This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
test_vis1_n97.92 22197.44 25599.34 12699.53 15698.08 22499.74 4399.49 13499.15 14100.00 199.94 479.51 36999.98 1099.88 599.76 10099.97 3
test_vis1_n_192098.63 15098.40 15799.31 13399.86 2097.94 23599.67 6299.62 3699.43 299.99 299.91 1387.29 350100.00 199.92 499.92 1699.98 2
test_fmvs1_n98.41 16298.14 17399.21 15299.82 3897.71 24799.74 4399.49 13499.32 899.99 299.95 285.32 35799.97 1799.82 699.84 6799.96 4
test_fmvsm_n_192099.69 199.66 199.78 4399.84 3199.44 8599.58 10799.69 1899.43 299.98 499.91 1398.62 68100.00 199.97 199.95 999.90 7
test_fmvs198.88 11498.79 11699.16 15799.69 10097.61 24999.55 13099.49 13499.32 899.98 499.91 1391.41 30699.96 2599.82 699.92 1699.90 7
dcpmvs_299.23 6699.58 498.16 27899.83 3694.68 33799.76 3799.52 9399.07 2799.98 499.88 2998.56 7199.93 7499.67 1199.98 299.87 21
test_cas_vis1_n_192099.16 7399.01 8599.61 7499.81 4298.86 16599.65 7399.64 3499.39 599.97 799.94 493.20 25999.98 1099.55 1999.91 2199.99 1
mvsany_test199.50 1499.46 1699.62 7399.61 13499.09 12698.94 31699.48 14699.10 2099.96 899.91 1398.85 3999.96 2599.72 899.58 12799.82 44
SED-MVS99.61 499.52 899.88 599.84 3199.90 299.60 9399.48 14699.08 2599.91 999.81 8199.20 799.96 2598.91 8999.85 5999.79 64
test_241102_ONE99.84 3199.90 299.48 14699.07 2799.91 999.74 13399.20 799.76 183
EI-MVSNet-UG-set99.58 699.57 599.64 6899.78 5199.14 12199.60 9399.45 18499.01 3299.90 1199.83 6198.98 2399.93 7499.59 1599.95 999.86 23
EI-MVSNet-Vis-set99.58 699.56 799.64 6899.78 5199.15 12099.61 9299.45 18499.01 3299.89 1299.82 6899.01 1899.92 8599.56 1899.95 999.85 26
DVP-MVS++99.59 599.50 1099.88 599.51 16299.88 899.87 999.51 10798.99 3799.88 1399.81 8199.27 599.96 2598.85 10299.80 8799.81 51
test_241102_TWO99.48 14699.08 2599.88 1399.81 8198.94 2999.96 2598.91 8999.84 6799.88 16
DPE-MVScopyleft99.46 2599.32 3499.91 299.78 5199.88 899.36 21799.51 10798.73 6799.88 1399.84 5798.72 5999.96 2598.16 18299.87 4499.88 16
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS99.41 4199.52 899.05 16899.74 7599.68 4899.46 17599.52 9399.11 1999.88 1399.91 1399.43 197.70 36598.72 12099.93 1499.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS99.66 299.57 599.92 199.77 5799.89 499.75 4099.56 6199.02 3099.88 1399.85 4799.18 1099.96 2599.22 5999.92 1699.90 7
test_fmvsmvis_n_192099.65 399.61 399.77 4699.38 20399.37 9199.58 10799.62 3699.41 499.87 1899.92 1198.81 44100.00 199.97 199.93 1499.94 5
test072699.85 2599.89 499.62 8699.50 12699.10 2099.86 1999.82 6898.94 29
Vis-MVSNetpermissive99.12 8598.97 9199.56 8499.78 5199.10 12599.68 5999.66 2798.49 8399.86 1999.87 3794.77 20999.84 14199.19 6199.41 13899.74 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PC_three_145298.18 12199.84 2199.70 14899.31 398.52 34898.30 17399.80 8799.81 51
IU-MVS99.84 3199.88 899.32 25598.30 10299.84 2198.86 10099.85 5999.89 10
xiu_mvs_v1_base_debu99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
xiu_mvs_v1_base99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
xiu_mvs_v1_base_debi99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
DeepPCF-MVS98.18 398.81 12999.37 2497.12 32499.60 13991.75 36298.61 34699.44 19299.35 699.83 2699.85 4798.70 6199.81 16399.02 7799.91 2199.81 51
MVS_030499.42 3699.32 3499.72 5599.70 9699.27 10399.52 14197.57 36699.51 199.82 2799.78 11198.09 9799.96 2599.97 199.97 599.94 5
TSAR-MVS + GP.99.36 4899.36 2699.36 12599.67 10598.61 18899.07 28499.33 24599.00 3599.82 2799.81 8199.06 1699.84 14199.09 7099.42 13799.65 119
FOURS199.91 199.93 199.87 999.56 6199.10 2099.81 29
DVP-MVScopyleft99.57 999.47 1499.88 599.85 2599.89 499.57 11499.37 22899.10 2099.81 2999.80 9498.94 2999.96 2598.93 8699.86 5299.81 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 3799.81 2999.80 9499.09 1499.96 2598.85 10299.90 2999.88 16
MVSFormer99.17 7199.12 6799.29 14199.51 16298.94 15599.88 499.46 17397.55 19199.80 3299.65 17697.39 11399.28 28299.03 7599.85 5999.65 119
lupinMVS99.13 7999.01 8599.46 11299.51 16298.94 15599.05 28999.16 28797.86 15799.80 3299.56 21397.39 11399.86 12998.94 8499.85 5999.58 144
tttt051798.42 16098.14 17399.28 14499.66 11398.38 21199.74 4396.85 37097.68 17999.79 3499.74 13391.39 30799.89 11698.83 10899.56 12899.57 145
APD-MVS_3200maxsize99.48 2099.35 2899.85 2599.76 6099.83 1699.63 8099.54 7798.36 9699.79 3499.82 6898.86 3899.95 5298.62 13399.81 8399.78 70
jason99.13 7999.03 7899.45 11399.46 18398.87 16299.12 27499.26 27298.03 14699.79 3499.65 17697.02 12799.85 13599.02 7799.90 2999.65 119
jason: jason.
SteuartSystems-ACMMP99.54 1099.42 1799.87 1199.82 3899.81 2599.59 9999.51 10798.62 7399.79 3499.83 6199.28 499.97 1798.48 15599.90 2999.84 30
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast98.69 199.49 1699.39 2199.77 4699.63 12499.59 6299.36 21799.46 17399.07 2799.79 3499.82 6898.85 3999.92 8598.68 12799.87 4499.82 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS99.50 1499.48 1299.54 8799.76 6099.42 8799.90 199.55 6998.56 7799.78 3999.70 14898.65 6699.79 17299.65 1399.78 9499.41 182
SMA-MVScopyleft99.44 3199.30 4399.85 2599.73 8299.83 1699.56 12099.47 16497.45 20399.78 3999.82 6899.18 1099.91 9598.79 11399.89 3899.81 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.58 699.50 1099.81 3699.91 199.66 5399.63 8099.39 21498.91 5099.78 3999.85 4799.36 299.94 6198.84 10599.88 4199.82 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test250696.81 29496.65 29297.29 32099.74 7592.21 36199.60 9385.06 38999.13 1699.77 4299.93 787.82 34899.85 13599.38 3899.38 13999.80 60
test_part299.81 4299.83 1699.77 42
MSP-MVS99.42 3699.27 5199.88 599.89 899.80 2799.67 6299.50 12698.70 6999.77 4299.49 23798.21 9199.95 5298.46 15999.77 9799.88 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 3699.29 4799.80 3899.62 13099.55 6999.50 15399.70 1598.79 6299.77 4299.96 197.45 11299.96 2598.92 8899.90 2999.89 10
APD-MVScopyleft99.27 5999.08 7299.84 3199.75 6899.79 3099.50 15399.50 12697.16 22999.77 4299.82 6898.78 4899.94 6197.56 23699.86 5299.80 60
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post99.45 2799.31 4199.85 2599.76 6099.82 2299.63 8099.52 9398.38 9299.76 4799.82 6898.53 7399.95 5298.61 13699.81 8399.77 72
RE-MVS-def99.34 3099.76 6099.82 2299.63 8099.52 9398.38 9299.76 4799.82 6898.75 5598.61 13699.81 8399.77 72
ACMMP_NAP99.47 2399.34 3099.88 599.87 1599.86 1399.47 17299.48 14698.05 14399.76 4799.86 4298.82 4399.93 7498.82 11299.91 2199.84 30
HPM-MVS_fast99.51 1399.40 2099.85 2599.91 199.79 3099.76 3799.56 6197.72 17599.76 4799.75 12899.13 1299.92 8599.07 7399.92 1699.85 26
VNet99.11 8998.90 10099.73 5499.52 16099.56 6799.41 19499.39 21499.01 3299.74 5199.78 11195.56 17799.92 8599.52 2498.18 21899.72 93
patch_mono-299.26 6199.62 298.16 27899.81 4294.59 33999.52 14199.64 3499.33 799.73 5299.90 1999.00 2299.99 499.69 999.98 299.89 10
SR-MVS99.43 3499.29 4799.86 2099.75 6899.83 1699.59 9999.62 3698.21 11499.73 5299.79 10598.68 6299.96 2598.44 16099.77 9799.79 64
thisisatest053098.35 16898.03 18899.31 13399.63 12498.56 19199.54 13496.75 37297.53 19599.73 5299.65 17691.25 31099.89 11698.62 13399.56 12899.48 167
CS-MVS-test99.49 1699.48 1299.54 8799.78 5199.30 9999.89 299.58 5398.56 7799.73 5299.69 15898.55 7299.82 15899.69 999.85 5999.48 167
EC-MVSNet99.44 3199.39 2199.58 8099.56 14999.49 7999.88 499.58 5398.38 9299.73 5299.69 15898.20 9299.70 20899.64 1499.82 8099.54 150
diffmvspermissive99.14 7799.02 8199.51 10399.61 13498.96 14799.28 23899.49 13498.46 8599.72 5799.71 14496.50 14499.88 12199.31 4899.11 16199.67 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SF-MVS99.38 4699.24 5699.79 4199.79 4999.68 4899.57 11499.54 7797.82 16699.71 5899.80 9498.95 2799.93 7498.19 17899.84 6799.74 82
xiu_mvs_v2_base99.26 6199.25 5599.29 14199.53 15698.91 15999.02 29799.45 18498.80 6199.71 5899.26 29998.94 2999.98 1099.34 4599.23 15198.98 222
PS-MVSNAJ99.32 5299.32 3499.30 13899.57 14598.94 15598.97 31099.46 17398.92 4999.71 5899.24 30199.01 1899.98 1099.35 4199.66 11898.97 223
PGM-MVS99.45 2799.31 4199.86 2099.87 1599.78 3699.58 10799.65 3297.84 16199.71 5899.80 9499.12 1399.97 1798.33 16999.87 4499.83 39
114514_t98.93 11098.67 12699.72 5599.85 2599.53 7499.62 8699.59 4992.65 35599.71 5899.78 11198.06 9999.90 10698.84 10599.91 2199.74 82
PVSNet_Blended_VisFu99.36 4899.28 4999.61 7499.86 2099.07 13199.47 17299.93 297.66 18299.71 5899.86 4297.73 10799.96 2599.47 3399.82 8099.79 64
MTAPA99.52 1299.39 2199.89 499.90 499.86 1399.66 6799.47 16498.79 6299.68 6499.81 8198.43 8099.97 1798.88 9299.90 2999.83 39
HFP-MVS99.49 1699.37 2499.86 2099.87 1599.80 2799.66 6799.67 2398.15 12399.68 6499.69 15899.06 1699.96 2598.69 12599.87 4499.84 30
VDDNet97.55 27097.02 28799.16 15799.49 17398.12 22399.38 21199.30 26395.35 32399.68 6499.90 1982.62 36599.93 7499.31 4898.13 22299.42 180
HPM-MVScopyleft99.42 3699.28 4999.83 3299.90 499.72 4299.81 2099.54 7797.59 18699.68 6499.63 18898.91 3499.94 6198.58 14299.91 2199.84 30
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS97.73 25297.35 26798.88 19999.47 18297.12 26399.34 22598.85 32598.19 11799.67 6899.85 4782.98 36399.92 8599.49 3098.32 20999.60 136
ACMMPR99.49 1699.36 2699.86 2099.87 1599.79 3099.66 6799.67 2398.15 12399.67 6899.69 15898.95 2799.96 2598.69 12599.87 4499.84 30
PVSNet_BlendedMVS98.86 11898.80 11399.03 17099.76 6098.79 17499.28 23899.91 397.42 20899.67 6899.37 27097.53 11099.88 12198.98 8097.29 26398.42 323
PVSNet_Blended99.08 9598.97 9199.42 11899.76 6098.79 17498.78 33299.91 396.74 26099.67 6899.49 23797.53 11099.88 12198.98 8099.85 5999.60 136
sss99.17 7199.05 7499.53 9599.62 13098.97 14399.36 21799.62 3697.83 16299.67 6899.65 17697.37 11699.95 5299.19 6199.19 15499.68 109
ECVR-MVScopyleft98.04 20198.05 18698.00 29099.74 7594.37 34299.59 9994.98 37999.13 1699.66 7399.93 790.67 31699.84 14199.40 3799.38 13999.80 60
h-mvs3397.70 25897.28 27798.97 18099.70 9697.27 25799.36 21799.45 18498.94 4699.66 7399.64 18294.93 19699.99 499.48 3184.36 36899.65 119
hse-mvs297.50 27597.14 28398.59 23199.49 17397.05 27099.28 23899.22 27898.94 4699.66 7399.42 25594.93 19699.65 22399.48 3183.80 37099.08 208
region2R99.48 2099.35 2899.87 1199.88 1199.80 2799.65 7399.66 2798.13 12799.66 7399.68 16498.96 2499.96 2598.62 13399.87 4499.84 30
RPSCF98.22 17698.62 13796.99 32699.82 3891.58 36399.72 4799.44 19296.61 27299.66 7399.89 2395.92 16499.82 15897.46 24699.10 16499.57 145
OMC-MVS99.08 9599.04 7699.20 15399.67 10598.22 21799.28 23899.52 9398.07 13899.66 7399.81 8197.79 10599.78 17797.79 21099.81 8399.60 136
test111198.04 20198.11 17797.83 30199.74 7593.82 34799.58 10795.40 37899.12 1899.65 7999.93 790.73 31599.84 14199.43 3699.38 13999.82 44
test_one_060199.81 4299.88 899.49 13498.97 4399.65 7999.81 8199.09 14
LFMVS97.90 22497.35 26799.54 8799.52 16099.01 13899.39 20698.24 35497.10 23799.65 7999.79 10584.79 35999.91 9599.28 5398.38 20499.69 105
MVS_111021_LR99.41 4199.33 3299.65 6399.77 5799.51 7898.94 31699.85 698.82 5799.65 7999.74 13398.51 7599.80 16998.83 10899.89 3899.64 126
SDMVSNet99.11 8998.90 10099.75 4999.81 4299.59 6299.81 2099.65 3298.78 6599.64 8399.88 2994.56 22099.93 7499.67 1198.26 21199.72 93
sd_testset98.75 13698.57 14699.29 14199.81 4298.26 21599.56 12099.62 3698.78 6599.64 8399.88 2992.02 29099.88 12199.54 2098.26 21199.72 93
9.1499.10 6999.72 8699.40 20299.51 10797.53 19599.64 8399.78 11198.84 4199.91 9597.63 22799.82 80
GST-MVS99.40 4499.24 5699.85 2599.86 2099.79 3099.60 9399.67 2397.97 14999.63 8699.68 16498.52 7499.95 5298.38 16399.86 5299.81 51
CPTT-MVS99.11 8998.90 10099.74 5299.80 4899.46 8399.59 9999.49 13497.03 24399.63 8699.69 15897.27 11999.96 2597.82 20899.84 6799.81 51
ACMMPcopyleft99.45 2799.32 3499.82 3399.89 899.67 5199.62 8699.69 1898.12 12899.63 8699.84 5798.73 5899.96 2598.55 15199.83 7699.81 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 5499.19 6199.64 6899.82 3899.23 10899.62 8699.55 6998.94 4699.63 8699.95 295.82 16999.94 6199.37 4099.97 599.73 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FE-MVS98.48 15598.17 16999.40 12099.54 15598.96 14799.68 5998.81 32995.54 32199.62 9099.70 14893.82 24699.93 7497.35 25299.46 13499.32 192
CHOSEN 280x42099.12 8599.13 6699.08 16399.66 11397.89 23698.43 35699.71 1398.88 5199.62 9099.76 12596.63 14099.70 20899.46 3499.99 199.66 115
PHI-MVS99.30 5499.17 6399.70 5799.56 14999.52 7799.58 10799.80 897.12 23399.62 9099.73 13998.58 6999.90 10698.61 13699.91 2199.68 109
test_yl98.86 11898.63 13299.54 8799.49 17399.18 11299.50 15399.07 29998.22 11299.61 9399.51 23195.37 18399.84 14198.60 13998.33 20599.59 140
DCV-MVSNet98.86 11898.63 13299.54 8799.49 17399.18 11299.50 15399.07 29998.22 11299.61 9399.51 23195.37 18399.84 14198.60 13998.33 20599.59 140
MG-MVS99.13 7999.02 8199.45 11399.57 14598.63 18599.07 28499.34 23898.99 3799.61 9399.82 6897.98 10199.87 12697.00 27199.80 8799.85 26
MP-MVS-pluss99.37 4799.20 6099.88 599.90 499.87 1299.30 23299.52 9397.18 22799.60 9699.79 10598.79 4799.95 5298.83 10899.91 2199.83 39
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS99.13 7998.91 9999.80 3899.75 6899.71 4499.15 26999.41 20396.60 27499.60 9699.55 21698.83 4299.90 10697.48 24399.83 7699.78 70
EPP-MVSNet99.13 7998.99 8799.53 9599.65 11999.06 13299.81 2099.33 24597.43 20699.60 9699.88 2997.14 12199.84 14199.13 6698.94 17599.69 105
HyFIR lowres test99.11 8998.92 9799.65 6399.90 499.37 9199.02 29799.91 397.67 18199.59 9999.75 12895.90 16699.73 19299.53 2299.02 17299.86 23
FA-MVS(test-final)98.75 13698.53 15099.41 11999.55 15399.05 13499.80 2599.01 30496.59 27699.58 10099.59 20295.39 18299.90 10697.78 21199.49 13399.28 195
MVS_Test99.10 9398.97 9199.48 10799.49 17399.14 12199.67 6299.34 23897.31 21699.58 10099.76 12597.65 10999.82 15898.87 9599.07 16799.46 175
MDTV_nov1_ep13_2view95.18 33099.35 22296.84 25699.58 10095.19 19297.82 20899.46 175
DELS-MVS99.48 2099.42 1799.65 6399.72 8699.40 9099.05 28999.66 2799.14 1599.57 10399.80 9498.46 7899.94 6199.57 1799.84 6799.60 136
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZD-MVS99.71 9199.79 3099.61 4196.84 25699.56 10499.54 22198.58 6999.96 2596.93 27899.75 102
CR-MVSNet98.17 18397.93 20098.87 20399.18 25198.49 20299.22 26099.33 24596.96 24799.56 10499.38 26794.33 22899.00 32694.83 32798.58 19599.14 200
RPMNet96.72 29595.90 30799.19 15499.18 25198.49 20299.22 26099.52 9388.72 36899.56 10497.38 36294.08 23899.95 5286.87 37398.58 19599.14 200
IS-MVSNet99.05 9898.87 10599.57 8299.73 8299.32 9599.75 4099.20 28298.02 14799.56 10499.86 4296.54 14399.67 21598.09 18599.13 16099.73 87
ZNCC-MVS99.47 2399.33 3299.87 1199.87 1599.81 2599.64 7699.67 2398.08 13799.55 10899.64 18298.91 3499.96 2598.72 12099.90 2999.82 44
thisisatest051598.14 18697.79 21199.19 15499.50 17198.50 20198.61 34696.82 37196.95 24999.54 10999.43 25391.66 30299.86 12998.08 18999.51 13299.22 198
MVS_111021_HR99.41 4199.32 3499.66 5999.72 8699.47 8298.95 31499.85 698.82 5799.54 10999.73 13998.51 7599.74 18698.91 8999.88 4199.77 72
CP-MVS99.45 2799.32 3499.85 2599.83 3699.75 3999.69 5399.52 9398.07 13899.53 11199.63 18898.93 3399.97 1798.74 11799.91 2199.83 39
WTY-MVS99.06 9798.88 10499.61 7499.62 13099.16 11599.37 21399.56 6198.04 14499.53 11199.62 19396.84 13399.94 6198.85 10298.49 20299.72 93
MCST-MVS99.43 3499.30 4399.82 3399.79 4999.74 4199.29 23699.40 21198.79 6299.52 11399.62 19398.91 3499.90 10698.64 13199.75 10299.82 44
PatchT97.03 29196.44 29698.79 21998.99 28798.34 21299.16 26699.07 29992.13 35699.52 11397.31 36594.54 22398.98 32888.54 36698.73 19199.03 216
CANet99.25 6499.14 6599.59 7799.41 19499.16 11599.35 22299.57 5698.82 5799.51 11599.61 19796.46 14599.95 5299.59 1599.98 299.65 119
mPP-MVS99.44 3199.30 4399.86 2099.88 1199.79 3099.69 5399.48 14698.12 12899.50 11699.75 12898.78 4899.97 1798.57 14599.89 3899.83 39
PatchMatch-RL98.84 12898.62 13799.52 10199.71 9199.28 10199.06 28799.77 997.74 17499.50 11699.53 22595.41 18199.84 14197.17 26599.64 12199.44 178
PVSNet96.02 1798.85 12598.84 11098.89 19799.73 8297.28 25698.32 36299.60 4697.86 15799.50 11699.57 21096.75 13799.86 12998.56 14899.70 11299.54 150
LS3D99.27 5999.12 6799.74 5299.18 25199.75 3999.56 12099.57 5698.45 8699.49 11999.85 4797.77 10699.94 6198.33 16999.84 6799.52 156
MP-MVScopyleft99.33 5199.15 6499.87 1199.88 1199.82 2299.66 6799.46 17398.09 13399.48 12099.74 13398.29 8899.96 2597.93 19899.87 4499.82 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
旧先验298.96 31196.70 26399.47 12199.94 6198.19 178
MSDG98.98 10698.80 11399.53 9599.76 6099.19 11098.75 33599.55 6997.25 22199.47 12199.77 11997.82 10499.87 12696.93 27899.90 2999.54 150
CDS-MVSNet99.09 9499.03 7899.25 14799.42 19198.73 17799.45 17699.46 17398.11 13099.46 12399.77 11998.01 10099.37 26398.70 12298.92 17899.66 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSLP-MVS++99.46 2599.47 1499.44 11799.60 13999.16 11599.41 19499.71 1398.98 4099.45 12499.78 11199.19 999.54 24099.28 5399.84 6799.63 130
XVG-OURS98.73 13998.68 12598.88 19999.70 9697.73 24398.92 31899.55 6998.52 8199.45 12499.84 5795.27 18799.91 9598.08 18998.84 18499.00 219
casdiffmvs_mvgpermissive99.15 7599.02 8199.55 8699.66 11399.09 12699.64 7699.56 6198.26 10699.45 12499.87 3796.03 15899.81 16399.54 2099.15 15899.73 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmrst98.33 16998.48 15297.90 29699.16 25994.78 33599.31 23099.11 29297.27 21999.45 12499.59 20295.33 18599.84 14198.48 15598.61 19299.09 207
TAMVS99.12 8599.08 7299.24 14999.46 18398.55 19299.51 14799.46 17398.09 13399.45 12499.82 6898.34 8699.51 24198.70 12298.93 17699.67 112
ETV-MVS99.26 6199.21 5999.40 12099.46 18399.30 9999.56 12099.52 9398.52 8199.44 12999.27 29798.41 8399.86 12999.10 6999.59 12699.04 215
CANet_DTU98.97 10898.87 10599.25 14799.33 21598.42 21099.08 28399.30 26399.16 1399.43 13099.75 12895.27 18799.97 1798.56 14899.95 999.36 187
SCA98.19 18098.16 17098.27 27399.30 22395.55 31899.07 28498.97 30897.57 18999.43 13099.57 21092.72 27099.74 18697.58 23199.20 15399.52 156
testdata99.54 8799.75 6898.95 15299.51 10797.07 23999.43 13099.70 14898.87 3799.94 6197.76 21599.64 12199.72 93
DPM-MVS98.95 10998.71 12299.66 5999.63 12499.55 6998.64 34599.10 29397.93 15299.42 13399.55 21698.67 6499.80 16995.80 30899.68 11699.61 134
XVG-OURS-SEG-HR98.69 14398.62 13798.89 19799.71 9197.74 24299.12 27499.54 7798.44 8999.42 13399.71 14494.20 23299.92 8598.54 15298.90 18099.00 219
baseline99.15 7599.02 8199.53 9599.66 11399.14 12199.72 4799.48 14698.35 9799.42 13399.84 5796.07 15699.79 17299.51 2599.14 15999.67 112
DP-MVS Recon99.12 8598.95 9599.65 6399.74 7599.70 4699.27 24399.57 5696.40 29099.42 13399.68 16498.75 5599.80 16997.98 19599.72 10899.44 178
Effi-MVS+-dtu98.78 13398.89 10398.47 25099.33 21596.91 28399.57 11499.30 26398.47 8499.41 13798.99 32796.78 13599.74 18698.73 11999.38 13998.74 245
casdiffmvspermissive99.13 7998.98 9099.56 8499.65 11999.16 11599.56 12099.50 12698.33 10099.41 13799.86 4295.92 16499.83 15299.45 3599.16 15599.70 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet97.73 25297.45 25098.57 23599.45 18897.50 25199.02 29798.98 30796.11 31099.41 13799.14 31290.28 31898.74 34595.74 30998.93 17699.47 173
CSCG99.32 5299.32 3499.32 13299.85 2598.29 21399.71 4999.66 2798.11 13099.41 13799.80 9498.37 8599.96 2598.99 7999.96 899.72 93
F-COLMAP99.19 6799.04 7699.64 6899.78 5199.27 10399.42 19299.54 7797.29 21899.41 13799.59 20298.42 8299.93 7498.19 17899.69 11399.73 87
EIA-MVS99.18 6999.09 7199.45 11399.49 17399.18 11299.67 6299.53 8897.66 18299.40 14299.44 25198.10 9699.81 16398.94 8499.62 12499.35 188
mvsmamba98.92 11198.87 10599.08 16399.07 27599.16 11599.88 499.51 10798.15 12399.40 14299.89 2397.12 12299.33 27399.38 3897.40 25998.73 247
MDTV_nov1_ep1398.32 16299.11 26694.44 34199.27 24398.74 33697.51 19799.40 14299.62 19394.78 20699.76 18397.59 23098.81 188
iter_conf_final98.71 14098.61 14398.99 17699.49 17398.96 14799.63 8099.41 20398.19 11799.39 14599.77 11994.82 20299.38 25899.30 5197.52 24398.64 283
CVMVSNet98.57 15298.67 12698.30 26899.35 20995.59 31799.50 15399.55 6998.60 7599.39 14599.83 6194.48 22499.45 24598.75 11698.56 19899.85 26
CNVR-MVS99.42 3699.30 4399.78 4399.62 13099.71 4499.26 25199.52 9398.82 5799.39 14599.71 14498.96 2499.85 13598.59 14199.80 8799.77 72
Effi-MVS+98.81 12998.59 14499.48 10799.46 18399.12 12498.08 36899.50 12697.50 19899.38 14899.41 25996.37 14999.81 16399.11 6898.54 19999.51 162
mvs_anonymous99.03 10198.99 8799.16 15799.38 20398.52 19899.51 14799.38 22097.79 16799.38 14899.81 8197.30 11799.45 24599.35 4198.99 17399.51 162
iter_conf0598.55 15398.44 15398.87 20399.34 21398.60 18999.55 13099.42 20098.21 11499.37 15099.77 11993.55 25299.38 25899.30 5197.48 25198.63 291
XVS99.53 1199.42 1799.87 1199.85 2599.83 1699.69 5399.68 2098.98 4099.37 15099.74 13398.81 4499.94 6198.79 11399.86 5299.84 30
X-MVStestdata96.55 29795.45 31599.87 1199.85 2599.83 1699.69 5399.68 2098.98 4099.37 15064.01 38598.81 4499.94 6198.79 11399.86 5299.84 30
PatchmatchNetpermissive98.31 17098.36 15898.19 27699.16 25995.32 32699.27 24398.92 31497.37 21299.37 15099.58 20694.90 19999.70 20897.43 24999.21 15299.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AllTest98.87 11598.72 12099.31 13399.86 2098.48 20499.56 12099.61 4197.85 15999.36 15499.85 4795.95 16199.85 13596.66 29199.83 7699.59 140
TestCases99.31 13399.86 2098.48 20499.61 4197.85 15999.36 15499.85 4795.95 16199.85 13596.66 29199.83 7699.59 140
Vis-MVSNet (Re-imp)98.87 11598.72 12099.31 13399.71 9198.88 16199.80 2599.44 19297.91 15499.36 15499.78 11195.49 18099.43 25497.91 19999.11 16199.62 132
alignmvs98.81 12998.56 14899.58 8099.43 18999.42 8799.51 14798.96 31098.61 7499.35 15798.92 33494.78 20699.77 17999.35 4198.11 22399.54 150
VPA-MVSNet98.29 17397.95 19799.30 13899.16 25999.54 7199.50 15399.58 5398.27 10599.35 15799.37 27092.53 27999.65 22399.35 4194.46 32498.72 248
AdaColmapbinary99.01 10598.80 11399.66 5999.56 14999.54 7199.18 26499.70 1598.18 12199.35 15799.63 18896.32 15099.90 10697.48 24399.77 9799.55 148
test22299.75 6899.49 7998.91 32099.49 13496.42 28899.34 16099.65 17698.28 8999.69 11399.72 93
API-MVS99.04 9999.03 7899.06 16699.40 19999.31 9899.55 13099.56 6198.54 7999.33 16199.39 26698.76 5299.78 17796.98 27399.78 9498.07 342
bld_raw_dy_0_6498.69 14398.58 14598.99 17698.88 30098.96 14799.80 2599.41 20397.91 15499.32 16299.87 3795.70 17499.31 27999.09 7097.27 26498.71 250
v14419297.92 22197.60 23598.87 20398.83 31098.65 18399.55 13099.34 23896.20 30199.32 16299.40 26294.36 22799.26 28696.37 29995.03 31598.70 255
GeoE98.85 12598.62 13799.53 9599.61 13499.08 12999.80 2599.51 10797.10 23799.31 16499.78 11195.23 19199.77 17998.21 17699.03 17099.75 78
canonicalmvs99.02 10298.86 10899.51 10399.42 19199.32 9599.80 2599.48 14698.63 7299.31 16498.81 33897.09 12499.75 18599.27 5697.90 22799.47 173
V4298.06 19597.79 21198.86 20798.98 29098.84 16799.69 5399.34 23896.53 27899.30 16699.37 27094.67 21599.32 27697.57 23594.66 32198.42 323
ab-mvs98.86 11898.63 13299.54 8799.64 12199.19 11099.44 18199.54 7797.77 16999.30 16699.81 8194.20 23299.93 7499.17 6498.82 18699.49 166
TAPA-MVS97.07 1597.74 25197.34 27098.94 18499.70 9697.53 25099.25 25399.51 10791.90 35799.30 16699.63 18898.78 4899.64 22688.09 36899.87 4499.65 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何199.75 4999.75 6899.59 6299.54 7796.76 25999.29 16999.64 18298.43 8099.94 6196.92 28099.66 11899.72 93
test_fmvs297.25 28597.30 27597.09 32599.43 18993.31 35599.73 4698.87 32498.83 5699.28 17099.80 9484.45 36099.66 21897.88 20197.45 25398.30 331
VPNet97.84 23397.44 25599.01 17299.21 24498.94 15599.48 16799.57 5698.38 9299.28 17099.73 13988.89 33399.39 25799.19 6193.27 34098.71 250
HY-MVS97.30 798.85 12598.64 13199.47 11099.42 19199.08 12999.62 8699.36 22997.39 21199.28 17099.68 16496.44 14799.92 8598.37 16598.22 21399.40 184
PAPM_NR99.04 9998.84 11099.66 5999.74 7599.44 8599.39 20699.38 22097.70 17799.28 17099.28 29498.34 8699.85 13596.96 27599.45 13599.69 105
HPM-MVS++copyleft99.39 4599.23 5899.87 1199.75 6899.84 1599.43 18599.51 10798.68 7199.27 17499.53 22598.64 6799.96 2598.44 16099.80 8799.79 64
v124097.69 25997.32 27398.79 21998.85 30898.43 20899.48 16799.36 22996.11 31099.27 17499.36 27393.76 24999.24 29094.46 33095.23 31098.70 255
thres600view797.86 22997.51 24398.92 18899.72 8697.95 23399.59 9998.74 33697.94 15199.27 17498.62 34491.75 29699.86 12993.73 33998.19 21798.96 225
PLCcopyleft97.94 499.02 10298.85 10999.53 9599.66 11399.01 13899.24 25599.52 9396.85 25599.27 17499.48 24298.25 9099.91 9597.76 21599.62 12499.65 119
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres100view90097.76 24597.45 25098.69 22699.72 8697.86 23999.59 9998.74 33697.93 15299.26 17898.62 34491.75 29699.83 15293.22 34498.18 21898.37 329
EPMVS97.82 23897.65 23098.35 26398.88 30095.98 31099.49 16394.71 38197.57 18999.26 17899.48 24292.46 28499.71 20297.87 20399.08 16699.35 188
Fast-Effi-MVS+-dtu98.77 13598.83 11298.60 23099.41 19496.99 27799.52 14199.49 13498.11 13099.24 18099.34 28096.96 13199.79 17297.95 19799.45 13599.02 218
v192192097.80 24297.45 25098.84 21198.80 31198.53 19499.52 14199.34 23896.15 30799.24 18099.47 24593.98 24199.29 28195.40 31895.13 31398.69 259
LPG-MVS_test98.22 17698.13 17598.49 24499.33 21597.05 27099.58 10799.55 6997.46 20099.24 18099.83 6192.58 27799.72 19698.09 18597.51 24598.68 264
LGP-MVS_train98.49 24499.33 21597.05 27099.55 6997.46 20099.24 18099.83 6192.58 27799.72 19698.09 18597.51 24598.68 264
v114497.98 21297.69 22698.85 21098.87 30498.66 18299.54 13499.35 23496.27 29699.23 18499.35 27694.67 21599.23 29196.73 28695.16 31298.68 264
Anonymous2024052998.09 19197.68 22799.34 12699.66 11398.44 20799.40 20299.43 19893.67 34599.22 18599.89 2390.23 32299.93 7499.26 5798.33 20599.66 115
OPM-MVS98.19 18098.10 17898.45 25298.88 30097.07 26899.28 23899.38 22098.57 7699.22 18599.81 8192.12 28899.66 21898.08 18997.54 24298.61 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_djsdf98.67 14698.57 14698.98 17898.70 32698.91 15999.88 499.46 17397.55 19199.22 18599.88 2995.73 17299.28 28299.03 7597.62 23598.75 242
test1299.75 4999.64 12199.61 6099.29 26799.21 18898.38 8499.89 11699.74 10599.74 82
NCCC99.34 5099.19 6199.79 4199.61 13499.65 5699.30 23299.48 14698.86 5299.21 18899.63 18898.72 5999.90 10698.25 17499.63 12399.80 60
PMMVS98.80 13298.62 13799.34 12699.27 23298.70 17998.76 33499.31 25997.34 21399.21 18899.07 31897.20 12099.82 15898.56 14898.87 18199.52 156
v119297.81 24097.44 25598.91 19298.88 30098.68 18099.51 14799.34 23896.18 30399.20 19199.34 28094.03 23999.36 26795.32 32095.18 31198.69 259
EI-MVSNet98.67 14698.67 12698.68 22799.35 20997.97 22999.50 15399.38 22096.93 25299.20 19199.83 6197.87 10299.36 26798.38 16397.56 24098.71 250
MVSTER98.49 15498.32 16299.00 17499.35 20999.02 13699.54 13499.38 22097.41 20999.20 19199.73 13993.86 24599.36 26798.87 9597.56 24098.62 294
Anonymous20240521198.30 17297.98 19399.26 14699.57 14598.16 21999.41 19498.55 34896.03 31599.19 19499.74 13391.87 29399.92 8599.16 6598.29 21099.70 103
v2v48298.06 19597.77 21698.92 18898.90 29798.82 17199.57 11499.36 22996.65 26799.19 19499.35 27694.20 23299.25 28797.72 22194.97 31698.69 259
CNLPA99.14 7798.99 8799.59 7799.58 14399.41 8999.16 26699.44 19298.45 8699.19 19499.49 23798.08 9899.89 11697.73 21999.75 10299.48 167
UGNet98.87 11598.69 12499.40 12099.22 24398.72 17899.44 18199.68 2099.24 1199.18 19799.42 25592.74 26999.96 2599.34 4599.94 1399.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpn200view997.72 25497.38 26398.72 22499.69 10097.96 23199.50 15398.73 34197.83 16299.17 19898.45 34991.67 30099.83 15293.22 34498.18 21898.37 329
thres40097.77 24497.38 26398.92 18899.69 10097.96 23199.50 15398.73 34197.83 16299.17 19898.45 34991.67 30099.83 15293.22 34498.18 21898.96 225
Test_1112_low_res98.89 11398.66 12999.57 8299.69 10098.95 15299.03 29499.47 16496.98 24599.15 20099.23 30296.77 13699.89 11698.83 10898.78 18999.86 23
baseline198.31 17097.95 19799.38 12499.50 17198.74 17699.59 9998.93 31298.41 9099.14 20199.60 20094.59 21899.79 17298.48 15593.29 33999.61 134
1112_ss98.98 10698.77 11799.59 7799.68 10499.02 13699.25 25399.48 14697.23 22499.13 20299.58 20696.93 13299.90 10698.87 9598.78 18999.84 30
CLD-MVS98.16 18498.10 17898.33 26499.29 22796.82 28698.75 33599.44 19297.83 16299.13 20299.55 21692.92 26399.67 21598.32 17197.69 23298.48 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM199.65 6399.73 8299.33 9499.47 16497.46 20099.12 20499.66 17598.67 6499.91 9597.70 22499.69 11399.71 102
tpm97.67 26497.55 23798.03 28599.02 28495.01 33299.43 18598.54 34996.44 28699.12 20499.34 28091.83 29599.60 23497.75 21796.46 28099.48 167
HQP_MVS98.27 17598.22 16898.44 25599.29 22796.97 27999.39 20699.47 16498.97 4399.11 20699.61 19792.71 27299.69 21397.78 21197.63 23398.67 271
plane_prior397.00 27698.69 7099.11 206
CHOSEN 1792x268899.19 6799.10 6999.45 11399.89 898.52 19899.39 20699.94 198.73 6799.11 20699.89 2395.50 17999.94 6199.50 2699.97 599.89 10
v897.95 21797.63 23398.93 18698.95 29498.81 17399.80 2599.41 20396.03 31599.10 20999.42 25594.92 19899.30 28096.94 27794.08 33298.66 279
ADS-MVSNet298.02 20598.07 18597.87 29799.33 21595.19 32999.23 25699.08 29696.24 29899.10 20999.67 17094.11 23698.93 33896.81 28399.05 16899.48 167
ADS-MVSNet98.20 17998.08 18298.56 23899.33 21596.48 29899.23 25699.15 28896.24 29899.10 20999.67 17094.11 23699.71 20296.81 28399.05 16899.48 167
thres20097.61 26897.28 27798.62 22999.64 12198.03 22599.26 25198.74 33697.68 17999.09 21298.32 35391.66 30299.81 16392.88 34898.22 21398.03 345
dp97.75 24997.80 21097.59 31299.10 26993.71 35099.32 22898.88 32296.48 28399.08 21399.55 21692.67 27599.82 15896.52 29498.58 19599.24 197
GBi-Net97.68 26197.48 24598.29 26999.51 16297.26 25999.43 18599.48 14696.49 28099.07 21499.32 28790.26 31998.98 32897.10 26696.65 27598.62 294
test197.68 26197.48 24598.29 26999.51 16297.26 25999.43 18599.48 14696.49 28099.07 21499.32 28790.26 31998.98 32897.10 26696.65 27598.62 294
FMVSNet398.03 20397.76 22098.84 21199.39 20298.98 14099.40 20299.38 22096.67 26599.07 21499.28 29492.93 26298.98 32897.10 26696.65 27598.56 310
IterMVS-LS98.46 15798.42 15598.58 23499.59 14198.00 22799.37 21399.43 19896.94 25199.07 21499.59 20297.87 10299.03 32198.32 17195.62 30298.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re98.08 19398.16 17097.85 29899.55 15394.67 33899.70 5098.92 31498.15 12399.06 21899.35 27693.67 25199.25 28797.77 21497.25 26599.64 126
pmmvs498.13 18797.90 20298.81 21698.61 33598.87 16298.99 30499.21 28196.44 28699.06 21899.58 20695.90 16699.11 31297.18 26496.11 28898.46 320
XVG-ACMP-BASELINE97.83 23597.71 22598.20 27599.11 26696.33 30399.41 19499.52 9398.06 14299.05 22099.50 23489.64 32899.73 19297.73 21997.38 26198.53 311
CostFormer97.72 25497.73 22397.71 30899.15 26294.02 34699.54 13499.02 30394.67 33699.04 22199.35 27692.35 28799.77 17998.50 15497.94 22699.34 190
DP-MVS99.16 7398.95 9599.78 4399.77 5799.53 7499.41 19499.50 12697.03 24399.04 22199.88 2997.39 11399.92 8598.66 12999.90 2999.87 21
ACMM97.58 598.37 16798.34 16098.48 24699.41 19497.10 26499.56 12099.45 18498.53 8099.04 22199.85 4793.00 26199.71 20298.74 11797.45 25398.64 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+98.70 14198.43 15499.51 10399.51 16299.28 10199.52 14199.47 16496.11 31099.01 22499.34 28096.20 15499.84 14197.88 20198.82 18699.39 185
nrg03098.64 14998.42 15599.28 14499.05 28199.69 4799.81 2099.46 17398.04 14499.01 22499.82 6896.69 13999.38 25899.34 4594.59 32398.78 235
test_prior298.96 31198.34 9899.01 22499.52 22898.68 6297.96 19699.74 105
MAR-MVS98.86 11898.63 13299.54 8799.37 20699.66 5399.45 17699.54 7796.61 27299.01 22499.40 26297.09 12499.86 12997.68 22699.53 13199.10 203
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJss98.92 11198.92 9798.90 19498.78 31598.53 19499.78 3299.54 7798.07 13899.00 22899.76 12599.01 1899.37 26399.13 6697.23 26698.81 232
PAPR98.63 15098.34 16099.51 10399.40 19999.03 13598.80 33099.36 22996.33 29199.00 22899.12 31698.46 7899.84 14195.23 32199.37 14699.66 115
D2MVS98.41 16298.50 15198.15 28199.26 23496.62 29399.40 20299.61 4197.71 17698.98 23099.36 27396.04 15799.67 21598.70 12297.41 25898.15 339
v1097.85 23097.52 24198.86 20798.99 28798.67 18199.75 4099.41 20395.70 31998.98 23099.41 25994.75 21199.23 29196.01 30494.63 32298.67 271
miper_enhance_ethall98.16 18498.08 18298.41 25798.96 29397.72 24498.45 35599.32 25596.95 24998.97 23299.17 30897.06 12699.22 29497.86 20495.99 29198.29 332
UniMVSNet (Re)98.29 17398.00 19199.13 16199.00 28699.36 9399.49 16399.51 10797.95 15098.97 23299.13 31396.30 15199.38 25898.36 16793.34 33898.66 279
TEST999.67 10599.65 5699.05 28999.41 20396.22 30098.95 23499.49 23798.77 5199.91 95
train_agg99.02 10298.77 11799.77 4699.67 10599.65 5699.05 28999.41 20396.28 29498.95 23499.49 23798.76 5299.91 9597.63 22799.72 10899.75 78
RRT_MVS98.70 14198.66 12998.83 21398.90 29798.45 20699.89 299.28 26997.76 17098.94 23699.92 1196.98 12999.25 28799.28 5397.00 27298.80 233
BH-RMVSNet98.41 16298.08 18299.40 12099.41 19498.83 17099.30 23298.77 33297.70 17798.94 23699.65 17692.91 26599.74 18696.52 29499.55 13099.64 126
test_899.67 10599.61 6099.03 29499.41 20396.28 29498.93 23899.48 24298.76 5299.91 95
3Dnovator97.25 999.24 6599.05 7499.81 3699.12 26499.66 5399.84 1399.74 1099.09 2498.92 23999.90 1995.94 16399.98 1098.95 8399.92 1699.79 64
v7n97.87 22797.52 24198.92 18898.76 31998.58 19099.84 1399.46 17396.20 30198.91 24099.70 14894.89 20099.44 25096.03 30393.89 33498.75 242
JIA-IIPM97.50 27597.02 28798.93 18698.73 32197.80 24199.30 23298.97 30891.73 35898.91 24094.86 37295.10 19399.71 20297.58 23197.98 22599.28 195
v14897.79 24397.55 23798.50 24398.74 32097.72 24499.54 13499.33 24596.26 29798.90 24299.51 23194.68 21499.14 30497.83 20793.15 34298.63 291
GA-MVS97.85 23097.47 24799.00 17499.38 20397.99 22898.57 34999.15 28897.04 24298.90 24299.30 29089.83 32599.38 25896.70 28898.33 20599.62 132
tpm297.44 28097.34 27097.74 30799.15 26294.36 34399.45 17698.94 31193.45 35098.90 24299.44 25191.35 30899.59 23597.31 25398.07 22499.29 194
tt080597.97 21597.77 21698.57 23599.59 14196.61 29499.45 17699.08 29698.21 11498.88 24599.80 9488.66 33699.70 20898.58 14297.72 23199.39 185
miper_ehance_all_eth98.18 18298.10 17898.41 25799.23 24097.72 24498.72 33899.31 25996.60 27498.88 24599.29 29297.29 11899.13 30797.60 22995.99 29198.38 328
eth_miper_zixun_eth98.05 20097.96 19598.33 26499.26 23497.38 25498.56 35199.31 25996.65 26798.88 24599.52 22896.58 14199.12 31197.39 25195.53 30598.47 317
cl2297.85 23097.64 23298.48 24699.09 27297.87 23798.60 34899.33 24597.11 23698.87 24899.22 30392.38 28699.17 30398.21 17695.99 29198.42 323
agg_prior99.67 10599.62 5999.40 21198.87 24899.91 95
anonymousdsp98.44 15898.28 16598.94 18498.50 34198.96 14799.77 3499.50 12697.07 23998.87 24899.77 11994.76 21099.28 28298.66 12997.60 23698.57 309
DSMNet-mixed97.25 28597.35 26796.95 32997.84 35193.61 35399.57 11496.63 37496.13 30998.87 24898.61 34694.59 21897.70 36595.08 32398.86 18299.55 148
FMVSNet297.72 25497.36 26598.80 21899.51 16298.84 16799.45 17699.42 20096.49 28098.86 25299.29 29290.26 31998.98 32896.44 29696.56 27898.58 308
c3_l98.12 18998.04 18798.38 26199.30 22397.69 24898.81 32999.33 24596.67 26598.83 25399.34 28097.11 12398.99 32797.58 23195.34 30898.48 315
ITE_SJBPF98.08 28399.29 22796.37 30198.92 31498.34 9898.83 25399.75 12891.09 31199.62 23295.82 30697.40 25998.25 335
Anonymous2023121197.88 22597.54 24098.90 19499.71 9198.53 19499.48 16799.57 5694.16 34198.81 25599.68 16493.23 25699.42 25598.84 10594.42 32698.76 240
Patchmtry97.75 24997.40 26298.81 21699.10 26998.87 16299.11 28099.33 24594.83 33398.81 25599.38 26794.33 22899.02 32396.10 30195.57 30398.53 311
miper_lstm_enhance98.00 21097.91 20198.28 27299.34 21397.43 25398.88 32299.36 22996.48 28398.80 25799.55 21695.98 15998.91 33997.27 25595.50 30698.51 313
BH-untuned98.42 16098.36 15898.59 23199.49 17396.70 28999.27 24399.13 29197.24 22398.80 25799.38 26795.75 17199.74 18697.07 26999.16 15599.33 191
FIs98.78 13398.63 13299.23 15199.18 25199.54 7199.83 1699.59 4998.28 10398.79 25999.81 8196.75 13799.37 26399.08 7296.38 28298.78 235
OurMVSNet-221017-097.88 22597.77 21698.19 27698.71 32596.53 29699.88 499.00 30597.79 16798.78 26099.94 491.68 29999.35 27097.21 25896.99 27398.69 259
MVS-HIRNet95.75 31395.16 31897.51 31499.30 22393.69 35198.88 32295.78 37685.09 37198.78 26092.65 37491.29 30999.37 26394.85 32699.85 5999.46 175
tpmvs97.98 21298.02 19097.84 30099.04 28294.73 33699.31 23099.20 28296.10 31498.76 26299.42 25594.94 19599.81 16396.97 27498.45 20398.97 223
Patchmatch-test97.93 21897.65 23098.77 22199.18 25197.07 26899.03 29499.14 29096.16 30598.74 26399.57 21094.56 22099.72 19693.36 34399.11 16199.52 156
QAPM98.67 14698.30 16499.80 3899.20 24699.67 5199.77 3499.72 1194.74 33598.73 26499.90 1995.78 17099.98 1096.96 27599.88 4199.76 77
3Dnovator+97.12 1399.18 6998.97 9199.82 3399.17 25799.68 4899.81 2099.51 10799.20 1298.72 26599.89 2395.68 17599.97 1798.86 10099.86 5299.81 51
IterMVS-SCA-FT97.82 23897.75 22198.06 28499.57 14596.36 30299.02 29799.49 13497.18 22798.71 26699.72 14392.72 27099.14 30497.44 24895.86 29698.67 271
UniMVSNet_NR-MVSNet98.22 17697.97 19498.96 18198.92 29698.98 14099.48 16799.53 8897.76 17098.71 26699.46 24996.43 14899.22 29498.57 14592.87 34598.69 259
DU-MVS98.08 19397.79 21198.96 18198.87 30498.98 14099.41 19499.45 18497.87 15698.71 26699.50 23494.82 20299.22 29498.57 14592.87 34598.68 264
tpm cat197.39 28197.36 26597.50 31599.17 25793.73 34999.43 18599.31 25991.27 35998.71 26699.08 31794.31 23099.77 17996.41 29898.50 20199.00 219
XXY-MVS98.38 16698.09 18199.24 14999.26 23499.32 9599.56 12099.55 6997.45 20398.71 26699.83 6193.23 25699.63 23198.88 9296.32 28498.76 240
IterMVS97.83 23597.77 21698.02 28799.58 14396.27 30599.02 29799.48 14697.22 22598.71 26699.70 14892.75 26799.13 30797.46 24696.00 29098.67 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test98.75 13698.62 13799.15 16099.08 27499.45 8499.86 1299.60 4698.23 11198.70 27299.82 6896.80 13499.22 29499.07 7396.38 28298.79 234
COLMAP_ROBcopyleft97.56 698.86 11898.75 11999.17 15699.88 1198.53 19499.34 22599.59 4997.55 19198.70 27299.89 2395.83 16899.90 10698.10 18499.90 2999.08 208
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TR-MVS97.76 24597.41 26198.82 21499.06 27897.87 23798.87 32498.56 34796.63 27198.68 27499.22 30392.49 28099.65 22395.40 31897.79 22998.95 227
WR-MVS98.06 19597.73 22399.06 16698.86 30799.25 10699.19 26399.35 23497.30 21798.66 27599.43 25393.94 24299.21 29998.58 14294.28 32898.71 250
HQP-NCC99.19 24898.98 30798.24 10898.66 275
ACMP_Plane99.19 24898.98 30798.24 10898.66 275
HQP4-MVS98.66 27599.64 22698.64 283
HQP-MVS98.02 20597.90 20298.37 26299.19 24896.83 28498.98 30799.39 21498.24 10898.66 27599.40 26292.47 28199.64 22697.19 26297.58 23898.64 283
LF4IMVS97.52 27297.46 24997.70 30998.98 29095.55 31899.29 23698.82 32898.07 13898.66 27599.64 18289.97 32499.61 23397.01 27096.68 27497.94 352
mvs_tets98.40 16598.23 16798.91 19298.67 32998.51 20099.66 6799.53 8898.19 11798.65 28199.81 8192.75 26799.44 25099.31 4897.48 25198.77 238
TESTMET0.1,197.55 27097.27 28098.40 25998.93 29596.53 29698.67 34197.61 36596.96 24798.64 28299.28 29488.63 33899.45 24597.30 25499.38 13999.21 199
jajsoiax98.43 15998.28 16598.88 19998.60 33698.43 20899.82 1799.53 8898.19 11798.63 28399.80 9493.22 25899.44 25099.22 5997.50 24798.77 238
Baseline_NR-MVSNet97.76 24597.45 25098.68 22799.09 27298.29 21399.41 19498.85 32595.65 32098.63 28399.67 17094.82 20299.10 31498.07 19292.89 34498.64 283
EPNet98.86 11898.71 12299.30 13897.20 36398.18 21899.62 8698.91 31899.28 1098.63 28399.81 8195.96 16099.99 499.24 5899.72 10899.73 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-LLR98.06 19597.90 20298.55 24098.79 31297.10 26498.67 34197.75 36297.34 21398.61 28698.85 33594.45 22599.45 24597.25 25699.38 13999.10 203
test-mter97.49 27897.13 28498.55 24098.79 31297.10 26498.67 34197.75 36296.65 26798.61 28698.85 33588.23 34299.45 24597.25 25699.38 13999.10 203
DIV-MVS_self_test98.01 20897.85 20898.48 24699.24 23997.95 23398.71 33999.35 23496.50 27998.60 28899.54 22195.72 17399.03 32197.21 25895.77 29798.46 320
cl____98.01 20897.84 20998.55 24099.25 23897.97 22998.71 33999.34 23896.47 28598.59 28999.54 22195.65 17699.21 29997.21 25895.77 29798.46 320
FMVSNet196.84 29396.36 29798.29 26999.32 22197.26 25999.43 18599.48 14695.11 32798.55 29099.32 28783.95 36298.98 32895.81 30796.26 28598.62 294
UniMVSNet_ETH3D97.32 28396.81 29098.87 20399.40 19997.46 25299.51 14799.53 8895.86 31898.54 29199.77 11982.44 36699.66 21898.68 12797.52 24399.50 165
AUN-MVS96.88 29296.31 29898.59 23199.48 18197.04 27399.27 24399.22 27897.44 20598.51 29299.41 25991.97 29199.66 21897.71 22283.83 36999.07 213
PCF-MVS97.08 1497.66 26597.06 28699.47 11099.61 13499.09 12698.04 36999.25 27491.24 36098.51 29299.70 14894.55 22299.91 9592.76 35199.85 5999.42 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet97.93 21897.66 22998.76 22298.78 31598.62 18699.65 7399.49 13497.76 17098.49 29499.60 20094.23 23198.97 33598.00 19492.90 34398.70 255
CP-MVSNet98.09 19197.78 21499.01 17298.97 29299.24 10799.67 6299.46 17397.25 22198.48 29599.64 18293.79 24799.06 31798.63 13294.10 33198.74 245
ACMP97.20 1198.06 19597.94 19998.45 25299.37 20697.01 27599.44 18199.49 13497.54 19498.45 29699.79 10591.95 29299.72 19697.91 19997.49 25098.62 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
cascas97.69 25997.43 25998.48 24698.60 33697.30 25598.18 36799.39 21492.96 35398.41 29798.78 34093.77 24899.27 28598.16 18298.61 19298.86 229
WR-MVS_H98.13 18797.87 20798.90 19499.02 28498.84 16799.70 5099.59 4997.27 21998.40 29899.19 30795.53 17899.23 29198.34 16893.78 33598.61 303
BH-w/o98.00 21097.89 20698.32 26699.35 20996.20 30799.01 30298.90 32096.42 28898.38 29999.00 32695.26 18999.72 19696.06 30298.61 19299.03 216
pmmvs597.52 27297.30 27598.16 27898.57 33896.73 28899.27 24398.90 32096.14 30898.37 30099.53 22591.54 30599.14 30497.51 24095.87 29598.63 291
EU-MVSNet97.98 21298.03 18897.81 30498.72 32396.65 29299.66 6799.66 2798.09 13398.35 30199.82 6895.25 19098.01 35897.41 25095.30 30998.78 235
FMVSNet596.43 30196.19 30097.15 32199.11 26695.89 31299.32 22899.52 9394.47 34098.34 30299.07 31887.54 34997.07 36992.61 35295.72 30098.47 317
PS-CasMVS97.93 21897.59 23698.95 18398.99 28799.06 13299.68 5999.52 9397.13 23198.31 30399.68 16492.44 28599.05 31898.51 15394.08 33298.75 242
USDC97.34 28297.20 28197.75 30699.07 27595.20 32898.51 35399.04 30297.99 14898.31 30399.86 4289.02 33199.55 23995.67 31397.36 26298.49 314
PEN-MVS97.76 24597.44 25598.72 22498.77 31898.54 19399.78 3299.51 10797.06 24198.29 30599.64 18292.63 27698.89 34198.09 18593.16 34198.72 248
tfpnnormal97.84 23397.47 24798.98 17899.20 24699.22 10999.64 7699.61 4196.32 29298.27 30699.70 14893.35 25599.44 25095.69 31195.40 30798.27 333
ppachtmachnet_test97.49 27897.45 25097.61 31198.62 33395.24 32798.80 33099.46 17396.11 31098.22 30799.62 19396.45 14698.97 33593.77 33895.97 29498.61 303
our_test_397.65 26697.68 22797.55 31398.62 33394.97 33398.84 32699.30 26396.83 25898.19 30899.34 28097.01 12899.02 32395.00 32596.01 28998.64 283
LTVRE_ROB97.16 1298.02 20597.90 20298.40 25999.23 24096.80 28799.70 5099.60 4697.12 23398.18 30999.70 14891.73 29899.72 19698.39 16297.45 25398.68 264
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH97.28 898.10 19097.99 19298.44 25599.41 19496.96 28199.60 9399.56 6198.09 13398.15 31099.91 1390.87 31499.70 20898.88 9297.45 25398.67 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MS-PatchMatch97.24 28797.32 27396.99 32698.45 34393.51 35498.82 32899.32 25597.41 20998.13 31199.30 29088.99 33299.56 23795.68 31299.80 8797.90 355
MVS97.28 28496.55 29499.48 10798.78 31598.95 15299.27 24399.39 21483.53 37298.08 31299.54 22196.97 13099.87 12694.23 33499.16 15599.63 130
PAPM97.59 26997.09 28599.07 16599.06 27898.26 21598.30 36399.10 29394.88 33298.08 31299.34 28096.27 15299.64 22689.87 36198.92 17899.31 193
OpenMVScopyleft96.50 1698.47 15698.12 17699.52 10199.04 28299.53 7499.82 1799.72 1194.56 33898.08 31299.88 2994.73 21299.98 1097.47 24599.76 10099.06 214
gg-mvs-nofinetune96.17 30695.32 31798.73 22398.79 31298.14 22199.38 21194.09 38291.07 36298.07 31591.04 37889.62 32999.35 27096.75 28599.09 16598.68 264
test0.0.03 197.71 25797.42 26098.56 23898.41 34497.82 24098.78 33298.63 34597.34 21398.05 31698.98 32994.45 22598.98 32895.04 32497.15 27098.89 228
APD_test195.87 31096.49 29594.00 34499.53 15684.01 37199.54 13499.32 25595.91 31797.99 31799.85 4785.49 35699.88 12191.96 35498.84 18498.12 340
131498.68 14598.54 14999.11 16298.89 29998.65 18399.27 24399.49 13496.89 25397.99 31799.56 21397.72 10899.83 15297.74 21899.27 15098.84 231
DTE-MVSNet97.51 27497.19 28298.46 25198.63 33298.13 22299.84 1399.48 14696.68 26497.97 31999.67 17092.92 26398.56 34796.88 28292.60 34898.70 255
SixPastTwentyTwo97.50 27597.33 27298.03 28598.65 33096.23 30699.77 3498.68 34497.14 23097.90 32099.93 790.45 31799.18 30297.00 27196.43 28198.67 271
pm-mvs197.68 26197.28 27798.88 19999.06 27898.62 18699.50 15399.45 18496.32 29297.87 32199.79 10592.47 28199.35 27097.54 23893.54 33798.67 271
testgi97.65 26697.50 24498.13 28299.36 20896.45 29999.42 19299.48 14697.76 17097.87 32199.45 25091.09 31198.81 34294.53 32998.52 20099.13 202
EPNet_dtu98.03 20397.96 19598.23 27498.27 34595.54 32099.23 25698.75 33399.02 3097.82 32399.71 14496.11 15599.48 24293.04 34799.65 12099.69 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap97.12 28996.89 28997.83 30199.07 27595.52 32198.57 34998.74 33697.58 18897.81 32499.79 10588.16 34399.56 23795.10 32297.21 26798.39 327
ACMH+97.24 1097.92 22197.78 21498.32 26699.46 18396.68 29199.56 12099.54 7798.41 9097.79 32599.87 3790.18 32399.66 21898.05 19397.18 26998.62 294
N_pmnet94.95 32295.83 30992.31 35098.47 34279.33 37999.12 27492.81 38693.87 34397.68 32699.13 31393.87 24499.01 32591.38 35696.19 28698.59 307
KD-MVS_2432*160094.62 32393.72 32997.31 31897.19 36495.82 31398.34 35999.20 28295.00 33097.57 32798.35 35187.95 34598.10 35592.87 34977.00 37698.01 346
miper_refine_blended94.62 32393.72 32997.31 31897.19 36495.82 31398.34 35999.20 28295.00 33097.57 32798.35 35187.95 34598.10 35592.87 34977.00 37698.01 346
PVSNet_094.43 1996.09 30895.47 31497.94 29399.31 22294.34 34497.81 37099.70 1597.12 23397.46 32998.75 34189.71 32699.79 17297.69 22581.69 37299.68 109
pmmvs696.53 29896.09 30397.82 30398.69 32795.47 32299.37 21399.47 16493.46 34997.41 33099.78 11187.06 35199.33 27396.92 28092.70 34798.65 281
new_pmnet96.38 30296.03 30497.41 31698.13 34895.16 33199.05 28999.20 28293.94 34297.39 33198.79 33991.61 30499.04 31990.43 35995.77 29798.05 344
CL-MVSNet_self_test94.49 32593.97 32896.08 33996.16 36893.67 35298.33 36199.38 22095.13 32597.33 33298.15 35592.69 27496.57 37288.67 36579.87 37497.99 349
IB-MVS95.67 1896.22 30395.44 31698.57 23599.21 24496.70 28998.65 34497.74 36496.71 26297.27 33398.54 34786.03 35399.92 8598.47 15886.30 36699.10 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 25298.55 33998.16 21999.43 18593.68 38397.23 33498.46 34889.30 33099.22 29495.43 31798.22 21397.98 350
MVP-Stereo97.81 24097.75 22197.99 29197.53 35696.60 29598.96 31198.85 32597.22 22597.23 33499.36 27395.28 18699.46 24495.51 31599.78 9497.92 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2024052196.20 30595.89 30897.13 32397.72 35594.96 33499.79 3199.29 26793.01 35297.20 33699.03 32389.69 32798.36 35191.16 35796.13 28798.07 342
TransMVSNet (Re)97.15 28896.58 29398.86 20799.12 26498.85 16699.49 16398.91 31895.48 32297.16 33799.80 9493.38 25499.11 31294.16 33691.73 35098.62 294
KD-MVS_self_test95.00 32094.34 32596.96 32897.07 36695.39 32599.56 12099.44 19295.11 32797.13 33897.32 36491.86 29497.27 36890.35 36081.23 37398.23 337
NR-MVSNet97.97 21597.61 23499.02 17198.87 30499.26 10599.47 17299.42 20097.63 18497.08 33999.50 23495.07 19499.13 30797.86 20493.59 33698.68 264
Anonymous2023120696.22 30396.03 30496.79 33397.31 36194.14 34599.63 8099.08 29696.17 30497.04 34099.06 32093.94 24297.76 36486.96 37295.06 31498.47 317
test_040296.64 29696.24 29997.85 29898.85 30896.43 30099.44 18199.26 27293.52 34796.98 34199.52 22888.52 33999.20 30192.58 35397.50 24797.93 353
MIMVSNet195.51 31495.04 31996.92 33097.38 35895.60 31699.52 14199.50 12693.65 34696.97 34299.17 30885.28 35896.56 37388.36 36795.55 30498.60 306
TDRefinement95.42 31694.57 32397.97 29289.83 38296.11 30999.48 16798.75 33396.74 26096.68 34399.88 2988.65 33799.71 20298.37 16582.74 37198.09 341
baseline297.87 22797.55 23798.82 21499.18 25198.02 22699.41 19496.58 37596.97 24696.51 34499.17 30893.43 25399.57 23697.71 22299.03 17098.86 229
pmmvs394.09 32993.25 33396.60 33594.76 37694.49 34098.92 31898.18 35789.66 36396.48 34598.06 35786.28 35297.33 36789.68 36287.20 36597.97 351
DeepMVS_CXcopyleft93.34 34799.29 22782.27 37499.22 27885.15 37096.33 34699.05 32190.97 31399.73 19293.57 34197.77 23098.01 346
LCM-MVSNet-Re97.83 23598.15 17296.87 33199.30 22392.25 36099.59 9998.26 35297.43 20696.20 34799.13 31396.27 15298.73 34698.17 18198.99 17399.64 126
test20.0396.12 30795.96 30696.63 33497.44 35795.45 32399.51 14799.38 22096.55 27796.16 34899.25 30093.76 24996.17 37487.35 37194.22 32998.27 333
K. test v397.10 29096.79 29198.01 28898.72 32396.33 30399.87 997.05 36997.59 18696.16 34899.80 9488.71 33499.04 31996.69 28996.55 27998.65 281
UnsupCasMVSNet_eth96.44 30096.12 30197.40 31798.65 33095.65 31599.36 21799.51 10797.13 23196.04 35098.99 32788.40 34098.17 35496.71 28790.27 35898.40 326
test_method91.10 33591.36 33790.31 35695.85 36973.72 38694.89 37599.25 27468.39 37895.82 35199.02 32580.50 36898.95 33793.64 34094.89 32098.25 335
lessismore_v097.79 30598.69 32795.44 32494.75 38095.71 35299.87 3788.69 33599.32 27695.89 30594.93 31898.62 294
test_vis1_rt95.81 31295.65 31296.32 33899.67 10591.35 36499.49 16396.74 37398.25 10795.24 35398.10 35674.96 37099.90 10699.53 2298.85 18397.70 358
dmvs_testset95.02 31996.12 30191.72 35299.10 26980.43 37799.58 10797.87 36197.47 19995.22 35498.82 33793.99 24095.18 37788.09 36894.91 31999.56 147
Patchmatch-RL test95.84 31195.81 31095.95 34095.61 37190.57 36598.24 36498.39 35195.10 32995.20 35598.67 34394.78 20697.77 36396.28 30090.02 35999.51 162
test_fmvs392.10 33391.77 33693.08 34896.19 36786.25 36999.82 1798.62 34696.65 26795.19 35696.90 36655.05 38195.93 37696.63 29390.92 35697.06 365
ambc93.06 34992.68 37882.36 37398.47 35498.73 34195.09 35797.41 36155.55 37999.10 31496.42 29791.32 35197.71 356
PM-MVS92.96 33292.23 33595.14 34295.61 37189.98 36799.37 21398.21 35594.80 33495.04 35897.69 35965.06 37497.90 36194.30 33189.98 36097.54 362
OpenMVS_ROBcopyleft92.34 2094.38 32793.70 33196.41 33797.38 35893.17 35699.06 28798.75 33386.58 36994.84 35998.26 35481.53 36799.32 27689.01 36497.87 22896.76 366
mvsany_test393.77 33093.45 33294.74 34395.78 37088.01 36899.64 7698.25 35398.28 10394.31 36097.97 35868.89 37398.51 34997.50 24190.37 35797.71 356
EG-PatchMatch MVS95.97 30995.69 31196.81 33297.78 35292.79 35899.16 26698.93 31296.16 30594.08 36199.22 30382.72 36499.47 24395.67 31397.50 24798.17 338
test_f91.90 33491.26 33893.84 34595.52 37485.92 37099.69 5398.53 35095.31 32493.87 36296.37 36955.33 38098.27 35295.70 31090.98 35597.32 364
pmmvs-eth3d95.34 31894.73 32197.15 32195.53 37395.94 31199.35 22299.10 29395.13 32593.55 36397.54 36088.15 34497.91 36094.58 32889.69 36197.61 359
new-patchmatchnet94.48 32694.08 32695.67 34195.08 37592.41 35999.18 26499.28 26994.55 33993.49 36497.37 36387.86 34797.01 37091.57 35588.36 36297.61 359
UnsupCasMVSNet_bld93.53 33192.51 33496.58 33697.38 35893.82 34798.24 36499.48 14691.10 36193.10 36596.66 36774.89 37198.37 35094.03 33787.71 36497.56 361
Gipumacopyleft90.99 33690.15 34193.51 34698.73 32190.12 36693.98 37699.45 18479.32 37492.28 36694.91 37169.61 37297.98 35987.42 37095.67 30192.45 374
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary69.68 2394.13 32894.90 32091.84 35197.24 36280.01 37898.52 35299.48 14689.01 36691.99 36799.67 17085.67 35599.13 30795.44 31697.03 27196.39 368
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testf190.42 33790.68 33989.65 35797.78 35273.97 38499.13 27298.81 32989.62 36491.80 36898.93 33262.23 37798.80 34386.61 37491.17 35296.19 369
APD_test290.42 33790.68 33989.65 35797.78 35273.97 38499.13 27298.81 32989.62 36491.80 36898.93 33262.23 37798.80 34386.61 37491.17 35296.19 369
PMMVS286.87 34085.37 34491.35 35490.21 38183.80 37298.89 32197.45 36883.13 37391.67 37095.03 37048.49 38394.70 37885.86 37677.62 37595.54 371
LCM-MVSNet86.80 34185.22 34591.53 35387.81 38380.96 37698.23 36698.99 30671.05 37690.13 37196.51 36848.45 38496.88 37190.51 35885.30 36796.76 366
ET-MVSNet_ETH3D96.49 29995.64 31399.05 16899.53 15698.82 17198.84 32697.51 36797.63 18484.77 37299.21 30692.09 28998.91 33998.98 8092.21 34999.41 182
E-PMN80.61 34579.88 34782.81 36290.75 38076.38 38297.69 37195.76 37766.44 38083.52 37392.25 37562.54 37687.16 38268.53 38161.40 37984.89 380
FPMVS84.93 34285.65 34382.75 36386.77 38463.39 38898.35 35898.92 31474.11 37583.39 37498.98 32950.85 38292.40 38084.54 37794.97 31692.46 373
EMVS80.02 34679.22 34882.43 36491.19 37976.40 38197.55 37392.49 38766.36 38183.01 37591.27 37764.63 37585.79 38365.82 38260.65 38085.08 379
test_vis3_rt87.04 33985.81 34290.73 35593.99 37781.96 37599.76 3790.23 38892.81 35481.35 37691.56 37640.06 38599.07 31694.27 33388.23 36391.15 376
YYNet195.36 31794.51 32497.92 29497.89 35097.10 26499.10 28299.23 27793.26 35180.77 37799.04 32292.81 26698.02 35794.30 33194.18 33098.64 283
MDA-MVSNet_test_wron95.45 31594.60 32298.01 28898.16 34797.21 26299.11 28099.24 27693.49 34880.73 37898.98 32993.02 26098.18 35394.22 33594.45 32598.64 283
MDA-MVSNet-bldmvs94.96 32193.98 32797.92 29498.24 34697.27 25799.15 26999.33 24593.80 34480.09 37999.03 32388.31 34197.86 36293.49 34294.36 32798.62 294
tmp_tt82.80 34381.52 34686.66 35966.61 38968.44 38792.79 37897.92 35968.96 37780.04 38099.85 4785.77 35496.15 37597.86 20443.89 38295.39 372
MVEpermissive76.82 2176.91 34874.31 35284.70 36085.38 38676.05 38396.88 37493.17 38467.39 37971.28 38189.01 38021.66 39187.69 38171.74 38072.29 37890.35 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 34774.86 35184.62 36175.88 38777.61 38097.63 37293.15 38588.81 36764.27 38289.29 37936.51 38683.93 38475.89 37952.31 38192.33 375
PMVScopyleft70.75 2275.98 34974.97 35079.01 36570.98 38855.18 38993.37 37798.21 35565.08 38261.78 38393.83 37321.74 39092.53 37978.59 37891.12 35489.34 378
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12339.01 35242.50 35428.53 36739.17 39020.91 39198.75 33519.17 39219.83 38538.57 38466.67 38233.16 38715.42 38637.50 38529.66 38449.26 381
testmvs39.17 35143.78 35325.37 36836.04 39116.84 39298.36 35726.56 39020.06 38438.51 38567.32 38129.64 38815.30 38737.59 38439.90 38343.98 382
wuyk23d40.18 35041.29 35536.84 36686.18 38549.12 39079.73 37922.81 39127.64 38325.46 38628.45 38621.98 38948.89 38555.80 38323.56 38512.51 383
EGC-MVSNET82.80 34377.86 34997.62 31097.91 34996.12 30899.33 22799.28 2698.40 38625.05 38799.27 29784.11 36199.33 27389.20 36398.22 21397.42 363
test_blank0.13 3560.17 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3881.57 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.64 35332.85 3560.00 3690.00 3920.00 3930.00 38099.51 1070.00 3870.00 38899.56 21396.58 1410.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas8.27 35511.03 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 38899.01 180.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.30 35411.06 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.58 2060.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad99.87 1199.51 16299.76 3799.33 24599.96 2598.87 9599.84 6799.89 10
No_MVS99.87 1199.51 16299.76 3799.33 24599.96 2598.87 9599.84 6799.89 10
eth-test20.00 392
eth-test0.00 392
OPU-MVS99.64 6899.56 14999.72 4299.60 9399.70 14899.27 599.42 25598.24 17599.80 8799.79 64
save fliter99.76 6099.59 6299.14 27199.40 21199.00 35
test_0728_SECOND99.91 299.84 3199.89 499.57 11499.51 10799.96 2598.93 8699.86 5299.88 16
GSMVS99.52 156
sam_mvs194.86 20199.52 156
sam_mvs94.72 213
MTGPAbinary99.47 164
test_post199.23 25665.14 38494.18 23599.71 20297.58 231
test_post65.99 38394.65 21799.73 192
patchmatchnet-post98.70 34294.79 20599.74 186
MTMP99.54 13498.88 322
gm-plane-assit98.54 34092.96 35794.65 33799.15 31199.64 22697.56 236
test9_res97.49 24299.72 10899.75 78
agg_prior297.21 25899.73 10799.75 78
test_prior499.56 6798.99 304
test_prior99.68 5899.67 10599.48 8199.56 6199.83 15299.74 82
新几何299.01 302
旧先验199.74 7599.59 6299.54 7799.69 15898.47 7799.68 11699.73 87
无先验98.99 30499.51 10796.89 25399.93 7497.53 23999.72 93
原ACMM298.95 314
testdata299.95 5296.67 290
segment_acmp98.96 24
testdata198.85 32598.32 101
plane_prior799.29 22797.03 274
plane_prior699.27 23296.98 27892.71 272
plane_prior599.47 16499.69 21397.78 21197.63 23398.67 271
plane_prior499.61 197
plane_prior299.39 20698.97 43
plane_prior199.26 234
plane_prior96.97 27999.21 26298.45 8697.60 236
n20.00 393
nn0.00 393
door-mid98.05 358
test1199.35 234
door97.92 359
HQP5-MVS96.83 284
BP-MVS97.19 262
HQP3-MVS99.39 21497.58 238
HQP2-MVS92.47 281
NP-MVS99.23 24096.92 28299.40 262
ACMMP++_ref97.19 268
ACMMP++97.43 257
Test By Simon98.75 55