This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
test_vis1_n97.92 23497.44 26999.34 14299.53 16798.08 23899.74 4699.49 14899.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11599.97 4
fmvsm_s_conf0.1_n_a99.26 7399.06 8799.85 2899.52 17299.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2999.98 2
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10299.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
test_vis1_n_192098.63 16498.40 17099.31 14999.86 2097.94 25099.67 6699.62 4199.43 799.99 299.91 2287.29 368100.00 199.92 1299.92 2999.98 2
test_fmvs1_n98.41 17598.14 18699.21 16999.82 4297.71 26399.74 4699.49 14899.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8299.96 7
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 7198.75 5599.99 499.97 199.96 1499.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7998.75 5599.99 499.97 199.97 899.94 11
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1597.35 12599.96 3099.94 1099.92 2999.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1596.60 15299.96 3099.95 899.96 1499.95 9
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 11099.69 1899.43 799.98 699.91 2298.62 70100.00 199.97 199.95 2099.90 17
test_fmvs198.88 13198.79 13399.16 17499.69 10797.61 26699.55 13599.49 14899.32 1499.98 699.91 2291.41 32399.96 3099.82 1699.92 2999.90 17
dcpmvs_299.23 7999.58 798.16 29999.83 3994.68 36099.76 3799.52 10499.07 3599.98 699.88 3998.56 7499.93 8799.67 2299.98 499.87 31
test_cas_vis1_n_192099.16 8899.01 10099.61 8799.81 4698.86 17999.65 7799.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3499.91 3699.99 1
mvsany_test199.50 2099.46 2099.62 8699.61 14599.09 14298.94 34199.48 16099.10 2799.96 1499.91 2298.85 3999.96 3099.72 1899.58 14299.82 54
iter_conf0599.48 2699.40 2799.71 6799.68 11199.61 6799.49 17499.58 6298.27 11799.95 1599.92 1598.09 10199.94 6999.65 2499.96 1499.58 154
mamv499.33 6199.42 2299.07 18399.67 11497.73 25899.42 20699.60 5498.15 13599.94 1699.91 2298.42 8599.94 6999.72 1899.96 1499.54 164
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1799.92 1598.62 7099.99 499.96 799.99 199.96 7
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 16099.08 3399.91 1899.81 9399.20 799.96 3098.91 10299.85 7499.79 74
test_241102_ONE99.84 3299.90 299.48 16099.07 3599.91 1899.74 14499.20 799.76 203
EI-MVSNet-UG-set99.58 999.57 899.64 7999.78 5699.14 13799.60 9699.45 20099.01 4099.90 2099.83 7198.98 2399.93 8799.59 2899.95 2099.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7999.78 5699.15 13699.61 9599.45 20099.01 4099.89 2199.82 7999.01 1899.92 9899.56 3299.95 2099.85 36
DVP-MVS++99.59 899.50 1399.88 599.51 17599.88 899.87 899.51 11998.99 4599.88 2299.81 9399.27 599.96 3098.85 11599.80 10299.81 61
test_241102_TWO99.48 16099.08 3399.88 2299.81 9398.94 2999.96 3098.91 10299.84 8299.88 26
DPE-MVScopyleft99.46 3299.32 4399.91 299.78 5699.88 899.36 23399.51 11998.73 7699.88 2299.84 6798.72 6199.96 3098.16 19699.87 5999.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS99.41 4999.52 1199.05 18799.74 8099.68 4899.46 18899.52 10499.11 2699.88 2299.91 2299.43 197.70 38898.72 13399.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 7199.02 3899.88 2299.85 5699.18 1099.96 3099.22 7399.92 2999.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVSMamba_PlusPlus99.46 3299.41 2699.64 7999.68 11199.50 8899.75 4199.50 13998.27 11799.87 2799.92 1598.09 10199.94 6999.65 2499.95 2099.47 189
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20199.65 5799.50 16399.61 4899.45 599.87 2799.92 1597.31 12699.97 2199.95 899.99 199.97 4
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21999.37 10399.58 11099.62 4199.41 999.87 2799.92 1598.81 44100.00 199.97 199.93 2799.94 11
iter_conf05_1199.40 5299.32 4399.63 8599.53 16799.47 9399.75 4199.52 10498.11 14399.87 2799.85 5697.72 11599.89 13199.56 3299.97 899.53 170
test072699.85 2699.89 499.62 8999.50 13999.10 2799.86 3199.82 7998.94 29
Vis-MVSNetpermissive99.12 10098.97 10699.56 9899.78 5699.10 14199.68 6399.66 2898.49 9599.86 3199.87 4794.77 22299.84 15899.19 7599.41 15399.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PC_three_145298.18 13399.84 3399.70 15999.31 398.52 37198.30 18799.80 10299.81 61
IU-MVS99.84 3299.88 899.32 27198.30 11499.84 3398.86 11399.85 7499.89 20
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14299.63 13598.97 15999.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16299.08 236
xiu_mvs_v1_base99.29 6799.27 6299.34 14299.63 13598.97 15999.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16299.08 236
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14299.63 13598.97 15999.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16299.08 236
DeepPCF-MVS98.18 398.81 14699.37 3397.12 34699.60 15091.75 38698.61 37199.44 20899.35 1299.83 3899.85 5698.70 6399.81 18399.02 9099.91 3699.81 61
MVS_030499.42 4499.32 4399.72 6599.70 10299.27 11899.52 14897.57 39099.51 299.82 3999.78 12498.09 10199.96 3099.97 199.97 899.94 11
TSAR-MVS + GP.99.36 5899.36 3599.36 14199.67 11498.61 20399.07 30899.33 26199.00 4399.82 3999.81 9399.06 1699.84 15899.09 8499.42 15299.65 129
FOURS199.91 199.93 199.87 899.56 7199.10 2799.81 41
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 24399.10 2799.81 4199.80 10698.94 2999.96 3098.93 9999.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 4199.80 10699.09 1499.96 3098.85 11599.90 4499.88 26
MVSFormer99.17 8699.12 7899.29 15799.51 17598.94 16999.88 399.46 18997.55 20999.80 4499.65 18797.39 12199.28 30299.03 8899.85 7499.65 129
lupinMVS99.13 9499.01 10099.46 12899.51 17598.94 16999.05 31399.16 30497.86 17199.80 4499.56 22497.39 12199.86 14598.94 9799.85 7499.58 154
tttt051798.42 17398.14 18699.28 16199.66 12498.38 22599.74 4696.85 39497.68 19699.79 4699.74 14491.39 32499.89 13198.83 12199.56 14399.57 158
APD-MVS_3200maxsize99.48 2699.35 3799.85 2899.76 6599.83 1699.63 8499.54 8898.36 10899.79 4699.82 7998.86 3899.95 5998.62 14699.81 9899.78 80
jason99.13 9499.03 9299.45 12999.46 19598.87 17699.12 29899.26 28898.03 16099.79 4699.65 18797.02 13999.85 15199.02 9099.90 4499.65 129
jason: jason.
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11998.62 8499.79 4699.83 7199.28 499.97 2198.48 16899.90 4499.84 40
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast98.69 199.49 2299.39 3099.77 5599.63 13599.59 7199.36 23399.46 18999.07 3599.79 4699.82 7998.85 3999.92 9898.68 14099.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.01_n99.22 8099.03 9299.79 4998.42 36899.48 9199.55 13599.51 11999.39 1099.78 5199.93 1094.80 21799.95 5999.93 1199.95 2099.94 11
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 9999.90 199.55 7998.56 8999.78 5199.70 15998.65 6899.79 19299.65 2499.78 10999.41 203
SMA-MVScopyleft99.44 3999.30 5399.85 2899.73 8899.83 1699.56 12399.47 18097.45 22299.78 5199.82 7999.18 1099.91 10998.79 12699.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8499.39 22798.91 5899.78 5199.85 5699.36 299.94 6998.84 11899.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9685.06 41699.13 2299.77 5599.93 1087.82 36699.85 15199.38 5399.38 15499.80 70
test_part299.81 4699.83 1699.77 55
MSP-MVS99.42 4499.27 6299.88 599.89 899.80 2799.67 6699.50 13998.70 7899.77 5599.49 24898.21 9599.95 5998.46 17299.77 11299.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4499.29 5799.80 4699.62 14199.55 7899.50 16399.70 1598.79 7099.77 5599.96 197.45 12099.96 3098.92 10199.90 4499.89 20
APD-MVScopyleft99.27 7199.08 8599.84 3999.75 7399.79 3099.50 16399.50 13997.16 24999.77 5599.82 7998.78 4899.94 6997.56 25399.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post99.45 3599.31 5199.85 2899.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.53 7699.95 5998.61 14999.81 9899.77 82
RE-MVS-def99.34 3999.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.75 5598.61 14999.81 9899.77 82
ACMMP_NAP99.47 3099.34 3999.88 599.87 1599.86 1399.47 18599.48 16098.05 15799.76 6099.86 5198.82 4399.93 8798.82 12599.91 3699.84 40
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3799.56 7197.72 19099.76 6099.75 13999.13 1299.92 9899.07 8699.92 2999.85 36
MM99.40 5299.28 5999.74 6199.67 11499.31 11199.52 14898.87 34499.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 899.94 11
VNet99.11 10498.90 11599.73 6499.52 17299.56 7699.41 21099.39 22799.01 4099.74 6499.78 12495.56 19099.92 9899.52 3998.18 23899.72 103
patch_mono-299.26 7399.62 598.16 29999.81 4694.59 36299.52 14899.64 3699.33 1399.73 6699.90 2999.00 2299.99 499.69 2099.98 499.89 20
SR-MVS99.43 4299.29 5799.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6699.79 11898.68 6499.96 3098.44 17499.77 11299.79 74
thisisatest053098.35 18198.03 20199.31 14999.63 13598.56 20599.54 13996.75 39697.53 21399.73 6699.65 18791.25 32799.89 13198.62 14699.56 14399.48 183
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11499.89 299.58 6298.56 8999.73 6699.69 16998.55 7599.82 17899.69 2099.85 7499.48 183
EC-MVSNet99.44 3999.39 3099.58 9499.56 16099.49 8999.88 399.58 6298.38 10499.73 6699.69 16998.20 9699.70 23099.64 2799.82 9599.54 164
diffmvspermissive99.14 9299.02 9699.51 11799.61 14598.96 16399.28 25999.49 14898.46 9799.72 7199.71 15596.50 15699.88 13799.31 6399.11 17699.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SF-MVS99.38 5699.24 6799.79 4999.79 5499.68 4899.57 11799.54 8897.82 18199.71 7299.80 10698.95 2799.93 8798.19 19299.84 8299.74 92
xiu_mvs_v2_base99.26 7399.25 6699.29 15799.53 16798.91 17399.02 32199.45 20098.80 6999.71 7299.26 31198.94 2999.98 1399.34 6099.23 16698.98 250
PS-MVSNAJ99.32 6399.32 4399.30 15499.57 15698.94 16998.97 33599.46 18998.92 5799.71 7299.24 31399.01 1899.98 1399.35 5699.66 13398.97 251
PGM-MVS99.45 3599.31 5199.86 2199.87 1599.78 3699.58 11099.65 3397.84 17699.71 7299.80 10699.12 1399.97 2198.33 18399.87 5999.83 49
114514_t98.93 12798.67 14399.72 6599.85 2699.53 8399.62 8999.59 5892.65 38199.71 7299.78 12498.06 10599.90 12098.84 11899.91 3699.74 92
PVSNet_Blended_VisFu99.36 5899.28 5999.61 8799.86 2099.07 14799.47 18599.93 297.66 19999.71 7299.86 5197.73 11499.96 3099.47 4899.82 9599.79 74
MTAPA99.52 1799.39 3099.89 499.90 499.86 1399.66 7199.47 18098.79 7099.68 7899.81 9398.43 8399.97 2198.88 10599.90 4499.83 49
HFP-MVS99.49 2299.37 3399.86 2199.87 1599.80 2799.66 7199.67 2398.15 13599.68 7899.69 16999.06 1699.96 3098.69 13899.87 5999.84 40
VDDNet97.55 28597.02 30499.16 17499.49 18698.12 23799.38 22799.30 27995.35 34699.68 7899.90 2982.62 38999.93 8799.31 6398.13 24299.42 201
HPM-MVScopyleft99.42 4499.28 5999.83 4099.90 499.72 4299.81 2099.54 8897.59 20399.68 7899.63 19998.91 3499.94 6998.58 15599.91 3699.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS97.73 26597.35 28198.88 21699.47 19497.12 28299.34 24198.85 34698.19 13099.67 8299.85 5682.98 38799.92 9899.49 4598.32 22999.60 146
ACMMPR99.49 2299.36 3599.86 2199.87 1599.79 3099.66 7199.67 2398.15 13599.67 8299.69 16998.95 2799.96 3098.69 13899.87 5999.84 40
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18899.28 25999.91 397.42 22799.67 8299.37 28297.53 11899.88 13798.98 9397.29 28998.42 347
PVSNet_Blended99.08 11098.97 10699.42 13499.76 6598.79 18898.78 35799.91 396.74 28299.67 8299.49 24897.53 11899.88 13798.98 9399.85 7499.60 146
sss99.17 8699.05 8899.53 10999.62 14198.97 15999.36 23399.62 4197.83 17799.67 8299.65 18797.37 12499.95 5999.19 7599.19 16999.68 119
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10294.98 40499.13 2299.66 8799.93 1090.67 33399.84 15899.40 5299.38 15499.80 70
h-mvs3397.70 27197.28 29298.97 19799.70 10297.27 27499.36 23399.45 20098.94 5499.66 8799.64 19394.93 20999.99 499.48 4684.36 39599.65 129
hse-mvs297.50 29097.14 29898.59 25099.49 18697.05 28999.28 25999.22 29598.94 5499.66 8799.42 26694.93 20999.65 24699.48 4683.80 39799.08 236
region2R99.48 2699.35 3799.87 1199.88 1199.80 2799.65 7799.66 2898.13 14099.66 8799.68 17598.96 2499.96 3098.62 14699.87 5999.84 40
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5199.44 20896.61 29499.66 8799.89 3395.92 17799.82 17897.46 26399.10 17999.57 158
OMC-MVS99.08 11099.04 9099.20 17099.67 11498.22 23199.28 25999.52 10498.07 15299.66 8799.81 9397.79 11299.78 19797.79 22799.81 9899.60 146
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 11095.40 40399.12 2599.65 9399.93 1090.73 33299.84 15899.43 5199.38 15499.82 54
test_one_060199.81 4699.88 899.49 14898.97 5199.65 9399.81 9399.09 14
LFMVS97.90 23797.35 28199.54 10199.52 17299.01 15499.39 22298.24 37897.10 25799.65 9399.79 11884.79 38099.91 10999.28 6798.38 22299.69 115
MVS_111021_LR99.41 4999.33 4199.65 7499.77 6299.51 8798.94 34199.85 698.82 6599.65 9399.74 14498.51 7899.80 18998.83 12199.89 5399.64 136
SDMVSNet99.11 10498.90 11599.75 5899.81 4699.59 7199.81 2099.65 3398.78 7399.64 9799.88 3994.56 23599.93 8799.67 2298.26 23199.72 103
sd_testset98.75 15398.57 16099.29 15799.81 4698.26 22999.56 12399.62 4198.78 7399.64 9799.88 3992.02 30799.88 13799.54 3598.26 23199.72 103
9.1499.10 8099.72 9299.40 21899.51 11997.53 21399.64 9799.78 12498.84 4199.91 10997.63 24499.82 95
GST-MVS99.40 5299.24 6799.85 2899.86 2099.79 3099.60 9699.67 2397.97 16399.63 10099.68 17598.52 7799.95 5998.38 17799.86 6799.81 61
CPTT-MVS99.11 10498.90 11599.74 6199.80 5299.46 9599.59 10299.49 14897.03 26599.63 10099.69 16997.27 12999.96 3097.82 22599.84 8299.81 61
ACMMPcopyleft99.45 3599.32 4399.82 4199.89 899.67 5199.62 8999.69 1898.12 14199.63 10099.84 6798.73 6099.96 3098.55 16499.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6599.19 7299.64 7999.82 4299.23 12499.62 8999.55 7998.94 5499.63 10099.95 395.82 18299.94 6999.37 5599.97 899.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FE-MVS98.48 16898.17 18299.40 13699.54 16698.96 16399.68 6398.81 35195.54 34499.62 10499.70 15993.82 26499.93 8797.35 27199.46 14999.32 217
CHOSEN 280x42099.12 10099.13 7799.08 18199.66 12497.89 25198.43 38199.71 1398.88 5999.62 10499.76 13696.63 15199.70 23099.46 4999.99 199.66 125
PHI-MVS99.30 6599.17 7499.70 6899.56 16099.52 8699.58 11099.80 897.12 25399.62 10499.73 15098.58 7299.90 12098.61 14999.91 3699.68 119
test_yl98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
MG-MVS99.13 9499.02 9699.45 12999.57 15698.63 20099.07 30899.34 25498.99 4599.61 10799.82 7997.98 10899.87 14297.00 29099.80 10299.85 36
MP-MVS-pluss99.37 5799.20 7199.88 599.90 499.87 1299.30 24999.52 10497.18 24799.60 11099.79 11898.79 4799.95 5998.83 12199.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS99.13 9498.91 11499.80 4699.75 7399.71 4499.15 29299.41 21896.60 29699.60 11099.55 22798.83 4299.90 12097.48 26099.83 9199.78 80
EPP-MVSNet99.13 9498.99 10299.53 10999.65 13099.06 14899.81 2099.33 26197.43 22599.60 11099.88 3997.14 13199.84 15899.13 8098.94 19099.69 115
bld_raw_dy_0_6499.22 8099.09 8399.60 9099.74 8099.31 11199.42 20699.55 7996.02 33999.59 11399.94 698.03 10699.92 9899.58 3099.98 499.56 160
HyFIR lowres test99.11 10498.92 11299.65 7499.90 499.37 10399.02 32199.91 397.67 19899.59 11399.75 13995.90 17999.73 21499.53 3799.02 18799.86 33
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16499.05 15099.80 2599.01 32296.59 29899.58 11599.59 21395.39 19599.90 12097.78 22899.49 14899.28 220
MVS_Test99.10 10898.97 10699.48 12399.49 18699.14 13799.67 6699.34 25497.31 23699.58 11599.76 13697.65 11799.82 17898.87 10899.07 18299.46 194
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27899.58 11595.19 20597.82 22599.46 194
DELS-MVS99.48 2699.42 2299.65 7499.72 9299.40 10299.05 31399.66 2899.14 2199.57 11899.80 10698.46 8199.94 6999.57 3199.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZD-MVS99.71 9799.79 3099.61 4896.84 27899.56 11999.54 23298.58 7299.96 3096.93 29799.75 117
CR-MVSNet98.17 19697.93 21398.87 22099.18 26998.49 21699.22 28299.33 26196.96 26999.56 11999.38 27994.33 24599.00 34694.83 34998.58 21299.14 228
RPMNet96.72 31895.90 33099.19 17199.18 26998.49 21699.22 28299.52 10488.72 39599.56 11997.38 38994.08 25599.95 5986.87 39798.58 21299.14 228
IS-MVSNet99.05 11398.87 12099.57 9699.73 8899.32 10799.75 4199.20 29998.02 16199.56 11999.86 5196.54 15599.67 23898.09 19999.13 17599.73 97
ZNCC-MVS99.47 3099.33 4199.87 1199.87 1599.81 2599.64 8099.67 2398.08 15199.55 12399.64 19398.91 3499.96 3098.72 13399.90 4499.82 54
thisisatest051598.14 19997.79 22499.19 17199.50 18498.50 21598.61 37196.82 39596.95 27199.54 12499.43 26491.66 31999.86 14598.08 20399.51 14799.22 225
MVS_111021_HR99.41 4999.32 4399.66 7099.72 9299.47 9398.95 33999.85 698.82 6599.54 12499.73 15098.51 7899.74 20898.91 10299.88 5699.77 82
CP-MVS99.45 3599.32 4399.85 2899.83 3999.75 3999.69 5799.52 10498.07 15299.53 12699.63 19998.93 3399.97 2198.74 13099.91 3699.83 49
WTY-MVS99.06 11298.88 11999.61 8799.62 14199.16 13199.37 22999.56 7198.04 15899.53 12699.62 20496.84 14499.94 6998.85 11598.49 22099.72 103
MCST-MVS99.43 4299.30 5399.82 4199.79 5499.74 4199.29 25499.40 22498.79 7099.52 12899.62 20498.91 3499.90 12098.64 14499.75 11799.82 54
PatchT97.03 31396.44 31898.79 23598.99 31198.34 22699.16 28999.07 31692.13 38299.52 12897.31 39294.54 23898.98 34888.54 39098.73 20699.03 244
CANet99.25 7799.14 7699.59 9199.41 20999.16 13199.35 23899.57 6698.82 6599.51 13099.61 20896.46 15899.95 5999.59 2899.98 499.65 129
mPP-MVS99.44 3999.30 5399.86 2199.88 1199.79 3099.69 5799.48 16098.12 14199.50 13199.75 13998.78 4899.97 2198.57 15899.89 5399.83 49
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9799.28 11699.06 31199.77 997.74 18999.50 13199.53 23695.41 19499.84 15897.17 28499.64 13699.44 199
PVSNet96.02 1798.85 14298.84 12798.89 21499.73 8897.28 27398.32 38799.60 5497.86 17199.50 13199.57 22196.75 14899.86 14598.56 16199.70 12799.54 164
LS3D99.27 7199.12 7899.74 6199.18 26999.75 3999.56 12399.57 6698.45 9899.49 13499.85 5697.77 11399.94 6998.33 18399.84 8299.52 172
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7199.46 18998.09 14799.48 13599.74 14498.29 9299.96 3097.93 21499.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
旧先验298.96 33696.70 28599.47 13699.94 6998.19 192
MSDG98.98 12398.80 13099.53 10999.76 6599.19 12698.75 36099.55 7997.25 24199.47 13699.77 13297.82 11199.87 14296.93 29799.90 4499.54 164
CDS-MVSNet99.09 10999.03 9299.25 16499.42 20498.73 19299.45 18999.46 18998.11 14399.46 13899.77 13298.01 10799.37 28498.70 13598.92 19399.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSLP-MVS++99.46 3299.47 1799.44 13399.60 15099.16 13199.41 21099.71 1398.98 4899.45 13999.78 12499.19 999.54 26399.28 6799.84 8299.63 140
XVG-OURS98.73 15698.68 14298.88 21699.70 10297.73 25898.92 34399.55 7998.52 9399.45 13999.84 6795.27 20099.91 10998.08 20398.84 19999.00 247
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10099.66 12499.09 14299.64 8099.56 7198.26 12099.45 13999.87 4796.03 17199.81 18399.54 3599.15 17399.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmrst98.33 18298.48 16697.90 31799.16 27994.78 35899.31 24799.11 30997.27 23999.45 13999.59 21395.33 19899.84 15898.48 16898.61 20999.09 235
TAMVS99.12 10099.08 8599.24 16699.46 19598.55 20699.51 15699.46 18998.09 14799.45 13999.82 7998.34 9099.51 26498.70 13598.93 19199.67 122
ETV-MVS99.26 7399.21 7099.40 13699.46 19599.30 11499.56 12399.52 10498.52 9399.44 14499.27 30998.41 8799.86 14599.10 8399.59 14199.04 243
CANet_DTU98.97 12598.87 12099.25 16499.33 23198.42 22499.08 30799.30 27999.16 1999.43 14599.75 13995.27 20099.97 2198.56 16199.95 2099.36 211
SCA98.19 19398.16 18398.27 29499.30 23995.55 34199.07 30898.97 32697.57 20699.43 14599.57 22192.72 28799.74 20897.58 24899.20 16899.52 172
testdata99.54 10199.75 7398.95 16699.51 11997.07 25999.43 14599.70 15998.87 3799.94 6997.76 23299.64 13699.72 103
DPM-MVS98.95 12698.71 13999.66 7099.63 13599.55 7898.64 37099.10 31097.93 16699.42 14899.55 22798.67 6699.80 18995.80 32899.68 13199.61 144
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21499.71 9797.74 25799.12 29899.54 8898.44 10199.42 14899.71 15594.20 24999.92 9898.54 16598.90 19599.00 247
baseline99.15 9099.02 9699.53 10999.66 12499.14 13799.72 5199.48 16098.35 10999.42 14899.84 6796.07 16999.79 19299.51 4099.14 17499.67 122
DP-MVS Recon99.12 10098.95 11099.65 7499.74 8099.70 4699.27 26499.57 6696.40 31299.42 14899.68 17598.75 5599.80 18997.98 21199.72 12399.44 199
Effi-MVS+-dtu98.78 15098.89 11898.47 27099.33 23196.91 30299.57 11799.30 27998.47 9699.41 15298.99 34096.78 14699.74 20898.73 13299.38 15498.74 272
casdiffmvspermissive99.13 9498.98 10599.56 9899.65 13099.16 13199.56 12399.50 13998.33 11299.41 15299.86 5195.92 17799.83 17199.45 5099.16 17099.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet97.73 26597.45 26498.57 25499.45 20097.50 26899.02 32198.98 32596.11 33299.41 15299.14 32490.28 33598.74 36695.74 32998.93 19199.47 189
CSCG99.32 6399.32 4399.32 14899.85 2698.29 22799.71 5399.66 2898.11 14399.41 15299.80 10698.37 8999.96 3098.99 9299.96 1499.72 103
F-COLMAP99.19 8299.04 9099.64 7999.78 5699.27 11899.42 20699.54 8897.29 23899.41 15299.59 21398.42 8599.93 8798.19 19299.69 12899.73 97
EIA-MVS99.18 8499.09 8399.45 12999.49 18699.18 12899.67 6699.53 9997.66 19999.40 15799.44 26298.10 10099.81 18398.94 9799.62 13999.35 212
mvsmamba98.92 12898.87 12099.08 18199.07 29799.16 13199.88 399.51 11998.15 13599.40 15799.89 3397.12 13299.33 29499.38 5397.40 28598.73 274
MDTV_nov1_ep1398.32 17599.11 28794.44 36499.27 26498.74 35897.51 21699.40 15799.62 20494.78 21999.76 20397.59 24798.81 203
CVMVSNet98.57 16698.67 14398.30 28999.35 22695.59 34099.50 16399.55 7998.60 8699.39 16099.83 7194.48 24099.45 26898.75 12998.56 21599.85 36
CNVR-MVS99.42 4499.30 5399.78 5299.62 14199.71 4499.26 27399.52 10498.82 6599.39 16099.71 15598.96 2499.85 15198.59 15499.80 10299.77 82
Effi-MVS+98.81 14698.59 15999.48 12399.46 19599.12 14098.08 39499.50 13997.50 21799.38 16299.41 27096.37 16299.81 18399.11 8298.54 21799.51 178
mvs_anonymous99.03 11698.99 10299.16 17499.38 21998.52 21299.51 15699.38 23597.79 18299.38 16299.81 9397.30 12799.45 26899.35 5698.99 18899.51 178
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6799.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6799.84 40
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27995.32 34999.27 26498.92 33397.37 23199.37 16499.58 21794.90 21299.70 23097.43 26699.21 16799.54 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AllTest98.87 13298.72 13799.31 14999.86 2098.48 21899.56 12399.61 4897.85 17499.36 16799.85 5695.95 17499.85 15196.66 31099.83 9199.59 150
TestCases99.31 14999.86 2098.48 21899.61 4897.85 17499.36 16799.85 5695.95 17499.85 15196.66 31099.83 9199.59 150
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 14999.71 9798.88 17599.80 2599.44 20897.91 16899.36 16799.78 12495.49 19399.43 27797.91 21599.11 17699.62 142
alignmvs98.81 14698.56 16299.58 9499.43 20299.42 9999.51 15698.96 32898.61 8599.35 17098.92 35094.78 21999.77 19999.35 5698.11 24399.54 164
VPA-MVSNet98.29 18697.95 21099.30 15499.16 27999.54 8099.50 16399.58 6298.27 11799.35 17099.37 28292.53 29699.65 24699.35 5694.46 34998.72 275
AdaColmapbinary99.01 12198.80 13099.66 7099.56 16099.54 8099.18 28799.70 1598.18 13399.35 17099.63 19996.32 16399.90 12097.48 26099.77 11299.55 162
test22299.75 7399.49 8998.91 34599.49 14896.42 31099.34 17399.65 18798.28 9399.69 12899.72 103
API-MVS99.04 11499.03 9299.06 18599.40 21499.31 11199.55 13599.56 7198.54 9199.33 17499.39 27798.76 5299.78 19796.98 29299.78 10998.07 366
v14419297.92 23497.60 24998.87 22098.83 33298.65 19899.55 13599.34 25496.20 32399.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 281
sasdasda99.02 11798.86 12399.51 11799.42 20499.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
GeoE98.85 14298.62 15399.53 10999.61 14599.08 14599.80 2599.51 11997.10 25799.31 17699.78 12495.23 20499.77 19998.21 19099.03 18599.75 88
canonicalmvs99.02 11798.86 12399.51 11799.42 20499.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
V4298.06 20897.79 22498.86 22398.98 31498.84 18199.69 5799.34 25496.53 30099.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
ab-mvs98.86 13598.63 14899.54 10199.64 13299.19 12699.44 19599.54 8897.77 18599.30 17999.81 9394.20 24999.93 8799.17 7898.82 20199.49 182
TAPA-MVS97.07 1597.74 26497.34 28498.94 20199.70 10297.53 26799.25 27599.51 11991.90 38399.30 17999.63 19998.78 4899.64 24988.09 39299.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何199.75 5899.75 7399.59 7199.54 8896.76 28199.29 18299.64 19398.43 8399.94 6996.92 29999.66 13399.72 103
MGCFI-Net99.01 12198.85 12599.50 12299.42 20499.26 12099.82 1699.48 16098.60 8699.28 18398.81 35597.04 13899.76 20399.29 6697.87 25299.47 189
test_fmvs297.25 30597.30 28997.09 34799.43 20293.31 37899.73 4998.87 34498.83 6499.28 18399.80 10684.45 38299.66 24197.88 21797.45 27998.30 355
VPNet97.84 24697.44 26999.01 19199.21 26198.94 16999.48 17999.57 6698.38 10499.28 18399.73 15088.89 35099.39 28099.19 7593.27 36798.71 277
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20499.08 14599.62 8999.36 24497.39 23099.28 18399.68 17596.44 16099.92 9898.37 17998.22 23399.40 205
PAPM_NR99.04 11498.84 12799.66 7099.74 8099.44 9799.39 22299.38 23597.70 19499.28 18399.28 30698.34 9099.85 15196.96 29499.45 15099.69 115
HPM-MVS++copyleft99.39 5599.23 6999.87 1199.75 7399.84 1599.43 19999.51 11998.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10299.79 74
v124097.69 27297.32 28798.79 23598.85 33098.43 22299.48 17999.36 24496.11 33299.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 281
thres600view797.86 24297.51 25798.92 20599.72 9297.95 24899.59 10298.74 35897.94 16599.27 18898.62 36391.75 31399.86 14593.73 36198.19 23798.96 253
PLCcopyleft97.94 499.02 11798.85 12599.53 10999.66 12499.01 15499.24 27799.52 10496.85 27799.27 18899.48 25398.25 9499.91 10997.76 23299.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres100view90097.76 25897.45 26498.69 24499.72 9297.86 25499.59 10298.74 35897.93 16699.26 19298.62 36391.75 31399.83 17193.22 36698.18 23898.37 353
EPMVS97.82 25197.65 24398.35 28498.88 32395.98 33399.49 17494.71 40697.57 20699.26 19299.48 25392.46 30199.71 22497.87 21999.08 18199.35 212
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 24999.41 20996.99 29699.52 14899.49 14898.11 14399.24 19499.34 29296.96 14299.79 19297.95 21399.45 15099.02 246
v192192097.80 25597.45 26498.84 22798.80 33398.53 20899.52 14899.34 25496.15 32999.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 285
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23197.05 28999.58 11099.55 7997.46 21999.24 19499.83 7192.58 29499.72 21898.09 19997.51 27298.68 290
LGP-MVS_train98.49 26399.33 23197.05 28999.55 7997.46 21999.24 19499.83 7192.58 29499.72 21898.09 19997.51 27298.68 290
v114497.98 22597.69 23998.85 22698.87 32698.66 19799.54 13999.35 25096.27 31899.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 290
Anonymous2024052998.09 20497.68 24099.34 14299.66 12498.44 22199.40 21899.43 21493.67 37099.22 19999.89 3390.23 33999.93 8799.26 7198.33 22599.66 125
OPM-MVS98.19 19398.10 19198.45 27298.88 32397.07 28799.28 25999.38 23598.57 8899.22 19999.81 9392.12 30599.66 24198.08 20397.54 27098.61 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_djsdf98.67 16098.57 16098.98 19598.70 35098.91 17399.88 399.46 18997.55 20999.22 19999.88 3995.73 18599.28 30299.03 8897.62 26398.75 269
test1299.75 5899.64 13299.61 6799.29 28399.21 20298.38 8899.89 13199.74 12099.74 92
NCCC99.34 6099.19 7299.79 4999.61 14599.65 5799.30 24999.48 16098.86 6099.21 20299.63 19998.72 6199.90 12098.25 18899.63 13899.80 70
PMMVS98.80 14998.62 15399.34 14299.27 24898.70 19498.76 35999.31 27597.34 23399.21 20299.07 33097.20 13099.82 17898.56 16198.87 19699.52 172
v119297.81 25397.44 26998.91 20998.88 32398.68 19599.51 15699.34 25496.18 32599.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 285
EI-MVSNet98.67 16098.67 14398.68 24599.35 22697.97 24499.50 16399.38 23596.93 27499.20 20599.83 7197.87 10999.36 28898.38 17797.56 26898.71 277
MVSTER98.49 16798.32 17599.00 19399.35 22699.02 15299.54 13999.38 23597.41 22899.20 20599.73 15093.86 26399.36 28898.87 10897.56 26898.62 318
UWE-MVS97.58 28497.29 29198.48 26599.09 29396.25 32899.01 32696.61 39997.86 17199.19 20899.01 33888.72 35199.90 12097.38 26998.69 20799.28 220
Anonymous20240521198.30 18597.98 20699.26 16399.57 15698.16 23399.41 21098.55 37196.03 33799.19 20899.74 14491.87 31099.92 9899.16 7998.29 23099.70 113
v2v48298.06 20897.77 22998.92 20598.90 32198.82 18599.57 11799.36 24496.65 28999.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 285
CNLPA99.14 9298.99 10299.59 9199.58 15499.41 10199.16 28999.44 20898.45 9899.19 20899.49 24898.08 10499.89 13197.73 23699.75 11799.48 183
UGNet98.87 13298.69 14199.40 13699.22 26098.72 19399.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 6099.94 2699.53 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpn200view997.72 26797.38 27798.72 24099.69 10797.96 24699.50 16398.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.37 353
thres40097.77 25797.38 27798.92 20599.69 10797.96 24699.50 16398.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.96 253
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10798.95 16699.03 31899.47 18096.98 26799.15 21599.23 31496.77 14799.89 13198.83 12198.78 20499.86 33
baseline198.31 18397.95 21099.38 14099.50 18498.74 19199.59 10298.93 33098.41 10299.14 21699.60 21194.59 23399.79 19298.48 16893.29 36699.61 144
1112_ss98.98 12398.77 13499.59 9199.68 11199.02 15299.25 27599.48 16097.23 24499.13 21799.58 21796.93 14399.90 12098.87 10898.78 20499.84 40
CLD-MVS98.16 19798.10 19198.33 28599.29 24396.82 30798.75 36099.44 20897.83 17799.13 21799.55 22792.92 28099.67 23898.32 18597.69 25998.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM199.65 7499.73 8899.33 10699.47 18097.46 21999.12 21999.66 18698.67 6699.91 10997.70 24199.69 12899.71 112
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30899.12 21999.34 29291.83 31299.60 25797.75 23496.46 30599.48 183
HQP_MVS98.27 18898.22 18198.44 27599.29 24396.97 29899.39 22299.47 18098.97 5199.11 22199.61 20892.71 28999.69 23597.78 22897.63 26198.67 297
plane_prior397.00 29598.69 7999.11 221
CHOSEN 1792x268899.19 8299.10 8099.45 12999.89 898.52 21299.39 22299.94 198.73 7699.11 22199.89 3395.50 19299.94 6999.50 4199.97 899.89 20
v897.95 23097.63 24798.93 20398.95 31898.81 18799.80 2599.41 21896.03 33799.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 305
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23195.19 35299.23 27899.08 31396.24 32099.10 22499.67 18194.11 25398.93 35896.81 30299.05 18399.48 183
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23196.48 32099.23 27899.15 30596.24 32099.10 22499.67 18194.11 25399.71 22496.81 30299.05 18399.48 183
thres20097.61 28297.28 29298.62 24899.64 13298.03 24099.26 27398.74 35897.68 19699.09 22798.32 37491.66 31999.81 18392.88 37198.22 23398.03 369
dp97.75 26297.80 22397.59 33499.10 29093.71 37399.32 24498.88 34296.48 30599.08 22899.55 22792.67 29299.82 17896.52 31398.58 21299.24 224
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26599.13 29598.33 37597.36 23299.07 22998.94 34695.64 18999.15 32392.95 37098.68 20896.12 397
GBi-Net97.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
test197.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
FMVSNet398.03 21697.76 23398.84 22799.39 21798.98 15699.40 21899.38 23596.67 28799.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 334
IterMVS-LS98.46 17098.42 16898.58 25399.59 15298.00 24299.37 22999.43 21496.94 27399.07 22999.59 21397.87 10999.03 34198.32 18595.62 32798.71 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re98.08 20698.16 18397.85 31999.55 16494.67 36199.70 5498.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
pmmvs498.13 20097.90 21598.81 23298.61 35998.87 17698.99 32999.21 29896.44 30899.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28796.33 32599.41 21099.52 10498.06 15699.05 23699.50 24589.64 34599.73 21497.73 23697.38 28798.53 335
CostFormer97.72 26797.73 23697.71 32999.15 28394.02 36999.54 13999.02 32194.67 36199.04 23799.35 28892.35 30499.77 19998.50 16797.94 24899.34 215
DP-MVS99.16 8898.95 11099.78 5299.77 6299.53 8399.41 21099.50 13997.03 26599.04 23799.88 3997.39 12199.92 9898.66 14299.90 4499.87 31
ACMM97.58 598.37 18098.34 17398.48 26599.41 20997.10 28399.56 12399.45 20098.53 9299.04 23799.85 5693.00 27899.71 22498.74 13097.45 27998.64 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17599.28 11699.52 14899.47 18096.11 33299.01 24099.34 29296.20 16799.84 15897.88 21798.82 20199.39 206
nrg03098.64 16398.42 16899.28 16199.05 30399.69 4799.81 2099.46 18998.04 15899.01 24099.82 7996.69 15099.38 28199.34 6094.59 34898.78 262
test_prior298.96 33698.34 11099.01 24099.52 23998.68 6497.96 21299.74 120
MAR-MVS98.86 13598.63 14899.54 10199.37 22299.66 5399.45 18999.54 8896.61 29499.01 24099.40 27397.09 13499.86 14597.68 24399.53 14699.10 231
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJss98.92 12898.92 11298.90 21198.78 33798.53 20899.78 3299.54 8898.07 15299.00 24499.76 13699.01 1899.37 28499.13 8097.23 29198.81 260
PAPR98.63 16498.34 17399.51 11799.40 21499.03 15198.80 35599.36 24496.33 31399.00 24499.12 32898.46 8199.84 15895.23 34399.37 16199.66 125
D2MVS98.41 17598.50 16598.15 30299.26 25096.62 31599.40 21899.61 4897.71 19198.98 24699.36 28596.04 17099.67 23898.70 13597.41 28498.15 363
v1097.85 24397.52 25598.86 22398.99 31198.67 19699.75 4199.41 21895.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 297
miper_enhance_ethall98.16 19798.08 19598.41 27898.96 31797.72 26098.45 38099.32 27196.95 27198.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
UniMVSNet (Re)98.29 18698.00 20499.13 17999.00 30899.36 10599.49 17499.51 11997.95 16498.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 305
TEST999.67 11499.65 5799.05 31399.41 21896.22 32298.95 25099.49 24898.77 5199.91 109
train_agg99.02 11798.77 13499.77 5599.67 11499.65 5799.05 31399.41 21896.28 31698.95 25099.49 24898.76 5299.91 10997.63 24499.72 12399.75 88
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20998.83 18499.30 24998.77 35497.70 19498.94 25299.65 18792.91 28299.74 20896.52 31399.55 14599.64 136
test_899.67 11499.61 6799.03 31899.41 21896.28 31698.93 25399.48 25398.76 5299.91 109
3Dnovator97.25 999.24 7899.05 8899.81 4499.12 28599.66 5399.84 1299.74 1099.09 3298.92 25499.90 2995.94 17699.98 1398.95 9699.92 2999.79 74
v7n97.87 24097.52 25598.92 20598.76 34398.58 20499.84 1299.46 18996.20 32398.91 25599.70 15994.89 21399.44 27396.03 32293.89 36098.75 269
JIA-IIPM97.50 29097.02 30498.93 20398.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22497.58 24897.98 24699.28 220
v14897.79 25697.55 25198.50 26298.74 34497.72 26099.54 13999.33 26196.26 31998.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 316
GA-MVS97.85 24397.47 26199.00 19399.38 21997.99 24398.57 37499.15 30597.04 26498.90 25799.30 30289.83 34299.38 28196.70 30798.33 22599.62 142
tpm297.44 29797.34 28497.74 32899.15 28394.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25897.31 27298.07 24499.29 219
tt080597.97 22897.77 22998.57 25499.59 15296.61 31699.45 18999.08 31398.21 12898.88 26099.80 10688.66 35499.70 23098.58 15597.72 25899.39 206
miper_ehance_all_eth98.18 19598.10 19198.41 27899.23 25697.72 26098.72 36399.31 27596.60 29698.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
eth_miper_zixun_eth98.05 21397.96 20898.33 28599.26 25097.38 27198.56 37699.31 27596.65 28998.88 26099.52 23996.58 15399.12 33197.39 26895.53 33098.47 341
cl2297.85 24397.64 24698.48 26599.09 29397.87 25298.60 37399.33 26197.11 25698.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
agg_prior99.67 11499.62 6599.40 22498.87 26399.91 109
anonymousdsp98.44 17198.28 17898.94 20198.50 36598.96 16399.77 3499.50 13997.07 25998.87 26399.77 13294.76 22399.28 30298.66 14297.60 26498.57 333
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11796.63 39896.13 33198.87 26398.61 36594.59 23397.70 38895.08 34598.86 19799.55 162
FMVSNet297.72 26797.36 27998.80 23499.51 17598.84 18199.45 18999.42 21696.49 30298.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 332
c3_l98.12 20298.04 20098.38 28299.30 23997.69 26498.81 35499.33 26196.67 28798.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
ITE_SJBPF98.08 30499.29 24396.37 32398.92 33398.34 11098.83 26899.75 13991.09 32899.62 25595.82 32697.40 28598.25 359
Anonymous2023121197.88 23897.54 25498.90 21199.71 9798.53 20899.48 17999.57 6694.16 36698.81 27099.68 17593.23 27399.42 27898.84 11894.42 35198.76 267
Patchmtry97.75 26297.40 27698.81 23299.10 29098.87 17699.11 30499.33 26194.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 23097.43 27098.88 34799.36 24496.48 30598.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
BH-untuned98.42 17398.36 17198.59 25099.49 18696.70 31099.27 26499.13 30897.24 24398.80 27299.38 27995.75 18499.74 20897.07 28899.16 17099.33 216
FIs98.78 15098.63 14899.23 16899.18 26999.54 8099.83 1599.59 5898.28 11598.79 27499.81 9396.75 14899.37 28499.08 8596.38 30798.78 262
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18298.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 285
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23993.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7499.46 194
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24799.20 29996.10 33698.76 27799.42 26694.94 20899.81 18396.97 29398.45 22198.97 251
Patchmatch-test97.93 23197.65 24398.77 23799.18 26997.07 28799.03 31899.14 30796.16 32798.74 27899.57 22194.56 23599.72 21893.36 36599.11 17699.52 172
QAPM98.67 16098.30 17799.80 4699.20 26399.67 5199.77 3499.72 1194.74 36098.73 27999.90 2995.78 18399.98 1396.96 29499.88 5699.76 87
3Dnovator+97.12 1399.18 8498.97 10699.82 4199.17 27799.68 4899.81 2099.51 11999.20 1898.72 28099.89 3395.68 18799.97 2198.86 11399.86 6799.81 61
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15696.36 32499.02 32199.49 14897.18 24798.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 297
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32098.98 15699.48 17999.53 9997.76 18698.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 285
DU-MVS98.08 20697.79 22498.96 19898.87 32698.98 15699.41 21099.45 20097.87 17098.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 290
tpm cat197.39 29997.36 27997.50 33799.17 27793.73 37299.43 19999.31 27591.27 38598.71 28199.08 32994.31 24799.77 19996.41 31798.50 21999.00 247
XXY-MVS98.38 17998.09 19499.24 16699.26 25099.32 10799.56 12399.55 7997.45 22298.71 28199.83 7193.23 27399.63 25498.88 10596.32 30998.76 267
IterMVS97.83 24897.77 22998.02 30899.58 15496.27 32799.02 32199.48 16097.22 24598.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test98.75 15398.62 15399.15 17899.08 29699.45 9699.86 1199.60 5498.23 12598.70 28799.82 7996.80 14599.22 31399.07 8696.38 30798.79 261
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17399.88 1198.53 20899.34 24199.59 5897.55 20998.70 28799.89 3395.83 18199.90 12098.10 19899.90 4499.08 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TR-MVS97.76 25897.41 27598.82 22999.06 30097.87 25298.87 34998.56 37096.63 29398.68 28999.22 31592.49 29799.65 24695.40 33997.79 25698.95 255
WR-MVS98.06 20897.73 23699.06 18598.86 32999.25 12299.19 28599.35 25097.30 23798.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 277
HQP-NCC99.19 26698.98 33298.24 12298.66 290
ACMP_Plane99.19 26698.98 33298.24 12298.66 290
HQP4-MVS98.66 29099.64 24998.64 309
HQP-MVS98.02 21897.90 21598.37 28399.19 26696.83 30598.98 33299.39 22798.24 12298.66 29099.40 27392.47 29899.64 24997.19 28197.58 26698.64 309
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25498.82 34998.07 15298.66 29099.64 19389.97 34199.61 25697.01 28996.68 29997.94 376
mvs_tets98.40 17898.23 18098.91 20998.67 35398.51 21499.66 7199.53 9998.19 13098.65 29699.81 9392.75 28499.44 27399.31 6397.48 27898.77 265
TESTMET0.1,197.55 28597.27 29598.40 28098.93 31996.53 31898.67 36697.61 38996.96 26998.64 29799.28 30688.63 35699.45 26897.30 27399.38 15499.21 226
jajsoiax98.43 17298.28 17898.88 21698.60 36098.43 22299.82 1699.53 9998.19 13098.63 29899.80 10693.22 27599.44 27399.22 7397.50 27498.77 265
Baseline_NR-MVSNet97.76 25897.45 26498.68 24599.09 29398.29 22799.41 21098.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 309
EPNet98.86 13598.71 13999.30 15497.20 38898.18 23299.62 8998.91 33799.28 1698.63 29899.81 9395.96 17399.99 499.24 7299.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-LLR98.06 20897.90 21598.55 25998.79 33497.10 28398.67 36697.75 38697.34 23398.61 30198.85 35294.45 24299.45 26897.25 27599.38 15499.10 231
test-mter97.49 29597.13 30098.55 25998.79 33497.10 28398.67 36697.75 38696.65 28998.61 30198.85 35288.23 36099.45 26897.25 27599.38 15499.10 231
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25597.95 24898.71 36499.35 25096.50 30198.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
cl____98.01 22197.84 22298.55 25999.25 25497.97 24498.71 36499.34 25496.47 30798.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
ETVMVS97.50 29096.90 30899.29 15799.23 25698.78 19099.32 24498.90 33997.52 21598.56 30598.09 38384.72 38199.69 23597.86 22097.88 25199.39 206
FMVSNet196.84 31696.36 32098.29 29099.32 23797.26 27699.43 19999.48 16095.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 318
UniMVSNet_ETH3D97.32 30296.81 31098.87 22099.40 21497.46 26999.51 15699.53 9995.86 34198.54 30799.77 13282.44 39099.66 24198.68 14097.52 27199.50 181
AUN-MVS96.88 31596.31 32198.59 25099.48 19397.04 29299.27 26499.22 29597.44 22498.51 30899.41 27091.97 30899.66 24197.71 23983.83 39699.07 241
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14599.09 14298.04 39599.25 29091.24 38698.51 30899.70 15994.55 23799.91 10992.76 37499.85 7499.42 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33798.62 20199.65 7799.49 14897.76 18698.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 281
CP-MVSNet98.09 20497.78 22799.01 19198.97 31699.24 12399.67 6699.46 18997.25 24198.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 272
ACMP97.20 1198.06 20897.94 21298.45 27299.37 22297.01 29499.44 19599.49 14897.54 21298.45 31299.79 11891.95 30999.72 21897.91 21597.49 27798.62 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
cascas97.69 27297.43 27398.48 26598.60 36097.30 27298.18 39299.39 22792.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20998.86 257
WR-MVS_H98.13 20097.87 22098.90 21199.02 30698.84 18199.70 5499.59 5897.27 23998.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 327
BH-w/o98.00 22397.89 21998.32 28799.35 22696.20 33099.01 32698.90 33996.42 31098.38 31599.00 33995.26 20299.72 21896.06 32198.61 20999.03 244
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33098.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 316
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7199.66 2898.09 14798.35 31799.82 7995.25 20398.01 38197.41 26795.30 33498.78 262
FMVSNet596.43 32496.19 32397.15 34399.11 28795.89 33599.32 24499.52 10494.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
testing9197.44 29797.02 30498.71 24299.18 26996.89 30499.19 28599.04 31997.78 18498.31 31998.29 37585.41 37699.85 15198.01 20997.95 24799.39 206
PS-CasMVS97.93 23197.59 25098.95 20098.99 31199.06 14899.68 6399.52 10497.13 25198.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 269
USDC97.34 30197.20 29697.75 32799.07 29795.20 35198.51 37899.04 31997.99 16298.31 31999.86 5189.02 34899.55 26295.67 33397.36 28898.49 338
PEN-MVS97.76 25897.44 26998.72 24098.77 34298.54 20799.78 3299.51 11997.06 26198.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 275
tfpnnormal97.84 24697.47 26198.98 19599.20 26399.22 12599.64 8099.61 4896.32 31498.27 32399.70 15993.35 27299.44 27395.69 33195.40 33298.27 357
testing9997.36 30096.94 30798.63 24799.18 26996.70 31099.30 24998.93 33097.71 19198.23 32498.26 37684.92 37999.84 15898.04 20897.85 25499.35 212
testing22297.16 30896.50 31699.16 17499.16 27998.47 22099.27 26498.66 36797.71 19198.23 32498.15 37882.28 39299.84 15897.36 27097.66 26099.18 227
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18996.11 33298.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 327
testing1197.50 29097.10 30198.71 24299.20 26396.91 30299.29 25498.82 34997.89 16998.21 32798.40 37085.63 37499.83 17198.45 17398.04 24599.37 210
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28098.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 309
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28099.23 25696.80 30899.70 5499.60 5497.12 25398.18 32999.70 15991.73 31599.72 21898.39 17697.45 27998.68 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH97.28 898.10 20397.99 20598.44 27599.41 20996.96 30099.60 9699.56 7198.09 14798.15 33099.91 2290.87 33199.70 23098.88 10597.45 27998.67 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27197.41 22898.13 33199.30 30288.99 34999.56 26095.68 33299.80 10297.90 379
MVS97.28 30396.55 31599.48 12398.78 33798.95 16699.27 26499.39 22783.53 39998.08 33299.54 23296.97 14199.87 14294.23 35699.16 17099.63 140
PAPM97.59 28397.09 30299.07 18399.06 30098.26 22998.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24989.87 38598.92 19399.31 218
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30499.53 8399.82 1699.72 1194.56 36398.08 33299.88 3994.73 22599.98 1397.47 26299.76 11599.06 242
gg-mvs-nofinetune96.17 32995.32 34098.73 23998.79 33498.14 23599.38 22794.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 18098.68 290
test0.0.03 197.71 27097.42 27498.56 25798.41 36997.82 25598.78 35798.63 36897.34 23398.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 256
APD_test195.87 33396.49 31794.00 36899.53 16784.01 39799.54 13999.32 27195.91 34097.99 33799.85 5685.49 37599.88 13791.96 37798.84 19998.12 364
131498.68 15998.54 16399.11 18098.89 32298.65 19899.27 26499.49 14896.89 27597.99 33799.56 22497.72 11599.83 17197.74 23599.27 16598.84 259
DTE-MVSNet97.51 28997.19 29798.46 27198.63 35698.13 23699.84 1299.48 16096.68 28697.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 281
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25097.90 34099.93 1090.45 33499.18 32197.00 29096.43 30698.67 297
testing397.28 30396.76 31298.82 22999.37 22298.07 23999.45 18999.36 24497.56 20897.89 34198.95 34583.70 38598.82 36296.03 32298.56 21599.58 154
pm-mvs197.68 27497.28 29298.88 21699.06 30098.62 20199.50 16399.45 20096.32 31497.87 34299.79 11892.47 29899.35 29197.54 25593.54 36498.67 297
testgi97.65 27997.50 25898.13 30399.36 22596.45 32199.42 20699.48 16097.76 18697.87 34299.45 26191.09 32898.81 36394.53 35198.52 21899.13 230
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26593.04 36999.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap97.12 31096.89 30997.83 32299.07 29795.52 34498.57 37498.74 35897.58 20597.81 34599.79 11888.16 36199.56 26095.10 34497.21 29298.39 351
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19596.68 31399.56 12399.54 8898.41 10297.79 34699.87 4790.18 34099.66 24198.05 20797.18 29498.62 318
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 331
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23894.34 36797.81 39699.70 1597.12 25397.46 35098.75 36089.71 34399.79 19297.69 24281.69 39999.68 119
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25499.39 22797.06 26197.41 35198.15 37893.92 26198.68 36891.71 37898.34 22399.45 197
myMVS_eth3d96.89 31496.37 31998.43 27799.00 30897.16 28099.29 25499.39 22797.06 26197.41 35198.15 37883.46 38698.68 36895.27 34298.34 22399.45 197
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22999.47 18093.46 37497.41 35199.78 12487.06 36999.33 29496.92 29992.70 37498.65 307
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23595.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
IB-MVS95.67 1896.22 32695.44 33998.57 25499.21 26196.70 31098.65 36997.74 38896.71 28497.27 35698.54 36686.03 37199.92 9898.47 17186.30 39399.10 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 27298.55 36398.16 23399.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23397.98 374
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24597.23 35799.36 28595.28 19999.46 26795.51 33599.78 10997.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
TransMVSNet (Re)97.15 30996.58 31498.86 22399.12 28598.85 18099.49 17498.91 33795.48 34597.16 36099.80 10693.38 27199.11 33294.16 35891.73 37798.62 318
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12399.44 20895.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
NR-MVSNet97.97 22897.61 24899.02 19098.87 32699.26 12099.47 18599.42 21697.63 20197.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 290
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8499.08 31396.17 32697.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28893.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27497.93 377
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14899.50 13993.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 330
dongtai93.26 35592.93 35994.25 36799.39 21785.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25599.58 154
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28296.68 36799.88 3988.65 35599.71 22498.37 17982.74 39898.09 365
baseline297.87 24097.55 25198.82 22999.18 26998.02 24199.41 21096.58 40096.97 26896.51 36899.17 32093.43 27099.57 25997.71 23999.03 18598.86 257
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
DeepMVS_CXcopyleft93.34 37199.29 24382.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21493.57 36397.77 25798.01 370
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23992.25 38499.59 10298.26 37697.43 22596.20 37199.13 32596.27 16598.73 36798.17 19598.99 18899.64 136
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15699.38 23596.55 29996.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20396.16 37299.80 10688.71 35299.04 33996.69 30896.55 30498.65 307
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11997.13 25196.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4788.69 35399.32 29795.89 32594.93 34398.62 318
test_vis1_rt95.81 33595.65 33596.32 36199.67 11491.35 38899.49 17496.74 39798.25 12195.24 37798.10 38274.96 39799.90 12099.53 3798.85 19897.70 382
dmvs_testset95.02 34296.12 32491.72 37799.10 29080.43 40599.58 11097.87 38597.47 21895.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 160
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 178
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 28995.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22998.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25296.76 390
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 8098.25 37798.28 11594.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32794.08 38599.22 31582.72 38899.47 26695.67 33397.50 27498.17 362
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5798.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 16091.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4999.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 20079.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 223
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 16089.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18799.53 16798.82 18598.84 35197.51 39197.63 20184.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 203
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28399.10 30699.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 309
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27999.11 30499.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 309
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27499.15 29299.33 26193.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 318
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5685.77 37296.15 39997.86 22043.89 40995.39 399
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23397.42 387
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1190.00 4140.00 41599.56 22496.58 1530.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 28095.47 336
MSC_two_6792asdad99.87 1199.51 17599.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
No_MVS99.87 1199.51 17599.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
eth-test20.00 419
eth-test0.00 419
OPU-MVS99.64 7999.56 16099.72 4299.60 9699.70 15999.27 599.42 27898.24 18999.80 10299.79 74
save fliter99.76 6599.59 7199.14 29499.40 22499.00 43
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11999.96 3098.93 9999.86 6799.88 26
GSMVS99.52 172
sam_mvs194.86 21499.52 172
sam_mvs94.72 226
MTGPAbinary99.47 180
test_post199.23 27865.14 41194.18 25299.71 22497.58 248
test_post65.99 41094.65 23299.73 214
patchmatchnet-post98.70 36194.79 21899.74 208
MTMP99.54 13998.88 342
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24997.56 253
test9_res97.49 25999.72 12399.75 88
agg_prior297.21 27799.73 12299.75 88
test_prior499.56 7698.99 329
test_prior99.68 6999.67 11499.48 9199.56 7199.83 17199.74 92
新几何299.01 326
旧先验199.74 8099.59 7199.54 8899.69 16998.47 8099.68 13199.73 97
无先验98.99 32999.51 11996.89 27599.93 8797.53 25699.72 103
原ACMM298.95 339
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata198.85 35098.32 113
plane_prior799.29 24397.03 293
plane_prior699.27 24896.98 29792.71 289
plane_prior599.47 18099.69 23597.78 22897.63 26198.67 297
plane_prior499.61 208
plane_prior299.39 22298.97 51
plane_prior199.26 250
plane_prior96.97 29899.21 28498.45 9897.60 264
n20.00 420
nn0.00 420
door-mid98.05 382
test1199.35 250
door97.92 383
HQP5-MVS96.83 305
BP-MVS97.19 281
HQP3-MVS99.39 22797.58 266
HQP2-MVS92.47 298
NP-MVS99.23 25696.92 30199.40 273
ACMMP++_ref97.19 293
ACMMP++97.43 283
Test By Simon98.75 55