This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7399.48 14099.08 1199.91 199.81 6299.20 599.96 1998.91 6999.85 5899.79 53
test_241102_ONE99.84 3299.90 199.48 14099.07 1399.91 199.74 11799.20 599.76 175
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7399.45 18099.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7299.45 18099.01 1899.89 499.82 4999.01 1699.92 8099.56 499.95 699.85 14
test_241102_TWO99.48 14099.08 1199.88 599.81 6298.94 3199.96 1998.91 6999.84 6599.88 5
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19499.51 10198.73 5399.88 599.84 3898.72 6099.96 1998.16 16699.87 4099.88 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Regformer-499.59 399.54 499.73 5899.76 5299.41 9699.58 8699.49 12899.02 1599.88 599.80 7699.00 2299.94 5499.45 1899.92 1199.84 18
SD-MVS99.41 4299.52 699.05 16599.74 7099.68 4999.46 15099.52 8899.11 799.88 599.91 599.43 197.70 34798.72 10199.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2899.56 5699.02 1599.88 599.85 2999.18 899.96 1999.22 3799.92 1199.90 1
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8699.44 18999.01 1899.87 1099.80 7698.97 2499.91 9199.44 2099.92 1199.83 29
test072699.85 2599.89 399.62 6699.50 12099.10 899.86 1199.82 4998.94 31
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4299.66 2798.49 6799.86 1199.87 2094.77 21199.84 13699.19 4099.41 13599.74 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IU-MVS99.84 3299.88 799.32 25198.30 8899.84 1398.86 7999.85 5899.89 2
xiu_mvs_v1_base_debu99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
xiu_mvs_v1_base99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
xiu_mvs_v1_base_debi99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9399.49 13699.46 16898.95 3299.83 1799.76 10699.01 1699.93 6999.17 4399.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13699.49 12898.94 3399.83 1799.76 10699.01 1699.94 5499.15 4699.87 4099.80 49
DeepPCF-MVS98.18 398.81 13199.37 1997.12 31599.60 13491.75 35098.61 32799.44 18999.35 199.83 1799.85 2998.70 6299.81 15699.02 5799.91 1699.81 41
TSAR-MVS + GP.99.36 5099.36 2199.36 12799.67 10198.61 18799.07 26399.33 24399.00 2299.82 2099.81 6299.06 1399.84 13699.09 5199.42 13499.65 113
abl_699.44 3099.31 3899.83 3399.85 2599.75 3899.66 4899.59 4398.13 10599.82 2099.81 6298.60 6999.96 1998.46 14199.88 3699.79 53
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9199.37 22699.10 899.81 2299.80 7698.94 3199.96 1998.93 6699.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8199.90 2399.88 5
MVSFormer99.17 7399.12 6799.29 14199.51 15198.94 15599.88 199.46 16897.55 17199.80 2499.65 15997.39 11799.28 27199.03 5599.85 5899.65 113
lupinMVS99.13 7999.01 8699.46 11699.51 15198.94 15599.05 26899.16 28197.86 13599.80 2499.56 19897.39 11799.86 12598.94 6499.85 5899.58 138
tttt051798.42 15698.14 16899.28 14499.66 11098.38 20899.74 3196.85 35497.68 15899.79 2699.74 11791.39 30199.89 11498.83 8699.56 12799.57 139
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 6099.54 7198.36 8199.79 2699.82 4998.86 4099.95 4398.62 11599.81 8099.78 61
jason99.13 7999.03 7999.45 11799.46 17098.87 16299.12 25399.26 26698.03 12599.79 2699.65 15997.02 13199.85 13199.02 5799.90 2399.65 113
jason: jason.
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7999.51 10198.62 5999.79 2699.83 4299.28 399.97 1198.48 13799.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6899.36 19499.46 16899.07 1399.79 2699.82 4998.85 4199.92 8098.68 10899.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft99.44 3099.30 4199.85 2599.73 7599.83 1499.56 9899.47 15897.45 18399.78 3199.82 4999.18 899.91 9198.79 9299.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 6099.39 21198.91 3899.78 3199.85 2999.36 299.94 5498.84 8399.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_part299.81 4099.83 1499.77 33
MSP-MVS99.42 3899.27 5199.88 699.89 899.80 2699.67 4499.50 12098.70 5599.77 3399.49 22498.21 9599.95 4398.46 14199.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 3899.29 4599.80 4099.62 12699.55 7599.50 12699.70 1598.79 4999.77 3399.96 197.45 11699.96 1998.92 6899.90 2399.89 2
APD-MVScopyleft99.27 6199.08 7299.84 3299.75 6299.79 3099.50 12699.50 12097.16 21199.77 3399.82 4998.78 4899.94 5497.56 22099.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post99.45 2699.31 3899.85 2599.76 5299.82 2099.63 6099.52 8898.38 7799.76 3799.82 4998.53 7299.95 4398.61 11899.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 6099.52 8898.38 7799.76 3799.82 4998.75 5698.61 11899.81 8099.77 63
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14799.48 14098.05 12299.76 3799.86 2398.82 4499.93 6998.82 9099.91 1699.84 18
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2799.56 5697.72 15499.76 3799.75 11199.13 1099.92 8099.07 5399.92 1199.85 14
test117299.43 3399.29 4599.85 2599.75 6299.82 2099.60 7399.56 5698.28 8999.74 4199.79 8898.53 7299.95 4398.55 13299.78 8999.79 53
VNet99.11 9098.90 10099.73 5899.52 14999.56 7399.41 17099.39 21199.01 1899.74 4199.78 9595.56 18099.92 8099.52 798.18 20899.72 87
SR-MVS99.43 3399.29 4599.86 1899.75 6299.83 1499.59 7999.62 3398.21 9899.73 4399.79 8898.68 6399.96 1998.44 14399.77 9299.79 53
thisisatest053098.35 16398.03 18099.31 13499.63 12098.56 18999.54 11096.75 35697.53 17699.73 4399.65 15991.25 30499.89 11498.62 11599.56 12799.48 159
diffmvs99.14 7799.02 8299.51 10699.61 13098.96 15099.28 21599.49 12898.46 7099.72 4599.71 12996.50 14899.88 11999.31 2999.11 15599.67 106
xxxxxxxxxxxxxcwj99.43 3399.32 3199.75 5199.76 5299.59 6899.14 25199.53 8299.00 2299.71 4699.80 7698.95 2899.93 6998.19 16199.84 6599.74 74
SF-MVS99.38 4799.24 5699.79 4399.79 4299.68 4999.57 9199.54 7197.82 14599.71 4699.80 7698.95 2899.93 6998.19 16199.84 6599.74 74
xiu_mvs_v2_base99.26 6399.25 5599.29 14199.53 14798.91 15999.02 27799.45 18098.80 4899.71 4699.26 28698.94 3199.98 699.34 2699.23 14698.98 211
PS-MVSNAJ99.32 5499.32 3199.30 13899.57 14098.94 15598.97 29199.46 16898.92 3799.71 4699.24 28899.01 1699.98 699.35 2299.66 11898.97 212
PGM-MVS99.45 2699.31 3899.86 1899.87 1599.78 3799.58 8699.65 3297.84 13999.71 4699.80 7699.12 1199.97 1198.33 15399.87 4099.83 29
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6699.59 4392.65 33899.71 4699.78 9598.06 10399.90 10698.84 8399.91 1699.74 74
PVSNet_Blended_VisFu99.36 5099.28 4999.61 8299.86 2199.07 13599.47 14799.93 297.66 16299.71 4699.86 2397.73 11199.96 1999.47 1699.82 7899.79 53
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19499.47 15898.79 4999.68 5399.81 6298.43 8199.97 1198.88 7299.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4899.47 15898.79 4999.68 5399.81 6298.43 8199.97 1198.88 7299.90 2399.83 29
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4899.67 2298.15 10399.68 5399.69 14099.06 1399.96 1998.69 10699.87 4099.84 18
#test#99.43 3399.29 4599.86 1899.87 1599.80 2699.55 10799.67 2297.83 14099.68 5399.69 14099.06 1399.96 1998.39 14599.87 4099.84 18
VDDNet97.55 26397.02 28099.16 15699.49 16098.12 22099.38 18799.30 25895.35 30899.68 5399.90 782.62 35399.93 6999.31 2998.13 21399.42 171
HPM-MVScopyleft99.42 3899.28 4999.83 3399.90 399.72 4299.81 1299.54 7197.59 16699.68 5399.63 17298.91 3699.94 5498.58 12499.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS97.73 24497.35 26098.88 19699.47 16897.12 25799.34 20398.85 31598.19 9999.67 5999.85 2982.98 35199.92 8099.49 1398.32 20299.60 130
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4899.67 2298.15 10399.67 5999.69 14098.95 2899.96 1998.69 10699.87 4099.84 18
PVSNet_BlendedMVS98.86 11998.80 11599.03 16899.76 5298.79 17399.28 21599.91 397.42 18999.67 5999.37 25997.53 11499.88 11998.98 6097.29 24998.42 313
PVSNet_Blended99.08 9698.97 9199.42 12299.76 5298.79 17398.78 31399.91 396.74 24499.67 5999.49 22497.53 11499.88 11998.98 6099.85 5899.60 130
sss99.17 7399.05 7499.53 9899.62 12698.97 14699.36 19499.62 3397.83 14099.67 5999.65 15997.37 12199.95 4399.19 4099.19 14999.68 103
hse-mvs397.70 25197.28 26998.97 17699.70 9397.27 25199.36 19499.45 18098.94 3399.66 6499.64 16694.93 19999.99 199.48 1484.36 34899.65 113
hse-mvs297.50 26997.14 27698.59 22799.49 16097.05 26499.28 21599.22 27298.94 3399.66 6499.42 24494.93 19999.65 21399.48 1483.80 35099.08 197
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5599.66 2798.13 10599.66 6499.68 14698.96 2599.96 1998.62 11599.87 4099.84 18
RPSCF98.22 17198.62 13896.99 31699.82 3791.58 35199.72 3299.44 18996.61 25599.66 6499.89 1095.92 16799.82 15297.46 23099.10 15899.57 139
OMC-MVS99.08 9699.04 7799.20 15299.67 10198.22 21499.28 21599.52 8898.07 11799.66 6499.81 6297.79 10999.78 16897.79 19599.81 8099.60 130
CS-MVS99.37 4899.33 2899.51 10699.47 16899.51 8599.81 1299.57 5098.37 8099.65 6999.56 19898.21 9599.77 17099.54 599.77 9299.27 184
LFMVS97.90 21597.35 26099.54 9299.52 14999.01 14199.39 18298.24 33997.10 21999.65 6999.79 8884.79 34999.91 9199.28 3298.38 19799.69 99
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29899.85 698.82 4499.65 6999.74 11798.51 7599.80 16198.83 8699.89 3399.64 120
9.1499.10 6999.72 8099.40 17899.51 10197.53 17699.64 7299.78 9598.84 4299.91 9197.63 21199.82 78
GST-MVS99.40 4599.24 5699.85 2599.86 2199.79 3099.60 7399.67 2297.97 12899.63 7399.68 14698.52 7499.95 4398.38 14799.86 5199.81 41
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9199.59 7999.49 12897.03 22699.63 7399.69 14097.27 12499.96 1997.82 19399.84 6599.81 41
ACMMPcopyleft99.45 2699.32 3199.82 3599.89 899.67 5299.62 6699.69 1898.12 10799.63 7399.84 3898.73 5999.96 1998.55 13299.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 5699.19 6199.64 7799.82 3799.23 11499.62 6699.55 6498.94 3399.63 7399.95 295.82 17299.94 5499.37 2199.97 399.73 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 280x42099.12 8599.13 6699.08 16199.66 11097.89 23198.43 33799.71 1398.88 3999.62 7799.76 10696.63 14499.70 20199.46 1799.99 199.66 109
PHI-MVS99.30 5699.17 6399.70 6499.56 14499.52 8399.58 8699.80 897.12 21599.62 7799.73 12498.58 7099.90 10698.61 11899.91 1699.68 103
ETH3D-3000-0.199.21 6799.02 8299.77 4799.73 7599.69 4799.38 18799.51 10197.45 18399.61 7999.75 11198.51 7599.91 9197.45 23299.83 7299.71 94
test_yl98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12699.07 29298.22 9699.61 7999.51 21895.37 18699.84 13698.60 12198.33 19899.59 134
DCV-MVSNet98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12699.07 29298.22 9699.61 7999.51 21895.37 18699.84 13698.60 12198.33 19899.59 134
MG-MVS99.13 7999.02 8299.45 11799.57 14098.63 18499.07 26399.34 23698.99 2599.61 7999.82 4997.98 10599.87 12297.00 25799.80 8499.85 14
MP-MVS-pluss99.37 4899.20 6099.88 699.90 399.87 999.30 20999.52 8897.18 20999.60 8399.79 8898.79 4799.95 4398.83 8699.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24999.41 20196.60 25799.60 8399.55 20298.83 4399.90 10697.48 22799.83 7299.78 61
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11599.06 13699.81 1299.33 24397.43 18799.60 8399.88 1597.14 12699.84 13699.13 4798.94 17099.69 99
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15599.51 10197.29 19999.59 8699.74 11798.15 10099.96 1996.74 27299.69 11099.81 41
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9999.02 27799.91 397.67 16199.59 8699.75 11195.90 16999.73 18599.53 699.02 16699.86 11
MVS_Test99.10 9398.97 9199.48 11199.49 16099.14 12699.67 4499.34 23697.31 19799.58 8899.76 10697.65 11399.82 15298.87 7699.07 16199.46 166
MDTV_nov1_ep13_2view95.18 32399.35 20096.84 23999.58 8895.19 19597.82 19399.46 166
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9899.05 26899.66 2799.14 699.57 9099.80 7698.46 7999.94 5499.57 399.84 6599.60 130
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZD-MVS99.71 8699.79 3099.61 3596.84 23999.56 9199.54 20798.58 7099.96 1996.93 26499.75 97
CR-MVSNet98.17 17897.93 19398.87 20099.18 23898.49 20099.22 23999.33 24396.96 23099.56 9199.38 25694.33 22999.00 31394.83 31398.58 18899.14 189
RPMNet96.72 28895.90 29899.19 15399.18 23898.49 20099.22 23999.52 8888.72 34999.56 9197.38 34694.08 23999.95 4386.87 35598.58 18899.14 189
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2899.20 27698.02 12699.56 9199.86 2396.54 14799.67 20698.09 17099.13 15499.73 81
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5899.67 2298.08 11699.55 9599.64 16698.91 3699.96 1998.72 10199.90 2399.82 36
thisisatest051598.14 18297.79 20499.19 15399.50 15898.50 19998.61 32796.82 35596.95 23299.54 9699.43 24191.66 29799.86 12598.08 17499.51 13199.22 186
MVS_111021_HR99.41 4299.32 3199.66 6899.72 8099.47 9098.95 29699.85 698.82 4499.54 9699.73 12498.51 7599.74 17898.91 6999.88 3699.77 63
CP-MVS99.45 2699.32 3199.85 2599.83 3699.75 3899.69 3799.52 8898.07 11799.53 9899.63 17298.93 3599.97 1198.74 9799.91 1699.83 29
WTY-MVS99.06 9898.88 10399.61 8299.62 12699.16 12199.37 19099.56 5698.04 12399.53 9899.62 17896.84 13699.94 5498.85 8198.49 19599.72 87
MCST-MVS99.43 3399.30 4199.82 3599.79 4299.74 4199.29 21399.40 20798.79 4999.52 10099.62 17898.91 3699.90 10698.64 11399.75 9799.82 36
PatchT97.03 28496.44 28898.79 21498.99 27398.34 20999.16 24599.07 29292.13 33999.52 10097.31 34994.54 22498.98 31588.54 34998.73 18499.03 205
CANet99.25 6599.14 6599.59 8499.41 18099.16 12199.35 20099.57 5098.82 4499.51 10299.61 18296.46 14999.95 4399.59 199.98 299.65 113
mPP-MVS99.44 3099.30 4199.86 1899.88 1199.79 3099.69 3799.48 14098.12 10799.50 10399.75 11198.78 4899.97 1198.57 12699.89 3399.83 29
PatchMatch-RL98.84 13098.62 13899.52 10499.71 8699.28 10899.06 26699.77 997.74 15399.50 10399.53 21195.41 18499.84 13697.17 25099.64 12199.44 169
PVSNet96.02 1798.85 12798.84 11098.89 19399.73 7597.28 25098.32 34399.60 4097.86 13599.50 10399.57 19596.75 14199.86 12598.56 12999.70 10999.54 143
LS3D99.27 6199.12 6799.74 5699.18 23899.75 3899.56 9899.57 5098.45 7199.49 10699.85 2997.77 11099.94 5498.33 15399.84 6599.52 148
MP-MVScopyleft99.33 5399.15 6499.87 1199.88 1199.82 2099.66 4899.46 16898.09 11299.48 10799.74 11798.29 9299.96 1997.93 18499.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
旧先验298.96 29296.70 24799.47 10899.94 5498.19 161
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31699.55 6497.25 20399.47 10899.77 10297.82 10899.87 12296.93 26499.90 2399.54 143
CDS-MVSNet99.09 9499.03 7999.25 14799.42 17798.73 17699.45 15199.46 16898.11 10999.46 11099.77 10298.01 10499.37 25398.70 10398.92 17399.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSLP-MVS++99.46 2499.47 999.44 12199.60 13499.16 12199.41 17099.71 1398.98 2799.45 11199.78 9599.19 799.54 23099.28 3299.84 6599.63 124
XVG-OURS98.73 13998.68 12798.88 19699.70 9397.73 23998.92 29999.55 6498.52 6599.45 11199.84 3895.27 19099.91 9198.08 17498.84 17899.00 208
tpmrst98.33 16498.48 14997.90 29099.16 24694.78 33099.31 20799.11 28697.27 20199.45 11199.59 18895.33 18899.84 13698.48 13798.61 18599.09 196
TAMVS99.12 8599.08 7299.24 14999.46 17098.55 19099.51 12099.46 16898.09 11299.45 11199.82 4998.34 8999.51 23198.70 10398.93 17199.67 106
ETV-MVS99.26 6399.21 5999.40 12399.46 17099.30 10699.56 9899.52 8898.52 6599.44 11599.27 28598.41 8599.86 12599.10 5099.59 12699.04 204
CANet_DTU98.97 11198.87 10499.25 14799.33 19998.42 20799.08 26299.30 25899.16 599.43 11699.75 11195.27 19099.97 1198.56 12999.95 699.36 176
SCA98.19 17598.16 16698.27 26899.30 20895.55 31199.07 26398.97 30097.57 16999.43 11699.57 19592.72 26699.74 17897.58 21599.20 14899.52 148
testdata99.54 9299.75 6298.95 15299.51 10197.07 22199.43 11699.70 13398.87 3999.94 5497.76 19899.64 12199.72 87
DPM-MVS98.95 11298.71 12499.66 6899.63 12099.55 7598.64 32699.10 28797.93 13199.42 11999.55 20298.67 6699.80 16195.80 29499.68 11599.61 128
XVG-OURS-SEG-HR98.69 14298.62 13898.89 19399.71 8697.74 23899.12 25399.54 7198.44 7499.42 11999.71 12994.20 23399.92 8098.54 13498.90 17599.00 208
baseline99.15 7699.02 8299.53 9899.66 11099.14 12699.72 3299.48 14098.35 8299.42 11999.84 3896.07 16099.79 16499.51 899.14 15399.67 106
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 22099.57 5096.40 27499.42 11999.68 14698.75 5699.80 16197.98 18099.72 10499.44 169
Effi-MVS+-dtu98.78 13598.89 10298.47 24599.33 19996.91 27799.57 9199.30 25898.47 6899.41 12398.99 31496.78 13899.74 17898.73 9999.38 13698.74 237
casdiffmvs99.13 7998.98 9099.56 9099.65 11599.16 12199.56 9899.50 12098.33 8699.41 12399.86 2395.92 16799.83 14599.45 1899.16 15099.70 96
MIMVSNet97.73 24497.45 24398.57 23199.45 17597.50 24599.02 27798.98 29996.11 29699.41 12399.14 29990.28 31098.74 33095.74 29598.93 17199.47 164
CSCG99.32 5499.32 3199.32 13399.85 2598.29 21099.71 3499.66 2798.11 10999.41 12399.80 7698.37 8899.96 1998.99 5999.96 599.72 87
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16899.54 7197.29 19999.41 12399.59 18898.42 8499.93 6998.19 16199.69 11099.73 81
EIA-MVS99.18 7199.09 7199.45 11799.49 16099.18 11899.67 4499.53 8297.66 16299.40 12899.44 23998.10 10199.81 15698.94 6499.62 12499.35 177
MDTV_nov1_ep1398.32 15999.11 25394.44 33399.27 22098.74 32397.51 17899.40 12899.62 17894.78 20899.76 17597.59 21498.81 181
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15199.60 6599.23 23499.44 18997.04 22499.39 13099.67 15298.30 9199.92 8097.27 23999.69 11099.64 120
CVMVSNet98.57 15098.67 12898.30 26399.35 19495.59 31099.50 12699.55 6498.60 6199.39 13099.83 4294.48 22599.45 23698.75 9698.56 19199.85 14
CNVR-MVS99.42 3899.30 4199.78 4599.62 12699.71 4499.26 22999.52 8898.82 4499.39 13099.71 12998.96 2599.85 13198.59 12399.80 8499.77 63
Effi-MVS+98.81 13198.59 14499.48 11199.46 17099.12 13098.08 34999.50 12097.50 17999.38 13399.41 24896.37 15399.81 15699.11 4998.54 19299.51 154
mvs_anonymous99.03 10398.99 8799.16 15699.38 18998.52 19699.51 12099.38 21797.79 14699.38 13399.81 6297.30 12299.45 23699.35 2298.99 16899.51 154
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13599.74 11798.81 4599.94 5498.79 9299.86 5199.84 18
X-MVStestdata96.55 29095.45 30599.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13564.01 36698.81 4599.94 5498.79 9299.86 5199.84 18
PatchmatchNetpermissive98.31 16598.36 15498.19 27199.16 24695.32 31999.27 22098.92 30697.37 19399.37 13599.58 19194.90 20299.70 20197.43 23499.21 14799.54 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AllTest98.87 11698.72 12299.31 13499.86 2198.48 20299.56 9899.61 3597.85 13799.36 13899.85 2995.95 16499.85 13196.66 27899.83 7299.59 134
TestCases99.31 13499.86 2198.48 20299.61 3597.85 13799.36 13899.85 2995.95 16499.85 13196.66 27899.83 7299.59 134
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13499.71 8698.88 16199.80 1799.44 18997.91 13399.36 13899.78 9595.49 18399.43 24597.91 18599.11 15599.62 126
alignmvs98.81 13198.56 14699.58 8799.43 17699.42 9599.51 12098.96 30298.61 6099.35 14198.92 32094.78 20899.77 17099.35 2298.11 21499.54 143
VPA-MVSNet98.29 16897.95 19099.30 13899.16 24699.54 7799.50 12699.58 4998.27 9199.35 14199.37 25992.53 27599.65 21399.35 2294.46 30998.72 239
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14499.54 7799.18 24399.70 1598.18 10299.35 14199.63 17296.32 15499.90 10697.48 22799.77 9299.55 141
test22299.75 6299.49 8798.91 30199.49 12896.42 27299.34 14499.65 15998.28 9399.69 11099.72 87
API-MVS99.04 10199.03 7999.06 16399.40 18599.31 10599.55 10799.56 5698.54 6399.33 14599.39 25598.76 5399.78 16896.98 25999.78 8998.07 330
v14419297.92 21397.60 22798.87 20098.83 29598.65 18299.55 10799.34 23696.20 28699.32 14699.40 25194.36 22899.26 27596.37 28595.03 30198.70 245
GeoE98.85 12798.62 13899.53 9899.61 13099.08 13399.80 1799.51 10197.10 21999.31 14799.78 9595.23 19499.77 17098.21 15999.03 16499.75 69
canonicalmvs99.02 10498.86 10899.51 10699.42 17799.32 10299.80 1799.48 14098.63 5899.31 14798.81 32397.09 12899.75 17799.27 3497.90 21899.47 164
V4298.06 19097.79 20498.86 20398.98 27698.84 16699.69 3799.34 23696.53 26199.30 14999.37 25994.67 21799.32 26697.57 21994.66 30698.42 313
ab-mvs98.86 11998.63 13399.54 9299.64 11799.19 11699.44 15599.54 7197.77 14899.30 14999.81 6294.20 23399.93 6999.17 4398.82 17999.49 158
TAPA-MVS97.07 1597.74 24397.34 26398.94 18099.70 9397.53 24499.25 23199.51 10191.90 34099.30 14999.63 17298.78 4899.64 21688.09 35199.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RRT_MVS98.60 14998.44 15099.05 16598.88 28599.14 12699.49 13699.38 21797.76 14999.29 15299.86 2395.38 18599.36 25798.81 9197.16 25498.64 273
新几何199.75 5199.75 6299.59 6899.54 7196.76 24399.29 15299.64 16698.43 8199.94 5496.92 26699.66 11899.72 87
VPNet97.84 22497.44 24899.01 17099.21 23198.94 15599.48 14299.57 5098.38 7799.28 15499.73 12488.89 32799.39 24899.19 4093.27 32698.71 241
HY-MVS97.30 798.85 12798.64 13299.47 11499.42 17799.08 13399.62 6699.36 22797.39 19299.28 15499.68 14696.44 15199.92 8098.37 14998.22 20499.40 174
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9399.39 18299.38 21797.70 15699.28 15499.28 28298.34 8999.85 13196.96 26199.45 13299.69 99
ETH3 D test640098.70 14098.35 15699.73 5899.69 9699.60 6599.16 24599.45 18095.42 30799.27 15799.60 18597.39 11799.91 9195.36 30599.83 7299.70 96
HPM-MVS++copyleft99.39 4699.23 5899.87 1199.75 6299.84 1399.43 16199.51 10198.68 5799.27 15799.53 21198.64 6899.96 1998.44 14399.80 8499.79 53
v124097.69 25297.32 26698.79 21498.85 29398.43 20599.48 14299.36 22796.11 29699.27 15799.36 26293.76 24899.24 27794.46 31695.23 29698.70 245
thres600view797.86 22097.51 23698.92 18499.72 8097.95 22999.59 7998.74 32397.94 13099.27 15798.62 33091.75 29199.86 12593.73 32498.19 20798.96 214
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 11099.01 14199.24 23399.52 8896.85 23899.27 15799.48 23098.25 9499.91 9197.76 19899.62 12499.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres100view90097.76 23697.45 24398.69 22299.72 8097.86 23499.59 7998.74 32397.93 13199.26 16298.62 33091.75 29199.83 14593.22 32998.18 20898.37 319
EPMVS97.82 22997.65 22298.35 25898.88 28595.98 30399.49 13694.71 36297.57 16999.26 16299.48 23092.46 28099.71 19597.87 18899.08 16099.35 177
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 22099.48 14096.82 24299.25 16499.65 15998.38 8699.93 6997.53 22399.67 11799.73 81
Fast-Effi-MVS+-dtu98.77 13798.83 11498.60 22699.41 18096.99 27199.52 11699.49 12898.11 10999.24 16599.34 26896.96 13499.79 16497.95 18399.45 13299.02 207
v192192097.80 23397.45 24398.84 20798.80 29698.53 19299.52 11699.34 23696.15 29399.24 16599.47 23393.98 24199.29 27095.40 30395.13 29998.69 249
LPG-MVS_test98.22 17198.13 16998.49 23999.33 19997.05 26499.58 8699.55 6497.46 18099.24 16599.83 4292.58 27399.72 18998.09 17097.51 23498.68 254
LGP-MVS_train98.49 23999.33 19997.05 26499.55 6497.46 18099.24 16599.83 4292.58 27399.72 18998.09 17097.51 23498.68 254
v114497.98 20597.69 21898.85 20698.87 28998.66 18199.54 11099.35 23296.27 28099.23 16999.35 26594.67 21799.23 27896.73 27395.16 29898.68 254
Anonymous2024052998.09 18797.68 21999.34 12899.66 11098.44 20499.40 17899.43 19793.67 32999.22 17099.89 1090.23 31499.93 6999.26 3598.33 19899.66 109
OPM-MVS98.19 17598.10 17198.45 24798.88 28597.07 26299.28 21599.38 21798.57 6299.22 17099.81 6292.12 28499.66 20998.08 17497.54 23298.61 292
test_djsdf98.67 14498.57 14598.98 17498.70 31198.91 15999.88 199.46 16897.55 17199.22 17099.88 1595.73 17599.28 27199.03 5597.62 22598.75 233
test1299.75 5199.64 11799.61 6399.29 26399.21 17398.38 8699.89 11499.74 10099.74 74
NCCC99.34 5299.19 6199.79 4399.61 13099.65 5799.30 20999.48 14098.86 4099.21 17399.63 17298.72 6099.90 10698.25 15799.63 12399.80 49
PMMVS98.80 13498.62 13899.34 12899.27 21798.70 17898.76 31599.31 25497.34 19499.21 17399.07 30597.20 12599.82 15298.56 12998.87 17699.52 148
v119297.81 23197.44 24898.91 18898.88 28598.68 17999.51 12099.34 23696.18 28899.20 17699.34 26894.03 24099.36 25795.32 30695.18 29798.69 249
EI-MVSNet98.67 14498.67 12898.68 22399.35 19497.97 22599.50 12699.38 21796.93 23599.20 17699.83 4297.87 10699.36 25798.38 14797.56 23098.71 241
MVSTER98.49 15198.32 15999.00 17299.35 19499.02 13999.54 11099.38 21797.41 19099.20 17699.73 12493.86 24599.36 25798.87 7697.56 23098.62 283
Anonymous20240521198.30 16797.98 18599.26 14699.57 14098.16 21699.41 17098.55 33596.03 30199.19 17999.74 11791.87 28899.92 8099.16 4598.29 20399.70 96
v2v48298.06 19097.77 20998.92 18498.90 28398.82 17099.57 9199.36 22796.65 25199.19 17999.35 26594.20 23399.25 27697.72 20494.97 30298.69 249
CNLPA99.14 7798.99 8799.59 8499.58 13899.41 9699.16 24599.44 18998.45 7199.19 17999.49 22498.08 10299.89 11497.73 20299.75 9799.48 159
UGNet98.87 11698.69 12699.40 12399.22 22998.72 17799.44 15599.68 1999.24 399.18 18299.42 24492.74 26599.96 1999.34 2699.94 999.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpn200view997.72 24697.38 25698.72 22099.69 9697.96 22799.50 12698.73 32897.83 14099.17 18398.45 33591.67 29599.83 14593.22 32998.18 20898.37 319
thres40097.77 23597.38 25698.92 18499.69 9697.96 22799.50 12698.73 32897.83 14099.17 18398.45 33591.67 29599.83 14593.22 32998.18 20898.96 214
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9698.95 15299.03 27499.47 15896.98 22899.15 18599.23 28996.77 14099.89 11498.83 8698.78 18299.86 11
baseline198.31 16597.95 19099.38 12699.50 15898.74 17599.59 7998.93 30498.41 7599.14 18699.60 18594.59 22099.79 16498.48 13793.29 32599.61 128
1112_ss98.98 10998.77 11899.59 8499.68 10099.02 13999.25 23199.48 14097.23 20699.13 18799.58 19196.93 13599.90 10698.87 7698.78 18299.84 18
CLD-MVS98.16 17998.10 17198.33 25999.29 21296.82 28098.75 31699.44 18997.83 14099.13 18799.55 20292.92 25999.67 20698.32 15597.69 22298.48 304
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM199.65 7299.73 7599.33 10199.47 15897.46 18099.12 18999.66 15898.67 6699.91 9197.70 20799.69 11099.71 94
tpm97.67 25797.55 23098.03 27999.02 27095.01 32599.43 16198.54 33696.44 27099.12 18999.34 26891.83 29099.60 22497.75 20096.46 26699.48 159
HQP_MVS98.27 17098.22 16598.44 25099.29 21296.97 27399.39 18299.47 15898.97 3099.11 19199.61 18292.71 26899.69 20497.78 19697.63 22398.67 261
plane_prior397.00 27098.69 5699.11 191
CHOSEN 1792x268899.19 6999.10 6999.45 11799.89 898.52 19699.39 18299.94 198.73 5399.11 19199.89 1095.50 18299.94 5499.50 999.97 399.89 2
mvs-test198.86 11998.84 11098.89 19399.33 19997.77 23799.44 15599.30 25898.47 6899.10 19499.43 24196.78 13899.95 4398.73 9999.02 16698.96 214
bset_n11_16_dypcd98.16 17997.97 18698.73 21898.26 33198.28 21297.99 35198.01 34497.68 15899.10 19499.63 17295.68 17799.15 29198.78 9596.55 26398.75 233
v897.95 20997.63 22598.93 18298.95 28098.81 17299.80 1799.41 20196.03 30199.10 19499.42 24494.92 20199.30 26996.94 26394.08 31798.66 269
ADS-MVSNet298.02 19898.07 17897.87 29199.33 19995.19 32299.23 23499.08 29096.24 28399.10 19499.67 15294.11 23798.93 32596.81 26999.05 16299.48 159
ADS-MVSNet98.20 17498.08 17598.56 23399.33 19996.48 29199.23 23499.15 28296.24 28399.10 19499.67 15294.11 23799.71 19596.81 26999.05 16299.48 159
thres20097.61 26197.28 26998.62 22599.64 11798.03 22199.26 22998.74 32397.68 15899.09 19998.32 33991.66 29799.81 15692.88 33398.22 20498.03 333
dp97.75 24097.80 20397.59 30399.10 25693.71 34099.32 20598.88 31396.48 26799.08 20099.55 20292.67 27199.82 15296.52 28098.58 18899.24 185
GBi-Net97.68 25497.48 23898.29 26499.51 15197.26 25399.43 16199.48 14096.49 26399.07 20199.32 27590.26 31198.98 31597.10 25296.65 25998.62 283
test197.68 25497.48 23898.29 26499.51 15197.26 25399.43 16199.48 14096.49 26399.07 20199.32 27590.26 31198.98 31597.10 25296.65 25998.62 283
FMVSNet398.03 19697.76 21298.84 20799.39 18898.98 14399.40 17899.38 21796.67 24999.07 20199.28 28292.93 25898.98 31597.10 25296.65 25998.56 299
IterMVS-LS98.46 15398.42 15298.58 23099.59 13698.00 22399.37 19099.43 19796.94 23499.07 20199.59 18897.87 10699.03 30898.32 15595.62 28898.71 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs498.13 18397.90 19598.81 21198.61 32098.87 16298.99 28499.21 27596.44 27099.06 20599.58 19195.90 16999.11 30097.18 24996.11 27498.46 310
XVG-ACMP-BASELINE97.83 22697.71 21798.20 27099.11 25396.33 29699.41 17099.52 8898.06 12199.05 20699.50 22189.64 32199.73 18597.73 20297.38 24798.53 300
CostFormer97.72 24697.73 21597.71 30099.15 24994.02 33799.54 11099.02 29694.67 32099.04 20799.35 26592.35 28399.77 17098.50 13697.94 21799.34 179
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 17099.50 12097.03 22699.04 20799.88 1597.39 11799.92 8098.66 11199.90 2399.87 10
ACMM97.58 598.37 16298.34 15798.48 24199.41 18097.10 25899.56 9899.45 18098.53 6499.04 20799.85 2993.00 25799.71 19598.74 9797.45 24198.64 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+98.70 14098.43 15199.51 10699.51 15199.28 10899.52 11699.47 15896.11 29699.01 21099.34 26896.20 15899.84 13697.88 18798.82 17999.39 175
nrg03098.64 14798.42 15299.28 14499.05 26699.69 4799.81 1299.46 16898.04 12399.01 21099.82 4996.69 14399.38 25099.34 2694.59 30898.78 225
test_prior399.21 6799.05 7499.68 6599.67 10199.48 8898.96 29299.56 5698.34 8399.01 21099.52 21498.68 6399.83 14597.96 18199.74 10099.74 74
test_prior298.96 29298.34 8399.01 21099.52 21498.68 6397.96 18199.74 100
MAR-MVS98.86 11998.63 13399.54 9299.37 19199.66 5499.45 15199.54 7196.61 25599.01 21099.40 25197.09 12899.86 12597.68 21099.53 13099.10 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJss98.92 11498.92 9798.90 19098.78 30098.53 19299.78 2299.54 7198.07 11799.00 21599.76 10699.01 1699.37 25399.13 4797.23 25098.81 222
PAPR98.63 14898.34 15799.51 10699.40 18599.03 13898.80 31199.36 22796.33 27599.00 21599.12 30398.46 7999.84 13695.23 30799.37 14099.66 109
D2MVS98.41 15898.50 14898.15 27499.26 21996.62 28799.40 17899.61 3597.71 15598.98 21799.36 26296.04 16199.67 20698.70 10397.41 24598.15 328
v1097.85 22197.52 23498.86 20398.99 27398.67 18099.75 2899.41 20195.70 30498.98 21799.41 24894.75 21399.23 27896.01 29094.63 30798.67 261
miper_enhance_ethall98.16 17998.08 17598.41 25298.96 27997.72 24098.45 33699.32 25196.95 23298.97 21999.17 29597.06 13099.22 28197.86 18995.99 27798.29 321
UniMVSNet (Re)98.29 16898.00 18399.13 15999.00 27299.36 10099.49 13699.51 10197.95 12998.97 21999.13 30096.30 15599.38 25098.36 15193.34 32498.66 269
TEST999.67 10199.65 5799.05 26899.41 20196.22 28598.95 22199.49 22498.77 5199.91 91
train_agg99.02 10498.77 11899.77 4799.67 10199.65 5799.05 26899.41 20196.28 27898.95 22199.49 22498.76 5399.91 9197.63 21199.72 10499.75 69
RRT_test8_iter0597.72 24697.60 22798.08 27699.23 22596.08 30299.63 6099.49 12897.54 17498.94 22399.81 6287.99 33899.35 26199.21 3996.51 26598.81 222
BH-RMVSNet98.41 15898.08 17599.40 12399.41 18098.83 16999.30 20998.77 31997.70 15698.94 22399.65 15992.91 26199.74 17896.52 28099.55 12999.64 120
test_899.67 10199.61 6399.03 27499.41 20196.28 27898.93 22599.48 23098.76 5399.91 91
3Dnovator97.25 999.24 6699.05 7499.81 3899.12 25199.66 5499.84 699.74 1099.09 1098.92 22699.90 795.94 16699.98 698.95 6399.92 1199.79 53
v7n97.87 21897.52 23498.92 18498.76 30498.58 18899.84 699.46 16896.20 28698.91 22799.70 13394.89 20399.44 24196.03 28993.89 31998.75 233
JIA-IIPM97.50 26997.02 28098.93 18298.73 30697.80 23699.30 20998.97 30091.73 34198.91 22794.86 35495.10 19699.71 19597.58 21597.98 21699.28 183
v14897.79 23497.55 23098.50 23898.74 30597.72 24099.54 11099.33 24396.26 28198.90 22999.51 21894.68 21699.14 29297.83 19293.15 32898.63 281
GA-MVS97.85 22197.47 24099.00 17299.38 18997.99 22498.57 33099.15 28297.04 22498.90 22999.30 27889.83 31799.38 25096.70 27598.33 19899.62 126
tpm297.44 27497.34 26397.74 29999.15 24994.36 33499.45 15198.94 30393.45 33498.90 22999.44 23991.35 30299.59 22597.31 23798.07 21599.29 182
miper_ehance_all_eth98.18 17798.10 17198.41 25299.23 22597.72 24098.72 31999.31 25496.60 25798.88 23299.29 28097.29 12399.13 29597.60 21395.99 27798.38 318
eth_miper_zixun_eth98.05 19597.96 18898.33 25999.26 21997.38 24898.56 33299.31 25496.65 25198.88 23299.52 21496.58 14599.12 29997.39 23695.53 29198.47 306
cl-mvsnet297.85 22197.64 22498.48 24199.09 25897.87 23298.60 32999.33 24397.11 21898.87 23499.22 29092.38 28299.17 29098.21 15995.99 27798.42 313
agg_prior199.01 10798.76 12099.76 5099.67 10199.62 6198.99 28499.40 20796.26 28198.87 23499.49 22498.77 5199.91 9197.69 20899.72 10499.75 69
agg_prior99.67 10199.62 6199.40 20798.87 23499.91 91
anonymousdsp98.44 15498.28 16298.94 18098.50 32698.96 15099.77 2499.50 12097.07 22198.87 23499.77 10294.76 21299.28 27198.66 11197.60 22698.57 298
DSMNet-mixed97.25 27997.35 26096.95 31997.84 33693.61 34399.57 9196.63 35796.13 29598.87 23498.61 33294.59 22097.70 34795.08 30998.86 17799.55 141
FMVSNet297.72 24697.36 25898.80 21399.51 15198.84 16699.45 15199.42 19996.49 26398.86 23999.29 28090.26 31198.98 31596.44 28296.56 26298.58 297
cl_fuxian98.12 18598.04 17998.38 25699.30 20897.69 24398.81 31099.33 24396.67 24998.83 24099.34 26897.11 12798.99 31497.58 21595.34 29498.48 304
ITE_SJBPF98.08 27699.29 21296.37 29498.92 30698.34 8398.83 24099.75 11191.09 30599.62 22295.82 29297.40 24698.25 324
Anonymous2023121197.88 21697.54 23398.90 19099.71 8698.53 19299.48 14299.57 5094.16 32598.81 24299.68 14693.23 25399.42 24698.84 8394.42 31198.76 231
Patchmtry97.75 24097.40 25498.81 21199.10 25698.87 16299.11 25999.33 24394.83 31798.81 24299.38 25694.33 22999.02 31096.10 28795.57 28998.53 300
miper_lstm_enhance98.00 20397.91 19498.28 26799.34 19897.43 24798.88 30399.36 22796.48 26798.80 24499.55 20295.98 16298.91 32697.27 23995.50 29298.51 302
BH-untuned98.42 15698.36 15498.59 22799.49 16096.70 28399.27 22099.13 28597.24 20598.80 24499.38 25695.75 17499.74 17897.07 25599.16 15099.33 180
FIs98.78 13598.63 13399.23 15199.18 23899.54 7799.83 999.59 4398.28 8998.79 24699.81 6296.75 14199.37 25399.08 5296.38 26898.78 225
OurMVSNet-221017-097.88 21697.77 20998.19 27198.71 31096.53 28999.88 199.00 29797.79 14698.78 24799.94 391.68 29499.35 26197.21 24396.99 25798.69 249
MVS-HIRNet95.75 30495.16 30897.51 30699.30 20893.69 34198.88 30395.78 35985.09 35298.78 24792.65 35691.29 30399.37 25394.85 31299.85 5899.46 166
tpmvs97.98 20598.02 18297.84 29399.04 26794.73 33199.31 20799.20 27696.10 30098.76 24999.42 24494.94 19899.81 15696.97 26098.45 19698.97 212
Patchmatch-test97.93 21097.65 22298.77 21699.18 23897.07 26299.03 27499.14 28496.16 29198.74 25099.57 19594.56 22299.72 18993.36 32899.11 15599.52 148
QAPM98.67 14498.30 16199.80 4099.20 23399.67 5299.77 2499.72 1194.74 31998.73 25199.90 795.78 17399.98 696.96 26199.88 3699.76 68
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24499.68 4999.81 1299.51 10199.20 498.72 25299.89 1095.68 17799.97 1198.86 7999.86 5199.81 41
IterMVS-SCA-FT97.82 22997.75 21398.06 27899.57 14096.36 29599.02 27799.49 12897.18 20998.71 25399.72 12892.72 26699.14 29297.44 23395.86 28298.67 261
UniMVSNet_NR-MVSNet98.22 17197.97 18698.96 17798.92 28298.98 14399.48 14299.53 8297.76 14998.71 25399.46 23796.43 15299.22 28198.57 12692.87 33198.69 249
DU-MVS98.08 18997.79 20498.96 17798.87 28998.98 14399.41 17099.45 18097.87 13498.71 25399.50 22194.82 20599.22 28198.57 12692.87 33198.68 254
tpm cat197.39 27597.36 25897.50 30799.17 24493.73 33999.43 16199.31 25491.27 34298.71 25399.08 30494.31 23199.77 17096.41 28498.50 19499.00 208
XXY-MVS98.38 16198.09 17499.24 14999.26 21999.32 10299.56 9899.55 6497.45 18398.71 25399.83 4293.23 25399.63 22198.88 7296.32 27098.76 231
IterMVS97.83 22697.77 20998.02 28199.58 13896.27 29899.02 27799.48 14097.22 20798.71 25399.70 13392.75 26399.13 29597.46 23096.00 27698.67 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test98.75 13898.62 13899.15 15899.08 26099.45 9299.86 599.60 4098.23 9598.70 25999.82 4996.80 13799.22 28199.07 5396.38 26898.79 224
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15599.88 1198.53 19299.34 20399.59 4397.55 17198.70 25999.89 1095.83 17199.90 10698.10 16999.90 2399.08 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TR-MVS97.76 23697.41 25398.82 20999.06 26397.87 23298.87 30598.56 33496.63 25498.68 26199.22 29092.49 27699.65 21395.40 30397.79 22098.95 217
WR-MVS98.06 19097.73 21599.06 16398.86 29299.25 11299.19 24299.35 23297.30 19898.66 26299.43 24193.94 24299.21 28698.58 12494.28 31398.71 241
HQP-NCC99.19 23598.98 28898.24 9298.66 262
ACMP_Plane99.19 23598.98 28898.24 9298.66 262
HQP4-MVS98.66 26299.64 21698.64 273
HQP-MVS98.02 19897.90 19598.37 25799.19 23596.83 27898.98 28899.39 21198.24 9298.66 26299.40 25192.47 27799.64 21697.19 24797.58 22898.64 273
LF4IMVS97.52 26697.46 24297.70 30198.98 27695.55 31199.29 21398.82 31898.07 11798.66 26299.64 16689.97 31699.61 22397.01 25696.68 25897.94 340
mvs_tets98.40 16098.23 16498.91 18898.67 31498.51 19899.66 4899.53 8298.19 9998.65 26899.81 6292.75 26399.44 24199.31 2997.48 24098.77 229
TESTMET0.1,197.55 26397.27 27298.40 25498.93 28196.53 28998.67 32297.61 35096.96 23098.64 26999.28 28288.63 33199.45 23697.30 23899.38 13699.21 187
jajsoiax98.43 15598.28 16298.88 19698.60 32198.43 20599.82 1099.53 8298.19 9998.63 27099.80 7693.22 25599.44 24199.22 3797.50 23698.77 229
Baseline_NR-MVSNet97.76 23697.45 24398.68 22399.09 25898.29 21099.41 17098.85 31595.65 30598.63 27099.67 15294.82 20599.10 30298.07 17792.89 33098.64 273
EPNet98.86 11998.71 12499.30 13897.20 34698.18 21599.62 6698.91 30999.28 298.63 27099.81 6295.96 16399.99 199.24 3699.72 10499.73 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-LLR98.06 19097.90 19598.55 23598.79 29797.10 25898.67 32297.75 34797.34 19498.61 27398.85 32194.45 22699.45 23697.25 24199.38 13699.10 192
test-mter97.49 27297.13 27798.55 23598.79 29797.10 25898.67 32297.75 34796.65 25198.61 27398.85 32188.23 33599.45 23697.25 24199.38 13699.10 192
cl-mvsnet198.01 20197.85 20198.48 24199.24 22497.95 22998.71 32099.35 23296.50 26298.60 27599.54 20795.72 17699.03 30897.21 24395.77 28398.46 310
cl-mvsnet____98.01 20197.84 20298.55 23599.25 22397.97 22598.71 32099.34 23696.47 26998.59 27699.54 20795.65 17999.21 28697.21 24395.77 28398.46 310
FMVSNet196.84 28696.36 28998.29 26499.32 20697.26 25399.43 16199.48 14095.11 31198.55 27799.32 27583.95 35098.98 31595.81 29396.26 27198.62 283
UniMVSNet_ETH3D97.32 27796.81 28398.87 20099.40 18597.46 24699.51 12099.53 8295.86 30398.54 27899.77 10282.44 35499.66 20998.68 10897.52 23399.50 157
AUN-MVS96.88 28596.31 29098.59 22799.48 16797.04 26799.27 22099.22 27297.44 18698.51 27999.41 24891.97 28699.66 20997.71 20583.83 34999.07 202
PCF-MVS97.08 1497.66 25897.06 27999.47 11499.61 13099.09 13298.04 35099.25 26891.24 34398.51 27999.70 13394.55 22399.91 9192.76 33699.85 5899.42 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet97.93 21097.66 22198.76 21798.78 30098.62 18599.65 5599.49 12897.76 14998.49 28199.60 18594.23 23298.97 32298.00 17992.90 32998.70 245
CP-MVSNet98.09 18797.78 20799.01 17098.97 27899.24 11399.67 4499.46 16897.25 20398.48 28299.64 16693.79 24699.06 30498.63 11494.10 31698.74 237
ACMP97.20 1198.06 19097.94 19298.45 24799.37 19197.01 26999.44 15599.49 12897.54 17498.45 28399.79 8891.95 28799.72 18997.91 18597.49 23998.62 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part197.75 24097.24 27399.29 14199.59 13699.63 6099.65 5599.49 12896.17 28998.44 28499.69 14089.80 31899.47 23398.68 10893.66 32198.78 225
MVS_030496.79 28796.52 28797.59 30399.22 22994.92 32899.04 27399.59 4396.49 26398.43 28598.99 31480.48 35799.39 24897.15 25199.27 14498.47 306
cascas97.69 25297.43 25198.48 24198.60 32197.30 24998.18 34899.39 21192.96 33798.41 28698.78 32693.77 24799.27 27498.16 16698.61 18598.86 219
WR-MVS_H98.13 18397.87 20098.90 19099.02 27098.84 16699.70 3599.59 4397.27 20198.40 28799.19 29495.53 18199.23 27898.34 15293.78 32098.61 292
BH-w/o98.00 20397.89 19998.32 26199.35 19496.20 30099.01 28298.90 31196.42 27298.38 28899.00 31395.26 19299.72 18996.06 28898.61 18599.03 205
pmmvs597.52 26697.30 26898.16 27398.57 32396.73 28299.27 22098.90 31196.14 29498.37 28999.53 21191.54 30099.14 29297.51 22595.87 28198.63 281
DWT-MVSNet_test97.53 26597.40 25497.93 28799.03 26994.86 32999.57 9198.63 33296.59 25998.36 29098.79 32489.32 32399.74 17898.14 16898.16 21299.20 188
EU-MVSNet97.98 20598.03 18097.81 29698.72 30896.65 28699.66 4899.66 2798.09 11298.35 29199.82 4995.25 19398.01 34097.41 23595.30 29598.78 225
FMVSNet596.43 29496.19 29297.15 31299.11 25395.89 30599.32 20599.52 8894.47 32498.34 29299.07 30587.54 34297.07 35192.61 33795.72 28698.47 306
PS-CasMVS97.93 21097.59 22998.95 17998.99 27399.06 13699.68 4299.52 8897.13 21398.31 29399.68 14692.44 28199.05 30598.51 13594.08 31798.75 233
USDC97.34 27697.20 27497.75 29899.07 26195.20 32198.51 33499.04 29597.99 12798.31 29399.86 2389.02 32599.55 22995.67 29897.36 24898.49 303
PEN-MVS97.76 23697.44 24898.72 22098.77 30398.54 19199.78 2299.51 10197.06 22398.29 29599.64 16692.63 27298.89 32898.09 17093.16 32798.72 239
tfpnnormal97.84 22497.47 24098.98 17499.20 23399.22 11599.64 5899.61 3596.32 27698.27 29699.70 13393.35 25299.44 24195.69 29695.40 29398.27 322
ppachtmachnet_test97.49 27297.45 24397.61 30298.62 31895.24 32098.80 31199.46 16896.11 29698.22 29799.62 17896.45 15098.97 32293.77 32395.97 28098.61 292
our_test_397.65 25997.68 21997.55 30598.62 31894.97 32698.84 30799.30 25896.83 24198.19 29899.34 26897.01 13299.02 31095.00 31196.01 27598.64 273
LTVRE_ROB97.16 1298.02 19897.90 19598.40 25499.23 22596.80 28199.70 3599.60 4097.12 21598.18 29999.70 13391.73 29399.72 18998.39 14597.45 24198.68 254
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH97.28 898.10 18697.99 18498.44 25099.41 18096.96 27599.60 7399.56 5698.09 11298.15 30099.91 590.87 30899.70 20198.88 7297.45 24198.67 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MS-PatchMatch97.24 28097.32 26696.99 31698.45 32893.51 34498.82 30999.32 25197.41 19098.13 30199.30 27888.99 32699.56 22795.68 29799.80 8497.90 343
MVS97.28 27896.55 28699.48 11198.78 30098.95 15299.27 22099.39 21183.53 35398.08 30299.54 20796.97 13399.87 12294.23 31999.16 15099.63 124
PAPM97.59 26297.09 27899.07 16299.06 26398.26 21398.30 34499.10 28794.88 31698.08 30299.34 26896.27 15699.64 21689.87 34598.92 17399.31 181
OpenMVScopyleft96.50 1698.47 15298.12 17099.52 10499.04 26799.53 8099.82 1099.72 1194.56 32298.08 30299.88 1594.73 21499.98 697.47 22999.76 9699.06 203
gg-mvs-nofinetune96.17 29995.32 30798.73 21898.79 29798.14 21899.38 18794.09 36391.07 34598.07 30591.04 35989.62 32299.35 26196.75 27199.09 15998.68 254
test0.0.03 197.71 25097.42 25298.56 23398.41 32997.82 23598.78 31398.63 33297.34 19498.05 30698.98 31794.45 22698.98 31595.04 31097.15 25598.89 218
131498.68 14398.54 14799.11 16098.89 28498.65 18299.27 22099.49 12896.89 23697.99 30799.56 19897.72 11299.83 14597.74 20199.27 14498.84 221
DTE-MVSNet97.51 26897.19 27598.46 24698.63 31798.13 21999.84 699.48 14096.68 24897.97 30899.67 15292.92 25998.56 33296.88 26892.60 33498.70 245
SixPastTwentyTwo97.50 26997.33 26598.03 27998.65 31596.23 29999.77 2498.68 33197.14 21297.90 30999.93 490.45 30999.18 28997.00 25796.43 26798.67 261
pm-mvs197.68 25497.28 26998.88 19699.06 26398.62 18599.50 12699.45 18096.32 27697.87 31099.79 8892.47 27799.35 26197.54 22293.54 32398.67 261
testgi97.65 25997.50 23798.13 27599.36 19396.45 29299.42 16899.48 14097.76 14997.87 31099.45 23891.09 30598.81 32994.53 31598.52 19399.13 191
EPNet_dtu98.03 19697.96 18898.23 26998.27 33095.54 31399.23 23498.75 32099.02 1597.82 31299.71 12996.11 15999.48 23293.04 33299.65 12099.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap97.12 28296.89 28297.83 29499.07 26195.52 31498.57 33098.74 32397.58 16897.81 31399.79 8888.16 33699.56 22795.10 30897.21 25198.39 317
ACMH+97.24 1097.92 21397.78 20798.32 26199.46 17096.68 28599.56 9899.54 7198.41 7597.79 31499.87 2090.18 31599.66 20998.05 17897.18 25398.62 283
N_pmnet94.95 31295.83 30092.31 33598.47 32779.33 36099.12 25392.81 36793.87 32797.68 31599.13 30093.87 24499.01 31291.38 34096.19 27298.59 296
KD-MVS_2432*160094.62 31393.72 31997.31 31097.19 34795.82 30698.34 34099.20 27695.00 31497.57 31698.35 33787.95 33998.10 33792.87 33477.00 35698.01 334
miper_refine_blended94.62 31393.72 31997.31 31097.19 34795.82 30698.34 34099.20 27695.00 31497.57 31698.35 33787.95 33998.10 33792.87 33477.00 35698.01 334
PVSNet_094.43 1996.09 30195.47 30497.94 28699.31 20794.34 33597.81 35299.70 1597.12 21597.46 31898.75 32789.71 31999.79 16497.69 20881.69 35299.68 103
pmmvs696.53 29196.09 29497.82 29598.69 31295.47 31599.37 19099.47 15893.46 33397.41 31999.78 9587.06 34399.33 26596.92 26692.70 33398.65 271
new_pmnet96.38 29596.03 29597.41 30898.13 33495.16 32499.05 26899.20 27693.94 32697.39 32098.79 32491.61 29999.04 30690.43 34395.77 28398.05 332
CL-MVSNet_2432*160094.49 31593.97 31896.08 32896.16 35093.67 34298.33 34299.38 21795.13 30997.33 32198.15 34192.69 27096.57 35488.67 34879.87 35497.99 337
IB-MVS95.67 1896.22 29695.44 30698.57 23199.21 23196.70 28398.65 32597.74 34996.71 24697.27 32298.54 33386.03 34599.92 8098.47 14086.30 34699.10 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 24798.55 32498.16 21699.43 16193.68 36497.23 32398.46 33489.30 32499.22 28195.43 30298.22 20497.98 338
MVP-Stereo97.81 23197.75 21397.99 28497.53 33996.60 28898.96 29298.85 31597.22 20797.23 32399.36 26295.28 18999.46 23595.51 30099.78 8997.92 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2024052196.20 29895.89 29997.13 31497.72 33894.96 32799.79 2199.29 26393.01 33697.20 32599.03 31089.69 32098.36 33491.16 34196.13 27398.07 330
TransMVSNet (Re)97.15 28196.58 28598.86 20399.12 25198.85 16599.49 13698.91 30995.48 30697.16 32699.80 7693.38 25199.11 30094.16 32191.73 33698.62 283
DIV-MVS_2432*160095.00 31094.34 31596.96 31897.07 34995.39 31899.56 9899.44 18995.11 31197.13 32797.32 34891.86 28997.27 35090.35 34481.23 35398.23 326
NR-MVSNet97.97 20897.61 22699.02 16998.87 28999.26 11199.47 14799.42 19997.63 16497.08 32899.50 22195.07 19799.13 29597.86 18993.59 32298.68 254
Anonymous2023120696.22 29696.03 29596.79 32397.31 34494.14 33699.63 6099.08 29096.17 28997.04 32999.06 30793.94 24297.76 34686.96 35495.06 30098.47 306
test_040296.64 28996.24 29197.85 29298.85 29396.43 29399.44 15599.26 26693.52 33196.98 33099.52 21488.52 33299.20 28892.58 33897.50 23697.93 341
MIMVSNet195.51 30595.04 30996.92 32097.38 34195.60 30999.52 11699.50 12093.65 33096.97 33199.17 29585.28 34896.56 35588.36 35095.55 29098.60 295
TDRefinement95.42 30794.57 31397.97 28589.83 36196.11 30199.48 14298.75 32096.74 24496.68 33299.88 1588.65 33099.71 19598.37 14982.74 35198.09 329
baseline297.87 21897.55 23098.82 20999.18 23898.02 22299.41 17096.58 35896.97 22996.51 33399.17 29593.43 25099.57 22697.71 20599.03 16498.86 219
pmmvs394.09 31993.25 32296.60 32594.76 35694.49 33298.92 29998.18 34289.66 34696.48 33498.06 34286.28 34497.33 34989.68 34687.20 34597.97 339
DeepMVS_CXcopyleft93.34 33399.29 21282.27 35799.22 27285.15 35196.33 33599.05 30890.97 30799.73 18593.57 32697.77 22198.01 334
LCM-MVSNet-Re97.83 22698.15 16796.87 32199.30 20892.25 34999.59 7998.26 33897.43 18796.20 33699.13 30096.27 15698.73 33198.17 16598.99 16899.64 120
test20.0396.12 30095.96 29796.63 32497.44 34095.45 31699.51 12099.38 21796.55 26096.16 33799.25 28793.76 24896.17 35687.35 35394.22 31498.27 322
K. test v397.10 28396.79 28498.01 28298.72 30896.33 29699.87 497.05 35397.59 16696.16 33799.80 7688.71 32899.04 30696.69 27696.55 26398.65 271
UnsupCasMVSNet_eth96.44 29396.12 29397.40 30998.65 31595.65 30899.36 19499.51 10197.13 21396.04 33998.99 31488.40 33398.17 33696.71 27490.27 33998.40 316
test_method91.10 32291.36 32590.31 33995.85 35173.72 36594.89 35799.25 26868.39 35995.82 34099.02 31280.50 35698.95 32493.64 32594.89 30598.25 324
lessismore_v097.79 29798.69 31295.44 31794.75 36195.71 34199.87 2088.69 32999.32 26695.89 29194.93 30498.62 283
Patchmatch-RL test95.84 30395.81 30195.95 32995.61 35290.57 35298.24 34598.39 33795.10 31395.20 34298.67 32994.78 20897.77 34596.28 28690.02 34099.51 154
ambc93.06 33492.68 35782.36 35698.47 33598.73 32895.09 34397.41 34555.55 36399.10 30296.42 28391.32 33797.71 344
PM-MVS92.96 32192.23 32495.14 33195.61 35289.98 35499.37 19098.21 34094.80 31895.04 34497.69 34365.06 36097.90 34394.30 31789.98 34197.54 348
OpenMVS_ROBcopyleft92.34 2094.38 31793.70 32196.41 32797.38 34193.17 34599.06 26698.75 32086.58 35094.84 34598.26 34081.53 35599.32 26689.01 34797.87 21996.76 349
EG-PatchMatch MVS95.97 30295.69 30296.81 32297.78 33792.79 34799.16 24598.93 30496.16 29194.08 34699.22 29082.72 35299.47 23395.67 29897.50 23698.17 327
pmmvs-eth3d95.34 30994.73 31197.15 31295.53 35495.94 30499.35 20099.10 28795.13 30993.55 34797.54 34488.15 33797.91 34294.58 31489.69 34297.61 345
new-patchmatchnet94.48 31694.08 31695.67 33095.08 35592.41 34899.18 24399.28 26594.55 32393.49 34897.37 34787.86 34197.01 35291.57 33988.36 34397.61 345
UnsupCasMVSNet_bld93.53 32092.51 32396.58 32697.38 34193.82 33898.24 34599.48 14091.10 34493.10 34996.66 35074.89 35898.37 33394.03 32287.71 34497.56 347
Gipumacopyleft90.99 32390.15 32693.51 33298.73 30690.12 35393.98 35899.45 18079.32 35592.28 35094.91 35369.61 35997.98 34187.42 35295.67 28792.45 355
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary69.68 2394.13 31894.90 31091.84 33697.24 34580.01 35998.52 33399.48 14089.01 34791.99 35199.67 15285.67 34799.13 29595.44 30197.03 25696.39 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS286.87 32485.37 32891.35 33890.21 36083.80 35598.89 30297.45 35283.13 35491.67 35295.03 35248.49 36594.70 35885.86 35677.62 35595.54 352
LCM-MVSNet86.80 32585.22 32991.53 33787.81 36280.96 35898.23 34798.99 29871.05 35790.13 35396.51 35148.45 36696.88 35390.51 34285.30 34796.76 349
ET-MVSNet_ETH3D96.49 29295.64 30399.05 16599.53 14798.82 17098.84 30797.51 35197.63 16484.77 35499.21 29392.09 28598.91 32698.98 6092.21 33599.41 173
E-PMN80.61 32879.88 33182.81 34390.75 35976.38 36397.69 35395.76 36066.44 36183.52 35592.25 35762.54 36287.16 36268.53 36161.40 35984.89 360
FPMVS84.93 32685.65 32782.75 34486.77 36363.39 36798.35 33998.92 30674.11 35683.39 35698.98 31750.85 36492.40 36084.54 35794.97 30292.46 354
EMVS80.02 32979.22 33282.43 34591.19 35876.40 36297.55 35592.49 36866.36 36283.01 35791.27 35864.63 36185.79 36365.82 36260.65 36085.08 359
YYNet195.36 30894.51 31497.92 28897.89 33597.10 25899.10 26199.23 27193.26 33580.77 35899.04 30992.81 26298.02 33994.30 31794.18 31598.64 273
MDA-MVSNet_test_wron95.45 30694.60 31298.01 28298.16 33397.21 25699.11 25999.24 27093.49 33280.73 35998.98 31793.02 25698.18 33594.22 32094.45 31098.64 273
MDA-MVSNet-bldmvs94.96 31193.98 31797.92 28898.24 33297.27 25199.15 24999.33 24393.80 32880.09 36099.03 31088.31 33497.86 34493.49 32794.36 31298.62 283
tmp_tt82.80 32781.52 33086.66 34066.61 36868.44 36692.79 36097.92 34568.96 35880.04 36199.85 2985.77 34696.15 35797.86 18943.89 36295.39 353
MVEpermissive76.82 2176.91 33174.31 33584.70 34185.38 36576.05 36496.88 35693.17 36567.39 36071.28 36289.01 36121.66 37287.69 36171.74 36072.29 35890.35 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 33074.86 33484.62 34275.88 36677.61 36197.63 35493.15 36688.81 34864.27 36389.29 36036.51 36783.93 36475.89 35952.31 36192.33 356
PMVScopyleft70.75 2275.98 33274.97 33379.01 34670.98 36755.18 36893.37 35998.21 34065.08 36361.78 36493.83 35521.74 37192.53 35978.59 35891.12 33889.34 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12339.01 33542.50 33728.53 34839.17 36920.91 37098.75 31619.17 37119.83 36638.57 36566.67 36333.16 36815.42 36637.50 36529.66 36449.26 361
testmvs39.17 33443.78 33625.37 34936.04 37016.84 37198.36 33826.56 36920.06 36538.51 36667.32 36229.64 36915.30 36737.59 36439.90 36343.98 362
wuyk23d40.18 33341.29 33836.84 34786.18 36449.12 36979.73 36122.81 37027.64 36425.46 36728.45 36721.98 37048.89 36555.80 36323.56 36512.51 363
uanet_test0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k24.64 33632.85 3390.00 3500.00 3710.00 3720.00 36299.51 1010.00 3670.00 36899.56 19896.58 1450.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas8.27 33811.03 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 36899.01 160.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.30 33711.06 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.58 1910.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS99.64 7799.56 14499.72 4299.60 7399.70 13399.27 499.42 24698.24 15899.80 8499.79 53
save fliter99.76 5299.59 6899.14 25199.40 20799.00 22
test_0728_SECOND99.91 299.84 3299.89 399.57 9199.51 10199.96 1998.93 6699.86 5199.88 5
GSMVS99.52 148
sam_mvs194.86 20499.52 148
sam_mvs94.72 215
MTGPAbinary99.47 158
test_post199.23 23465.14 36594.18 23699.71 19597.58 215
test_post65.99 36494.65 21999.73 185
patchmatchnet-post98.70 32894.79 20799.74 178
MTMP99.54 11098.88 313
gm-plane-assit98.54 32592.96 34694.65 32199.15 29899.64 21697.56 220
test9_res97.49 22699.72 10499.75 69
agg_prior297.21 24399.73 10399.75 69
test_prior499.56 7398.99 284
test_prior99.68 6599.67 10199.48 8899.56 5699.83 14599.74 74
新几何299.01 282
旧先验199.74 7099.59 6899.54 7199.69 14098.47 7899.68 11599.73 81
无先验98.99 28499.51 10196.89 23699.93 6997.53 22399.72 87
原ACMM298.95 296
testdata299.95 4396.67 277
segment_acmp98.96 25
testdata198.85 30698.32 87
plane_prior799.29 21297.03 268
plane_prior699.27 21796.98 27292.71 268
plane_prior599.47 15899.69 20497.78 19697.63 22398.67 261
plane_prior499.61 182
plane_prior299.39 18298.97 30
plane_prior199.26 219
plane_prior96.97 27399.21 24198.45 7197.60 226
n20.00 372
nn0.00 372
door-mid98.05 343
test1199.35 232
door97.92 345
HQP5-MVS96.83 278
BP-MVS97.19 247
HQP3-MVS99.39 21197.58 228
HQP2-MVS92.47 277
NP-MVS99.23 22596.92 27699.40 251
ACMMP++_ref97.19 252
ACMMP++97.43 244
Test By Simon98.75 56