This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3398.27 3095.13 1799.19 198.89 495.54 599.85 1797.52 499.66 1099.56 26
test_241102_ONE99.42 795.30 1898.27 3095.09 2199.19 198.81 1095.54 599.65 56
SD-MVS97.41 1097.53 797.06 7498.57 7794.46 3497.92 6398.14 5694.82 3299.01 398.55 2194.18 1497.41 30996.94 1499.64 1399.32 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test072699.45 395.36 1398.31 2698.29 2594.92 2698.99 498.92 295.08 8
IU-MVS99.42 795.39 1197.94 10590.40 18198.94 597.41 1199.66 1099.74 7
DVP-MVS++98.06 197.99 198.28 998.67 6495.39 1199.29 198.28 2794.78 3598.93 698.87 696.04 299.86 897.45 899.58 2299.59 19
test_241102_TWO98.27 3095.13 1798.93 698.89 494.99 1199.85 1797.52 499.65 1299.74 7
PC_three_145290.77 16498.89 898.28 5596.24 198.35 20795.76 5899.58 2299.59 19
SMA-MVScopyleft97.35 1397.03 1598.30 899.06 4295.42 1097.94 6198.18 4990.57 17798.85 998.94 193.33 2099.83 2596.72 2399.68 499.63 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4097.85 11694.92 2698.73 1098.87 695.08 899.84 2297.52 499.67 699.48 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 3598.73 1098.87 695.87 499.84 2297.45 899.72 299.77 1
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 13998.35 1995.16 1698.71 1298.80 1195.05 1099.89 396.70 2499.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.97.42 997.33 1097.69 4599.25 2994.24 4398.07 5097.85 11693.72 6398.57 1398.35 4093.69 1899.40 11297.06 1299.46 4299.44 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6298.53 1298.29 2595.55 598.56 1497.81 8893.90 1599.65 5696.62 2599.21 7399.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS199.55 193.34 7499.29 198.35 1994.98 2598.49 15
test_one_060199.32 2495.20 2198.25 3595.13 1798.48 1698.87 695.16 7
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 598.30 2494.76 3798.30 1798.90 393.77 1799.68 5097.93 199.69 399.75 5
xxxxxxxxxxxxxcwj97.36 1297.20 1197.83 2998.91 5194.28 3997.02 15297.22 19095.35 898.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
SF-MVS97.39 1197.13 1298.17 1499.02 4595.28 2098.23 3798.27 3092.37 11698.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8594.25 4298.43 2098.27 3095.34 1098.11 2098.56 1994.53 1299.71 4196.57 2899.62 1599.65 11
Skip Steuart: Steuart Systems R&D Blog.
test_part299.28 2795.74 898.10 21
APD-MVScopyleft96.95 3296.60 4198.01 2299.03 4494.93 2897.72 8498.10 6491.50 14098.01 2298.32 4892.33 3899.58 7494.85 8799.51 3399.53 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepPCF-MVS93.97 196.61 4997.09 1395.15 16598.09 11086.63 27196.00 24198.15 5495.43 697.95 2398.56 1993.40 1999.36 11696.77 2299.48 3999.45 49
ACMMP_NAP97.20 1696.86 2398.23 1199.09 3895.16 2497.60 9998.19 4792.82 10497.93 2498.74 1391.60 5699.86 896.26 3599.52 2999.67 10
ETH3D-3000-0.197.07 2396.71 3798.14 1698.90 5395.33 1797.68 8898.24 3791.57 13897.90 2598.37 3892.61 3299.66 5595.59 7099.51 3399.43 53
9.1496.75 3498.93 4997.73 8198.23 4191.28 15297.88 2698.44 3093.00 2499.65 5695.76 5899.47 40
CNVR-MVS97.68 697.44 998.37 798.90 5395.86 697.27 13098.08 6795.81 397.87 2798.31 4994.26 1399.68 5097.02 1399.49 3899.57 23
testtj96.93 3496.56 4498.05 2099.10 3694.66 3197.78 7598.22 4292.74 10797.59 2898.20 6391.96 4799.86 894.21 10199.25 6999.63 13
VNet95.89 7095.45 7497.21 6898.07 11292.94 8497.50 10698.15 5493.87 5797.52 2997.61 10785.29 14599.53 9295.81 5795.27 17899.16 77
Regformer-297.16 1996.99 1797.67 4698.32 9193.84 5796.83 17298.10 6495.24 1197.49 3098.25 5792.57 3399.61 6596.80 1999.29 6199.56 26
Regformer-197.10 2196.96 1997.54 5298.32 9193.48 6896.83 17297.99 10095.20 1397.46 3198.25 5792.48 3799.58 7496.79 2199.29 6199.55 30
SR-MVS97.01 2996.86 2397.47 5499.09 3893.27 7697.98 5598.07 7393.75 6297.45 3298.48 2791.43 5999.59 7196.22 3899.27 6599.54 33
APD-MVS_3200maxsize96.81 4196.71 3797.12 7299.01 4892.31 10297.98 5598.06 7693.11 9097.44 3398.55 2190.93 7199.55 8796.06 4699.25 6999.51 38
TSAR-MVS + GP.96.69 4696.49 4797.27 6398.31 9393.39 7096.79 17696.72 23394.17 5197.44 3397.66 10092.76 2699.33 11796.86 1797.76 12799.08 87
SR-MVS-dyc-post96.88 3796.80 3097.11 7399.02 4592.34 9997.98 5598.03 8793.52 7397.43 3598.51 2491.40 6099.56 8496.05 4799.26 6799.43 53
RE-MVS-def96.72 3699.02 4592.34 9997.98 5598.03 8793.52 7397.43 3598.51 2490.71 7696.05 4799.26 6799.43 53
test117296.93 3496.86 2397.15 7099.10 3692.34 9997.96 6098.04 8493.79 6197.35 3798.53 2391.40 6099.56 8496.30 3499.30 6099.55 30
旧先验295.94 24481.66 33497.34 3898.82 16592.26 137
ETH3D cwj APD-0.1696.56 5196.06 6098.05 2098.26 9795.19 2296.99 15798.05 8389.85 19197.26 3998.22 5991.80 5099.69 4794.84 8899.28 6399.27 71
MSLP-MVS++96.94 3397.06 1496.59 8698.72 6191.86 11797.67 8998.49 1294.66 4097.24 4098.41 3692.31 4098.94 15696.61 2699.46 4298.96 99
abl_696.40 5696.21 5796.98 7798.89 5692.20 10797.89 6498.03 8793.34 8297.22 4198.42 3387.93 10899.72 3895.10 8099.07 8699.02 90
HFP-MVS97.14 2096.92 2197.83 2999.42 794.12 4998.52 1398.32 2193.21 8497.18 4298.29 5292.08 4299.83 2595.63 6599.59 1799.54 33
#test#97.02 2796.75 3497.83 2999.42 794.12 4998.15 4598.32 2192.57 11297.18 4298.29 5292.08 4299.83 2595.12 7999.59 1799.54 33
ACMMPR97.07 2396.84 2697.79 3599.44 693.88 5698.52 1398.31 2393.21 8497.15 4498.33 4691.35 6299.86 895.63 6599.59 1799.62 15
region2R97.07 2396.84 2697.77 3899.46 293.79 5998.52 1398.24 3793.19 8797.14 4598.34 4391.59 5799.87 795.46 7399.59 1799.64 12
Regformer-496.97 3096.87 2297.25 6498.34 8892.66 9096.96 16098.01 9495.12 2097.14 4598.42 3391.82 4999.61 6596.90 1599.13 7999.50 41
PGM-MVS96.81 4196.53 4597.65 4799.35 2293.53 6797.65 9298.98 192.22 11997.14 4598.44 3091.17 6799.85 1794.35 9999.46 4299.57 23
PHI-MVS96.77 4396.46 5097.71 4498.40 8394.07 5298.21 4098.45 1589.86 18997.11 4898.01 7492.52 3599.69 4796.03 5099.53 2899.36 62
NCCC97.30 1597.03 1598.11 1798.77 5995.06 2697.34 12298.04 8495.96 297.09 4997.88 8093.18 2399.71 4195.84 5699.17 7699.56 26
Regformer-396.85 3996.80 3097.01 7598.34 8892.02 11396.96 16097.76 12095.01 2497.08 5098.42 3391.71 5299.54 8996.80 1999.13 7999.48 45
ZD-MVS99.05 4394.59 3298.08 6789.22 20797.03 5198.10 6692.52 3599.65 5694.58 9799.31 59
testdata95.46 15898.18 10788.90 21797.66 13582.73 32897.03 5198.07 6990.06 8498.85 16389.67 18898.98 9098.64 126
HPM-MVS_fast96.51 5296.27 5597.22 6799.32 2492.74 8798.74 798.06 7690.57 17796.77 5398.35 4090.21 8299.53 9294.80 9299.63 1499.38 60
h-mvs3394.15 11393.52 12196.04 12197.81 12490.22 17297.62 9897.58 14595.19 1496.74 5497.45 11683.67 16799.61 6595.85 5479.73 34098.29 154
hse-mvs293.45 14092.99 13694.81 18297.02 16288.59 22396.69 18696.47 25195.19 1496.74 5496.16 18683.67 16798.48 19995.85 5479.13 34497.35 195
GST-MVS96.85 3996.52 4697.82 3299.36 2094.14 4898.29 2898.13 5792.72 10896.70 5698.06 7091.35 6299.86 894.83 8999.28 6399.47 48
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
xiu_mvs_v1_base95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
CDPH-MVS95.97 6895.38 7797.77 3898.93 4994.44 3596.35 21697.88 11086.98 27396.65 6097.89 7891.99 4699.47 10392.26 13799.46 4299.39 58
ETH3 D test640096.16 6395.52 7198.07 1998.90 5395.06 2697.03 14998.21 4388.16 24396.64 6197.70 9591.18 6699.67 5292.44 13699.47 4099.48 45
DROMVSNet96.42 5596.47 4896.26 11197.01 16391.52 12798.89 397.75 12194.42 4596.64 6197.68 9789.32 9098.60 18597.45 899.11 8498.67 125
UA-Net95.95 6995.53 7097.20 6997.67 13192.98 8397.65 9298.13 5794.81 3396.61 6398.35 4088.87 9599.51 9790.36 17697.35 13899.11 85
HPM-MVS++copyleft97.34 1496.97 1898.47 599.08 4096.16 497.55 10397.97 10295.59 496.61 6397.89 7892.57 3399.84 2295.95 5199.51 3399.40 57
XVS97.18 1796.96 1997.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6598.29 5291.70 5399.80 3095.66 6099.40 4999.62 15
X-MVStestdata91.71 20289.67 26297.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6532.69 37191.70 5399.80 3095.66 6099.40 4999.62 15
DeepC-MVS_fast93.89 296.93 3496.64 4097.78 3698.64 7294.30 3897.41 11498.04 8494.81 3396.59 6598.37 3891.24 6499.64 6495.16 7799.52 2999.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ95.37 8295.33 7995.49 15497.35 14490.66 16095.31 27097.48 15493.85 5896.51 6895.70 21388.65 9999.65 5694.80 9298.27 11296.17 222
EI-MVSNet-Vis-set96.51 5296.47 4896.63 8398.24 9891.20 14096.89 16797.73 12494.74 3896.49 6998.49 2690.88 7399.58 7496.44 3298.32 11199.13 81
ETV-MVS96.02 6695.89 6596.40 9997.16 15092.44 9797.47 11197.77 11994.55 4296.48 7094.51 26191.23 6598.92 15795.65 6398.19 11497.82 176
alignmvs95.87 7295.23 8197.78 3697.56 14295.19 2297.86 6697.17 19394.39 4796.47 7196.40 17585.89 13899.20 12696.21 4295.11 18298.95 101
xiu_mvs_v2_base95.32 8495.29 8095.40 15997.22 14690.50 16595.44 26497.44 16993.70 6596.46 7296.18 18388.59 10299.53 9294.79 9497.81 12496.17 222
CP-MVS97.02 2796.81 2997.64 4999.33 2393.54 6698.80 698.28 2792.99 9496.45 7398.30 5191.90 4899.85 1795.61 6799.68 499.54 33
HPM-MVScopyleft96.69 4696.45 5197.40 5699.36 2093.11 7998.87 498.06 7691.17 15696.40 7497.99 7590.99 7099.58 7495.61 6799.61 1699.49 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ZNCC-MVS96.96 3196.67 3997.85 2899.37 1794.12 4998.49 1798.18 4992.64 11196.39 7598.18 6491.61 5599.88 495.59 7099.55 2599.57 23
diffmvs95.25 8695.13 8495.63 14296.43 19589.34 20295.99 24297.35 18192.83 10396.31 7697.37 12086.44 13098.67 17996.26 3597.19 14498.87 110
LFMVS93.60 13592.63 15096.52 8898.13 10991.27 13597.94 6193.39 34290.57 17796.29 7798.31 4969.00 32999.16 13194.18 10395.87 16799.12 84
canonicalmvs96.02 6695.45 7497.75 4097.59 13995.15 2598.28 2997.60 14294.52 4396.27 7896.12 18787.65 11299.18 12996.20 4394.82 18698.91 105
MVSFormer95.37 8295.16 8395.99 12496.34 19991.21 13898.22 3897.57 14691.42 14496.22 7997.32 12186.20 13597.92 26294.07 10499.05 8798.85 111
lupinMVS94.99 9694.56 9696.29 10996.34 19991.21 13895.83 24996.27 25988.93 21796.22 7996.88 14386.20 13598.85 16395.27 7599.05 8798.82 114
EI-MVSNet-UG-set96.34 5896.30 5496.47 9498.20 10390.93 15196.86 16897.72 12894.67 3996.16 8198.46 2890.43 7999.58 7496.23 3797.96 12198.90 106
zzz-MVS97.07 2396.77 3397.97 2599.37 1794.42 3697.15 14598.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
MTAPA97.08 2296.78 3297.97 2599.37 1794.42 3697.24 13298.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
MCST-MVS97.18 1796.84 2698.20 1399.30 2695.35 1597.12 14798.07 7393.54 7196.08 8497.69 9693.86 1699.71 4196.50 2999.39 5199.55 30
CS-MVS95.88 7195.98 6295.58 14696.44 19390.56 16297.78 7597.73 12493.01 9396.07 8596.77 14790.13 8398.57 19096.83 1899.10 8597.60 187
TEST998.70 6294.19 4496.41 20898.02 9188.17 24196.03 8697.56 11292.74 2799.59 71
train_agg96.30 5995.83 6797.72 4298.70 6294.19 4496.41 20898.02 9188.58 22996.03 8697.56 11292.73 2899.59 7195.04 8199.37 5699.39 58
test_prior396.46 5496.20 5897.23 6598.67 6492.99 8196.35 21698.00 9692.80 10596.03 8697.59 10892.01 4499.41 11095.01 8299.38 5299.29 66
test_prior296.35 21692.80 10596.03 8697.59 10892.01 4495.01 8299.38 52
jason94.84 10194.39 10496.18 11595.52 23290.93 15196.09 23596.52 24989.28 20596.01 9097.32 12184.70 15298.77 17095.15 7898.91 9498.85 111
jason: jason.
test_898.67 6494.06 5396.37 21598.01 9488.58 22995.98 9197.55 11492.73 2899.58 74
mPP-MVS96.86 3896.60 4197.64 4999.40 1293.44 6998.50 1698.09 6693.27 8395.95 9298.33 4691.04 6999.88 495.20 7699.57 2499.60 18
DELS-MVS96.61 4996.38 5397.30 6097.79 12693.19 7795.96 24398.18 4995.23 1295.87 9397.65 10191.45 5899.70 4695.87 5299.44 4699.00 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VDD-MVS93.82 12893.08 13496.02 12297.88 12189.96 18197.72 8495.85 27492.43 11495.86 9498.44 3068.42 33399.39 11396.31 3394.85 18498.71 122
MVS_111021_HR96.68 4896.58 4396.99 7698.46 7992.31 10296.20 23198.90 294.30 5095.86 9497.74 9392.33 3899.38 11596.04 4999.42 4799.28 69
MVS_111021_LR96.24 6196.19 5996.39 10198.23 10291.35 13396.24 22998.79 493.99 5595.80 9697.65 10189.92 8899.24 12495.87 5299.20 7498.58 127
VDDNet93.05 15592.07 16796.02 12296.84 16990.39 17098.08 4995.85 27486.22 28595.79 9798.46 2867.59 33699.19 12794.92 8694.85 18498.47 139
新几何197.32 5998.60 7393.59 6597.75 12181.58 33595.75 9897.85 8490.04 8599.67 5286.50 25399.13 7998.69 123
test_yl94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16997.10 19991.23 15495.71 9996.93 13884.30 15899.31 11993.10 12695.12 18098.75 116
DCV-MVSNet94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16997.10 19991.23 15495.71 9996.93 13884.30 15899.31 11993.10 12695.12 18098.75 116
agg_prior196.22 6295.77 6897.56 5198.67 6493.79 5996.28 22498.00 9688.76 22695.68 10197.55 11492.70 3099.57 8295.01 8299.32 5799.32 64
agg_prior98.67 6493.79 5998.00 9695.68 10199.57 82
112194.71 10593.83 11097.34 5898.57 7793.64 6496.04 23797.73 12481.56 33695.68 10197.85 8490.23 8199.65 5687.68 23199.12 8298.73 119
MG-MVS95.61 7795.38 7796.31 10698.42 8290.53 16496.04 23797.48 15493.47 7695.67 10498.10 6689.17 9299.25 12391.27 16498.77 9699.13 81
baseline95.58 7895.42 7696.08 11796.78 17390.41 16997.16 14397.45 16593.69 6695.65 10597.85 8487.29 12098.68 17895.66 6097.25 14299.13 81
MVS_Test94.89 9994.62 9495.68 14096.83 17189.55 19196.70 18497.17 19391.17 15695.60 10696.11 19087.87 10998.76 17193.01 13297.17 14598.72 120
DPM-MVS95.69 7494.92 8798.01 2298.08 11195.71 995.27 27397.62 14190.43 18095.55 10797.07 13491.72 5199.50 10089.62 19098.94 9298.82 114
MP-MVS-pluss96.70 4596.27 5597.98 2499.23 3294.71 3096.96 16098.06 7690.67 16895.55 10798.78 1291.07 6899.86 896.58 2799.55 2599.38 60
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4396.45 5197.72 4299.39 1493.80 5898.41 2198.06 7693.37 7995.54 10998.34 4390.59 7899.88 494.83 8999.54 2799.49 43
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test95.86 7395.88 6695.80 13196.76 17690.59 16198.40 2297.65 13793.52 7395.53 11096.79 14589.98 8698.59 18995.59 7098.69 9998.23 155
test1297.65 4798.46 7994.26 4197.66 13595.52 11190.89 7299.46 10499.25 6999.22 74
casdiffmvs95.64 7695.49 7296.08 11796.76 17690.45 16797.29 12997.44 16994.00 5495.46 11297.98 7687.52 11698.73 17395.64 6497.33 13999.08 87
test22298.24 9892.21 10595.33 26897.60 14279.22 34895.25 11397.84 8788.80 9799.15 7798.72 120
test250691.60 20690.78 21494.04 21697.66 13383.81 31098.27 3075.53 37593.43 7795.23 11498.21 6067.21 33999.07 14593.01 13298.49 10599.25 72
原ACMM196.38 10298.59 7491.09 14697.89 10887.41 26595.22 11597.68 9790.25 8099.54 8987.95 22199.12 8298.49 136
CPTT-MVS95.57 7995.19 8296.70 8099.27 2891.48 12898.33 2598.11 6287.79 25495.17 11698.03 7287.09 12399.61 6593.51 11799.42 4799.02 90
DP-MVS Recon95.68 7595.12 8597.37 5799.19 3394.19 4497.03 14998.08 6788.35 23695.09 11797.65 10189.97 8799.48 10292.08 14698.59 10398.44 144
Vis-MVSNetpermissive95.23 8794.81 8996.51 9197.18 14991.58 12598.26 3298.12 5994.38 4894.90 11898.15 6582.28 19998.92 15791.45 16198.58 10499.01 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet96.39 5796.02 6197.50 5397.62 13693.38 7197.02 15297.96 10395.42 794.86 11997.81 8887.38 11999.82 2896.88 1699.20 7499.29 66
API-MVS94.84 10194.49 10095.90 12797.90 12092.00 11497.80 7397.48 15489.19 20894.81 12096.71 15088.84 9699.17 13088.91 20898.76 9796.53 213
OMC-MVS95.09 9194.70 9396.25 11398.46 7991.28 13496.43 20697.57 14692.04 12894.77 12197.96 7787.01 12499.09 14091.31 16396.77 15098.36 151
ECVR-MVScopyleft93.19 14992.73 14794.57 19697.66 13385.41 28998.21 4088.23 36493.43 7794.70 12298.21 6072.57 30999.07 14593.05 12998.49 10599.25 72
WTY-MVS94.71 10594.02 10796.79 7997.71 13092.05 11196.59 19997.35 18190.61 17494.64 12396.93 13886.41 13199.39 11391.20 16694.71 19098.94 102
test111193.19 14992.82 14194.30 20797.58 14184.56 30398.21 4089.02 36393.53 7294.58 12498.21 6072.69 30899.05 14893.06 12898.48 10799.28 69
ACMMPcopyleft96.27 6095.93 6397.28 6299.24 3092.62 9298.25 3398.81 392.99 9494.56 12598.39 3788.96 9499.85 1794.57 9897.63 12899.36 62
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+94.93 9794.45 10296.36 10496.61 17991.47 12996.41 20897.41 17491.02 16194.50 12695.92 19687.53 11598.78 16893.89 11096.81 14998.84 113
sss94.51 10793.80 11196.64 8197.07 15591.97 11596.32 22098.06 7688.94 21694.50 12696.78 14684.60 15399.27 12291.90 14796.02 16398.68 124
PVSNet_BlendedMVS94.06 11993.92 10894.47 19898.27 9489.46 19796.73 18098.36 1690.17 18394.36 12895.24 23288.02 10599.58 7493.44 11990.72 24594.36 315
PVSNet_Blended94.87 10094.56 9695.81 13098.27 9489.46 19795.47 26398.36 1688.84 22094.36 12896.09 19188.02 10599.58 7493.44 11998.18 11598.40 147
PMMVS92.86 16592.34 16194.42 20294.92 26986.73 26794.53 28796.38 25584.78 30794.27 13095.12 23783.13 17798.40 20291.47 16096.49 15998.12 160
EPP-MVSNet95.22 8895.04 8695.76 13297.49 14389.56 19098.67 897.00 21290.69 16794.24 13197.62 10689.79 8998.81 16693.39 12296.49 15998.92 104
PVSNet_Blended_VisFu95.27 8594.91 8896.38 10298.20 10390.86 15397.27 13098.25 3590.21 18294.18 13297.27 12387.48 11799.73 3593.53 11697.77 12698.55 128
thisisatest053093.03 15692.21 16595.49 15497.07 15589.11 21397.49 11092.19 35090.16 18494.09 13396.41 17476.43 28799.05 14890.38 17595.68 17398.31 153
XVG-OURS-SEG-HR93.86 12793.55 11894.81 18297.06 15888.53 22695.28 27197.45 16591.68 13694.08 13497.68 9782.41 19798.90 16093.84 11292.47 21596.98 200
XVG-OURS93.72 13293.35 12994.80 18597.07 15588.61 22294.79 28197.46 15991.97 13193.99 13597.86 8381.74 21098.88 16292.64 13592.67 21396.92 204
IS-MVSNet94.90 9894.52 9996.05 12097.67 13190.56 16298.44 1996.22 26293.21 8493.99 13597.74 9385.55 14398.45 20089.98 17997.86 12299.14 80
CSCG96.05 6595.91 6496.46 9699.24 3090.47 16698.30 2798.57 1189.01 21293.97 13797.57 11092.62 3199.76 3394.66 9599.27 6599.15 79
EIA-MVS95.53 8095.47 7395.71 13997.06 15889.63 18697.82 7197.87 11293.57 6793.92 13895.04 23890.61 7798.95 15594.62 9698.68 10098.54 129
tttt051792.96 15992.33 16294.87 17997.11 15387.16 25997.97 5992.09 35190.63 17293.88 13997.01 13776.50 28499.06 14790.29 17895.45 17598.38 149
HyFIR lowres test93.66 13392.92 13995.87 12898.24 9889.88 18294.58 28598.49 1285.06 30293.78 14095.78 20782.86 18598.67 17991.77 15195.71 17299.07 89
CHOSEN 1792x268894.15 11393.51 12296.06 11998.27 9489.38 20095.18 27798.48 1485.60 29393.76 14197.11 13283.15 17699.61 6591.33 16298.72 9899.19 75
Anonymous20240521192.07 19490.83 21395.76 13298.19 10588.75 21997.58 10095.00 31086.00 28893.64 14297.45 11666.24 34699.53 9290.68 17392.71 21199.01 94
CDS-MVSNet94.14 11693.54 11995.93 12596.18 20691.46 13096.33 21997.04 20888.97 21593.56 14396.51 16887.55 11497.89 26689.80 18495.95 16598.44 144
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MDTV_nov1_ep13_2view70.35 36593.10 32883.88 31793.55 14482.47 19686.25 25698.38 149
Anonymous2024052991.98 19690.73 21895.73 13798.14 10889.40 19997.99 5497.72 12879.63 34693.54 14597.41 11969.94 32799.56 8491.04 16791.11 23898.22 156
CANet_DTU94.37 10893.65 11696.55 8796.46 19292.13 10996.21 23096.67 24194.38 4893.53 14697.03 13679.34 24899.71 4190.76 17098.45 10997.82 176
tpmrst91.44 21791.32 19391.79 29695.15 25779.20 35193.42 32195.37 29288.55 23293.49 14793.67 30282.49 19598.27 21290.41 17489.34 25997.90 169
TAMVS94.01 12293.46 12495.64 14196.16 20890.45 16796.71 18396.89 22389.27 20693.46 14896.92 14187.29 12097.94 25988.70 21295.74 17098.53 130
thisisatest051592.29 18491.30 19595.25 16296.60 18088.90 21794.36 29492.32 34987.92 24893.43 14994.57 26077.28 28099.00 15289.42 19495.86 16897.86 172
DeepC-MVS93.07 396.06 6495.66 6997.29 6197.96 11493.17 7897.30 12898.06 7693.92 5693.38 15098.66 1486.83 12599.73 3595.60 6999.22 7298.96 99
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view792.49 17591.60 18395.18 16497.91 11989.47 19597.65 9294.66 32192.18 12593.33 15194.91 24278.06 27399.10 13781.61 30594.06 19896.98 200
thres100view90092.43 17691.58 18494.98 17397.92 11889.37 20197.71 8694.66 32192.20 12193.31 15294.90 24378.06 27399.08 14281.40 30894.08 19596.48 216
thres20092.23 18891.39 19094.75 18997.61 13789.03 21496.60 19895.09 30792.08 12793.28 15394.00 28978.39 26799.04 15181.26 31294.18 19496.19 221
tfpn200view992.38 17991.52 18794.95 17697.85 12289.29 20597.41 11494.88 31692.19 12393.27 15494.46 26678.17 26999.08 14281.40 30894.08 19596.48 216
thres40092.42 17791.52 18795.12 16897.85 12289.29 20597.41 11494.88 31692.19 12393.27 15494.46 26678.17 26999.08 14281.40 30894.08 19596.98 200
ab-mvs93.57 13792.55 15496.64 8197.28 14591.96 11695.40 26597.45 16589.81 19393.22 15696.28 18079.62 24599.46 10490.74 17193.11 20798.50 134
Vis-MVSNet (Re-imp)94.15 11393.88 10994.95 17697.61 13787.92 24298.10 4795.80 27692.22 11993.02 15797.45 11684.53 15597.91 26588.24 21697.97 12099.02 90
114514_t93.95 12393.06 13596.63 8399.07 4191.61 12297.46 11397.96 10377.99 35293.00 15897.57 11086.14 13799.33 11789.22 20199.15 7798.94 102
UGNet94.04 12193.28 13196.31 10696.85 16891.19 14197.88 6597.68 13394.40 4693.00 15896.18 18373.39 30799.61 6591.72 15298.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HY-MVS89.66 993.87 12692.95 13896.63 8397.10 15492.49 9695.64 25796.64 24289.05 21193.00 15895.79 20685.77 14199.45 10689.16 20594.35 19297.96 165
PVSNet86.66 1892.24 18791.74 18093.73 23397.77 12783.69 31592.88 33096.72 23387.91 24993.00 15894.86 24578.51 26399.05 14886.53 25197.45 13598.47 139
MAR-MVS94.22 11193.46 12496.51 9198.00 11392.19 10897.67 8997.47 15788.13 24593.00 15895.84 20084.86 15199.51 9787.99 22098.17 11697.83 175
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR95.01 9294.59 9596.26 11198.89 5690.68 15997.24 13297.73 12491.80 13392.93 16396.62 16489.13 9399.14 13489.21 20297.78 12598.97 98
MDTV_nov1_ep1390.76 21695.22 25480.33 34093.03 32995.28 29788.14 24492.84 16493.83 29381.34 21498.08 23582.86 29694.34 193
CostFormer91.18 23590.70 21992.62 27794.84 27581.76 32994.09 30494.43 32684.15 31392.72 16593.77 29779.43 24798.20 21890.70 17292.18 22197.90 169
EPNet95.20 8994.56 9697.14 7192.80 33292.68 8997.85 6994.87 31996.64 192.46 16697.80 9086.23 13299.65 5693.72 11498.62 10299.10 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet90.82 24789.77 25893.95 22394.45 29187.19 25790.23 35095.68 28286.89 27592.40 16792.36 32580.91 22097.05 31981.09 31393.95 19997.60 187
RPMNet88.98 28087.05 29594.77 18794.45 29187.19 25790.23 35098.03 8777.87 35492.40 16787.55 35680.17 23499.51 9768.84 35993.95 19997.60 187
EPMVS90.70 25389.81 25693.37 25294.73 28084.21 30693.67 31688.02 36589.50 19992.38 16993.49 30677.82 27797.78 27686.03 26392.68 21298.11 163
baseline192.82 16891.90 17495.55 14997.20 14890.77 15797.19 14094.58 32492.20 12192.36 17096.34 17884.16 16198.21 21689.20 20383.90 32397.68 181
PatchT88.87 28487.42 28993.22 25894.08 30285.10 29589.51 35494.64 32381.92 33292.36 17088.15 35380.05 23697.01 32372.43 35193.65 20297.54 191
PAPR94.18 11293.42 12896.48 9397.64 13591.42 13295.55 25997.71 13288.99 21392.34 17295.82 20289.19 9199.11 13686.14 25997.38 13698.90 106
mvs-test193.63 13493.69 11493.46 24896.02 21584.61 30297.24 13296.72 23393.85 5892.30 17395.76 20883.08 17898.89 16191.69 15596.54 15796.87 206
SCA91.84 19991.18 20293.83 22995.59 22884.95 29894.72 28295.58 28690.82 16292.25 17493.69 29975.80 29098.10 23086.20 25795.98 16498.45 141
CVMVSNet91.23 22991.75 17889.67 32995.77 22374.69 36096.44 20494.88 31685.81 29092.18 17597.64 10479.07 25195.58 34688.06 21995.86 16898.74 118
AUN-MVS91.76 20190.75 21794.81 18297.00 16488.57 22496.65 19096.49 25089.63 19692.15 17696.12 18778.66 26198.50 19590.83 16979.18 34397.36 194
AdaColmapbinary94.34 10993.68 11596.31 10698.59 7491.68 12196.59 19997.81 11889.87 18892.15 17697.06 13583.62 16999.54 8989.34 19698.07 11897.70 180
GeoE93.89 12593.28 13195.72 13896.96 16689.75 18598.24 3696.92 22089.47 20092.12 17897.21 12784.42 15698.39 20587.71 22796.50 15899.01 94
PatchmatchNetpermissive91.91 19791.35 19193.59 24195.38 23884.11 30893.15 32695.39 29089.54 19792.10 17993.68 30182.82 18798.13 22584.81 27895.32 17798.52 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet93.24 14692.48 15995.51 15195.70 22692.39 9897.86 6698.66 992.30 11792.09 18095.37 22780.49 22798.40 20293.95 10785.86 29095.75 244
tpm90.25 26389.74 26191.76 29993.92 30579.73 34793.98 30593.54 33988.28 23791.99 18193.25 31177.51 27997.44 30687.30 24287.94 27098.12 160
CNLPA94.28 11093.53 12096.52 8898.38 8692.55 9496.59 19996.88 22490.13 18591.91 18297.24 12585.21 14699.09 14087.64 23497.83 12397.92 168
BH-RMVSNet92.72 17191.97 17294.97 17497.16 15087.99 24196.15 23395.60 28490.62 17391.87 18397.15 13178.41 26698.57 19083.16 29397.60 12998.36 151
PatchMatch-RL92.90 16392.02 17095.56 14798.19 10590.80 15595.27 27397.18 19187.96 24791.86 18495.68 21480.44 22898.99 15384.01 28797.54 13096.89 205
OPM-MVS93.28 14592.76 14394.82 18094.63 28590.77 15796.65 19097.18 19193.72 6391.68 18597.26 12479.33 24998.63 18292.13 14392.28 21795.07 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm289.96 26989.21 27092.23 28594.91 27281.25 33293.78 31294.42 32780.62 34291.56 18693.44 30876.44 28697.94 25985.60 26992.08 22597.49 192
TAPA-MVS90.10 792.30 18391.22 20095.56 14798.33 9089.60 18896.79 17697.65 13781.83 33391.52 18797.23 12687.94 10798.91 15971.31 35598.37 11098.17 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS91.48 21690.59 22394.16 21196.40 19687.33 25195.67 25495.34 29687.68 25991.46 18895.52 22376.77 28398.35 20782.85 29793.61 20496.79 209
RPSCF90.75 25090.86 20990.42 32296.84 16976.29 35895.61 25896.34 25683.89 31691.38 18997.87 8176.45 28598.78 16887.16 24692.23 21896.20 220
PLCcopyleft91.00 694.11 11793.43 12696.13 11698.58 7691.15 14596.69 18697.39 17587.29 26891.37 19096.71 15088.39 10399.52 9687.33 24197.13 14697.73 178
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42093.12 15292.72 14894.34 20596.71 17887.27 25390.29 34997.72 12886.61 28091.34 19195.29 22984.29 16098.41 20193.25 12498.94 9297.35 195
HQP_MVS93.78 13093.43 12694.82 18096.21 20389.99 17797.74 7997.51 15294.85 2891.34 19196.64 15781.32 21598.60 18593.02 13092.23 21895.86 233
plane_prior390.00 17594.46 4491.34 191
Fast-Effi-MVS+93.46 13992.75 14595.59 14596.77 17490.03 17496.81 17597.13 19688.19 23991.30 19494.27 27786.21 13498.63 18287.66 23396.46 16198.12 160
EI-MVSNet93.03 15692.88 14093.48 24695.77 22386.98 26296.44 20497.12 19790.66 17091.30 19497.64 10486.56 12798.05 24189.91 18190.55 24795.41 258
MVSTER93.20 14892.81 14294.37 20396.56 18589.59 18997.06 14897.12 19791.24 15391.30 19495.96 19482.02 20498.05 24193.48 11890.55 24795.47 254
RRT_MVS93.21 14792.32 16395.91 12694.92 26994.15 4796.92 16496.86 22791.42 14491.28 19796.43 17279.66 24498.10 23093.29 12390.06 25295.46 255
ADS-MVSNet289.45 27688.59 27892.03 28895.86 21882.26 32690.93 34594.32 33183.23 32591.28 19791.81 33279.01 25695.99 33779.52 32091.39 23497.84 173
ADS-MVSNet89.89 27188.68 27793.53 24495.86 21884.89 29990.93 34595.07 30883.23 32591.28 19791.81 33279.01 25697.85 26879.52 32091.39 23497.84 173
nrg03094.05 12093.31 13096.27 11095.22 25494.59 3298.34 2497.46 15992.93 10191.21 20096.64 15787.23 12298.22 21594.99 8585.80 29195.98 231
Effi-MVS+-dtu93.08 15393.21 13392.68 27696.02 21583.25 31897.14 14696.72 23393.85 5891.20 20193.44 30883.08 17898.30 21191.69 15595.73 17196.50 215
VPNet92.23 18891.31 19494.99 17195.56 23090.96 14997.22 13897.86 11592.96 10090.96 20296.62 16475.06 29598.20 21891.90 14783.65 32595.80 239
JIA-IIPM88.26 29287.04 29691.91 29093.52 31781.42 33189.38 35594.38 32880.84 34090.93 20380.74 36179.22 25097.92 26282.76 29891.62 22996.38 218
test-LLR91.42 21891.19 20192.12 28694.59 28680.66 33594.29 29892.98 34491.11 15890.76 20492.37 32279.02 25498.07 23888.81 20996.74 15197.63 182
test-mter90.19 26689.54 26592.12 28694.59 28680.66 33594.29 29892.98 34487.68 25990.76 20492.37 32267.67 33598.07 23888.81 20996.74 15197.63 182
ACMM89.79 892.96 15992.50 15894.35 20496.30 20188.71 22097.58 10097.36 18091.40 14790.53 20696.65 15679.77 24198.75 17291.24 16591.64 22895.59 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
F-COLMAP93.58 13692.98 13795.37 16098.40 8388.98 21597.18 14197.29 18687.75 25790.49 20797.10 13385.21 14699.50 10086.70 25096.72 15397.63 182
DWT-MVSNet_test90.76 24889.89 25293.38 25195.04 26383.70 31495.85 24894.30 33288.19 23990.46 20892.80 31573.61 30598.50 19588.16 21790.58 24697.95 167
TESTMET0.1,190.06 26889.42 26691.97 28994.41 29380.62 33794.29 29891.97 35387.28 26990.44 20992.47 32168.79 33097.67 28488.50 21596.60 15697.61 186
FIs94.09 11893.70 11395.27 16195.70 22692.03 11298.10 4798.68 793.36 8190.39 21096.70 15287.63 11397.94 25992.25 13990.50 24995.84 236
GA-MVS91.38 22090.31 23394.59 19194.65 28387.62 24994.34 29596.19 26490.73 16690.35 21193.83 29371.84 31297.96 25687.22 24393.61 20498.21 157
LS3D93.57 13792.61 15296.47 9497.59 13991.61 12297.67 8997.72 12885.17 30090.29 21298.34 4384.60 15399.73 3583.85 29198.27 11298.06 164
FC-MVSNet-test93.94 12493.57 11795.04 16995.48 23491.45 13198.12 4698.71 593.37 7990.23 21396.70 15287.66 11197.85 26891.49 15990.39 25095.83 237
bset_n11_16_dypcd91.55 21190.59 22394.44 19991.51 34590.25 17192.70 33393.42 34192.27 11890.22 21494.74 25278.42 26597.80 27394.19 10287.86 27295.29 274
HQP-NCC95.86 21896.65 19093.55 6890.14 215
ACMP_Plane95.86 21896.65 19093.55 6890.14 215
HQP4-MVS90.14 21598.50 19595.78 240
HQP-MVS93.19 14992.74 14694.54 19795.86 21889.33 20396.65 19097.39 17593.55 6890.14 21595.87 19880.95 21898.50 19592.13 14392.10 22395.78 240
UniMVSNet_NR-MVSNet93.37 14292.67 14995.47 15795.34 24392.83 8597.17 14298.58 1092.98 9990.13 21995.80 20388.37 10497.85 26891.71 15383.93 32095.73 246
DU-MVS92.90 16392.04 16895.49 15494.95 26792.83 8597.16 14398.24 3793.02 9290.13 21995.71 21183.47 17097.85 26891.71 15383.93 32095.78 240
LPG-MVS_test92.94 16192.56 15394.10 21296.16 20888.26 23297.65 9297.46 15991.29 14990.12 22197.16 12979.05 25298.73 17392.25 13991.89 22695.31 267
LGP-MVS_train94.10 21296.16 20888.26 23297.46 15991.29 14990.12 22197.16 12979.05 25298.73 17392.25 13991.89 22695.31 267
UniMVSNet (Re)93.31 14492.55 15495.61 14495.39 23793.34 7497.39 11898.71 593.14 8990.10 22394.83 24787.71 11098.03 24591.67 15783.99 31995.46 255
mvs_anonymous93.82 12893.74 11294.06 21496.44 19385.41 28995.81 25097.05 20689.85 19190.09 22496.36 17787.44 11897.75 27993.97 10696.69 15499.02 90
test_djsdf93.07 15492.76 14394.00 21893.49 31988.70 22198.22 3897.57 14691.42 14490.08 22595.55 22182.85 18697.92 26294.07 10491.58 23095.40 261
dp88.90 28388.26 28390.81 31594.58 28876.62 35792.85 33194.93 31485.12 30190.07 22693.07 31275.81 28998.12 22880.53 31587.42 27797.71 179
PS-MVSNAJss93.74 13193.51 12294.44 19993.91 30689.28 20797.75 7897.56 14992.50 11389.94 22796.54 16788.65 9998.18 22193.83 11390.90 24395.86 233
UniMVSNet_ETH3D91.34 22590.22 24194.68 19094.86 27487.86 24597.23 13797.46 15987.99 24689.90 22896.92 14166.35 34498.23 21490.30 17790.99 24197.96 165
CLD-MVS92.98 15892.53 15694.32 20696.12 21289.20 20995.28 27197.47 15792.66 10989.90 22895.62 21680.58 22598.40 20292.73 13492.40 21695.38 263
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
gg-mvs-nofinetune87.82 29585.61 30494.44 19994.46 29089.27 20891.21 34484.61 37080.88 33989.89 23074.98 36371.50 31497.53 29885.75 26897.21 14396.51 214
1112_ss93.37 14292.42 16096.21 11497.05 16090.99 14796.31 22196.72 23386.87 27689.83 23196.69 15486.51 12999.14 13488.12 21893.67 20198.50 134
BH-untuned92.94 16192.62 15193.92 22797.22 14686.16 28096.40 21196.25 26190.06 18689.79 23296.17 18583.19 17498.35 20787.19 24497.27 14197.24 197
V4291.58 20990.87 20893.73 23394.05 30388.50 22797.32 12596.97 21388.80 22589.71 23394.33 27282.54 19398.05 24189.01 20685.07 30394.64 309
Baseline_NR-MVSNet91.20 23190.62 22192.95 26793.83 30988.03 24097.01 15695.12 30688.42 23489.70 23495.13 23683.47 17097.44 30689.66 18983.24 32893.37 333
v14419291.06 23790.28 23593.39 25093.66 31487.23 25696.83 17297.07 20387.43 26489.69 23594.28 27681.48 21398.00 24887.18 24584.92 30794.93 287
v114491.37 22290.60 22293.68 23893.89 30788.23 23496.84 17197.03 21088.37 23589.69 23594.39 26882.04 20397.98 24987.80 22485.37 29694.84 293
Test_1112_low_res92.84 16791.84 17695.85 12997.04 16189.97 18095.53 26196.64 24285.38 29689.65 23795.18 23385.86 13999.10 13787.70 22893.58 20698.49 136
v119291.07 23690.23 23993.58 24293.70 31287.82 24696.73 18097.07 20387.77 25589.58 23894.32 27480.90 22297.97 25286.52 25285.48 29494.95 283
v124090.70 25389.85 25493.23 25793.51 31886.80 26596.61 19697.02 21187.16 27189.58 23894.31 27579.55 24697.98 24985.52 27085.44 29594.90 290
TranMVSNet+NR-MVSNet92.50 17391.63 18295.14 16694.76 27892.07 11097.53 10498.11 6292.90 10289.56 24096.12 18783.16 17597.60 29289.30 19783.20 32995.75 244
v2v48291.59 20790.85 21193.80 23193.87 30888.17 23796.94 16396.88 22489.54 19789.53 24194.90 24381.70 21198.02 24689.25 20085.04 30595.20 276
v192192090.85 24690.03 24993.29 25593.55 31586.96 26496.74 17997.04 20887.36 26689.52 24294.34 27180.23 23397.97 25286.27 25585.21 30094.94 285
IterMVS-LS92.29 18491.94 17393.34 25396.25 20286.97 26396.57 20297.05 20690.67 16889.50 24394.80 24986.59 12697.64 28789.91 18186.11 28995.40 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cascas91.20 23190.08 24594.58 19594.97 26589.16 21293.65 31797.59 14479.90 34589.40 24492.92 31475.36 29498.36 20692.14 14294.75 18896.23 219
XVG-ACMP-BASELINE90.93 24490.21 24293.09 26294.31 29785.89 28295.33 26897.26 18791.06 16089.38 24595.44 22668.61 33198.60 18589.46 19391.05 23994.79 301
GBi-Net91.35 22390.27 23694.59 19196.51 18891.18 14297.50 10696.93 21688.82 22289.35 24694.51 26173.87 30197.29 31586.12 26088.82 26295.31 267
test191.35 22390.27 23694.59 19196.51 18891.18 14297.50 10696.93 21688.82 22289.35 24694.51 26173.87 30197.29 31586.12 26088.82 26295.31 267
FMVSNet391.78 20090.69 22095.03 17096.53 18792.27 10497.02 15296.93 21689.79 19489.35 24694.65 25777.01 28197.47 30386.12 26088.82 26295.35 265
WR-MVS92.34 18091.53 18694.77 18795.13 25990.83 15496.40 21197.98 10191.88 13289.29 24995.54 22282.50 19497.80 27389.79 18585.27 29995.69 247
DP-MVS92.76 17091.51 18996.52 8898.77 5990.99 14797.38 12096.08 26782.38 32989.29 24997.87 8183.77 16599.69 4781.37 31196.69 15498.89 108
BH-w/o92.14 19391.75 17893.31 25496.99 16585.73 28495.67 25495.69 28088.73 22789.26 25194.82 24882.97 18398.07 23885.26 27496.32 16296.13 226
3Dnovator91.36 595.19 9094.44 10397.44 5596.56 18593.36 7398.65 998.36 1694.12 5289.25 25298.06 7082.20 20199.77 3293.41 12199.32 5799.18 76
miper_enhance_ethall91.54 21391.01 20593.15 26095.35 24287.07 26193.97 30696.90 22186.79 27789.17 25393.43 31086.55 12897.64 28789.97 18086.93 28094.74 305
Fast-Effi-MVS+-dtu92.29 18491.99 17193.21 25995.27 25085.52 28797.03 14996.63 24592.09 12689.11 25495.14 23580.33 23198.08 23587.54 23794.74 18996.03 230
RRT_test8_iter0591.19 23490.78 21492.41 28195.76 22583.14 31997.32 12597.46 15991.37 14889.07 25595.57 21870.33 32298.21 21693.56 11586.62 28595.89 232
XXY-MVS92.16 19191.23 19994.95 17694.75 27990.94 15097.47 11197.43 17289.14 20988.90 25696.43 17279.71 24298.24 21389.56 19187.68 27395.67 249
PCF-MVS89.48 1191.56 21089.95 25096.36 10496.60 18092.52 9592.51 33697.26 18779.41 34788.90 25696.56 16684.04 16399.55 8777.01 33797.30 14097.01 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_ehance_all_eth91.59 20791.13 20392.97 26695.55 23186.57 27294.47 28896.88 22487.77 25588.88 25894.01 28886.22 13397.54 29689.49 19286.93 28094.79 301
jajsoiax92.42 17791.89 17594.03 21793.33 32488.50 22797.73 8197.53 15092.00 13088.85 25996.50 16975.62 29398.11 22993.88 11191.56 23195.48 252
eth_miper_zixun_eth91.02 23990.59 22392.34 28395.33 24684.35 30494.10 30396.90 22188.56 23188.84 26094.33 27284.08 16297.60 29288.77 21184.37 31595.06 280
c3_l91.38 22090.89 20792.88 26995.58 22986.30 27594.68 28396.84 22988.17 24188.83 26194.23 28085.65 14297.47 30389.36 19584.63 30994.89 291
test_part192.21 19091.10 20495.51 15197.80 12592.66 9098.02 5397.68 13389.79 19488.80 26296.02 19276.85 28298.18 22190.86 16884.11 31895.69 247
mvs_tets92.31 18291.76 17793.94 22593.41 32188.29 23097.63 9797.53 15092.04 12888.76 26396.45 17174.62 29798.09 23493.91 10991.48 23295.45 257
v14890.99 24090.38 23092.81 27293.83 30985.80 28396.78 17896.68 23989.45 20188.75 26493.93 29282.96 18497.82 27287.83 22383.25 32794.80 299
FMVSNet291.31 22690.08 24594.99 17196.51 18892.21 10597.41 11496.95 21488.82 22288.62 26594.75 25173.87 30197.42 30885.20 27588.55 26795.35 265
PAPM91.52 21490.30 23495.20 16395.30 24989.83 18393.38 32296.85 22886.26 28488.59 26695.80 20384.88 15098.15 22475.67 34195.93 16697.63 182
cl2291.21 23090.56 22693.14 26196.09 21486.80 26594.41 29296.58 24887.80 25388.58 26793.99 29080.85 22397.62 29089.87 18386.93 28094.99 282
3Dnovator+91.43 495.40 8194.48 10198.16 1596.90 16795.34 1698.48 1897.87 11294.65 4188.53 26898.02 7383.69 16699.71 4193.18 12598.96 9199.44 51
anonymousdsp92.16 19191.55 18593.97 22192.58 33689.55 19197.51 10597.42 17389.42 20288.40 26994.84 24680.66 22497.88 26791.87 14991.28 23694.48 311
WR-MVS_H92.00 19591.35 19193.95 22395.09 26189.47 19598.04 5298.68 791.46 14288.34 27094.68 25585.86 13997.56 29485.77 26784.24 31694.82 296
v891.29 22890.53 22793.57 24394.15 29988.12 23997.34 12297.06 20588.99 21388.32 27194.26 27983.08 17898.01 24787.62 23583.92 32294.57 310
ACMP89.59 1092.62 17292.14 16694.05 21596.40 19688.20 23597.36 12197.25 18991.52 13988.30 27296.64 15778.46 26498.72 17691.86 15091.48 23295.23 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1091.04 23890.23 23993.49 24594.12 30088.16 23897.32 12597.08 20288.26 23888.29 27394.22 28282.17 20297.97 25286.45 25484.12 31794.33 316
QAPM93.45 14092.27 16496.98 7796.77 17492.62 9298.39 2398.12 5984.50 31088.27 27497.77 9182.39 19899.81 2985.40 27298.81 9598.51 133
Anonymous2023121190.63 25589.42 26694.27 20898.24 9889.19 21198.05 5197.89 10879.95 34488.25 27594.96 23972.56 31098.13 22589.70 18785.14 30195.49 251
CP-MVSNet91.89 19891.24 19893.82 23095.05 26288.57 22497.82 7198.19 4791.70 13588.21 27695.76 20881.96 20597.52 30087.86 22284.65 30895.37 264
DIV-MVS_self_test90.97 24290.33 23192.88 26995.36 24186.19 27994.46 29096.63 24587.82 25188.18 27794.23 28082.99 18197.53 29887.72 22585.57 29394.93 287
cl____90.96 24390.32 23292.89 26895.37 24086.21 27894.46 29096.64 24287.82 25188.15 27894.18 28382.98 18297.54 29687.70 22885.59 29294.92 289
tpmvs89.83 27489.15 27291.89 29194.92 26980.30 34193.11 32795.46 28986.28 28388.08 27992.65 31780.44 22898.52 19481.47 30789.92 25496.84 207
PS-CasMVS91.55 21190.84 21293.69 23794.96 26688.28 23197.84 7098.24 3791.46 14288.04 28095.80 20379.67 24397.48 30287.02 24784.54 31395.31 267
MVS_030488.79 28587.57 28792.46 27894.65 28386.15 28196.40 21197.17 19386.44 28188.02 28191.71 33456.68 36197.03 32084.47 28392.58 21494.19 321
MIMVSNet88.50 28986.76 29793.72 23594.84 27587.77 24791.39 34094.05 33486.41 28287.99 28292.59 31963.27 35395.82 34277.44 33192.84 21097.57 190
GG-mvs-BLEND93.62 23993.69 31389.20 20992.39 33883.33 37187.98 28389.84 34671.00 31896.87 32782.08 30495.40 17694.80 299
miper_lstm_enhance90.50 25990.06 24891.83 29395.33 24683.74 31193.86 31096.70 23887.56 26287.79 28493.81 29683.45 17296.92 32687.39 23984.62 31094.82 296
PEN-MVS91.20 23190.44 22893.48 24694.49 28987.91 24497.76 7798.18 4991.29 14987.78 28595.74 21080.35 23097.33 31385.46 27182.96 33095.19 277
ITE_SJBPF92.43 28095.34 24385.37 29195.92 27091.47 14187.75 28696.39 17671.00 31897.96 25682.36 30289.86 25593.97 325
v7n90.76 24889.86 25393.45 24993.54 31687.60 25097.70 8797.37 17888.85 21987.65 28794.08 28781.08 21798.10 23084.68 28083.79 32494.66 308
Patchmtry88.64 28887.25 29192.78 27394.09 30186.64 26889.82 35395.68 28280.81 34187.63 28892.36 32580.91 22097.03 32078.86 32685.12 30294.67 307
pmmvs490.93 24489.85 25494.17 21093.34 32390.79 15694.60 28496.02 26884.62 30887.45 28995.15 23481.88 20897.45 30587.70 22887.87 27194.27 320
tpm cat188.36 29087.21 29391.81 29595.13 25980.55 33892.58 33595.70 27974.97 35687.45 28991.96 33078.01 27598.17 22380.39 31688.74 26596.72 211
FMVSNet189.88 27288.31 28194.59 19195.41 23691.18 14297.50 10696.93 21686.62 27987.41 29194.51 26165.94 34897.29 31583.04 29587.43 27695.31 267
IterMVS-SCA-FT90.31 26189.81 25691.82 29495.52 23284.20 30794.30 29796.15 26590.61 17487.39 29294.27 27775.80 29096.44 33287.34 24086.88 28494.82 296
MVS91.71 20290.44 22895.51 15195.20 25691.59 12496.04 23797.45 16573.44 35987.36 29395.60 21785.42 14499.10 13785.97 26497.46 13195.83 237
EU-MVSNet88.72 28788.90 27488.20 33493.15 32774.21 36196.63 19594.22 33385.18 29987.32 29495.97 19376.16 28894.98 35085.27 27386.17 28795.41 258
IterMVS90.15 26789.67 26291.61 30195.48 23483.72 31294.33 29696.12 26689.99 18787.31 29594.15 28575.78 29296.27 33586.97 24886.89 28394.83 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs589.86 27388.87 27592.82 27192.86 33086.23 27796.26 22595.39 29084.24 31287.12 29694.51 26174.27 29997.36 31287.61 23687.57 27494.86 292
DTE-MVSNet90.56 25689.75 26093.01 26493.95 30487.25 25497.64 9697.65 13790.74 16587.12 29695.68 21479.97 23897.00 32483.33 29281.66 33594.78 303
Patchmatch-test89.42 27787.99 28493.70 23695.27 25085.11 29488.98 35694.37 32981.11 33787.10 29893.69 29982.28 19997.50 30174.37 34594.76 18798.48 138
IB-MVS87.33 1789.91 27088.28 28294.79 18695.26 25387.70 24895.12 27993.95 33789.35 20487.03 29992.49 32070.74 32099.19 12789.18 20481.37 33697.49 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet_dtu91.71 20291.28 19692.99 26593.76 31183.71 31396.69 18695.28 29793.15 8887.02 30095.95 19583.37 17397.38 31179.46 32396.84 14897.88 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline291.63 20590.86 20993.94 22594.33 29586.32 27495.92 24591.64 35589.37 20386.94 30194.69 25481.62 21298.69 17788.64 21394.57 19196.81 208
MSDG91.42 21890.24 23894.96 17597.15 15288.91 21693.69 31596.32 25785.72 29286.93 30296.47 17080.24 23298.98 15480.57 31495.05 18396.98 200
test0.0.03 189.37 27888.70 27691.41 30692.47 33885.63 28595.22 27692.70 34791.11 15886.91 30393.65 30379.02 25493.19 36178.00 33089.18 26095.41 258
COLMAP_ROBcopyleft87.81 1590.40 26089.28 26993.79 23297.95 11587.13 26096.92 16495.89 27382.83 32786.88 30497.18 12873.77 30499.29 12178.44 32893.62 20394.95 283
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
D2MVS91.30 22790.95 20692.35 28294.71 28185.52 28796.18 23298.21 4388.89 21886.60 30593.82 29579.92 23997.95 25889.29 19890.95 24293.56 329
OurMVSNet-221017-090.51 25890.19 24391.44 30593.41 32181.25 33296.98 15996.28 25891.68 13686.55 30696.30 17974.20 30097.98 24988.96 20787.40 27895.09 278
MS-PatchMatch90.27 26289.77 25891.78 29794.33 29584.72 30195.55 25996.73 23286.17 28686.36 30795.28 23171.28 31697.80 27384.09 28698.14 11792.81 338
131492.81 16992.03 16995.14 16695.33 24689.52 19496.04 23797.44 16987.72 25886.25 30895.33 22883.84 16498.79 16789.26 19997.05 14797.11 198
tfpnnormal89.70 27588.40 28093.60 24095.15 25790.10 17397.56 10298.16 5387.28 26986.16 30994.63 25877.57 27898.05 24174.48 34384.59 31192.65 341
pm-mvs190.72 25289.65 26493.96 22294.29 29889.63 18697.79 7496.82 23089.07 21086.12 31095.48 22578.61 26297.78 27686.97 24881.67 33494.46 312
OpenMVScopyleft89.19 1292.86 16591.68 18196.40 9995.34 24392.73 8898.27 3098.12 5984.86 30585.78 31197.75 9278.89 25999.74 3487.50 23898.65 10196.73 210
LTVRE_ROB88.41 1390.99 24089.92 25194.19 20996.18 20689.55 19196.31 22197.09 20187.88 25085.67 31295.91 19778.79 26098.57 19081.50 30689.98 25394.44 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testgi87.97 29387.21 29390.24 32492.86 33080.76 33496.67 18994.97 31291.74 13485.52 31395.83 20162.66 35594.47 35476.25 33888.36 26895.48 252
AllTest90.23 26488.98 27393.98 21997.94 11686.64 26896.51 20395.54 28785.38 29685.49 31496.77 14770.28 32399.15 13280.02 31892.87 20896.15 224
TestCases93.98 21997.94 11686.64 26895.54 28785.38 29685.49 31496.77 14770.28 32399.15 13280.02 31892.87 20896.15 224
DSMNet-mixed86.34 30686.12 30287.00 33989.88 35570.43 36494.93 28090.08 36177.97 35385.42 31692.78 31674.44 29893.96 35674.43 34495.14 17996.62 212
ppachtmachnet_test88.35 29187.29 29091.53 30292.45 33983.57 31693.75 31395.97 26984.28 31185.32 31794.18 28379.00 25896.93 32575.71 34084.99 30694.10 322
CL-MVSNet_self_test86.31 30785.15 30989.80 32888.83 36081.74 33093.93 30996.22 26286.67 27885.03 31890.80 33978.09 27294.50 35274.92 34271.86 35793.15 334
our_test_388.78 28687.98 28591.20 31092.45 33982.53 32293.61 31995.69 28085.77 29184.88 31993.71 29879.99 23796.78 33079.47 32286.24 28694.28 319
MVP-Stereo90.74 25190.08 24592.71 27493.19 32688.20 23595.86 24796.27 25986.07 28784.86 32094.76 25077.84 27697.75 27983.88 29098.01 11992.17 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+87.92 1490.20 26589.18 27193.25 25696.48 19186.45 27396.99 15796.68 23988.83 22184.79 32196.22 18270.16 32598.53 19384.42 28588.04 26994.77 304
NR-MVSNet92.34 18091.27 19795.53 15094.95 26793.05 8097.39 11898.07 7392.65 11084.46 32295.71 21185.00 14997.77 27889.71 18683.52 32695.78 240
LF4IMVS87.94 29487.25 29189.98 32692.38 34180.05 34594.38 29395.25 30087.59 26184.34 32394.74 25264.31 35197.66 28684.83 27787.45 27592.23 346
LCM-MVSNet-Re92.50 17392.52 15792.44 27996.82 17281.89 32896.92 16493.71 33892.41 11584.30 32494.60 25985.08 14897.03 32091.51 15897.36 13798.40 147
TransMVSNet (Re)88.94 28187.56 28893.08 26394.35 29488.45 22997.73 8195.23 30187.47 26384.26 32595.29 22979.86 24097.33 31379.44 32474.44 35393.45 332
Anonymous2023120687.09 30086.14 30189.93 32791.22 34780.35 33996.11 23495.35 29383.57 32284.16 32693.02 31373.54 30695.61 34472.16 35286.14 28893.84 327
SixPastTwentyTwo89.15 27988.54 27990.98 31293.49 31980.28 34296.70 18494.70 32090.78 16384.15 32795.57 21871.78 31397.71 28284.63 28185.07 30394.94 285
TDRefinement86.53 30384.76 31391.85 29282.23 36884.25 30596.38 21495.35 29384.97 30484.09 32894.94 24065.76 34998.34 21084.60 28274.52 35292.97 335
KD-MVS_self_test85.95 31184.95 31088.96 33189.55 35879.11 35295.13 27896.42 25385.91 28984.07 32990.48 34070.03 32694.82 35180.04 31772.94 35692.94 336
pmmvs687.81 29686.19 30092.69 27591.32 34686.30 27597.34 12296.41 25480.59 34384.05 33094.37 27067.37 33897.67 28484.75 27979.51 34294.09 324
ACMH87.59 1690.53 25789.42 26693.87 22896.21 20387.92 24297.24 13296.94 21588.45 23383.91 33196.27 18171.92 31198.62 18484.43 28489.43 25895.05 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet587.29 29985.79 30391.78 29794.80 27787.28 25295.49 26295.28 29784.09 31483.85 33291.82 33162.95 35494.17 35578.48 32785.34 29893.91 326
USDC88.94 28187.83 28692.27 28494.66 28284.96 29793.86 31095.90 27287.34 26783.40 33395.56 22067.43 33798.19 22082.64 30189.67 25793.66 328
Anonymous2024052186.42 30585.44 30589.34 33090.33 35179.79 34696.73 18095.92 27083.71 32083.25 33491.36 33763.92 35296.01 33678.39 32985.36 29792.22 347
KD-MVS_2432*160084.81 31882.64 32191.31 30791.07 34885.34 29291.22 34295.75 27785.56 29483.09 33590.21 34267.21 33995.89 33877.18 33562.48 36492.69 339
miper_refine_blended84.81 31882.64 32191.31 30791.07 34885.34 29291.22 34295.75 27785.56 29483.09 33590.21 34267.21 33995.89 33877.18 33562.48 36492.69 339
PVSNet_082.17 1985.46 31583.64 31890.92 31395.27 25079.49 34890.55 34895.60 28483.76 31983.00 33789.95 34471.09 31797.97 25282.75 29960.79 36695.31 267
test_040286.46 30484.79 31291.45 30495.02 26485.55 28696.29 22394.89 31580.90 33882.21 33893.97 29168.21 33497.29 31562.98 36388.68 26691.51 352
Patchmatch-RL test87.38 29886.24 29990.81 31588.74 36178.40 35588.12 35893.17 34387.11 27282.17 33989.29 34881.95 20695.60 34588.64 21377.02 34798.41 146
TinyColmap86.82 30285.35 30891.21 30994.91 27282.99 32093.94 30894.02 33683.58 32181.56 34094.68 25562.34 35698.13 22575.78 33987.35 27992.52 343
test20.0386.14 30985.40 30788.35 33290.12 35280.06 34495.90 24695.20 30288.59 22881.29 34193.62 30471.43 31592.65 36271.26 35681.17 33792.34 345
N_pmnet78.73 32778.71 32978.79 34592.80 33246.50 37694.14 30243.71 37978.61 35080.83 34291.66 33574.94 29696.36 33367.24 36084.45 31493.50 330
MVS-HIRNet82.47 32481.21 32686.26 34195.38 23869.21 36788.96 35789.49 36266.28 36180.79 34374.08 36568.48 33297.39 31071.93 35395.47 17492.18 348
PM-MVS83.48 32181.86 32588.31 33387.83 36477.59 35693.43 32091.75 35486.91 27480.63 34489.91 34544.42 36795.84 34185.17 27676.73 34991.50 353
ambc86.56 34083.60 36670.00 36685.69 36094.97 31280.60 34588.45 34937.42 36996.84 32882.69 30075.44 35192.86 337
MIMVSNet184.93 31783.05 31990.56 32089.56 35784.84 30095.40 26595.35 29383.91 31580.38 34692.21 32957.23 35993.34 36070.69 35882.75 33393.50 330
lessismore_v090.45 32191.96 34479.09 35387.19 36880.32 34794.39 26866.31 34597.55 29584.00 28876.84 34894.70 306
K. test v387.64 29786.75 29890.32 32393.02 32979.48 34996.61 19692.08 35290.66 17080.25 34894.09 28667.21 33996.65 33185.96 26580.83 33894.83 294
OpenMVS_ROBcopyleft81.14 2084.42 32082.28 32390.83 31490.06 35384.05 30995.73 25394.04 33573.89 35880.17 34991.53 33659.15 35897.64 28766.92 36189.05 26190.80 356
EG-PatchMatch MVS87.02 30185.44 30591.76 29992.67 33485.00 29696.08 23696.45 25283.41 32479.52 35093.49 30657.10 36097.72 28179.34 32590.87 24492.56 342
pmmvs-eth3d86.22 30884.45 31491.53 30288.34 36287.25 25494.47 28895.01 30983.47 32379.51 35189.61 34769.75 32895.71 34383.13 29476.73 34991.64 350
pmmvs379.97 32677.50 33087.39 33782.80 36779.38 35092.70 33390.75 36070.69 36078.66 35287.47 35751.34 36593.40 35973.39 34969.65 36089.38 359
UnsupCasMVSNet_eth85.99 31084.45 31490.62 31989.97 35482.40 32593.62 31897.37 17889.86 18978.59 35392.37 32265.25 35095.35 34982.27 30370.75 35894.10 322
new-patchmatchnet83.18 32281.87 32487.11 33886.88 36575.99 35993.70 31495.18 30385.02 30377.30 35488.40 35065.99 34793.88 35774.19 34770.18 35991.47 354
UnsupCasMVSNet_bld82.13 32579.46 32890.14 32588.00 36382.47 32390.89 34796.62 24778.94 34975.61 35584.40 35956.63 36296.31 33477.30 33466.77 36291.63 351
ET-MVSNet_ETH3D91.49 21590.11 24495.63 14296.40 19691.57 12695.34 26793.48 34090.60 17675.58 35695.49 22480.08 23596.79 32994.25 10089.76 25698.52 131
new_pmnet82.89 32381.12 32788.18 33589.63 35680.18 34391.77 33992.57 34876.79 35575.56 35788.23 35261.22 35794.48 35371.43 35482.92 33189.87 358
CMPMVSbinary62.92 2185.62 31484.92 31187.74 33689.14 35973.12 36394.17 30196.80 23173.98 35773.65 35894.93 24166.36 34397.61 29183.95 28991.28 23692.48 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet185.87 31284.23 31690.78 31892.38 34182.46 32493.17 32495.14 30582.12 33167.69 35992.36 32578.16 27195.50 34877.31 33379.73 34094.39 314
MDA-MVSNet_test_wron85.87 31284.23 31690.80 31792.38 34182.57 32193.17 32495.15 30482.15 33067.65 36092.33 32878.20 26895.51 34777.33 33279.74 33994.31 318
DeepMVS_CXcopyleft74.68 34990.84 35064.34 37181.61 37365.34 36267.47 36188.01 35548.60 36680.13 37062.33 36473.68 35579.58 364
LCM-MVSNet72.55 32869.39 33282.03 34370.81 37565.42 37090.12 35294.36 33055.02 36565.88 36281.72 36024.16 37689.96 36374.32 34668.10 36190.71 357
test_method66.11 33364.89 33569.79 35072.62 37335.23 38065.19 36892.83 34620.35 37165.20 36388.08 35443.14 36882.70 36873.12 35063.46 36391.45 355
MDA-MVSNet-bldmvs85.00 31682.95 32091.17 31193.13 32883.33 31794.56 28695.00 31084.57 30965.13 36492.65 31770.45 32195.85 34073.57 34877.49 34694.33 316
PMMVS270.19 33066.92 33380.01 34476.35 36965.67 36986.22 35987.58 36764.83 36362.38 36580.29 36226.78 37488.49 36563.79 36254.07 36785.88 360
FPMVS71.27 32969.85 33175.50 34774.64 37059.03 37291.30 34191.50 35658.80 36457.92 36688.28 35129.98 37285.53 36753.43 36682.84 33281.95 363
Gipumacopyleft67.86 33265.41 33475.18 34892.66 33573.45 36266.50 36794.52 32553.33 36657.80 36766.07 36730.81 37089.20 36448.15 36878.88 34562.90 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt51.94 33953.82 33946.29 35533.73 37945.30 37878.32 36567.24 37818.02 37250.93 36887.05 35852.99 36453.11 37470.76 35725.29 37240.46 370
ANet_high63.94 33459.58 33777.02 34661.24 37766.06 36885.66 36187.93 36678.53 35142.94 36971.04 36625.42 37580.71 36952.60 36730.83 37084.28 361
E-PMN53.28 33652.56 34055.43 35374.43 37147.13 37583.63 36376.30 37442.23 36842.59 37062.22 36928.57 37374.40 37131.53 37131.51 36944.78 368
EMVS52.08 33851.31 34154.39 35472.62 37345.39 37783.84 36275.51 37641.13 36940.77 37159.65 37030.08 37173.60 37228.31 37229.90 37144.18 369
MVEpermissive50.73 2353.25 33748.81 34266.58 35265.34 37657.50 37372.49 36670.94 37740.15 37039.28 37263.51 3686.89 37973.48 37338.29 37042.38 36868.76 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft53.92 2258.58 33555.40 33868.12 35151.00 37848.64 37478.86 36487.10 36946.77 36735.84 37374.28 3648.76 37786.34 36642.07 36973.91 35469.38 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 34024.57 34426.74 35673.98 37239.89 37957.88 3699.80 38012.27 37310.39 3746.97 3767.03 37836.44 37525.43 37317.39 3733.89 373
testmvs13.36 34216.33 3454.48 3585.04 3802.26 38293.18 3233.28 3812.70 3748.24 37521.66 3722.29 3812.19 3767.58 3742.96 3749.00 372
test12313.04 34315.66 3465.18 3574.51 3813.45 38192.50 3371.81 3822.50 3757.58 37620.15 3733.67 3802.18 3777.13 3751.07 3759.90 371
EGC-MVSNET68.77 33163.01 33686.07 34292.49 33782.24 32793.96 30790.96 3590.71 3762.62 37790.89 33853.66 36393.46 35857.25 36584.55 31282.51 362
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.24 34130.99 3430.00 3590.00 3820.00 3830.00 37097.63 1400.00 3770.00 37896.88 14384.38 1570.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.39 3459.85 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37788.65 990.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.06 34410.74 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37896.69 1540.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
MSC_two_6792asdad98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
No_MVS98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
eth-test20.00 382
eth-test0.00 382
OPU-MVS98.55 398.82 5896.86 398.25 3398.26 5696.04 299.24 12495.36 7499.59 1799.56 26
save fliter98.91 5194.28 3997.02 15298.02 9195.35 8
test_0728_SECOND98.51 499.45 395.93 598.21 4098.28 2799.86 897.52 499.67 699.75 5
GSMVS98.45 141
sam_mvs182.76 18898.45 141
sam_mvs81.94 207
MTGPAbinary98.08 67
test_post192.81 33216.58 37580.53 22697.68 28386.20 257
test_post17.58 37481.76 20998.08 235
patchmatchnet-post90.45 34182.65 19298.10 230
MTMP97.86 6682.03 372
gm-plane-assit93.22 32578.89 35484.82 30693.52 30598.64 18187.72 225
test9_res94.81 9199.38 5299.45 49
agg_prior293.94 10899.38 5299.50 41
test_prior493.66 6396.42 207
test_prior97.23 6598.67 6492.99 8198.00 9699.41 11099.29 66
新几何295.79 251
旧先验198.38 8693.38 7197.75 12198.09 6892.30 4199.01 8999.16 77
无先验95.79 25197.87 11283.87 31899.65 5687.68 23198.89 108
原ACMM295.67 254
testdata299.67 5285.96 265
segment_acmp92.89 25
testdata195.26 27593.10 91
plane_prior796.21 20389.98 179
plane_prior696.10 21390.00 17581.32 215
plane_prior597.51 15298.60 18593.02 13092.23 21895.86 233
plane_prior496.64 157
plane_prior297.74 7994.85 28
plane_prior196.14 211
plane_prior89.99 17797.24 13294.06 5392.16 222
n20.00 383
nn0.00 383
door-mid91.06 358
test1197.88 110
door91.13 357
HQP5-MVS89.33 203
BP-MVS92.13 143
HQP3-MVS97.39 17592.10 223
HQP2-MVS80.95 218
NP-MVS95.99 21789.81 18495.87 198
ACMMP++_ref90.30 251
ACMMP++91.02 240
Test By Simon88.73 98