This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
test_vis1_n_192096.71 11996.84 10096.31 25199.11 10089.74 31899.05 6598.58 14098.08 699.87 199.37 2878.48 32899.93 2199.29 499.69 5299.27 121
test_fmvsm_n_192098.87 799.01 198.45 8799.42 5496.43 12098.96 8999.36 798.63 299.86 299.51 695.91 3799.97 199.72 299.75 3898.94 164
test_cas_vis1_n_192097.38 9197.36 7997.45 16098.95 11693.25 26399.00 7898.53 15097.70 1399.77 399.35 3484.71 27699.85 5398.57 1799.66 5699.26 123
SED-MVS99.09 198.91 299.63 499.71 1999.24 599.02 7498.87 6197.65 1499.73 499.48 1197.53 799.94 598.43 3299.81 1299.70 47
test_241102_ONE99.71 1999.24 598.87 6197.62 1699.73 499.39 2297.53 799.74 101
SD-MVS98.64 1398.68 898.53 7999.33 5798.36 4098.90 9798.85 7097.28 3699.72 699.39 2296.63 1997.60 33398.17 4299.85 599.64 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvs1_n95.90 15895.99 13895.63 27898.67 14188.32 34499.26 2798.22 21096.40 8299.67 799.26 4773.91 35599.70 10999.02 899.50 8698.87 168
test_vis1_n95.47 17995.13 17996.49 23597.77 21390.41 30999.27 2698.11 23396.58 7399.66 899.18 6367.00 36599.62 12799.21 599.40 9999.44 100
mvsany_test197.69 6997.70 6097.66 15198.24 17794.18 23097.53 27797.53 28895.52 12199.66 899.51 694.30 8699.56 13598.38 3598.62 13599.23 126
test_fmvs196.42 13196.67 11195.66 27798.82 12788.53 34098.80 12598.20 21396.39 8399.64 1099.20 5780.35 31899.67 11699.04 799.57 7498.78 176
IU-MVS99.71 1999.23 798.64 12895.28 13599.63 1198.35 3799.81 1299.83 8
PC_three_145295.08 14899.60 1299.16 6797.86 298.47 26597.52 8899.72 4799.74 31
test072699.72 1299.25 299.06 6398.88 5497.62 1699.56 1399.50 897.42 9
TSAR-MVS + MP.98.78 898.62 1099.24 3599.69 2498.28 4599.14 4998.66 12396.84 6199.56 1399.31 4196.34 2399.70 10998.32 3899.73 4499.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVScopyleft98.92 598.67 999.65 299.58 3299.20 998.42 19298.91 4897.58 1999.54 1599.46 1697.10 1299.94 597.64 7799.84 1099.83 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.08 298.89 399.64 399.17 9199.23 799.69 198.88 5497.32 3399.53 1699.47 1397.81 399.94 598.47 2899.72 4799.74 31
test_241102_TWO98.87 6197.65 1499.53 1699.48 1197.34 1199.94 598.43 3299.80 1999.83 8
DVP-MVScopyleft99.03 398.83 699.63 499.72 1299.25 298.97 8498.58 14097.62 1699.45 1899.46 1697.42 999.94 598.47 2899.81 1299.69 50
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 3399.45 1899.46 1697.88 199.94 598.47 2899.86 199.85 5
MSP-MVS98.74 1098.55 1499.29 2899.75 398.23 4699.26 2798.88 5497.52 2199.41 2098.78 12096.00 3399.79 8897.79 6699.59 7099.85 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS99.02 498.84 599.55 999.57 3398.96 1699.39 1298.93 4297.38 3099.41 2099.54 296.66 1799.84 5798.86 1199.85 599.87 2
FOURS199.82 198.66 2499.69 198.95 3897.46 2599.39 22
SMA-MVScopyleft98.58 2098.25 3899.56 899.51 3999.04 1598.95 9098.80 8593.67 21399.37 2399.52 496.52 2199.89 3998.06 4799.81 1299.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP98.90 698.75 799.36 2199.22 8698.43 3399.10 5898.87 6197.38 3099.35 2499.40 2197.78 599.87 4897.77 6799.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS98.59 1898.32 3499.41 1799.54 3598.71 2299.04 6898.81 7895.12 14399.32 2599.39 2296.22 2499.84 5797.72 7099.73 4499.67 59
dcpmvs_298.08 5298.59 1196.56 22699.57 3390.34 31199.15 4798.38 18496.82 6399.29 2699.49 1095.78 4199.57 13298.94 999.86 199.77 22
test_part299.63 2999.18 1099.27 27
DeepPCF-MVS96.37 297.93 5898.48 1996.30 25299.00 10989.54 32397.43 28298.87 6198.16 599.26 2899.38 2796.12 2999.64 12198.30 3999.77 2899.72 39
APD-MVScopyleft98.35 4598.00 5399.42 1699.51 3998.72 2198.80 12598.82 7394.52 17199.23 2999.25 5195.54 4899.80 7896.52 13199.77 2899.74 31
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_one_060199.66 2699.25 298.86 6797.55 2099.20 3099.47 1397.57 6
APD-MVS_3200maxsize98.53 2898.33 3399.15 4599.50 4197.92 6099.15 4798.81 7896.24 8799.20 3099.37 2895.30 5899.80 7897.73 6999.67 5499.72 39
patch_mono-298.36 4398.87 496.82 20299.53 3690.68 30498.64 15999.29 997.88 899.19 3299.52 496.80 1599.97 199.11 699.86 199.82 11
SR-MVS-dyc-post98.54 2798.35 2699.13 4699.49 4597.86 6199.11 5598.80 8596.49 7699.17 3399.35 3495.34 5699.82 6697.72 7099.65 5999.71 43
RE-MVS-def98.34 2999.49 4597.86 6199.11 5598.80 8596.49 7699.17 3399.35 3495.29 5997.72 7099.65 5999.71 43
9.1498.06 5099.47 4798.71 14598.82 7394.36 17699.16 3599.29 4396.05 3199.81 7197.00 10499.71 49
ACMMP_NAP98.61 1598.30 3599.55 999.62 3098.95 1798.82 11798.81 7895.80 10899.16 3599.47 1395.37 5499.92 2697.89 5899.75 3899.79 14
SR-MVS98.57 2398.35 2699.24 3599.53 3698.18 4999.09 5998.82 7396.58 7399.10 3799.32 3995.39 5299.82 6697.70 7499.63 6499.72 39
PGM-MVS98.49 3098.23 4199.27 3399.72 1298.08 5598.99 8199.49 595.43 12599.03 3899.32 3995.56 4699.94 596.80 12399.77 2899.78 16
VNet97.79 6397.40 7798.96 5698.88 12197.55 7298.63 16198.93 4296.74 6799.02 3998.84 11390.33 15899.83 5998.53 2096.66 19399.50 85
xiu_mvs_v1_base_debu97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
xiu_mvs_v1_base97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
xiu_mvs_v1_base_debi97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
TSAR-MVS + GP.98.38 4198.24 4098.81 6299.22 8697.25 8598.11 22898.29 20297.19 4498.99 4399.02 8896.22 2499.67 11698.52 2698.56 13999.51 83
CS-MVS98.44 3698.49 1798.31 9999.08 10296.73 10399.67 398.47 16697.17 4598.94 4499.10 7695.73 4299.13 18498.71 1499.49 8899.09 147
HFP-MVS98.63 1498.40 2099.32 2799.72 1298.29 4499.23 3198.96 3796.10 9498.94 4499.17 6496.06 3099.92 2697.62 7899.78 2699.75 29
region2R98.61 1598.38 2299.29 2899.74 798.16 5199.23 3198.93 4296.15 9198.94 4499.17 6495.91 3799.94 597.55 8599.79 2399.78 16
HPM-MVS_fast98.38 4198.13 4699.12 4899.75 397.86 6199.44 1198.82 7394.46 17498.94 4499.20 5795.16 6699.74 10197.58 8199.85 599.77 22
ACMMPR98.59 1898.36 2499.29 2899.74 798.15 5299.23 3198.95 3896.10 9498.93 4899.19 6295.70 4399.94 597.62 7899.79 2399.78 16
DeepC-MVS_fast96.70 198.55 2698.34 2999.18 4199.25 7898.04 5698.50 18198.78 9297.72 1098.92 4999.28 4495.27 6099.82 6697.55 8599.77 2899.69 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test98.49 3098.50 1698.46 8699.20 8997.05 9099.64 498.50 16097.45 2698.88 5099.14 7195.25 6299.15 18198.83 1299.56 8099.20 129
EC-MVSNet98.21 5198.11 4898.49 8398.34 16997.26 8499.61 598.43 17596.78 6498.87 5198.84 11393.72 9599.01 20598.91 1099.50 8699.19 133
EI-MVSNet-Vis-set98.47 3398.39 2198.69 6699.46 4996.49 11798.30 20498.69 11297.21 4298.84 5299.36 3295.41 5199.78 9198.62 1699.65 5999.80 13
MSLP-MVS++98.56 2598.57 1298.55 7599.26 7796.80 9998.71 14599.05 2997.28 3698.84 5299.28 4496.47 2299.40 15898.52 2699.70 5099.47 93
PHI-MVS98.34 4698.06 5099.18 4199.15 9798.12 5499.04 6899.09 2493.32 22798.83 5499.10 7696.54 2099.83 5997.70 7499.76 3499.59 73
MVSFormer97.57 7897.49 7097.84 13098.07 19595.76 15999.47 998.40 17994.98 15198.79 5598.83 11592.34 10898.41 27996.91 10999.59 7099.34 108
lupinMVS97.44 8697.22 8598.12 11698.07 19595.76 15997.68 26697.76 26994.50 17298.79 5598.61 13892.34 10899.30 16597.58 8199.59 7099.31 114
CDPH-MVS97.94 5797.49 7099.28 3199.47 4798.44 3197.91 24598.67 12092.57 25698.77 5798.85 11295.93 3699.72 10395.56 16399.69 5299.68 55
CNVR-MVS98.78 898.56 1399.45 1599.32 6098.87 1998.47 18498.81 7897.72 1098.76 5899.16 6797.05 1399.78 9198.06 4799.66 5699.69 50
EI-MVSNet-UG-set98.41 3998.34 2998.61 7199.45 5296.32 12898.28 20798.68 11597.17 4598.74 5999.37 2895.25 6299.79 8898.57 1799.54 8399.73 36
diffmvspermissive97.58 7797.40 7798.13 11498.32 17495.81 15898.06 23198.37 18596.20 8998.74 5998.89 10891.31 13999.25 16898.16 4398.52 14099.34 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS98.43 3898.12 4799.34 2399.72 1298.38 3599.09 5998.82 7395.71 11398.73 6199.06 8695.27 6099.93 2197.07 10399.63 6499.72 39
UA-Net97.96 5597.62 6298.98 5498.86 12397.47 7598.89 10199.08 2596.67 7098.72 6299.54 293.15 10099.81 7194.87 18098.83 12699.65 63
h-mvs3396.17 14395.62 15897.81 13499.03 10594.45 21698.64 15998.75 9897.48 2398.67 6398.72 12989.76 16599.86 5297.95 5281.59 35799.11 145
hse-mvs295.71 16895.30 17396.93 19498.50 15393.53 25198.36 19498.10 23697.48 2398.67 6397.99 20289.76 16599.02 20397.95 5280.91 36198.22 207
ZD-MVS99.46 4998.70 2398.79 9093.21 23298.67 6398.97 9595.70 4399.83 5996.07 14299.58 73
旧先验297.57 27691.30 29798.67 6399.80 7895.70 160
PS-MVSNAJ97.73 6597.77 5797.62 15398.68 14095.58 16497.34 29198.51 15597.29 3598.66 6797.88 21294.51 7899.90 3797.87 6099.17 11097.39 229
xiu_mvs_v2_base97.66 7197.70 6097.56 15798.61 14795.46 17097.44 28098.46 16797.15 4798.65 6898.15 18994.33 8599.80 7897.84 6398.66 13497.41 227
LFMVS95.86 16094.98 18898.47 8598.87 12296.32 12898.84 11496.02 34493.40 22498.62 6999.20 5774.99 35099.63 12497.72 7097.20 18399.46 97
HPM-MVScopyleft98.36 4398.10 4999.13 4699.74 797.82 6599.53 898.80 8594.63 16698.61 7098.97 9595.13 6799.77 9697.65 7699.83 1199.79 14
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.26 10399.20 8995.36 17398.68 11591.89 27898.60 7199.10 7694.44 8399.82 6694.27 20399.44 9599.58 77
CP-MVS98.57 2398.36 2499.19 3999.66 2697.86 6199.34 1898.87 6195.96 9998.60 7199.13 7296.05 3199.94 597.77 6799.86 199.77 22
jason97.32 9497.08 9098.06 12097.45 24195.59 16397.87 25197.91 26394.79 15998.55 7398.83 11591.12 14299.23 17197.58 8199.60 6899.34 108
jason: jason.
MVS_030498.47 3398.22 4399.21 3899.00 10997.80 6698.88 10495.32 35398.86 198.53 7499.44 1994.38 8499.94 599.86 199.70 5099.90 1
MCST-MVS98.65 1298.37 2399.48 1399.60 3198.87 1998.41 19398.68 11597.04 5398.52 7598.80 11896.78 1699.83 5997.93 5499.61 6799.74 31
XVS98.70 1198.49 1799.34 2399.70 2298.35 4199.29 2298.88 5497.40 2798.46 7699.20 5795.90 3999.89 3997.85 6199.74 4299.78 16
X-MVStestdata94.06 27292.30 29399.34 2399.70 2298.35 4199.29 2298.88 5497.40 2798.46 7643.50 38195.90 3999.89 3997.85 6199.74 4299.78 16
MG-MVS97.81 6297.60 6398.44 8999.12 9995.97 14597.75 26198.78 9296.89 6098.46 7699.22 5493.90 9499.68 11594.81 18499.52 8599.67 59
test_fmvsmvis_n_192098.44 3698.51 1598.23 10698.33 17196.15 13598.97 8499.15 2198.55 398.45 7999.55 194.26 8899.97 199.65 399.66 5698.57 194
NCCC98.61 1598.35 2699.38 1899.28 7498.61 2698.45 18598.76 9697.82 998.45 7998.93 10496.65 1899.83 5997.38 9499.41 9799.71 43
MVS_Test97.28 9597.00 9398.13 11498.33 17195.97 14598.74 13698.07 24394.27 17898.44 8198.07 19492.48 10699.26 16796.43 13498.19 15699.16 139
MVS_111021_LR98.34 4698.23 4198.67 6899.27 7596.90 9697.95 24199.58 397.14 4898.44 8199.01 9295.03 7099.62 12797.91 5699.75 3899.50 85
ETV-MVS97.96 5597.81 5698.40 9498.42 15897.27 8098.73 14098.55 14696.84 6198.38 8397.44 25195.39 5299.35 16197.62 7898.89 12198.58 193
test250694.44 24793.91 24496.04 26099.02 10688.99 33399.06 6379.47 38896.96 5798.36 8499.26 4777.21 34099.52 14696.78 12499.04 11399.59 73
VDDNet95.36 19094.53 20797.86 12998.10 19495.13 18498.85 11197.75 27090.46 31398.36 8499.39 2273.27 35799.64 12197.98 5096.58 19698.81 172
mPP-MVS98.51 2998.26 3799.25 3499.75 398.04 5699.28 2498.81 7896.24 8798.35 8699.23 5295.46 4999.94 597.42 9299.81 1299.77 22
DELS-MVS98.40 4098.20 4498.99 5399.00 10997.66 6797.75 26198.89 5197.71 1298.33 8798.97 9594.97 7199.88 4798.42 3499.76 3499.42 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 3398.34 2998.88 6199.22 8697.32 7897.91 24599.58 397.20 4398.33 8799.00 9395.99 3499.64 12198.05 4999.76 3499.69 50
ZNCC-MVS98.49 3098.20 4499.35 2299.73 1198.39 3499.19 4298.86 6795.77 10998.31 8999.10 7695.46 4999.93 2197.57 8499.81 1299.74 31
HPM-MVS++copyleft98.58 2098.25 3899.55 999.50 4199.08 1198.72 14498.66 12397.51 2298.15 9098.83 11595.70 4399.92 2697.53 8799.67 5499.66 62
新几何199.16 4499.34 5598.01 5898.69 11290.06 32198.13 9198.95 10294.60 7699.89 3991.97 27199.47 9199.59 73
API-MVS97.41 8997.25 8397.91 12798.70 13796.80 9998.82 11798.69 11294.53 16998.11 9298.28 17794.50 8199.57 13294.12 20899.49 8897.37 231
ECVR-MVScopyleft95.95 15395.71 15296.65 21299.02 10690.86 29999.03 7191.80 37596.96 5798.10 9399.26 4781.31 30899.51 14796.90 11299.04 11399.59 73
CPTT-MVS97.72 6697.32 8198.92 5899.64 2897.10 8999.12 5398.81 7892.34 26498.09 9499.08 8493.01 10199.92 2696.06 14599.77 2899.75 29
test1299.18 4199.16 9598.19 4898.53 15098.07 9595.13 6799.72 10399.56 8099.63 67
test22299.23 8597.17 8897.40 28398.66 12388.68 33898.05 9698.96 10094.14 9099.53 8499.61 69
DP-MVS Recon97.86 6097.46 7399.06 5199.53 3698.35 4198.33 19798.89 5192.62 25398.05 9698.94 10395.34 5699.65 11996.04 14699.42 9699.19 133
Vis-MVSNetpermissive97.42 8897.11 8898.34 9798.66 14296.23 13199.22 3599.00 3296.63 7298.04 9899.21 5588.05 21199.35 16196.01 14899.21 10799.45 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111195.94 15595.78 14596.41 24498.99 11390.12 31399.04 6892.45 37496.99 5698.03 9999.27 4681.40 30799.48 15296.87 11899.04 11399.63 67
baseline97.64 7297.44 7598.25 10498.35 16496.20 13299.00 7898.32 19296.33 8698.03 9999.17 6491.35 13799.16 17898.10 4598.29 15599.39 105
test_yl97.22 9796.78 10498.54 7798.73 13296.60 10998.45 18598.31 19494.70 16098.02 10198.42 16090.80 14999.70 10996.81 12196.79 19099.34 108
DCV-MVSNet97.22 9796.78 10498.54 7798.73 13296.60 10998.45 18598.31 19494.70 16098.02 10198.42 16090.80 14999.70 10996.81 12196.79 19099.34 108
MTAPA98.58 2098.29 3699.46 1499.76 298.64 2598.90 9798.74 10097.27 4098.02 10199.39 2294.81 7499.96 497.91 5699.79 2399.77 22
sss97.39 9096.98 9598.61 7198.60 14896.61 10898.22 21298.93 4293.97 19098.01 10498.48 15291.98 12199.85 5396.45 13398.15 15799.39 105
alignmvs97.56 7997.07 9199.01 5298.66 14298.37 3998.83 11598.06 24896.74 6798.00 10597.65 23490.80 14999.48 15298.37 3696.56 19799.19 133
OMC-MVS97.55 8097.34 8098.20 10899.33 5795.92 15298.28 20798.59 13595.52 12197.97 10699.10 7693.28 9999.49 14895.09 17798.88 12299.19 133
VDD-MVS95.82 16395.23 17597.61 15498.84 12693.98 23498.68 15297.40 30095.02 15097.95 10799.34 3874.37 35499.78 9198.64 1596.80 18999.08 151
casdiffmvspermissive97.63 7397.41 7698.28 10098.33 17196.14 13698.82 11798.32 19296.38 8497.95 10799.21 5591.23 14199.23 17198.12 4498.37 14999.48 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS96.73 11896.60 11397.12 18199.25 7895.35 17598.26 21099.26 1094.28 17797.94 10997.46 24892.74 10499.81 7196.88 11593.32 25996.20 324
PVSNet_Blended97.38 9197.12 8798.14 11199.25 7895.35 17597.28 29699.26 1093.13 23597.94 10998.21 18592.74 10499.81 7196.88 11599.40 9999.27 121
DPM-MVS97.55 8096.99 9499.23 3799.04 10498.55 2797.17 30698.35 18894.85 15897.93 11198.58 14395.07 6999.71 10892.60 25199.34 10399.43 102
MP-MVScopyleft98.33 4898.01 5299.28 3199.75 398.18 4999.22 3598.79 9096.13 9297.92 11299.23 5294.54 7799.94 596.74 12699.78 2699.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDTV_nov1_ep13_2view84.26 35996.89 32690.97 30697.90 11389.89 16493.91 21599.18 138
test_prior297.80 25796.12 9397.89 11498.69 13195.96 3596.89 11399.60 68
原ACMM198.65 6999.32 6096.62 10698.67 12093.27 23197.81 11598.97 9595.18 6599.83 5993.84 21799.46 9499.50 85
114514_t96.93 11096.27 12698.92 5899.50 4197.63 6998.85 11198.90 4984.80 35897.77 11699.11 7492.84 10299.66 11894.85 18199.77 2899.47 93
casdiffmvs_mvgpermissive97.72 6697.48 7298.44 8998.42 15896.59 11198.92 9598.44 17196.20 8997.76 11799.20 5791.66 12899.23 17198.27 4198.41 14899.49 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS96.60 12296.33 12397.41 16497.90 20793.93 23597.35 29098.41 17792.84 24797.76 11797.45 25091.10 14499.20 17596.26 13897.91 16499.11 145
PVSNet91.96 1896.35 13696.15 13096.96 19299.17 9192.05 28096.08 34498.68 11593.69 20997.75 11997.80 22288.86 19299.69 11494.26 20499.01 11699.15 140
TEST999.31 6298.50 2997.92 24398.73 10392.63 25297.74 12098.68 13296.20 2699.80 78
train_agg97.97 5497.52 6999.33 2699.31 6298.50 2997.92 24398.73 10392.98 24197.74 12098.68 13296.20 2699.80 7896.59 12799.57 7499.68 55
FE-MVS95.62 17494.90 19297.78 13698.37 16394.92 19597.17 30697.38 30290.95 30797.73 12297.70 22885.32 26699.63 12491.18 28398.33 15298.79 173
CANet98.05 5397.76 5898.90 6098.73 13297.27 8098.35 19598.78 9297.37 3297.72 12398.96 10091.53 13499.92 2698.79 1399.65 5999.51 83
test_899.29 7098.44 3197.89 24998.72 10592.98 24197.70 12498.66 13596.20 2699.80 78
MP-MVS-pluss98.31 4997.92 5599.49 1299.72 1298.88 1898.43 19098.78 9294.10 18297.69 12599.42 2095.25 6299.92 2698.09 4699.80 1999.67 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs97.67 7097.23 8498.98 5498.70 13798.38 3599.34 1898.39 18196.76 6697.67 12697.40 25492.26 11199.49 14898.28 4096.28 20999.08 151
PVSNet_Blended_VisFu97.70 6897.46 7398.44 8999.27 7595.91 15398.63 16199.16 2094.48 17397.67 12698.88 10992.80 10399.91 3497.11 10199.12 11199.50 85
WTY-MVS97.37 9396.92 9798.72 6598.86 12396.89 9898.31 20298.71 10895.26 13697.67 12698.56 14692.21 11499.78 9195.89 15096.85 18899.48 91
Effi-MVS+97.12 10496.69 10998.39 9598.19 18596.72 10497.37 28798.43 17593.71 20697.65 12998.02 19892.20 11599.25 16896.87 11897.79 16999.19 133
thisisatest053096.01 14995.36 16697.97 12498.38 16195.52 16898.88 10494.19 36694.04 18497.64 13098.31 17583.82 29799.46 15595.29 17297.70 17498.93 165
tttt051796.07 14795.51 16097.78 13698.41 16094.84 19899.28 2494.33 36494.26 17997.64 13098.64 13684.05 29099.47 15495.34 16897.60 17799.03 154
HyFIR lowres test96.90 11296.49 11898.14 11199.33 5795.56 16597.38 28599.65 292.34 26497.61 13298.20 18689.29 17699.10 19296.97 10697.60 17799.77 22
ACMMPcopyleft98.23 5097.95 5499.09 4999.74 797.62 7099.03 7199.41 695.98 9797.60 13399.36 3294.45 8299.93 2197.14 10098.85 12599.70 47
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior99.30 6698.38 3598.72 10597.57 13499.81 71
tpmrst95.63 17395.69 15595.44 28597.54 23288.54 33996.97 31697.56 28193.50 22097.52 13596.93 29689.49 16999.16 17895.25 17496.42 20298.64 187
MDTV_nov1_ep1395.40 16197.48 23688.34 34396.85 32997.29 30693.74 20397.48 13697.26 26089.18 18099.05 19691.92 27297.43 180
FA-MVS(test-final)96.41 13595.94 13997.82 13398.21 18195.20 18097.80 25797.58 27993.21 23297.36 13797.70 22889.47 17199.56 13594.12 20897.99 16198.71 180
EPMVS94.99 21194.48 21096.52 23397.22 25491.75 28597.23 29891.66 37694.11 18197.28 13896.81 30385.70 25698.84 22993.04 24097.28 18298.97 160
EIA-MVS97.75 6497.58 6498.27 10198.38 16196.44 11999.01 7698.60 13395.88 10597.26 13997.53 24594.97 7199.33 16397.38 9499.20 10899.05 153
IS-MVSNet97.22 9796.88 9898.25 10498.85 12596.36 12699.19 4297.97 25695.39 12797.23 14098.99 9491.11 14398.93 21794.60 19198.59 13799.47 93
EPP-MVSNet97.46 8297.28 8297.99 12398.64 14495.38 17299.33 2198.31 19493.61 21797.19 14199.07 8594.05 9199.23 17196.89 11398.43 14799.37 107
thisisatest051595.61 17794.89 19397.76 13998.15 19195.15 18396.77 33294.41 36292.95 24397.18 14297.43 25284.78 27499.45 15694.63 18897.73 17398.68 182
CANet_DTU96.96 10996.55 11598.21 10798.17 18996.07 13897.98 23998.21 21197.24 4197.13 14398.93 10486.88 23599.91 3495.00 17999.37 10298.66 185
CHOSEN 1792x268897.12 10496.80 10198.08 11899.30 6694.56 21498.05 23299.71 193.57 21897.09 14498.91 10788.17 20699.89 3996.87 11899.56 8099.81 12
PatchT93.06 29291.97 29696.35 24896.69 28892.67 27394.48 36597.08 31486.62 34697.08 14592.23 36587.94 21397.90 32178.89 36696.69 19298.49 196
PatchmatchNetpermissive95.71 16895.52 15996.29 25397.58 22790.72 30396.84 33097.52 28994.06 18397.08 14596.96 29289.24 17998.90 22292.03 26998.37 14999.26 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MAR-MVS96.91 11196.40 12198.45 8798.69 13996.90 9698.66 15798.68 11592.40 26397.07 14797.96 20591.54 13399.75 9993.68 22198.92 11998.69 181
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR97.46 8297.11 8898.50 8199.50 4196.41 12398.63 16198.60 13395.18 14097.06 14898.06 19594.26 8899.57 13293.80 21998.87 12499.52 80
TAMVS97.02 10796.79 10397.70 14598.06 19795.31 17798.52 17698.31 19493.95 19197.05 14998.61 13893.49 9798.52 25995.33 16997.81 16899.29 119
CSCG97.85 6197.74 5998.20 10899.67 2595.16 18199.22 3599.32 893.04 23997.02 15098.92 10695.36 5599.91 3497.43 9199.64 6399.52 80
CDS-MVSNet96.99 10896.69 10997.90 12898.05 19895.98 14098.20 21598.33 19193.67 21396.95 15198.49 15193.54 9698.42 27195.24 17597.74 17299.31 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XVG-OURS-SEG-HR96.51 12896.34 12297.02 18798.77 13093.76 24097.79 25998.50 16095.45 12496.94 15299.09 8287.87 21699.55 14296.76 12595.83 21897.74 220
CR-MVSNet94.76 22394.15 22896.59 22297.00 26893.43 25494.96 35797.56 28192.46 25796.93 15396.24 32188.15 20797.88 32587.38 33096.65 19498.46 197
RPMNet92.81 29491.34 30197.24 17297.00 26893.43 25494.96 35798.80 8582.27 36396.93 15392.12 36686.98 23399.82 6676.32 37096.65 19498.46 197
SCA95.46 18095.13 17996.46 24197.67 22191.29 29497.33 29297.60 27894.68 16396.92 15597.10 27083.97 29298.89 22392.59 25398.32 15499.20 129
PatchMatch-RL96.59 12396.03 13698.27 10199.31 6296.51 11697.91 24599.06 2793.72 20596.92 15598.06 19588.50 20199.65 11991.77 27599.00 11798.66 185
DeepC-MVS95.98 397.88 5997.58 6498.77 6399.25 7896.93 9498.83 11598.75 9896.96 5796.89 15799.50 890.46 15599.87 4897.84 6399.76 3499.52 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVG-OURS96.55 12796.41 12096.99 18898.75 13193.76 24097.50 27998.52 15395.67 11596.83 15899.30 4288.95 19199.53 14395.88 15196.26 21097.69 223
AdaColmapbinary97.15 10396.70 10898.48 8499.16 9596.69 10598.01 23698.89 5194.44 17596.83 15898.68 13290.69 15299.76 9794.36 19899.29 10698.98 159
CostFormer94.95 21594.73 19995.60 28097.28 25089.06 33097.53 27796.89 32989.66 32896.82 16096.72 30686.05 24998.95 21695.53 16596.13 21598.79 173
UGNet96.78 11796.30 12598.19 11098.24 17795.89 15598.88 10498.93 4297.39 2996.81 16197.84 21682.60 30299.90 3796.53 13099.49 8898.79 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA97.45 8597.03 9298.73 6499.05 10397.44 7798.07 23098.53 15095.32 13396.80 16298.53 14793.32 9899.72 10394.31 20299.31 10599.02 155
CHOSEN 280x42097.18 10197.18 8697.20 17498.81 12893.27 26195.78 35199.15 2195.25 13796.79 16398.11 19292.29 11099.07 19598.56 1999.85 599.25 125
HY-MVS93.96 896.82 11696.23 12998.57 7398.46 15697.00 9198.14 22398.21 21193.95 19196.72 16497.99 20291.58 12999.76 9794.51 19596.54 19898.95 163
PAPR96.84 11596.24 12898.65 6998.72 13696.92 9597.36 28998.57 14293.33 22696.67 16597.57 24294.30 8699.56 13591.05 28898.59 13799.47 93
Anonymous2024052995.10 20594.22 22297.75 14099.01 10894.26 22698.87 10898.83 7285.79 35496.64 16698.97 9578.73 32699.85 5396.27 13794.89 22499.12 144
thres600view795.49 17894.77 19697.67 14898.98 11495.02 18798.85 11196.90 32795.38 12896.63 16796.90 29784.29 28299.59 13088.65 32396.33 20498.40 199
thres100view90095.38 18794.70 20097.41 16498.98 11494.92 19598.87 10896.90 32795.38 12896.61 16896.88 29884.29 28299.56 13588.11 32496.29 20697.76 218
Vis-MVSNet (Re-imp)96.87 11396.55 11597.83 13198.73 13295.46 17099.20 4098.30 20094.96 15396.60 16998.87 11090.05 16198.59 25193.67 22398.60 13699.46 97
CVMVSNet95.43 18396.04 13593.57 32497.93 20583.62 36198.12 22698.59 13595.68 11496.56 17099.02 8887.51 22397.51 33893.56 22797.44 17999.60 71
RPSCF94.87 21995.40 16193.26 33098.89 12082.06 36698.33 19798.06 24890.30 31896.56 17099.26 4787.09 23099.49 14893.82 21896.32 20598.24 205
tfpn200view995.32 19494.62 20397.43 16298.94 11794.98 19198.68 15296.93 32595.33 13196.55 17296.53 31484.23 28699.56 13588.11 32496.29 20697.76 218
thres40095.38 18794.62 20397.65 15298.94 11794.98 19198.68 15296.93 32595.33 13196.55 17296.53 31484.23 28699.56 13588.11 32496.29 20698.40 199
thres20095.25 19694.57 20597.28 17198.81 12894.92 19598.20 21597.11 31395.24 13996.54 17496.22 32584.58 27999.53 14387.93 32896.50 20097.39 229
ab-mvs96.42 13195.71 15298.55 7598.63 14596.75 10297.88 25098.74 10093.84 19696.54 17498.18 18885.34 26499.75 9995.93 14996.35 20399.15 140
Anonymous20240521195.28 19594.49 20997.67 14899.00 10993.75 24298.70 14997.04 31890.66 30996.49 17698.80 11878.13 33299.83 5996.21 14195.36 22399.44 100
ADS-MVSNet294.58 23594.40 21895.11 29498.00 19988.74 33696.04 34597.30 30590.15 31996.47 17796.64 31187.89 21497.56 33690.08 30097.06 18499.02 155
ADS-MVSNet95.00 21094.45 21496.63 21698.00 19991.91 28296.04 34597.74 27190.15 31996.47 17796.64 31187.89 21498.96 21190.08 30097.06 18499.02 155
Effi-MVS+-dtu96.29 13896.56 11495.51 28197.89 20890.22 31298.80 12598.10 23696.57 7596.45 17996.66 30890.81 14898.91 21995.72 15797.99 16197.40 228
PLCcopyleft95.07 497.20 10096.78 10498.44 8999.29 7096.31 13098.14 22398.76 9692.41 26296.39 18098.31 17594.92 7399.78 9194.06 21198.77 12999.23 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm94.13 26593.80 25295.12 29396.50 29887.91 34997.44 28095.89 34992.62 25396.37 18196.30 32084.13 28998.30 29293.24 23391.66 28099.14 142
TAPA-MVS93.98 795.35 19194.56 20697.74 14199.13 9894.83 20098.33 19798.64 12886.62 34696.29 18298.61 13894.00 9399.29 16680.00 36299.41 9799.09 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.84 16195.12 18198.01 12298.49 15595.98 14098.73 14097.03 31995.37 13096.22 18398.19 18789.96 16399.16 17894.60 19187.48 33098.90 167
tpm294.19 26193.76 25795.46 28497.23 25389.04 33197.31 29496.85 33387.08 34596.21 18496.79 30483.75 29898.74 23892.43 26196.23 21298.59 191
F-COLMAP97.09 10696.80 10197.97 12499.45 5294.95 19498.55 17498.62 13293.02 24096.17 18598.58 14394.01 9299.81 7193.95 21398.90 12099.14 142
GeoE96.58 12596.07 13398.10 11798.35 16495.89 15599.34 1898.12 23093.12 23696.09 18698.87 11089.71 16798.97 20792.95 24398.08 16099.43 102
JIA-IIPM93.35 28392.49 29095.92 26696.48 30090.65 30595.01 35696.96 32385.93 35296.08 18787.33 37187.70 22198.78 23691.35 28195.58 22198.34 202
BH-RMVSNet95.92 15795.32 17097.69 14698.32 17494.64 20698.19 21897.45 29694.56 16796.03 18898.61 13885.02 26999.12 18690.68 29399.06 11299.30 117
dp94.15 26493.90 24594.90 30097.31 24986.82 35596.97 31697.19 31291.22 30296.02 18996.61 31385.51 26099.02 20390.00 30494.30 22698.85 169
EPNet97.28 9596.87 9998.51 8094.98 34496.14 13698.90 9797.02 32198.28 495.99 19099.11 7491.36 13699.89 3996.98 10599.19 10999.50 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D97.16 10296.66 11298.68 6798.53 15297.19 8798.93 9498.90 4992.83 24895.99 19099.37 2892.12 11799.87 4893.67 22399.57 7498.97 160
SDMVSNet96.85 11496.42 11998.14 11199.30 6696.38 12499.21 3899.23 1495.92 10095.96 19298.76 12685.88 25299.44 15797.93 5495.59 21998.60 189
sd_testset96.17 14395.76 14797.42 16399.30 6694.34 22398.82 11799.08 2595.92 10095.96 19298.76 12682.83 30199.32 16495.56 16395.59 21998.60 189
AUN-MVS94.53 23993.73 25996.92 19798.50 15393.52 25298.34 19698.10 23693.83 19895.94 19497.98 20485.59 25899.03 20094.35 19980.94 36098.22 207
TR-MVS94.94 21794.20 22397.17 17797.75 21494.14 23197.59 27497.02 32192.28 26895.75 19597.64 23683.88 29498.96 21189.77 30696.15 21498.40 199
iter_conf_final96.42 13196.12 13197.34 16998.46 15696.55 11599.08 6198.06 24896.03 9695.63 19698.46 15687.72 21898.59 25197.84 6393.80 24496.87 258
iter_conf0596.13 14695.79 14497.15 17898.16 19095.99 13998.88 10497.98 25495.91 10295.58 19798.46 15685.53 25998.59 25197.88 5993.75 24596.86 261
VPA-MVSNet95.75 16595.11 18297.69 14697.24 25297.27 8098.94 9299.23 1495.13 14295.51 19897.32 25785.73 25598.91 21997.33 9689.55 30696.89 255
HQP_MVS96.14 14595.90 14196.85 20097.42 24394.60 21298.80 12598.56 14497.28 3695.34 19998.28 17787.09 23099.03 20096.07 14294.27 22796.92 247
plane_prior394.61 21097.02 5495.34 199
Fast-Effi-MVS+96.28 14095.70 15498.03 12198.29 17695.97 14598.58 16798.25 20891.74 28195.29 20197.23 26491.03 14699.15 18192.90 24597.96 16398.97 160
test_fmvs293.43 28193.58 26692.95 33496.97 27183.91 36099.19 4297.24 31095.74 11095.20 20298.27 18069.65 36098.72 24096.26 13893.73 24696.24 322
mvsmamba96.57 12696.32 12497.32 17096.60 29296.43 12099.54 797.98 25496.49 7695.20 20298.64 13690.82 14798.55 25597.97 5193.65 24996.98 242
EI-MVSNet95.96 15295.83 14396.36 24797.93 20593.70 24698.12 22698.27 20393.70 20895.07 20499.02 8892.23 11398.54 25794.68 18693.46 25496.84 263
MVSTER96.06 14895.72 14997.08 18498.23 17995.93 15198.73 14098.27 20394.86 15795.07 20498.09 19388.21 20598.54 25796.59 12793.46 25496.79 267
OPM-MVS95.69 17195.33 16996.76 20596.16 31594.63 20798.43 19098.39 18196.64 7195.02 20698.78 12085.15 26899.05 19695.21 17694.20 23096.60 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Fast-Effi-MVS+-dtu95.87 15995.85 14295.91 26797.74 21791.74 28698.69 15198.15 22695.56 11994.92 20797.68 23388.98 18998.79 23593.19 23597.78 17097.20 235
TESTMET0.1,194.18 26393.69 26295.63 27896.92 27489.12 32996.91 32194.78 35993.17 23494.88 20896.45 31778.52 32798.92 21893.09 23798.50 14298.85 169
VPNet94.99 21194.19 22497.40 16697.16 26196.57 11298.71 14598.97 3595.67 11594.84 20998.24 18480.36 31798.67 24596.46 13287.32 33496.96 244
1112_ss96.63 12196.00 13798.50 8198.56 14996.37 12598.18 22198.10 23692.92 24494.84 20998.43 15892.14 11699.58 13194.35 19996.51 19999.56 79
test-LLR95.10 20594.87 19495.80 27296.77 28289.70 31996.91 32195.21 35495.11 14494.83 21195.72 33787.71 21998.97 20793.06 23898.50 14298.72 178
test-mter94.08 27093.51 27095.80 27296.77 28289.70 31996.91 32195.21 35492.89 24594.83 21195.72 33777.69 33598.97 20793.06 23898.50 14298.72 178
Test_1112_low_res96.34 13795.66 15798.36 9698.56 14995.94 14897.71 26498.07 24392.10 27394.79 21397.29 25991.75 12599.56 13594.17 20696.50 20099.58 77
GA-MVS94.81 22094.03 23397.14 17997.15 26293.86 23796.76 33397.58 27994.00 18894.76 21497.04 28380.91 31298.48 26291.79 27496.25 21199.09 147
bld_raw_dy_0_6495.74 16695.31 17297.03 18696.35 30695.76 15999.12 5397.37 30395.97 9894.70 21598.48 15285.80 25498.49 26196.55 12993.48 25396.84 263
BH-untuned95.95 15395.72 14996.65 21298.55 15192.26 27698.23 21197.79 26893.73 20494.62 21698.01 20088.97 19099.00 20693.04 24098.51 14198.68 182
test_djsdf96.00 15095.69 15596.93 19495.72 32995.49 16999.47 998.40 17994.98 15194.58 21797.86 21389.16 18198.41 27996.91 10994.12 23596.88 256
cascas94.63 23193.86 24896.93 19496.91 27694.27 22596.00 34898.51 15585.55 35594.54 21896.23 32384.20 28898.87 22695.80 15596.98 18797.66 224
DP-MVS96.59 12395.93 14098.57 7399.34 5596.19 13498.70 14998.39 18189.45 33194.52 21999.35 3491.85 12399.85 5392.89 24798.88 12299.68 55
gg-mvs-nofinetune92.21 29990.58 30797.13 18096.75 28595.09 18595.85 34989.40 38185.43 35694.50 22081.98 37480.80 31598.40 28592.16 26398.33 15297.88 215
mvs_anonymous96.70 12096.53 11797.18 17698.19 18593.78 23998.31 20298.19 21594.01 18794.47 22198.27 18092.08 11998.46 26697.39 9397.91 16499.31 114
HQP-NCC97.20 25698.05 23296.43 7994.45 222
ACMP_Plane97.20 25698.05 23296.43 7994.45 222
HQP4-MVS94.45 22298.96 21196.87 258
HQP-MVS95.72 16795.40 16196.69 21097.20 25694.25 22798.05 23298.46 16796.43 7994.45 22297.73 22586.75 23698.96 21195.30 17094.18 23196.86 261
MSDG95.93 15695.30 17397.83 13198.90 11995.36 17396.83 33198.37 18591.32 29694.43 22698.73 12890.27 15999.60 12990.05 30298.82 12798.52 195
dmvs_re94.48 24494.18 22695.37 28797.68 22090.11 31498.54 17597.08 31494.56 16794.42 22797.24 26384.25 28497.76 32991.02 28992.83 26798.24 205
nrg03096.28 14095.72 14997.96 12696.90 27798.15 5299.39 1298.31 19495.47 12394.42 22798.35 16892.09 11898.69 24197.50 8989.05 31497.04 238
CLD-MVS95.62 17495.34 16796.46 24197.52 23593.75 24297.27 29798.46 16795.53 12094.42 22798.00 20186.21 24698.97 20796.25 14094.37 22596.66 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test95.62 17495.34 16796.47 23897.46 23893.54 24998.99 8198.54 14894.67 16494.36 23098.77 12285.39 26199.11 18895.71 15894.15 23396.76 270
LGP-MVS_train96.47 23897.46 23893.54 24998.54 14894.67 16494.36 23098.77 12285.39 26199.11 18895.71 15894.15 23396.76 270
v14419294.39 25093.70 26196.48 23796.06 31894.35 22298.58 16798.16 22591.45 28994.33 23297.02 28587.50 22598.45 26791.08 28589.11 31396.63 287
V4294.78 22294.14 22996.70 20996.33 30895.22 17998.97 8498.09 24092.32 26694.31 23397.06 28088.39 20298.55 25592.90 24588.87 31896.34 318
ACMM93.85 995.69 17195.38 16596.61 21997.61 22593.84 23898.91 9698.44 17195.25 13794.28 23498.47 15486.04 25199.12 18695.50 16693.95 24096.87 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS95.46 18095.21 17696.22 25598.12 19293.72 24598.32 20198.13 22993.71 20694.26 23597.31 25892.24 11298.10 30694.63 18890.12 29796.84 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192094.20 26093.47 27296.40 24695.98 32194.08 23298.52 17698.15 22691.33 29594.25 23697.20 26786.41 24398.42 27190.04 30389.39 31096.69 284
BH-w/o95.38 18795.08 18396.26 25498.34 16991.79 28397.70 26597.43 29892.87 24694.24 23797.22 26588.66 19598.84 22991.55 27997.70 17498.16 210
XVG-ACMP-BASELINE94.54 23794.14 22995.75 27596.55 29591.65 28898.11 22898.44 17194.96 15394.22 23897.90 20979.18 32599.11 18894.05 21293.85 24296.48 312
v114494.59 23493.92 24296.60 22196.21 31094.78 20498.59 16598.14 22891.86 28094.21 23997.02 28587.97 21298.41 27991.72 27689.57 30496.61 289
v119294.32 25393.58 26696.53 23296.10 31694.45 21698.50 18198.17 22391.54 28794.19 24097.06 28086.95 23498.43 27090.14 29889.57 30496.70 279
PAPM94.95 21594.00 23797.78 13697.04 26795.65 16296.03 34798.25 20891.23 30194.19 24097.80 22291.27 14098.86 22882.61 35697.61 17698.84 171
Patchmatch-test94.42 24893.68 26396.63 21697.60 22691.76 28494.83 36197.49 29389.45 33194.14 24297.10 27088.99 18698.83 23185.37 34498.13 15899.29 119
v124094.06 27293.29 27796.34 24996.03 32093.90 23698.44 18898.17 22391.18 30494.13 24397.01 28786.05 24998.42 27189.13 31989.50 30896.70 279
GBi-Net94.49 24293.80 25296.56 22698.21 18195.00 18898.82 11798.18 21892.46 25794.09 24497.07 27781.16 30997.95 31792.08 26592.14 27296.72 275
test194.49 24293.80 25296.56 22698.21 18195.00 18898.82 11798.18 21892.46 25794.09 24497.07 27781.16 30997.95 31792.08 26592.14 27296.72 275
FMVSNet394.97 21494.26 22197.11 18298.18 18796.62 10698.56 17398.26 20793.67 21394.09 24497.10 27084.25 28498.01 31392.08 26592.14 27296.70 279
MIMVSNet93.26 28792.21 29496.41 24497.73 21893.13 26795.65 35297.03 31991.27 30094.04 24796.06 32875.33 34897.19 34386.56 33496.23 21298.92 166
FIs96.51 12896.12 13197.67 14897.13 26397.54 7399.36 1599.22 1795.89 10394.03 24898.35 16891.98 12198.44 26996.40 13592.76 26897.01 240
v2v48294.69 22494.03 23396.65 21296.17 31394.79 20398.67 15598.08 24192.72 25094.00 24997.16 26887.69 22298.45 26792.91 24488.87 31896.72 275
RRT_MVS95.98 15195.78 14596.56 22696.48 30094.22 22999.57 697.92 26195.89 10393.95 25098.70 13089.27 17798.42 27197.23 9893.02 26397.04 238
FC-MVSNet-test96.42 13196.05 13497.53 15896.95 27297.27 8099.36 1599.23 1495.83 10793.93 25198.37 16692.00 12098.32 28896.02 14792.72 26997.00 241
UniMVSNet (Re)95.78 16495.19 17797.58 15596.99 27097.47 7598.79 13099.18 1995.60 11793.92 25297.04 28391.68 12698.48 26295.80 15587.66 32996.79 267
miper_enhance_ethall95.10 20594.75 19896.12 25997.53 23493.73 24496.61 33898.08 24192.20 27293.89 25396.65 31092.44 10798.30 29294.21 20591.16 28696.34 318
UniMVSNet_NR-MVSNet95.71 16895.15 17897.40 16696.84 28096.97 9298.74 13699.24 1295.16 14193.88 25497.72 22791.68 12698.31 29095.81 15387.25 33596.92 247
DU-MVS95.42 18494.76 19797.40 16696.53 29696.97 9298.66 15798.99 3495.43 12593.88 25497.69 23088.57 19798.31 29095.81 15387.25 33596.92 247
Baseline_NR-MVSNet94.35 25193.81 25195.96 26596.20 31194.05 23398.61 16496.67 33891.44 29093.85 25697.60 23988.57 19798.14 30394.39 19786.93 33895.68 336
PS-MVSNAJss96.43 13096.26 12796.92 19795.84 32795.08 18699.16 4698.50 16095.87 10693.84 25798.34 17294.51 7898.61 24896.88 11593.45 25697.06 237
UniMVSNet_ETH3D94.24 25893.33 27596.97 19197.19 25993.38 25898.74 13698.57 14291.21 30393.81 25898.58 14372.85 35898.77 23795.05 17893.93 24198.77 177
tt080594.54 23793.85 24996.63 21697.98 20393.06 27098.77 13297.84 26693.67 21393.80 25998.04 19776.88 34398.96 21194.79 18592.86 26697.86 217
tpmvs94.60 23294.36 21995.33 28997.46 23888.60 33896.88 32797.68 27291.29 29893.80 25996.42 31888.58 19699.24 17091.06 28696.04 21698.17 209
3Dnovator94.51 597.46 8296.93 9699.07 5097.78 21297.64 6899.35 1799.06 2797.02 5493.75 26199.16 6789.25 17899.92 2697.22 9999.75 3899.64 65
eth_miper_zixun_eth94.68 22694.41 21795.47 28397.64 22391.71 28796.73 33598.07 24392.71 25193.64 26297.21 26690.54 15498.17 30193.38 22989.76 30196.54 299
ITE_SJBPF95.44 28597.42 24391.32 29397.50 29195.09 14793.59 26398.35 16881.70 30598.88 22589.71 30893.39 25896.12 326
TranMVSNet+NR-MVSNet95.14 20394.48 21097.11 18296.45 30296.36 12699.03 7199.03 3095.04 14993.58 26497.93 20788.27 20498.03 31294.13 20786.90 34096.95 246
COLMAP_ROBcopyleft93.27 1295.33 19394.87 19496.71 20799.29 7093.24 26498.58 16798.11 23389.92 32393.57 26599.10 7686.37 24499.79 8890.78 29198.10 15997.09 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm cat193.36 28292.80 28495.07 29697.58 22787.97 34896.76 33397.86 26582.17 36493.53 26696.04 32986.13 24799.13 18489.24 31795.87 21798.10 211
AllTest95.24 19794.65 20296.99 18899.25 7893.21 26598.59 16598.18 21891.36 29293.52 26798.77 12284.67 27799.72 10389.70 30997.87 16698.02 213
TestCases96.99 18899.25 7893.21 26598.18 21891.36 29293.52 26798.77 12284.67 27799.72 10389.70 30997.87 16698.02 213
miper_ehance_all_eth95.01 20994.69 20195.97 26497.70 21993.31 26097.02 31498.07 24392.23 26993.51 26996.96 29291.85 12398.15 30293.68 22191.16 28696.44 315
FMVSNet294.47 24593.61 26597.04 18598.21 18196.43 12098.79 13098.27 20392.46 25793.50 27097.09 27481.16 30998.00 31591.09 28491.93 27596.70 279
v14894.29 25593.76 25795.91 26796.10 31692.93 27198.58 16797.97 25692.59 25593.47 27196.95 29488.53 20098.32 28892.56 25587.06 33796.49 310
c3_l94.79 22194.43 21695.89 26997.75 21493.12 26897.16 30898.03 25192.23 26993.46 27297.05 28291.39 13598.01 31393.58 22689.21 31296.53 301
pmmvs494.69 22493.99 23996.81 20395.74 32895.94 14897.40 28397.67 27390.42 31593.37 27397.59 24089.08 18498.20 29992.97 24291.67 27996.30 321
PCF-MVS93.45 1194.68 22693.43 27398.42 9398.62 14696.77 10195.48 35598.20 21384.63 35993.34 27498.32 17488.55 19999.81 7184.80 34898.96 11898.68 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2294.68 22694.19 22496.13 25898.11 19393.60 24796.94 31898.31 19492.43 26193.32 27596.87 30086.51 23998.28 29694.10 21091.16 28696.51 307
XXY-MVS95.20 20094.45 21497.46 15996.75 28596.56 11398.86 11098.65 12793.30 22993.27 27698.27 18084.85 27398.87 22694.82 18391.26 28596.96 244
jajsoiax95.45 18295.03 18596.73 20695.42 34094.63 20799.14 4998.52 15395.74 11093.22 27798.36 16783.87 29598.65 24696.95 10894.04 23696.91 252
mvs_tets95.41 18695.00 18696.65 21295.58 33394.42 21899.00 7898.55 14695.73 11293.21 27898.38 16583.45 29998.63 24797.09 10294.00 23896.91 252
anonymousdsp95.42 18494.91 19196.94 19395.10 34395.90 15499.14 4998.41 17793.75 20193.16 27997.46 24887.50 22598.41 27995.63 16294.03 23796.50 309
v894.47 24593.77 25596.57 22596.36 30594.83 20099.05 6598.19 21591.92 27793.16 27996.97 29088.82 19498.48 26291.69 27787.79 32796.39 316
WR-MVS95.15 20294.46 21297.22 17396.67 29096.45 11898.21 21398.81 7894.15 18093.16 27997.69 23087.51 22398.30 29295.29 17288.62 32096.90 254
EPNet_dtu95.21 19994.95 19095.99 26296.17 31390.45 30898.16 22297.27 30896.77 6593.14 28298.33 17390.34 15798.42 27185.57 34198.81 12899.09 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM96.29 13895.40 16198.96 5697.85 20997.60 7199.23 3198.93 4289.76 32693.11 28399.02 8889.11 18399.93 2191.99 27099.62 6699.34 108
GG-mvs-BLEND96.59 22296.34 30794.98 19196.51 34188.58 38293.10 28494.34 35280.34 31998.05 31189.53 31296.99 18696.74 272
v1094.29 25593.55 26896.51 23496.39 30494.80 20298.99 8198.19 21591.35 29493.02 28596.99 28888.09 20998.41 27990.50 29588.41 32296.33 320
3Dnovator+94.38 697.43 8796.78 10499.38 1897.83 21098.52 2899.37 1498.71 10897.09 5292.99 28699.13 7289.36 17499.89 3996.97 10699.57 7499.71 43
D2MVS95.18 20195.08 18395.48 28297.10 26592.07 27998.30 20499.13 2394.02 18692.90 28796.73 30589.48 17098.73 23994.48 19693.60 25295.65 337
Patchmtry93.22 28892.35 29295.84 27196.77 28293.09 26994.66 36497.56 28187.37 34492.90 28796.24 32188.15 20797.90 32187.37 33190.10 29896.53 301
DIV-MVS_self_test94.52 24094.03 23395.99 26297.57 23193.38 25897.05 31297.94 25991.74 28192.81 28997.10 27089.12 18298.07 31092.60 25190.30 29496.53 301
Anonymous2023121194.10 26893.26 27896.61 21999.11 10094.28 22499.01 7698.88 5486.43 34892.81 28997.57 24281.66 30698.68 24494.83 18289.02 31696.88 256
cl____94.51 24194.01 23696.02 26197.58 22793.40 25797.05 31297.96 25891.73 28392.76 29197.08 27689.06 18598.13 30492.61 25090.29 29596.52 304
miper_lstm_enhance94.33 25294.07 23295.11 29497.75 21490.97 29897.22 29998.03 25191.67 28592.76 29196.97 29090.03 16297.78 32892.51 25889.64 30396.56 296
v7n94.19 26193.43 27396.47 23895.90 32494.38 22199.26 2798.34 19091.99 27592.76 29197.13 26988.31 20398.52 25989.48 31487.70 32896.52 304
MVS94.67 22993.54 26998.08 11896.88 27896.56 11398.19 21898.50 16078.05 36892.69 29498.02 19891.07 14599.63 12490.09 29998.36 15198.04 212
DSMNet-mixed92.52 29792.58 28992.33 33794.15 35382.65 36498.30 20494.26 36589.08 33692.65 29595.73 33585.01 27095.76 36186.24 33697.76 17198.59 191
EU-MVSNet93.66 27794.14 22992.25 33995.96 32383.38 36298.52 17698.12 23094.69 16292.61 29698.13 19187.36 22896.39 35891.82 27390.00 29996.98 242
IterMVS-SCA-FT94.11 26793.87 24794.85 30297.98 20390.56 30797.18 30498.11 23393.75 20192.58 29797.48 24783.97 29297.41 34092.48 26091.30 28396.58 292
pmmvs593.65 27992.97 28295.68 27695.49 33692.37 27598.20 21597.28 30789.66 32892.58 29797.26 26082.14 30398.09 30893.18 23690.95 28996.58 292
WR-MVS_H95.05 20894.46 21296.81 20396.86 27995.82 15799.24 3099.24 1293.87 19592.53 29996.84 30290.37 15698.24 29893.24 23387.93 32696.38 317
ACMP93.49 1095.34 19294.98 18896.43 24397.67 22193.48 25398.73 14098.44 17194.94 15692.53 29998.53 14784.50 28199.14 18395.48 16794.00 23896.66 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test0.0.03 194.08 27093.51 27095.80 27295.53 33592.89 27297.38 28595.97 34695.11 14492.51 30196.66 30887.71 21996.94 34787.03 33293.67 24797.57 225
IB-MVS91.98 1793.27 28691.97 29697.19 17597.47 23793.41 25697.09 31195.99 34593.32 22792.47 30295.73 33578.06 33399.53 14394.59 19382.98 35298.62 188
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS94.09 26993.85 24994.80 30597.99 20190.35 31097.18 30498.12 23093.68 21192.46 30397.34 25584.05 29097.41 34092.51 25891.33 28296.62 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 21794.30 22096.83 20196.72 28795.56 16599.11 5598.95 3893.89 19392.42 30497.90 20987.19 22998.12 30594.32 20188.21 32396.82 266
PS-CasMVS94.67 22993.99 23996.71 20796.68 28995.26 17899.13 5299.03 3093.68 21192.33 30597.95 20685.35 26398.10 30693.59 22588.16 32596.79 267
FMVSNet193.19 29092.07 29596.56 22697.54 23295.00 18898.82 11798.18 21890.38 31692.27 30697.07 27773.68 35697.95 31789.36 31691.30 28396.72 275
PEN-MVS94.42 24893.73 25996.49 23596.28 30994.84 19899.17 4599.00 3293.51 21992.23 30797.83 21986.10 24897.90 32192.55 25686.92 33996.74 272
OurMVSNet-221017-094.21 25994.00 23794.85 30295.60 33289.22 32898.89 10197.43 29895.29 13492.18 30898.52 15082.86 30098.59 25193.46 22891.76 27796.74 272
MS-PatchMatch93.84 27693.63 26494.46 31696.18 31289.45 32497.76 26098.27 20392.23 26992.13 30997.49 24679.50 32298.69 24189.75 30799.38 10195.25 341
ppachtmachnet_test93.22 28892.63 28894.97 29895.45 33890.84 30096.88 32797.88 26490.60 31092.08 31097.26 26088.08 21097.86 32685.12 34590.33 29396.22 323
131496.25 14295.73 14897.79 13597.13 26395.55 16798.19 21898.59 13593.47 22192.03 31197.82 22091.33 13899.49 14894.62 19098.44 14598.32 204
baseline295.11 20494.52 20896.87 19996.65 29193.56 24898.27 20994.10 36893.45 22292.02 31297.43 25287.45 22799.19 17693.88 21697.41 18197.87 216
DTE-MVSNet93.98 27493.26 27896.14 25796.06 31894.39 22099.20 4098.86 6793.06 23891.78 31397.81 22185.87 25397.58 33590.53 29486.17 34496.46 314
LF4IMVS93.14 29192.79 28594.20 31995.88 32588.67 33797.66 26897.07 31693.81 19991.71 31497.65 23477.96 33498.81 23391.47 28091.92 27695.12 344
our_test_393.65 27993.30 27694.69 30795.45 33889.68 32196.91 32197.65 27491.97 27691.66 31596.88 29889.67 16897.93 32088.02 32791.49 28196.48 312
testgi93.06 29292.45 29194.88 30196.43 30389.90 31598.75 13397.54 28795.60 11791.63 31697.91 20874.46 35397.02 34586.10 33793.67 24797.72 222
tfpnnormal93.66 27792.70 28796.55 23196.94 27395.94 14898.97 8499.19 1891.04 30591.38 31797.34 25584.94 27198.61 24885.45 34389.02 31695.11 345
LTVRE_ROB92.95 1594.60 23293.90 24596.68 21197.41 24694.42 21898.52 17698.59 13591.69 28491.21 31898.35 16884.87 27299.04 19991.06 28693.44 25796.60 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft93.04 1395.83 16295.00 18698.32 9897.18 26097.32 7899.21 3898.97 3589.96 32291.14 31999.05 8786.64 23899.92 2693.38 22999.47 9197.73 221
pm-mvs193.94 27593.06 28096.59 22296.49 29995.16 18198.95 9098.03 25192.32 26691.08 32097.84 21684.54 28098.41 27992.16 26386.13 34696.19 325
MVS-HIRNet89.46 32388.40 32392.64 33597.58 22782.15 36594.16 36893.05 37375.73 37090.90 32182.52 37379.42 32398.33 28783.53 35398.68 13097.43 226
FMVSNet591.81 30090.92 30394.49 31397.21 25592.09 27898.00 23897.55 28689.31 33490.86 32295.61 34074.48 35295.32 36585.57 34189.70 30296.07 328
USDC93.33 28592.71 28695.21 29096.83 28190.83 30196.91 32197.50 29193.84 19690.72 32398.14 19077.69 33598.82 23289.51 31393.21 26295.97 330
MVP-Stereo94.28 25793.92 24295.35 28894.95 34592.60 27497.97 24097.65 27491.61 28690.68 32497.09 27486.32 24598.42 27189.70 30999.34 10395.02 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+92.99 1494.30 25493.77 25595.88 27097.81 21192.04 28198.71 14598.37 18593.99 18990.60 32598.47 15480.86 31499.05 19692.75 24992.40 27196.55 298
CL-MVSNet_self_test90.11 31689.14 31993.02 33391.86 36588.23 34696.51 34198.07 24390.49 31190.49 32694.41 34884.75 27595.34 36480.79 36074.95 37195.50 338
KD-MVS_self_test90.38 31489.38 31793.40 32792.85 36288.94 33497.95 24197.94 25990.35 31790.25 32793.96 35379.82 32095.94 36084.62 35076.69 36995.33 340
Anonymous2023120691.66 30291.10 30293.33 32894.02 35787.35 35298.58 16797.26 30990.48 31290.16 32896.31 31983.83 29696.53 35679.36 36489.90 30096.12 326
SixPastTwentyTwo93.34 28492.86 28394.75 30695.67 33089.41 32698.75 13396.67 33893.89 19390.15 32998.25 18380.87 31398.27 29790.90 29090.64 29196.57 294
PVSNet_088.72 1991.28 30690.03 31295.00 29797.99 20187.29 35394.84 36098.50 16092.06 27489.86 33095.19 34279.81 32199.39 15992.27 26269.79 37498.33 203
ACMH92.88 1694.55 23693.95 24196.34 24997.63 22493.26 26298.81 12498.49 16593.43 22389.74 33198.53 14781.91 30499.08 19493.69 22093.30 26096.70 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs691.77 30190.63 30695.17 29294.69 35191.24 29598.67 15597.92 26186.14 35089.62 33297.56 24475.79 34798.34 28690.75 29284.56 34895.94 331
TinyColmap92.31 29891.53 29994.65 30996.92 27489.75 31796.92 31996.68 33790.45 31489.62 33297.85 21576.06 34698.81 23386.74 33392.51 27095.41 339
Anonymous2024052191.18 30790.44 30893.42 32593.70 35888.47 34198.94 9297.56 28188.46 33989.56 33495.08 34577.15 34296.97 34683.92 35189.55 30694.82 350
TransMVSNet (Re)92.67 29591.51 30096.15 25696.58 29494.65 20598.90 9796.73 33490.86 30889.46 33597.86 21385.62 25798.09 30886.45 33581.12 35895.71 335
NR-MVSNet94.98 21394.16 22797.44 16196.53 29697.22 8698.74 13698.95 3894.96 15389.25 33697.69 23089.32 17598.18 30094.59 19387.40 33296.92 247
LCM-MVSNet-Re95.22 19895.32 17094.91 29998.18 18787.85 35098.75 13395.66 35095.11 14488.96 33796.85 30190.26 16097.65 33195.65 16198.44 14599.22 128
KD-MVS_2432*160089.61 32187.96 32894.54 31194.06 35591.59 28995.59 35397.63 27689.87 32488.95 33894.38 35078.28 33096.82 34884.83 34668.05 37595.21 342
miper_refine_blended89.61 32187.96 32894.54 31194.06 35591.59 28995.59 35397.63 27689.87 32488.95 33894.38 35078.28 33096.82 34884.83 34668.05 37595.21 342
test_fmvs387.17 33087.06 33387.50 34891.21 36775.66 37199.05 6596.61 34092.79 24988.85 34092.78 36143.72 37693.49 37193.95 21384.56 34893.34 365
TDRefinement91.06 30989.68 31495.21 29085.35 37991.49 29198.51 18097.07 31691.47 28888.83 34197.84 21677.31 33999.09 19392.79 24877.98 36795.04 347
N_pmnet87.12 33287.77 33085.17 35295.46 33761.92 38397.37 28770.66 38985.83 35388.73 34296.04 32985.33 26597.76 32980.02 36190.48 29295.84 332
test_040291.32 30490.27 31094.48 31496.60 29291.12 29698.50 18197.22 31186.10 35188.30 34396.98 28977.65 33797.99 31678.13 36892.94 26594.34 352
test20.0390.89 31190.38 30992.43 33693.48 35988.14 34798.33 19797.56 28193.40 22487.96 34496.71 30780.69 31694.13 37079.15 36586.17 34495.01 349
MIMVSNet189.67 32088.28 32593.82 32292.81 36391.08 29798.01 23697.45 29687.95 34187.90 34595.87 33267.63 36494.56 36978.73 36788.18 32495.83 333
mvsany_test388.80 32588.04 32691.09 34389.78 37181.57 36797.83 25695.49 35193.81 19987.53 34693.95 35456.14 37297.43 33994.68 18683.13 35194.26 353
Patchmatch-RL test91.49 30390.85 30493.41 32691.37 36684.40 35892.81 36995.93 34891.87 27987.25 34794.87 34688.99 18696.53 35692.54 25782.00 35499.30 117
pmmvs386.67 33384.86 33792.11 34088.16 37387.19 35496.63 33794.75 36079.88 36687.22 34892.75 36366.56 36695.20 36681.24 35976.56 37093.96 361
test_vis1_rt91.29 30590.65 30593.19 33297.45 24186.25 35698.57 17290.90 37993.30 22986.94 34993.59 35662.07 36999.11 18897.48 9095.58 22194.22 355
K. test v392.55 29691.91 29894.48 31495.64 33189.24 32799.07 6294.88 35894.04 18486.78 35097.59 24077.64 33897.64 33292.08 26589.43 30996.57 294
lessismore_v094.45 31794.93 34688.44 34291.03 37886.77 35197.64 23676.23 34598.42 27190.31 29785.64 34796.51 307
APD_test188.22 32788.01 32788.86 34695.98 32174.66 37597.21 30096.44 34283.96 36186.66 35297.90 20960.95 37097.84 32782.73 35490.23 29694.09 358
ambc89.49 34586.66 37675.78 37092.66 37096.72 33586.55 35392.50 36446.01 37497.90 32190.32 29682.09 35394.80 351
PM-MVS87.77 32886.55 33491.40 34291.03 36983.36 36396.92 31995.18 35691.28 29986.48 35493.42 35753.27 37396.74 35089.43 31581.97 35594.11 357
OpenMVS_ROBcopyleft86.42 2089.00 32487.43 33293.69 32393.08 36189.42 32597.91 24596.89 32978.58 36785.86 35594.69 34769.48 36198.29 29577.13 36993.29 26193.36 364
UnsupCasMVSNet_eth90.99 31089.92 31394.19 32094.08 35489.83 31697.13 31098.67 12093.69 20985.83 35696.19 32675.15 34996.74 35089.14 31879.41 36396.00 329
new_pmnet90.06 31789.00 32193.22 33194.18 35288.32 34496.42 34396.89 32986.19 34985.67 35793.62 35577.18 34197.10 34481.61 35889.29 31194.23 354
dmvs_testset87.64 32988.93 32283.79 35495.25 34163.36 38297.20 30191.17 37793.07 23785.64 35895.98 33185.30 26791.52 37769.42 37587.33 33396.49 310
test_f86.07 33485.39 33588.10 34789.28 37275.57 37297.73 26396.33 34389.41 33385.35 35991.56 36743.31 37895.53 36291.32 28284.23 35093.21 366
EG-PatchMatch MVS91.13 30890.12 31194.17 32194.73 35089.00 33298.13 22597.81 26789.22 33585.32 36096.46 31667.71 36398.42 27187.89 32993.82 24395.08 346
pmmvs-eth3d90.36 31589.05 32094.32 31891.10 36892.12 27797.63 27396.95 32488.86 33784.91 36193.13 36078.32 32996.74 35088.70 32281.81 35694.09 358
DeepMVS_CXcopyleft86.78 34997.09 26672.30 37695.17 35775.92 36984.34 36295.19 34270.58 35995.35 36379.98 36389.04 31592.68 367
new-patchmatchnet88.50 32687.45 33191.67 34190.31 37085.89 35797.16 30897.33 30489.47 33083.63 36392.77 36276.38 34495.06 36782.70 35577.29 36894.06 360
UnsupCasMVSNet_bld87.17 33085.12 33693.31 32991.94 36488.77 33594.92 35998.30 20084.30 36082.30 36490.04 36863.96 36897.25 34285.85 34074.47 37393.93 362
CMPMVSbinary66.06 2189.70 31989.67 31589.78 34493.19 36076.56 36997.00 31598.35 18880.97 36581.57 36597.75 22474.75 35198.61 24889.85 30593.63 25094.17 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_method79.03 33678.17 33881.63 35886.06 37854.40 38882.75 37796.89 32939.54 38180.98 36695.57 34158.37 37194.73 36884.74 34978.61 36495.75 334
ET-MVSNet_ETH3D94.13 26592.98 28197.58 15598.22 18096.20 13297.31 29495.37 35294.53 16979.56 36797.63 23886.51 23997.53 33796.91 10990.74 29099.02 155
LCM-MVSNet78.70 33976.24 34486.08 35077.26 38571.99 37794.34 36696.72 33561.62 37676.53 36889.33 36933.91 38492.78 37581.85 35774.60 37293.46 363
PMMVS277.95 34175.44 34585.46 35182.54 38074.95 37394.23 36793.08 37272.80 37174.68 36987.38 37036.36 38191.56 37673.95 37163.94 37789.87 369
testf179.02 33777.70 33982.99 35688.10 37466.90 37994.67 36293.11 37071.08 37274.02 37093.41 35834.15 38293.25 37272.25 37378.50 36588.82 370
APD_test279.02 33777.70 33982.99 35688.10 37466.90 37994.67 36293.11 37071.08 37274.02 37093.41 35834.15 38293.25 37272.25 37378.50 36588.82 370
Gipumacopyleft78.40 34076.75 34383.38 35595.54 33480.43 36879.42 37897.40 30064.67 37573.46 37280.82 37645.65 37593.14 37466.32 37787.43 33176.56 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet190.70 31389.39 31694.62 31094.79 34990.65 30597.20 30197.46 29487.54 34372.54 37395.74 33386.51 23996.66 35486.00 33886.76 34296.54 299
MDA-MVSNet_test_wron90.71 31289.38 31794.68 30894.83 34790.78 30297.19 30397.46 29487.60 34272.41 37495.72 33786.51 23996.71 35385.92 33986.80 34196.56 296
MDA-MVSNet-bldmvs89.97 31888.35 32494.83 30495.21 34291.34 29297.64 27097.51 29088.36 34071.17 37596.13 32779.22 32496.63 35583.65 35286.27 34396.52 304
FPMVS77.62 34277.14 34279.05 36079.25 38360.97 38495.79 35095.94 34765.96 37467.93 37694.40 34937.73 38088.88 37968.83 37688.46 32187.29 372
test_vis3_rt79.22 33577.40 34184.67 35386.44 37774.85 37497.66 26881.43 38684.98 35767.12 37781.91 37528.09 38697.60 33388.96 32080.04 36281.55 375
tmp_tt68.90 34566.97 34774.68 36250.78 38959.95 38587.13 37483.47 38538.80 38262.21 37896.23 32364.70 36776.91 38488.91 32130.49 38287.19 373
E-PMN64.94 34764.25 34967.02 36482.28 38159.36 38691.83 37285.63 38352.69 37860.22 37977.28 37841.06 37980.12 38246.15 38141.14 37961.57 380
EMVS64.07 34863.26 35166.53 36581.73 38258.81 38791.85 37184.75 38451.93 38059.09 38075.13 37943.32 37779.09 38342.03 38239.47 38061.69 379
MVEpermissive62.14 2263.28 34959.38 35274.99 36174.33 38665.47 38185.55 37580.50 38752.02 37951.10 38175.00 38010.91 39080.50 38151.60 38053.40 37878.99 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 34465.37 34880.22 35965.99 38771.96 37890.91 37390.09 38082.62 36249.93 38278.39 37729.36 38581.75 38062.49 37838.52 38186.95 374
PMVScopyleft61.03 2365.95 34663.57 35073.09 36357.90 38851.22 38985.05 37693.93 36954.45 37744.32 38383.57 37213.22 38789.15 37858.68 37981.00 35978.91 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs21.48 35224.95 35511.09 36814.89 3906.47 39296.56 3399.87 3917.55 38417.93 38439.02 3829.43 3915.90 38716.56 38512.72 38420.91 382
test12320.95 35323.72 35612.64 36713.54 3918.19 39196.55 3406.13 3927.48 38516.74 38537.98 38312.97 3886.05 38616.69 3845.43 38523.68 381
wuyk23d30.17 35030.18 35430.16 36678.61 38443.29 39066.79 37914.21 39017.31 38314.82 38611.93 38611.55 38941.43 38537.08 38319.30 3835.76 383
EGC-MVSNET75.22 34369.54 34692.28 33894.81 34889.58 32297.64 27096.50 3411.82 3865.57 38795.74 33368.21 36296.26 35973.80 37291.71 27890.99 368
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.98 35131.98 3530.00 3690.00 3920.00 3930.00 38098.59 1350.00 3870.00 38898.61 13890.60 1530.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.88 35510.50 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38794.51 780.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.20 35410.94 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38898.43 1580.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad99.62 699.17 9199.08 1198.63 13099.94 598.53 2099.80 1999.86 3
No_MVS99.62 699.17 9199.08 1198.63 13099.94 598.53 2099.80 1999.86 3
eth-test20.00 392
eth-test0.00 392
OPU-MVS99.37 2099.24 8499.05 1499.02 7499.16 6797.81 399.37 16097.24 9799.73 4499.70 47
save fliter99.46 4998.38 3598.21 21398.71 10897.95 7
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 5499.94 598.47 2899.81 1299.84 7
GSMVS99.20 129
sam_mvs189.45 17299.20 129
sam_mvs88.99 186
MTGPAbinary98.74 100
test_post196.68 33630.43 38587.85 21798.69 24192.59 253
test_post31.83 38488.83 19398.91 219
patchmatchnet-post95.10 34489.42 17398.89 223
MTMP98.89 10194.14 367
gm-plane-assit95.88 32587.47 35189.74 32796.94 29599.19 17693.32 232
test9_res96.39 13699.57 7499.69 50
agg_prior295.87 15299.57 7499.68 55
test_prior498.01 5897.86 252
test_prior99.19 3999.31 6298.22 4798.84 7199.70 10999.65 63
新几何297.64 270
旧先验199.29 7097.48 7498.70 11199.09 8295.56 4699.47 9199.61 69
无先验97.58 27598.72 10591.38 29199.87 4893.36 23199.60 71
原ACMM297.67 267
testdata299.89 3991.65 278
segment_acmp96.85 14
testdata197.32 29396.34 85
plane_prior797.42 24394.63 207
plane_prior697.35 24894.61 21087.09 230
plane_prior598.56 14499.03 20096.07 14294.27 22796.92 247
plane_prior498.28 177
plane_prior298.80 12597.28 36
plane_prior197.37 247
plane_prior94.60 21298.44 18896.74 6794.22 229
n20.00 393
nn0.00 393
door-mid94.37 363
test1198.66 123
door94.64 361
HQP5-MVS94.25 227
BP-MVS95.30 170
HQP3-MVS98.46 16794.18 231
HQP2-MVS86.75 236
NP-MVS97.28 25094.51 21597.73 225
ACMMP++_ref92.97 264
ACMMP++93.61 251
Test By Simon94.64 75