This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2998.27 2895.13 1799.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_ONE99.42 695.30 1598.27 2895.09 2099.19 198.81 895.54 399.65 53
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5798.14 5394.82 3099.01 398.55 1994.18 1197.41 30096.94 1199.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test072699.45 295.36 1098.31 2398.29 2494.92 2498.99 498.92 295.08 5
IU-MVS99.42 695.39 997.94 10290.40 17298.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1798.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5598.18 4690.57 16898.85 798.94 193.33 1799.83 2296.72 1999.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3697.85 11194.92 2498.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 3398.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13298.35 1995.16 1698.71 1098.80 995.05 799.89 396.70 2099.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4497.85 11193.72 6098.57 1198.35 3893.69 1599.40 10997.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2199.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3498.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14597.22 18395.35 898.27 1498.65 1393.33 1799.72 3596.49 2699.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3398.27 2892.37 10898.27 1498.65 1393.33 1799.72 3596.49 2699.52 2599.51 34
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1898.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2499.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
test_part299.28 2595.74 698.10 17
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7798.10 6191.50 13298.01 1898.32 4692.33 3599.58 7194.85 8199.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepPCF-MVS93.97 196.61 4897.09 1295.15 16098.09 10586.63 26496.00 23498.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1899.48 3599.45 45
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9298.19 4492.82 9697.93 2098.74 1191.60 5399.86 896.26 3199.52 2599.67 8
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8198.24 3491.57 13097.90 2198.37 3692.61 2999.66 5295.59 6599.51 2999.43 49
9.1496.75 3398.93 4797.73 7498.23 3891.28 14497.88 2298.44 2893.00 2199.65 5395.76 5499.47 36
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12398.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 1099.49 3499.57 19
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6998.22 3992.74 9997.59 2498.20 5791.96 4499.86 894.21 9599.25 6599.63 11
VNet95.89 6995.45 7197.21 6598.07 10792.94 7997.50 9998.15 5193.87 5397.52 2597.61 10085.29 14099.53 8995.81 5395.27 16999.16 70
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16598.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1599.29 5799.56 22
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16597.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1799.29 5799.55 26
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4998.07 7093.75 5997.45 2898.48 2591.43 5699.59 6896.22 3499.27 6199.54 29
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4998.06 7393.11 8397.44 2998.55 1990.93 6899.55 8496.06 4299.25 6599.51 34
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16996.72 22694.17 4797.44 2997.66 9392.76 2399.33 11496.86 1497.76 11899.08 80
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2291.40 5799.56 8196.05 4399.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2290.71 7396.05 4399.26 6399.43 49
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5498.04 8193.79 5897.35 3398.53 2191.40 5799.56 8196.30 3099.30 5699.55 26
旧先验295.94 23781.66 32597.34 3498.82 15992.26 128
ETH3D cwj APD-0.1696.56 5096.06 5998.05 1798.26 9295.19 1896.99 15098.05 8089.85 18297.26 3598.22 5691.80 4799.69 4494.84 8299.28 5999.27 66
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8298.49 1294.66 3797.24 3698.41 3492.31 3798.94 15096.61 2299.46 3898.96 92
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5898.03 8493.34 7597.22 3798.42 3187.93 10399.72 3595.10 7499.07 8099.02 83
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7797.18 3898.29 5092.08 3999.83 2295.63 6099.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3998.32 2092.57 10497.18 3898.29 5092.08 3999.83 2295.12 7399.59 1599.54 29
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7797.15 4098.33 4491.35 5999.86 895.63 6099.59 1599.62 13
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 8097.14 4198.34 4191.59 5499.87 795.46 6799.59 1599.64 10
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15398.01 9195.12 1997.14 4198.42 3191.82 4699.61 6296.90 1299.13 7599.50 37
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8598.98 192.22 11197.14 4198.44 2891.17 6499.85 1494.35 9399.46 3899.57 19
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3698.45 1589.86 18097.11 4498.01 6892.52 3299.69 4496.03 4699.53 2499.36 58
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11598.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5299.17 7299.56 22
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15397.76 11595.01 2397.08 4698.42 3191.71 4999.54 8696.80 1599.13 7599.48 41
ZD-MVS99.05 4194.59 2898.08 6489.22 19897.03 4798.10 6092.52 3299.65 5394.58 9199.31 55
testdata95.46 15398.18 10288.90 21097.66 12982.73 31997.03 4798.07 6390.06 8098.85 15789.67 17998.98 8598.64 118
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16896.77 4998.35 3890.21 7999.53 8994.80 8699.63 1299.38 56
hse-mvs394.15 11093.52 11896.04 11797.81 11990.22 16597.62 9197.58 13895.19 1496.74 5097.45 10983.67 16299.61 6295.85 5079.73 33098.29 146
hse-mvs293.45 13792.99 13394.81 17797.02 15488.59 21696.69 17996.47 24495.19 1496.74 5096.16 17883.67 16298.48 19195.85 5079.13 33497.35 186
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2598.13 5492.72 10096.70 5298.06 6491.35 5999.86 894.83 8399.28 5999.47 44
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
xiu_mvs_v1_base95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
CDPH-MVS95.97 6795.38 7497.77 3598.93 4794.44 3196.35 20997.88 10586.98 26496.65 5697.89 7291.99 4399.47 10092.26 12899.46 3899.39 54
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14298.21 4088.16 23496.64 5797.70 8991.18 6399.67 4992.44 12799.47 3699.48 41
UA-Net95.95 6895.53 6797.20 6697.67 12692.98 7897.65 8598.13 5494.81 3196.61 5898.35 3888.87 9099.51 9490.36 16797.35 12999.11 78
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9697.97 9995.59 496.61 5897.89 7292.57 3099.84 1995.95 4799.51 2999.40 53
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2696.59 6098.29 5091.70 5099.80 2795.66 5599.40 4599.62 13
X-MVStestdata91.71 19789.67 25697.81 3099.38 1494.03 5098.59 798.20 4294.85 2696.59 6032.69 36291.70 5099.80 2795.66 5599.40 4599.62 13
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10798.04 8194.81 3196.59 6098.37 3691.24 6199.64 6195.16 7199.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ95.37 7995.33 7695.49 14997.35 13690.66 15595.31 26397.48 14793.85 5496.51 6395.70 20588.65 9499.65 5394.80 8698.27 10396.17 213
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 16097.73 11894.74 3596.49 6498.49 2490.88 7099.58 7196.44 2898.32 10299.13 74
ETV-MVS96.02 6595.89 6396.40 9697.16 14292.44 9297.47 10497.77 11494.55 3996.48 6594.51 25391.23 6298.92 15195.65 5898.19 10597.82 168
alignmvs95.87 7095.23 7897.78 3397.56 13495.19 1897.86 6097.17 18694.39 4396.47 6696.40 16785.89 13399.20 12396.21 3895.11 17398.95 94
xiu_mvs_v2_base95.32 8195.29 7795.40 15497.22 13890.50 15895.44 25797.44 16293.70 6296.46 6796.18 17588.59 9799.53 8994.79 8897.81 11596.17 213
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8696.45 6898.30 4991.90 4599.85 1495.61 6299.68 499.54 29
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14896.40 6997.99 6990.99 6799.58 7195.61 6299.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10396.39 7098.18 5891.61 5299.88 495.59 6599.55 2199.57 19
diffmvs95.25 8395.13 8195.63 13896.43 18589.34 19595.99 23597.35 17492.83 9596.31 7197.37 11386.44 12598.67 17396.26 3197.19 13598.87 103
LFMVS93.60 13292.63 14596.52 8598.13 10491.27 12997.94 5593.39 33590.57 16896.29 7298.31 4769.00 32299.16 12894.18 9795.87 15899.12 77
canonicalmvs96.02 6595.45 7197.75 3797.59 13295.15 2198.28 2697.60 13594.52 4096.27 7396.12 17987.65 10799.18 12696.20 3994.82 17798.91 98
MVSFormer95.37 7995.16 8095.99 12096.34 18991.21 13298.22 3497.57 13991.42 13696.22 7497.32 11486.20 13097.92 25394.07 9899.05 8198.85 104
lupinMVS94.99 9394.56 9396.29 10696.34 18991.21 13295.83 24296.27 25288.93 20896.22 7496.88 13786.20 13098.85 15795.27 6999.05 8198.82 107
CS-MVS96.12 6296.17 5895.97 12196.69 16991.17 13998.49 1497.72 12193.80 5796.17 7697.13 12589.42 8598.60 17997.05 999.03 8398.15 150
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 16197.72 12194.67 3696.16 7798.46 2690.43 7699.58 7196.23 3397.96 11298.90 99
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13898.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4099.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12598.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4099.50 3299.58 17
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 14098.07 7093.54 6896.08 8097.69 9093.86 1399.71 3896.50 2599.39 4799.55 26
TEST998.70 6094.19 4096.41 20198.02 8888.17 23296.03 8197.56 10592.74 2499.59 68
train_agg96.30 5795.83 6497.72 3998.70 6094.19 4096.41 20198.02 8888.58 22096.03 8197.56 10592.73 2599.59 6895.04 7599.37 5299.39 54
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20998.00 9392.80 9796.03 8197.59 10192.01 4199.41 10795.01 7699.38 4899.29 62
test_prior296.35 20992.80 9796.03 8197.59 10192.01 4195.01 7699.38 48
jason94.84 9894.39 10196.18 11195.52 22290.93 14696.09 22896.52 24289.28 19696.01 8597.32 11484.70 14798.77 16495.15 7298.91 8998.85 104
jason: jason.
test_898.67 6294.06 4996.37 20898.01 9188.58 22095.98 8697.55 10792.73 2599.58 71
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7695.95 8798.33 4491.04 6699.88 495.20 7099.57 2099.60 16
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23698.18 4695.23 1295.87 8897.65 9491.45 5599.70 4395.87 4899.44 4299.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VDD-MVS93.82 12593.08 13196.02 11897.88 11689.96 17497.72 7795.85 26792.43 10695.86 8998.44 2868.42 32699.39 11096.31 2994.85 17598.71 115
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22498.90 294.30 4695.86 8997.74 8792.33 3599.38 11296.04 4599.42 4399.28 65
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 22298.79 493.99 5195.80 9197.65 9489.92 8399.24 12195.87 4899.20 7098.58 119
VDDNet93.05 15092.07 16296.02 11896.84 16090.39 16398.08 4395.85 26786.22 27695.79 9298.46 2667.59 32999.19 12494.92 8094.85 17598.47 131
新几何197.32 5698.60 6893.59 6197.75 11681.58 32695.75 9397.85 7890.04 8199.67 4986.50 24499.13 7598.69 116
test_yl94.78 10094.23 10296.43 9497.74 12391.22 13096.85 16297.10 19291.23 14695.71 9496.93 13284.30 15399.31 11693.10 12095.12 17198.75 109
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12391.22 13096.85 16297.10 19291.23 14695.71 9496.93 13284.30 15399.31 11693.10 12095.12 17198.75 109
agg_prior196.22 6095.77 6597.56 4898.67 6293.79 5596.28 21798.00 9388.76 21795.68 9697.55 10792.70 2799.57 7995.01 7699.32 5399.32 60
agg_prior98.67 6293.79 5598.00 9395.68 9699.57 79
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 23097.73 11881.56 32795.68 9697.85 7890.23 7899.65 5387.68 22299.12 7898.73 112
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 23097.48 14793.47 7195.67 9998.10 6089.17 8799.25 12091.27 15598.77 9199.13 74
baseline95.58 7595.42 7396.08 11396.78 16490.41 16297.16 13697.45 15893.69 6395.65 10097.85 7887.29 11598.68 17295.66 5597.25 13399.13 74
MVS_Test94.89 9694.62 9195.68 13696.83 16289.55 18496.70 17797.17 18691.17 14895.60 10196.11 18287.87 10498.76 16593.01 12497.17 13698.72 113
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26697.62 13490.43 17195.55 10297.07 12891.72 4899.50 9789.62 18198.94 8798.82 107
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15398.06 7390.67 15995.55 10298.78 1091.07 6599.86 896.58 2399.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1998.06 7393.37 7295.54 10498.34 4190.59 7599.88 494.83 8399.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test1297.65 4498.46 7494.26 3797.66 12995.52 10590.89 6999.46 10199.25 6599.22 67
casdiffmvs95.64 7395.49 6996.08 11396.76 16790.45 16097.29 12297.44 16294.00 5095.46 10697.98 7087.52 11198.73 16795.64 5997.33 13099.08 80
test22298.24 9392.21 10095.33 26197.60 13579.22 33995.25 10797.84 8188.80 9299.15 7398.72 113
原ACMM196.38 9998.59 6991.09 14197.89 10387.41 25695.22 10897.68 9190.25 7799.54 8687.95 21299.12 7898.49 128
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2298.11 5987.79 24595.17 10998.03 6687.09 11899.61 6293.51 11199.42 4399.02 83
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14298.08 6488.35 22795.09 11097.65 9489.97 8299.48 9992.08 13798.59 9798.44 136
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14191.58 12098.26 2898.12 5694.38 4494.90 11198.15 5982.28 19498.92 15191.45 15298.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet96.39 5596.02 6097.50 5097.62 12993.38 6797.02 14597.96 10095.42 794.86 11297.81 8287.38 11499.82 2596.88 1399.20 7099.29 62
API-MVS94.84 9894.49 9795.90 12497.90 11592.00 10997.80 6797.48 14789.19 19994.81 11396.71 14288.84 9199.17 12788.91 19998.76 9296.53 204
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19997.57 13992.04 12094.77 11497.96 7187.01 11999.09 13791.31 15496.77 14198.36 143
WTY-MVS94.71 10294.02 10496.79 7697.71 12592.05 10696.59 19297.35 17490.61 16594.64 11596.93 13286.41 12699.39 11091.20 15794.71 18198.94 95
ACMMPcopyleft96.27 5895.93 6197.28 5999.24 2892.62 8798.25 2998.81 392.99 8694.56 11698.39 3588.96 8999.85 1494.57 9297.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+94.93 9494.45 9996.36 10196.61 17091.47 12396.41 20197.41 16791.02 15394.50 11795.92 18887.53 11098.78 16293.89 10496.81 14098.84 106
sss94.51 10493.80 10896.64 7897.07 14791.97 11096.32 21398.06 7388.94 20794.50 11796.78 13984.60 14899.27 11991.90 13896.02 15498.68 117
PVSNet_BlendedMVS94.06 11693.92 10594.47 19298.27 8989.46 19096.73 17398.36 1690.17 17494.36 11995.24 22488.02 10099.58 7193.44 11390.72 23694.36 306
PVSNet_Blended94.87 9794.56 9395.81 12798.27 8989.46 19095.47 25698.36 1688.84 21194.36 11996.09 18388.02 10099.58 7193.44 11398.18 10698.40 139
PMMVS92.86 16092.34 15694.42 19694.92 25986.73 26094.53 28096.38 24884.78 29894.27 12195.12 22983.13 17298.40 19491.47 15196.49 15098.12 152
EPP-MVSNet95.22 8595.04 8395.76 12897.49 13589.56 18398.67 597.00 20590.69 15894.24 12297.62 9989.79 8498.81 16093.39 11696.49 15098.92 97
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12398.25 3390.21 17394.18 12397.27 11687.48 11299.73 3293.53 11097.77 11798.55 120
thisisatest053093.03 15192.21 16095.49 14997.07 14789.11 20697.49 10392.19 34390.16 17594.09 12496.41 16676.43 28299.05 14390.38 16695.68 16498.31 145
XVG-OURS-SEG-HR93.86 12493.55 11594.81 17797.06 15088.53 21995.28 26497.45 15891.68 12894.08 12597.68 9182.41 19298.90 15493.84 10692.47 20696.98 191
XVG-OURS93.72 12993.35 12694.80 18097.07 14788.61 21594.79 27497.46 15291.97 12393.99 12697.86 7781.74 20598.88 15692.64 12692.67 20496.92 195
IS-MVSNet94.90 9594.52 9696.05 11697.67 12690.56 15698.44 1796.22 25593.21 7793.99 12697.74 8785.55 13898.45 19289.98 17097.86 11399.14 73
CSCG96.05 6495.91 6296.46 9399.24 2890.47 15998.30 2498.57 1189.01 20393.97 12897.57 10392.62 2899.76 3094.66 8999.27 6199.15 72
EIA-MVS95.53 7795.47 7095.71 13597.06 15089.63 17997.82 6597.87 10793.57 6493.92 12995.04 23090.61 7498.95 14994.62 9098.68 9498.54 121
tttt051792.96 15492.33 15794.87 17497.11 14587.16 25297.97 5392.09 34490.63 16393.88 13097.01 13176.50 27999.06 14290.29 16995.45 16698.38 141
HyFIR lowres test93.66 13092.92 13695.87 12598.24 9389.88 17594.58 27898.49 1285.06 29393.78 13195.78 19982.86 18098.67 17391.77 14295.71 16399.07 82
CHOSEN 1792x268894.15 11093.51 11996.06 11598.27 8989.38 19395.18 27098.48 1485.60 28493.76 13297.11 12683.15 17199.61 6291.33 15398.72 9399.19 68
Anonymous20240521192.07 18990.83 20895.76 12898.19 10088.75 21297.58 9395.00 30386.00 27993.64 13397.45 10966.24 33899.53 8990.68 16492.71 20299.01 87
CDS-MVSNet94.14 11393.54 11695.93 12296.18 19691.46 12496.33 21297.04 20188.97 20693.56 13496.51 16087.55 10997.89 25789.80 17595.95 15698.44 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MDTV_nov1_ep13_2view70.35 35493.10 32083.88 30893.55 13582.47 19186.25 24798.38 141
Anonymous2024052991.98 19190.73 21295.73 13398.14 10389.40 19297.99 4897.72 12179.63 33793.54 13697.41 11269.94 32099.56 8191.04 15891.11 22998.22 147
CANet_DTU94.37 10593.65 11396.55 8496.46 18392.13 10496.21 22396.67 23494.38 4493.53 13797.03 13079.34 24399.71 3890.76 16198.45 10097.82 168
tpmrst91.44 21191.32 18891.79 28895.15 24779.20 34093.42 31395.37 28588.55 22393.49 13893.67 29482.49 19098.27 20390.41 16589.34 25097.90 161
TAMVS94.01 11993.46 12195.64 13796.16 19890.45 16096.71 17696.89 21689.27 19793.46 13996.92 13587.29 11597.94 25088.70 20395.74 16198.53 122
thisisatest051592.29 17991.30 19095.25 15796.60 17188.90 21094.36 28792.32 34287.92 23993.43 14094.57 25277.28 27599.00 14689.42 18595.86 15997.86 164
DeepC-MVS93.07 396.06 6395.66 6697.29 5897.96 10993.17 7397.30 12198.06 7393.92 5293.38 14198.66 1286.83 12099.73 3295.60 6499.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view792.49 17091.60 17895.18 15997.91 11489.47 18897.65 8594.66 31492.18 11793.33 14294.91 23478.06 26899.10 13481.61 29694.06 18996.98 191
thres100view90092.43 17191.58 17994.98 16897.92 11389.37 19497.71 7994.66 31492.20 11393.31 14394.90 23578.06 26899.08 13981.40 29994.08 18696.48 207
thres20092.23 18391.39 18594.75 18497.61 13089.03 20796.60 19195.09 30092.08 11993.28 14494.00 28178.39 26299.04 14581.26 30394.18 18596.19 212
tfpn200view992.38 17491.52 18294.95 17197.85 11789.29 19897.41 10794.88 30992.19 11593.27 14594.46 25878.17 26499.08 13981.40 29994.08 18696.48 207
thres40092.42 17291.52 18295.12 16397.85 11789.29 19897.41 10794.88 30992.19 11593.27 14594.46 25878.17 26499.08 13981.40 29994.08 18696.98 191
ab-mvs93.57 13492.55 14996.64 7897.28 13791.96 11195.40 25897.45 15889.81 18493.22 14796.28 17279.62 24099.46 10190.74 16293.11 19898.50 126
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 17197.61 13087.92 23598.10 4195.80 26992.22 11193.02 14897.45 10984.53 15097.91 25688.24 20797.97 11199.02 83
114514_t93.95 12093.06 13296.63 8099.07 3991.61 11797.46 10697.96 10077.99 34393.00 14997.57 10386.14 13299.33 11489.22 19299.15 7398.94 95
UGNet94.04 11893.28 12896.31 10396.85 15991.19 13597.88 5997.68 12794.40 4293.00 14996.18 17573.39 30299.61 6291.72 14398.46 9998.13 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HY-MVS89.66 993.87 12392.95 13596.63 8097.10 14692.49 9195.64 25096.64 23589.05 20293.00 14995.79 19885.77 13699.45 10389.16 19694.35 18397.96 157
PVSNet86.66 1892.24 18291.74 17593.73 22597.77 12283.69 30592.88 32296.72 22687.91 24093.00 14994.86 23778.51 25899.05 14386.53 24297.45 12698.47 131
MAR-MVS94.22 10893.46 12196.51 8898.00 10892.19 10397.67 8297.47 15088.13 23693.00 14995.84 19284.86 14699.51 9487.99 21198.17 10797.83 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12597.73 11891.80 12592.93 15496.62 15689.13 8899.14 13189.21 19397.78 11698.97 91
MDTV_nov1_ep1390.76 21095.22 24480.33 32993.03 32195.28 29088.14 23592.84 15593.83 28581.34 20998.08 22682.86 28794.34 184
CostFormer91.18 22990.70 21392.62 26994.84 26581.76 31894.09 29794.43 31984.15 30492.72 15693.77 28979.43 24298.20 20990.70 16392.18 21297.90 161
EPNet95.20 8694.56 9397.14 6892.80 32292.68 8497.85 6394.87 31296.64 192.46 15797.80 8486.23 12799.65 5393.72 10898.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet90.82 24189.77 25293.95 21594.45 28187.19 25090.23 34295.68 27586.89 26692.40 15892.36 31780.91 21597.05 31081.09 30493.95 19097.60 179
RPMNet88.98 27487.05 28994.77 18294.45 28187.19 25090.23 34298.03 8477.87 34592.40 15887.55 34780.17 22999.51 9468.84 35093.95 19097.60 179
EPMVS90.70 24789.81 25093.37 24494.73 27084.21 29793.67 30888.02 35589.50 19092.38 16093.49 29877.82 27297.78 26786.03 25492.68 20398.11 155
baseline192.82 16391.90 16995.55 14497.20 14090.77 15297.19 13394.58 31792.20 11392.36 16196.34 17084.16 15698.21 20789.20 19483.90 31397.68 173
PatchT88.87 27887.42 28393.22 25094.08 29285.10 28789.51 34694.64 31681.92 32392.36 16188.15 34480.05 23197.01 31472.43 34293.65 19397.54 182
PAPR94.18 10993.42 12596.48 9097.64 12891.42 12695.55 25297.71 12688.99 20492.34 16395.82 19489.19 8699.11 13386.14 25097.38 12798.90 99
mvs-test193.63 13193.69 11193.46 24096.02 20584.61 29497.24 12596.72 22693.85 5492.30 16495.76 20083.08 17398.89 15591.69 14696.54 14896.87 197
SCA91.84 19491.18 19793.83 22195.59 21884.95 29094.72 27595.58 27990.82 15492.25 16593.69 29175.80 28598.10 22186.20 24895.98 15598.45 133
CVMVSNet91.23 22391.75 17389.67 32195.77 21374.69 34996.44 19794.88 30985.81 28192.18 16697.64 9779.07 24695.58 33788.06 21095.86 15998.74 111
AUN-MVS91.76 19690.75 21194.81 17797.00 15588.57 21796.65 18396.49 24389.63 18792.15 16796.12 17978.66 25698.50 18790.83 16079.18 33397.36 185
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 19297.81 11389.87 17992.15 16797.06 12983.62 16499.54 8689.34 18798.07 10997.70 172
GeoE93.89 12293.28 12895.72 13496.96 15789.75 17898.24 3296.92 21389.47 19192.12 16997.21 12084.42 15198.39 19787.71 21896.50 14999.01 87
PatchmatchNetpermissive91.91 19291.35 18693.59 23395.38 22884.11 29993.15 31895.39 28389.54 18892.10 17093.68 29382.82 18298.13 21684.81 26995.32 16898.52 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet93.24 14392.48 15495.51 14695.70 21692.39 9397.86 6098.66 992.30 10992.09 17195.37 21980.49 22298.40 19493.95 10185.86 28195.75 235
tpm90.25 25789.74 25591.76 29193.92 29579.73 33693.98 29893.54 33288.28 22891.99 17293.25 30377.51 27497.44 29787.30 23387.94 26198.12 152
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 19296.88 21790.13 17691.91 17397.24 11885.21 14199.09 13787.64 22597.83 11497.92 160
BH-RMVSNet92.72 16691.97 16794.97 16997.16 14287.99 23496.15 22695.60 27790.62 16491.87 17497.15 12478.41 26198.57 18383.16 28497.60 12098.36 143
PatchMatch-RL92.90 15892.02 16595.56 14298.19 10090.80 15095.27 26697.18 18487.96 23891.86 17595.68 20680.44 22398.99 14784.01 27897.54 12196.89 196
OPM-MVS93.28 14292.76 13994.82 17594.63 27590.77 15296.65 18397.18 18493.72 6091.68 17697.26 11779.33 24498.63 17692.13 13492.28 20895.07 270
tpm289.96 26389.21 26492.23 27794.91 26281.25 32193.78 30494.42 32080.62 33391.56 17793.44 30076.44 28197.94 25085.60 26092.08 21697.49 183
TAPA-MVS90.10 792.30 17891.22 19595.56 14298.33 8589.60 18196.79 16997.65 13181.83 32491.52 17897.23 11987.94 10298.91 15371.31 34698.37 10198.17 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS91.48 21090.59 21794.16 20496.40 18687.33 24495.67 24795.34 28987.68 25091.46 17995.52 21576.77 27898.35 19982.85 28893.61 19596.79 200
RPSCF90.75 24490.86 20490.42 31496.84 16076.29 34795.61 25196.34 24983.89 30791.38 18097.87 7576.45 28098.78 16287.16 23792.23 20996.20 211
PLCcopyleft91.00 694.11 11493.43 12396.13 11298.58 7191.15 14096.69 17997.39 16887.29 25991.37 18196.71 14288.39 9899.52 9387.33 23297.13 13797.73 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42093.12 14792.72 14394.34 19996.71 16887.27 24690.29 34197.72 12186.61 27191.34 18295.29 22184.29 15598.41 19393.25 11898.94 8797.35 186
HQP_MVS93.78 12793.43 12394.82 17596.21 19389.99 17097.74 7297.51 14594.85 2691.34 18296.64 14981.32 21098.60 17993.02 12292.23 20995.86 224
plane_prior390.00 16894.46 4191.34 182
Fast-Effi-MVS+93.46 13692.75 14195.59 14196.77 16590.03 16796.81 16897.13 18988.19 23091.30 18594.27 26986.21 12998.63 17687.66 22496.46 15298.12 152
EI-MVSNet93.03 15192.88 13793.48 23895.77 21386.98 25596.44 19797.12 19090.66 16191.30 18597.64 9786.56 12298.05 23289.91 17290.55 23895.41 249
MVSTER93.20 14592.81 13894.37 19796.56 17689.59 18297.06 14197.12 19091.24 14591.30 18595.96 18682.02 19998.05 23293.48 11290.55 23895.47 245
RRT_MVS93.21 14492.32 15895.91 12394.92 25994.15 4396.92 15796.86 22091.42 13691.28 18896.43 16479.66 23998.10 22193.29 11790.06 24395.46 246
ADS-MVSNet289.45 27088.59 27292.03 28095.86 20882.26 31690.93 33794.32 32483.23 31691.28 18891.81 32479.01 25195.99 32879.52 31191.39 22597.84 165
ADS-MVSNet89.89 26588.68 27193.53 23695.86 20884.89 29190.93 33795.07 30183.23 31691.28 18891.81 32479.01 25197.85 25979.52 31191.39 22597.84 165
nrg03094.05 11793.31 12796.27 10795.22 24494.59 2898.34 2197.46 15292.93 9391.21 19196.64 14987.23 11798.22 20694.99 7985.80 28295.98 222
Effi-MVS+-dtu93.08 14893.21 13092.68 26896.02 20583.25 30897.14 13996.72 22693.85 5491.20 19293.44 30083.08 17398.30 20291.69 14695.73 16296.50 206
VPNet92.23 18391.31 18994.99 16695.56 22090.96 14497.22 13197.86 11092.96 9290.96 19396.62 15675.06 29098.20 20991.90 13883.65 31595.80 230
JIA-IIPM88.26 28687.04 29091.91 28293.52 30781.42 32089.38 34794.38 32180.84 33190.93 19480.74 35279.22 24597.92 25382.76 28991.62 22096.38 209
test-LLR91.42 21291.19 19692.12 27894.59 27680.66 32494.29 29192.98 33791.11 15090.76 19592.37 31479.02 24998.07 22988.81 20096.74 14297.63 174
test-mter90.19 26089.54 25992.12 27894.59 27680.66 32494.29 29192.98 33787.68 25090.76 19592.37 31467.67 32898.07 22988.81 20096.74 14297.63 174
ACMM89.79 892.96 15492.50 15394.35 19896.30 19188.71 21397.58 9397.36 17391.40 13990.53 19796.65 14879.77 23698.75 16691.24 15691.64 21995.59 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
F-COLMAP93.58 13392.98 13495.37 15598.40 7888.98 20897.18 13497.29 17987.75 24890.49 19897.10 12785.21 14199.50 9786.70 24196.72 14497.63 174
DWT-MVSNet_test90.76 24289.89 24693.38 24395.04 25383.70 30495.85 24194.30 32588.19 23090.46 19992.80 30773.61 30098.50 18788.16 20890.58 23797.95 159
TESTMET0.1,190.06 26289.42 26091.97 28194.41 28380.62 32694.29 29191.97 34687.28 26090.44 20092.47 31368.79 32397.67 27588.50 20696.60 14797.61 178
FIs94.09 11593.70 11095.27 15695.70 21692.03 10798.10 4198.68 793.36 7490.39 20196.70 14487.63 10897.94 25092.25 13090.50 24095.84 227
GA-MVS91.38 21490.31 22794.59 18694.65 27387.62 24294.34 28896.19 25790.73 15790.35 20293.83 28571.84 30597.96 24787.22 23493.61 19598.21 148
LS3D93.57 13492.61 14796.47 9197.59 13291.61 11797.67 8297.72 12185.17 29190.29 20398.34 4184.60 14899.73 3283.85 28298.27 10398.06 156
FC-MVSNet-test93.94 12193.57 11495.04 16495.48 22491.45 12598.12 4098.71 593.37 7290.23 20496.70 14487.66 10697.85 25991.49 15090.39 24195.83 228
bset_n11_16_dypcd91.55 20590.59 21794.44 19391.51 33490.25 16492.70 32593.42 33492.27 11090.22 20594.74 24478.42 26097.80 26494.19 9687.86 26395.29 265
HQP-NCC95.86 20896.65 18393.55 6590.14 206
ACMP_Plane95.86 20896.65 18393.55 6590.14 206
HQP4-MVS90.14 20698.50 18795.78 231
HQP-MVS93.19 14692.74 14294.54 19195.86 20889.33 19696.65 18397.39 16893.55 6590.14 20695.87 19080.95 21398.50 18792.13 13492.10 21495.78 231
UniMVSNet_NR-MVSNet93.37 13992.67 14495.47 15295.34 23392.83 8097.17 13598.58 1092.98 9190.13 21095.80 19588.37 9997.85 25991.71 14483.93 31095.73 237
DU-MVS92.90 15892.04 16395.49 14994.95 25792.83 8097.16 13698.24 3493.02 8590.13 21095.71 20383.47 16597.85 25991.71 14483.93 31095.78 231
LPG-MVS_test92.94 15692.56 14894.10 20596.16 19888.26 22597.65 8597.46 15291.29 14190.12 21297.16 12279.05 24798.73 16792.25 13091.89 21795.31 258
LGP-MVS_train94.10 20596.16 19888.26 22597.46 15291.29 14190.12 21297.16 12279.05 24798.73 16792.25 13091.89 21795.31 258
UniMVSNet (Re)93.31 14192.55 14995.61 14095.39 22793.34 7097.39 11198.71 593.14 8290.10 21494.83 23987.71 10598.03 23691.67 14883.99 30995.46 246
mvs_anonymous93.82 12593.74 10994.06 20796.44 18485.41 28295.81 24397.05 19989.85 18290.09 21596.36 16987.44 11397.75 27093.97 10096.69 14599.02 83
test_djsdf93.07 14992.76 13994.00 21093.49 30988.70 21498.22 3497.57 13991.42 13690.08 21695.55 21382.85 18197.92 25394.07 9891.58 22195.40 252
dp88.90 27788.26 27790.81 30794.58 27876.62 34692.85 32394.93 30785.12 29290.07 21793.07 30475.81 28498.12 21980.53 30687.42 26897.71 171
PS-MVSNAJss93.74 12893.51 11994.44 19393.91 29689.28 20097.75 7197.56 14292.50 10589.94 21896.54 15988.65 9498.18 21293.83 10790.90 23495.86 224
UniMVSNet_ETH3D91.34 21990.22 23594.68 18594.86 26487.86 23897.23 13097.46 15287.99 23789.90 21996.92 13566.35 33698.23 20590.30 16890.99 23297.96 157
CLD-MVS92.98 15392.53 15194.32 20096.12 20289.20 20295.28 26497.47 15092.66 10189.90 21995.62 20880.58 22098.40 19492.73 12592.40 20795.38 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
gg-mvs-nofinetune87.82 28985.61 29894.44 19394.46 28089.27 20191.21 33684.61 36080.88 33089.89 22174.98 35471.50 30797.53 28985.75 25997.21 13496.51 205
1112_ss93.37 13992.42 15596.21 11097.05 15290.99 14296.31 21496.72 22686.87 26789.83 22296.69 14686.51 12499.14 13188.12 20993.67 19298.50 126
BH-untuned92.94 15692.62 14693.92 21997.22 13886.16 27396.40 20496.25 25490.06 17789.79 22396.17 17783.19 16998.35 19987.19 23597.27 13297.24 188
V4291.58 20390.87 20393.73 22594.05 29388.50 22097.32 11896.97 20688.80 21689.71 22494.33 26482.54 18898.05 23289.01 19785.07 29494.64 300
Baseline_NR-MVSNet91.20 22590.62 21592.95 25993.83 29988.03 23397.01 14995.12 29988.42 22589.70 22595.13 22883.47 16597.44 29789.66 18083.24 31893.37 324
v14419291.06 23190.28 22993.39 24293.66 30487.23 24996.83 16597.07 19687.43 25589.69 22694.28 26881.48 20898.00 23987.18 23684.92 29894.93 278
v114491.37 21690.60 21693.68 23093.89 29788.23 22796.84 16497.03 20388.37 22689.69 22694.39 26082.04 19897.98 24087.80 21585.37 28794.84 284
Test_1112_low_res92.84 16291.84 17195.85 12697.04 15389.97 17395.53 25496.64 23585.38 28789.65 22895.18 22585.86 13499.10 13487.70 21993.58 19798.49 128
v119291.07 23090.23 23393.58 23493.70 30287.82 23996.73 17397.07 19687.77 24689.58 22994.32 26680.90 21797.97 24386.52 24385.48 28594.95 274
v124090.70 24789.85 24893.23 24993.51 30886.80 25896.61 18997.02 20487.16 26289.58 22994.31 26779.55 24197.98 24085.52 26185.44 28694.90 281
TranMVSNet+NR-MVSNet92.50 16891.63 17795.14 16194.76 26892.07 10597.53 9798.11 5992.90 9489.56 23196.12 17983.16 17097.60 28389.30 18883.20 31995.75 235
v2v48291.59 20190.85 20693.80 22393.87 29888.17 23096.94 15696.88 21789.54 18889.53 23294.90 23581.70 20698.02 23789.25 19185.04 29695.20 267
v192192090.85 24090.03 24393.29 24793.55 30586.96 25796.74 17297.04 20187.36 25789.52 23394.34 26380.23 22897.97 24386.27 24685.21 29194.94 276
IterMVS-LS92.29 17991.94 16893.34 24596.25 19286.97 25696.57 19597.05 19990.67 15989.50 23494.80 24186.59 12197.64 27889.91 17286.11 28095.40 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cascas91.20 22590.08 23994.58 19094.97 25589.16 20593.65 30997.59 13779.90 33689.40 23592.92 30675.36 28998.36 19892.14 13394.75 17996.23 210
XVG-ACMP-BASELINE90.93 23890.21 23693.09 25494.31 28785.89 27595.33 26197.26 18091.06 15289.38 23695.44 21868.61 32498.60 17989.46 18491.05 23094.79 292
GBi-Net91.35 21790.27 23094.59 18696.51 17991.18 13697.50 9996.93 20988.82 21389.35 23794.51 25373.87 29697.29 30686.12 25188.82 25395.31 258
test191.35 21790.27 23094.59 18696.51 17991.18 13697.50 9996.93 20988.82 21389.35 23794.51 25373.87 29697.29 30686.12 25188.82 25395.31 258
FMVSNet391.78 19590.69 21495.03 16596.53 17892.27 9997.02 14596.93 20989.79 18589.35 23794.65 24977.01 27697.47 29486.12 25188.82 25395.35 256
WR-MVS92.34 17591.53 18194.77 18295.13 24990.83 14996.40 20497.98 9891.88 12489.29 24095.54 21482.50 18997.80 26489.79 17685.27 29095.69 238
DP-MVS92.76 16591.51 18496.52 8598.77 5790.99 14297.38 11396.08 26082.38 32089.29 24097.87 7583.77 16099.69 4481.37 30296.69 14598.89 101
BH-w/o92.14 18891.75 17393.31 24696.99 15685.73 27795.67 24795.69 27388.73 21889.26 24294.82 24082.97 17898.07 22985.26 26596.32 15396.13 217
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17693.36 6998.65 698.36 1694.12 4889.25 24398.06 6482.20 19699.77 2993.41 11599.32 5399.18 69
miper_enhance_ethall91.54 20791.01 20093.15 25295.35 23287.07 25493.97 29996.90 21486.79 26889.17 24493.43 30286.55 12397.64 27889.97 17186.93 27194.74 296
Fast-Effi-MVS+-dtu92.29 17991.99 16693.21 25195.27 24085.52 28097.03 14296.63 23892.09 11889.11 24595.14 22780.33 22698.08 22687.54 22894.74 18096.03 221
RRT_test8_iter0591.19 22890.78 20992.41 27395.76 21583.14 30997.32 11897.46 15291.37 14089.07 24695.57 21070.33 31598.21 20793.56 10986.62 27695.89 223
XXY-MVS92.16 18691.23 19494.95 17194.75 26990.94 14597.47 10497.43 16589.14 20088.90 24796.43 16479.71 23798.24 20489.56 18287.68 26495.67 240
PCF-MVS89.48 1191.56 20489.95 24496.36 10196.60 17192.52 9092.51 32897.26 18079.41 33888.90 24796.56 15884.04 15899.55 8477.01 32897.30 13197.01 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_ehance_all_eth91.59 20191.13 19892.97 25895.55 22186.57 26594.47 28196.88 21787.77 24688.88 24994.01 28086.22 12897.54 28789.49 18386.93 27194.79 292
jajsoiax92.42 17291.89 17094.03 20993.33 31488.50 22097.73 7497.53 14392.00 12288.85 25096.50 16175.62 28898.11 22093.88 10591.56 22295.48 243
eth_miper_zixun_eth91.02 23390.59 21792.34 27595.33 23684.35 29594.10 29696.90 21488.56 22288.84 25194.33 26484.08 15797.60 28388.77 20284.37 30595.06 271
cl_fuxian91.38 21490.89 20292.88 26195.58 21986.30 26894.68 27696.84 22288.17 23288.83 25294.23 27285.65 13797.47 29489.36 18684.63 30094.89 282
test_part192.21 18591.10 19995.51 14697.80 12092.66 8598.02 4797.68 12789.79 18588.80 25396.02 18476.85 27798.18 21290.86 15984.11 30895.69 238
mvs_tets92.31 17791.76 17293.94 21793.41 31188.29 22397.63 9097.53 14392.04 12088.76 25496.45 16374.62 29298.09 22593.91 10391.48 22395.45 248
v14890.99 23490.38 22492.81 26493.83 29985.80 27696.78 17196.68 23289.45 19288.75 25593.93 28482.96 17997.82 26387.83 21483.25 31794.80 290
FMVSNet291.31 22090.08 23994.99 16696.51 17992.21 10097.41 10796.95 20788.82 21388.62 25694.75 24373.87 29697.42 29985.20 26688.55 25895.35 256
PAPM91.52 20890.30 22895.20 15895.30 23989.83 17693.38 31496.85 22186.26 27588.59 25795.80 19584.88 14598.15 21575.67 33295.93 15797.63 174
cl-mvsnet291.21 22490.56 22093.14 25396.09 20486.80 25894.41 28596.58 24187.80 24488.58 25893.99 28280.85 21897.62 28189.87 17486.93 27194.99 273
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15895.34 1398.48 1697.87 10794.65 3888.53 25998.02 6783.69 16199.71 3893.18 11998.96 8699.44 47
anonymousdsp92.16 18691.55 18093.97 21392.58 32689.55 18497.51 9897.42 16689.42 19388.40 26094.84 23880.66 21997.88 25891.87 14091.28 22794.48 302
WR-MVS_H92.00 19091.35 18693.95 21595.09 25189.47 18898.04 4698.68 791.46 13488.34 26194.68 24785.86 13497.56 28585.77 25884.24 30694.82 287
v891.29 22290.53 22193.57 23594.15 28988.12 23297.34 11597.06 19888.99 20488.32 26294.26 27183.08 17398.01 23887.62 22683.92 31294.57 301
ACMP89.59 1092.62 16792.14 16194.05 20896.40 18688.20 22897.36 11497.25 18291.52 13188.30 26396.64 14978.46 25998.72 17091.86 14191.48 22395.23 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1091.04 23290.23 23393.49 23794.12 29088.16 23197.32 11897.08 19588.26 22988.29 26494.22 27482.17 19797.97 24386.45 24584.12 30794.33 307
QAPM93.45 13792.27 15996.98 7496.77 16592.62 8798.39 2098.12 5684.50 30188.27 26597.77 8582.39 19399.81 2685.40 26398.81 9098.51 125
Anonymous2023121190.63 24989.42 26094.27 20198.24 9389.19 20498.05 4597.89 10379.95 33588.25 26694.96 23172.56 30398.13 21689.70 17885.14 29295.49 242
CP-MVSNet91.89 19391.24 19393.82 22295.05 25288.57 21797.82 6598.19 4491.70 12788.21 26795.76 20081.96 20097.52 29187.86 21384.65 29995.37 255
cl-mvsnet190.97 23690.33 22592.88 26195.36 23186.19 27294.46 28396.63 23887.82 24288.18 26894.23 27282.99 17697.53 28987.72 21685.57 28494.93 278
cl-mvsnet____90.96 23790.32 22692.89 26095.37 23086.21 27194.46 28396.64 23587.82 24288.15 26994.18 27582.98 17797.54 28787.70 21985.59 28394.92 280
tpmvs89.83 26889.15 26691.89 28394.92 25980.30 33093.11 31995.46 28286.28 27488.08 27092.65 30980.44 22398.52 18681.47 29889.92 24596.84 198
PS-CasMVS91.55 20590.84 20793.69 22994.96 25688.28 22497.84 6498.24 3491.46 13488.04 27195.80 19579.67 23897.48 29387.02 23884.54 30395.31 258
MVS_030488.79 27987.57 28192.46 27094.65 27386.15 27496.40 20497.17 18686.44 27288.02 27291.71 32656.68 35397.03 31184.47 27492.58 20594.19 312
MIMVSNet88.50 28386.76 29193.72 22794.84 26587.77 24091.39 33294.05 32786.41 27387.99 27392.59 31163.27 34595.82 33377.44 32292.84 20197.57 181
GG-mvs-BLEND93.62 23193.69 30389.20 20292.39 33083.33 36187.98 27489.84 33771.00 31196.87 31882.08 29595.40 16794.80 290
miper_lstm_enhance90.50 25390.06 24291.83 28595.33 23683.74 30193.86 30296.70 23187.56 25387.79 27593.81 28883.45 16796.92 31787.39 23084.62 30194.82 287
PEN-MVS91.20 22590.44 22293.48 23894.49 27987.91 23797.76 7098.18 4691.29 14187.78 27695.74 20280.35 22597.33 30485.46 26282.96 32095.19 268
ITE_SJBPF92.43 27295.34 23385.37 28395.92 26391.47 13387.75 27796.39 16871.00 31197.96 24782.36 29389.86 24693.97 316
v7n90.76 24289.86 24793.45 24193.54 30687.60 24397.70 8097.37 17188.85 21087.65 27894.08 27981.08 21298.10 22184.68 27183.79 31494.66 299
Patchmtry88.64 28287.25 28592.78 26594.09 29186.64 26189.82 34595.68 27580.81 33287.63 27992.36 31780.91 21597.03 31178.86 31785.12 29394.67 298
pmmvs490.93 23889.85 24894.17 20393.34 31390.79 15194.60 27796.02 26184.62 29987.45 28095.15 22681.88 20397.45 29687.70 21987.87 26294.27 311
tpm cat188.36 28487.21 28791.81 28795.13 24980.55 32792.58 32795.70 27274.97 34787.45 28091.96 32278.01 27098.17 21480.39 30788.74 25696.72 202
FMVSNet189.88 26688.31 27594.59 18695.41 22691.18 13697.50 9996.93 20986.62 27087.41 28294.51 25365.94 34097.29 30683.04 28687.43 26795.31 258
IterMVS-SCA-FT90.31 25589.81 25091.82 28695.52 22284.20 29894.30 29096.15 25890.61 16587.39 28394.27 26975.80 28596.44 32387.34 23186.88 27594.82 287
MVS91.71 19790.44 22295.51 14695.20 24691.59 11996.04 23097.45 15873.44 35087.36 28495.60 20985.42 13999.10 13485.97 25597.46 12295.83 228
EU-MVSNet88.72 28188.90 26888.20 32693.15 31774.21 35096.63 18894.22 32685.18 29087.32 28595.97 18576.16 28394.98 34185.27 26486.17 27895.41 249
IterMVS90.15 26189.67 25691.61 29395.48 22483.72 30294.33 28996.12 25989.99 17887.31 28694.15 27775.78 28796.27 32686.97 23986.89 27494.83 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs589.86 26788.87 26992.82 26392.86 32086.23 27096.26 21895.39 28384.24 30387.12 28794.51 25374.27 29497.36 30387.61 22787.57 26594.86 283
DTE-MVSNet90.56 25089.75 25493.01 25693.95 29487.25 24797.64 8997.65 13190.74 15687.12 28795.68 20679.97 23397.00 31583.33 28381.66 32594.78 294
Patchmatch-test89.42 27187.99 27893.70 22895.27 24085.11 28688.98 34894.37 32281.11 32887.10 28993.69 29182.28 19497.50 29274.37 33694.76 17898.48 130
IB-MVS87.33 1789.91 26488.28 27694.79 18195.26 24387.70 24195.12 27293.95 33089.35 19587.03 29092.49 31270.74 31399.19 12489.18 19581.37 32697.49 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet_dtu91.71 19791.28 19192.99 25793.76 30183.71 30396.69 17995.28 29093.15 8187.02 29195.95 18783.37 16897.38 30279.46 31496.84 13997.88 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline291.63 20090.86 20493.94 21794.33 28586.32 26795.92 23891.64 34889.37 19486.94 29294.69 24681.62 20798.69 17188.64 20494.57 18296.81 199
MSDG91.42 21290.24 23294.96 17097.15 14488.91 20993.69 30796.32 25085.72 28386.93 29396.47 16280.24 22798.98 14880.57 30595.05 17496.98 191
test0.0.03 189.37 27288.70 27091.41 29892.47 32785.63 27895.22 26992.70 34091.11 15086.91 29493.65 29579.02 24993.19 35178.00 32189.18 25195.41 249
COLMAP_ROBcopyleft87.81 1590.40 25489.28 26393.79 22497.95 11087.13 25396.92 15795.89 26682.83 31886.88 29597.18 12173.77 29999.29 11878.44 31993.62 19494.95 274
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
D2MVS91.30 22190.95 20192.35 27494.71 27185.52 28096.18 22598.21 4088.89 20986.60 29693.82 28779.92 23497.95 24989.29 18990.95 23393.56 320
OurMVSNet-221017-090.51 25290.19 23791.44 29793.41 31181.25 32196.98 15296.28 25191.68 12886.55 29796.30 17174.20 29597.98 24088.96 19887.40 26995.09 269
MS-PatchMatch90.27 25689.77 25291.78 28994.33 28584.72 29395.55 25296.73 22586.17 27786.36 29895.28 22371.28 30997.80 26484.09 27798.14 10892.81 329
131492.81 16492.03 16495.14 16195.33 23689.52 18796.04 23097.44 16287.72 24986.25 29995.33 22083.84 15998.79 16189.26 19097.05 13897.11 189
tfpnnormal89.70 26988.40 27493.60 23295.15 24790.10 16697.56 9598.16 5087.28 26086.16 30094.63 25077.57 27398.05 23274.48 33484.59 30292.65 332
pm-mvs190.72 24689.65 25893.96 21494.29 28889.63 17997.79 6896.82 22389.07 20186.12 30195.48 21778.61 25797.78 26786.97 23981.67 32494.46 303
OpenMVScopyleft89.19 1292.86 16091.68 17696.40 9695.34 23392.73 8398.27 2798.12 5684.86 29685.78 30297.75 8678.89 25499.74 3187.50 22998.65 9596.73 201
LTVRE_ROB88.41 1390.99 23489.92 24594.19 20296.18 19689.55 18496.31 21497.09 19487.88 24185.67 30395.91 18978.79 25598.57 18381.50 29789.98 24494.44 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testgi87.97 28787.21 28790.24 31692.86 32080.76 32396.67 18294.97 30591.74 12685.52 30495.83 19362.66 34794.47 34576.25 32988.36 25995.48 243
AllTest90.23 25888.98 26793.98 21197.94 11186.64 26196.51 19695.54 28085.38 28785.49 30596.77 14070.28 31699.15 12980.02 30992.87 19996.15 215
TestCases93.98 21197.94 11186.64 26195.54 28085.38 28785.49 30596.77 14070.28 31699.15 12980.02 30992.87 19996.15 215
DSMNet-mixed86.34 30086.12 29687.00 33189.88 34470.43 35394.93 27390.08 35377.97 34485.42 30792.78 30874.44 29393.96 34774.43 33595.14 17096.62 203
ppachtmachnet_test88.35 28587.29 28491.53 29492.45 32883.57 30693.75 30595.97 26284.28 30285.32 30894.18 27579.00 25396.93 31675.71 33184.99 29794.10 313
CL-MVSNet_2432*160086.31 30185.15 30389.80 32088.83 34981.74 31993.93 30196.22 25586.67 26985.03 30990.80 33078.09 26794.50 34374.92 33371.86 34793.15 325
our_test_388.78 28087.98 27991.20 30292.45 32882.53 31293.61 31195.69 27385.77 28284.88 31093.71 29079.99 23296.78 32179.47 31386.24 27794.28 310
MVP-Stereo90.74 24590.08 23992.71 26693.19 31688.20 22895.86 24096.27 25286.07 27884.86 31194.76 24277.84 27197.75 27083.88 28198.01 11092.17 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+87.92 1490.20 25989.18 26593.25 24896.48 18286.45 26696.99 15096.68 23288.83 21284.79 31296.22 17470.16 31898.53 18584.42 27688.04 26094.77 295
NR-MVSNet92.34 17591.27 19295.53 14594.95 25793.05 7597.39 11198.07 7092.65 10284.46 31395.71 20385.00 14497.77 26989.71 17783.52 31695.78 231
LF4IMVS87.94 28887.25 28589.98 31892.38 33080.05 33494.38 28695.25 29387.59 25284.34 31494.74 24464.31 34397.66 27784.83 26887.45 26692.23 337
LCM-MVSNet-Re92.50 16892.52 15292.44 27196.82 16381.89 31796.92 15793.71 33192.41 10784.30 31594.60 25185.08 14397.03 31191.51 14997.36 12898.40 139
TransMVSNet (Re)88.94 27587.56 28293.08 25594.35 28488.45 22297.73 7495.23 29487.47 25484.26 31695.29 22179.86 23597.33 30479.44 31574.44 34393.45 323
Anonymous2023120687.09 29486.14 29589.93 31991.22 33680.35 32896.11 22795.35 28683.57 31384.16 31793.02 30573.54 30195.61 33572.16 34386.14 27993.84 318
SixPastTwentyTwo89.15 27388.54 27390.98 30493.49 30980.28 33196.70 17794.70 31390.78 15584.15 31895.57 21071.78 30697.71 27384.63 27285.07 29494.94 276
TDRefinement86.53 29784.76 30791.85 28482.23 35784.25 29696.38 20795.35 28684.97 29584.09 31994.94 23265.76 34198.34 20184.60 27374.52 34292.97 326
DIV-MVS_2432*160085.95 30584.95 30488.96 32389.55 34779.11 34195.13 27196.42 24685.91 28084.07 32090.48 33170.03 31994.82 34280.04 30872.94 34692.94 327
pmmvs687.81 29086.19 29492.69 26791.32 33586.30 26897.34 11596.41 24780.59 33484.05 32194.37 26267.37 33197.67 27584.75 27079.51 33294.09 315
ACMH87.59 1690.53 25189.42 26093.87 22096.21 19387.92 23597.24 12596.94 20888.45 22483.91 32296.27 17371.92 30498.62 17884.43 27589.43 24995.05 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet587.29 29385.79 29791.78 28994.80 26787.28 24595.49 25595.28 29084.09 30583.85 32391.82 32362.95 34694.17 34678.48 31885.34 28993.91 317
USDC88.94 27587.83 28092.27 27694.66 27284.96 28993.86 30295.90 26587.34 25883.40 32495.56 21267.43 33098.19 21182.64 29289.67 24893.66 319
Anonymous2024052186.42 29985.44 29989.34 32290.33 34079.79 33596.73 17395.92 26383.71 31183.25 32591.36 32963.92 34496.01 32778.39 32085.36 28892.22 338
KD-MVS_2432*160084.81 31282.64 31591.31 29991.07 33785.34 28491.22 33495.75 27085.56 28583.09 32690.21 33367.21 33295.89 32977.18 32662.48 35492.69 330
miper_refine_blended84.81 31282.64 31591.31 29991.07 33785.34 28491.22 33495.75 27085.56 28583.09 32690.21 33367.21 33295.89 32977.18 32662.48 35492.69 330
PVSNet_082.17 1985.46 30983.64 31290.92 30595.27 24079.49 33790.55 34095.60 27783.76 31083.00 32889.95 33571.09 31097.97 24382.75 29060.79 35695.31 258
test_040286.46 29884.79 30691.45 29695.02 25485.55 27996.29 21694.89 30880.90 32982.21 32993.97 28368.21 32797.29 30662.98 35488.68 25791.51 343
Patchmatch-RL test87.38 29286.24 29390.81 30788.74 35078.40 34488.12 35093.17 33687.11 26382.17 33089.29 33981.95 20195.60 33688.64 20477.02 33798.41 138
TinyColmap86.82 29685.35 30291.21 30194.91 26282.99 31093.94 30094.02 32983.58 31281.56 33194.68 24762.34 34898.13 21675.78 33087.35 27092.52 334
test20.0386.14 30385.40 30188.35 32490.12 34180.06 33395.90 23995.20 29588.59 21981.29 33293.62 29671.43 30892.65 35271.26 34781.17 32792.34 336
N_pmnet78.73 32178.71 32378.79 33692.80 32246.50 36594.14 29543.71 36878.61 34180.83 33391.66 32774.94 29196.36 32467.24 35184.45 30493.50 321
MVS-HIRNet82.47 31881.21 32086.26 33395.38 22869.21 35688.96 34989.49 35466.28 35280.79 33474.08 35668.48 32597.39 30171.93 34495.47 16592.18 339
PM-MVS83.48 31581.86 31988.31 32587.83 35377.59 34593.43 31291.75 34786.91 26580.63 33589.91 33644.42 35895.84 33285.17 26776.73 33991.50 344
ambc86.56 33283.60 35570.00 35585.69 35294.97 30580.60 33688.45 34037.42 36096.84 31982.69 29175.44 34192.86 328
MIMVSNet184.93 31183.05 31390.56 31289.56 34684.84 29295.40 25895.35 28683.91 30680.38 33792.21 32157.23 35193.34 35070.69 34982.75 32393.50 321
lessismore_v090.45 31391.96 33379.09 34287.19 35880.32 33894.39 26066.31 33797.55 28684.00 27976.84 33894.70 297
K. test v387.64 29186.75 29290.32 31593.02 31979.48 33896.61 18992.08 34590.66 16180.25 33994.09 27867.21 33296.65 32285.96 25680.83 32894.83 285
OpenMVS_ROBcopyleft81.14 2084.42 31482.28 31790.83 30690.06 34284.05 30095.73 24694.04 32873.89 34980.17 34091.53 32859.15 35097.64 27866.92 35289.05 25290.80 347
EG-PatchMatch MVS87.02 29585.44 29991.76 29192.67 32485.00 28896.08 22996.45 24583.41 31579.52 34193.49 29857.10 35297.72 27279.34 31690.87 23592.56 333
pmmvs-eth3d86.22 30284.45 30891.53 29488.34 35187.25 24794.47 28195.01 30283.47 31479.51 34289.61 33869.75 32195.71 33483.13 28576.73 33991.64 341
pmmvs379.97 32077.50 32487.39 32982.80 35679.38 33992.70 32590.75 35270.69 35178.66 34387.47 34851.34 35693.40 34973.39 34069.65 35089.38 350
UnsupCasMVSNet_eth85.99 30484.45 30890.62 31189.97 34382.40 31593.62 31097.37 17189.86 18078.59 34492.37 31465.25 34295.35 34082.27 29470.75 34894.10 313
new-patchmatchnet83.18 31681.87 31887.11 33086.88 35475.99 34893.70 30695.18 29685.02 29477.30 34588.40 34165.99 33993.88 34874.19 33870.18 34991.47 345
UnsupCasMVSNet_bld82.13 31979.46 32290.14 31788.00 35282.47 31390.89 33996.62 24078.94 34075.61 34684.40 35056.63 35496.31 32577.30 32566.77 35291.63 342
ET-MVSNet_ETH3D91.49 20990.11 23895.63 13896.40 18691.57 12195.34 26093.48 33390.60 16775.58 34795.49 21680.08 23096.79 32094.25 9489.76 24798.52 123
new_pmnet82.89 31781.12 32188.18 32789.63 34580.18 33291.77 33192.57 34176.79 34675.56 34888.23 34361.22 34994.48 34471.43 34582.92 32189.87 349
CMPMVSbinary62.92 2185.62 30884.92 30587.74 32889.14 34873.12 35294.17 29496.80 22473.98 34873.65 34994.93 23366.36 33597.61 28283.95 28091.28 22792.48 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet185.87 30684.23 31090.78 31092.38 33082.46 31493.17 31695.14 29882.12 32267.69 35092.36 31778.16 26695.50 33977.31 32479.73 33094.39 305
MDA-MVSNet_test_wron85.87 30684.23 31090.80 30992.38 33082.57 31193.17 31695.15 29782.15 32167.65 35192.33 32078.20 26395.51 33877.33 32379.74 32994.31 309
DeepMVS_CXcopyleft74.68 34090.84 33964.34 36081.61 36365.34 35367.47 35288.01 34648.60 35780.13 36062.33 35573.68 34579.58 354
LCM-MVSNet72.55 32269.39 32682.03 33470.81 36465.42 35990.12 34494.36 32355.02 35665.88 35381.72 35124.16 36789.96 35374.32 33768.10 35190.71 348
test_method66.11 32664.89 32969.79 34172.62 36235.23 36965.19 36092.83 33920.35 36265.20 35488.08 34543.14 35982.70 35873.12 34163.46 35391.45 346
MDA-MVSNet-bldmvs85.00 31082.95 31491.17 30393.13 31883.33 30794.56 27995.00 30384.57 30065.13 35592.65 30970.45 31495.85 33173.57 33977.49 33694.33 307
PMMVS270.19 32466.92 32780.01 33576.35 35865.67 35886.22 35187.58 35764.83 35462.38 35680.29 35326.78 36588.49 35563.79 35354.07 35785.88 351
FPMVS71.27 32369.85 32575.50 33874.64 35959.03 36191.30 33391.50 34958.80 35557.92 35788.28 34229.98 36385.53 35753.43 35682.84 32281.95 353
Gipumacopyleft67.86 32565.41 32875.18 33992.66 32573.45 35166.50 35994.52 31853.33 35757.80 35866.07 35830.81 36189.20 35448.15 35878.88 33562.90 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt51.94 33253.82 33246.29 34633.73 36845.30 36778.32 35767.24 36718.02 36350.93 35987.05 34952.99 35553.11 36470.76 34825.29 36240.46 360
ANet_high63.94 32759.58 33077.02 33761.24 36666.06 35785.66 35387.93 35678.53 34242.94 36071.04 35725.42 36680.71 35952.60 35730.83 36084.28 352
E-PMN53.28 32952.56 33355.43 34474.43 36047.13 36483.63 35576.30 36442.23 35942.59 36162.22 36028.57 36474.40 36131.53 36131.51 35944.78 358
EMVS52.08 33151.31 33454.39 34572.62 36245.39 36683.84 35475.51 36541.13 36040.77 36259.65 36130.08 36273.60 36228.31 36229.90 36144.18 359
MVEpermissive50.73 2353.25 33048.81 33566.58 34365.34 36557.50 36272.49 35870.94 36640.15 36139.28 36363.51 3596.89 37073.48 36338.29 36042.38 35868.76 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft53.92 2258.58 32855.40 33168.12 34251.00 36748.64 36378.86 35687.10 35946.77 35835.84 36474.28 3558.76 36886.34 35642.07 35973.91 34469.38 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 33324.57 33726.74 34773.98 36139.89 36857.88 3619.80 36912.27 36410.39 3656.97 3677.03 36936.44 36525.43 36317.39 3633.89 363
testmvs13.36 33516.33 3384.48 3495.04 3692.26 37193.18 3153.28 3702.70 3658.24 36621.66 3632.29 3722.19 3667.58 3642.96 3649.00 362
test12313.04 33615.66 3395.18 3484.51 3703.45 37092.50 3291.81 3712.50 3667.58 36720.15 3643.67 3712.18 3677.13 3651.07 3659.90 361
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.24 33430.99 3360.00 3500.00 3710.00 3720.00 36297.63 1330.00 3670.00 36896.88 13784.38 1520.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.39 3389.85 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36888.65 940.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.06 33710.74 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36896.69 1460.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS98.55 198.82 5696.86 198.25 2998.26 5396.04 199.24 12195.36 6899.59 1599.56 22
save fliter98.91 4994.28 3597.02 14598.02 8895.35 8
test_0728_SECOND98.51 299.45 295.93 398.21 3698.28 2699.86 897.52 299.67 699.75 3
GSMVS98.45 133
sam_mvs182.76 18398.45 133
sam_mvs81.94 202
MTGPAbinary98.08 64
test_post192.81 32416.58 36680.53 22197.68 27486.20 248
test_post17.58 36581.76 20498.08 226
patchmatchnet-post90.45 33282.65 18798.10 221
MTMP97.86 6082.03 362
gm-plane-assit93.22 31578.89 34384.82 29793.52 29798.64 17587.72 216
test9_res94.81 8599.38 4899.45 45
agg_prior293.94 10299.38 4899.50 37
test_prior493.66 5996.42 200
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
新几何295.79 244
旧先验198.38 8193.38 6797.75 11698.09 6292.30 3899.01 8499.16 70
无先验95.79 24497.87 10783.87 30999.65 5387.68 22298.89 101
原ACMM295.67 247
testdata299.67 4985.96 256
segment_acmp92.89 22
testdata195.26 26893.10 84
plane_prior796.21 19389.98 172
plane_prior696.10 20390.00 16881.32 210
plane_prior597.51 14598.60 17993.02 12292.23 20995.86 224
plane_prior496.64 149
plane_prior297.74 7294.85 26
plane_prior196.14 201
plane_prior89.99 17097.24 12594.06 4992.16 213
n20.00 372
nn0.00 372
door-mid91.06 351
test1197.88 105
door91.13 350
HQP5-MVS89.33 196
BP-MVS92.13 134
HQP3-MVS97.39 16892.10 214
HQP2-MVS80.95 213
NP-MVS95.99 20789.81 17795.87 190
ACMMP++_ref90.30 242
ACMMP++91.02 231
Test By Simon88.73 93