This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS88.09 590.84 584.88 790.00 2291.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4494.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 3990.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2588.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 2987.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3177.74 1987.42 1987.20 1590.77 1392.63 25
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3590.48 1085.46 4573.08 2890.97 673.77 3684.81 2285.95 2077.43 2288.22 1187.73 1187.85 8394.34 9
CSCG85.28 2187.68 1982.49 2489.95 2391.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2879.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2888.53 3288.59 2772.55 3087.39 1571.90 4190.95 987.55 1374.57 3687.08 2686.54 2687.47 9093.67 17
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5389.81 1673.55 2583.95 3173.30 3789.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3190.38 1188.61 2676.50 186.25 2277.22 2375.12 3980.28 4477.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS84.74 2686.43 2682.77 2389.48 2988.13 3888.64 2573.93 2184.92 2476.77 2581.94 2683.50 2977.29 2586.92 3086.49 2790.49 2293.14 23
PGM-MVS84.42 2786.29 2782.23 2590.04 2188.82 2689.23 2271.74 3582.82 3674.61 3284.41 2382.09 3477.03 2787.13 2486.73 2490.73 1592.06 31
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3274.24 1784.88 2576.23 2775.26 3881.05 4277.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5386.96 4384.91 4970.25 4184.71 2873.91 3585.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3688.49 3388.31 3072.09 3283.42 3472.77 3982.65 2478.22 4975.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPM-MVS83.30 3184.33 3482.11 2689.56 2788.49 3390.33 1273.24 2783.85 3276.46 2672.43 4982.65 3273.02 4886.37 3586.91 1990.03 3689.62 51
X-MVS83.23 3285.20 3280.92 3389.71 2688.68 2788.21 3173.60 2382.57 3771.81 4477.07 3281.92 3671.72 5886.98 2886.86 2090.47 2392.36 28
CDPH-MVS82.64 3385.03 3379.86 3889.41 3088.31 3588.32 2971.84 3480.11 4367.47 6382.09 2581.44 4071.85 5685.89 4186.15 3290.24 3291.25 37
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3789.67 1786.60 3671.48 3681.28 4178.18 2064.78 8477.96 5177.13 2687.32 2286.83 2190.41 2891.48 35
PHI-MVS82.36 3585.89 2978.24 4786.40 4689.52 1885.52 4369.52 4882.38 3965.67 6981.35 2782.36 3373.07 4787.31 2386.76 2389.24 5191.56 34
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4287.22 4285.82 4170.04 4280.30 4278.66 1968.67 6981.04 4377.81 1885.19 4684.88 4389.19 5491.31 36
CPTT-MVS81.77 3783.10 3880.21 3685.93 4986.45 4887.72 3370.98 3882.54 3871.53 4774.23 4481.49 3976.31 3182.85 6981.87 6588.79 6292.26 29
MVS_030481.73 3883.86 3579.26 4186.22 4889.18 2486.41 3767.15 6475.28 5370.75 5174.59 4183.49 3074.42 3887.05 2786.34 2990.58 2091.08 39
CANet81.62 3983.41 3679.53 4087.06 4188.59 3185.47 4467.96 5776.59 5174.05 3374.69 4081.98 3572.98 4986.14 3985.47 3789.68 4590.42 45
HQP-MVS81.19 4083.27 3778.76 4487.40 4085.45 5486.95 3470.47 4081.31 4066.91 6679.24 3076.63 5371.67 5984.43 5483.78 5189.19 5492.05 33
OMC-MVS80.26 4182.59 4177.54 5083.04 6185.54 5283.25 5565.05 7987.32 1872.42 4072.04 5178.97 4673.30 4583.86 5781.60 6988.15 7288.83 55
MVS_111021_HR80.13 4281.46 4478.58 4585.77 5085.17 5783.45 5469.28 4974.08 6070.31 5374.31 4375.26 6073.13 4686.46 3485.15 4189.53 4689.81 49
LGP-MVS_train79.83 4381.22 4778.22 4886.28 4785.36 5686.76 3569.59 4677.34 4865.14 7275.68 3670.79 7871.37 6284.60 5084.01 4690.18 3390.74 42
ACMP73.23 779.79 4480.53 5278.94 4285.61 5185.68 5185.61 4269.59 4677.33 4971.00 5074.45 4269.16 8971.88 5483.15 6683.37 5489.92 3790.57 44
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator73.76 579.75 4580.52 5378.84 4384.94 5887.35 4084.43 5165.54 7578.29 4773.97 3463.00 9275.62 5974.07 4085.00 4785.34 3990.11 3589.04 53
AdaColmapbinary79.74 4678.62 6281.05 3289.23 3286.06 5084.95 4871.96 3379.39 4675.51 3063.16 9068.84 9476.51 2983.55 6182.85 5888.13 7386.46 75
OPM-MVS79.68 4779.28 6080.15 3787.99 3886.77 4588.52 2872.72 2964.55 9867.65 6267.87 7374.33 6474.31 3986.37 3585.25 4089.73 4389.81 49
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DROMVSNet79.44 4881.35 4577.22 5282.95 6284.67 6181.31 5963.65 9172.47 6768.75 5673.15 4678.33 4875.99 3286.06 4083.96 4890.67 1790.79 41
PCF-MVS73.28 679.42 4980.41 5478.26 4684.88 5988.17 3686.08 3869.85 4375.23 5568.43 5768.03 7278.38 4771.76 5781.26 8780.65 8788.56 6591.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS79.35 5081.23 4677.16 5385.01 5686.92 4485.87 4060.89 13080.07 4575.35 3172.96 4773.21 6868.43 7785.41 4484.63 4487.41 9185.44 86
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS79.22 5181.11 4877.01 5481.36 7484.03 6480.35 6563.25 9573.43 6470.37 5274.10 4576.03 5776.40 3086.32 3783.95 4990.34 3189.93 47
MAR-MVS79.21 5280.32 5577.92 4987.46 3988.15 3783.95 5267.48 6374.28 5768.25 5864.70 8577.04 5272.17 5285.42 4385.00 4288.22 6987.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
canonicalmvs79.16 5382.37 4275.41 6382.33 6886.38 4980.80 6263.18 9782.90 3567.34 6472.79 4876.07 5669.62 6883.46 6484.41 4589.20 5390.60 43
DELS-MVS79.15 5481.07 4976.91 5583.54 6087.31 4184.45 5064.92 8069.98 6969.34 5571.62 5376.26 5469.84 6786.57 3285.90 3489.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet79.08 5580.62 5177.28 5188.90 3483.17 7983.65 5372.41 3174.41 5667.15 6576.78 3374.37 6364.43 9783.70 6083.69 5287.15 9488.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMM72.26 878.86 5678.13 6479.71 3986.89 4383.40 7486.02 3970.50 3975.28 5371.49 4863.01 9169.26 8873.57 4384.11 5683.98 4789.76 4287.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS-test78.79 5780.72 5076.53 5781.11 7983.88 6779.69 7463.72 9073.80 6169.95 5475.40 3776.17 5574.85 3584.50 5382.78 5989.87 3988.54 57
QAPM78.47 5880.22 5676.43 5885.03 5586.75 4680.62 6466.00 7273.77 6265.35 7165.54 8078.02 5072.69 5083.71 5983.36 5588.87 6090.41 46
TSAR-MVS + COLMAP78.34 5981.64 4374.48 7280.13 9185.01 5881.73 5765.93 7484.75 2761.68 8385.79 1966.27 10471.39 6182.91 6880.78 7886.01 13185.98 77
MVS_111021_LR78.13 6079.85 5876.13 5981.12 7881.50 8980.28 6665.25 7776.09 5271.32 4976.49 3572.87 7072.21 5182.79 7081.29 7186.59 11687.91 61
casdiffmvs_mvgpermissive77.79 6179.55 5975.73 6181.56 7184.70 6082.12 5664.26 8774.27 5867.93 6070.83 5874.66 6269.19 7283.33 6581.94 6489.29 5087.14 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAPA-MVS71.42 977.69 6280.05 5774.94 6680.68 8384.52 6281.36 5863.14 9884.77 2664.82 7468.72 6775.91 5871.86 5581.62 7679.55 10487.80 8585.24 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETV-MVS77.32 6378.81 6175.58 6282.24 6983.64 7279.98 6764.02 8869.64 7463.90 7770.89 5769.94 8473.41 4485.39 4583.91 5089.92 3788.31 58
CNLPA77.20 6477.54 6876.80 5682.63 6484.31 6379.77 7164.64 8185.17 2373.18 3856.37 12869.81 8574.53 3781.12 9078.69 11586.04 13087.29 67
casdiffmvspermissive76.76 6578.46 6374.77 6880.32 8883.73 7180.65 6363.24 9673.58 6366.11 6869.39 6474.09 6569.49 7082.52 7279.35 10988.84 6186.52 74
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu76.57 6677.90 6575.02 6580.56 8486.58 4779.24 7866.18 6964.81 9568.18 5965.61 7871.45 7367.05 8184.16 5581.80 6688.90 5890.92 40
PVSNet_BlendedMVS76.21 6777.52 6974.69 6979.46 9483.79 6977.50 9664.34 8569.88 7071.88 4268.54 7070.42 8067.05 8183.48 6279.63 10087.89 8186.87 71
PVSNet_Blended76.21 6777.52 6974.69 6979.46 9483.79 6977.50 9664.34 8569.88 7071.88 4268.54 7070.42 8067.05 8183.48 6279.63 10087.89 8186.87 71
OpenMVScopyleft70.44 1076.15 6976.82 7775.37 6485.01 5684.79 5978.99 8262.07 11971.27 6867.88 6157.91 12172.36 7170.15 6682.23 7481.41 7088.12 7487.78 63
PLCcopyleft68.99 1175.68 7075.31 8276.12 6082.94 6381.26 9379.94 6966.10 7077.15 5066.86 6759.13 11168.53 9673.73 4280.38 10079.04 11087.13 9881.68 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EIA-MVS75.64 7176.60 7874.53 7182.43 6783.84 6878.32 8962.28 11865.96 8863.28 8168.95 6567.54 9971.61 6082.55 7181.63 6889.24 5185.72 80
MVS_Test75.37 7277.13 7573.31 7779.07 9781.32 9279.98 6760.12 14169.72 7264.11 7670.53 5973.22 6768.90 7380.14 10779.48 10687.67 8785.50 84
Effi-MVS+75.28 7376.20 7974.20 7381.15 7783.24 7781.11 6063.13 9966.37 8460.27 8764.30 8868.88 9370.93 6581.56 7881.69 6788.61 6387.35 65
DI_MVS_plusplus_trai75.13 7476.12 8073.96 7478.18 10381.55 8780.97 6162.54 11368.59 7565.13 7361.43 9574.81 6169.32 7181.01 9279.59 10287.64 8885.89 78
diffmvspermissive74.86 7577.37 7271.93 8175.62 12580.35 10579.42 7760.15 14072.81 6664.63 7571.51 5473.11 6966.53 9179.02 12077.98 12385.25 14586.83 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net74.47 7677.80 6670.59 9185.33 5285.40 5573.54 14165.98 7360.65 12956.00 10872.11 5079.15 4554.63 16683.13 6782.25 6288.04 7781.92 124
GeoE74.23 7774.84 8573.52 7580.42 8781.46 9079.77 7161.06 12867.23 8163.67 7859.56 10868.74 9567.90 7880.25 10579.37 10888.31 6687.26 68
LS3D74.08 7873.39 9374.88 6785.05 5482.62 8379.71 7368.66 5272.82 6558.80 9157.61 12261.31 11971.07 6480.32 10178.87 11486.00 13280.18 141
EPP-MVSNet74.00 7977.41 7170.02 9980.53 8583.91 6674.99 11862.68 11165.06 9349.77 14468.68 6872.09 7263.06 10582.49 7380.73 7989.12 5688.91 54
FA-MVS(training)73.66 8074.95 8472.15 8078.63 10180.46 10378.92 8354.79 16969.71 7365.37 7062.04 9366.89 10267.10 8080.72 9479.87 9788.10 7684.97 94
DCV-MVSNet73.65 8175.78 8171.16 8580.19 8979.27 11477.45 9861.68 12566.73 8358.72 9265.31 8169.96 8362.19 11081.29 8680.97 7586.74 10986.91 70
IS_MVSNet73.33 8277.34 7368.65 11481.29 7583.47 7374.45 12363.58 9365.75 9048.49 14967.11 7770.61 7954.63 16684.51 5283.58 5389.48 4786.34 76
CANet_DTU73.29 8376.96 7669.00 11177.04 11582.06 8579.49 7656.30 16667.85 7953.29 12471.12 5670.37 8261.81 11981.59 7780.96 7686.09 12584.73 98
Fast-Effi-MVS+73.11 8473.66 9072.48 7977.72 10980.88 9978.55 8658.83 15665.19 9260.36 8659.98 10562.42 11671.22 6381.66 7580.61 8988.20 7084.88 97
UGNet72.78 8577.67 6767.07 13671.65 16383.24 7775.20 11263.62 9264.93 9456.72 10471.82 5273.30 6649.02 17981.02 9180.70 8586.22 12288.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive72.77 8677.20 7467.59 12674.19 13984.01 6576.61 10661.69 12460.62 13050.61 13970.25 6171.31 7655.57 16283.85 5882.28 6186.90 10388.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FC-MVSNet-train72.60 8775.07 8369.71 10281.10 8078.79 12073.74 14065.23 7866.10 8753.34 12370.36 6063.40 11356.92 15181.44 8080.96 7687.93 7984.46 102
ET-MVSNet_ETH3D72.46 8874.19 8770.44 9262.50 19881.17 9479.90 7062.46 11664.52 9957.52 10071.49 5559.15 12972.08 5378.61 12581.11 7388.16 7183.29 112
ECVR-MVScopyleft72.20 8973.91 8970.20 9681.49 7283.27 7575.74 10767.59 6168.19 7749.31 14755.77 13062.00 11758.82 13384.76 4882.94 5688.27 6780.41 139
MVSTER72.06 9074.24 8669.51 10570.39 17475.97 15076.91 10257.36 16364.64 9761.39 8568.86 6663.76 11163.46 10281.44 8079.70 9987.56 8985.31 88
Anonymous2023121171.90 9172.48 10271.21 8480.14 9081.53 8876.92 10162.89 10264.46 10058.94 8943.80 19070.98 7762.22 10980.70 9580.19 9486.18 12385.73 79
Effi-MVS+-dtu71.82 9271.86 10771.78 8278.77 9880.47 10278.55 8661.67 12660.68 12855.49 10958.48 11565.48 10668.85 7476.92 14275.55 15487.35 9285.46 85
test250671.72 9372.95 9770.29 9481.49 7283.27 7575.74 10767.59 6168.19 7749.81 14361.15 9649.73 18958.82 13384.76 4882.94 5688.27 6780.63 135
IterMVS-LS71.69 9472.82 10070.37 9377.54 11176.34 14775.13 11660.46 13661.53 12357.57 9964.89 8367.33 10066.04 9477.09 14177.37 13585.48 14185.18 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test111171.56 9573.44 9269.38 10781.16 7682.95 8074.99 11867.68 5966.89 8246.33 16355.19 13660.91 12057.99 14184.59 5182.70 6088.12 7480.85 132
MSDG71.52 9669.87 11973.44 7682.21 7079.35 11379.52 7564.59 8266.15 8661.87 8253.21 15456.09 14465.85 9578.94 12178.50 11786.60 11576.85 163
thisisatest053071.48 9773.01 9669.70 10373.83 14478.62 12274.53 12259.12 15064.13 10158.63 9364.60 8658.63 13164.27 9880.28 10380.17 9587.82 8484.64 100
tttt051771.41 9872.95 9769.60 10473.70 14678.70 12174.42 12659.12 15063.89 10558.35 9664.56 8758.39 13364.27 9880.29 10280.17 9587.74 8684.69 99
ACMH+66.54 1371.36 9970.09 11772.85 7882.59 6581.13 9578.56 8568.04 5561.55 12252.52 13051.50 16954.14 15468.56 7678.85 12279.50 10586.82 10683.94 106
IB-MVS66.94 1271.21 10071.66 10870.68 8879.18 9682.83 8272.61 14761.77 12359.66 13463.44 8053.26 15259.65 12759.16 13276.78 14582.11 6387.90 8087.33 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GBi-Net70.78 10173.37 9467.76 11972.95 15178.00 12775.15 11362.72 10664.13 10151.44 13258.37 11669.02 9057.59 14381.33 8380.72 8086.70 11082.02 118
test170.78 10173.37 9467.76 11972.95 15178.00 12775.15 11362.72 10664.13 10151.44 13258.37 11669.02 9057.59 14381.33 8380.72 8086.70 11082.02 118
ACMH65.37 1470.71 10370.00 11871.54 8382.51 6682.47 8477.78 9368.13 5456.19 15646.06 16654.30 14051.20 18168.68 7580.66 9680.72 8086.07 12684.45 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet70.59 10472.19 10368.72 11277.72 10980.72 10073.81 13869.65 4561.99 11843.23 17560.54 10157.50 13658.57 13579.56 11381.07 7489.34 4983.97 104
FMVSNet370.49 10572.90 9967.67 12472.88 15477.98 13074.96 12062.72 10664.13 10151.44 13258.37 11669.02 9057.43 14679.43 11579.57 10386.59 11681.81 125
baseline70.45 10674.09 8866.20 14470.95 17175.67 15174.26 13053.57 17168.33 7658.42 9469.87 6271.45 7361.55 12074.84 15674.76 15978.42 17783.72 109
FMVSNet270.39 10772.67 10167.72 12272.95 15178.00 12775.15 11362.69 11063.29 10951.25 13655.64 13168.49 9757.59 14380.91 9380.35 9286.70 11082.02 118
v870.23 10869.86 12070.67 8974.69 13479.82 10978.79 8459.18 14958.80 13858.20 9755.00 13757.33 13766.31 9377.51 13576.71 14486.82 10683.88 107
v1070.22 10969.76 12270.74 8674.79 13380.30 10779.22 7959.81 14457.71 14556.58 10654.22 14555.31 14766.95 8478.28 12877.47 13287.12 10085.07 92
MS-PatchMatch70.17 11070.49 11469.79 10180.98 8177.97 13277.51 9558.95 15362.33 11655.22 11253.14 15565.90 10562.03 11379.08 11977.11 13984.08 15577.91 155
baseline170.10 11172.17 10467.69 12379.74 9276.80 14273.91 13464.38 8462.74 11448.30 15164.94 8264.08 11054.17 16881.46 7978.92 11285.66 13876.22 165
v2v48270.05 11269.46 12670.74 8674.62 13580.32 10679.00 8160.62 13357.41 14756.89 10355.43 13555.14 14966.39 9277.25 13877.14 13886.90 10383.57 111
v114469.93 11369.36 12770.61 9074.89 13280.93 9679.11 8060.64 13255.97 15855.31 11153.85 14754.14 15466.54 9078.10 13077.44 13387.14 9785.09 91
baseline269.69 11470.27 11669.01 11075.72 12477.13 14073.82 13758.94 15461.35 12457.09 10261.68 9457.17 13961.99 11478.10 13076.58 14686.48 11979.85 143
DU-MVS69.63 11570.91 11168.13 11875.99 12079.54 11073.81 13869.20 5061.20 12643.23 17558.52 11353.50 16158.57 13579.22 11780.45 9087.97 7883.97 104
UniMVSNet (Re)69.53 11671.90 10666.76 14176.42 11880.93 9672.59 14868.03 5661.75 12141.68 18058.34 11957.23 13853.27 17179.53 11480.62 8888.57 6484.90 96
v119269.50 11768.83 13370.29 9474.49 13680.92 9878.55 8660.54 13455.04 16454.21 11452.79 16152.33 17466.92 8577.88 13277.35 13687.04 10185.51 83
HyFIR lowres test69.47 11868.94 13270.09 9876.77 11782.93 8176.63 10560.17 13959.00 13754.03 11740.54 19965.23 10767.89 7976.54 14878.30 12085.03 14880.07 142
v14419269.34 11968.68 13770.12 9774.06 14080.54 10178.08 9260.54 13454.99 16654.13 11652.92 15952.80 17266.73 8877.13 14076.72 14387.15 9485.63 81
TranMVSNet+NR-MVSNet69.25 12070.81 11267.43 12777.23 11479.46 11273.48 14369.66 4460.43 13139.56 18358.82 11253.48 16355.74 16079.59 11181.21 7288.89 5982.70 114
CHOSEN 1792x268869.20 12169.26 12869.13 10876.86 11678.93 11677.27 9960.12 14161.86 12054.42 11342.54 19461.61 11866.91 8678.55 12678.14 12279.23 17583.23 113
v192192069.03 12268.32 14169.86 10074.03 14180.37 10477.55 9460.25 13854.62 16853.59 12252.36 16551.50 18066.75 8777.17 13976.69 14586.96 10285.56 82
CostFormer68.92 12369.58 12468.15 11775.98 12276.17 14978.22 9151.86 18365.80 8961.56 8463.57 8962.83 11461.85 11770.40 18868.67 18579.42 17379.62 146
FMVSNet168.84 12470.47 11566.94 13871.35 16877.68 13574.71 12162.35 11756.93 14949.94 14250.01 17564.59 10857.07 14881.33 8380.72 8086.25 12182.00 121
NR-MVSNet68.79 12570.56 11366.71 14377.48 11279.54 11073.52 14269.20 5061.20 12639.76 18258.52 11350.11 18751.37 17580.26 10480.71 8488.97 5783.59 110
V4268.76 12669.63 12367.74 12164.93 19478.01 12678.30 9056.48 16558.65 13956.30 10754.26 14357.03 14064.85 9677.47 13677.01 14085.60 13984.96 95
v124068.64 12767.89 14669.51 10573.89 14380.26 10876.73 10459.97 14353.43 17653.08 12551.82 16850.84 18366.62 8976.79 14476.77 14286.78 10885.34 87
Fast-Effi-MVS+-dtu68.34 12869.47 12567.01 13775.15 12877.97 13277.12 10055.40 16857.87 14046.68 16156.17 12960.39 12162.36 10876.32 14976.25 15085.35 14481.34 128
GA-MVS68.14 12969.17 13066.93 13973.77 14578.50 12474.45 12358.28 15855.11 16348.44 15060.08 10353.99 15761.50 12178.43 12777.57 13085.13 14680.54 136
tfpn200view968.11 13068.72 13667.40 12877.83 10778.93 11674.28 12862.81 10356.64 15146.82 15952.65 16253.47 16456.59 15280.41 9778.43 11886.11 12480.52 137
EPNet_dtu68.08 13171.00 11064.67 15279.64 9368.62 18375.05 11763.30 9466.36 8545.27 17067.40 7566.84 10343.64 18875.37 15274.98 15881.15 16777.44 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20067.98 13268.55 13967.30 13177.89 10678.86 11874.18 13262.75 10456.35 15446.48 16252.98 15853.54 16056.46 15380.41 9777.97 12486.05 12879.78 145
thres40067.95 13368.62 13867.17 13377.90 10478.59 12374.27 12962.72 10656.34 15545.77 16853.00 15753.35 16756.46 15380.21 10678.43 11885.91 13580.43 138
pmmvs467.89 13467.39 15168.48 11571.60 16573.57 16574.45 12360.98 12964.65 9657.97 9854.95 13851.73 17961.88 11673.78 16275.11 15683.99 15777.91 155
v14867.85 13567.53 14768.23 11673.25 14977.57 13874.26 13057.36 16355.70 15957.45 10153.53 14855.42 14661.96 11575.23 15373.92 16285.08 14781.32 129
Vis-MVSNet (Re-imp)67.83 13673.52 9161.19 16878.37 10276.72 14466.80 17362.96 10065.50 9134.17 19467.19 7669.68 8639.20 19779.39 11679.44 10785.68 13776.73 164
PatchMatch-RL67.78 13766.65 15669.10 10973.01 15072.69 16868.49 16361.85 12262.93 11260.20 8856.83 12750.42 18569.52 6975.62 15174.46 16181.51 16573.62 182
thres600view767.68 13868.43 14066.80 14077.90 10478.86 11873.84 13662.75 10456.07 15744.70 17352.85 16052.81 17155.58 16180.41 9777.77 12686.05 12880.28 140
COLMAP_ROBcopyleft62.73 1567.66 13966.76 15568.70 11380.49 8677.98 13075.29 11162.95 10163.62 10749.96 14147.32 18550.72 18458.57 13576.87 14375.50 15584.94 15075.33 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CDS-MVSNet67.65 14069.83 12165.09 14875.39 12776.55 14574.42 12663.75 8953.55 17449.37 14659.41 10962.45 11544.44 18679.71 11079.82 9883.17 16177.36 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RPSCF67.64 14171.25 10963.43 16161.86 20070.73 17567.26 16850.86 18874.20 5958.91 9067.49 7469.33 8764.10 10071.41 17568.45 18977.61 17977.17 160
thres100view90067.60 14268.02 14367.12 13577.83 10777.75 13473.90 13562.52 11456.64 15146.82 15952.65 16253.47 16455.92 15778.77 12377.62 12985.72 13679.23 148
Baseline_NR-MVSNet67.53 14368.77 13566.09 14575.99 12074.75 16172.43 14968.41 5361.33 12538.33 18751.31 17054.13 15656.03 15679.22 11778.19 12185.37 14382.45 116
thisisatest051567.40 14468.78 13465.80 14670.02 17675.24 15769.36 16057.37 16254.94 16753.67 12155.53 13454.85 15058.00 14078.19 12978.91 11386.39 12083.78 108
USDC67.36 14567.90 14566.74 14271.72 16175.23 15871.58 15160.28 13767.45 8050.54 14060.93 9745.20 20262.08 11176.56 14774.50 16084.25 15475.38 173
EG-PatchMatch MVS67.24 14666.94 15367.60 12578.73 9981.35 9173.28 14559.49 14646.89 19851.42 13543.65 19153.49 16255.50 16381.38 8280.66 8687.15 9481.17 130
UniMVSNet_ETH3D67.18 14767.03 15267.36 12974.44 13778.12 12574.07 13366.38 6752.22 18146.87 15848.64 18051.84 17856.96 14977.29 13778.53 11685.42 14282.59 115
v7n67.05 14866.94 15367.17 13372.35 15678.97 11573.26 14658.88 15551.16 18750.90 13748.21 18250.11 18760.96 12477.70 13377.38 13486.68 11385.05 93
IterMVS-SCA-FT66.89 14969.22 12964.17 15471.30 16975.64 15271.33 15253.17 17557.63 14649.08 14860.72 9960.05 12563.09 10474.99 15573.92 16277.07 18381.57 127
IterMVS66.36 15068.30 14264.10 15569.48 18174.61 16273.41 14450.79 18957.30 14848.28 15260.64 10059.92 12660.85 12874.14 16072.66 16981.80 16478.82 151
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TDRefinement66.09 15165.03 16867.31 13069.73 17876.75 14375.33 10964.55 8360.28 13249.72 14545.63 18842.83 20560.46 12975.75 15075.95 15184.08 15578.04 154
pm-mvs165.62 15267.42 14963.53 16073.66 14776.39 14669.66 15760.87 13149.73 19143.97 17451.24 17157.00 14148.16 18079.89 10877.84 12584.85 15279.82 144
tpm cat165.41 15363.81 17667.28 13275.61 12672.88 16775.32 11052.85 17762.97 11163.66 7953.24 15353.29 16961.83 11865.54 19964.14 20174.43 19574.60 176
SCA65.40 15466.58 15764.02 15670.65 17273.37 16667.35 16753.46 17363.66 10654.14 11560.84 9860.20 12461.50 12169.96 18968.14 19077.01 18469.91 188
anonymousdsp65.28 15567.98 14462.13 16458.73 20673.98 16467.10 17050.69 19048.41 19447.66 15754.27 14152.75 17361.45 12376.71 14680.20 9387.13 9889.53 52
PMMVS65.06 15669.17 13060.26 17355.25 21263.43 19966.71 17443.01 20862.41 11550.64 13869.44 6367.04 10163.29 10374.36 15973.54 16582.68 16273.99 181
CR-MVSNet64.83 15765.54 16264.01 15770.64 17369.41 17865.97 17852.74 17857.81 14252.65 12754.27 14156.31 14360.92 12572.20 17173.09 16781.12 16875.69 170
TransMVSNet (Re)64.74 15865.66 16163.66 15977.40 11375.33 15669.86 15662.67 11247.63 19641.21 18150.01 17552.33 17445.31 18579.57 11277.69 12885.49 14077.07 162
test-LLR64.42 15964.36 17264.49 15375.02 13063.93 19666.61 17561.96 12054.41 16947.77 15457.46 12360.25 12255.20 16470.80 18269.33 18080.40 17174.38 178
MDTV_nov1_ep1364.37 16065.24 16463.37 16268.94 18370.81 17472.40 15050.29 19260.10 13353.91 11960.07 10459.15 12957.21 14769.43 19267.30 19277.47 18069.78 190
tfpnnormal64.27 16163.64 17765.02 14975.84 12375.61 15371.24 15462.52 11447.79 19542.97 17742.65 19344.49 20352.66 17378.77 12376.86 14184.88 15179.29 147
PatchmatchNetpermissive64.21 16264.65 17063.69 15871.29 17068.66 18269.63 15851.70 18563.04 11053.77 12059.83 10758.34 13460.23 13068.54 19566.06 19775.56 19068.08 194
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dps64.00 16362.99 17965.18 14773.29 14872.07 17068.98 16253.07 17657.74 14458.41 9555.55 13347.74 19560.89 12769.53 19167.14 19476.44 18771.19 186
pmmvs-eth3d63.52 16462.44 18664.77 15166.82 18970.12 17769.41 15959.48 14754.34 17252.71 12646.24 18744.35 20456.93 15072.37 16673.77 16483.30 15975.91 167
WR-MVS63.03 16567.40 15057.92 18375.14 12977.60 13760.56 19666.10 7054.11 17323.88 20553.94 14653.58 15934.50 20173.93 16177.71 12787.35 9280.94 131
PEN-MVS62.96 16665.77 16059.70 17673.98 14275.45 15463.39 18967.61 6052.49 17925.49 20453.39 14949.12 19140.85 19471.94 17377.26 13786.86 10580.72 134
TinyColmap62.84 16761.03 19264.96 15069.61 17971.69 17168.48 16459.76 14555.41 16047.69 15647.33 18434.20 21462.76 10774.52 15772.59 17081.44 16671.47 185
CP-MVSNet62.68 16865.49 16359.40 17971.84 15975.34 15562.87 19167.04 6552.64 17827.19 20253.38 15048.15 19341.40 19271.26 17675.68 15286.07 12682.00 121
gg-mvs-nofinetune62.55 16965.05 16759.62 17778.72 10077.61 13670.83 15553.63 17039.71 21022.04 21136.36 20364.32 10947.53 18181.16 8879.03 11185.00 14977.17 160
CVMVSNet62.55 16965.89 15858.64 18166.95 18769.15 18066.49 17756.29 16752.46 18032.70 19559.27 11058.21 13550.09 17771.77 17471.39 17479.31 17478.99 150
CMPMVSbinary47.78 1762.49 17162.52 18462.46 16370.01 17770.66 17662.97 19051.84 18451.98 18356.71 10542.87 19253.62 15857.80 14272.23 16970.37 17775.45 19275.91 167
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs662.41 17262.88 18061.87 16571.38 16775.18 16067.76 16659.45 14841.64 20642.52 17937.33 20152.91 17046.87 18277.67 13476.26 14983.23 16079.18 149
tpm62.41 17263.15 17861.55 16772.24 15763.79 19871.31 15346.12 20657.82 14155.33 11059.90 10654.74 15153.63 16967.24 19864.29 20070.65 20574.25 180
PS-CasMVS62.38 17465.06 16659.25 18071.73 16075.21 15962.77 19266.99 6651.94 18526.96 20352.00 16747.52 19641.06 19371.16 17975.60 15385.97 13381.97 123
pmmvs562.37 17564.04 17460.42 17165.03 19271.67 17267.17 16952.70 18050.30 18844.80 17154.23 14451.19 18249.37 17872.88 16573.48 16683.45 15874.55 177
tpmrst62.00 17662.35 18761.58 16671.62 16464.14 19569.07 16148.22 20262.21 11753.93 11858.26 12055.30 14855.81 15963.22 20462.62 20370.85 20470.70 187
PatchT61.97 17764.04 17459.55 17860.49 20267.40 18656.54 20348.65 19856.69 15052.65 12751.10 17252.14 17760.92 12572.20 17173.09 16778.03 17875.69 170
DTE-MVSNet61.85 17864.96 16958.22 18274.32 13874.39 16361.01 19567.85 5851.76 18621.91 21253.28 15148.17 19237.74 19872.22 17076.44 14786.52 11878.49 152
SixPastTwentyTwo61.84 17962.45 18561.12 16969.20 18272.20 16962.03 19357.40 16146.54 19938.03 18957.14 12641.72 20758.12 13969.67 19071.58 17381.94 16378.30 153
WR-MVS_H61.83 18065.87 15957.12 18671.72 16176.87 14161.45 19466.19 6851.97 18422.92 20953.13 15652.30 17633.80 20271.03 18075.00 15786.65 11480.78 133
LTVRE_ROB59.44 1661.82 18162.64 18360.87 17072.83 15577.19 13964.37 18558.97 15233.56 21528.00 20152.59 16442.21 20663.93 10174.52 15776.28 14877.15 18282.13 117
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RPMNet61.71 18262.88 18060.34 17269.51 18069.41 17863.48 18849.23 19457.81 14245.64 16950.51 17350.12 18653.13 17268.17 19768.49 18881.07 16975.62 172
TESTMET0.1,161.10 18364.36 17257.29 18557.53 20763.93 19666.61 17536.22 21254.41 16947.77 15457.46 12360.25 12255.20 16470.80 18269.33 18080.40 17174.38 178
test-mter60.84 18464.62 17156.42 18855.99 21064.18 19465.39 18034.23 21354.39 17146.21 16557.40 12559.49 12855.86 15871.02 18169.65 17980.87 17076.20 166
PM-MVS60.48 18560.94 19359.94 17458.85 20566.83 18964.27 18651.39 18655.03 16548.03 15350.00 17740.79 20958.26 13869.20 19367.13 19578.84 17677.60 157
MDTV_nov1_ep13_2view60.16 18660.51 19459.75 17565.39 19169.05 18168.00 16548.29 20051.99 18245.95 16748.01 18349.64 19053.39 17068.83 19466.52 19677.47 18069.55 191
EPMVS60.00 18761.97 18857.71 18468.46 18463.17 20264.54 18448.23 20163.30 10844.72 17260.19 10256.05 14550.85 17665.27 20262.02 20469.44 20763.81 201
TAMVS59.58 18862.81 18255.81 19066.03 19065.64 19363.86 18748.74 19749.95 19037.07 19154.77 13958.54 13244.44 18672.29 16871.79 17174.70 19466.66 196
test0.0.03 158.80 18961.58 19055.56 19175.02 13068.45 18459.58 20061.96 12052.74 17729.57 19849.75 17854.56 15231.46 20471.19 17769.77 17875.75 18864.57 199
CHOSEN 280x42058.70 19061.88 18954.98 19355.45 21150.55 21464.92 18240.36 20955.21 16138.13 18848.31 18163.76 11163.03 10673.73 16368.58 18768.00 21073.04 183
MIMVSNet58.52 19161.34 19155.22 19260.76 20167.01 18866.81 17249.02 19656.43 15338.90 18540.59 19854.54 15340.57 19573.16 16471.65 17275.30 19366.00 197
FMVSNet557.24 19260.02 19553.99 19656.45 20962.74 20365.27 18147.03 20355.14 16239.55 18440.88 19653.42 16641.83 18972.35 16771.10 17673.79 19764.50 200
gm-plane-assit57.00 19357.62 20056.28 18976.10 11962.43 20547.62 21346.57 20433.84 21423.24 20737.52 20040.19 21059.61 13179.81 10977.55 13184.55 15372.03 184
FC-MVSNet-test56.90 19465.20 16547.21 20466.98 18663.20 20149.11 21258.60 15759.38 13611.50 21965.60 7956.68 14224.66 21171.17 17871.36 17572.38 20169.02 192
Anonymous2023120656.36 19557.80 19954.67 19470.08 17566.39 19060.46 19757.54 16049.50 19329.30 19933.86 20646.64 19735.18 20070.44 18668.88 18475.47 19168.88 193
ADS-MVSNet55.94 19658.01 19753.54 19862.48 19958.48 20859.12 20146.20 20559.65 13542.88 17852.34 16653.31 16846.31 18362.00 20660.02 20764.23 21260.24 208
pmnet_mix0255.30 19757.01 20153.30 19964.14 19559.09 20758.39 20250.24 19353.47 17538.68 18649.75 17845.86 20040.14 19665.38 20160.22 20668.19 20965.33 198
EU-MVSNet54.63 19858.69 19649.90 20256.99 20862.70 20456.41 20450.64 19145.95 20123.14 20850.42 17446.51 19836.63 19965.51 20064.85 19975.57 18974.91 175
MVS-HIRNet54.41 19952.10 20657.11 18758.99 20456.10 21149.68 21149.10 19546.18 20052.15 13133.18 20746.11 19956.10 15563.19 20559.70 20876.64 18660.25 207
testgi54.39 20057.86 19850.35 20171.59 16667.24 18754.95 20553.25 17443.36 20323.78 20644.64 18947.87 19424.96 20970.45 18568.66 18673.60 19862.78 204
test20.0353.93 20156.28 20251.19 20072.19 15865.83 19153.20 20761.08 12742.74 20422.08 21037.07 20245.76 20124.29 21270.44 18669.04 18274.31 19663.05 203
MDA-MVSNet-bldmvs53.37 20253.01 20553.79 19743.67 21667.95 18559.69 19957.92 15943.69 20232.41 19641.47 19527.89 21952.38 17456.97 21265.99 19876.68 18567.13 195
FPMVS51.87 20350.00 20854.07 19566.83 18857.25 20960.25 19850.91 18750.25 18934.36 19336.04 20432.02 21641.49 19158.98 21056.07 20970.56 20659.36 209
MIMVSNet149.27 20453.25 20444.62 20644.61 21461.52 20653.61 20652.18 18141.62 20718.68 21528.14 21241.58 20825.50 20768.46 19669.04 18273.15 19962.37 205
pmmvs347.65 20549.08 21045.99 20544.61 21454.79 21250.04 20931.95 21633.91 21329.90 19730.37 20833.53 21546.31 18363.50 20363.67 20273.14 20063.77 202
N_pmnet47.35 20650.13 20744.11 20759.98 20351.64 21351.86 20844.80 20749.58 19220.76 21340.65 19740.05 21129.64 20559.84 20855.15 21057.63 21354.00 211
new-patchmatchnet46.97 20749.47 20944.05 20862.82 19756.55 21045.35 21452.01 18242.47 20517.04 21735.73 20535.21 21321.84 21561.27 20754.83 21165.26 21160.26 206
GG-mvs-BLEND46.86 20867.51 14822.75 2130.05 22476.21 14864.69 1830.04 22161.90 1190.09 22555.57 13271.32 750.08 22070.54 18467.19 19371.58 20269.86 189
PMVScopyleft39.38 1846.06 20943.30 21149.28 20362.93 19638.75 21641.88 21553.50 17233.33 21635.46 19228.90 21131.01 21733.04 20358.61 21154.63 21268.86 20857.88 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 21042.64 21233.44 21037.54 21945.00 21536.60 21632.72 21540.27 20812.72 21829.89 20928.90 21824.78 21053.17 21352.90 21356.31 21448.34 212
Gipumacopyleft36.38 21135.80 21337.07 20945.76 21333.90 21729.81 21748.47 19939.91 20918.02 2168.00 2208.14 22425.14 20859.29 20961.02 20555.19 21540.31 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS225.60 21229.75 21420.76 21428.00 22030.93 21823.10 21929.18 21723.14 2181.46 22418.23 21616.54 2215.08 21840.22 21441.40 21537.76 21637.79 215
test_method22.26 21325.94 21517.95 2153.24 2237.17 22323.83 2187.27 21937.35 21220.44 21421.87 21539.16 21218.67 21634.56 21520.84 21934.28 21720.64 219
E-PMN21.77 21418.24 21725.89 21140.22 21719.58 22012.46 22239.87 21018.68 2206.71 2219.57 2174.31 22722.36 21419.89 21927.28 21733.73 21828.34 217
EMVS20.98 21517.15 21825.44 21239.51 21819.37 22112.66 22139.59 21119.10 2196.62 2229.27 2184.40 22622.43 21317.99 22024.40 21831.81 21925.53 218
MVEpermissive19.12 1920.47 21623.27 21617.20 21612.66 22225.41 21910.52 22334.14 21414.79 2216.53 2238.79 2194.68 22516.64 21729.49 21741.63 21422.73 22138.11 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.09 2170.15 2190.02 2180.01 2250.02 2250.05 2260.01 2220.11 2220.01 2260.26 2220.01 2280.06 2220.10 2210.10 2200.01 2230.43 221
test1230.09 2170.14 2200.02 2180.00 2260.02 2250.02 2270.01 2220.09 2230.00 2270.30 2210.00 2290.08 2200.03 2220.09 2210.01 2230.45 220
uanet_test0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def46.24 164
9.1486.88 16
SR-MVS88.99 3373.57 2487.54 14
Anonymous20240521172.16 10580.85 8281.85 8676.88 10365.40 7662.89 11346.35 18667.99 9862.05 11281.15 8980.38 9185.97 13384.50 101
our_test_367.93 18570.99 17366.89 171
ambc53.42 20364.99 19363.36 20049.96 21047.07 19737.12 19028.97 21016.36 22241.82 19075.10 15467.34 19171.55 20375.72 169
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 225
tmp_tt14.50 21714.68 2217.17 22310.46 2242.21 22037.73 21128.71 20025.26 21316.98 2204.37 21931.49 21629.77 21626.56 220
XVS86.63 4488.68 2785.00 4671.81 4481.92 3690.47 23
X-MVStestdata86.63 4488.68 2785.00 4671.81 4481.92 3690.47 23
mPP-MVS89.90 2481.29 41
NP-MVS80.10 44
Patchmtry65.80 19265.97 17852.74 17852.65 127
DeepMVS_CXcopyleft18.74 22218.55 2208.02 21826.96 2177.33 22023.81 21413.05 22325.99 20625.17 21822.45 22236.25 216