This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 167
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 32596.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
IU-MVS99.42 795.39 1197.94 10490.40 19898.94 897.41 2999.66 1099.74 8
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11395.48 24790.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 156
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 14092.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11197.64 12990.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
PC_three_145290.77 17998.89 1498.28 6596.24 198.35 21795.76 7399.58 2199.59 22
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19498.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12396.67 18290.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 160
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 156
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6295.67 23992.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
test_vis1_n_192094.17 11494.58 9792.91 28097.42 14182.02 34197.83 8497.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9297.40 201
test_part299.28 2595.74 898.10 29
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2697.72 9898.10 7291.50 15398.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-296.83 4197.44 1395.01 17299.05 3985.39 30296.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16398.09 10186.63 27996.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
9.1496.75 4198.93 4797.73 9598.23 5091.28 16397.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
test_vis1_n92.37 19092.26 17592.72 28794.75 29782.64 33398.02 5696.80 23191.18 16797.77 3797.93 8858.02 38198.29 22297.63 1998.21 11797.23 210
test_cas_vis1_n_192094.48 10894.55 10194.28 21896.78 17586.45 28397.63 11297.64 13893.32 9497.68 3898.36 5073.75 31799.08 14496.73 3999.05 8397.31 206
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6792.66 35791.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
MM97.29 1996.98 2698.23 1198.01 10795.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
VNet95.89 7295.45 7597.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18699.16 73
SR-MVS97.01 3096.86 3197.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
APD-MVS_3200maxsize96.81 4296.71 4497.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
TSAR-MVS + GP.96.69 4996.49 5297.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
SR-MVS-dyc-post96.88 3696.80 3897.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
RE-MVS-def96.72 4399.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
dcpmvs_296.37 6097.05 2294.31 21698.96 4684.11 32097.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
旧先验295.94 25681.66 36297.34 4898.82 17092.26 149
MSLP-MVS++96.94 3397.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
region2R97.07 2696.84 3397.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
PGM-MVS96.81 4296.53 5097.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
PHI-MVS96.77 4496.46 5697.71 3998.40 7594.07 4698.21 4398.45 2289.86 20797.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
CS-MVS96.86 3797.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18597.10 3199.17 7398.90 102
ZD-MVS99.05 3994.59 2998.08 7489.22 22797.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
testdata95.46 15598.18 9788.90 21897.66 13482.73 35497.03 5798.07 7690.06 7698.85 16889.67 20598.98 8798.64 122
CS-MVS-test96.89 3597.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17996.92 3599.33 5898.94 97
mvsany_test193.93 12893.98 11193.78 24694.94 28586.80 27294.62 30692.55 37088.77 24896.85 6098.49 3888.98 8898.08 24695.03 9695.62 18096.46 231
test_fmvs193.21 15393.53 12392.25 29996.55 19381.20 34897.40 13896.96 21490.68 18496.80 6198.04 7969.25 34298.40 21097.58 2198.50 10497.16 211
test_fmvs1_n92.73 18092.88 14792.29 29796.08 22681.05 34997.98 6197.08 20190.72 18296.79 6298.18 7063.07 37398.45 20797.62 2098.42 11097.36 202
HPM-MVS_fast96.51 5596.27 6197.22 5999.32 2292.74 7798.74 998.06 8290.57 19496.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
h-mvs3394.15 11693.52 12596.04 11997.81 11990.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 36598.29 150
hse-mvs293.45 14692.99 14294.81 18697.02 16188.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20695.85 6979.13 36997.35 204
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
xiu_mvs_v1_base_debu95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
xiu_mvs_v1_base95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
xiu_mvs_v1_base_debi95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
CDPH-MVS95.97 7095.38 7897.77 3398.93 4794.44 3296.35 23197.88 10986.98 29696.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
EC-MVSNet96.42 5796.47 5396.26 10697.01 16291.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19597.45 2699.11 8098.67 121
UA-Net95.95 7195.53 7297.20 6197.67 12592.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19197.35 14299.11 81
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
XVS97.18 2196.96 2897.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
X-MVStestdata91.71 21589.67 27697.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 40391.70 4899.80 3095.66 7599.40 5099.62 18
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ95.37 8395.33 8095.49 15197.35 14290.66 16095.31 28897.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 237
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
ETV-MVS96.02 6895.89 6796.40 9397.16 14892.44 8697.47 13197.77 12294.55 5096.48 7994.51 27591.23 6198.92 16195.65 7898.19 11897.82 181
alignmvs95.87 7395.23 8297.78 3197.56 13895.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 19098.95 96
xiu_mvs_v2_base95.32 8595.29 8195.40 15697.22 14490.50 16395.44 28297.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 237
CP-MVS97.02 2996.81 3797.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
HPM-MVScopyleft96.69 4996.45 5797.40 4899.36 1893.11 6998.87 698.06 8291.17 16896.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
diffmvspermissive95.25 8795.13 8595.63 14196.43 20589.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18896.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3498.01 5794.09 34797.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
LFMVS93.60 13992.63 15996.52 8098.13 10091.27 13097.94 7193.39 36190.57 19496.29 8698.31 6069.00 34399.16 13294.18 11695.87 17399.12 80
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19498.91 101
MVSFormer95.37 8395.16 8495.99 12496.34 20991.21 13398.22 4197.57 14691.42 15796.22 8997.32 12986.20 13597.92 27994.07 11799.05 8398.85 108
lupinMVS94.99 9794.56 9896.29 10496.34 20991.21 13395.83 26296.27 26188.93 23996.22 8996.88 15586.20 13598.85 16895.27 9199.05 8398.82 111
EI-MVSNet-UG-set96.34 6196.30 6096.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
test_fmvsmvis_n_192096.70 4796.84 3396.31 10096.62 18491.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 199
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
TEST998.70 5694.19 4096.41 22398.02 9488.17 26496.03 9597.56 12192.74 3099.59 74
train_agg96.30 6295.83 6997.72 3798.70 5694.19 4096.41 22398.02 9488.58 25196.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
jason94.84 10294.39 10796.18 11295.52 24590.93 14796.09 24896.52 25089.28 22596.01 9897.32 12984.70 15298.77 17795.15 9498.91 9198.85 108
jason: jason.
test_898.67 5894.06 4796.37 23098.01 9788.58 25195.98 9997.55 12392.73 3199.58 77
mPP-MVS96.86 3796.60 4797.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
DELS-MVS96.61 5296.38 5997.30 5297.79 12093.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VDD-MVS93.82 13393.08 14096.02 12197.88 11689.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 35099.39 11196.31 4994.85 19298.71 118
MVS_111021_HR96.68 5196.58 4996.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
MVS_111021_LR96.24 6496.19 6396.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
VDDNet93.05 16492.07 17896.02 12196.84 16990.39 16898.08 5195.85 27886.22 31095.79 10598.46 4267.59 35399.19 12894.92 9994.85 19298.47 135
新几何197.32 5198.60 6593.59 5697.75 12381.58 36395.75 10697.85 9690.04 7799.67 5686.50 27099.13 7798.69 119
test_yl94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16595.71 10796.93 15084.30 15899.31 11993.10 13795.12 18898.75 113
DCV-MVSNet94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16595.71 10796.93 15084.30 15899.31 11993.10 13795.12 18898.75 113
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
MG-MVS95.61 7895.38 7896.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
baseline95.58 7995.42 7796.08 11596.78 17590.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18795.66 7597.25 14799.13 77
MVS_Test94.89 10094.62 9595.68 13996.83 17189.55 19196.70 19997.17 19391.17 16895.60 11296.11 20387.87 10898.76 17893.01 14497.17 15098.72 116
DPM-MVS95.69 7594.92 8898.01 1998.08 10495.71 995.27 29197.62 14190.43 19795.55 11397.07 14491.72 4699.50 9989.62 20798.94 8998.82 111
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2896.96 17898.06 8290.67 18595.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4496.45 5797.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
casdiffmvspermissive95.64 7795.49 7396.08 11596.76 18090.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 18195.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test22298.24 8792.21 9495.33 28697.60 14279.22 37695.25 11897.84 9888.80 9299.15 7598.72 116
test250691.60 22190.78 22794.04 22897.66 12783.81 32398.27 3375.53 40693.43 8995.23 11998.21 6767.21 35699.07 14893.01 14498.49 10599.25 68
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28895.22 12097.68 10790.25 7499.54 8987.95 23899.12 7998.49 132
CPTT-MVS95.57 8095.19 8396.70 7199.27 2691.48 12198.33 2898.11 7087.79 27795.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
casdiffmvs_mvgpermissive95.81 7495.57 7196.51 8396.87 16791.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17495.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS Recon95.68 7695.12 8697.37 4999.19 3194.19 4097.03 16998.08 7488.35 26095.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
Vis-MVSNetpermissive95.23 8894.81 9096.51 8397.18 14791.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet96.39 5996.02 6497.50 4597.62 13193.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
API-MVS94.84 10294.49 10395.90 12697.90 11592.00 10297.80 8997.48 15689.19 22894.81 12696.71 16088.84 9199.17 13188.91 22698.76 9596.53 226
OMC-MVS95.09 9294.70 9496.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
ECVR-MVScopyleft93.19 15592.73 15694.57 20197.66 12785.41 30098.21 4388.23 39193.43 8994.70 12898.21 6772.57 32199.07 14893.05 14198.49 10599.25 68
WTY-MVS94.71 10694.02 11096.79 7097.71 12492.05 10096.59 21497.35 18290.61 19194.64 12996.93 15086.41 13199.39 11191.20 17894.71 19898.94 97
test111193.19 15592.82 15094.30 21797.58 13784.56 31598.21 4389.02 38993.53 8494.58 13098.21 6772.69 32099.05 15193.06 14098.48 10799.28 65
ACMMPcopyleft96.27 6395.93 6597.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+94.93 9894.45 10596.36 9896.61 18591.47 12296.41 22397.41 17591.02 17494.50 13295.92 20887.53 11498.78 17493.89 12396.81 15598.84 110
sss94.51 10793.80 11496.64 7297.07 15491.97 10396.32 23498.06 8288.94 23894.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
PVSNet_BlendedMVS94.06 12293.92 11294.47 20498.27 8389.46 19796.73 19598.36 2490.17 20094.36 13495.24 24488.02 10499.58 7793.44 13190.72 26894.36 336
PVSNet_Blended94.87 10194.56 9895.81 13098.27 8389.46 19795.47 28198.36 2488.84 24294.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
PMMVS92.86 17492.34 17294.42 20894.92 28686.73 27594.53 31096.38 25784.78 33394.27 13695.12 24983.13 17998.40 21091.47 17296.49 16498.12 162
EPP-MVSNet95.22 8995.04 8795.76 13197.49 13989.56 19098.67 1097.00 21290.69 18394.24 13797.62 11689.79 8198.81 17293.39 13496.49 16498.92 100
FA-MVS(test-final)93.52 14492.92 14595.31 15896.77 17788.54 22794.82 30296.21 26689.61 21594.20 13895.25 24383.24 17599.14 13590.01 19596.16 16898.25 151
PVSNet_Blended_VisFu95.27 8694.91 8996.38 9698.20 9390.86 14997.27 15198.25 4590.21 19994.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
FE-MVS92.05 20691.05 21695.08 16796.83 17187.93 24693.91 33695.70 28486.30 30794.15 14094.97 25176.59 28899.21 12684.10 30396.86 15398.09 166
thisisatest053093.03 16592.21 17695.49 15197.07 15489.11 21497.49 13092.19 37290.16 20194.09 14196.41 18676.43 29299.05 15190.38 19095.68 17998.31 149
XVG-OURS-SEG-HR93.86 13193.55 12194.81 18697.06 15788.53 22895.28 28997.45 16691.68 14994.08 14297.68 10782.41 19998.90 16493.84 12592.47 23396.98 214
XVG-OURS93.72 13793.35 13494.80 18997.07 15488.61 22394.79 30397.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 23296.92 218
IS-MVSNet94.90 9994.52 10296.05 11897.67 12590.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20789.98 19697.86 12699.14 76
CSCG96.05 6795.91 6696.46 8999.24 2890.47 16498.30 3098.57 1889.01 23493.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
EIA-MVS95.53 8195.47 7495.71 13897.06 15789.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
tttt051792.96 16892.33 17394.87 18297.11 15287.16 26697.97 6792.09 37390.63 18993.88 14797.01 14876.50 28999.06 15090.29 19395.45 18398.38 145
HyFIR lowres test93.66 13892.92 14595.87 12798.24 8789.88 18194.58 30898.49 1985.06 32893.78 14895.78 21982.86 18798.67 18891.77 16495.71 17899.07 85
CHOSEN 1792x268894.15 11693.51 12696.06 11798.27 8389.38 20095.18 29598.48 2185.60 31893.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
Anonymous20240521192.07 20590.83 22695.76 13198.19 9588.75 22097.58 11795.00 32086.00 31393.64 15097.45 12466.24 36499.53 9190.68 18792.71 23099.01 89
CDS-MVSNet94.14 11993.54 12295.93 12596.18 21691.46 12396.33 23397.04 20888.97 23793.56 15196.51 18187.55 11397.89 28389.80 20195.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MDTV_nov1_ep13_2view70.35 38993.10 35783.88 34393.55 15282.47 19886.25 27398.38 145
Anonymous2024052991.98 20890.73 23195.73 13698.14 9989.40 19997.99 6097.72 12879.63 37493.54 15397.41 12769.94 33999.56 8591.04 18191.11 26098.22 153
CANet_DTU94.37 10993.65 11896.55 7896.46 20392.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25199.71 4690.76 18498.45 10997.82 181
tpmrst91.44 23191.32 20591.79 31195.15 27479.20 37193.42 35095.37 30288.55 25493.49 15593.67 31782.49 19798.27 22390.41 18989.34 28397.90 174
TAMVS94.01 12593.46 12895.64 14096.16 21890.45 16596.71 19896.89 22489.27 22693.46 15696.92 15387.29 12097.94 27588.70 23095.74 17698.53 126
thisisatest051592.29 19691.30 20795.25 16096.60 18688.90 21894.36 31892.32 37187.92 27093.43 15794.57 27277.28 28499.00 15589.42 21195.86 17497.86 177
DeepC-MVS93.07 396.06 6695.66 7097.29 5397.96 10993.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view792.49 18591.60 19595.18 16297.91 11489.47 19597.65 10694.66 33392.18 13793.33 15994.91 25578.06 27799.10 13981.61 32694.06 21396.98 214
thres100view90092.43 18691.58 19694.98 17597.92 11389.37 20197.71 10094.66 33392.20 13393.31 16094.90 25678.06 27799.08 14481.40 32994.08 20996.48 229
thres20092.23 20091.39 20294.75 19397.61 13289.03 21596.60 21395.09 31792.08 13993.28 16194.00 30478.39 27199.04 15481.26 33494.18 20596.19 236
tfpn200view992.38 18991.52 19994.95 17897.85 11789.29 20597.41 13494.88 32792.19 13593.27 16294.46 28078.17 27399.08 14481.40 32994.08 20996.48 229
thres40092.42 18791.52 19995.12 16697.85 11789.29 20597.41 13494.88 32792.19 13593.27 16294.46 28078.17 27399.08 14481.40 32994.08 20996.98 214
ab-mvs93.57 14292.55 16496.64 7297.28 14391.96 10495.40 28397.45 16689.81 21193.22 16496.28 19279.62 24899.46 10390.74 18593.11 22498.50 130
Vis-MVSNet (Re-imp)94.15 11693.88 11394.95 17897.61 13287.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 28288.24 23497.97 12499.02 86
114514_t93.95 12693.06 14196.63 7499.07 3791.61 11497.46 13397.96 10277.99 38093.00 16697.57 11986.14 13799.33 11589.22 21899.15 7598.94 97
UGNet94.04 12493.28 13696.31 10096.85 16891.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31999.61 6991.72 16598.46 10898.13 161
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HY-MVS89.66 993.87 13092.95 14496.63 7497.10 15392.49 8595.64 27496.64 24289.05 23393.00 16695.79 21885.77 14199.45 10589.16 22294.35 20097.96 171
PVSNet86.66 1892.24 19991.74 19193.73 24797.77 12183.69 32792.88 36096.72 23487.91 27193.00 16694.86 25878.51 26899.05 15186.53 26897.45 13998.47 135
MAR-MVS94.22 11293.46 12896.51 8398.00 10892.19 9797.67 10397.47 15988.13 26793.00 16695.84 21284.86 15199.51 9687.99 23798.17 12097.83 180
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR95.01 9394.59 9696.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21997.78 12998.97 93
MDTV_nov1_ep1390.76 22895.22 26980.33 35893.03 35895.28 30788.14 26692.84 17293.83 30881.34 21698.08 24682.86 31594.34 201
CostFormer91.18 24890.70 23392.62 29194.84 29281.76 34394.09 32994.43 33984.15 33992.72 17393.77 31279.43 25098.20 22890.70 18692.18 23997.90 174
EPNet95.20 9094.56 9897.14 6392.80 35492.68 7997.85 8294.87 33096.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet90.82 26189.77 27293.95 23594.45 31087.19 26490.23 38095.68 28886.89 29892.40 17592.36 34680.91 22297.05 33781.09 33593.95 21497.60 193
RPMNet88.98 29987.05 31394.77 19194.45 31087.19 26490.23 38098.03 9177.87 38292.40 17587.55 38580.17 23799.51 9668.84 38693.95 21497.60 193
EPMVS90.70 26689.81 27093.37 26494.73 29984.21 31893.67 34488.02 39289.50 21992.38 17793.49 32377.82 28197.78 29286.03 28092.68 23198.11 165
baseline192.82 17791.90 18595.55 14797.20 14690.77 15497.19 16094.58 33692.20 13392.36 17896.34 19084.16 16298.21 22789.20 22083.90 34597.68 187
PatchT88.87 30387.42 30793.22 27094.08 32285.10 30889.51 38494.64 33581.92 35992.36 17888.15 38180.05 23997.01 34072.43 37793.65 21997.54 196
UWE-MVS89.91 28689.48 28291.21 32495.88 22978.23 37694.91 30190.26 38589.11 23092.35 18094.52 27468.76 34597.96 27083.95 30795.59 18197.42 200
ETVMVS90.52 27189.14 29094.67 19596.81 17487.85 25195.91 25893.97 35189.71 21392.34 18192.48 34165.41 36897.96 27081.37 33294.27 20398.21 154
PAPR94.18 11393.42 13396.48 8697.64 12991.42 12595.55 27697.71 13288.99 23592.34 18195.82 21489.19 8599.11 13886.14 27697.38 14098.90 102
SCA91.84 21291.18 21493.83 24295.59 24184.95 31194.72 30495.58 29490.82 17792.25 18393.69 31475.80 29898.10 24286.20 27495.98 17098.45 137
CVMVSNet91.23 24391.75 18989.67 34795.77 23574.69 38296.44 21994.88 32785.81 31592.18 18497.64 11479.07 25695.58 36688.06 23695.86 17498.74 115
AUN-MVS91.76 21490.75 22994.81 18697.00 16388.57 22596.65 20596.49 25289.63 21492.15 18596.12 20078.66 26698.50 20390.83 18279.18 36897.36 202
AdaColmapbinary94.34 11093.68 11796.31 10098.59 6691.68 11296.59 21497.81 12189.87 20692.15 18597.06 14583.62 17099.54 8989.34 21398.07 12297.70 186
GeoE93.89 12993.28 13695.72 13796.96 16589.75 18498.24 3996.92 22189.47 22092.12 18797.21 13784.42 15698.39 21487.71 24496.50 16399.01 89
PatchmatchNetpermissive91.91 20991.35 20393.59 25595.38 25384.11 32093.15 35595.39 30089.54 21792.10 18893.68 31682.82 18998.13 23584.81 29595.32 18598.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet93.24 15292.48 16995.51 14995.70 23792.39 8797.86 7998.66 1692.30 13092.09 18995.37 23880.49 23098.40 21093.95 12085.86 31395.75 261
tpm90.25 27889.74 27591.76 31493.92 32579.73 36593.98 33093.54 35988.28 26191.99 19093.25 33077.51 28397.44 32287.30 25887.94 29598.12 162
CNLPA94.28 11193.53 12396.52 8098.38 7892.55 8396.59 21496.88 22590.13 20391.91 19197.24 13585.21 14699.09 14287.64 25097.83 12797.92 173
testing9191.90 21091.02 21794.53 20396.54 19486.55 28295.86 26095.64 29191.77 14691.89 19293.47 32569.94 33998.86 16690.23 19493.86 21698.18 156
BH-RMVSNet92.72 18191.97 18394.97 17697.16 14887.99 24596.15 24695.60 29290.62 19091.87 19397.15 14178.41 27098.57 19983.16 31297.60 13398.36 147
PatchMatch-RL92.90 17292.02 18195.56 14598.19 9590.80 15295.27 29197.18 19187.96 26991.86 19495.68 22580.44 23198.99 15684.01 30597.54 13496.89 219
SDMVSNet94.17 11493.61 11995.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19597.28 13179.13 25598.93 16094.61 11092.84 22797.28 207
sd_testset93.10 16092.45 17095.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19597.28 13175.35 30398.65 19088.99 22492.84 22797.28 207
testing9991.62 22090.72 23294.32 21496.48 20186.11 29295.81 26394.76 33191.55 15191.75 19793.44 32668.55 34898.82 17090.43 18893.69 21798.04 169
testing22290.31 27588.96 29294.35 21196.54 19487.29 25895.50 27993.84 35590.97 17591.75 19792.96 33362.18 37798.00 26082.86 31594.08 20997.76 183
OPM-MVS93.28 15192.76 15294.82 18494.63 30390.77 15496.65 20597.18 19193.72 7591.68 19997.26 13479.33 25298.63 19292.13 15592.28 23595.07 299
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf_final93.60 13993.11 13995.04 16997.13 15191.30 12897.92 7395.65 29092.98 11291.60 20096.64 16879.28 25398.13 23595.34 9091.49 25095.70 264
iter_conf0593.18 15892.63 15994.83 18396.64 18390.69 15797.60 11595.53 29792.52 12591.58 20196.64 16876.35 29398.13 23595.43 8891.42 25395.68 266
tpm289.96 28589.21 28792.23 30094.91 28881.25 34693.78 33994.42 34080.62 37091.56 20293.44 32676.44 29197.94 27585.60 28692.08 24397.49 197
TAPA-MVS90.10 792.30 19591.22 21295.56 14598.33 8089.60 18896.79 19097.65 13681.83 36091.52 20397.23 13687.94 10698.91 16371.31 38198.37 11198.17 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvs289.77 29389.93 26589.31 35193.68 33476.37 37997.64 11095.90 27589.84 21091.49 20496.26 19458.77 38097.10 33594.65 10891.13 25994.46 332
TR-MVS91.48 23090.59 23794.16 22296.40 20687.33 25795.67 27095.34 30687.68 28291.46 20595.52 23476.77 28798.35 21782.85 31793.61 22196.79 222
RPSCF90.75 26390.86 22290.42 33996.84 16976.29 38095.61 27596.34 25883.89 34291.38 20697.87 9376.45 29098.78 17487.16 26292.23 23696.20 235
PLCcopyleft91.00 694.11 12093.43 13196.13 11498.58 6891.15 14196.69 20197.39 17687.29 29191.37 20796.71 16088.39 9999.52 9587.33 25797.13 15197.73 184
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42093.12 15992.72 15794.34 21396.71 18187.27 26090.29 37997.72 12886.61 30391.34 20895.29 24084.29 16098.41 20993.25 13598.94 8997.35 204
HQP_MVS93.78 13593.43 13194.82 18496.21 21389.99 17697.74 9397.51 15394.85 3491.34 20896.64 16881.32 21798.60 19593.02 14292.23 23695.86 247
plane_prior390.00 17494.46 5491.34 208
Fast-Effi-MVS+93.46 14592.75 15495.59 14496.77 17790.03 17396.81 18997.13 19588.19 26391.30 21194.27 29186.21 13498.63 19287.66 24996.46 16698.12 162
EI-MVSNet93.03 16592.88 14793.48 26095.77 23586.98 26996.44 21997.12 19690.66 18791.30 21197.64 11486.56 12798.05 25389.91 19890.55 27095.41 276
MVSTER93.20 15492.81 15194.37 21096.56 19189.59 18997.06 16897.12 19691.24 16491.30 21195.96 20682.02 20698.05 25393.48 13090.55 27095.47 273
mvsmamba93.83 13293.46 12894.93 18194.88 29090.85 15098.55 1495.49 29894.24 6191.29 21496.97 14983.04 18298.14 23495.56 8691.17 25895.78 256
ADS-MVSNet289.45 29588.59 29792.03 30395.86 23082.26 33990.93 37594.32 34583.23 35191.28 21591.81 35579.01 26195.99 35579.52 34291.39 25497.84 178
ADS-MVSNet89.89 28888.68 29693.53 25895.86 23084.89 31290.93 37595.07 31883.23 35191.28 21591.81 35579.01 26197.85 28579.52 34291.39 25497.84 178
testing1191.68 21890.75 22994.47 20496.53 19686.56 28195.76 26794.51 33891.10 17291.24 21793.59 32068.59 34798.86 16691.10 17994.29 20298.00 170
nrg03094.05 12393.31 13596.27 10595.22 26994.59 2998.34 2797.46 16192.93 11591.21 21896.64 16887.23 12298.22 22694.99 9885.80 31495.98 246
Effi-MVS+-dtu93.08 16293.21 13892.68 29096.02 22783.25 33097.14 16596.72 23493.85 7291.20 21993.44 32683.08 18098.30 22191.69 16895.73 17796.50 228
VPNet92.23 20091.31 20694.99 17395.56 24390.96 14597.22 15897.86 11592.96 11490.96 22096.62 17775.06 30498.20 22891.90 15983.65 34795.80 254
JIA-IIPM88.26 31087.04 31491.91 30593.52 33881.42 34589.38 38594.38 34180.84 36790.93 22180.74 39279.22 25497.92 27982.76 31991.62 24796.38 232
WB-MVSnew89.88 28989.56 27990.82 33194.57 30783.06 33195.65 27392.85 36587.86 27390.83 22294.10 30079.66 24796.88 34476.34 36094.19 20492.54 364
test-LLR91.42 23291.19 21392.12 30194.59 30480.66 35294.29 32392.98 36391.11 17090.76 22392.37 34379.02 25998.07 25088.81 22796.74 15797.63 188
test-mter90.19 28289.54 28092.12 30194.59 30480.66 35294.29 32392.98 36387.68 28290.76 22392.37 34367.67 35298.07 25088.81 22796.74 15797.63 188
ACMM89.79 892.96 16892.50 16894.35 21196.30 21188.71 22197.58 11797.36 18191.40 15990.53 22596.65 16779.77 24498.75 17991.24 17791.64 24695.59 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
F-COLMAP93.58 14192.98 14395.37 15798.40 7588.98 21697.18 16197.29 18787.75 28090.49 22697.10 14385.21 14699.50 9986.70 26796.72 15997.63 188
bld_raw_dy_0_6492.37 19091.69 19294.39 20994.28 31889.73 18597.71 10093.65 35892.78 12090.46 22796.67 16675.88 29697.97 26592.92 14690.89 26695.48 270
TESTMET0.1,190.06 28489.42 28391.97 30494.41 31280.62 35494.29 32391.97 37587.28 29290.44 22892.47 34268.79 34497.67 30088.50 23396.60 16297.61 192
FIs94.09 12193.70 11695.27 15995.70 23792.03 10198.10 4998.68 1393.36 9390.39 22996.70 16287.63 11297.94 27592.25 15190.50 27295.84 250
GA-MVS91.38 23490.31 24694.59 19694.65 30287.62 25594.34 31996.19 26790.73 18190.35 23093.83 30871.84 32497.96 27087.22 25993.61 22198.21 154
LS3D93.57 14292.61 16296.47 8797.59 13591.61 11497.67 10397.72 12885.17 32690.29 23198.34 5484.60 15399.73 4283.85 31098.27 11598.06 168
FC-MVSNet-test93.94 12793.57 12095.04 16995.48 24791.45 12498.12 4898.71 1193.37 9190.23 23296.70 16287.66 11097.85 28591.49 17190.39 27395.83 251
HQP-NCC95.86 23096.65 20593.55 8090.14 233
ACMP_Plane95.86 23096.65 20593.55 8090.14 233
HQP4-MVS90.14 23398.50 20395.78 256
HQP-MVS93.19 15592.74 15594.54 20295.86 23089.33 20396.65 20597.39 17693.55 8090.14 23395.87 21080.95 22098.50 20392.13 15592.10 24195.78 256
UniMVSNet_NR-MVSNet93.37 14892.67 15895.47 15495.34 25892.83 7497.17 16298.58 1792.98 11290.13 23795.80 21588.37 10097.85 28591.71 16683.93 34295.73 263
DU-MVS92.90 17292.04 17995.49 15194.95 28392.83 7497.16 16398.24 4793.02 10690.13 23795.71 22283.47 17197.85 28591.71 16683.93 34295.78 256
LPG-MVS_test92.94 17092.56 16394.10 22496.16 21888.26 23597.65 10697.46 16191.29 16090.12 23997.16 13979.05 25798.73 18192.25 15191.89 24495.31 286
LGP-MVS_train94.10 22496.16 21888.26 23597.46 16191.29 16090.12 23997.16 13979.05 25798.73 18192.25 15191.89 24495.31 286
UniMVSNet (Re)93.31 15092.55 16495.61 14395.39 25293.34 6497.39 13998.71 1193.14 10390.10 24194.83 26087.71 10998.03 25791.67 16983.99 34195.46 274
mvs_anonymous93.82 13393.74 11594.06 22696.44 20485.41 30095.81 26397.05 20689.85 20990.09 24296.36 18987.44 11797.75 29593.97 11996.69 16099.02 86
test_djsdf93.07 16392.76 15294.00 23093.49 34088.70 22298.22 4197.57 14691.42 15790.08 24395.55 23282.85 18897.92 27994.07 11791.58 24895.40 279
dp88.90 30288.26 30290.81 33294.58 30676.62 37892.85 36194.93 32485.12 32790.07 24493.07 33175.81 29798.12 24080.53 33787.42 30197.71 185
RRT_MVS93.10 16092.83 14993.93 23994.76 29588.04 24398.47 2296.55 24993.44 8890.01 24597.04 14680.64 22797.93 27894.33 11490.21 27595.83 251
PS-MVSNAJss93.74 13693.51 12694.44 20693.91 32689.28 20797.75 9297.56 14992.50 12689.94 24696.54 18088.65 9598.18 23193.83 12690.90 26595.86 247
UniMVSNet_ETH3D91.34 23990.22 25494.68 19494.86 29187.86 25097.23 15797.46 16187.99 26889.90 24796.92 15366.35 36298.23 22590.30 19290.99 26397.96 171
CLD-MVS92.98 16792.53 16694.32 21496.12 22389.20 21095.28 28997.47 15992.66 12289.90 24795.62 22880.58 22898.40 21092.73 14792.40 23495.38 281
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
gg-mvs-nofinetune87.82 31385.61 32594.44 20694.46 30989.27 20891.21 37484.61 40080.88 36689.89 24974.98 39471.50 32697.53 31485.75 28597.21 14896.51 227
1112_ss93.37 14892.42 17196.21 11097.05 15990.99 14396.31 23596.72 23486.87 29989.83 25096.69 16486.51 12999.14 13588.12 23593.67 21898.50 130
BH-untuned92.94 17092.62 16193.92 24097.22 14486.16 29196.40 22796.25 26390.06 20489.79 25196.17 19883.19 17698.35 21787.19 26097.27 14697.24 209
V4291.58 22490.87 22193.73 24794.05 32388.50 22997.32 14796.97 21388.80 24789.71 25294.33 28682.54 19598.05 25389.01 22385.07 32694.64 329
Baseline_NR-MVSNet91.20 24590.62 23592.95 27993.83 32988.03 24497.01 17495.12 31688.42 25889.70 25395.13 24883.47 17197.44 32289.66 20683.24 35093.37 353
v14419291.06 25190.28 24893.39 26393.66 33587.23 26396.83 18897.07 20387.43 28789.69 25494.28 29081.48 21598.00 26087.18 26184.92 33094.93 307
v114491.37 23690.60 23693.68 25293.89 32788.23 23796.84 18797.03 21088.37 25989.69 25494.39 28282.04 20597.98 26287.80 24185.37 31994.84 313
Test_1112_low_res92.84 17691.84 18795.85 12997.04 16089.97 17995.53 27896.64 24285.38 32189.65 25695.18 24585.86 13999.10 13987.70 24593.58 22398.49 132
v119291.07 25090.23 25293.58 25693.70 33287.82 25296.73 19597.07 20387.77 27889.58 25794.32 28880.90 22497.97 26586.52 26985.48 31794.95 303
v124090.70 26689.85 26893.23 26993.51 33986.80 27296.61 21197.02 21187.16 29489.58 25794.31 28979.55 24997.98 26285.52 28785.44 31894.90 310
TranMVSNet+NR-MVSNet92.50 18391.63 19495.14 16494.76 29592.07 9997.53 12398.11 7092.90 11689.56 25996.12 20083.16 17797.60 30889.30 21483.20 35195.75 261
v2v48291.59 22290.85 22493.80 24493.87 32888.17 24096.94 17996.88 22589.54 21789.53 26094.90 25681.70 21398.02 25889.25 21785.04 32895.20 294
v192192090.85 26090.03 26393.29 26793.55 33686.96 27196.74 19497.04 20887.36 28989.52 26194.34 28580.23 23697.97 26586.27 27285.21 32394.94 305
IterMVS-LS92.29 19691.94 18493.34 26596.25 21286.97 27096.57 21797.05 20690.67 18589.50 26294.80 26286.59 12697.64 30389.91 19886.11 31295.40 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cascas91.20 24590.08 25894.58 20094.97 28189.16 21393.65 34597.59 14479.90 37389.40 26392.92 33475.36 30298.36 21692.14 15494.75 19696.23 233
XVG-ACMP-BASELINE90.93 25890.21 25593.09 27494.31 31685.89 29395.33 28697.26 18891.06 17389.38 26495.44 23768.61 34698.60 19589.46 21091.05 26194.79 321
GBi-Net91.35 23790.27 24994.59 19696.51 19891.18 13797.50 12596.93 21788.82 24489.35 26594.51 27573.87 31397.29 33186.12 27788.82 28695.31 286
test191.35 23790.27 24994.59 19696.51 19891.18 13797.50 12596.93 21788.82 24489.35 26594.51 27573.87 31397.29 33186.12 27788.82 28695.31 286
FMVSNet391.78 21390.69 23495.03 17196.53 19692.27 9397.02 17196.93 21789.79 21289.35 26594.65 26977.01 28597.47 31986.12 27788.82 28695.35 283
WR-MVS92.34 19291.53 19894.77 19195.13 27690.83 15196.40 22797.98 10091.88 14489.29 26895.54 23382.50 19697.80 29089.79 20285.27 32295.69 265
DP-MVS92.76 17991.51 20196.52 8098.77 5390.99 14397.38 14196.08 27082.38 35689.29 26897.87 9383.77 16699.69 5281.37 33296.69 16098.89 105
BH-w/o92.14 20491.75 18993.31 26696.99 16485.73 29595.67 27095.69 28688.73 24989.26 27094.82 26182.97 18598.07 25085.26 29196.32 16796.13 241
3Dnovator91.36 595.19 9194.44 10697.44 4796.56 19193.36 6398.65 1198.36 2494.12 6389.25 27198.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
tt080591.09 24990.07 26194.16 22295.61 24088.31 23297.56 11996.51 25189.56 21689.17 27295.64 22767.08 36098.38 21591.07 18088.44 29295.80 254
miper_enhance_ethall91.54 22791.01 21893.15 27295.35 25787.07 26893.97 33196.90 22286.79 30089.17 27293.43 32986.55 12897.64 30389.97 19786.93 30494.74 325
Fast-Effi-MVS+-dtu92.29 19691.99 18293.21 27195.27 26585.52 29897.03 16996.63 24592.09 13889.11 27495.14 24780.33 23498.08 24687.54 25394.74 19796.03 245
XXY-MVS92.16 20291.23 21194.95 17894.75 29790.94 14697.47 13197.43 17389.14 22988.90 27596.43 18579.71 24598.24 22489.56 20887.68 29795.67 267
PCF-MVS89.48 1191.56 22589.95 26496.36 9896.60 18692.52 8492.51 36597.26 18879.41 37588.90 27596.56 17984.04 16499.55 8777.01 35997.30 14597.01 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_ehance_all_eth91.59 22291.13 21592.97 27895.55 24486.57 28094.47 31296.88 22587.77 27888.88 27794.01 30386.22 13397.54 31289.49 20986.93 30494.79 321
jajsoiax92.42 18791.89 18694.03 22993.33 34688.50 22997.73 9597.53 15192.00 14288.85 27896.50 18275.62 30198.11 24193.88 12491.56 24995.48 270
eth_miper_zixun_eth91.02 25390.59 23792.34 29695.33 26184.35 31694.10 32896.90 22288.56 25388.84 27994.33 28684.08 16397.60 30888.77 22984.37 33895.06 300
c3_l91.38 23490.89 22092.88 28295.58 24286.30 28694.68 30596.84 22988.17 26488.83 28094.23 29485.65 14297.47 31989.36 21284.63 33294.89 311
mvs_tets92.31 19491.76 18893.94 23793.41 34388.29 23397.63 11297.53 15192.04 14088.76 28196.45 18474.62 30998.09 24593.91 12291.48 25195.45 275
v14890.99 25490.38 24392.81 28593.83 32985.80 29496.78 19296.68 23989.45 22188.75 28293.93 30782.96 18697.82 28987.83 24083.25 34994.80 319
FMVSNet291.31 24090.08 25894.99 17396.51 19892.21 9497.41 13496.95 21588.82 24488.62 28394.75 26473.87 31397.42 32485.20 29288.55 29195.35 283
PAPM91.52 22890.30 24795.20 16195.30 26489.83 18293.38 35196.85 22886.26 30988.59 28495.80 21584.88 15098.15 23375.67 36495.93 17297.63 188
cl2291.21 24490.56 23993.14 27396.09 22586.80 27294.41 31696.58 24887.80 27688.58 28593.99 30580.85 22597.62 30689.87 20086.93 30494.99 302
3Dnovator+91.43 495.40 8294.48 10498.16 1696.90 16695.34 1698.48 2197.87 11194.65 4988.53 28698.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
dmvs_re90.21 28089.50 28192.35 29495.47 25085.15 30695.70 26994.37 34290.94 17688.42 28793.57 32174.63 30895.67 36382.80 31889.57 28196.22 234
anonymousdsp92.16 20291.55 19793.97 23392.58 35989.55 19197.51 12497.42 17489.42 22288.40 28894.84 25980.66 22697.88 28491.87 16191.28 25694.48 331
WR-MVS_H92.00 20791.35 20393.95 23595.09 27889.47 19598.04 5598.68 1391.46 15588.34 28994.68 26785.86 13997.56 31085.77 28484.24 33994.82 316
v891.29 24290.53 24093.57 25794.15 31988.12 24297.34 14497.06 20588.99 23588.32 29094.26 29383.08 18098.01 25987.62 25183.92 34494.57 330
ACMP89.59 1092.62 18292.14 17794.05 22796.40 20688.20 23897.36 14297.25 19091.52 15288.30 29196.64 16878.46 26998.72 18491.86 16291.48 25195.23 293
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1091.04 25290.23 25293.49 25994.12 32088.16 24197.32 14797.08 20188.26 26288.29 29294.22 29682.17 20497.97 26586.45 27184.12 34094.33 337
QAPM93.45 14692.27 17496.98 6996.77 17792.62 8098.39 2698.12 6784.50 33688.27 29397.77 10282.39 20099.81 2985.40 28998.81 9398.51 129
Anonymous2023121190.63 26889.42 28394.27 21998.24 8789.19 21298.05 5497.89 10779.95 37288.25 29494.96 25272.56 32298.13 23589.70 20485.14 32495.49 269
CP-MVSNet91.89 21191.24 21093.82 24395.05 27988.57 22597.82 8698.19 5591.70 14888.21 29595.76 22081.96 20797.52 31687.86 23984.65 33195.37 282
DIV-MVS_self_test90.97 25690.33 24492.88 28295.36 25686.19 29094.46 31496.63 24587.82 27488.18 29694.23 29482.99 18397.53 31487.72 24285.57 31694.93 307
cl____90.96 25790.32 24592.89 28195.37 25586.21 28994.46 31496.64 24287.82 27488.15 29794.18 29782.98 18497.54 31287.70 24585.59 31594.92 309
tpmvs89.83 29289.15 28991.89 30694.92 28680.30 35993.11 35695.46 29986.28 30888.08 29892.65 33680.44 23198.52 20281.47 32889.92 27796.84 220
PS-CasMVS91.55 22690.84 22593.69 25194.96 28288.28 23497.84 8398.24 4791.46 15588.04 29995.80 21579.67 24697.48 31887.02 26484.54 33695.31 286
MIMVSNet88.50 30786.76 31793.72 24994.84 29287.77 25391.39 37094.05 34886.41 30687.99 30092.59 33963.27 37295.82 36077.44 35392.84 22797.57 195
GG-mvs-BLEND93.62 25393.69 33389.20 21092.39 36783.33 40287.98 30189.84 37071.00 33096.87 34582.08 32595.40 18494.80 319
miper_lstm_enhance90.50 27390.06 26291.83 30895.33 26183.74 32493.86 33796.70 23887.56 28587.79 30293.81 31183.45 17396.92 34387.39 25584.62 33394.82 316
PEN-MVS91.20 24590.44 24193.48 26094.49 30887.91 24997.76 9198.18 5791.29 16087.78 30395.74 22180.35 23397.33 32985.46 28882.96 35295.19 297
ITE_SJBPF92.43 29395.34 25885.37 30395.92 27391.47 15487.75 30496.39 18871.00 33097.96 27082.36 32389.86 27893.97 345
v7n90.76 26289.86 26793.45 26293.54 33787.60 25697.70 10297.37 17988.85 24187.65 30594.08 30281.08 21998.10 24284.68 29783.79 34694.66 328
Patchmtry88.64 30687.25 30992.78 28694.09 32186.64 27689.82 38395.68 28880.81 36887.63 30692.36 34680.91 22297.03 33878.86 34885.12 32594.67 327
testing387.67 31586.88 31690.05 34396.14 22180.71 35197.10 16792.85 36590.15 20287.54 30794.55 27355.70 38694.10 37873.77 37394.10 20895.35 283
pmmvs490.93 25889.85 26894.17 22193.34 34590.79 15394.60 30796.02 27184.62 33487.45 30895.15 24681.88 21097.45 32187.70 24587.87 29694.27 341
tpm cat188.36 30887.21 31191.81 31095.13 27680.55 35592.58 36495.70 28474.97 38587.45 30891.96 35378.01 27998.17 23280.39 33888.74 28996.72 224
FMVSNet189.88 28988.31 30094.59 19695.41 25191.18 13797.50 12596.93 21786.62 30287.41 31094.51 27565.94 36697.29 33183.04 31487.43 30095.31 286
IterMVS-SCA-FT90.31 27589.81 27091.82 30995.52 24584.20 31994.30 32296.15 26890.61 19187.39 31194.27 29175.80 29896.44 35087.34 25686.88 30894.82 316
MVS91.71 21590.44 24195.51 14995.20 27191.59 11696.04 25097.45 16673.44 38887.36 31295.60 22985.42 14499.10 13985.97 28197.46 13595.83 251
EU-MVSNet88.72 30588.90 29388.20 35593.15 34974.21 38396.63 21094.22 34685.18 32587.32 31395.97 20576.16 29494.98 37185.27 29086.17 31095.41 276
IterMVS90.15 28389.67 27691.61 31695.48 24783.72 32594.33 32096.12 26989.99 20587.31 31494.15 29975.78 30096.27 35386.97 26586.89 30794.83 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs589.86 29188.87 29492.82 28492.86 35286.23 28896.26 23895.39 30084.24 33887.12 31594.51 27574.27 31197.36 32887.61 25287.57 29894.86 312
DTE-MVSNet90.56 26989.75 27493.01 27693.95 32487.25 26197.64 11097.65 13690.74 18087.12 31595.68 22579.97 24197.00 34183.33 31181.66 35894.78 323
Patchmatch-test89.42 29687.99 30393.70 25095.27 26585.11 30788.98 38694.37 34281.11 36487.10 31793.69 31482.28 20197.50 31774.37 37094.76 19598.48 134
IB-MVS87.33 1789.91 28688.28 30194.79 19095.26 26887.70 25495.12 29793.95 35289.35 22487.03 31892.49 34070.74 33299.19 12889.18 22181.37 35997.49 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet_dtu91.71 21591.28 20892.99 27793.76 33183.71 32696.69 20195.28 30793.15 10287.02 31995.95 20783.37 17497.38 32779.46 34596.84 15497.88 176
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Syy-MVS87.13 32087.02 31587.47 35895.16 27273.21 38695.00 29893.93 35388.55 25486.96 32091.99 35175.90 29594.00 37961.59 39294.11 20695.20 294
myMVS_eth3d87.18 31986.38 31989.58 34895.16 27279.53 36695.00 29893.93 35388.55 25486.96 32091.99 35156.23 38594.00 37975.47 36694.11 20695.20 294
baseline291.63 21990.86 22293.94 23794.33 31486.32 28595.92 25791.64 37789.37 22386.94 32294.69 26681.62 21498.69 18688.64 23194.57 19996.81 221
MSDG91.42 23290.24 25194.96 17797.15 15088.91 21793.69 34396.32 25985.72 31786.93 32396.47 18380.24 23598.98 15780.57 33695.05 19196.98 214
test0.0.03 189.37 29788.70 29591.41 32192.47 36185.63 29695.22 29492.70 36891.11 17086.91 32493.65 31879.02 25993.19 38678.00 35289.18 28495.41 276
COLMAP_ROBcopyleft87.81 1590.40 27489.28 28693.79 24597.95 11087.13 26796.92 18095.89 27782.83 35386.88 32597.18 13873.77 31699.29 12178.44 35093.62 22094.95 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
D2MVS91.30 24190.95 21992.35 29494.71 30085.52 29896.18 24598.21 5188.89 24086.60 32693.82 31079.92 24297.95 27489.29 21590.95 26493.56 349
OurMVSNet-221017-090.51 27290.19 25691.44 32093.41 34381.25 34696.98 17696.28 26091.68 14986.55 32796.30 19174.20 31297.98 26288.96 22587.40 30295.09 298
MS-PatchMatch90.27 27789.77 27291.78 31294.33 31484.72 31495.55 27696.73 23386.17 31186.36 32895.28 24271.28 32897.80 29084.09 30498.14 12192.81 359
131492.81 17892.03 18095.14 16495.33 26189.52 19496.04 25097.44 17087.72 28186.25 32995.33 23983.84 16598.79 17389.26 21697.05 15297.11 212
tfpnnormal89.70 29488.40 29993.60 25495.15 27490.10 17297.56 11998.16 6187.28 29286.16 33094.63 27077.57 28298.05 25374.48 36884.59 33492.65 362
pm-mvs190.72 26589.65 27893.96 23494.29 31789.63 18697.79 9096.82 23089.07 23186.12 33195.48 23678.61 26797.78 29286.97 26581.67 35794.46 332
OpenMVScopyleft89.19 1292.86 17491.68 19396.40 9395.34 25892.73 7898.27 3398.12 6784.86 33185.78 33297.75 10378.89 26499.74 4187.50 25498.65 9896.73 223
LTVRE_ROB88.41 1390.99 25489.92 26694.19 22096.18 21689.55 19196.31 23597.09 20087.88 27285.67 33395.91 20978.79 26598.57 19981.50 32789.98 27694.44 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testgi87.97 31187.21 31190.24 34192.86 35280.76 35096.67 20494.97 32291.74 14785.52 33495.83 21362.66 37594.47 37576.25 36188.36 29395.48 270
AllTest90.23 27988.98 29193.98 23197.94 11186.64 27696.51 21895.54 29585.38 32185.49 33596.77 15870.28 33499.15 13380.02 34092.87 22596.15 239
TestCases93.98 23197.94 11186.64 27695.54 29585.38 32185.49 33596.77 15870.28 33499.15 13380.02 34092.87 22596.15 239
DSMNet-mixed86.34 32786.12 32387.00 36289.88 37870.43 38894.93 30090.08 38677.97 38185.42 33792.78 33574.44 31093.96 38174.43 36995.14 18796.62 225
ppachtmachnet_test88.35 30987.29 30891.53 31792.45 36283.57 32893.75 34095.97 27284.28 33785.32 33894.18 29779.00 26396.93 34275.71 36384.99 32994.10 342
CL-MVSNet_self_test86.31 32885.15 33089.80 34688.83 38481.74 34493.93 33496.22 26486.67 30185.03 33990.80 36278.09 27694.50 37374.92 36771.86 38593.15 355
our_test_388.78 30487.98 30491.20 32692.45 36282.53 33593.61 34795.69 28685.77 31684.88 34093.71 31379.99 24096.78 34879.47 34486.24 30994.28 340
MVP-Stereo90.74 26490.08 25892.71 28893.19 34888.20 23895.86 26096.27 26186.07 31284.86 34194.76 26377.84 28097.75 29583.88 30998.01 12392.17 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+87.92 1490.20 28189.18 28893.25 26896.48 20186.45 28396.99 17596.68 23988.83 24384.79 34296.22 19570.16 33698.53 20184.42 30188.04 29494.77 324
NR-MVSNet92.34 19291.27 20995.53 14894.95 28393.05 7097.39 13998.07 7992.65 12384.46 34395.71 22285.00 14997.77 29489.71 20383.52 34895.78 256
LF4IMVS87.94 31287.25 30989.98 34492.38 36480.05 36394.38 31795.25 31087.59 28484.34 34494.74 26564.31 37097.66 30284.83 29487.45 29992.23 368
LCM-MVSNet-Re92.50 18392.52 16792.44 29296.82 17381.89 34296.92 18093.71 35792.41 12884.30 34594.60 27185.08 14897.03 33891.51 17097.36 14198.40 143
TransMVSNet (Re)88.94 30087.56 30693.08 27594.35 31388.45 23197.73 9595.23 31187.47 28684.26 34695.29 24079.86 24397.33 32979.44 34674.44 38093.45 352
Anonymous2023120687.09 32186.14 32289.93 34591.22 37080.35 35796.11 24795.35 30383.57 34884.16 34793.02 33273.54 31895.61 36472.16 37886.14 31193.84 347
SixPastTwentyTwo89.15 29888.54 29890.98 32893.49 34080.28 36096.70 19994.70 33290.78 17884.15 34895.57 23071.78 32597.71 29884.63 29885.07 32694.94 305
test_fmvs383.21 34583.02 34283.78 36786.77 39068.34 39396.76 19394.91 32586.49 30484.14 34989.48 37236.04 39791.73 38991.86 16280.77 36291.26 379
TDRefinement86.53 32484.76 33591.85 30782.23 39784.25 31796.38 22995.35 30384.97 33084.09 35094.94 25365.76 36798.34 22084.60 29974.52 37992.97 356
KD-MVS_self_test85.95 33384.95 33288.96 35289.55 38179.11 37295.13 29696.42 25585.91 31484.07 35190.48 36370.03 33894.82 37280.04 33972.94 38392.94 357
pmmvs687.81 31486.19 32192.69 28991.32 36986.30 28697.34 14496.41 25680.59 37184.05 35294.37 28467.37 35597.67 30084.75 29679.51 36794.09 344
ACMH87.59 1690.53 27089.42 28393.87 24196.21 21387.92 24797.24 15396.94 21688.45 25783.91 35396.27 19371.92 32398.62 19484.43 30089.43 28295.05 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet587.29 31885.79 32491.78 31294.80 29487.28 25995.49 28095.28 30784.09 34083.85 35491.82 35462.95 37494.17 37778.48 34985.34 32193.91 346
USDC88.94 30087.83 30592.27 29894.66 30184.96 31093.86 33795.90 27587.34 29083.40 35595.56 23167.43 35498.19 23082.64 32289.67 28093.66 348
Anonymous2024052186.42 32685.44 32689.34 35090.33 37479.79 36496.73 19595.92 27383.71 34683.25 35691.36 35963.92 37196.01 35478.39 35185.36 32092.22 369
KD-MVS_2432*160084.81 34082.64 34491.31 32291.07 37185.34 30491.22 37295.75 28285.56 31983.09 35790.21 36667.21 35695.89 35677.18 35762.48 39692.69 360
miper_refine_blended84.81 34082.64 34491.31 32291.07 37185.34 30491.22 37295.75 28285.56 31983.09 35790.21 36667.21 35695.89 35677.18 35762.48 39692.69 360
PVSNet_082.17 1985.46 33783.64 34090.92 32995.27 26579.49 36890.55 37895.60 29283.76 34583.00 35989.95 36871.09 32997.97 26582.75 32060.79 39895.31 286
mvsany_test383.59 34382.44 34787.03 36183.80 39373.82 38493.70 34190.92 38386.42 30582.51 36090.26 36546.76 39295.71 36190.82 18376.76 37591.57 374
test_040286.46 32584.79 33491.45 31995.02 28085.55 29796.29 23794.89 32680.90 36582.21 36193.97 30668.21 35197.29 33162.98 39088.68 29091.51 375
Patchmatch-RL test87.38 31786.24 32090.81 33288.74 38578.40 37588.12 39093.17 36287.11 29582.17 36289.29 37381.95 20895.60 36588.64 23177.02 37398.41 142
TinyColmap86.82 32385.35 32991.21 32494.91 28882.99 33293.94 33394.02 35083.58 34781.56 36394.68 26762.34 37698.13 23575.78 36287.35 30392.52 365
test20.0386.14 33185.40 32888.35 35390.12 37580.06 36295.90 25995.20 31288.59 25081.29 36493.62 31971.43 32792.65 38771.26 38281.17 36092.34 367
N_pmnet78.73 35478.71 35578.79 37292.80 35446.50 40994.14 32743.71 41178.61 37880.83 36591.66 35774.94 30696.36 35167.24 38784.45 33793.50 350
MVS-HIRNet82.47 34881.21 35186.26 36495.38 25369.21 39188.96 38789.49 38766.28 39180.79 36674.08 39668.48 34997.39 32671.93 37995.47 18292.18 370
PM-MVS83.48 34481.86 35088.31 35487.83 38877.59 37793.43 34991.75 37686.91 29780.63 36789.91 36944.42 39395.84 35985.17 29376.73 37691.50 376
ambc86.56 36383.60 39470.00 39085.69 39294.97 32280.60 36888.45 37737.42 39696.84 34682.69 32175.44 37892.86 358
MIMVSNet184.93 33983.05 34190.56 33789.56 38084.84 31395.40 28395.35 30383.91 34180.38 36992.21 35057.23 38293.34 38570.69 38482.75 35593.50 350
lessismore_v090.45 33891.96 36779.09 37387.19 39580.32 37094.39 28266.31 36397.55 31184.00 30676.84 37494.70 326
K. test v387.64 31686.75 31890.32 34093.02 35179.48 36996.61 21192.08 37490.66 18780.25 37194.09 30167.21 35696.65 34985.96 28280.83 36194.83 314
OpenMVS_ROBcopyleft81.14 2084.42 34282.28 34890.83 33090.06 37684.05 32295.73 26894.04 34973.89 38780.17 37291.53 35859.15 37997.64 30366.92 38889.05 28590.80 381
EG-PatchMatch MVS87.02 32285.44 32691.76 31492.67 35685.00 30996.08 24996.45 25483.41 35079.52 37393.49 32357.10 38397.72 29779.34 34790.87 26792.56 363
pmmvs-eth3d86.22 32984.45 33691.53 31788.34 38687.25 26194.47 31295.01 31983.47 34979.51 37489.61 37169.75 34195.71 36183.13 31376.73 37691.64 372
test_vis1_rt86.16 33085.06 33189.46 34993.47 34280.46 35696.41 22386.61 39785.22 32479.15 37588.64 37652.41 38997.06 33693.08 13990.57 26990.87 380
pmmvs379.97 35277.50 35787.39 35982.80 39679.38 37092.70 36390.75 38470.69 38978.66 37687.47 38651.34 39093.40 38473.39 37569.65 38889.38 385
UnsupCasMVSNet_eth85.99 33284.45 33690.62 33689.97 37782.40 33893.62 34697.37 17989.86 20778.59 37792.37 34365.25 36995.35 37082.27 32470.75 38694.10 342
dmvs_testset81.38 35082.60 34677.73 37391.74 36851.49 40693.03 35884.21 40189.07 23178.28 37891.25 36076.97 28688.53 39656.57 39682.24 35693.16 354
test_f80.57 35179.62 35383.41 36883.38 39567.80 39593.57 34893.72 35680.80 36977.91 37987.63 38433.40 39892.08 38887.14 26379.04 37090.34 383
new-patchmatchnet83.18 34681.87 34987.11 36086.88 38975.99 38193.70 34195.18 31385.02 32977.30 38088.40 37865.99 36593.88 38274.19 37270.18 38791.47 377
UnsupCasMVSNet_bld82.13 34979.46 35490.14 34288.00 38782.47 33690.89 37796.62 24778.94 37775.61 38184.40 39056.63 38496.31 35277.30 35666.77 39391.63 373
ET-MVSNet_ETH3D91.49 22990.11 25795.63 14196.40 20691.57 11895.34 28593.48 36090.60 19375.58 38295.49 23580.08 23896.79 34794.25 11589.76 27998.52 127
new_pmnet82.89 34781.12 35288.18 35689.63 37980.18 36191.77 36992.57 36976.79 38475.56 38388.23 38061.22 37894.48 37471.43 38082.92 35389.87 384
APD_test179.31 35377.70 35684.14 36689.11 38369.07 39292.36 36891.50 37869.07 39073.87 38492.63 33839.93 39594.32 37670.54 38580.25 36389.02 386
CMPMVSbinary62.92 2185.62 33684.92 33387.74 35789.14 38273.12 38794.17 32696.80 23173.98 38673.65 38594.93 25466.36 36197.61 30783.95 30791.28 25692.48 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS76.77 35576.63 35877.18 37485.32 39156.82 40494.53 31089.39 38882.66 35571.35 38689.18 37475.03 30588.88 39435.42 40266.79 39285.84 388
SSC-MVS76.05 35675.83 35976.72 37884.77 39256.22 40594.32 32188.96 39081.82 36170.52 38788.91 37574.79 30788.71 39533.69 40364.71 39485.23 389
YYNet185.87 33484.23 33890.78 33592.38 36482.46 33793.17 35395.14 31582.12 35867.69 38892.36 34678.16 27595.50 36877.31 35579.73 36594.39 335
MDA-MVSNet_test_wron85.87 33484.23 33890.80 33492.38 36482.57 33493.17 35395.15 31482.15 35767.65 38992.33 34978.20 27295.51 36777.33 35479.74 36494.31 339
DeepMVS_CXcopyleft74.68 38190.84 37364.34 39981.61 40465.34 39267.47 39088.01 38348.60 39180.13 40262.33 39173.68 38279.58 393
LCM-MVSNet72.55 35869.39 36282.03 36970.81 40765.42 39890.12 38294.36 34455.02 39765.88 39181.72 39124.16 40589.96 39074.32 37168.10 39190.71 382
test_method66.11 36564.89 36769.79 38272.62 40535.23 41365.19 40092.83 36720.35 40365.20 39288.08 38243.14 39482.70 40073.12 37663.46 39591.45 378
MDA-MVSNet-bldmvs85.00 33882.95 34391.17 32793.13 35083.33 32994.56 30995.00 32084.57 33565.13 39392.65 33670.45 33395.85 35873.57 37477.49 37294.33 337
PMMVS270.19 36066.92 36380.01 37076.35 40165.67 39786.22 39187.58 39464.83 39362.38 39480.29 39326.78 40388.49 39763.79 38954.07 39985.88 387
testf169.31 36166.76 36476.94 37678.61 39961.93 40088.27 38886.11 39855.62 39559.69 39585.31 38820.19 40789.32 39157.62 39369.44 38979.58 393
APD_test269.31 36166.76 36476.94 37678.61 39961.93 40088.27 38886.11 39855.62 39559.69 39585.31 38820.19 40789.32 39157.62 39369.44 38979.58 393
test_vis3_rt72.73 35770.55 36079.27 37180.02 39868.13 39493.92 33574.30 40876.90 38358.99 39773.58 39720.29 40695.37 36984.16 30272.80 38474.31 396
FPMVS71.27 35969.85 36175.50 37974.64 40259.03 40291.30 37191.50 37858.80 39457.92 39888.28 37929.98 40185.53 39953.43 39782.84 35481.95 392
Gipumacopyleft67.86 36465.41 36675.18 38092.66 35773.45 38566.50 39994.52 33753.33 39857.80 39966.07 39930.81 39989.20 39348.15 39978.88 37162.90 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt51.94 37153.82 37146.29 38733.73 41145.30 41178.32 39767.24 41018.02 40450.93 40087.05 38752.99 38853.11 40670.76 38325.29 40440.46 402
ANet_high63.94 36659.58 36977.02 37561.24 40966.06 39685.66 39387.93 39378.53 37942.94 40171.04 39825.42 40480.71 40152.60 39830.83 40284.28 390
E-PMN53.28 36852.56 37255.43 38574.43 40347.13 40883.63 39576.30 40542.23 40042.59 40262.22 40128.57 40274.40 40331.53 40431.51 40144.78 400
EMVS52.08 37051.31 37354.39 38672.62 40545.39 41083.84 39475.51 40741.13 40140.77 40359.65 40230.08 40073.60 40428.31 40529.90 40344.18 401
MVEpermissive50.73 2353.25 36948.81 37466.58 38465.34 40857.50 40372.49 39870.94 40940.15 40239.28 40463.51 4006.89 41173.48 40538.29 40142.38 40068.76 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft53.92 2258.58 36755.40 37068.12 38351.00 41048.64 40778.86 39687.10 39646.77 39935.84 40574.28 3958.76 40986.34 39842.07 40073.91 38169.38 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 37224.57 37626.74 38873.98 40439.89 41257.88 4019.80 41212.27 40510.39 4066.97 4087.03 41036.44 40725.43 40617.39 4053.89 405
testmvs13.36 37416.33 3774.48 3905.04 4122.26 41593.18 3523.28 4132.70 4068.24 40721.66 4042.29 4132.19 4087.58 4072.96 4069.00 404
test12313.04 37515.66 3785.18 3894.51 4133.45 41492.50 3661.81 4142.50 4077.58 40820.15 4053.67 4122.18 4097.13 4081.07 4079.90 403
EGC-MVSNET68.77 36363.01 36886.07 36592.49 36082.24 34093.96 33290.96 3820.71 4082.62 40990.89 36153.66 38793.46 38357.25 39584.55 33582.51 391
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.24 37330.99 3750.00 3910.00 4140.00 4160.00 40297.63 1400.00 4090.00 41096.88 15584.38 1570.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.39 3779.85 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40988.65 950.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.06 37610.74 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41096.69 1640.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.53 36675.56 365
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
eth-test20.00 414
eth-test0.00 414
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
GSMVS98.45 137
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
MTGPAbinary98.08 74
test_post192.81 36216.58 40780.53 22997.68 29986.20 274
test_post17.58 40681.76 21198.08 246
patchmatchnet-post90.45 36482.65 19498.10 242
MTMP97.86 7982.03 403
gm-plane-assit93.22 34778.89 37484.82 33293.52 32298.64 19187.72 242
test9_res94.81 10399.38 5399.45 47
agg_prior293.94 12199.38 5399.50 40
test_prior493.66 5596.42 222
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
新几何295.79 265
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
无先验95.79 26597.87 11183.87 34499.65 5887.68 24898.89 105
原ACMM295.67 270
testdata299.67 5685.96 282
segment_acmp92.89 27
testdata195.26 29393.10 105
plane_prior796.21 21389.98 178
plane_prior696.10 22490.00 17481.32 217
plane_prior597.51 15398.60 19593.02 14292.23 23695.86 247
plane_prior496.64 168
plane_prior297.74 9394.85 34
plane_prior196.14 221
plane_prior89.99 17697.24 15394.06 6592.16 240
n20.00 415
nn0.00 415
door-mid91.06 381
test1197.88 109
door91.13 380
HQP5-MVS89.33 203
BP-MVS92.13 155
HQP3-MVS97.39 17692.10 241
HQP2-MVS80.95 220
NP-MVS95.99 22889.81 18395.87 210
ACMMP++_ref90.30 274
ACMMP++91.02 262
Test By Simon88.73 94