 14382.60 15192.09 27195.70 16586.27 14791.84 10492.46 23279.70 12898.99 7089.08 11995.86 11594.29 243
DELS-MVS93.43 5893.25 5993.97 5695.42 13585.04 7293.06 23897.13 4090.74 2191.84 10495.09 13686.32 4299.21 4591.22 9498.45 5397.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10697.17 4683.96 7399.55 1691.44 9298.64 4498.43 38
MVSFormer91.68 9291.30 9192.80 10193.86 21483.88 10395.96 7395.90 14984.66 18991.76 10794.91 14177.92 15197.30 22489.64 11497.11 8897.24 109
lupinMVS90.92 10390.21 10893.03 8693.86 21483.88 10392.81 24793.86 26079.84 28691.76 10794.29 16877.92 15198.04 16590.48 10997.11 8897.17 113
xiu_mvs_v2_base91.13 10190.89 10191.86 14994.97 15682.42 15592.24 26595.64 17286.11 15591.74 10993.14 21279.67 13198.89 8189.06 12095.46 12494.28 244
DPM-MVS92.58 7891.74 8795.08 1596.19 9689.31 592.66 25096.56 9383.44 21491.68 11095.04 13786.60 4098.99 7085.60 16397.92 7396.93 130
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23197.24 3288.76 7791.60 11195.85 10386.07 4698.66 10091.91 8398.16 6298.03 72
test_yl90.69 10990.02 11792.71 10795.72 12082.41 15794.11 18295.12 20385.63 16391.49 11294.70 15174.75 18698.42 13086.13 15692.53 18597.31 105
DCV-MVSNet90.69 10990.02 11792.71 10795.72 12082.41 15794.11 18295.12 20385.63 16391.49 11294.70 15174.75 18698.42 13086.13 15692.53 18597.31 105
jason90.80 10590.10 11292.90 9693.04 24383.53 11493.08 23694.15 24980.22 28091.41 11494.91 14176.87 15897.93 17490.28 11196.90 9597.24 109
jason: jason.
diffmvspermissive91.37 9691.23 9391.77 15693.09 23980.27 20992.36 25995.52 18087.03 12691.40 11594.93 14080.08 12297.44 20992.13 7494.56 14497.61 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 9791.11 9591.93 14394.37 19180.14 21393.46 21895.80 15686.46 14291.35 11693.77 19382.21 10098.09 16087.57 13794.95 13597.55 100
新几何193.10 8197.30 6684.35 9495.56 17571.09 37691.26 11796.24 8582.87 8798.86 8479.19 26498.10 6596.07 167
MVS_111021_LR92.47 8092.29 8192.98 9195.99 11084.43 9193.08 23696.09 13188.20 9791.12 11895.72 11181.33 11497.76 18091.74 8697.37 8696.75 139
test1294.34 5097.13 7086.15 4896.29 10991.04 11985.08 5899.01 6398.13 6497.86 83
MG-MVS91.77 8891.70 8892.00 13897.08 7180.03 22093.60 21395.18 20187.85 11090.89 12096.47 8082.06 10598.36 13285.07 16797.04 9197.62 94
test_vis1_n86.56 24586.49 21286.78 32388.51 35772.69 33694.68 14593.78 26479.55 29090.70 12195.31 12348.75 38193.28 35893.15 4793.99 15394.38 241
CANet93.54 5193.20 6194.55 4395.65 12585.73 6594.94 12796.69 8491.89 890.69 12295.88 10281.99 10799.54 2093.14 4897.95 7298.39 39
iter_conf0592.85 7292.89 6892.73 10696.58 8482.47 15394.20 17796.16 12384.42 19390.65 12395.56 11685.01 6398.69 9894.96 2698.47 5297.03 123
Effi-MVS+91.59 9391.11 9593.01 8994.35 19583.39 11994.60 14995.10 20587.10 12490.57 12493.10 21481.43 11398.07 16389.29 11794.48 14797.59 97
test250687.21 22286.28 21990.02 22995.62 12873.64 32796.25 4871.38 40687.89 10890.45 12596.65 7055.29 36398.09 16086.03 15896.94 9398.33 43
原ACMM192.01 13597.34 6481.05 18996.81 7078.89 29990.45 12595.92 10082.65 8998.84 8880.68 24398.26 6096.14 161
Vis-MVSNetpermissive91.75 8991.23 9393.29 7395.32 13883.78 10596.14 5795.98 14089.89 3990.45 12596.58 7675.09 18298.31 14084.75 17396.90 9597.78 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS91.99 8491.80 8592.55 11698.24 3181.98 16596.76 3096.49 9581.89 25390.24 12896.44 8178.59 14398.61 10789.68 11397.85 7597.06 120
ECVR-MVScopyleft89.09 15688.53 15290.77 19795.62 12875.89 30496.16 5384.22 38487.89 10890.20 12996.65 7063.19 31798.10 15285.90 15996.94 9398.33 43
test22296.55 8581.70 17192.22 26695.01 20868.36 38290.20 12996.14 9280.26 12197.80 7796.05 170
test111189.10 15488.64 14990.48 20795.53 13374.97 31396.08 6184.89 38288.13 10090.16 13196.65 7063.29 31598.10 15286.14 15496.90 9598.39 39
ACMMPcopyleft93.24 6392.88 6994.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13297.03 5381.44 11299.51 2490.85 10495.74 11698.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 4997.37 2184.15 19690.05 13395.66 11287.77 2699.15 5089.91 11298.27 5998.07 68
DP-MVS Recon91.95 8591.28 9293.96 5798.33 2785.92 5794.66 14796.66 8582.69 23490.03 13495.82 10582.30 9799.03 5884.57 17596.48 10896.91 132
FA-MVS(test-final)89.66 13688.91 14391.93 14394.57 18080.27 20991.36 28794.74 22984.87 18189.82 13592.61 22974.72 18998.47 12083.97 18393.53 16297.04 122
EPP-MVSNet91.70 9191.56 8992.13 13495.88 11480.50 20597.33 795.25 19786.15 15189.76 13695.60 11483.42 7998.32 13987.37 14193.25 17197.56 99
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10485.83 6194.89 13096.99 4889.02 7189.56 13797.37 3582.51 9299.38 3192.20 7098.30 5897.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS91.23 9890.62 10493.08 8396.27 9484.07 9893.52 21595.93 14486.95 12889.51 13896.13 9378.50 14598.35 13485.84 16192.90 17796.83 137
IS-MVSNet91.43 9491.09 9792.46 12095.87 11681.38 18196.95 1993.69 26689.72 4989.50 13995.98 9878.57 14497.77 17983.02 19596.50 10798.22 59
Anonymous20240521187.68 19486.13 22492.31 12896.66 7980.74 19994.87 13291.49 32080.47 27989.46 14095.44 11854.72 36598.23 14382.19 21289.89 21897.97 74
EIA-MVS91.95 8591.94 8391.98 13995.16 14780.01 22195.36 9996.73 7988.44 8789.34 14192.16 24283.82 7598.45 12589.35 11697.06 9097.48 101
PVSNet_Blended_VisFu91.38 9590.91 10092.80 10196.39 9183.17 12494.87 13296.66 8583.29 21989.27 14294.46 16380.29 12099.17 4787.57 13795.37 12796.05 170
API-MVS90.66 11190.07 11392.45 12196.36 9284.57 8296.06 6595.22 20082.39 23789.13 14394.27 17180.32 11998.46 12180.16 25196.71 10294.33 242
PVSNet_BlendedMVS89.98 12689.70 12190.82 19596.12 9881.25 18393.92 20096.83 6683.49 21389.10 14492.26 24081.04 11698.85 8686.72 15187.86 25592.35 324
PVSNet_Blended90.73 10890.32 10791.98 13996.12 9881.25 18392.55 25496.83 6682.04 24689.10 14492.56 23081.04 11698.85 8686.72 15195.91 11495.84 177
Anonymous2024052988.09 18486.59 20792.58 11596.53 8781.92 16795.99 7195.84 15474.11 35389.06 14695.21 12961.44 32798.81 8983.67 18987.47 26097.01 125
WTY-MVS89.60 13888.92 14291.67 15995.47 13481.15 18792.38 25894.78 22783.11 22389.06 14694.32 16678.67 14296.61 26881.57 22890.89 20497.24 109
XVG-OURS89.40 14888.70 14891.52 16394.06 20381.46 17891.27 29196.07 13386.14 15288.89 14895.77 10868.73 27297.26 23087.39 14089.96 21695.83 178
FE-MVS87.40 21186.02 23091.57 16294.56 18179.69 23090.27 30993.72 26580.57 27888.80 14991.62 26565.32 30298.59 10974.97 30594.33 15196.44 150
mvsany_test185.42 26785.30 25485.77 33487.95 36875.41 31087.61 35880.97 39276.82 32588.68 15095.83 10477.44 15590.82 38085.90 15986.51 27091.08 353
sss88.93 16288.26 16490.94 19394.05 20480.78 19891.71 27995.38 19181.55 26488.63 15193.91 18775.04 18395.47 32782.47 20591.61 19296.57 147
XVG-OURS-SEG-HR89.95 12989.45 12791.47 16794.00 20981.21 18691.87 27596.06 13585.78 15888.55 15295.73 11074.67 19097.27 22888.71 12489.64 22595.91 173
ab-mvs89.41 14688.35 15892.60 11395.15 14982.65 14992.20 26795.60 17483.97 20088.55 15293.70 19674.16 19898.21 14682.46 20689.37 22896.94 129
thisisatest053088.67 16887.61 17691.86 14994.87 16380.07 21694.63 14889.90 35584.00 19988.46 15493.78 19266.88 28798.46 12183.30 19192.65 18297.06 120
VPA-MVSNet89.62 13788.96 14091.60 16193.86 21482.89 13895.46 9797.33 2587.91 10588.43 15593.31 20474.17 19797.40 21887.32 14282.86 30494.52 230
nrg03091.08 10290.39 10593.17 7893.07 24086.91 2296.41 3996.26 11488.30 9288.37 15694.85 14682.19 10197.64 19191.09 9582.95 29994.96 209
mamv490.92 10391.78 8688.33 28395.67 12470.75 36092.92 24396.02 13981.90 25188.11 15795.34 12285.88 4896.97 25095.22 2495.01 13497.26 108
tfpn200view987.58 20386.64 20390.41 21195.99 11078.64 25094.58 15091.98 30686.94 12988.09 15891.77 25869.18 26598.10 15270.13 33591.10 19794.48 237
thres40087.62 20186.64 20390.57 20095.99 11078.64 25094.58 15091.98 30686.94 12988.09 15891.77 25869.18 26598.10 15270.13 33591.10 19794.96 209
thres600view787.65 19686.67 20290.59 19996.08 10378.72 24894.88 13191.58 31687.06 12588.08 16092.30 23868.91 26998.10 15270.05 33891.10 19794.96 209
thres100view90087.63 19986.71 20090.38 21496.12 9878.55 25295.03 12391.58 31687.15 12288.06 16192.29 23968.91 26998.10 15270.13 33591.10 19794.48 237
tttt051788.61 17087.78 17391.11 18294.96 15777.81 27495.35 10089.69 35885.09 17788.05 16294.59 16066.93 28598.48 11683.27 19292.13 19097.03 123
thres20087.21 22286.24 22190.12 22395.36 13778.53 25393.26 22992.10 30086.42 14388.00 16391.11 28269.24 26498.00 16869.58 33991.04 20393.83 266
OPM-MVS90.12 12289.56 12591.82 15293.14 23783.90 10294.16 17995.74 16188.96 7387.86 16495.43 12072.48 22297.91 17588.10 13290.18 21393.65 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MAR-MVS90.30 11789.37 13193.07 8596.61 8184.48 8795.68 8695.67 16782.36 23987.85 16592.85 21976.63 16498.80 9080.01 25296.68 10395.91 173
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)89.59 13989.44 12890.03 22795.74 11975.85 30595.61 9390.80 33887.66 11687.83 16695.40 12176.79 16096.46 28178.37 26896.73 10197.80 87
CDS-MVSNet89.45 14488.51 15392.29 13093.62 22583.61 11393.01 23994.68 23281.95 24887.82 16793.24 20878.69 14196.99 24980.34 24893.23 17296.28 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS89.21 15288.29 16291.96 14193.71 22182.62 15093.30 22694.19 24782.22 24187.78 16893.94 18378.83 13896.95 25277.70 27792.98 17696.32 153
CANet_DTU90.26 11989.41 13092.81 10093.46 23083.01 13493.48 21694.47 23689.43 5487.76 16994.23 17370.54 24699.03 5884.97 16896.39 10996.38 152
HyFIR lowres test88.09 18486.81 19691.93 14396.00 10780.63 20190.01 32095.79 15773.42 36087.68 17092.10 24873.86 20397.96 17180.75 24191.70 19197.19 112
UGNet89.95 12988.95 14192.95 9494.51 18383.31 12095.70 8595.23 19889.37 5687.58 17193.94 18364.00 31098.78 9183.92 18496.31 11096.74 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
thisisatest051587.33 21485.99 23191.37 17193.49 22879.55 23190.63 30489.56 36180.17 28187.56 17290.86 28767.07 28498.28 14181.50 22993.02 17596.29 155
GeoE90.05 12489.43 12991.90 14895.16 14780.37 20895.80 8094.65 23383.90 20187.55 17394.75 15078.18 14997.62 19381.28 23193.63 15997.71 91
baseline188.10 18387.28 18590.57 20094.96 15780.07 21694.27 17291.29 32586.74 13587.41 17494.00 18076.77 16196.20 29480.77 24079.31 35095.44 191
CHOSEN 1792x268888.84 16387.69 17492.30 12996.14 9781.42 18090.01 32095.86 15374.52 34987.41 17493.94 18375.46 17998.36 13280.36 24795.53 11997.12 118
PAPM_NR91.22 9990.78 10392.52 11897.60 5681.46 17894.37 16996.24 11786.39 14487.41 17494.80 14982.06 10598.48 11682.80 20195.37 12797.61 95
EPNet91.79 8791.02 9894.10 5490.10 33985.25 7196.03 6892.05 30292.83 387.39 17795.78 10779.39 13399.01 6388.13 13097.48 8398.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet89.10 15488.86 14689.80 24091.84 27878.30 26193.70 21095.01 20885.73 16087.15 17895.28 12479.87 12597.21 23583.81 18687.36 26393.88 261
MVSTER88.84 16388.29 16290.51 20592.95 24880.44 20693.73 20795.01 20884.66 18987.15 17893.12 21372.79 21897.21 23587.86 13387.36 26393.87 262
mvsmamba89.96 12889.50 12691.33 17392.90 25081.82 16896.68 3392.37 29189.03 6987.00 18094.85 14673.05 21497.65 18891.03 9788.63 23994.51 232
VPNet88.20 18187.47 18090.39 21293.56 22779.46 23394.04 19095.54 17888.67 8186.96 18194.58 16169.33 26097.15 23784.05 18280.53 33794.56 228
AUN-MVS87.78 19286.54 20991.48 16694.82 16781.05 18993.91 20293.93 25683.00 22686.93 18293.53 19869.50 25897.67 18586.14 15477.12 36095.73 184
HY-MVS83.01 1289.03 15987.94 17092.29 13094.86 16482.77 14092.08 27294.49 23581.52 26586.93 18292.79 22578.32 14898.23 14379.93 25390.55 20795.88 175
HQP_MVS90.60 11590.19 10991.82 15294.70 17282.73 14495.85 7796.22 11990.81 1786.91 18494.86 14474.23 19498.12 15088.15 12889.99 21494.63 222
plane_prior382.75 14190.26 3386.91 184
BH-RMVSNet88.37 17687.48 17991.02 18795.28 14079.45 23492.89 24493.07 27585.45 16886.91 18494.84 14870.35 24797.76 18073.97 31194.59 14395.85 176
test_fmvs283.98 29084.03 27583.83 35287.16 37167.53 37693.93 19992.89 27877.62 31786.89 18793.53 19847.18 38592.02 37090.54 10686.51 27091.93 332
SDMVSNet90.19 12089.61 12491.93 14396.00 10783.09 13092.89 24495.98 14088.73 7886.85 18895.20 13072.09 22697.08 24288.90 12189.85 22095.63 187
sd_testset88.59 17287.85 17290.83 19496.00 10780.42 20792.35 26094.71 23088.73 7886.85 18895.20 13067.31 27996.43 28379.64 25789.85 22095.63 187
Fast-Effi-MVS+89.41 14688.64 14991.71 15894.74 16880.81 19793.54 21495.10 20583.11 22386.82 19090.67 29579.74 12797.75 18380.51 24693.55 16196.57 147
FIs90.51 11690.35 10690.99 19093.99 21080.98 19195.73 8397.54 489.15 6486.72 19194.68 15381.83 11197.24 23285.18 16688.31 24894.76 220
PAPR90.02 12589.27 13692.29 13095.78 11880.95 19392.68 24996.22 11981.91 25086.66 19293.75 19582.23 9998.44 12779.40 26394.79 13797.48 101
testing9187.11 22786.18 22289.92 23394.43 18975.38 31291.53 28492.27 29686.48 14086.50 19390.24 30261.19 33297.53 19882.10 21490.88 20596.84 136
PMMVS85.71 26384.96 26187.95 29388.90 35577.09 28788.68 34290.06 35072.32 37086.47 19490.76 29372.15 22594.40 33981.78 22493.49 16492.36 323
UniMVSNet_NR-MVSNet89.92 13189.29 13491.81 15493.39 23283.72 10694.43 16197.12 4189.80 4386.46 19593.32 20383.16 8197.23 23384.92 16981.02 32894.49 236
DU-MVS89.34 15188.50 15491.85 15193.04 24383.72 10694.47 15896.59 9089.50 5286.46 19593.29 20677.25 15697.23 23384.92 16981.02 32894.59 225
CostFormer85.77 26284.94 26288.26 28591.16 30572.58 34289.47 33091.04 33176.26 33186.45 19789.97 31370.74 24096.86 25882.35 20887.07 26895.34 197
UniMVSNet (Re)89.80 13489.07 13892.01 13593.60 22684.52 8594.78 13897.47 1189.26 6086.44 19892.32 23782.10 10397.39 22184.81 17280.84 33294.12 249
testing9986.72 24085.73 24589.69 24594.23 19774.91 31591.35 28890.97 33386.14 15286.36 19990.22 30359.41 34497.48 20282.24 21190.66 20696.69 142
TR-MVS86.78 23685.76 24289.82 23794.37 19178.41 25792.47 25592.83 28081.11 27486.36 19992.40 23468.73 27297.48 20273.75 31489.85 22093.57 280
AdaColmapbinary89.89 13289.07 13892.37 12597.41 6283.03 13294.42 16295.92 14682.81 23186.34 20194.65 15673.89 20299.02 6180.69 24295.51 12095.05 204
FC-MVSNet-test90.27 11890.18 11090.53 20293.71 22179.85 22795.77 8297.59 389.31 5886.27 20294.67 15481.93 11097.01 24884.26 17988.09 25194.71 221
UWE-MVS83.69 29783.09 29085.48 33693.06 24165.27 38290.92 29986.14 37579.90 28586.26 20390.72 29457.17 35495.81 31271.03 32992.62 18395.35 196
PS-MVSNAJss89.97 12789.62 12391.02 18791.90 27680.85 19695.26 10995.98 14086.26 14886.21 20494.29 16879.70 12897.65 18888.87 12388.10 24994.57 227
TAPA-MVS84.62 688.16 18287.01 19291.62 16096.64 8080.65 20094.39 16596.21 12276.38 32886.19 20595.44 11879.75 12698.08 16262.75 37395.29 12996.13 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CVMVSNet84.69 28384.79 26684.37 34791.84 27864.92 38393.70 21091.47 32166.19 38686.16 20695.28 12467.18 28393.33 35780.89 23990.42 21094.88 214
tpmrst85.35 26984.99 25986.43 32690.88 32067.88 37388.71 34191.43 32280.13 28286.08 20788.80 33373.05 21496.02 30182.48 20483.40 29895.40 193
ETVMVS84.43 28582.92 29488.97 26794.37 19174.67 31691.23 29388.35 36683.37 21786.06 20889.04 32755.38 36195.67 31867.12 35391.34 19596.58 146
ACMM84.12 989.14 15388.48 15791.12 17994.65 17581.22 18595.31 10296.12 12885.31 17185.92 20994.34 16470.19 25098.06 16485.65 16288.86 23794.08 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t89.51 14188.50 15492.54 11798.11 3681.99 16495.16 11696.36 10570.19 37985.81 21095.25 12676.70 16298.63 10482.07 21696.86 9897.00 126
testing22284.84 28083.32 28589.43 25594.15 20275.94 30391.09 29689.41 36284.90 18085.78 21189.44 32252.70 37396.28 29270.80 33091.57 19396.07 167
tpm84.73 28184.02 27686.87 32190.33 33568.90 36989.06 33789.94 35380.85 27685.75 21289.86 31568.54 27495.97 30377.76 27684.05 28895.75 181
Baseline_NR-MVSNet87.07 22886.63 20588.40 27991.44 29177.87 27294.23 17692.57 28884.12 19785.74 21392.08 24977.25 15696.04 29982.29 21079.94 34391.30 345
V4287.68 19486.86 19490.15 22190.58 33080.14 21394.24 17595.28 19683.66 20785.67 21491.33 27174.73 18897.41 21684.43 17881.83 31492.89 307
v114487.61 20286.79 19890.06 22691.01 31079.34 23893.95 19795.42 19083.36 21885.66 21591.31 27474.98 18497.42 21183.37 19082.06 31093.42 287
PatchT82.68 30381.27 30586.89 32090.09 34070.94 35984.06 38190.15 34774.91 34585.63 21683.57 37669.37 25994.87 33665.19 36288.50 24394.84 216
CR-MVSNet85.35 26983.76 28090.12 22390.58 33079.34 23885.24 37491.96 30878.27 31285.55 21787.87 34871.03 23595.61 31973.96 31289.36 22995.40 193
RPMNet83.95 29281.53 30391.21 17690.58 33079.34 23885.24 37496.76 7571.44 37485.55 21782.97 38170.87 23898.91 8061.01 37789.36 22995.40 193
v2v48287.84 18987.06 18990.17 21990.99 31179.23 24594.00 19595.13 20284.87 18185.53 21992.07 25174.45 19197.45 20684.71 17481.75 31693.85 265
TranMVSNet+NR-MVSNet88.84 16387.95 16991.49 16592.68 25483.01 13494.92 12996.31 10889.88 4085.53 21993.85 19076.63 16496.96 25181.91 22079.87 34594.50 234
v14419287.19 22486.35 21589.74 24190.64 32878.24 26393.92 20095.43 18881.93 24985.51 22191.05 28474.21 19697.45 20682.86 19881.56 31893.53 281
SCA86.32 25385.18 25689.73 24392.15 26576.60 29491.12 29591.69 31383.53 21285.50 22288.81 33166.79 28896.48 27876.65 28790.35 21196.12 163
v119287.25 21886.33 21690.00 23190.76 32479.04 24693.80 20495.48 18182.57 23585.48 22391.18 27873.38 21297.42 21182.30 20982.06 31093.53 281
WR-MVS88.38 17587.67 17590.52 20493.30 23480.18 21193.26 22995.96 14388.57 8585.47 22492.81 22376.12 16696.91 25581.24 23282.29 30894.47 239
mvs_anonymous89.37 15089.32 13389.51 25393.47 22974.22 32291.65 28294.83 22382.91 22985.45 22593.79 19181.23 11596.36 28886.47 15394.09 15297.94 77
LPG-MVS_test89.45 14488.90 14491.12 17994.47 18481.49 17695.30 10496.14 12586.73 13685.45 22595.16 13269.89 25298.10 15287.70 13589.23 23293.77 272
LGP-MVS_train91.12 17994.47 18481.49 17696.14 12586.73 13685.45 22595.16 13269.89 25298.10 15287.70 13589.23 23293.77 272
Effi-MVS+-dtu88.65 16988.35 15889.54 25093.33 23376.39 29894.47 15894.36 24187.70 11385.43 22889.56 32173.45 20997.26 23085.57 16491.28 19694.97 206
v124086.78 23685.85 23789.56 24990.45 33477.79 27693.61 21295.37 19381.65 26085.43 22891.15 28071.50 23097.43 21081.47 23082.05 31293.47 285
HQP-NCC94.17 19994.39 16588.81 7485.43 228
ACMP_Plane94.17 19994.39 16588.81 7485.43 228
HQP4-MVS85.43 22897.96 17194.51 232
HQP-MVS89.80 13489.28 13591.34 17294.17 19981.56 17294.39 16596.04 13688.81 7485.43 22893.97 18273.83 20497.96 17187.11 14689.77 22394.50 234
CLD-MVS89.47 14388.90 14491.18 17894.22 19882.07 16292.13 26996.09 13187.90 10685.37 23492.45 23374.38 19297.56 19687.15 14490.43 20993.93 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D87.53 20586.37 21491.00 18992.44 25978.96 24794.74 14095.61 17384.07 19885.36 23594.52 16259.78 34297.34 22382.93 19687.88 25496.71 141
bld_raw_dy_0_6490.17 12189.64 12291.79 15595.65 12582.00 16390.56 30595.93 14475.32 34085.34 23694.26 17282.58 9098.48 11690.30 11096.78 10094.88 214
v192192086.97 23186.06 22989.69 24590.53 33378.11 26693.80 20495.43 18881.90 25185.33 23791.05 28472.66 21997.41 21682.05 21781.80 31593.53 281
test_djsdf89.03 15988.64 14990.21 21890.74 32579.28 24295.96 7395.90 14984.66 18985.33 23792.94 21874.02 20097.30 22489.64 11488.53 24194.05 255
GA-MVS86.61 24285.27 25590.66 19891.33 29978.71 24990.40 30893.81 26385.34 17085.12 23989.57 32061.25 32997.11 24180.99 23789.59 22696.15 160
testing1186.44 25185.35 25389.69 24594.29 19675.40 31191.30 28990.53 34184.76 18585.06 24090.13 30858.95 34897.45 20682.08 21591.09 20196.21 159
PatchmatchNetpermissive85.85 26084.70 26789.29 25791.76 28275.54 30888.49 34491.30 32481.63 26285.05 24188.70 33571.71 22796.24 29374.61 30889.05 23596.08 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS83.90 29482.70 29887.51 30090.23 33872.67 33788.62 34381.96 39081.37 26785.01 24288.34 33966.31 29594.45 33775.30 30087.12 26695.43 192
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 17071.93 34587.12 36192.75 28378.80 30284.95 24390.53 29764.43 30896.71 26274.74 30693.86 15696.06 169
MDTV_nov1_ep1383.56 28391.69 28669.93 36687.75 35491.54 31878.60 30684.86 24488.90 33069.54 25796.03 30070.25 33288.93 236
WB-MVSnew83.77 29583.28 28685.26 34191.48 29071.03 35691.89 27387.98 36778.91 29784.78 24590.22 30369.11 26794.02 34664.70 36690.44 20890.71 355
IterMVS-LS88.36 17787.91 17189.70 24493.80 21778.29 26293.73 20795.08 20785.73 16084.75 24691.90 25679.88 12496.92 25483.83 18582.51 30593.89 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080586.92 23285.74 24490.48 20792.22 26379.98 22395.63 9294.88 21983.83 20484.74 24792.80 22457.61 35297.67 18585.48 16584.42 28493.79 267
tpm284.08 28982.94 29387.48 30391.39 29571.27 35289.23 33490.37 34371.95 37284.64 24889.33 32367.30 28096.55 27575.17 30187.09 26794.63 222
XXY-MVS87.65 19686.85 19590.03 22792.14 26680.60 20393.76 20695.23 19882.94 22884.60 24994.02 17874.27 19395.49 32681.04 23483.68 29294.01 257
MDTV_nov1_ep13_2view55.91 40387.62 35773.32 36184.59 25070.33 24874.65 30795.50 190
test-LLR85.87 25985.41 24987.25 30890.95 31371.67 35089.55 32689.88 35683.41 21584.54 25187.95 34567.25 28195.11 33281.82 22293.37 16994.97 206
test-mter84.54 28483.64 28287.25 30890.95 31371.67 35089.55 32689.88 35679.17 29484.54 25187.95 34555.56 35995.11 33281.82 22293.37 16994.97 206
miper_enhance_ethall86.90 23386.18 22289.06 26391.66 28777.58 28290.22 31594.82 22479.16 29584.48 25389.10 32679.19 13696.66 26384.06 18182.94 30092.94 305
BH-untuned88.60 17188.13 16690.01 23095.24 14478.50 25593.29 22794.15 24984.75 18684.46 25493.40 20075.76 17397.40 21877.59 27894.52 14694.12 249
CNLPA89.07 15787.98 16892.34 12696.87 7484.78 7894.08 18693.24 27181.41 26684.46 25495.13 13575.57 17896.62 26577.21 28293.84 15795.61 189
PCF-MVS84.11 1087.74 19386.08 22892.70 10994.02 20584.43 9189.27 33295.87 15273.62 35884.43 25694.33 16578.48 14698.86 8470.27 33194.45 14894.81 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 21685.98 23291.08 18394.01 20683.10 12795.14 11794.94 21183.57 20984.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
test187.26 21685.98 23291.08 18394.01 20683.10 12795.14 11794.94 21183.57 20984.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
FMVSNet387.40 21186.11 22691.30 17493.79 21983.64 11094.20 17794.81 22583.89 20284.37 25791.87 25768.45 27596.56 27378.23 27285.36 27793.70 277
v14887.04 22986.32 21789.21 25890.94 31577.26 28593.71 20994.43 23784.84 18384.36 26090.80 29176.04 16897.05 24682.12 21379.60 34793.31 289
c3_l87.14 22686.50 21189.04 26492.20 26477.26 28591.22 29494.70 23182.01 24784.34 26190.43 29978.81 13996.61 26883.70 18881.09 32593.25 292
miper_ehance_all_eth87.22 22186.62 20689.02 26592.13 26777.40 28490.91 30094.81 22581.28 26984.32 26290.08 31079.26 13496.62 26583.81 18682.94 30093.04 302
PatchMatch-RL86.77 23985.54 24690.47 21095.88 11482.71 14690.54 30692.31 29479.82 28784.32 26291.57 26968.77 27196.39 28573.16 31693.48 16692.32 325
3Dnovator86.66 591.73 9090.82 10294.44 4594.59 17786.37 4197.18 1297.02 4789.20 6284.31 26496.66 6973.74 20699.17 4786.74 14997.96 7197.79 88
jajsoiax88.24 18087.50 17890.48 20790.89 31980.14 21395.31 10295.65 17184.97 17984.24 26594.02 17865.31 30397.42 21188.56 12588.52 24293.89 259
mvs_tets88.06 18687.28 18590.38 21490.94 31579.88 22595.22 11195.66 16985.10 17684.21 26693.94 18363.53 31397.40 21888.50 12688.40 24693.87 262
eth_miper_zixun_eth86.50 24885.77 24188.68 27491.94 27375.81 30690.47 30794.89 21782.05 24484.05 26790.46 29875.96 16996.77 25982.76 20279.36 34993.46 286
3Dnovator+87.14 492.42 8191.37 9095.55 795.63 12788.73 697.07 1896.77 7490.84 1684.02 26896.62 7475.95 17099.34 3487.77 13497.68 8198.59 24
PLCcopyleft84.53 789.06 15888.03 16792.15 13397.27 6882.69 14794.29 17195.44 18779.71 28884.01 26994.18 17476.68 16398.75 9377.28 28193.41 16795.02 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cl2286.78 23685.98 23289.18 26092.34 26177.62 28190.84 30194.13 25181.33 26883.97 27090.15 30773.96 20196.60 27084.19 18082.94 30093.33 288
FMVSNet287.19 22485.82 23891.30 17494.01 20683.67 10894.79 13794.94 21183.57 20983.88 27192.05 25266.59 29296.51 27677.56 27985.01 28093.73 275
anonymousdsp87.84 18987.09 18890.12 22389.13 35280.54 20494.67 14695.55 17682.05 24483.82 27292.12 24571.47 23197.15 23787.15 14487.80 25892.67 312
1112_ss88.42 17487.33 18391.72 15794.92 16080.98 19192.97 24194.54 23478.16 31583.82 27293.88 18878.78 14097.91 17579.45 25989.41 22796.26 157
WR-MVS_H87.80 19187.37 18289.10 26293.23 23578.12 26595.61 9397.30 2987.90 10683.72 27492.01 25379.65 13296.01 30276.36 29080.54 33693.16 297
BH-w/o87.57 20487.05 19089.12 26194.90 16277.90 27092.41 25693.51 26882.89 23083.70 27591.34 27075.75 17497.07 24475.49 29793.49 16492.39 322
ACMP84.23 889.01 16188.35 15890.99 19094.73 16981.27 18295.07 12095.89 15186.48 14083.67 27694.30 16769.33 26097.99 16987.10 14888.55 24093.72 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 24485.13 25790.98 19296.52 8881.50 17496.14 5796.16 12373.78 35683.65 27792.15 24363.26 31697.37 22282.82 20081.74 31794.06 254
v1087.25 21886.38 21389.85 23591.19 30279.50 23294.48 15595.45 18583.79 20583.62 27891.19 27675.13 18197.42 21181.94 21980.60 33492.63 314
v887.50 20886.71 20089.89 23491.37 29679.40 23594.50 15495.38 19184.81 18483.60 27991.33 27176.05 16797.42 21182.84 19980.51 33992.84 309
cascas86.43 25284.98 26090.80 19692.10 26980.92 19490.24 31395.91 14873.10 36383.57 28088.39 33865.15 30497.46 20584.90 17191.43 19494.03 256
Test_1112_low_res87.65 19686.51 21091.08 18394.94 15979.28 24291.77 27794.30 24376.04 33383.51 28192.37 23577.86 15397.73 18478.69 26789.13 23496.22 158
CP-MVSNet87.63 19987.26 18788.74 27393.12 23876.59 29595.29 10696.58 9188.43 8883.49 28292.98 21775.28 18095.83 31078.97 26581.15 32493.79 267
QAPM89.51 14188.15 16593.59 7094.92 16084.58 8196.82 2996.70 8378.43 30983.41 28396.19 9073.18 21399.30 4077.11 28496.54 10596.89 133
TESTMET0.1,183.74 29682.85 29686.42 32789.96 34371.21 35489.55 32687.88 36877.41 31983.37 28487.31 35356.71 35593.65 35480.62 24492.85 18094.40 240
cl____86.52 24785.78 23988.75 27192.03 27176.46 29690.74 30294.30 24381.83 25683.34 28590.78 29275.74 17696.57 27181.74 22581.54 31993.22 294
DIV-MVS_self_test86.53 24685.78 23988.75 27192.02 27276.45 29790.74 30294.30 24381.83 25683.34 28590.82 29075.75 17496.57 27181.73 22681.52 32093.24 293
PS-CasMVS87.32 21586.88 19388.63 27692.99 24676.33 30095.33 10196.61 8988.22 9683.30 28793.07 21573.03 21695.79 31478.36 26981.00 33093.75 274
gg-mvs-nofinetune81.77 31079.37 32588.99 26690.85 32177.73 27986.29 36679.63 39574.88 34783.19 28869.05 39760.34 33796.11 29875.46 29894.64 14293.11 299
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25491.20 30178.00 26791.70 28095.55 17685.05 17882.97 28992.25 24154.49 36697.48 20282.93 19687.45 26292.89 307
LS3D87.89 18886.32 21792.59 11496.07 10482.92 13795.23 11094.92 21675.66 33582.89 29095.98 9872.48 22299.21 4568.43 34595.23 13295.64 186
PEN-MVS86.80 23586.27 22088.40 27992.32 26275.71 30795.18 11496.38 10387.97 10382.82 29193.15 21173.39 21195.92 30576.15 29479.03 35293.59 279
FMVSNet185.85 26084.11 27491.08 18392.81 25183.10 12795.14 11794.94 21181.64 26182.68 29291.64 26159.01 34796.34 28975.37 29983.78 28993.79 267
RPSCF85.07 27584.27 27287.48 30392.91 24970.62 36291.69 28192.46 28976.20 33282.67 29395.22 12763.94 31197.29 22777.51 28085.80 27494.53 229
Fast-Effi-MVS+-dtu87.44 20986.72 19989.63 24892.04 27077.68 28094.03 19193.94 25585.81 15782.42 29491.32 27370.33 24897.06 24580.33 24990.23 21294.14 248
v7n86.81 23485.76 24289.95 23290.72 32679.25 24495.07 12095.92 14684.45 19282.29 29590.86 28772.60 22197.53 19879.42 26280.52 33893.08 301
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28874.92 31494.93 12895.75 16087.36 12082.26 29693.04 21672.85 21795.82 31174.04 31077.46 35893.20 295
ADS-MVSNet281.66 31379.71 32287.50 30191.35 29774.19 32383.33 38488.48 36572.90 36582.24 29785.77 36764.98 30593.20 36064.57 36783.74 29095.12 202
ADS-MVSNet81.56 31579.78 31986.90 31991.35 29771.82 34783.33 38489.16 36372.90 36582.24 29785.77 36764.98 30593.76 35164.57 36783.74 29095.12 202
JIA-IIPM81.04 32178.98 33387.25 30888.64 35673.48 32981.75 39089.61 36073.19 36282.05 29973.71 39366.07 30095.87 30871.18 32684.60 28392.41 321
F-COLMAP87.95 18786.80 19791.40 16996.35 9380.88 19594.73 14195.45 18579.65 28982.04 30094.61 15771.13 23398.50 11476.24 29391.05 20294.80 219
PAPM86.68 24185.39 25090.53 20293.05 24279.33 24189.79 32394.77 22878.82 30181.95 30193.24 20876.81 15997.30 22466.94 35593.16 17394.95 212
DP-MVS87.25 21885.36 25292.90 9697.65 5583.24 12194.81 13692.00 30474.99 34481.92 30295.00 13872.66 21999.05 5566.92 35792.33 18896.40 151
pm-mvs186.61 24285.54 24689.82 23791.44 29180.18 21195.28 10894.85 22183.84 20381.66 30392.62 22872.45 22496.48 27879.67 25678.06 35392.82 310
dmvs_re84.20 28883.22 28987.14 31491.83 28077.81 27490.04 31990.19 34684.70 18881.49 30489.17 32564.37 30991.13 37871.58 32285.65 27692.46 319
MVS87.44 20986.10 22791.44 16892.61 25583.62 11192.63 25195.66 16967.26 38481.47 30592.15 24377.95 15098.22 14579.71 25595.48 12292.47 318
IterMVS-SCA-FT85.45 26584.53 27188.18 28891.71 28476.87 29090.19 31692.65 28785.40 16981.44 30690.54 29666.79 28895.00 33581.04 23481.05 32692.66 313
CHOSEN 280x42085.15 27483.99 27788.65 27592.47 25778.40 25879.68 39692.76 28274.90 34681.41 30789.59 31969.85 25495.51 32379.92 25495.29 12992.03 330
miper_lstm_enhance85.27 27284.59 27087.31 30591.28 30074.63 31787.69 35594.09 25381.20 27381.36 30889.85 31674.97 18594.30 34281.03 23679.84 34693.01 303
Patchmtry82.71 30280.93 30888.06 29090.05 34176.37 29984.74 37991.96 30872.28 37181.32 30987.87 34871.03 23595.50 32568.97 34180.15 34192.32 325
dp81.47 31780.23 31485.17 34289.92 34465.49 38086.74 36390.10 34976.30 33081.10 31087.12 35862.81 31895.92 30568.13 34879.88 34494.09 252
tfpnnormal84.72 28283.23 28889.20 25992.79 25280.05 21894.48 15595.81 15582.38 23881.08 31191.21 27569.01 26896.95 25261.69 37580.59 33590.58 360
IterMVS84.88 27883.98 27887.60 29891.44 29176.03 30290.18 31792.41 29083.24 22181.06 31290.42 30066.60 29194.28 34379.46 25880.98 33192.48 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVScopyleft83.78 1188.74 16787.29 18493.08 8392.70 25385.39 6996.57 3696.43 9878.74 30480.85 31396.07 9469.64 25699.01 6378.01 27596.65 10494.83 217
pmmvs485.43 26683.86 27990.16 22090.02 34282.97 13690.27 30992.67 28675.93 33480.73 31491.74 26071.05 23495.73 31778.85 26683.46 29691.78 334
MIMVSNet82.59 30480.53 30988.76 27091.51 28978.32 26086.57 36590.13 34879.32 29180.70 31588.69 33652.98 37293.07 36266.03 36088.86 23794.90 213
IB-MVS80.51 1585.24 27383.26 28791.19 17792.13 26779.86 22691.75 27891.29 32583.28 22080.66 31688.49 33761.28 32898.46 12180.99 23779.46 34895.25 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND87.94 29489.73 34877.91 26987.80 35178.23 39980.58 31783.86 37459.88 34195.33 32971.20 32492.22 18990.60 359
EU-MVSNet81.32 31980.95 30782.42 35988.50 35963.67 38793.32 22291.33 32364.02 38980.57 31892.83 22161.21 33192.27 36876.34 29180.38 34091.32 344
tpmvs83.35 30082.07 29987.20 31291.07 30971.00 35888.31 34791.70 31278.91 29780.49 31987.18 35769.30 26397.08 24268.12 34983.56 29493.51 284
pmmvs584.21 28782.84 29788.34 28288.95 35476.94 28992.41 25691.91 31075.63 33680.28 32091.18 27864.59 30795.57 32077.09 28583.47 29592.53 316
tpm cat181.96 30780.27 31387.01 31591.09 30871.02 35787.38 35991.53 31966.25 38580.17 32186.35 36368.22 27796.15 29769.16 34082.29 30893.86 264
MS-PatchMatch85.05 27684.16 27387.73 29691.42 29478.51 25491.25 29293.53 26777.50 31880.15 32291.58 26761.99 32295.51 32375.69 29694.35 15089.16 371
131487.51 20686.57 20890.34 21692.42 26079.74 22992.63 25195.35 19578.35 31080.14 32391.62 26574.05 19997.15 23781.05 23393.53 16294.12 249
ITE_SJBPF88.24 28691.88 27777.05 28892.92 27785.54 16680.13 32493.30 20557.29 35396.20 29472.46 31984.71 28291.49 341
D2MVS85.90 25885.09 25888.35 28190.79 32277.42 28391.83 27695.70 16580.77 27780.08 32590.02 31166.74 29096.37 28681.88 22187.97 25391.26 346
NR-MVSNet88.58 17387.47 18091.93 14393.04 24384.16 9794.77 13996.25 11689.05 6780.04 32693.29 20679.02 13797.05 24681.71 22780.05 34294.59 225
baseline286.50 24885.39 25089.84 23691.12 30776.70 29391.88 27488.58 36482.35 24079.95 32790.95 28673.42 21097.63 19280.27 25089.95 21795.19 200
testing380.46 32679.59 32483.06 35593.44 23164.64 38493.33 22185.47 37984.34 19479.93 32890.84 28944.35 38992.39 36657.06 38787.56 25992.16 329
test0.0.03 182.41 30581.69 30184.59 34588.23 36372.89 33390.24 31387.83 36983.41 21579.86 32989.78 31767.25 28188.99 38865.18 36383.42 29791.90 333
CL-MVSNet_self_test81.74 31180.53 30985.36 33885.96 37772.45 34390.25 31193.07 27581.24 27179.85 33087.29 35470.93 23792.52 36566.95 35469.23 37991.11 351
TransMVSNet (Re)84.43 28583.06 29288.54 27791.72 28378.44 25695.18 11492.82 28182.73 23379.67 33192.12 24573.49 20895.96 30471.10 32868.73 38391.21 347
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21694.44 18881.50 17492.31 26494.89 21783.03 22579.63 33292.67 22669.69 25597.79 17871.20 32486.26 27291.72 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-085.35 26984.64 26987.49 30290.77 32372.59 34194.01 19394.40 23984.72 18779.62 33393.17 21061.91 32396.72 26081.99 21881.16 32293.16 297
EPNet_dtu86.49 25085.94 23588.14 28990.24 33772.82 33494.11 18292.20 29886.66 13879.42 33492.36 23673.52 20795.81 31271.26 32393.66 15895.80 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LCM-MVSNet-Re88.30 17988.32 16188.27 28494.71 17172.41 34493.15 23290.98 33287.77 11179.25 33591.96 25478.35 14795.75 31583.04 19495.62 11896.65 143
test_fmvs377.67 34577.16 34279.22 36579.52 39661.14 39192.34 26191.64 31573.98 35478.86 33686.59 35927.38 40187.03 39088.12 13175.97 36589.50 365
Syy-MVS80.07 33079.78 31980.94 36291.92 27459.93 39389.75 32487.40 37381.72 25878.82 33787.20 35566.29 29691.29 37647.06 39487.84 25691.60 338
myMVS_eth3d79.67 33578.79 33482.32 36091.92 27464.08 38589.75 32487.40 37381.72 25878.82 33787.20 35545.33 38791.29 37659.09 38387.84 25691.60 338
pmmvs683.42 29881.60 30288.87 26888.01 36677.87 27294.96 12694.24 24674.67 34878.80 33991.09 28360.17 33996.49 27777.06 28675.40 36792.23 327
MVP-Stereo85.97 25784.86 26489.32 25690.92 31782.19 16092.11 27094.19 24778.76 30378.77 34091.63 26468.38 27696.56 27375.01 30493.95 15489.20 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG84.86 27983.09 29090.14 22293.80 21780.05 21889.18 33593.09 27478.89 29978.19 34191.91 25565.86 30197.27 22868.47 34488.45 24493.11 299
testgi80.94 32480.20 31583.18 35387.96 36766.29 37791.28 29090.70 34083.70 20678.12 34292.84 22051.37 37590.82 38063.34 37082.46 30692.43 320
ACMH+81.04 1485.05 27683.46 28489.82 23794.66 17479.37 23694.44 16094.12 25282.19 24278.04 34392.82 22258.23 35097.54 19773.77 31382.90 30392.54 315
COLMAP_ROBcopyleft80.39 1683.96 29182.04 30089.74 24195.28 14079.75 22894.25 17392.28 29575.17 34278.02 34493.77 19358.60 34997.84 17765.06 36585.92 27391.63 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ppachtmachnet_test81.84 30980.07 31787.15 31388.46 36074.43 32189.04 33892.16 29975.33 33977.75 34588.99 32866.20 29795.37 32865.12 36477.60 35691.65 336
Anonymous2023120681.03 32279.77 32184.82 34487.85 36970.26 36491.42 28692.08 30173.67 35777.75 34589.25 32462.43 32093.08 36161.50 37682.00 31391.12 350
SixPastTwentyTwo83.91 29382.90 29586.92 31890.99 31170.67 36193.48 21691.99 30585.54 16677.62 34792.11 24760.59 33696.87 25776.05 29577.75 35593.20 295
ACMH80.38 1785.36 26883.68 28190.39 21294.45 18780.63 20194.73 14194.85 22182.09 24377.24 34892.65 22760.01 34097.58 19472.25 32084.87 28192.96 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-RL test81.67 31279.96 31886.81 32285.42 38271.23 35382.17 38987.50 37278.47 30777.19 34982.50 38370.81 23993.48 35582.66 20372.89 37195.71 185
KD-MVS_2432*160078.50 34176.02 34885.93 33186.22 37574.47 31984.80 37792.33 29279.29 29276.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
miper_refine_blended78.50 34176.02 34885.93 33186.22 37574.47 31984.80 37792.33 29279.29 29276.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
our_test_381.93 30880.46 31186.33 32888.46 36073.48 32988.46 34591.11 32776.46 32676.69 35288.25 34166.89 28694.36 34068.75 34279.08 35191.14 349
Patchmatch-test81.37 31879.30 32687.58 29990.92 31774.16 32480.99 39187.68 37170.52 37876.63 35388.81 33171.21 23292.76 36460.01 38186.93 26995.83 178
KD-MVS_self_test80.20 32979.24 32783.07 35485.64 38165.29 38191.01 29893.93 25678.71 30576.32 35486.40 36259.20 34692.93 36372.59 31869.35 37891.00 354
FMVSNet581.52 31679.60 32387.27 30691.17 30377.95 26891.49 28592.26 29776.87 32476.16 35587.91 34751.67 37492.34 36767.74 35081.16 32291.52 340
AllTest83.42 29881.39 30489.52 25195.01 15377.79 27693.12 23390.89 33677.41 31976.12 35693.34 20154.08 36897.51 20068.31 34684.27 28693.26 290
TestCases89.52 25195.01 15377.79 27690.89 33677.41 31976.12 35693.34 20154.08 36897.51 20068.31 34684.27 28693.26 290
test_040281.30 32079.17 33087.67 29793.19 23678.17 26492.98 24091.71 31175.25 34176.02 35890.31 30159.23 34596.37 28650.22 39283.63 29388.47 377
DSMNet-mixed76.94 34776.29 34678.89 36683.10 38956.11 40287.78 35279.77 39460.65 39275.64 35988.71 33461.56 32688.34 38960.07 38089.29 23192.21 328
Anonymous2024052180.44 32779.21 32884.11 35085.75 38067.89 37292.86 24693.23 27275.61 33775.59 36087.47 35250.03 37794.33 34171.14 32781.21 32190.12 362
USDC82.76 30181.26 30687.26 30791.17 30374.55 31889.27 33293.39 27078.26 31375.30 36192.08 24954.43 36796.63 26471.64 32185.79 27590.61 357
TDRefinement79.81 33377.34 33887.22 31179.24 39775.48 30993.12 23392.03 30376.45 32775.01 36291.58 26749.19 38096.44 28270.22 33469.18 38089.75 364
LF4IMVS80.37 32879.07 33284.27 34986.64 37369.87 36789.39 33191.05 33076.38 32874.97 36390.00 31247.85 38394.25 34474.55 30980.82 33388.69 375
mvsany_test374.95 35073.26 35480.02 36474.61 40063.16 38985.53 37278.42 39774.16 35274.89 36486.46 36036.02 39689.09 38782.39 20766.91 38487.82 381
PM-MVS78.11 34376.12 34784.09 35183.54 38770.08 36588.97 33985.27 38179.93 28474.73 36586.43 36134.70 39793.48 35579.43 26172.06 37388.72 374
OpenMVS_ROBcopyleft74.94 1979.51 33677.03 34386.93 31787.00 37276.23 30192.33 26290.74 33968.93 38174.52 36688.23 34249.58 37996.62 26557.64 38584.29 28587.94 380
test20.0379.95 33279.08 33182.55 35785.79 37967.74 37491.09 29691.08 32881.23 27274.48 36789.96 31461.63 32490.15 38260.08 37976.38 36389.76 363
ambc83.06 35579.99 39563.51 38877.47 39792.86 27974.34 36884.45 37328.74 39895.06 33473.06 31768.89 38290.61 357
PVSNet_073.20 2077.22 34674.83 35284.37 34790.70 32771.10 35583.09 38689.67 35972.81 36773.93 36983.13 37860.79 33593.70 35368.54 34350.84 39988.30 378
pmmvs-eth3d80.97 32378.72 33587.74 29584.99 38479.97 22490.11 31891.65 31475.36 33873.51 37086.03 36459.45 34393.96 34975.17 30172.21 37289.29 369
K. test v381.59 31480.15 31685.91 33389.89 34569.42 36892.57 25387.71 37085.56 16573.44 37189.71 31855.58 35895.52 32277.17 28369.76 37792.78 311
EG-PatchMatch MVS82.37 30680.34 31288.46 27890.27 33679.35 23792.80 24894.33 24277.14 32373.26 37290.18 30647.47 38496.72 26070.25 33287.32 26589.30 368
lessismore_v086.04 32988.46 36068.78 37080.59 39373.01 37390.11 30955.39 36096.43 28375.06 30365.06 38792.90 306
MIMVSNet179.38 33777.28 33985.69 33586.35 37473.67 32691.61 28392.75 28378.11 31672.64 37488.12 34348.16 38291.97 37260.32 37877.49 35791.43 343
ET-MVSNet_ETH3D87.51 20685.91 23692.32 12793.70 22383.93 10192.33 26290.94 33484.16 19572.09 37592.52 23169.90 25195.85 30989.20 11888.36 24797.17 113
TinyColmap79.76 33477.69 33785.97 33091.71 28473.12 33189.55 32690.36 34475.03 34372.03 37690.19 30546.22 38696.19 29663.11 37181.03 32788.59 376
N_pmnet68.89 35768.44 35970.23 37789.07 35328.79 41688.06 34819.50 41669.47 38071.86 37784.93 37061.24 33091.75 37354.70 38977.15 35990.15 361
UnsupCasMVSNet_eth80.07 33078.27 33685.46 33785.24 38372.63 34088.45 34694.87 22082.99 22771.64 37888.07 34456.34 35691.75 37373.48 31563.36 39092.01 331
test_vis1_rt77.96 34476.46 34482.48 35885.89 37871.74 34990.25 31178.89 39671.03 37771.30 37981.35 38542.49 39191.05 37984.55 17682.37 30784.65 383
dmvs_testset74.57 35175.81 35070.86 37687.72 37040.47 41187.05 36277.90 40182.75 23271.15 38085.47 36967.98 27884.12 39845.26 39576.98 36288.00 379
test_f71.95 35470.87 35675.21 37274.21 40259.37 39585.07 37685.82 37765.25 38770.42 38183.13 37823.62 40282.93 40078.32 27071.94 37483.33 385
new-patchmatchnet76.41 34875.17 35180.13 36382.65 39159.61 39487.66 35691.08 32878.23 31469.85 38283.22 37754.76 36491.63 37564.14 36964.89 38889.16 371
MVS-HIRNet73.70 35272.20 35578.18 36991.81 28156.42 40182.94 38782.58 38855.24 39568.88 38366.48 39855.32 36295.13 33158.12 38488.42 24583.01 386
UnsupCasMVSNet_bld76.23 34973.27 35385.09 34383.79 38672.92 33285.65 37193.47 26971.52 37368.84 38479.08 38849.77 37893.21 35966.81 35960.52 39289.13 373
pmmvs371.81 35568.71 35881.11 36175.86 39970.42 36386.74 36383.66 38558.95 39468.64 38580.89 38636.93 39589.52 38563.10 37263.59 38983.39 384
CMPMVSbinary59.16 2180.52 32579.20 32984.48 34683.98 38567.63 37589.95 32293.84 26264.79 38866.81 38691.14 28157.93 35195.17 33076.25 29288.10 24990.65 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet72.15 35370.13 35778.20 36882.95 39065.68 37883.91 38282.40 38962.94 39164.47 38779.82 38742.85 39086.26 39457.41 38674.44 36882.65 388
YYNet179.22 33877.20 34085.28 34088.20 36572.66 33885.87 36890.05 35274.33 35162.70 38887.61 35066.09 29992.03 36966.94 35572.97 37091.15 348
WB-MVS67.92 35867.49 36069.21 38081.09 39241.17 41088.03 34978.00 40073.50 35962.63 38983.11 38063.94 31186.52 39225.66 40651.45 39879.94 391
MDA-MVSNet_test_wron79.21 33977.19 34185.29 33988.22 36472.77 33585.87 36890.06 35074.34 35062.62 39087.56 35166.14 29891.99 37166.90 35873.01 36991.10 352
SSC-MVS67.06 35966.56 36168.56 38280.54 39340.06 41287.77 35377.37 40372.38 36961.75 39182.66 38263.37 31486.45 39324.48 40748.69 40179.16 393
dongtai58.82 36858.24 36660.56 38583.13 38845.09 40982.32 38848.22 41567.61 38361.70 39269.15 39638.75 39376.05 40432.01 40341.31 40360.55 400
MDA-MVSNet-bldmvs78.85 34076.31 34586.46 32589.76 34673.88 32588.79 34090.42 34279.16 29559.18 39388.33 34060.20 33894.04 34562.00 37468.96 38191.48 342
APD_test169.04 35666.26 36277.36 37180.51 39462.79 39085.46 37383.51 38654.11 39759.14 39484.79 37223.40 40489.61 38455.22 38870.24 37679.68 392
kuosan53.51 37053.30 37354.13 38976.06 39845.36 40880.11 39548.36 41459.63 39354.84 39563.43 40237.41 39462.07 40920.73 40939.10 40454.96 403
LCM-MVSNet66.00 36062.16 36577.51 37064.51 41058.29 39683.87 38390.90 33548.17 39954.69 39673.31 39416.83 41086.75 39165.47 36161.67 39187.48 382
test_vis3_rt65.12 36162.60 36372.69 37471.44 40360.71 39287.17 36065.55 40763.80 39053.22 39765.65 40014.54 41189.44 38676.65 28765.38 38667.91 398
FPMVS64.63 36262.55 36470.88 37570.80 40456.71 39784.42 38084.42 38351.78 39849.57 39881.61 38423.49 40381.48 40140.61 40176.25 36474.46 394
PMMVS259.60 36456.40 36769.21 38068.83 40746.58 40673.02 40177.48 40255.07 39649.21 39972.95 39517.43 40980.04 40249.32 39344.33 40280.99 390
DeepMVS_CXcopyleft56.31 38874.23 40151.81 40456.67 41244.85 40048.54 40075.16 39127.87 40058.74 41040.92 40052.22 39758.39 402
testf159.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
APD_test259.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
test_method50.52 37248.47 37456.66 38752.26 41418.98 41841.51 40681.40 39110.10 40844.59 40375.01 39228.51 39968.16 40553.54 39049.31 40082.83 387
Gipumacopyleft57.99 36954.91 37167.24 38388.51 35765.59 37952.21 40490.33 34543.58 40142.84 40451.18 40520.29 40785.07 39534.77 40270.45 37551.05 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high58.88 36754.22 37272.86 37356.50 41356.67 39880.75 39286.00 37673.09 36437.39 40564.63 40122.17 40579.49 40343.51 39723.96 40782.43 389
tmp_tt35.64 37639.24 37824.84 39214.87 41623.90 41762.71 40251.51 4136.58 41036.66 40662.08 40344.37 38830.34 41252.40 39122.00 40920.27 407
PMVScopyleft47.18 2252.22 37148.46 37563.48 38445.72 41546.20 40773.41 40078.31 39841.03 40430.06 40765.68 3996.05 41483.43 39930.04 40465.86 38560.80 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 37338.59 37957.77 38656.52 41248.77 40555.38 40358.64 41129.33 40728.96 40852.65 4044.68 41564.62 40828.11 40533.07 40559.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 37442.29 37646.03 39065.58 40937.41 41373.51 39964.62 40833.99 40528.47 40947.87 40619.90 40867.91 40622.23 40824.45 40632.77 405
EMVS42.07 37541.12 37744.92 39163.45 41135.56 41573.65 39863.48 40933.05 40626.88 41045.45 40721.27 40667.14 40719.80 41023.02 40832.06 406
wuyk23d21.27 37820.48 38123.63 39368.59 40836.41 41449.57 4056.85 4179.37 4097.89 4114.46 4134.03 41631.37 41117.47 41116.07 4103.12 408
testmvs8.92 37911.52 3821.12 3951.06 4170.46 42086.02 3670.65 4180.62 4112.74 4129.52 4110.31 4180.45 4142.38 4120.39 4112.46 410
test1238.76 38011.22 3831.39 3940.85 4180.97 41985.76 3700.35 4190.54 4122.45 4138.14 4120.60 4170.48 4132.16 4130.17 4122.71 409
EGC-MVSNET61.97 36356.37 36878.77 36789.63 34973.50 32889.12 33682.79 3870.21 4131.24 41484.80 37139.48 39290.04 38344.13 39675.94 36672.79 395
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k22.14 37729.52 3800.00 3960.00 4190.00 4210.00 40795.76 1590.00 4140.00 41594.29 16875.66 1770.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.64 3828.86 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41479.70 1280.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.82 38110.43 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41593.88 1880.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS64.08 38559.14 382
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
eth-test20.00 419
eth-test0.00 419
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6898.99 1498.84 14
save fliter97.85 4685.63 6695.21 11296.82 6889.44 53
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
GSMVS96.12 163
sam_mvs171.70 22896.12 163
sam_mvs70.60 241
MTGPAbinary96.97 50
test_post188.00 3509.81 41069.31 26295.53 32176.65 287
test_post10.29 40970.57 24595.91 307
patchmatchnet-post83.76 37571.53 22996.48 278
MTMP96.16 5360.64 410
gm-plane-assit89.60 35068.00 37177.28 32288.99 32897.57 19579.44 260
test9_res91.91 8398.71 3298.07 68
agg_prior290.54 10698.68 3898.27 52
test_prior485.96 5494.11 182
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
新几何293.11 235
旧先验196.79 7681.81 16995.67 16796.81 6386.69 3797.66 8296.97 128
无先验93.28 22896.26 11473.95 35599.05 5580.56 24596.59 145
原ACMM292.94 242
testdata298.75 9378.30 271
segment_acmp87.16 36
testdata192.15 26887.94 104
plane_prior794.70 17282.74 143
plane_prior694.52 18282.75 14174.23 194
plane_prior596.22 11998.12 15088.15 12889.99 21494.63 222
plane_prior494.86 144
plane_prior295.85 7790.81 17
plane_prior194.59 177
plane_prior82.73 14495.21 11289.66 5089.88 219
n20.00 420
nn0.00 420
door-mid85.49 378
test1196.57 92
door85.33 380
HQP5-MVS81.56 172
BP-MVS87.11 146
HQP3-MVS96.04 13689.77 223
HQP2-MVS73.83 204
NP-MVS94.37 19182.42 15593.98 181
ACMMP++_ref87.47 260
ACMMP++88.01 252
Test By Simon80.02 123