test_vis1_n_1920 | | | 96.71 119 | 96.84 100 | 96.31 251 | 99.11 100 | 89.74 318 | 99.05 65 | 98.58 140 | 98.08 6 | 99.87 1 | 99.37 28 | 78.48 328 | 99.93 21 | 99.29 4 | 99.69 52 | 99.27 121 |
|
test_fmvsm_n_1920 | | | 98.87 7 | 99.01 1 | 98.45 87 | 99.42 54 | 96.43 120 | 98.96 89 | 99.36 7 | 98.63 2 | 99.86 2 | 99.51 6 | 95.91 37 | 99.97 1 | 99.72 2 | 99.75 38 | 98.94 164 |
|
test_cas_vis1_n_1920 | | | 97.38 91 | 97.36 79 | 97.45 160 | 98.95 116 | 93.25 263 | 99.00 78 | 98.53 150 | 97.70 13 | 99.77 3 | 99.35 34 | 84.71 276 | 99.85 53 | 98.57 17 | 99.66 56 | 99.26 123 |
|
SED-MVS | | | 99.09 1 | 98.91 2 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 74 | 98.87 61 | 97.65 14 | 99.73 4 | 99.48 11 | 97.53 7 | 99.94 5 | 98.43 32 | 99.81 12 | 99.70 47 |
|
test_241102_ONE | | | | | | 99.71 19 | 99.24 5 | | 98.87 61 | 97.62 16 | 99.73 4 | 99.39 22 | 97.53 7 | 99.74 101 | | | |
|
SD-MVS | | | 98.64 13 | 98.68 8 | 98.53 79 | 99.33 57 | 98.36 40 | 98.90 97 | 98.85 70 | 97.28 36 | 99.72 6 | 99.39 22 | 96.63 19 | 97.60 333 | 98.17 42 | 99.85 5 | 99.64 65 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test_fmvs1_n | | | 95.90 158 | 95.99 138 | 95.63 278 | 98.67 141 | 88.32 344 | 99.26 27 | 98.22 210 | 96.40 82 | 99.67 7 | 99.26 47 | 73.91 355 | 99.70 109 | 99.02 8 | 99.50 86 | 98.87 168 |
|
test_vis1_n | | | 95.47 179 | 95.13 179 | 96.49 235 | 97.77 213 | 90.41 309 | 99.27 26 | 98.11 233 | 96.58 73 | 99.66 8 | 99.18 63 | 67.00 365 | 99.62 127 | 99.21 5 | 99.40 99 | 99.44 100 |
|
mvsany_test1 | | | 97.69 69 | 97.70 60 | 97.66 151 | 98.24 177 | 94.18 230 | 97.53 277 | 97.53 288 | 95.52 121 | 99.66 8 | 99.51 6 | 94.30 86 | 99.56 135 | 98.38 35 | 98.62 135 | 99.23 126 |
|
test_fmvs1 | | | 96.42 131 | 96.67 111 | 95.66 277 | 98.82 127 | 88.53 340 | 98.80 125 | 98.20 213 | 96.39 83 | 99.64 10 | 99.20 57 | 80.35 318 | 99.67 116 | 99.04 7 | 99.57 74 | 98.78 176 |
|
IU-MVS | | | | | | 99.71 19 | 99.23 7 | | 98.64 128 | 95.28 135 | 99.63 11 | | | | 98.35 37 | 99.81 12 | 99.83 8 |
|
PC_three_1452 | | | | | | | | | | 95.08 148 | 99.60 12 | 99.16 67 | 97.86 2 | 98.47 265 | 97.52 88 | 99.72 47 | 99.74 31 |
|
test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 63 | 98.88 54 | 97.62 16 | 99.56 13 | 99.50 8 | 97.42 9 | | | | |
|
TSAR-MVS + MP. | | | 98.78 8 | 98.62 10 | 99.24 35 | 99.69 24 | 98.28 45 | 99.14 49 | 98.66 123 | 96.84 61 | 99.56 13 | 99.31 41 | 96.34 23 | 99.70 109 | 98.32 38 | 99.73 44 | 99.73 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPE-MVS |  | | 98.92 5 | 98.67 9 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 192 | 98.91 48 | 97.58 19 | 99.54 15 | 99.46 16 | 97.10 12 | 99.94 5 | 97.64 77 | 99.84 10 | 99.83 8 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS++ | | | 99.08 2 | 98.89 3 | 99.64 3 | 99.17 91 | 99.23 7 | 99.69 1 | 98.88 54 | 97.32 33 | 99.53 16 | 99.47 13 | 97.81 3 | 99.94 5 | 98.47 28 | 99.72 47 | 99.74 31 |
|
test_241102_TWO | | | | | | | | | 98.87 61 | 97.65 14 | 99.53 16 | 99.48 11 | 97.34 11 | 99.94 5 | 98.43 32 | 99.80 19 | 99.83 8 |
|
DVP-MVS |  | | 99.03 3 | 98.83 6 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 84 | 98.58 140 | 97.62 16 | 99.45 18 | 99.46 16 | 97.42 9 | 99.94 5 | 98.47 28 | 99.81 12 | 99.69 50 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 97.32 33 | 99.45 18 | 99.46 16 | 97.88 1 | 99.94 5 | 98.47 28 | 99.86 1 | 99.85 5 |
|
MSP-MVS | | | 98.74 10 | 98.55 14 | 99.29 28 | 99.75 3 | 98.23 46 | 99.26 27 | 98.88 54 | 97.52 21 | 99.41 20 | 98.78 120 | 96.00 33 | 99.79 88 | 97.79 66 | 99.59 70 | 99.85 5 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 99.02 4 | 98.84 5 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 12 | 98.93 42 | 97.38 30 | 99.41 20 | 99.54 2 | 96.66 17 | 99.84 57 | 98.86 11 | 99.85 5 | 99.87 2 |
|
FOURS1 | | | | | | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 38 | 97.46 25 | 99.39 22 | | | | | | |
|
SMA-MVS |  | | 98.58 20 | 98.25 38 | 99.56 8 | 99.51 39 | 99.04 15 | 98.95 90 | 98.80 85 | 93.67 213 | 99.37 23 | 99.52 4 | 96.52 21 | 99.89 39 | 98.06 47 | 99.81 12 | 99.76 28 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SteuartSystems-ACMMP | | | 98.90 6 | 98.75 7 | 99.36 21 | 99.22 86 | 98.43 33 | 99.10 58 | 98.87 61 | 97.38 30 | 99.35 24 | 99.40 21 | 97.78 5 | 99.87 48 | 97.77 67 | 99.85 5 | 99.78 16 |
Skip Steuart: Steuart Systems R&D Blog. |
SF-MVS | | | 98.59 18 | 98.32 34 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 68 | 98.81 78 | 95.12 143 | 99.32 25 | 99.39 22 | 96.22 24 | 99.84 57 | 97.72 70 | 99.73 44 | 99.67 59 |
|
dcpmvs_2 | | | 98.08 52 | 98.59 11 | 96.56 226 | 99.57 33 | 90.34 311 | 99.15 47 | 98.38 184 | 96.82 63 | 99.29 26 | 99.49 10 | 95.78 41 | 99.57 132 | 98.94 9 | 99.86 1 | 99.77 22 |
|
test_part2 | | | | | | 99.63 29 | 99.18 10 | | | | 99.27 27 | | | | | | |
|
DeepPCF-MVS | | 96.37 2 | 97.93 58 | 98.48 19 | 96.30 252 | 99.00 109 | 89.54 323 | 97.43 282 | 98.87 61 | 98.16 5 | 99.26 28 | 99.38 27 | 96.12 29 | 99.64 121 | 98.30 39 | 99.77 28 | 99.72 39 |
|
APD-MVS |  | | 98.35 45 | 98.00 53 | 99.42 16 | 99.51 39 | 98.72 21 | 98.80 125 | 98.82 73 | 94.52 171 | 99.23 29 | 99.25 51 | 95.54 48 | 99.80 78 | 96.52 131 | 99.77 28 | 99.74 31 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test_one_0601 | | | | | | 99.66 26 | 99.25 2 | | 98.86 67 | 97.55 20 | 99.20 30 | 99.47 13 | 97.57 6 | | | | |
|
APD-MVS_3200maxsize | | | 98.53 28 | 98.33 33 | 99.15 45 | 99.50 41 | 97.92 60 | 99.15 47 | 98.81 78 | 96.24 87 | 99.20 30 | 99.37 28 | 95.30 58 | 99.80 78 | 97.73 69 | 99.67 54 | 99.72 39 |
|
patch_mono-2 | | | 98.36 43 | 98.87 4 | 96.82 202 | 99.53 36 | 90.68 304 | 98.64 159 | 99.29 9 | 97.88 8 | 99.19 32 | 99.52 4 | 96.80 15 | 99.97 1 | 99.11 6 | 99.86 1 | 99.82 11 |
|
SR-MVS-dyc-post | | | 98.54 27 | 98.35 26 | 99.13 46 | 99.49 45 | 97.86 61 | 99.11 55 | 98.80 85 | 96.49 76 | 99.17 33 | 99.35 34 | 95.34 56 | 99.82 66 | 97.72 70 | 99.65 59 | 99.71 43 |
|
RE-MVS-def | | | | 98.34 29 | | 99.49 45 | 97.86 61 | 99.11 55 | 98.80 85 | 96.49 76 | 99.17 33 | 99.35 34 | 95.29 59 | | 97.72 70 | 99.65 59 | 99.71 43 |
|
9.14 | | | | 98.06 50 | | 99.47 47 | | 98.71 145 | 98.82 73 | 94.36 176 | 99.16 35 | 99.29 43 | 96.05 31 | 99.81 71 | 97.00 104 | 99.71 49 | |
|
ACMMP_NAP | | | 98.61 15 | 98.30 35 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 117 | 98.81 78 | 95.80 108 | 99.16 35 | 99.47 13 | 95.37 54 | 99.92 26 | 97.89 58 | 99.75 38 | 99.79 14 |
|
SR-MVS | | | 98.57 23 | 98.35 26 | 99.24 35 | 99.53 36 | 98.18 49 | 99.09 59 | 98.82 73 | 96.58 73 | 99.10 37 | 99.32 39 | 95.39 52 | 99.82 66 | 97.70 74 | 99.63 64 | 99.72 39 |
|
PGM-MVS | | | 98.49 30 | 98.23 41 | 99.27 33 | 99.72 12 | 98.08 55 | 98.99 81 | 99.49 5 | 95.43 125 | 99.03 38 | 99.32 39 | 95.56 46 | 99.94 5 | 96.80 123 | 99.77 28 | 99.78 16 |
|
VNet | | | 97.79 63 | 97.40 77 | 98.96 56 | 98.88 121 | 97.55 72 | 98.63 161 | 98.93 42 | 96.74 67 | 99.02 39 | 98.84 113 | 90.33 158 | 99.83 59 | 98.53 20 | 96.66 193 | 99.50 85 |
|
xiu_mvs_v1_base_debu | | | 97.60 74 | 97.56 66 | 97.72 142 | 98.35 164 | 95.98 140 | 97.86 252 | 98.51 155 | 97.13 49 | 99.01 40 | 98.40 162 | 91.56 130 | 99.80 78 | 98.53 20 | 98.68 130 | 97.37 231 |
|
xiu_mvs_v1_base | | | 97.60 74 | 97.56 66 | 97.72 142 | 98.35 164 | 95.98 140 | 97.86 252 | 98.51 155 | 97.13 49 | 99.01 40 | 98.40 162 | 91.56 130 | 99.80 78 | 98.53 20 | 98.68 130 | 97.37 231 |
|
xiu_mvs_v1_base_debi | | | 97.60 74 | 97.56 66 | 97.72 142 | 98.35 164 | 95.98 140 | 97.86 252 | 98.51 155 | 97.13 49 | 99.01 40 | 98.40 162 | 91.56 130 | 99.80 78 | 98.53 20 | 98.68 130 | 97.37 231 |
|
TSAR-MVS + GP. | | | 98.38 41 | 98.24 40 | 98.81 62 | 99.22 86 | 97.25 85 | 98.11 228 | 98.29 202 | 97.19 44 | 98.99 43 | 99.02 88 | 96.22 24 | 99.67 116 | 98.52 26 | 98.56 139 | 99.51 83 |
|
CS-MVS | | | 98.44 36 | 98.49 17 | 98.31 99 | 99.08 102 | 96.73 103 | 99.67 3 | 98.47 166 | 97.17 45 | 98.94 44 | 99.10 76 | 95.73 42 | 99.13 184 | 98.71 14 | 99.49 88 | 99.09 147 |
|
HFP-MVS | | | 98.63 14 | 98.40 20 | 99.32 27 | 99.72 12 | 98.29 44 | 99.23 31 | 98.96 37 | 96.10 94 | 98.94 44 | 99.17 64 | 96.06 30 | 99.92 26 | 97.62 78 | 99.78 26 | 99.75 29 |
|
region2R | | | 98.61 15 | 98.38 22 | 99.29 28 | 99.74 7 | 98.16 51 | 99.23 31 | 98.93 42 | 96.15 91 | 98.94 44 | 99.17 64 | 95.91 37 | 99.94 5 | 97.55 85 | 99.79 23 | 99.78 16 |
|
HPM-MVS_fast | | | 98.38 41 | 98.13 46 | 99.12 48 | 99.75 3 | 97.86 61 | 99.44 11 | 98.82 73 | 94.46 174 | 98.94 44 | 99.20 57 | 95.16 66 | 99.74 101 | 97.58 81 | 99.85 5 | 99.77 22 |
|
ACMMPR | | | 98.59 18 | 98.36 24 | 99.29 28 | 99.74 7 | 98.15 52 | 99.23 31 | 98.95 38 | 96.10 94 | 98.93 48 | 99.19 62 | 95.70 43 | 99.94 5 | 97.62 78 | 99.79 23 | 99.78 16 |
|
DeepC-MVS_fast | | 96.70 1 | 98.55 26 | 98.34 29 | 99.18 41 | 99.25 78 | 98.04 56 | 98.50 181 | 98.78 92 | 97.72 10 | 98.92 49 | 99.28 44 | 95.27 60 | 99.82 66 | 97.55 85 | 99.77 28 | 99.69 50 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CS-MVS-test | | | 98.49 30 | 98.50 16 | 98.46 86 | 99.20 89 | 97.05 90 | 99.64 4 | 98.50 160 | 97.45 26 | 98.88 50 | 99.14 71 | 95.25 62 | 99.15 181 | 98.83 12 | 99.56 80 | 99.20 129 |
|
EC-MVSNet | | | 98.21 51 | 98.11 48 | 98.49 83 | 98.34 169 | 97.26 84 | 99.61 5 | 98.43 175 | 96.78 64 | 98.87 51 | 98.84 113 | 93.72 95 | 99.01 205 | 98.91 10 | 99.50 86 | 99.19 133 |
|
EI-MVSNet-Vis-set | | | 98.47 33 | 98.39 21 | 98.69 66 | 99.46 49 | 96.49 117 | 98.30 204 | 98.69 112 | 97.21 42 | 98.84 52 | 99.36 32 | 95.41 51 | 99.78 91 | 98.62 16 | 99.65 59 | 99.80 13 |
|
MSLP-MVS++ | | | 98.56 25 | 98.57 12 | 98.55 75 | 99.26 77 | 96.80 99 | 98.71 145 | 99.05 29 | 97.28 36 | 98.84 52 | 99.28 44 | 96.47 22 | 99.40 158 | 98.52 26 | 99.70 50 | 99.47 93 |
|
PHI-MVS | | | 98.34 46 | 98.06 50 | 99.18 41 | 99.15 97 | 98.12 54 | 99.04 68 | 99.09 24 | 93.32 227 | 98.83 54 | 99.10 76 | 96.54 20 | 99.83 59 | 97.70 74 | 99.76 34 | 99.59 73 |
|
MVSFormer | | | 97.57 78 | 97.49 70 | 97.84 130 | 98.07 195 | 95.76 159 | 99.47 9 | 98.40 179 | 94.98 151 | 98.79 55 | 98.83 115 | 92.34 108 | 98.41 279 | 96.91 109 | 99.59 70 | 99.34 108 |
|
lupinMVS | | | 97.44 86 | 97.22 85 | 98.12 116 | 98.07 195 | 95.76 159 | 97.68 266 | 97.76 269 | 94.50 172 | 98.79 55 | 98.61 138 | 92.34 108 | 99.30 165 | 97.58 81 | 99.59 70 | 99.31 114 |
|
CDPH-MVS | | | 97.94 57 | 97.49 70 | 99.28 31 | 99.47 47 | 98.44 31 | 97.91 245 | 98.67 120 | 92.57 256 | 98.77 57 | 98.85 112 | 95.93 36 | 99.72 103 | 95.56 163 | 99.69 52 | 99.68 55 |
|
CNVR-MVS | | | 98.78 8 | 98.56 13 | 99.45 15 | 99.32 60 | 98.87 19 | 98.47 184 | 98.81 78 | 97.72 10 | 98.76 58 | 99.16 67 | 97.05 13 | 99.78 91 | 98.06 47 | 99.66 56 | 99.69 50 |
|
EI-MVSNet-UG-set | | | 98.41 39 | 98.34 29 | 98.61 71 | 99.45 52 | 96.32 128 | 98.28 207 | 98.68 115 | 97.17 45 | 98.74 59 | 99.37 28 | 95.25 62 | 99.79 88 | 98.57 17 | 99.54 83 | 99.73 36 |
|
diffmvs |  | | 97.58 77 | 97.40 77 | 98.13 114 | 98.32 174 | 95.81 158 | 98.06 231 | 98.37 185 | 96.20 89 | 98.74 59 | 98.89 108 | 91.31 139 | 99.25 168 | 98.16 43 | 98.52 140 | 99.34 108 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
GST-MVS | | | 98.43 38 | 98.12 47 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 59 | 98.82 73 | 95.71 113 | 98.73 61 | 99.06 86 | 95.27 60 | 99.93 21 | 97.07 103 | 99.63 64 | 99.72 39 |
|
UA-Net | | | 97.96 55 | 97.62 62 | 98.98 54 | 98.86 123 | 97.47 75 | 98.89 101 | 99.08 25 | 96.67 70 | 98.72 62 | 99.54 2 | 93.15 100 | 99.81 71 | 94.87 180 | 98.83 126 | 99.65 63 |
|
h-mvs33 | | | 96.17 143 | 95.62 158 | 97.81 134 | 99.03 105 | 94.45 216 | 98.64 159 | 98.75 98 | 97.48 23 | 98.67 63 | 98.72 129 | 89.76 165 | 99.86 52 | 97.95 52 | 81.59 357 | 99.11 145 |
|
hse-mvs2 | | | 95.71 168 | 95.30 173 | 96.93 194 | 98.50 153 | 93.53 251 | 98.36 194 | 98.10 236 | 97.48 23 | 98.67 63 | 97.99 202 | 89.76 165 | 99.02 203 | 97.95 52 | 80.91 361 | 98.22 207 |
|
ZD-MVS | | | | | | 99.46 49 | 98.70 23 | | 98.79 90 | 93.21 232 | 98.67 63 | 98.97 95 | 95.70 43 | 99.83 59 | 96.07 142 | 99.58 73 | |
|
旧先验2 | | | | | | | | 97.57 276 | | 91.30 297 | 98.67 63 | | | 99.80 78 | 95.70 160 | | |
|
PS-MVSNAJ | | | 97.73 65 | 97.77 57 | 97.62 153 | 98.68 140 | 95.58 164 | 97.34 291 | 98.51 155 | 97.29 35 | 98.66 67 | 97.88 212 | 94.51 78 | 99.90 37 | 97.87 60 | 99.17 110 | 97.39 229 |
|
xiu_mvs_v2_base | | | 97.66 71 | 97.70 60 | 97.56 157 | 98.61 147 | 95.46 170 | 97.44 280 | 98.46 167 | 97.15 47 | 98.65 68 | 98.15 189 | 94.33 85 | 99.80 78 | 97.84 63 | 98.66 134 | 97.41 227 |
|
LFMVS | | | 95.86 160 | 94.98 188 | 98.47 85 | 98.87 122 | 96.32 128 | 98.84 114 | 96.02 344 | 93.40 224 | 98.62 69 | 99.20 57 | 74.99 350 | 99.63 124 | 97.72 70 | 97.20 183 | 99.46 97 |
|
HPM-MVS |  | | 98.36 43 | 98.10 49 | 99.13 46 | 99.74 7 | 97.82 65 | 99.53 8 | 98.80 85 | 94.63 166 | 98.61 70 | 98.97 95 | 95.13 67 | 99.77 96 | 97.65 76 | 99.83 11 | 99.79 14 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
testdata | | | | | 98.26 103 | 99.20 89 | 95.36 173 | | 98.68 115 | 91.89 278 | 98.60 71 | 99.10 76 | 94.44 83 | 99.82 66 | 94.27 203 | 99.44 95 | 99.58 77 |
|
CP-MVS | | | 98.57 23 | 98.36 24 | 99.19 39 | 99.66 26 | 97.86 61 | 99.34 18 | 98.87 61 | 95.96 99 | 98.60 71 | 99.13 72 | 96.05 31 | 99.94 5 | 97.77 67 | 99.86 1 | 99.77 22 |
|
jason | | | 97.32 94 | 97.08 90 | 98.06 120 | 97.45 241 | 95.59 163 | 97.87 251 | 97.91 263 | 94.79 159 | 98.55 73 | 98.83 115 | 91.12 142 | 99.23 171 | 97.58 81 | 99.60 68 | 99.34 108 |
jason: jason. |
MVS_0304 | | | 98.47 33 | 98.22 43 | 99.21 38 | 99.00 109 | 97.80 66 | 98.88 104 | 95.32 353 | 98.86 1 | 98.53 74 | 99.44 19 | 94.38 84 | 99.94 5 | 99.86 1 | 99.70 50 | 99.90 1 |
|
MCST-MVS | | | 98.65 12 | 98.37 23 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 193 | 98.68 115 | 97.04 53 | 98.52 75 | 98.80 118 | 96.78 16 | 99.83 59 | 97.93 54 | 99.61 67 | 99.74 31 |
|
XVS | | | 98.70 11 | 98.49 17 | 99.34 23 | 99.70 22 | 98.35 41 | 99.29 22 | 98.88 54 | 97.40 27 | 98.46 76 | 99.20 57 | 95.90 39 | 99.89 39 | 97.85 61 | 99.74 42 | 99.78 16 |
|
X-MVStestdata | | | 94.06 272 | 92.30 293 | 99.34 23 | 99.70 22 | 98.35 41 | 99.29 22 | 98.88 54 | 97.40 27 | 98.46 76 | 43.50 381 | 95.90 39 | 99.89 39 | 97.85 61 | 99.74 42 | 99.78 16 |
|
MG-MVS | | | 97.81 62 | 97.60 63 | 98.44 89 | 99.12 99 | 95.97 145 | 97.75 261 | 98.78 92 | 96.89 60 | 98.46 76 | 99.22 54 | 93.90 94 | 99.68 115 | 94.81 184 | 99.52 85 | 99.67 59 |
|
test_fmvsmvis_n_1920 | | | 98.44 36 | 98.51 15 | 98.23 106 | 98.33 171 | 96.15 135 | 98.97 84 | 99.15 21 | 98.55 3 | 98.45 79 | 99.55 1 | 94.26 88 | 99.97 1 | 99.65 3 | 99.66 56 | 98.57 194 |
|
NCCC | | | 98.61 15 | 98.35 26 | 99.38 18 | 99.28 74 | 98.61 26 | 98.45 185 | 98.76 96 | 97.82 9 | 98.45 79 | 98.93 104 | 96.65 18 | 99.83 59 | 97.38 94 | 99.41 97 | 99.71 43 |
|
MVS_Test | | | 97.28 95 | 97.00 93 | 98.13 114 | 98.33 171 | 95.97 145 | 98.74 136 | 98.07 243 | 94.27 178 | 98.44 81 | 98.07 194 | 92.48 106 | 99.26 167 | 96.43 134 | 98.19 156 | 99.16 139 |
|
MVS_111021_LR | | | 98.34 46 | 98.23 41 | 98.67 68 | 99.27 75 | 96.90 96 | 97.95 241 | 99.58 3 | 97.14 48 | 98.44 81 | 99.01 92 | 95.03 70 | 99.62 127 | 97.91 56 | 99.75 38 | 99.50 85 |
|
ETV-MVS | | | 97.96 55 | 97.81 56 | 98.40 94 | 98.42 158 | 97.27 80 | 98.73 140 | 98.55 146 | 96.84 61 | 98.38 83 | 97.44 251 | 95.39 52 | 99.35 161 | 97.62 78 | 98.89 121 | 98.58 193 |
|
test2506 | | | 94.44 247 | 93.91 244 | 96.04 260 | 99.02 106 | 88.99 333 | 99.06 63 | 79.47 388 | 96.96 57 | 98.36 84 | 99.26 47 | 77.21 340 | 99.52 146 | 96.78 124 | 99.04 113 | 99.59 73 |
|
VDDNet | | | 95.36 190 | 94.53 207 | 97.86 129 | 98.10 194 | 95.13 184 | 98.85 111 | 97.75 270 | 90.46 313 | 98.36 84 | 99.39 22 | 73.27 357 | 99.64 121 | 97.98 50 | 96.58 196 | 98.81 172 |
|
mPP-MVS | | | 98.51 29 | 98.26 37 | 99.25 34 | 99.75 3 | 98.04 56 | 99.28 24 | 98.81 78 | 96.24 87 | 98.35 86 | 99.23 52 | 95.46 49 | 99.94 5 | 97.42 92 | 99.81 12 | 99.77 22 |
|
DELS-MVS | | | 98.40 40 | 98.20 44 | 98.99 53 | 99.00 109 | 97.66 67 | 97.75 261 | 98.89 51 | 97.71 12 | 98.33 87 | 98.97 95 | 94.97 71 | 99.88 47 | 98.42 34 | 99.76 34 | 99.42 104 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_HR | | | 98.47 33 | 98.34 29 | 98.88 61 | 99.22 86 | 97.32 78 | 97.91 245 | 99.58 3 | 97.20 43 | 98.33 87 | 99.00 93 | 95.99 34 | 99.64 121 | 98.05 49 | 99.76 34 | 99.69 50 |
|
ZNCC-MVS | | | 98.49 30 | 98.20 44 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 42 | 98.86 67 | 95.77 109 | 98.31 89 | 99.10 76 | 95.46 49 | 99.93 21 | 97.57 84 | 99.81 12 | 99.74 31 |
|
HPM-MVS++ |  | | 98.58 20 | 98.25 38 | 99.55 9 | 99.50 41 | 99.08 11 | 98.72 144 | 98.66 123 | 97.51 22 | 98.15 90 | 98.83 115 | 95.70 43 | 99.92 26 | 97.53 87 | 99.67 54 | 99.66 62 |
|
新几何1 | | | | | 99.16 44 | 99.34 55 | 98.01 58 | | 98.69 112 | 90.06 321 | 98.13 91 | 98.95 102 | 94.60 76 | 99.89 39 | 91.97 271 | 99.47 91 | 99.59 73 |
|
API-MVS | | | 97.41 89 | 97.25 83 | 97.91 127 | 98.70 137 | 96.80 99 | 98.82 117 | 98.69 112 | 94.53 169 | 98.11 92 | 98.28 177 | 94.50 81 | 99.57 132 | 94.12 208 | 99.49 88 | 97.37 231 |
|
ECVR-MVS |  | | 95.95 153 | 95.71 152 | 96.65 212 | 99.02 106 | 90.86 299 | 99.03 71 | 91.80 375 | 96.96 57 | 98.10 93 | 99.26 47 | 81.31 308 | 99.51 147 | 96.90 112 | 99.04 113 | 99.59 73 |
|
CPTT-MVS | | | 97.72 66 | 97.32 81 | 98.92 58 | 99.64 28 | 97.10 89 | 99.12 53 | 98.81 78 | 92.34 264 | 98.09 94 | 99.08 84 | 93.01 101 | 99.92 26 | 96.06 145 | 99.77 28 | 99.75 29 |
|
test12 | | | | | 99.18 41 | 99.16 95 | 98.19 48 | | 98.53 150 | | 98.07 95 | | 95.13 67 | 99.72 103 | | 99.56 80 | 99.63 67 |
|
test222 | | | | | | 99.23 85 | 97.17 88 | 97.40 283 | 98.66 123 | 88.68 338 | 98.05 96 | 98.96 100 | 94.14 90 | | | 99.53 84 | 99.61 69 |
|
DP-MVS Recon | | | 97.86 60 | 97.46 73 | 99.06 51 | 99.53 36 | 98.35 41 | 98.33 197 | 98.89 51 | 92.62 253 | 98.05 96 | 98.94 103 | 95.34 56 | 99.65 119 | 96.04 146 | 99.42 96 | 99.19 133 |
|
Vis-MVSNet |  | | 97.42 88 | 97.11 88 | 98.34 97 | 98.66 142 | 96.23 131 | 99.22 35 | 99.00 32 | 96.63 72 | 98.04 98 | 99.21 55 | 88.05 211 | 99.35 161 | 96.01 148 | 99.21 107 | 99.45 99 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test1111 | | | 95.94 155 | 95.78 145 | 96.41 244 | 98.99 113 | 90.12 313 | 99.04 68 | 92.45 374 | 96.99 56 | 98.03 99 | 99.27 46 | 81.40 307 | 99.48 152 | 96.87 118 | 99.04 113 | 99.63 67 |
|
baseline | | | 97.64 72 | 97.44 75 | 98.25 104 | 98.35 164 | 96.20 132 | 99.00 78 | 98.32 192 | 96.33 86 | 98.03 99 | 99.17 64 | 91.35 137 | 99.16 178 | 98.10 45 | 98.29 155 | 99.39 105 |
|
test_yl | | | 97.22 97 | 96.78 104 | 98.54 77 | 98.73 132 | 96.60 109 | 98.45 185 | 98.31 194 | 94.70 160 | 98.02 101 | 98.42 160 | 90.80 149 | 99.70 109 | 96.81 121 | 96.79 190 | 99.34 108 |
|
DCV-MVSNet | | | 97.22 97 | 96.78 104 | 98.54 77 | 98.73 132 | 96.60 109 | 98.45 185 | 98.31 194 | 94.70 160 | 98.02 101 | 98.42 160 | 90.80 149 | 99.70 109 | 96.81 121 | 96.79 190 | 99.34 108 |
|
MTAPA | | | 98.58 20 | 98.29 36 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 97 | 98.74 100 | 97.27 40 | 98.02 101 | 99.39 22 | 94.81 74 | 99.96 4 | 97.91 56 | 99.79 23 | 99.77 22 |
|
sss | | | 97.39 90 | 96.98 95 | 98.61 71 | 98.60 148 | 96.61 108 | 98.22 212 | 98.93 42 | 93.97 190 | 98.01 104 | 98.48 152 | 91.98 121 | 99.85 53 | 96.45 133 | 98.15 157 | 99.39 105 |
|
alignmvs | | | 97.56 79 | 97.07 91 | 99.01 52 | 98.66 142 | 98.37 39 | 98.83 115 | 98.06 248 | 96.74 67 | 98.00 105 | 97.65 234 | 90.80 149 | 99.48 152 | 98.37 36 | 96.56 197 | 99.19 133 |
|
OMC-MVS | | | 97.55 80 | 97.34 80 | 98.20 108 | 99.33 57 | 95.92 152 | 98.28 207 | 98.59 135 | 95.52 121 | 97.97 106 | 99.10 76 | 93.28 99 | 99.49 148 | 95.09 177 | 98.88 122 | 99.19 133 |
|
VDD-MVS | | | 95.82 163 | 95.23 175 | 97.61 154 | 98.84 126 | 93.98 234 | 98.68 152 | 97.40 300 | 95.02 150 | 97.95 107 | 99.34 38 | 74.37 354 | 99.78 91 | 98.64 15 | 96.80 189 | 99.08 151 |
|
casdiffmvs |  | | 97.63 73 | 97.41 76 | 98.28 100 | 98.33 171 | 96.14 136 | 98.82 117 | 98.32 192 | 96.38 84 | 97.95 107 | 99.21 55 | 91.23 141 | 99.23 171 | 98.12 44 | 98.37 149 | 99.48 91 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_BlendedMVS | | | 96.73 118 | 96.60 113 | 97.12 181 | 99.25 78 | 95.35 175 | 98.26 210 | 99.26 10 | 94.28 177 | 97.94 109 | 97.46 248 | 92.74 104 | 99.81 71 | 96.88 115 | 93.32 259 | 96.20 324 |
|
PVSNet_Blended | | | 97.38 91 | 97.12 87 | 98.14 111 | 99.25 78 | 95.35 175 | 97.28 296 | 99.26 10 | 93.13 235 | 97.94 109 | 98.21 185 | 92.74 104 | 99.81 71 | 96.88 115 | 99.40 99 | 99.27 121 |
|
DPM-MVS | | | 97.55 80 | 96.99 94 | 99.23 37 | 99.04 104 | 98.55 27 | 97.17 306 | 98.35 188 | 94.85 158 | 97.93 111 | 98.58 143 | 95.07 69 | 99.71 108 | 92.60 251 | 99.34 103 | 99.43 102 |
|
MP-MVS |  | | 98.33 48 | 98.01 52 | 99.28 31 | 99.75 3 | 98.18 49 | 99.22 35 | 98.79 90 | 96.13 92 | 97.92 112 | 99.23 52 | 94.54 77 | 99.94 5 | 96.74 126 | 99.78 26 | 99.73 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MDTV_nov1_ep13_2view | | | | | | | 84.26 359 | 96.89 326 | | 90.97 306 | 97.90 113 | | 89.89 164 | | 93.91 215 | | 99.18 138 |
|
test_prior2 | | | | | | | | 97.80 257 | | 96.12 93 | 97.89 114 | 98.69 131 | 95.96 35 | | 96.89 113 | 99.60 68 | |
|
原ACMM1 | | | | | 98.65 69 | 99.32 60 | 96.62 106 | | 98.67 120 | 93.27 231 | 97.81 115 | 98.97 95 | 95.18 65 | 99.83 59 | 93.84 217 | 99.46 94 | 99.50 85 |
|
114514_t | | | 96.93 110 | 96.27 126 | 98.92 58 | 99.50 41 | 97.63 69 | 98.85 111 | 98.90 49 | 84.80 358 | 97.77 116 | 99.11 74 | 92.84 102 | 99.66 118 | 94.85 181 | 99.77 28 | 99.47 93 |
|
casdiffmvs_mvg |  | | 97.72 66 | 97.48 72 | 98.44 89 | 98.42 158 | 96.59 111 | 98.92 95 | 98.44 171 | 96.20 89 | 97.76 117 | 99.20 57 | 91.66 128 | 99.23 171 | 98.27 41 | 98.41 148 | 99.49 90 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PMMVS | | | 96.60 122 | 96.33 123 | 97.41 164 | 97.90 207 | 93.93 235 | 97.35 290 | 98.41 177 | 92.84 247 | 97.76 117 | 97.45 250 | 91.10 144 | 99.20 175 | 96.26 138 | 97.91 164 | 99.11 145 |
|
PVSNet | | 91.96 18 | 96.35 136 | 96.15 130 | 96.96 192 | 99.17 91 | 92.05 280 | 96.08 344 | 98.68 115 | 93.69 209 | 97.75 119 | 97.80 222 | 88.86 192 | 99.69 114 | 94.26 204 | 99.01 116 | 99.15 140 |
|
TEST9 | | | | | | 99.31 62 | 98.50 29 | 97.92 243 | 98.73 103 | 92.63 252 | 97.74 120 | 98.68 132 | 96.20 26 | 99.80 78 | | | |
|
train_agg | | | 97.97 54 | 97.52 69 | 99.33 26 | 99.31 62 | 98.50 29 | 97.92 243 | 98.73 103 | 92.98 241 | 97.74 120 | 98.68 132 | 96.20 26 | 99.80 78 | 96.59 127 | 99.57 74 | 99.68 55 |
|
FE-MVS | | | 95.62 174 | 94.90 192 | 97.78 136 | 98.37 163 | 94.92 195 | 97.17 306 | 97.38 302 | 90.95 307 | 97.73 122 | 97.70 228 | 85.32 266 | 99.63 124 | 91.18 283 | 98.33 152 | 98.79 173 |
|
CANet | | | 98.05 53 | 97.76 58 | 98.90 60 | 98.73 132 | 97.27 80 | 98.35 195 | 98.78 92 | 97.37 32 | 97.72 123 | 98.96 100 | 91.53 134 | 99.92 26 | 98.79 13 | 99.65 59 | 99.51 83 |
|
test_8 | | | | | | 99.29 70 | 98.44 31 | 97.89 249 | 98.72 105 | 92.98 241 | 97.70 124 | 98.66 135 | 96.20 26 | 99.80 78 | | | |
|
MP-MVS-pluss | | | 98.31 49 | 97.92 55 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 190 | 98.78 92 | 94.10 182 | 97.69 125 | 99.42 20 | 95.25 62 | 99.92 26 | 98.09 46 | 99.80 19 | 99.67 59 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
canonicalmvs | | | 97.67 70 | 97.23 84 | 98.98 54 | 98.70 137 | 98.38 35 | 99.34 18 | 98.39 181 | 96.76 66 | 97.67 126 | 97.40 254 | 92.26 111 | 99.49 148 | 98.28 40 | 96.28 209 | 99.08 151 |
|
PVSNet_Blended_VisFu | | | 97.70 68 | 97.46 73 | 98.44 89 | 99.27 75 | 95.91 153 | 98.63 161 | 99.16 20 | 94.48 173 | 97.67 126 | 98.88 109 | 92.80 103 | 99.91 34 | 97.11 101 | 99.12 111 | 99.50 85 |
|
WTY-MVS | | | 97.37 93 | 96.92 97 | 98.72 65 | 98.86 123 | 96.89 98 | 98.31 202 | 98.71 108 | 95.26 136 | 97.67 126 | 98.56 146 | 92.21 114 | 99.78 91 | 95.89 150 | 96.85 188 | 99.48 91 |
|
Effi-MVS+ | | | 97.12 104 | 96.69 109 | 98.39 95 | 98.19 185 | 96.72 104 | 97.37 287 | 98.43 175 | 93.71 206 | 97.65 129 | 98.02 198 | 92.20 115 | 99.25 168 | 96.87 118 | 97.79 169 | 99.19 133 |
|
thisisatest0530 | | | 96.01 149 | 95.36 166 | 97.97 124 | 98.38 161 | 95.52 168 | 98.88 104 | 94.19 366 | 94.04 184 | 97.64 130 | 98.31 175 | 83.82 297 | 99.46 155 | 95.29 172 | 97.70 174 | 98.93 165 |
|
tttt0517 | | | 96.07 147 | 95.51 160 | 97.78 136 | 98.41 160 | 94.84 198 | 99.28 24 | 94.33 364 | 94.26 179 | 97.64 130 | 98.64 136 | 84.05 290 | 99.47 154 | 95.34 168 | 97.60 177 | 99.03 154 |
|
HyFIR lowres test | | | 96.90 112 | 96.49 118 | 98.14 111 | 99.33 57 | 95.56 165 | 97.38 285 | 99.65 2 | 92.34 264 | 97.61 132 | 98.20 186 | 89.29 176 | 99.10 192 | 96.97 106 | 97.60 177 | 99.77 22 |
|
ACMMP |  | | 98.23 50 | 97.95 54 | 99.09 49 | 99.74 7 | 97.62 70 | 99.03 71 | 99.41 6 | 95.98 97 | 97.60 133 | 99.36 32 | 94.45 82 | 99.93 21 | 97.14 100 | 98.85 125 | 99.70 47 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
agg_prior | | | | | | 99.30 66 | 98.38 35 | | 98.72 105 | | 97.57 134 | | | 99.81 71 | | | |
|
tpmrst | | | 95.63 173 | 95.69 155 | 95.44 285 | 97.54 232 | 88.54 339 | 96.97 316 | 97.56 281 | 93.50 220 | 97.52 135 | 96.93 296 | 89.49 169 | 99.16 178 | 95.25 174 | 96.42 202 | 98.64 187 |
|
MDTV_nov1_ep13 | | | | 95.40 161 | | 97.48 236 | 88.34 343 | 96.85 329 | 97.29 306 | 93.74 203 | 97.48 136 | 97.26 260 | 89.18 180 | 99.05 196 | 91.92 272 | 97.43 180 | |
|
FA-MVS(test-final) | | | 96.41 135 | 95.94 139 | 97.82 133 | 98.21 181 | 95.20 180 | 97.80 257 | 97.58 279 | 93.21 232 | 97.36 137 | 97.70 228 | 89.47 171 | 99.56 135 | 94.12 208 | 97.99 161 | 98.71 180 |
|
EPMVS | | | 94.99 211 | 94.48 210 | 96.52 233 | 97.22 254 | 91.75 285 | 97.23 298 | 91.66 376 | 94.11 181 | 97.28 138 | 96.81 303 | 85.70 256 | 98.84 229 | 93.04 240 | 97.28 182 | 98.97 160 |
|
EIA-MVS | | | 97.75 64 | 97.58 64 | 98.27 101 | 98.38 161 | 96.44 119 | 99.01 76 | 98.60 133 | 95.88 105 | 97.26 139 | 97.53 245 | 94.97 71 | 99.33 163 | 97.38 94 | 99.20 108 | 99.05 153 |
|
IS-MVSNet | | | 97.22 97 | 96.88 98 | 98.25 104 | 98.85 125 | 96.36 126 | 99.19 42 | 97.97 256 | 95.39 127 | 97.23 140 | 98.99 94 | 91.11 143 | 98.93 217 | 94.60 191 | 98.59 137 | 99.47 93 |
|
EPP-MVSNet | | | 97.46 82 | 97.28 82 | 97.99 123 | 98.64 144 | 95.38 172 | 99.33 21 | 98.31 194 | 93.61 217 | 97.19 141 | 99.07 85 | 94.05 91 | 99.23 171 | 96.89 113 | 98.43 147 | 99.37 107 |
|
thisisatest0515 | | | 95.61 177 | 94.89 193 | 97.76 139 | 98.15 191 | 95.15 183 | 96.77 332 | 94.41 362 | 92.95 243 | 97.18 142 | 97.43 252 | 84.78 274 | 99.45 156 | 94.63 188 | 97.73 173 | 98.68 182 |
|
CANet_DTU | | | 96.96 109 | 96.55 115 | 98.21 107 | 98.17 189 | 96.07 138 | 97.98 239 | 98.21 211 | 97.24 41 | 97.13 143 | 98.93 104 | 86.88 235 | 99.91 34 | 95.00 179 | 99.37 102 | 98.66 185 |
|
CHOSEN 1792x2688 | | | 97.12 104 | 96.80 101 | 98.08 118 | 99.30 66 | 94.56 214 | 98.05 232 | 99.71 1 | 93.57 218 | 97.09 144 | 98.91 107 | 88.17 206 | 99.89 39 | 96.87 118 | 99.56 80 | 99.81 12 |
|
PatchT | | | 93.06 292 | 91.97 296 | 96.35 248 | 96.69 288 | 92.67 273 | 94.48 365 | 97.08 314 | 86.62 346 | 97.08 145 | 92.23 365 | 87.94 213 | 97.90 321 | 78.89 366 | 96.69 192 | 98.49 196 |
|
PatchmatchNet |  | | 95.71 168 | 95.52 159 | 96.29 253 | 97.58 227 | 90.72 303 | 96.84 330 | 97.52 289 | 94.06 183 | 97.08 145 | 96.96 292 | 89.24 179 | 98.90 222 | 92.03 269 | 98.37 149 | 99.26 123 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MAR-MVS | | | 96.91 111 | 96.40 121 | 98.45 87 | 98.69 139 | 96.90 96 | 98.66 157 | 98.68 115 | 92.40 263 | 97.07 147 | 97.96 205 | 91.54 133 | 99.75 99 | 93.68 221 | 98.92 119 | 98.69 181 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PAPM_NR | | | 97.46 82 | 97.11 88 | 98.50 81 | 99.50 41 | 96.41 123 | 98.63 161 | 98.60 133 | 95.18 140 | 97.06 148 | 98.06 195 | 94.26 88 | 99.57 132 | 93.80 219 | 98.87 124 | 99.52 80 |
|
TAMVS | | | 97.02 107 | 96.79 103 | 97.70 145 | 98.06 197 | 95.31 177 | 98.52 176 | 98.31 194 | 93.95 191 | 97.05 149 | 98.61 138 | 93.49 97 | 98.52 259 | 95.33 169 | 97.81 168 | 99.29 119 |
|
CSCG | | | 97.85 61 | 97.74 59 | 98.20 108 | 99.67 25 | 95.16 181 | 99.22 35 | 99.32 8 | 93.04 239 | 97.02 150 | 98.92 106 | 95.36 55 | 99.91 34 | 97.43 91 | 99.64 63 | 99.52 80 |
|
CDS-MVSNet | | | 96.99 108 | 96.69 109 | 97.90 128 | 98.05 198 | 95.98 140 | 98.20 215 | 98.33 191 | 93.67 213 | 96.95 151 | 98.49 151 | 93.54 96 | 98.42 271 | 95.24 175 | 97.74 172 | 99.31 114 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
XVG-OURS-SEG-HR | | | 96.51 128 | 96.34 122 | 97.02 187 | 98.77 130 | 93.76 240 | 97.79 259 | 98.50 160 | 95.45 124 | 96.94 152 | 99.09 82 | 87.87 216 | 99.55 142 | 96.76 125 | 95.83 218 | 97.74 220 |
|
CR-MVSNet | | | 94.76 223 | 94.15 228 | 96.59 222 | 97.00 268 | 93.43 254 | 94.96 357 | 97.56 281 | 92.46 257 | 96.93 153 | 96.24 321 | 88.15 207 | 97.88 325 | 87.38 330 | 96.65 194 | 98.46 197 |
|
RPMNet | | | 92.81 294 | 91.34 301 | 97.24 172 | 97.00 268 | 93.43 254 | 94.96 357 | 98.80 85 | 82.27 363 | 96.93 153 | 92.12 366 | 86.98 233 | 99.82 66 | 76.32 370 | 96.65 194 | 98.46 197 |
|
SCA | | | 95.46 180 | 95.13 179 | 96.46 241 | 97.67 221 | 91.29 294 | 97.33 292 | 97.60 278 | 94.68 163 | 96.92 155 | 97.10 270 | 83.97 292 | 98.89 223 | 92.59 253 | 98.32 154 | 99.20 129 |
|
PatchMatch-RL | | | 96.59 123 | 96.03 136 | 98.27 101 | 99.31 62 | 96.51 116 | 97.91 245 | 99.06 27 | 93.72 205 | 96.92 155 | 98.06 195 | 88.50 201 | 99.65 119 | 91.77 275 | 99.00 117 | 98.66 185 |
|
DeepC-MVS | | 95.98 3 | 97.88 59 | 97.58 64 | 98.77 63 | 99.25 78 | 96.93 94 | 98.83 115 | 98.75 98 | 96.96 57 | 96.89 157 | 99.50 8 | 90.46 155 | 99.87 48 | 97.84 63 | 99.76 34 | 99.52 80 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVG-OURS | | | 96.55 127 | 96.41 120 | 96.99 188 | 98.75 131 | 93.76 240 | 97.50 279 | 98.52 153 | 95.67 115 | 96.83 158 | 99.30 42 | 88.95 191 | 99.53 143 | 95.88 151 | 96.26 210 | 97.69 223 |
|
AdaColmap |  | | 97.15 103 | 96.70 108 | 98.48 84 | 99.16 95 | 96.69 105 | 98.01 236 | 98.89 51 | 94.44 175 | 96.83 158 | 98.68 132 | 90.69 152 | 99.76 97 | 94.36 198 | 99.29 106 | 98.98 159 |
|
CostFormer | | | 94.95 215 | 94.73 199 | 95.60 280 | 97.28 250 | 89.06 330 | 97.53 277 | 96.89 329 | 89.66 328 | 96.82 160 | 96.72 306 | 86.05 249 | 98.95 216 | 95.53 165 | 96.13 215 | 98.79 173 |
|
UGNet | | | 96.78 117 | 96.30 125 | 98.19 110 | 98.24 177 | 95.89 155 | 98.88 104 | 98.93 42 | 97.39 29 | 96.81 161 | 97.84 216 | 82.60 302 | 99.90 37 | 96.53 130 | 99.49 88 | 98.79 173 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CNLPA | | | 97.45 85 | 97.03 92 | 98.73 64 | 99.05 103 | 97.44 77 | 98.07 230 | 98.53 150 | 95.32 133 | 96.80 162 | 98.53 147 | 93.32 98 | 99.72 103 | 94.31 202 | 99.31 105 | 99.02 155 |
|
CHOSEN 280x420 | | | 97.18 101 | 97.18 86 | 97.20 174 | 98.81 128 | 93.27 261 | 95.78 351 | 99.15 21 | 95.25 137 | 96.79 163 | 98.11 192 | 92.29 110 | 99.07 195 | 98.56 19 | 99.85 5 | 99.25 125 |
|
HY-MVS | | 93.96 8 | 96.82 116 | 96.23 129 | 98.57 73 | 98.46 156 | 97.00 91 | 98.14 223 | 98.21 211 | 93.95 191 | 96.72 164 | 97.99 202 | 91.58 129 | 99.76 97 | 94.51 195 | 96.54 198 | 98.95 163 |
|
PAPR | | | 96.84 115 | 96.24 128 | 98.65 69 | 98.72 136 | 96.92 95 | 97.36 289 | 98.57 142 | 93.33 226 | 96.67 165 | 97.57 242 | 94.30 86 | 99.56 135 | 91.05 288 | 98.59 137 | 99.47 93 |
|
Anonymous20240529 | | | 95.10 205 | 94.22 222 | 97.75 140 | 99.01 108 | 94.26 226 | 98.87 108 | 98.83 72 | 85.79 354 | 96.64 166 | 98.97 95 | 78.73 326 | 99.85 53 | 96.27 137 | 94.89 224 | 99.12 144 |
|
thres600view7 | | | 95.49 178 | 94.77 196 | 97.67 148 | 98.98 114 | 95.02 187 | 98.85 111 | 96.90 327 | 95.38 128 | 96.63 167 | 96.90 297 | 84.29 282 | 99.59 130 | 88.65 323 | 96.33 204 | 98.40 199 |
|
thres100view900 | | | 95.38 187 | 94.70 200 | 97.41 164 | 98.98 114 | 94.92 195 | 98.87 108 | 96.90 327 | 95.38 128 | 96.61 168 | 96.88 298 | 84.29 282 | 99.56 135 | 88.11 324 | 96.29 206 | 97.76 218 |
|
Vis-MVSNet (Re-imp) | | | 96.87 113 | 96.55 115 | 97.83 131 | 98.73 132 | 95.46 170 | 99.20 40 | 98.30 200 | 94.96 153 | 96.60 169 | 98.87 110 | 90.05 161 | 98.59 251 | 93.67 223 | 98.60 136 | 99.46 97 |
|
CVMVSNet | | | 95.43 183 | 96.04 135 | 93.57 324 | 97.93 205 | 83.62 361 | 98.12 226 | 98.59 135 | 95.68 114 | 96.56 170 | 99.02 88 | 87.51 223 | 97.51 338 | 93.56 227 | 97.44 179 | 99.60 71 |
|
RPSCF | | | 94.87 219 | 95.40 161 | 93.26 330 | 98.89 120 | 82.06 366 | 98.33 197 | 98.06 248 | 90.30 318 | 96.56 170 | 99.26 47 | 87.09 230 | 99.49 148 | 93.82 218 | 96.32 205 | 98.24 205 |
|
tfpn200view9 | | | 95.32 194 | 94.62 203 | 97.43 162 | 98.94 117 | 94.98 191 | 98.68 152 | 96.93 325 | 95.33 131 | 96.55 172 | 96.53 314 | 84.23 286 | 99.56 135 | 88.11 324 | 96.29 206 | 97.76 218 |
|
thres400 | | | 95.38 187 | 94.62 203 | 97.65 152 | 98.94 117 | 94.98 191 | 98.68 152 | 96.93 325 | 95.33 131 | 96.55 172 | 96.53 314 | 84.23 286 | 99.56 135 | 88.11 324 | 96.29 206 | 98.40 199 |
|
thres200 | | | 95.25 196 | 94.57 205 | 97.28 171 | 98.81 128 | 94.92 195 | 98.20 215 | 97.11 313 | 95.24 139 | 96.54 174 | 96.22 325 | 84.58 279 | 99.53 143 | 87.93 328 | 96.50 200 | 97.39 229 |
|
ab-mvs | | | 96.42 131 | 95.71 152 | 98.55 75 | 98.63 145 | 96.75 102 | 97.88 250 | 98.74 100 | 93.84 196 | 96.54 174 | 98.18 188 | 85.34 264 | 99.75 99 | 95.93 149 | 96.35 203 | 99.15 140 |
|
Anonymous202405211 | | | 95.28 195 | 94.49 209 | 97.67 148 | 99.00 109 | 93.75 242 | 98.70 149 | 97.04 318 | 90.66 309 | 96.49 176 | 98.80 118 | 78.13 332 | 99.83 59 | 96.21 141 | 95.36 223 | 99.44 100 |
|
ADS-MVSNet2 | | | 94.58 235 | 94.40 218 | 95.11 294 | 98.00 199 | 88.74 336 | 96.04 345 | 97.30 305 | 90.15 319 | 96.47 177 | 96.64 311 | 87.89 214 | 97.56 336 | 90.08 300 | 97.06 184 | 99.02 155 |
|
ADS-MVSNet | | | 95.00 210 | 94.45 214 | 96.63 216 | 98.00 199 | 91.91 282 | 96.04 345 | 97.74 271 | 90.15 319 | 96.47 177 | 96.64 311 | 87.89 214 | 98.96 211 | 90.08 300 | 97.06 184 | 99.02 155 |
|
Effi-MVS+-dtu | | | 96.29 138 | 96.56 114 | 95.51 281 | 97.89 208 | 90.22 312 | 98.80 125 | 98.10 236 | 96.57 75 | 96.45 179 | 96.66 308 | 90.81 148 | 98.91 219 | 95.72 157 | 97.99 161 | 97.40 228 |
|
PLC |  | 95.07 4 | 97.20 100 | 96.78 104 | 98.44 89 | 99.29 70 | 96.31 130 | 98.14 223 | 98.76 96 | 92.41 262 | 96.39 180 | 98.31 175 | 94.92 73 | 99.78 91 | 94.06 211 | 98.77 129 | 99.23 126 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
tpm | | | 94.13 265 | 93.80 252 | 95.12 293 | 96.50 298 | 87.91 349 | 97.44 280 | 95.89 349 | 92.62 253 | 96.37 181 | 96.30 320 | 84.13 289 | 98.30 292 | 93.24 233 | 91.66 280 | 99.14 142 |
|
TAPA-MVS | | 93.98 7 | 95.35 191 | 94.56 206 | 97.74 141 | 99.13 98 | 94.83 200 | 98.33 197 | 98.64 128 | 86.62 346 | 96.29 182 | 98.61 138 | 94.00 93 | 99.29 166 | 80.00 362 | 99.41 97 | 99.09 147 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
baseline1 | | | 95.84 161 | 95.12 181 | 98.01 122 | 98.49 155 | 95.98 140 | 98.73 140 | 97.03 319 | 95.37 130 | 96.22 183 | 98.19 187 | 89.96 163 | 99.16 178 | 94.60 191 | 87.48 330 | 98.90 167 |
|
tpm2 | | | 94.19 261 | 93.76 257 | 95.46 284 | 97.23 253 | 89.04 331 | 97.31 294 | 96.85 333 | 87.08 345 | 96.21 184 | 96.79 304 | 83.75 298 | 98.74 238 | 92.43 261 | 96.23 212 | 98.59 191 |
|
F-COLMAP | | | 97.09 106 | 96.80 101 | 97.97 124 | 99.45 52 | 94.95 194 | 98.55 174 | 98.62 132 | 93.02 240 | 96.17 185 | 98.58 143 | 94.01 92 | 99.81 71 | 93.95 213 | 98.90 120 | 99.14 142 |
|
GeoE | | | 96.58 125 | 96.07 133 | 98.10 117 | 98.35 164 | 95.89 155 | 99.34 18 | 98.12 230 | 93.12 236 | 96.09 186 | 98.87 110 | 89.71 167 | 98.97 207 | 92.95 243 | 98.08 160 | 99.43 102 |
|
JIA-IIPM | | | 93.35 283 | 92.49 290 | 95.92 266 | 96.48 300 | 90.65 305 | 95.01 356 | 96.96 323 | 85.93 352 | 96.08 187 | 87.33 371 | 87.70 221 | 98.78 236 | 91.35 281 | 95.58 221 | 98.34 202 |
|
BH-RMVSNet | | | 95.92 157 | 95.32 170 | 97.69 146 | 98.32 174 | 94.64 206 | 98.19 218 | 97.45 296 | 94.56 167 | 96.03 188 | 98.61 138 | 85.02 269 | 99.12 186 | 90.68 293 | 99.06 112 | 99.30 117 |
|
dp | | | 94.15 264 | 93.90 245 | 94.90 300 | 97.31 249 | 86.82 355 | 96.97 316 | 97.19 312 | 91.22 302 | 96.02 189 | 96.61 313 | 85.51 260 | 99.02 203 | 90.00 304 | 94.30 226 | 98.85 169 |
|
EPNet | | | 97.28 95 | 96.87 99 | 98.51 80 | 94.98 344 | 96.14 136 | 98.90 97 | 97.02 321 | 98.28 4 | 95.99 190 | 99.11 74 | 91.36 136 | 99.89 39 | 96.98 105 | 99.19 109 | 99.50 85 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LS3D | | | 97.16 102 | 96.66 112 | 98.68 67 | 98.53 152 | 97.19 87 | 98.93 94 | 98.90 49 | 92.83 248 | 95.99 190 | 99.37 28 | 92.12 117 | 99.87 48 | 93.67 223 | 99.57 74 | 98.97 160 |
|
SDMVSNet | | | 96.85 114 | 96.42 119 | 98.14 111 | 99.30 66 | 96.38 124 | 99.21 38 | 99.23 14 | 95.92 100 | 95.96 192 | 98.76 126 | 85.88 252 | 99.44 157 | 97.93 54 | 95.59 219 | 98.60 189 |
|
sd_testset | | | 96.17 143 | 95.76 147 | 97.42 163 | 99.30 66 | 94.34 223 | 98.82 117 | 99.08 25 | 95.92 100 | 95.96 192 | 98.76 126 | 82.83 301 | 99.32 164 | 95.56 163 | 95.59 219 | 98.60 189 |
|
AUN-MVS | | | 94.53 239 | 93.73 259 | 96.92 197 | 98.50 153 | 93.52 252 | 98.34 196 | 98.10 236 | 93.83 198 | 95.94 194 | 97.98 204 | 85.59 258 | 99.03 200 | 94.35 199 | 80.94 360 | 98.22 207 |
|
TR-MVS | | | 94.94 217 | 94.20 223 | 97.17 177 | 97.75 214 | 94.14 231 | 97.59 274 | 97.02 321 | 92.28 268 | 95.75 195 | 97.64 236 | 83.88 294 | 98.96 211 | 89.77 306 | 96.15 214 | 98.40 199 |
|
iter_conf_final | | | 96.42 131 | 96.12 131 | 97.34 169 | 98.46 156 | 96.55 115 | 99.08 61 | 98.06 248 | 96.03 96 | 95.63 196 | 98.46 156 | 87.72 218 | 98.59 251 | 97.84 63 | 93.80 244 | 96.87 258 |
|
iter_conf05 | | | 96.13 146 | 95.79 144 | 97.15 178 | 98.16 190 | 95.99 139 | 98.88 104 | 97.98 254 | 95.91 102 | 95.58 197 | 98.46 156 | 85.53 259 | 98.59 251 | 97.88 59 | 93.75 245 | 96.86 261 |
|
VPA-MVSNet | | | 95.75 165 | 95.11 182 | 97.69 146 | 97.24 252 | 97.27 80 | 98.94 92 | 99.23 14 | 95.13 142 | 95.51 198 | 97.32 257 | 85.73 255 | 98.91 219 | 97.33 96 | 89.55 306 | 96.89 255 |
|
HQP_MVS | | | 96.14 145 | 95.90 141 | 96.85 200 | 97.42 243 | 94.60 212 | 98.80 125 | 98.56 144 | 97.28 36 | 95.34 199 | 98.28 177 | 87.09 230 | 99.03 200 | 96.07 142 | 94.27 227 | 96.92 247 |
|
plane_prior3 | | | | | | | 94.61 210 | | | 97.02 54 | 95.34 199 | | | | | | |
|
Fast-Effi-MVS+ | | | 96.28 140 | 95.70 154 | 98.03 121 | 98.29 176 | 95.97 145 | 98.58 167 | 98.25 208 | 91.74 281 | 95.29 201 | 97.23 264 | 91.03 146 | 99.15 181 | 92.90 245 | 97.96 163 | 98.97 160 |
|
test_fmvs2 | | | 93.43 281 | 93.58 266 | 92.95 334 | 96.97 271 | 83.91 360 | 99.19 42 | 97.24 310 | 95.74 110 | 95.20 202 | 98.27 180 | 69.65 360 | 98.72 240 | 96.26 138 | 93.73 246 | 96.24 322 |
|
mvsmamba | | | 96.57 126 | 96.32 124 | 97.32 170 | 96.60 292 | 96.43 120 | 99.54 7 | 97.98 254 | 96.49 76 | 95.20 202 | 98.64 136 | 90.82 147 | 98.55 255 | 97.97 51 | 93.65 249 | 96.98 242 |
|
EI-MVSNet | | | 95.96 152 | 95.83 143 | 96.36 247 | 97.93 205 | 93.70 246 | 98.12 226 | 98.27 203 | 93.70 208 | 95.07 204 | 99.02 88 | 92.23 113 | 98.54 257 | 94.68 186 | 93.46 254 | 96.84 263 |
|
MVSTER | | | 96.06 148 | 95.72 149 | 97.08 184 | 98.23 179 | 95.93 151 | 98.73 140 | 98.27 203 | 94.86 157 | 95.07 204 | 98.09 193 | 88.21 205 | 98.54 257 | 96.59 127 | 93.46 254 | 96.79 267 |
|
OPM-MVS | | | 95.69 171 | 95.33 169 | 96.76 205 | 96.16 315 | 94.63 207 | 98.43 190 | 98.39 181 | 96.64 71 | 95.02 206 | 98.78 120 | 85.15 268 | 99.05 196 | 95.21 176 | 94.20 230 | 96.60 290 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Fast-Effi-MVS+-dtu | | | 95.87 159 | 95.85 142 | 95.91 267 | 97.74 217 | 91.74 286 | 98.69 151 | 98.15 226 | 95.56 119 | 94.92 207 | 97.68 233 | 88.98 189 | 98.79 235 | 93.19 235 | 97.78 170 | 97.20 235 |
|
TESTMET0.1,1 | | | 94.18 263 | 93.69 262 | 95.63 278 | 96.92 274 | 89.12 329 | 96.91 321 | 94.78 359 | 93.17 234 | 94.88 208 | 96.45 317 | 78.52 327 | 98.92 218 | 93.09 237 | 98.50 142 | 98.85 169 |
|
VPNet | | | 94.99 211 | 94.19 224 | 97.40 166 | 97.16 261 | 96.57 112 | 98.71 145 | 98.97 35 | 95.67 115 | 94.84 209 | 98.24 184 | 80.36 317 | 98.67 245 | 96.46 132 | 87.32 334 | 96.96 244 |
|
1112_ss | | | 96.63 121 | 96.00 137 | 98.50 81 | 98.56 149 | 96.37 125 | 98.18 221 | 98.10 236 | 92.92 244 | 94.84 209 | 98.43 158 | 92.14 116 | 99.58 131 | 94.35 199 | 96.51 199 | 99.56 79 |
|
test-LLR | | | 95.10 205 | 94.87 194 | 95.80 272 | 96.77 282 | 89.70 319 | 96.91 321 | 95.21 354 | 95.11 144 | 94.83 211 | 95.72 337 | 87.71 219 | 98.97 207 | 93.06 238 | 98.50 142 | 98.72 178 |
|
test-mter | | | 94.08 270 | 93.51 270 | 95.80 272 | 96.77 282 | 89.70 319 | 96.91 321 | 95.21 354 | 92.89 245 | 94.83 211 | 95.72 337 | 77.69 335 | 98.97 207 | 93.06 238 | 98.50 142 | 98.72 178 |
|
Test_1112_low_res | | | 96.34 137 | 95.66 157 | 98.36 96 | 98.56 149 | 95.94 148 | 97.71 264 | 98.07 243 | 92.10 273 | 94.79 213 | 97.29 259 | 91.75 125 | 99.56 135 | 94.17 206 | 96.50 200 | 99.58 77 |
|
GA-MVS | | | 94.81 220 | 94.03 233 | 97.14 179 | 97.15 262 | 93.86 237 | 96.76 333 | 97.58 279 | 94.00 188 | 94.76 214 | 97.04 283 | 80.91 312 | 98.48 262 | 91.79 274 | 96.25 211 | 99.09 147 |
|
bld_raw_dy_0_64 | | | 95.74 166 | 95.31 172 | 97.03 186 | 96.35 306 | 95.76 159 | 99.12 53 | 97.37 303 | 95.97 98 | 94.70 215 | 98.48 152 | 85.80 254 | 98.49 261 | 96.55 129 | 93.48 253 | 96.84 263 |
|
BH-untuned | | | 95.95 153 | 95.72 149 | 96.65 212 | 98.55 151 | 92.26 276 | 98.23 211 | 97.79 268 | 93.73 204 | 94.62 216 | 98.01 200 | 88.97 190 | 99.00 206 | 93.04 240 | 98.51 141 | 98.68 182 |
|
test_djsdf | | | 96.00 150 | 95.69 155 | 96.93 194 | 95.72 329 | 95.49 169 | 99.47 9 | 98.40 179 | 94.98 151 | 94.58 217 | 97.86 213 | 89.16 181 | 98.41 279 | 96.91 109 | 94.12 235 | 96.88 256 |
|
cascas | | | 94.63 231 | 93.86 248 | 96.93 194 | 96.91 276 | 94.27 225 | 96.00 348 | 98.51 155 | 85.55 355 | 94.54 218 | 96.23 323 | 84.20 288 | 98.87 226 | 95.80 155 | 96.98 187 | 97.66 224 |
|
DP-MVS | | | 96.59 123 | 95.93 140 | 98.57 73 | 99.34 55 | 96.19 134 | 98.70 149 | 98.39 181 | 89.45 331 | 94.52 219 | 99.35 34 | 91.85 123 | 99.85 53 | 92.89 247 | 98.88 122 | 99.68 55 |
|
gg-mvs-nofinetune | | | 92.21 299 | 90.58 307 | 97.13 180 | 96.75 285 | 95.09 185 | 95.85 349 | 89.40 381 | 85.43 356 | 94.50 220 | 81.98 374 | 80.80 315 | 98.40 285 | 92.16 263 | 98.33 152 | 97.88 215 |
|
mvs_anonymous | | | 96.70 120 | 96.53 117 | 97.18 176 | 98.19 185 | 93.78 239 | 98.31 202 | 98.19 215 | 94.01 187 | 94.47 221 | 98.27 180 | 92.08 119 | 98.46 266 | 97.39 93 | 97.91 164 | 99.31 114 |
|
HQP-NCC | | | | | | 97.20 256 | | 98.05 232 | | 96.43 79 | 94.45 222 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 256 | | 98.05 232 | | 96.43 79 | 94.45 222 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 222 | | | 98.96 211 | | | 96.87 258 |
|
HQP-MVS | | | 95.72 167 | 95.40 161 | 96.69 210 | 97.20 256 | 94.25 227 | 98.05 232 | 98.46 167 | 96.43 79 | 94.45 222 | 97.73 225 | 86.75 236 | 98.96 211 | 95.30 170 | 94.18 231 | 96.86 261 |
|
MSDG | | | 95.93 156 | 95.30 173 | 97.83 131 | 98.90 119 | 95.36 173 | 96.83 331 | 98.37 185 | 91.32 296 | 94.43 226 | 98.73 128 | 90.27 159 | 99.60 129 | 90.05 302 | 98.82 127 | 98.52 195 |
|
dmvs_re | | | 94.48 244 | 94.18 226 | 95.37 287 | 97.68 220 | 90.11 314 | 98.54 175 | 97.08 314 | 94.56 167 | 94.42 227 | 97.24 263 | 84.25 284 | 97.76 329 | 91.02 289 | 92.83 267 | 98.24 205 |
|
nrg030 | | | 96.28 140 | 95.72 149 | 97.96 126 | 96.90 277 | 98.15 52 | 99.39 12 | 98.31 194 | 95.47 123 | 94.42 227 | 98.35 168 | 92.09 118 | 98.69 241 | 97.50 89 | 89.05 314 | 97.04 238 |
|
CLD-MVS | | | 95.62 174 | 95.34 167 | 96.46 241 | 97.52 235 | 93.75 242 | 97.27 297 | 98.46 167 | 95.53 120 | 94.42 227 | 98.00 201 | 86.21 246 | 98.97 207 | 96.25 140 | 94.37 225 | 96.66 285 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LPG-MVS_test | | | 95.62 174 | 95.34 167 | 96.47 238 | 97.46 238 | 93.54 249 | 98.99 81 | 98.54 148 | 94.67 164 | 94.36 230 | 98.77 122 | 85.39 261 | 99.11 188 | 95.71 158 | 94.15 233 | 96.76 270 |
|
LGP-MVS_train | | | | | 96.47 238 | 97.46 238 | 93.54 249 | | 98.54 148 | 94.67 164 | 94.36 230 | 98.77 122 | 85.39 261 | 99.11 188 | 95.71 158 | 94.15 233 | 96.76 270 |
|
v144192 | | | 94.39 250 | 93.70 261 | 96.48 237 | 96.06 318 | 94.35 222 | 98.58 167 | 98.16 225 | 91.45 289 | 94.33 232 | 97.02 285 | 87.50 225 | 98.45 267 | 91.08 285 | 89.11 313 | 96.63 287 |
|
V42 | | | 94.78 222 | 94.14 229 | 96.70 209 | 96.33 308 | 95.22 179 | 98.97 84 | 98.09 240 | 92.32 266 | 94.31 233 | 97.06 280 | 88.39 202 | 98.55 255 | 92.90 245 | 88.87 318 | 96.34 318 |
|
ACMM | | 93.85 9 | 95.69 171 | 95.38 165 | 96.61 219 | 97.61 225 | 93.84 238 | 98.91 96 | 98.44 171 | 95.25 137 | 94.28 234 | 98.47 154 | 86.04 251 | 99.12 186 | 95.50 166 | 93.95 240 | 96.87 258 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS-LS | | | 95.46 180 | 95.21 176 | 96.22 255 | 98.12 192 | 93.72 245 | 98.32 201 | 98.13 229 | 93.71 206 | 94.26 235 | 97.31 258 | 92.24 112 | 98.10 306 | 94.63 188 | 90.12 297 | 96.84 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 94.20 260 | 93.47 272 | 96.40 246 | 95.98 321 | 94.08 232 | 98.52 176 | 98.15 226 | 91.33 295 | 94.25 236 | 97.20 267 | 86.41 243 | 98.42 271 | 90.04 303 | 89.39 310 | 96.69 284 |
|
BH-w/o | | | 95.38 187 | 95.08 183 | 96.26 254 | 98.34 169 | 91.79 283 | 97.70 265 | 97.43 298 | 92.87 246 | 94.24 237 | 97.22 265 | 88.66 195 | 98.84 229 | 91.55 279 | 97.70 174 | 98.16 210 |
|
XVG-ACMP-BASELINE | | | 94.54 237 | 94.14 229 | 95.75 275 | 96.55 295 | 91.65 288 | 98.11 228 | 98.44 171 | 94.96 153 | 94.22 238 | 97.90 209 | 79.18 325 | 99.11 188 | 94.05 212 | 93.85 242 | 96.48 312 |
|
v1144 | | | 94.59 234 | 93.92 242 | 96.60 221 | 96.21 310 | 94.78 204 | 98.59 165 | 98.14 228 | 91.86 280 | 94.21 239 | 97.02 285 | 87.97 212 | 98.41 279 | 91.72 276 | 89.57 304 | 96.61 289 |
|
v1192 | | | 94.32 253 | 93.58 266 | 96.53 232 | 96.10 316 | 94.45 216 | 98.50 181 | 98.17 223 | 91.54 287 | 94.19 240 | 97.06 280 | 86.95 234 | 98.43 270 | 90.14 298 | 89.57 304 | 96.70 279 |
|
PAPM | | | 94.95 215 | 94.00 237 | 97.78 136 | 97.04 267 | 95.65 162 | 96.03 347 | 98.25 208 | 91.23 301 | 94.19 240 | 97.80 222 | 91.27 140 | 98.86 228 | 82.61 356 | 97.61 176 | 98.84 171 |
|
Patchmatch-test | | | 94.42 248 | 93.68 263 | 96.63 216 | 97.60 226 | 91.76 284 | 94.83 361 | 97.49 293 | 89.45 331 | 94.14 242 | 97.10 270 | 88.99 186 | 98.83 231 | 85.37 344 | 98.13 158 | 99.29 119 |
|
v1240 | | | 94.06 272 | 93.29 277 | 96.34 249 | 96.03 320 | 93.90 236 | 98.44 188 | 98.17 223 | 91.18 304 | 94.13 243 | 97.01 287 | 86.05 249 | 98.42 271 | 89.13 319 | 89.50 308 | 96.70 279 |
|
GBi-Net | | | 94.49 242 | 93.80 252 | 96.56 226 | 98.21 181 | 95.00 188 | 98.82 117 | 98.18 218 | 92.46 257 | 94.09 244 | 97.07 277 | 81.16 309 | 97.95 317 | 92.08 265 | 92.14 272 | 96.72 275 |
|
test1 | | | 94.49 242 | 93.80 252 | 96.56 226 | 98.21 181 | 95.00 188 | 98.82 117 | 98.18 218 | 92.46 257 | 94.09 244 | 97.07 277 | 81.16 309 | 97.95 317 | 92.08 265 | 92.14 272 | 96.72 275 |
|
FMVSNet3 | | | 94.97 214 | 94.26 221 | 97.11 182 | 98.18 187 | 96.62 106 | 98.56 173 | 98.26 207 | 93.67 213 | 94.09 244 | 97.10 270 | 84.25 284 | 98.01 313 | 92.08 265 | 92.14 272 | 96.70 279 |
|
MIMVSNet | | | 93.26 287 | 92.21 294 | 96.41 244 | 97.73 218 | 93.13 267 | 95.65 352 | 97.03 319 | 91.27 300 | 94.04 247 | 96.06 328 | 75.33 348 | 97.19 343 | 86.56 334 | 96.23 212 | 98.92 166 |
|
FIs | | | 96.51 128 | 96.12 131 | 97.67 148 | 97.13 263 | 97.54 73 | 99.36 15 | 99.22 17 | 95.89 103 | 94.03 248 | 98.35 168 | 91.98 121 | 98.44 269 | 96.40 135 | 92.76 268 | 97.01 240 |
|
v2v482 | | | 94.69 224 | 94.03 233 | 96.65 212 | 96.17 313 | 94.79 203 | 98.67 155 | 98.08 241 | 92.72 250 | 94.00 249 | 97.16 268 | 87.69 222 | 98.45 267 | 92.91 244 | 88.87 318 | 96.72 275 |
|
RRT_MVS | | | 95.98 151 | 95.78 145 | 96.56 226 | 96.48 300 | 94.22 229 | 99.57 6 | 97.92 261 | 95.89 103 | 93.95 250 | 98.70 130 | 89.27 177 | 98.42 271 | 97.23 98 | 93.02 263 | 97.04 238 |
|
FC-MVSNet-test | | | 96.42 131 | 96.05 134 | 97.53 158 | 96.95 272 | 97.27 80 | 99.36 15 | 99.23 14 | 95.83 107 | 93.93 251 | 98.37 166 | 92.00 120 | 98.32 288 | 96.02 147 | 92.72 269 | 97.00 241 |
|
UniMVSNet (Re) | | | 95.78 164 | 95.19 177 | 97.58 155 | 96.99 270 | 97.47 75 | 98.79 130 | 99.18 19 | 95.60 117 | 93.92 252 | 97.04 283 | 91.68 126 | 98.48 262 | 95.80 155 | 87.66 329 | 96.79 267 |
|
miper_enhance_ethall | | | 95.10 205 | 94.75 198 | 96.12 259 | 97.53 234 | 93.73 244 | 96.61 338 | 98.08 241 | 92.20 272 | 93.89 253 | 96.65 310 | 92.44 107 | 98.30 292 | 94.21 205 | 91.16 286 | 96.34 318 |
|
UniMVSNet_NR-MVSNet | | | 95.71 168 | 95.15 178 | 97.40 166 | 96.84 280 | 96.97 92 | 98.74 136 | 99.24 12 | 95.16 141 | 93.88 254 | 97.72 227 | 91.68 126 | 98.31 290 | 95.81 153 | 87.25 335 | 96.92 247 |
|
DU-MVS | | | 95.42 184 | 94.76 197 | 97.40 166 | 96.53 296 | 96.97 92 | 98.66 157 | 98.99 34 | 95.43 125 | 93.88 254 | 97.69 230 | 88.57 197 | 98.31 290 | 95.81 153 | 87.25 335 | 96.92 247 |
|
Baseline_NR-MVSNet | | | 94.35 251 | 93.81 251 | 95.96 265 | 96.20 311 | 94.05 233 | 98.61 164 | 96.67 338 | 91.44 290 | 93.85 256 | 97.60 239 | 88.57 197 | 98.14 303 | 94.39 197 | 86.93 338 | 95.68 336 |
|
PS-MVSNAJss | | | 96.43 130 | 96.26 127 | 96.92 197 | 95.84 327 | 95.08 186 | 99.16 46 | 98.50 160 | 95.87 106 | 93.84 257 | 98.34 172 | 94.51 78 | 98.61 248 | 96.88 115 | 93.45 256 | 97.06 237 |
|
UniMVSNet_ETH3D | | | 94.24 258 | 93.33 275 | 96.97 191 | 97.19 259 | 93.38 258 | 98.74 136 | 98.57 142 | 91.21 303 | 93.81 258 | 98.58 143 | 72.85 358 | 98.77 237 | 95.05 178 | 93.93 241 | 98.77 177 |
|
tt0805 | | | 94.54 237 | 93.85 249 | 96.63 216 | 97.98 203 | 93.06 270 | 98.77 132 | 97.84 266 | 93.67 213 | 93.80 259 | 98.04 197 | 76.88 343 | 98.96 211 | 94.79 185 | 92.86 266 | 97.86 217 |
|
tpmvs | | | 94.60 232 | 94.36 219 | 95.33 289 | 97.46 238 | 88.60 338 | 96.88 327 | 97.68 272 | 91.29 298 | 93.80 259 | 96.42 318 | 88.58 196 | 99.24 170 | 91.06 286 | 96.04 216 | 98.17 209 |
|
3Dnovator | | 94.51 5 | 97.46 82 | 96.93 96 | 99.07 50 | 97.78 212 | 97.64 68 | 99.35 17 | 99.06 27 | 97.02 54 | 93.75 261 | 99.16 67 | 89.25 178 | 99.92 26 | 97.22 99 | 99.75 38 | 99.64 65 |
|
eth_miper_zixun_eth | | | 94.68 226 | 94.41 217 | 95.47 283 | 97.64 223 | 91.71 287 | 96.73 335 | 98.07 243 | 92.71 251 | 93.64 262 | 97.21 266 | 90.54 154 | 98.17 301 | 93.38 229 | 89.76 301 | 96.54 299 |
|
ITE_SJBPF | | | | | 95.44 285 | 97.42 243 | 91.32 293 | | 97.50 291 | 95.09 147 | 93.59 263 | 98.35 168 | 81.70 305 | 98.88 225 | 89.71 308 | 93.39 258 | 96.12 326 |
|
TranMVSNet+NR-MVSNet | | | 95.14 203 | 94.48 210 | 97.11 182 | 96.45 302 | 96.36 126 | 99.03 71 | 99.03 30 | 95.04 149 | 93.58 264 | 97.93 207 | 88.27 204 | 98.03 312 | 94.13 207 | 86.90 340 | 96.95 246 |
|
COLMAP_ROB |  | 93.27 12 | 95.33 193 | 94.87 194 | 96.71 207 | 99.29 70 | 93.24 264 | 98.58 167 | 98.11 233 | 89.92 323 | 93.57 265 | 99.10 76 | 86.37 244 | 99.79 88 | 90.78 291 | 98.10 159 | 97.09 236 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
tpm cat1 | | | 93.36 282 | 92.80 284 | 95.07 296 | 97.58 227 | 87.97 348 | 96.76 333 | 97.86 265 | 82.17 364 | 93.53 266 | 96.04 329 | 86.13 247 | 99.13 184 | 89.24 317 | 95.87 217 | 98.10 211 |
|
AllTest | | | 95.24 197 | 94.65 202 | 96.99 188 | 99.25 78 | 93.21 265 | 98.59 165 | 98.18 218 | 91.36 292 | 93.52 267 | 98.77 122 | 84.67 277 | 99.72 103 | 89.70 309 | 97.87 166 | 98.02 213 |
|
TestCases | | | | | 96.99 188 | 99.25 78 | 93.21 265 | | 98.18 218 | 91.36 292 | 93.52 267 | 98.77 122 | 84.67 277 | 99.72 103 | 89.70 309 | 97.87 166 | 98.02 213 |
|
miper_ehance_all_eth | | | 95.01 209 | 94.69 201 | 95.97 264 | 97.70 219 | 93.31 260 | 97.02 314 | 98.07 243 | 92.23 269 | 93.51 269 | 96.96 292 | 91.85 123 | 98.15 302 | 93.68 221 | 91.16 286 | 96.44 315 |
|
FMVSNet2 | | | 94.47 245 | 93.61 265 | 97.04 185 | 98.21 181 | 96.43 120 | 98.79 130 | 98.27 203 | 92.46 257 | 93.50 270 | 97.09 274 | 81.16 309 | 98.00 315 | 91.09 284 | 91.93 275 | 96.70 279 |
|
v148 | | | 94.29 255 | 93.76 257 | 95.91 267 | 96.10 316 | 92.93 271 | 98.58 167 | 97.97 256 | 92.59 255 | 93.47 271 | 96.95 294 | 88.53 200 | 98.32 288 | 92.56 255 | 87.06 337 | 96.49 310 |
|
c3_l | | | 94.79 221 | 94.43 216 | 95.89 269 | 97.75 214 | 93.12 268 | 97.16 308 | 98.03 251 | 92.23 269 | 93.46 272 | 97.05 282 | 91.39 135 | 98.01 313 | 93.58 226 | 89.21 312 | 96.53 301 |
|
pmmvs4 | | | 94.69 224 | 93.99 239 | 96.81 203 | 95.74 328 | 95.94 148 | 97.40 283 | 97.67 273 | 90.42 315 | 93.37 273 | 97.59 240 | 89.08 184 | 98.20 299 | 92.97 242 | 91.67 279 | 96.30 321 |
|
PCF-MVS | | 93.45 11 | 94.68 226 | 93.43 273 | 98.42 93 | 98.62 146 | 96.77 101 | 95.48 355 | 98.20 213 | 84.63 359 | 93.34 274 | 98.32 174 | 88.55 199 | 99.81 71 | 84.80 348 | 98.96 118 | 98.68 182 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
cl22 | | | 94.68 226 | 94.19 224 | 96.13 258 | 98.11 193 | 93.60 247 | 96.94 318 | 98.31 194 | 92.43 261 | 93.32 275 | 96.87 300 | 86.51 239 | 98.28 296 | 94.10 210 | 91.16 286 | 96.51 307 |
|
XXY-MVS | | | 95.20 200 | 94.45 214 | 97.46 159 | 96.75 285 | 96.56 113 | 98.86 110 | 98.65 127 | 93.30 229 | 93.27 276 | 98.27 180 | 84.85 273 | 98.87 226 | 94.82 183 | 91.26 285 | 96.96 244 |
|
jajsoiax | | | 95.45 182 | 95.03 185 | 96.73 206 | 95.42 340 | 94.63 207 | 99.14 49 | 98.52 153 | 95.74 110 | 93.22 277 | 98.36 167 | 83.87 295 | 98.65 246 | 96.95 108 | 94.04 236 | 96.91 252 |
|
mvs_tets | | | 95.41 186 | 95.00 186 | 96.65 212 | 95.58 333 | 94.42 218 | 99.00 78 | 98.55 146 | 95.73 112 | 93.21 278 | 98.38 165 | 83.45 299 | 98.63 247 | 97.09 102 | 94.00 238 | 96.91 252 |
|
anonymousdsp | | | 95.42 184 | 94.91 191 | 96.94 193 | 95.10 343 | 95.90 154 | 99.14 49 | 98.41 177 | 93.75 201 | 93.16 279 | 97.46 248 | 87.50 225 | 98.41 279 | 95.63 162 | 94.03 237 | 96.50 309 |
|
v8 | | | 94.47 245 | 93.77 255 | 96.57 225 | 96.36 305 | 94.83 200 | 99.05 65 | 98.19 215 | 91.92 277 | 93.16 279 | 96.97 290 | 88.82 194 | 98.48 262 | 91.69 277 | 87.79 327 | 96.39 316 |
|
WR-MVS | | | 95.15 202 | 94.46 212 | 97.22 173 | 96.67 290 | 96.45 118 | 98.21 213 | 98.81 78 | 94.15 180 | 93.16 279 | 97.69 230 | 87.51 223 | 98.30 292 | 95.29 172 | 88.62 320 | 96.90 254 |
|
EPNet_dtu | | | 95.21 199 | 94.95 190 | 95.99 262 | 96.17 313 | 90.45 308 | 98.16 222 | 97.27 308 | 96.77 65 | 93.14 282 | 98.33 173 | 90.34 157 | 98.42 271 | 85.57 341 | 98.81 128 | 99.09 147 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
QAPM | | | 96.29 138 | 95.40 161 | 98.96 56 | 97.85 209 | 97.60 71 | 99.23 31 | 98.93 42 | 89.76 326 | 93.11 283 | 99.02 88 | 89.11 183 | 99.93 21 | 91.99 270 | 99.62 66 | 99.34 108 |
|
GG-mvs-BLEND | | | | | 96.59 222 | 96.34 307 | 94.98 191 | 96.51 341 | 88.58 382 | | 93.10 284 | 94.34 352 | 80.34 319 | 98.05 311 | 89.53 312 | 96.99 186 | 96.74 272 |
|
v10 | | | 94.29 255 | 93.55 268 | 96.51 234 | 96.39 304 | 94.80 202 | 98.99 81 | 98.19 215 | 91.35 294 | 93.02 285 | 96.99 288 | 88.09 209 | 98.41 279 | 90.50 295 | 88.41 322 | 96.33 320 |
|
3Dnovator+ | | 94.38 6 | 97.43 87 | 96.78 104 | 99.38 18 | 97.83 210 | 98.52 28 | 99.37 14 | 98.71 108 | 97.09 52 | 92.99 286 | 99.13 72 | 89.36 174 | 99.89 39 | 96.97 106 | 99.57 74 | 99.71 43 |
|
D2MVS | | | 95.18 201 | 95.08 183 | 95.48 282 | 97.10 265 | 92.07 279 | 98.30 204 | 99.13 23 | 94.02 186 | 92.90 287 | 96.73 305 | 89.48 170 | 98.73 239 | 94.48 196 | 93.60 252 | 95.65 337 |
|
Patchmtry | | | 93.22 288 | 92.35 292 | 95.84 271 | 96.77 282 | 93.09 269 | 94.66 364 | 97.56 281 | 87.37 344 | 92.90 287 | 96.24 321 | 88.15 207 | 97.90 321 | 87.37 331 | 90.10 298 | 96.53 301 |
|
DIV-MVS_self_test | | | 94.52 240 | 94.03 233 | 95.99 262 | 97.57 231 | 93.38 258 | 97.05 312 | 97.94 259 | 91.74 281 | 92.81 289 | 97.10 270 | 89.12 182 | 98.07 310 | 92.60 251 | 90.30 294 | 96.53 301 |
|
Anonymous20231211 | | | 94.10 268 | 93.26 278 | 96.61 219 | 99.11 100 | 94.28 224 | 99.01 76 | 98.88 54 | 86.43 348 | 92.81 289 | 97.57 242 | 81.66 306 | 98.68 244 | 94.83 182 | 89.02 316 | 96.88 256 |
|
cl____ | | | 94.51 241 | 94.01 236 | 96.02 261 | 97.58 227 | 93.40 257 | 97.05 312 | 97.96 258 | 91.73 283 | 92.76 291 | 97.08 276 | 89.06 185 | 98.13 304 | 92.61 250 | 90.29 295 | 96.52 304 |
|
miper_lstm_enhance | | | 94.33 252 | 94.07 232 | 95.11 294 | 97.75 214 | 90.97 298 | 97.22 299 | 98.03 251 | 91.67 285 | 92.76 291 | 96.97 290 | 90.03 162 | 97.78 328 | 92.51 258 | 89.64 303 | 96.56 296 |
|
v7n | | | 94.19 261 | 93.43 273 | 96.47 238 | 95.90 324 | 94.38 221 | 99.26 27 | 98.34 190 | 91.99 275 | 92.76 291 | 97.13 269 | 88.31 203 | 98.52 259 | 89.48 314 | 87.70 328 | 96.52 304 |
|
MVS | | | 94.67 229 | 93.54 269 | 98.08 118 | 96.88 278 | 96.56 113 | 98.19 218 | 98.50 160 | 78.05 368 | 92.69 294 | 98.02 198 | 91.07 145 | 99.63 124 | 90.09 299 | 98.36 151 | 98.04 212 |
|
DSMNet-mixed | | | 92.52 297 | 92.58 289 | 92.33 337 | 94.15 353 | 82.65 364 | 98.30 204 | 94.26 365 | 89.08 336 | 92.65 295 | 95.73 335 | 85.01 270 | 95.76 361 | 86.24 336 | 97.76 171 | 98.59 191 |
|
EU-MVSNet | | | 93.66 277 | 94.14 229 | 92.25 339 | 95.96 323 | 83.38 362 | 98.52 176 | 98.12 230 | 94.69 162 | 92.61 296 | 98.13 191 | 87.36 228 | 96.39 358 | 91.82 273 | 90.00 299 | 96.98 242 |
|
IterMVS-SCA-FT | | | 94.11 267 | 93.87 247 | 94.85 302 | 97.98 203 | 90.56 307 | 97.18 304 | 98.11 233 | 93.75 201 | 92.58 297 | 97.48 247 | 83.97 292 | 97.41 340 | 92.48 260 | 91.30 283 | 96.58 292 |
|
pmmvs5 | | | 93.65 279 | 92.97 282 | 95.68 276 | 95.49 336 | 92.37 275 | 98.20 215 | 97.28 307 | 89.66 328 | 92.58 297 | 97.26 260 | 82.14 303 | 98.09 308 | 93.18 236 | 90.95 289 | 96.58 292 |
|
WR-MVS_H | | | 95.05 208 | 94.46 212 | 96.81 203 | 96.86 279 | 95.82 157 | 99.24 30 | 99.24 12 | 93.87 195 | 92.53 299 | 96.84 302 | 90.37 156 | 98.24 298 | 93.24 233 | 87.93 326 | 96.38 317 |
|
ACMP | | 93.49 10 | 95.34 192 | 94.98 188 | 96.43 243 | 97.67 221 | 93.48 253 | 98.73 140 | 98.44 171 | 94.94 156 | 92.53 299 | 98.53 147 | 84.50 281 | 99.14 183 | 95.48 167 | 94.00 238 | 96.66 285 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test0.0.03 1 | | | 94.08 270 | 93.51 270 | 95.80 272 | 95.53 335 | 92.89 272 | 97.38 285 | 95.97 346 | 95.11 144 | 92.51 301 | 96.66 308 | 87.71 219 | 96.94 347 | 87.03 332 | 93.67 247 | 97.57 225 |
|
IB-MVS | | 91.98 17 | 93.27 286 | 91.97 296 | 97.19 175 | 97.47 237 | 93.41 256 | 97.09 311 | 95.99 345 | 93.32 227 | 92.47 302 | 95.73 335 | 78.06 333 | 99.53 143 | 94.59 193 | 82.98 352 | 98.62 188 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
IterMVS | | | 94.09 269 | 93.85 249 | 94.80 305 | 97.99 201 | 90.35 310 | 97.18 304 | 98.12 230 | 93.68 211 | 92.46 303 | 97.34 255 | 84.05 290 | 97.41 340 | 92.51 258 | 91.33 282 | 96.62 288 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CP-MVSNet | | | 94.94 217 | 94.30 220 | 96.83 201 | 96.72 287 | 95.56 165 | 99.11 55 | 98.95 38 | 93.89 193 | 92.42 304 | 97.90 209 | 87.19 229 | 98.12 305 | 94.32 201 | 88.21 323 | 96.82 266 |
|
PS-CasMVS | | | 94.67 229 | 93.99 239 | 96.71 207 | 96.68 289 | 95.26 178 | 99.13 52 | 99.03 30 | 93.68 211 | 92.33 305 | 97.95 206 | 85.35 263 | 98.10 306 | 93.59 225 | 88.16 325 | 96.79 267 |
|
FMVSNet1 | | | 93.19 290 | 92.07 295 | 96.56 226 | 97.54 232 | 95.00 188 | 98.82 117 | 98.18 218 | 90.38 316 | 92.27 306 | 97.07 277 | 73.68 356 | 97.95 317 | 89.36 316 | 91.30 283 | 96.72 275 |
|
PEN-MVS | | | 94.42 248 | 93.73 259 | 96.49 235 | 96.28 309 | 94.84 198 | 99.17 45 | 99.00 32 | 93.51 219 | 92.23 307 | 97.83 219 | 86.10 248 | 97.90 321 | 92.55 256 | 86.92 339 | 96.74 272 |
|
OurMVSNet-221017-0 | | | 94.21 259 | 94.00 237 | 94.85 302 | 95.60 332 | 89.22 328 | 98.89 101 | 97.43 298 | 95.29 134 | 92.18 308 | 98.52 150 | 82.86 300 | 98.59 251 | 93.46 228 | 91.76 277 | 96.74 272 |
|
MS-PatchMatch | | | 93.84 276 | 93.63 264 | 94.46 316 | 96.18 312 | 89.45 324 | 97.76 260 | 98.27 203 | 92.23 269 | 92.13 309 | 97.49 246 | 79.50 322 | 98.69 241 | 89.75 307 | 99.38 101 | 95.25 341 |
|
ppachtmachnet_test | | | 93.22 288 | 92.63 288 | 94.97 298 | 95.45 338 | 90.84 300 | 96.88 327 | 97.88 264 | 90.60 310 | 92.08 310 | 97.26 260 | 88.08 210 | 97.86 326 | 85.12 345 | 90.33 293 | 96.22 323 |
|
1314 | | | 96.25 142 | 95.73 148 | 97.79 135 | 97.13 263 | 95.55 167 | 98.19 218 | 98.59 135 | 93.47 221 | 92.03 311 | 97.82 220 | 91.33 138 | 99.49 148 | 94.62 190 | 98.44 145 | 98.32 204 |
|
baseline2 | | | 95.11 204 | 94.52 208 | 96.87 199 | 96.65 291 | 93.56 248 | 98.27 209 | 94.10 368 | 93.45 222 | 92.02 312 | 97.43 252 | 87.45 227 | 99.19 176 | 93.88 216 | 97.41 181 | 97.87 216 |
|
DTE-MVSNet | | | 93.98 274 | 93.26 278 | 96.14 257 | 96.06 318 | 94.39 220 | 99.20 40 | 98.86 67 | 93.06 238 | 91.78 313 | 97.81 221 | 85.87 253 | 97.58 335 | 90.53 294 | 86.17 344 | 96.46 314 |
|
LF4IMVS | | | 93.14 291 | 92.79 285 | 94.20 319 | 95.88 325 | 88.67 337 | 97.66 268 | 97.07 316 | 93.81 199 | 91.71 314 | 97.65 234 | 77.96 334 | 98.81 233 | 91.47 280 | 91.92 276 | 95.12 344 |
|
our_test_3 | | | 93.65 279 | 93.30 276 | 94.69 307 | 95.45 338 | 89.68 321 | 96.91 321 | 97.65 274 | 91.97 276 | 91.66 315 | 96.88 298 | 89.67 168 | 97.93 320 | 88.02 327 | 91.49 281 | 96.48 312 |
|
testgi | | | 93.06 292 | 92.45 291 | 94.88 301 | 96.43 303 | 89.90 315 | 98.75 133 | 97.54 287 | 95.60 117 | 91.63 316 | 97.91 208 | 74.46 353 | 97.02 345 | 86.10 337 | 93.67 247 | 97.72 222 |
|
tfpnnormal | | | 93.66 277 | 92.70 287 | 96.55 231 | 96.94 273 | 95.94 148 | 98.97 84 | 99.19 18 | 91.04 305 | 91.38 317 | 97.34 255 | 84.94 271 | 98.61 248 | 85.45 343 | 89.02 316 | 95.11 345 |
|
LTVRE_ROB | | 92.95 15 | 94.60 232 | 93.90 245 | 96.68 211 | 97.41 246 | 94.42 218 | 98.52 176 | 98.59 135 | 91.69 284 | 91.21 318 | 98.35 168 | 84.87 272 | 99.04 199 | 91.06 286 | 93.44 257 | 96.60 290 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OpenMVS |  | 93.04 13 | 95.83 162 | 95.00 186 | 98.32 98 | 97.18 260 | 97.32 78 | 99.21 38 | 98.97 35 | 89.96 322 | 91.14 319 | 99.05 87 | 86.64 238 | 99.92 26 | 93.38 229 | 99.47 91 | 97.73 221 |
|
pm-mvs1 | | | 93.94 275 | 93.06 280 | 96.59 222 | 96.49 299 | 95.16 181 | 98.95 90 | 98.03 251 | 92.32 266 | 91.08 320 | 97.84 216 | 84.54 280 | 98.41 279 | 92.16 263 | 86.13 346 | 96.19 325 |
|
MVS-HIRNet | | | 89.46 323 | 88.40 323 | 92.64 335 | 97.58 227 | 82.15 365 | 94.16 368 | 93.05 373 | 75.73 370 | 90.90 321 | 82.52 373 | 79.42 323 | 98.33 287 | 83.53 353 | 98.68 130 | 97.43 226 |
|
FMVSNet5 | | | 91.81 300 | 90.92 303 | 94.49 313 | 97.21 255 | 92.09 278 | 98.00 238 | 97.55 286 | 89.31 334 | 90.86 322 | 95.61 340 | 74.48 352 | 95.32 365 | 85.57 341 | 89.70 302 | 96.07 328 |
|
USDC | | | 93.33 285 | 92.71 286 | 95.21 290 | 96.83 281 | 90.83 301 | 96.91 321 | 97.50 291 | 93.84 196 | 90.72 323 | 98.14 190 | 77.69 335 | 98.82 232 | 89.51 313 | 93.21 262 | 95.97 330 |
|
MVP-Stereo | | | 94.28 257 | 93.92 242 | 95.35 288 | 94.95 345 | 92.60 274 | 97.97 240 | 97.65 274 | 91.61 286 | 90.68 324 | 97.09 274 | 86.32 245 | 98.42 271 | 89.70 309 | 99.34 103 | 95.02 348 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
ACMH+ | | 92.99 14 | 94.30 254 | 93.77 255 | 95.88 270 | 97.81 211 | 92.04 281 | 98.71 145 | 98.37 185 | 93.99 189 | 90.60 325 | 98.47 154 | 80.86 314 | 99.05 196 | 92.75 249 | 92.40 271 | 96.55 298 |
|
CL-MVSNet_self_test | | | 90.11 316 | 89.14 319 | 93.02 333 | 91.86 365 | 88.23 346 | 96.51 341 | 98.07 243 | 90.49 311 | 90.49 326 | 94.41 348 | 84.75 275 | 95.34 364 | 80.79 360 | 74.95 371 | 95.50 338 |
|
KD-MVS_self_test | | | 90.38 314 | 89.38 317 | 93.40 327 | 92.85 362 | 88.94 334 | 97.95 241 | 97.94 259 | 90.35 317 | 90.25 327 | 93.96 353 | 79.82 320 | 95.94 360 | 84.62 350 | 76.69 369 | 95.33 340 |
|
Anonymous20231206 | | | 91.66 302 | 91.10 302 | 93.33 328 | 94.02 357 | 87.35 352 | 98.58 167 | 97.26 309 | 90.48 312 | 90.16 328 | 96.31 319 | 83.83 296 | 96.53 356 | 79.36 364 | 89.90 300 | 96.12 326 |
|
SixPastTwentyTwo | | | 93.34 284 | 92.86 283 | 94.75 306 | 95.67 330 | 89.41 326 | 98.75 133 | 96.67 338 | 93.89 193 | 90.15 329 | 98.25 183 | 80.87 313 | 98.27 297 | 90.90 290 | 90.64 291 | 96.57 294 |
|
PVSNet_0 | | 88.72 19 | 91.28 306 | 90.03 312 | 95.00 297 | 97.99 201 | 87.29 353 | 94.84 360 | 98.50 160 | 92.06 274 | 89.86 330 | 95.19 342 | 79.81 321 | 99.39 159 | 92.27 262 | 69.79 374 | 98.33 203 |
|
ACMH | | 92.88 16 | 94.55 236 | 93.95 241 | 96.34 249 | 97.63 224 | 93.26 262 | 98.81 124 | 98.49 165 | 93.43 223 | 89.74 331 | 98.53 147 | 81.91 304 | 99.08 194 | 93.69 220 | 93.30 260 | 96.70 279 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs6 | | | 91.77 301 | 90.63 306 | 95.17 292 | 94.69 351 | 91.24 295 | 98.67 155 | 97.92 261 | 86.14 350 | 89.62 332 | 97.56 244 | 75.79 347 | 98.34 286 | 90.75 292 | 84.56 348 | 95.94 331 |
|
TinyColmap | | | 92.31 298 | 91.53 299 | 94.65 309 | 96.92 274 | 89.75 317 | 96.92 319 | 96.68 337 | 90.45 314 | 89.62 332 | 97.85 215 | 76.06 346 | 98.81 233 | 86.74 333 | 92.51 270 | 95.41 339 |
|
Anonymous20240521 | | | 91.18 307 | 90.44 308 | 93.42 325 | 93.70 358 | 88.47 341 | 98.94 92 | 97.56 281 | 88.46 339 | 89.56 334 | 95.08 345 | 77.15 342 | 96.97 346 | 83.92 351 | 89.55 306 | 94.82 350 |
|
TransMVSNet (Re) | | | 92.67 295 | 91.51 300 | 96.15 256 | 96.58 294 | 94.65 205 | 98.90 97 | 96.73 334 | 90.86 308 | 89.46 335 | 97.86 213 | 85.62 257 | 98.09 308 | 86.45 335 | 81.12 358 | 95.71 335 |
|
NR-MVSNet | | | 94.98 213 | 94.16 227 | 97.44 161 | 96.53 296 | 97.22 86 | 98.74 136 | 98.95 38 | 94.96 153 | 89.25 336 | 97.69 230 | 89.32 175 | 98.18 300 | 94.59 193 | 87.40 332 | 96.92 247 |
|
LCM-MVSNet-Re | | | 95.22 198 | 95.32 170 | 94.91 299 | 98.18 187 | 87.85 350 | 98.75 133 | 95.66 350 | 95.11 144 | 88.96 337 | 96.85 301 | 90.26 160 | 97.65 331 | 95.65 161 | 98.44 145 | 99.22 128 |
|
KD-MVS_2432*1600 | | | 89.61 321 | 87.96 328 | 94.54 311 | 94.06 355 | 91.59 289 | 95.59 353 | 97.63 276 | 89.87 324 | 88.95 338 | 94.38 350 | 78.28 330 | 96.82 348 | 84.83 346 | 68.05 375 | 95.21 342 |
|
miper_refine_blended | | | 89.61 321 | 87.96 328 | 94.54 311 | 94.06 355 | 91.59 289 | 95.59 353 | 97.63 276 | 89.87 324 | 88.95 338 | 94.38 350 | 78.28 330 | 96.82 348 | 84.83 346 | 68.05 375 | 95.21 342 |
|
test_fmvs3 | | | 87.17 330 | 87.06 333 | 87.50 348 | 91.21 367 | 75.66 371 | 99.05 65 | 96.61 340 | 92.79 249 | 88.85 340 | 92.78 361 | 43.72 376 | 93.49 371 | 93.95 213 | 84.56 348 | 93.34 365 |
|
TDRefinement | | | 91.06 309 | 89.68 314 | 95.21 290 | 85.35 379 | 91.49 291 | 98.51 180 | 97.07 316 | 91.47 288 | 88.83 341 | 97.84 216 | 77.31 339 | 99.09 193 | 92.79 248 | 77.98 367 | 95.04 347 |
|
N_pmnet | | | 87.12 332 | 87.77 330 | 85.17 352 | 95.46 337 | 61.92 383 | 97.37 287 | 70.66 389 | 85.83 353 | 88.73 342 | 96.04 329 | 85.33 265 | 97.76 329 | 80.02 361 | 90.48 292 | 95.84 332 |
|
test_0402 | | | 91.32 304 | 90.27 310 | 94.48 314 | 96.60 292 | 91.12 296 | 98.50 181 | 97.22 311 | 86.10 351 | 88.30 343 | 96.98 289 | 77.65 337 | 97.99 316 | 78.13 368 | 92.94 265 | 94.34 352 |
|
test20.03 | | | 90.89 311 | 90.38 309 | 92.43 336 | 93.48 359 | 88.14 347 | 98.33 197 | 97.56 281 | 93.40 224 | 87.96 344 | 96.71 307 | 80.69 316 | 94.13 370 | 79.15 365 | 86.17 344 | 95.01 349 |
|
MIMVSNet1 | | | 89.67 320 | 88.28 325 | 93.82 322 | 92.81 363 | 91.08 297 | 98.01 236 | 97.45 296 | 87.95 341 | 87.90 345 | 95.87 332 | 67.63 364 | 94.56 369 | 78.73 367 | 88.18 324 | 95.83 333 |
|
mvsany_test3 | | | 88.80 325 | 88.04 326 | 91.09 343 | 89.78 371 | 81.57 367 | 97.83 256 | 95.49 351 | 93.81 199 | 87.53 346 | 93.95 354 | 56.14 372 | 97.43 339 | 94.68 186 | 83.13 351 | 94.26 353 |
|
Patchmatch-RL test | | | 91.49 303 | 90.85 304 | 93.41 326 | 91.37 366 | 84.40 358 | 92.81 369 | 95.93 348 | 91.87 279 | 87.25 347 | 94.87 346 | 88.99 186 | 96.53 356 | 92.54 257 | 82.00 354 | 99.30 117 |
|
pmmvs3 | | | 86.67 333 | 84.86 337 | 92.11 340 | 88.16 373 | 87.19 354 | 96.63 337 | 94.75 360 | 79.88 366 | 87.22 348 | 92.75 363 | 66.56 366 | 95.20 366 | 81.24 359 | 76.56 370 | 93.96 361 |
|
test_vis1_rt | | | 91.29 305 | 90.65 305 | 93.19 332 | 97.45 241 | 86.25 356 | 98.57 172 | 90.90 379 | 93.30 229 | 86.94 349 | 93.59 356 | 62.07 369 | 99.11 188 | 97.48 90 | 95.58 221 | 94.22 355 |
|
K. test v3 | | | 92.55 296 | 91.91 298 | 94.48 314 | 95.64 331 | 89.24 327 | 99.07 62 | 94.88 358 | 94.04 184 | 86.78 350 | 97.59 240 | 77.64 338 | 97.64 332 | 92.08 265 | 89.43 309 | 96.57 294 |
|
lessismore_v0 | | | | | 94.45 317 | 94.93 346 | 88.44 342 | | 91.03 378 | | 86.77 351 | 97.64 236 | 76.23 345 | 98.42 271 | 90.31 297 | 85.64 347 | 96.51 307 |
|
APD_test1 | | | 88.22 327 | 88.01 327 | 88.86 346 | 95.98 321 | 74.66 375 | 97.21 300 | 96.44 342 | 83.96 361 | 86.66 352 | 97.90 209 | 60.95 370 | 97.84 327 | 82.73 354 | 90.23 296 | 94.09 358 |
|
ambc | | | | | 89.49 345 | 86.66 376 | 75.78 370 | 92.66 370 | 96.72 335 | | 86.55 353 | 92.50 364 | 46.01 374 | 97.90 321 | 90.32 296 | 82.09 353 | 94.80 351 |
|
PM-MVS | | | 87.77 328 | 86.55 334 | 91.40 342 | 91.03 369 | 83.36 363 | 96.92 319 | 95.18 356 | 91.28 299 | 86.48 354 | 93.42 357 | 53.27 373 | 96.74 350 | 89.43 315 | 81.97 355 | 94.11 357 |
|
OpenMVS_ROB |  | 86.42 20 | 89.00 324 | 87.43 332 | 93.69 323 | 93.08 361 | 89.42 325 | 97.91 245 | 96.89 329 | 78.58 367 | 85.86 355 | 94.69 347 | 69.48 361 | 98.29 295 | 77.13 369 | 93.29 261 | 93.36 364 |
|
UnsupCasMVSNet_eth | | | 90.99 310 | 89.92 313 | 94.19 320 | 94.08 354 | 89.83 316 | 97.13 310 | 98.67 120 | 93.69 209 | 85.83 356 | 96.19 326 | 75.15 349 | 96.74 350 | 89.14 318 | 79.41 363 | 96.00 329 |
|
new_pmnet | | | 90.06 317 | 89.00 321 | 93.22 331 | 94.18 352 | 88.32 344 | 96.42 343 | 96.89 329 | 86.19 349 | 85.67 357 | 93.62 355 | 77.18 341 | 97.10 344 | 81.61 358 | 89.29 311 | 94.23 354 |
|
dmvs_testset | | | 87.64 329 | 88.93 322 | 83.79 354 | 95.25 341 | 63.36 382 | 97.20 301 | 91.17 377 | 93.07 237 | 85.64 358 | 95.98 331 | 85.30 267 | 91.52 377 | 69.42 375 | 87.33 333 | 96.49 310 |
|
test_f | | | 86.07 334 | 85.39 335 | 88.10 347 | 89.28 372 | 75.57 372 | 97.73 263 | 96.33 343 | 89.41 333 | 85.35 359 | 91.56 367 | 43.31 378 | 95.53 362 | 91.32 282 | 84.23 350 | 93.21 366 |
|
EG-PatchMatch MVS | | | 91.13 308 | 90.12 311 | 94.17 321 | 94.73 350 | 89.00 332 | 98.13 225 | 97.81 267 | 89.22 335 | 85.32 360 | 96.46 316 | 67.71 363 | 98.42 271 | 87.89 329 | 93.82 243 | 95.08 346 |
|
pmmvs-eth3d | | | 90.36 315 | 89.05 320 | 94.32 318 | 91.10 368 | 92.12 277 | 97.63 273 | 96.95 324 | 88.86 337 | 84.91 361 | 93.13 360 | 78.32 329 | 96.74 350 | 88.70 322 | 81.81 356 | 94.09 358 |
|
DeepMVS_CX |  | | | | 86.78 349 | 97.09 266 | 72.30 376 | | 95.17 357 | 75.92 369 | 84.34 362 | 95.19 342 | 70.58 359 | 95.35 363 | 79.98 363 | 89.04 315 | 92.68 367 |
|
new-patchmatchnet | | | 88.50 326 | 87.45 331 | 91.67 341 | 90.31 370 | 85.89 357 | 97.16 308 | 97.33 304 | 89.47 330 | 83.63 363 | 92.77 362 | 76.38 344 | 95.06 367 | 82.70 355 | 77.29 368 | 94.06 360 |
|
UnsupCasMVSNet_bld | | | 87.17 330 | 85.12 336 | 93.31 329 | 91.94 364 | 88.77 335 | 94.92 359 | 98.30 200 | 84.30 360 | 82.30 364 | 90.04 368 | 63.96 368 | 97.25 342 | 85.85 340 | 74.47 373 | 93.93 362 |
|
CMPMVS |  | 66.06 21 | 89.70 319 | 89.67 315 | 89.78 344 | 93.19 360 | 76.56 369 | 97.00 315 | 98.35 188 | 80.97 365 | 81.57 365 | 97.75 224 | 74.75 351 | 98.61 248 | 89.85 305 | 93.63 250 | 94.17 356 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_method | | | 79.03 336 | 78.17 338 | 81.63 358 | 86.06 378 | 54.40 388 | 82.75 377 | 96.89 329 | 39.54 381 | 80.98 366 | 95.57 341 | 58.37 371 | 94.73 368 | 84.74 349 | 78.61 364 | 95.75 334 |
|
ET-MVSNet_ETH3D | | | 94.13 265 | 92.98 281 | 97.58 155 | 98.22 180 | 96.20 132 | 97.31 294 | 95.37 352 | 94.53 169 | 79.56 367 | 97.63 238 | 86.51 239 | 97.53 337 | 96.91 109 | 90.74 290 | 99.02 155 |
|
LCM-MVSNet | | | 78.70 339 | 76.24 344 | 86.08 350 | 77.26 385 | 71.99 377 | 94.34 366 | 96.72 335 | 61.62 376 | 76.53 368 | 89.33 369 | 33.91 384 | 92.78 375 | 81.85 357 | 74.60 372 | 93.46 363 |
|
PMMVS2 | | | 77.95 341 | 75.44 345 | 85.46 351 | 82.54 380 | 74.95 373 | 94.23 367 | 93.08 372 | 72.80 371 | 74.68 369 | 87.38 370 | 36.36 381 | 91.56 376 | 73.95 371 | 63.94 377 | 89.87 369 |
|
testf1 | | | 79.02 337 | 77.70 339 | 82.99 356 | 88.10 374 | 66.90 379 | 94.67 362 | 93.11 370 | 71.08 372 | 74.02 370 | 93.41 358 | 34.15 382 | 93.25 372 | 72.25 373 | 78.50 365 | 88.82 370 |
|
APD_test2 | | | 79.02 337 | 77.70 339 | 82.99 356 | 88.10 374 | 66.90 379 | 94.67 362 | 93.11 370 | 71.08 372 | 74.02 370 | 93.41 358 | 34.15 382 | 93.25 372 | 72.25 373 | 78.50 365 | 88.82 370 |
|
Gipuma |  | | 78.40 340 | 76.75 343 | 83.38 355 | 95.54 334 | 80.43 368 | 79.42 378 | 97.40 300 | 64.67 375 | 73.46 372 | 80.82 376 | 45.65 375 | 93.14 374 | 66.32 377 | 87.43 331 | 76.56 378 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
YYNet1 | | | 90.70 313 | 89.39 316 | 94.62 310 | 94.79 349 | 90.65 305 | 97.20 301 | 97.46 294 | 87.54 343 | 72.54 373 | 95.74 333 | 86.51 239 | 96.66 354 | 86.00 338 | 86.76 342 | 96.54 299 |
|
MDA-MVSNet_test_wron | | | 90.71 312 | 89.38 317 | 94.68 308 | 94.83 347 | 90.78 302 | 97.19 303 | 97.46 294 | 87.60 342 | 72.41 374 | 95.72 337 | 86.51 239 | 96.71 353 | 85.92 339 | 86.80 341 | 96.56 296 |
|
MDA-MVSNet-bldmvs | | | 89.97 318 | 88.35 324 | 94.83 304 | 95.21 342 | 91.34 292 | 97.64 270 | 97.51 290 | 88.36 340 | 71.17 375 | 96.13 327 | 79.22 324 | 96.63 355 | 83.65 352 | 86.27 343 | 96.52 304 |
|
FPMVS | | | 77.62 342 | 77.14 342 | 79.05 360 | 79.25 383 | 60.97 384 | 95.79 350 | 95.94 347 | 65.96 374 | 67.93 376 | 94.40 349 | 37.73 380 | 88.88 379 | 68.83 376 | 88.46 321 | 87.29 372 |
|
test_vis3_rt | | | 79.22 335 | 77.40 341 | 84.67 353 | 86.44 377 | 74.85 374 | 97.66 268 | 81.43 386 | 84.98 357 | 67.12 377 | 81.91 375 | 28.09 386 | 97.60 333 | 88.96 320 | 80.04 362 | 81.55 375 |
|
tmp_tt | | | 68.90 345 | 66.97 347 | 74.68 362 | 50.78 389 | 59.95 385 | 87.13 374 | 83.47 385 | 38.80 382 | 62.21 378 | 96.23 323 | 64.70 367 | 76.91 384 | 88.91 321 | 30.49 382 | 87.19 373 |
|
E-PMN | | | 64.94 347 | 64.25 349 | 67.02 364 | 82.28 381 | 59.36 386 | 91.83 372 | 85.63 383 | 52.69 378 | 60.22 379 | 77.28 378 | 41.06 379 | 80.12 382 | 46.15 381 | 41.14 379 | 61.57 380 |
|
EMVS | | | 64.07 348 | 63.26 351 | 66.53 365 | 81.73 382 | 58.81 387 | 91.85 371 | 84.75 384 | 51.93 380 | 59.09 380 | 75.13 379 | 43.32 377 | 79.09 383 | 42.03 382 | 39.47 380 | 61.69 379 |
|
MVE |  | 62.14 22 | 63.28 349 | 59.38 352 | 74.99 361 | 74.33 386 | 65.47 381 | 85.55 375 | 80.50 387 | 52.02 379 | 51.10 381 | 75.00 380 | 10.91 390 | 80.50 381 | 51.60 380 | 53.40 378 | 78.99 376 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 69.08 344 | 65.37 348 | 80.22 359 | 65.99 387 | 71.96 378 | 90.91 373 | 90.09 380 | 82.62 362 | 49.93 382 | 78.39 377 | 29.36 385 | 81.75 380 | 62.49 378 | 38.52 381 | 86.95 374 |
|
PMVS |  | 61.03 23 | 65.95 346 | 63.57 350 | 73.09 363 | 57.90 388 | 51.22 389 | 85.05 376 | 93.93 369 | 54.45 377 | 44.32 383 | 83.57 372 | 13.22 387 | 89.15 378 | 58.68 379 | 81.00 359 | 78.91 377 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
testmvs | | | 21.48 352 | 24.95 355 | 11.09 368 | 14.89 390 | 6.47 392 | 96.56 339 | 9.87 391 | 7.55 384 | 17.93 384 | 39.02 382 | 9.43 391 | 5.90 387 | 16.56 385 | 12.72 384 | 20.91 382 |
|
test123 | | | 20.95 353 | 23.72 356 | 12.64 367 | 13.54 391 | 8.19 391 | 96.55 340 | 6.13 392 | 7.48 385 | 16.74 385 | 37.98 383 | 12.97 388 | 6.05 386 | 16.69 384 | 5.43 385 | 23.68 381 |
|
wuyk23d | | | 30.17 350 | 30.18 354 | 30.16 366 | 78.61 384 | 43.29 390 | 66.79 379 | 14.21 390 | 17.31 383 | 14.82 386 | 11.93 386 | 11.55 389 | 41.43 385 | 37.08 383 | 19.30 383 | 5.76 383 |
|
EGC-MVSNET | | | 75.22 343 | 69.54 346 | 92.28 338 | 94.81 348 | 89.58 322 | 97.64 270 | 96.50 341 | 1.82 386 | 5.57 387 | 95.74 333 | 68.21 362 | 96.26 359 | 73.80 372 | 91.71 278 | 90.99 368 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
cdsmvs_eth3d_5k | | | 23.98 351 | 31.98 353 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 98.59 135 | 0.00 387 | 0.00 388 | 98.61 138 | 90.60 153 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 7.88 355 | 10.50 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 94.51 78 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 8.20 354 | 10.94 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 98.43 158 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
MSC_two_6792asdad | | | | | 99.62 6 | 99.17 91 | 99.08 11 | | 98.63 130 | | | | | 99.94 5 | 98.53 20 | 99.80 19 | 99.86 3 |
|
No_MVS | | | | | 99.62 6 | 99.17 91 | 99.08 11 | | 98.63 130 | | | | | 99.94 5 | 98.53 20 | 99.80 19 | 99.86 3 |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
OPU-MVS | | | | | 99.37 20 | 99.24 84 | 99.05 14 | 99.02 74 | | | | 99.16 67 | 97.81 3 | 99.37 160 | 97.24 97 | 99.73 44 | 99.70 47 |
|
save fliter | | | | | | 99.46 49 | 98.38 35 | 98.21 213 | 98.71 108 | 97.95 7 | | | | | | | |
|
test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 84 | 98.88 54 | | | | | 99.94 5 | 98.47 28 | 99.81 12 | 99.84 7 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 129 |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 172 | | | | 99.20 129 |
|
sam_mvs | | | | | | | | | | | | | 88.99 186 | | | | |
|
MTGPA |  | | | | | | | | 98.74 100 | | | | | | | | |
|
test_post1 | | | | | | | | 96.68 336 | | | | 30.43 385 | 87.85 217 | 98.69 241 | 92.59 253 | | |
|
test_post | | | | | | | | | | | | 31.83 384 | 88.83 193 | 98.91 219 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 344 | 89.42 173 | 98.89 223 | | | |
|
MTMP | | | | | | | | 98.89 101 | 94.14 367 | | | | | | | | |
|
gm-plane-assit | | | | | | 95.88 325 | 87.47 351 | | | 89.74 327 | | 96.94 295 | | 99.19 176 | 93.32 232 | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 136 | 99.57 74 | 99.69 50 |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 152 | 99.57 74 | 99.68 55 |
|
test_prior4 | | | | | | | 98.01 58 | 97.86 252 | | | | | | | | | |
|
test_prior | | | | | 99.19 39 | 99.31 62 | 98.22 47 | | 98.84 71 | | | | | 99.70 109 | | | 99.65 63 |
|
新几何2 | | | | | | | | 97.64 270 | | | | | | | | | |
|
旧先验1 | | | | | | 99.29 70 | 97.48 74 | | 98.70 111 | | | 99.09 82 | 95.56 46 | | | 99.47 91 | 99.61 69 |
|
无先验 | | | | | | | | 97.58 275 | 98.72 105 | 91.38 291 | | | | 99.87 48 | 93.36 231 | | 99.60 71 |
|
原ACMM2 | | | | | | | | 97.67 267 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.89 39 | 91.65 278 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
testdata1 | | | | | | | | 97.32 293 | | 96.34 85 | | | | | | | |
|
plane_prior7 | | | | | | 97.42 243 | 94.63 207 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 248 | 94.61 210 | | | | | | 87.09 230 | | | | |
|
plane_prior5 | | | | | | | | | 98.56 144 | | | | | 99.03 200 | 96.07 142 | 94.27 227 | 96.92 247 |
|
plane_prior4 | | | | | | | | | | | | 98.28 177 | | | | | |
|
plane_prior2 | | | | | | | | 98.80 125 | | 97.28 36 | | | | | | | |
|
plane_prior1 | | | | | | 97.37 247 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.60 212 | 98.44 188 | | 96.74 67 | | | | | | 94.22 229 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 363 | | | | | | | | |
|
test11 | | | | | | | | | 98.66 123 | | | | | | | | |
|
door | | | | | | | | | 94.64 361 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 227 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 170 | | |
|
HQP3-MVS | | | | | | | | | 98.46 167 | | | | | | | 94.18 231 | |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 236 | | | | |
|
NP-MVS | | | | | | 97.28 250 | 94.51 215 | | | | | 97.73 225 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 264 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 251 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 75 | | | | |
|