DVP-MVS++ | | | 89.14 1 | 91.86 1 | 85.97 1 | 92.55 2 | 92.38 1 | 91.69 4 | 76.31 3 | 93.31 1 | 83.11 3 | 92.44 4 | 91.18 1 | 81.17 2 | 89.55 2 | 87.93 8 | 91.01 7 | 96.21 1 |
|
SED-MVS | | | 88.85 2 | 91.59 3 | 85.67 2 | 90.54 15 | 92.29 3 | 91.71 3 | 76.40 2 | 92.41 3 | 83.24 2 | 92.50 3 | 90.64 4 | 81.10 3 | 89.53 3 | 88.02 7 | 91.00 8 | 95.73 3 |
|
DVP-MVS |  | | 88.67 3 | 91.62 2 | 85.22 4 | 90.47 16 | 92.36 2 | 90.69 9 | 76.15 4 | 93.08 2 | 82.75 4 | 92.19 6 | 90.71 3 | 80.45 6 | 89.27 6 | 87.91 9 | 90.82 11 | 95.84 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 88.63 4 | 91.29 4 | 85.53 3 | 90.87 8 | 92.20 4 | 91.98 2 | 76.00 6 | 90.55 8 | 82.09 6 | 93.85 1 | 90.75 2 | 81.25 1 | 88.62 8 | 87.59 14 | 90.96 9 | 95.48 4 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSP-MVS | | | 88.09 5 | 90.84 5 | 84.88 7 | 90.00 22 | 91.80 6 | 91.63 5 | 75.80 7 | 91.99 4 | 81.23 8 | 92.54 2 | 89.18 6 | 80.89 4 | 87.99 15 | 87.91 9 | 89.70 44 | 94.51 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 88.00 6 | 90.50 6 | 85.08 5 | 90.95 7 | 91.58 7 | 92.03 1 | 75.53 12 | 91.15 5 | 80.10 14 | 92.27 5 | 88.34 11 | 80.80 5 | 88.00 14 | 86.99 18 | 91.09 5 | 95.16 6 |
|
SMA-MVS |  | | 87.56 7 | 90.17 7 | 84.52 9 | 91.71 3 | 90.57 9 | 90.77 8 | 75.19 13 | 90.67 7 | 80.50 13 | 86.59 17 | 88.86 8 | 78.09 15 | 89.92 1 | 89.41 1 | 90.84 10 | 95.19 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SF-MVS | | | 87.47 8 | 89.70 8 | 84.86 8 | 91.26 6 | 91.10 8 | 90.90 6 | 75.65 8 | 89.21 9 | 81.25 7 | 91.12 8 | 88.93 7 | 78.82 10 | 87.42 19 | 86.23 30 | 91.28 3 | 93.90 13 |
|
HPM-MVS++ |  | | 87.09 9 | 88.92 13 | 84.95 6 | 92.61 1 | 87.91 39 | 90.23 15 | 76.06 5 | 88.85 12 | 81.20 9 | 87.33 13 | 87.93 12 | 79.47 9 | 88.59 9 | 88.23 5 | 90.15 34 | 93.60 20 |
|
SD-MVS | | | 86.96 10 | 89.45 9 | 84.05 14 | 90.13 19 | 89.23 22 | 89.77 18 | 74.59 14 | 89.17 10 | 80.70 10 | 89.93 11 | 89.67 5 | 78.47 12 | 87.57 18 | 86.79 22 | 90.67 17 | 93.76 16 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 86.88 11 | 89.23 10 | 84.14 12 | 89.78 25 | 88.67 30 | 90.59 10 | 73.46 26 | 88.99 11 | 80.52 12 | 91.26 7 | 88.65 9 | 79.91 8 | 86.96 29 | 86.22 31 | 90.59 19 | 93.83 14 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS |  | | 86.84 12 | 88.91 14 | 84.41 10 | 90.66 11 | 90.10 12 | 90.78 7 | 75.64 9 | 87.38 16 | 78.72 18 | 90.68 10 | 86.82 17 | 80.15 7 | 87.13 24 | 86.45 28 | 90.51 21 | 93.83 14 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 86.52 13 | 89.01 11 | 83.62 16 | 90.28 18 | 90.09 13 | 90.32 13 | 74.05 19 | 88.32 13 | 79.74 15 | 87.04 15 | 85.59 23 | 76.97 28 | 89.35 4 | 88.44 4 | 90.35 30 | 94.27 11 |
|
CNVR-MVS | | | 86.36 14 | 88.19 17 | 84.23 11 | 91.33 5 | 89.84 14 | 90.34 11 | 75.56 10 | 87.36 17 | 78.97 17 | 81.19 28 | 86.76 18 | 78.74 11 | 89.30 5 | 88.58 2 | 90.45 27 | 94.33 10 |
|
HFP-MVS | | | 86.15 15 | 87.95 18 | 84.06 13 | 90.80 9 | 89.20 23 | 89.62 19 | 74.26 16 | 87.52 14 | 80.63 11 | 86.82 16 | 84.19 28 | 78.22 14 | 87.58 17 | 87.19 16 | 90.81 12 | 93.13 24 |
|
SteuartSystems-ACMMP | | | 85.99 16 | 88.31 16 | 83.27 20 | 90.73 10 | 89.84 14 | 90.27 14 | 74.31 15 | 84.56 29 | 75.88 29 | 87.32 14 | 85.04 24 | 77.31 23 | 89.01 7 | 88.46 3 | 91.14 4 | 93.96 12 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMPR | | | 85.52 17 | 87.53 20 | 83.17 21 | 90.13 19 | 89.27 20 | 89.30 20 | 73.97 20 | 86.89 19 | 77.14 24 | 86.09 18 | 83.18 31 | 77.74 19 | 87.42 19 | 87.20 15 | 90.77 13 | 92.63 25 |
|
MP-MVS |  | | 85.50 18 | 87.40 21 | 83.28 19 | 90.65 12 | 89.51 19 | 89.16 23 | 74.11 18 | 83.70 33 | 78.06 21 | 85.54 20 | 84.89 27 | 77.31 23 | 87.40 21 | 87.14 17 | 90.41 28 | 93.65 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
NCCC | | | 85.34 19 | 86.59 24 | 83.88 15 | 91.48 4 | 88.88 25 | 89.79 17 | 75.54 11 | 86.67 20 | 77.94 22 | 76.55 34 | 84.99 25 | 78.07 16 | 88.04 12 | 87.68 12 | 90.46 26 | 93.31 21 |
|
DeepPCF-MVS | | 79.04 1 | 85.30 20 | 88.93 12 | 81.06 31 | 88.77 35 | 90.48 10 | 85.46 45 | 73.08 28 | 90.97 6 | 73.77 36 | 84.81 22 | 85.95 20 | 77.43 22 | 88.22 11 | 87.73 11 | 87.85 83 | 94.34 9 |
|
CSCG | | | 85.28 21 | 87.68 19 | 82.49 24 | 89.95 23 | 91.99 5 | 88.82 24 | 71.20 37 | 86.41 21 | 79.63 16 | 79.26 29 | 88.36 10 | 73.94 41 | 86.64 31 | 86.67 25 | 91.40 2 | 94.41 8 |
|
MCST-MVS | | | 85.13 22 | 86.62 23 | 83.39 17 | 90.55 14 | 89.82 16 | 89.29 21 | 73.89 22 | 84.38 30 | 76.03 28 | 79.01 31 | 85.90 21 | 78.47 12 | 87.81 16 | 86.11 33 | 92.11 1 | 93.29 22 |
|
TSAR-MVS + ACMM | | | 85.10 23 | 88.81 15 | 80.77 34 | 89.55 28 | 88.53 32 | 88.59 27 | 72.55 30 | 87.39 15 | 71.90 41 | 90.95 9 | 87.55 13 | 74.57 36 | 87.08 26 | 86.54 26 | 87.47 90 | 93.67 17 |
|
train_agg | | | 84.86 24 | 87.21 22 | 82.11 26 | 90.59 13 | 85.47 53 | 89.81 16 | 73.55 25 | 83.95 31 | 73.30 37 | 89.84 12 | 87.23 15 | 75.61 33 | 86.47 33 | 85.46 38 | 89.78 40 | 92.06 31 |
|
DeepC-MVS | | 78.47 2 | 84.81 25 | 86.03 28 | 83.37 18 | 89.29 31 | 90.38 11 | 88.61 26 | 76.50 1 | 86.25 22 | 77.22 23 | 75.12 39 | 80.28 44 | 77.59 21 | 88.39 10 | 88.17 6 | 91.02 6 | 93.66 18 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CP-MVS | | | 84.74 26 | 86.43 26 | 82.77 23 | 89.48 29 | 88.13 38 | 88.64 25 | 73.93 21 | 84.92 24 | 76.77 25 | 81.94 26 | 83.50 29 | 77.29 25 | 86.92 30 | 86.49 27 | 90.49 22 | 93.14 23 |
|
PGM-MVS | | | 84.42 27 | 86.29 27 | 82.23 25 | 90.04 21 | 88.82 26 | 89.23 22 | 71.74 35 | 82.82 36 | 74.61 32 | 84.41 23 | 82.09 34 | 77.03 27 | 87.13 24 | 86.73 24 | 90.73 15 | 92.06 31 |
|
DeepC-MVS_fast | | 78.24 3 | 84.27 28 | 85.50 30 | 82.85 22 | 90.46 17 | 89.24 21 | 87.83 32 | 74.24 17 | 84.88 25 | 76.23 27 | 75.26 38 | 81.05 42 | 77.62 20 | 88.02 13 | 87.62 13 | 90.69 16 | 92.41 27 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 83.69 29 | 86.58 25 | 80.32 35 | 85.14 53 | 86.96 43 | 84.91 49 | 70.25 41 | 84.71 28 | 73.91 35 | 85.16 21 | 85.63 22 | 77.92 17 | 85.44 42 | 85.71 36 | 89.77 41 | 92.45 26 |
|
ACMMP |  | | 83.42 30 | 85.27 31 | 81.26 30 | 88.47 36 | 88.49 33 | 88.31 30 | 72.09 32 | 83.42 34 | 72.77 39 | 82.65 24 | 78.22 49 | 75.18 34 | 86.24 38 | 85.76 35 | 90.74 14 | 92.13 30 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DPM-MVS | | | 83.30 31 | 84.33 34 | 82.11 26 | 89.56 27 | 88.49 33 | 90.33 12 | 73.24 27 | 83.85 32 | 76.46 26 | 72.43 49 | 82.65 32 | 73.02 48 | 86.37 35 | 86.91 19 | 90.03 36 | 89.62 51 |
|
X-MVS | | | 83.23 32 | 85.20 32 | 80.92 33 | 89.71 26 | 88.68 27 | 88.21 31 | 73.60 23 | 82.57 37 | 71.81 44 | 77.07 32 | 81.92 36 | 71.72 58 | 86.98 28 | 86.86 20 | 90.47 23 | 92.36 28 |
|
CDPH-MVS | | | 82.64 33 | 85.03 33 | 79.86 38 | 89.41 30 | 88.31 35 | 88.32 29 | 71.84 34 | 80.11 43 | 67.47 63 | 82.09 25 | 81.44 40 | 71.85 56 | 85.89 41 | 86.15 32 | 90.24 32 | 91.25 37 |
|
3Dnovator+ | | 75.73 4 | 82.40 34 | 82.76 39 | 81.97 28 | 88.02 37 | 89.67 17 | 86.60 36 | 71.48 36 | 81.28 41 | 78.18 20 | 64.78 84 | 77.96 51 | 77.13 26 | 87.32 22 | 86.83 21 | 90.41 28 | 91.48 35 |
|
PHI-MVS | | | 82.36 35 | 85.89 29 | 78.24 47 | 86.40 46 | 89.52 18 | 85.52 43 | 69.52 48 | 82.38 39 | 65.67 69 | 81.35 27 | 82.36 33 | 73.07 47 | 87.31 23 | 86.76 23 | 89.24 51 | 91.56 34 |
|
MSLP-MVS++ | | | 82.09 36 | 82.66 40 | 81.42 29 | 87.03 42 | 87.22 42 | 85.82 41 | 70.04 42 | 80.30 42 | 78.66 19 | 68.67 69 | 81.04 43 | 77.81 18 | 85.19 46 | 84.88 43 | 89.19 54 | 91.31 36 |
|
CPTT-MVS | | | 81.77 37 | 83.10 38 | 80.21 36 | 85.93 49 | 86.45 48 | 87.72 33 | 70.98 38 | 82.54 38 | 71.53 47 | 74.23 44 | 81.49 39 | 76.31 31 | 82.85 69 | 81.87 65 | 88.79 62 | 92.26 29 |
|
MVS_0304 | | | 81.73 38 | 83.86 35 | 79.26 41 | 86.22 48 | 89.18 24 | 86.41 37 | 67.15 64 | 75.28 53 | 70.75 51 | 74.59 41 | 83.49 30 | 74.42 38 | 87.05 27 | 86.34 29 | 90.58 20 | 91.08 39 |
|
CANet | | | 81.62 39 | 83.41 36 | 79.53 40 | 87.06 41 | 88.59 31 | 85.47 44 | 67.96 57 | 76.59 51 | 74.05 33 | 74.69 40 | 81.98 35 | 72.98 49 | 86.14 39 | 85.47 37 | 89.68 45 | 90.42 45 |
|
HQP-MVS | | | 81.19 40 | 83.27 37 | 78.76 44 | 87.40 40 | 85.45 54 | 86.95 34 | 70.47 40 | 81.31 40 | 66.91 66 | 79.24 30 | 76.63 53 | 71.67 59 | 84.43 54 | 83.78 51 | 89.19 54 | 92.05 33 |
|
OMC-MVS | | | 80.26 41 | 82.59 41 | 77.54 50 | 83.04 61 | 85.54 52 | 83.25 55 | 65.05 79 | 87.32 18 | 72.42 40 | 72.04 51 | 78.97 46 | 73.30 45 | 83.86 57 | 81.60 69 | 88.15 72 | 88.83 55 |
|
MVS_111021_HR | | | 80.13 42 | 81.46 44 | 78.58 45 | 85.77 50 | 85.17 57 | 83.45 54 | 69.28 49 | 74.08 60 | 70.31 53 | 74.31 43 | 75.26 60 | 73.13 46 | 86.46 34 | 85.15 41 | 89.53 46 | 89.81 49 |
|
LGP-MVS_train | | | 79.83 43 | 81.22 47 | 78.22 48 | 86.28 47 | 85.36 56 | 86.76 35 | 69.59 46 | 77.34 48 | 65.14 72 | 75.68 36 | 70.79 78 | 71.37 62 | 84.60 50 | 84.01 46 | 90.18 33 | 90.74 42 |
|
ACMP | | 73.23 7 | 79.79 44 | 80.53 52 | 78.94 42 | 85.61 51 | 85.68 51 | 85.61 42 | 69.59 46 | 77.33 49 | 71.00 50 | 74.45 42 | 69.16 89 | 71.88 54 | 83.15 66 | 83.37 54 | 89.92 37 | 90.57 44 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
3Dnovator | | 73.76 5 | 79.75 45 | 80.52 53 | 78.84 43 | 84.94 58 | 87.35 40 | 84.43 51 | 65.54 75 | 78.29 47 | 73.97 34 | 63.00 92 | 75.62 59 | 74.07 40 | 85.00 47 | 85.34 39 | 90.11 35 | 89.04 53 |
|
AdaColmap |  | | 79.74 46 | 78.62 62 | 81.05 32 | 89.23 32 | 86.06 50 | 84.95 48 | 71.96 33 | 79.39 46 | 75.51 30 | 63.16 90 | 68.84 94 | 76.51 29 | 83.55 61 | 82.85 58 | 88.13 73 | 86.46 75 |
|
OPM-MVS | | | 79.68 47 | 79.28 60 | 80.15 37 | 87.99 38 | 86.77 45 | 88.52 28 | 72.72 29 | 64.55 98 | 67.65 62 | 67.87 73 | 74.33 64 | 74.31 39 | 86.37 35 | 85.25 40 | 89.73 43 | 89.81 49 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
DROMVSNet | | | 79.44 48 | 81.35 45 | 77.22 52 | 82.95 62 | 84.67 61 | 81.31 59 | 63.65 91 | 72.47 67 | 68.75 56 | 73.15 46 | 78.33 48 | 75.99 32 | 86.06 40 | 83.96 48 | 90.67 17 | 90.79 41 |
|
PCF-MVS | | 73.28 6 | 79.42 49 | 80.41 54 | 78.26 46 | 84.88 59 | 88.17 36 | 86.08 38 | 69.85 43 | 75.23 55 | 68.43 57 | 68.03 72 | 78.38 47 | 71.76 57 | 81.26 87 | 80.65 87 | 88.56 65 | 91.18 38 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CLD-MVS | | | 79.35 50 | 81.23 46 | 77.16 53 | 85.01 56 | 86.92 44 | 85.87 40 | 60.89 130 | 80.07 45 | 75.35 31 | 72.96 47 | 73.21 68 | 68.43 77 | 85.41 44 | 84.63 44 | 87.41 91 | 85.44 86 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CS-MVS | | | 79.22 51 | 81.11 48 | 77.01 54 | 81.36 74 | 84.03 64 | 80.35 65 | 63.25 95 | 73.43 64 | 70.37 52 | 74.10 45 | 76.03 57 | 76.40 30 | 86.32 37 | 83.95 49 | 90.34 31 | 89.93 47 |
|
MAR-MVS | | | 79.21 52 | 80.32 55 | 77.92 49 | 87.46 39 | 88.15 37 | 83.95 52 | 67.48 63 | 74.28 57 | 68.25 58 | 64.70 85 | 77.04 52 | 72.17 52 | 85.42 43 | 85.00 42 | 88.22 69 | 87.62 64 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
canonicalmvs | | | 79.16 53 | 82.37 42 | 75.41 63 | 82.33 68 | 86.38 49 | 80.80 62 | 63.18 97 | 82.90 35 | 67.34 64 | 72.79 48 | 76.07 56 | 69.62 68 | 83.46 64 | 84.41 45 | 89.20 53 | 90.60 43 |
|
DELS-MVS | | | 79.15 54 | 81.07 49 | 76.91 55 | 83.54 60 | 87.31 41 | 84.45 50 | 64.92 80 | 69.98 69 | 69.34 55 | 71.62 53 | 76.26 54 | 69.84 67 | 86.57 32 | 85.90 34 | 89.39 48 | 89.88 48 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EPNet | | | 79.08 55 | 80.62 51 | 77.28 51 | 88.90 34 | 83.17 79 | 83.65 53 | 72.41 31 | 74.41 56 | 67.15 65 | 76.78 33 | 74.37 63 | 64.43 97 | 83.70 60 | 83.69 52 | 87.15 94 | 88.19 59 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMM | | 72.26 8 | 78.86 56 | 78.13 64 | 79.71 39 | 86.89 43 | 83.40 74 | 86.02 39 | 70.50 39 | 75.28 53 | 71.49 48 | 63.01 91 | 69.26 88 | 73.57 43 | 84.11 56 | 83.98 47 | 89.76 42 | 87.84 62 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CS-MVS-test | | | 78.79 57 | 80.72 50 | 76.53 57 | 81.11 79 | 83.88 67 | 79.69 74 | 63.72 90 | 73.80 61 | 69.95 54 | 75.40 37 | 76.17 55 | 74.85 35 | 84.50 53 | 82.78 59 | 89.87 39 | 88.54 57 |
|
QAPM | | | 78.47 58 | 80.22 56 | 76.43 58 | 85.03 55 | 86.75 46 | 80.62 64 | 66.00 72 | 73.77 62 | 65.35 71 | 65.54 80 | 78.02 50 | 72.69 50 | 83.71 59 | 83.36 55 | 88.87 60 | 90.41 46 |
|
TSAR-MVS + COLMAP | | | 78.34 59 | 81.64 43 | 74.48 72 | 80.13 91 | 85.01 58 | 81.73 57 | 65.93 74 | 84.75 27 | 61.68 83 | 85.79 19 | 66.27 104 | 71.39 61 | 82.91 68 | 80.78 78 | 86.01 131 | 85.98 77 |
|
MVS_111021_LR | | | 78.13 60 | 79.85 58 | 76.13 59 | 81.12 78 | 81.50 89 | 80.28 66 | 65.25 77 | 76.09 52 | 71.32 49 | 76.49 35 | 72.87 70 | 72.21 51 | 82.79 70 | 81.29 71 | 86.59 116 | 87.91 61 |
|
casdiffmvs_mvg |  | | 77.79 61 | 79.55 59 | 75.73 61 | 81.56 71 | 84.70 60 | 82.12 56 | 64.26 87 | 74.27 58 | 67.93 60 | 70.83 58 | 74.66 62 | 69.19 72 | 83.33 65 | 81.94 64 | 89.29 50 | 87.14 69 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
TAPA-MVS | | 71.42 9 | 77.69 62 | 80.05 57 | 74.94 66 | 80.68 83 | 84.52 62 | 81.36 58 | 63.14 98 | 84.77 26 | 64.82 74 | 68.72 67 | 75.91 58 | 71.86 55 | 81.62 76 | 79.55 104 | 87.80 85 | 85.24 89 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ETV-MVS | | | 77.32 63 | 78.81 61 | 75.58 62 | 82.24 69 | 83.64 72 | 79.98 67 | 64.02 88 | 69.64 74 | 63.90 77 | 70.89 57 | 69.94 84 | 73.41 44 | 85.39 45 | 83.91 50 | 89.92 37 | 88.31 58 |
|
CNLPA | | | 77.20 64 | 77.54 68 | 76.80 56 | 82.63 64 | 84.31 63 | 79.77 71 | 64.64 81 | 85.17 23 | 73.18 38 | 56.37 128 | 69.81 85 | 74.53 37 | 81.12 90 | 78.69 115 | 86.04 130 | 87.29 67 |
|
casdiffmvs |  | | 76.76 65 | 78.46 63 | 74.77 68 | 80.32 88 | 83.73 71 | 80.65 63 | 63.24 96 | 73.58 63 | 66.11 68 | 69.39 64 | 74.09 65 | 69.49 70 | 82.52 72 | 79.35 109 | 88.84 61 | 86.52 74 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 76.57 66 | 77.90 65 | 75.02 65 | 80.56 84 | 86.58 47 | 79.24 78 | 66.18 69 | 64.81 95 | 68.18 59 | 65.61 78 | 71.45 73 | 67.05 81 | 84.16 55 | 81.80 66 | 88.90 58 | 90.92 40 |
|
PVSNet_BlendedMVS | | | 76.21 67 | 77.52 69 | 74.69 69 | 79.46 94 | 83.79 69 | 77.50 96 | 64.34 85 | 69.88 70 | 71.88 42 | 68.54 70 | 70.42 80 | 67.05 81 | 83.48 62 | 79.63 100 | 87.89 81 | 86.87 71 |
|
PVSNet_Blended | | | 76.21 67 | 77.52 69 | 74.69 69 | 79.46 94 | 83.79 69 | 77.50 96 | 64.34 85 | 69.88 70 | 71.88 42 | 68.54 70 | 70.42 80 | 67.05 81 | 83.48 62 | 79.63 100 | 87.89 81 | 86.87 71 |
|
OpenMVS |  | 70.44 10 | 76.15 69 | 76.82 77 | 75.37 64 | 85.01 56 | 84.79 59 | 78.99 82 | 62.07 119 | 71.27 68 | 67.88 61 | 57.91 121 | 72.36 71 | 70.15 66 | 82.23 74 | 81.41 70 | 88.12 74 | 87.78 63 |
|
PLC |  | 68.99 11 | 75.68 70 | 75.31 82 | 76.12 60 | 82.94 63 | 81.26 93 | 79.94 69 | 66.10 70 | 77.15 50 | 66.86 67 | 59.13 111 | 68.53 96 | 73.73 42 | 80.38 100 | 79.04 110 | 87.13 98 | 81.68 126 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EIA-MVS | | | 75.64 71 | 76.60 78 | 74.53 71 | 82.43 67 | 83.84 68 | 78.32 89 | 62.28 118 | 65.96 88 | 63.28 81 | 68.95 65 | 67.54 99 | 71.61 60 | 82.55 71 | 81.63 68 | 89.24 51 | 85.72 80 |
|
MVS_Test | | | 75.37 72 | 77.13 75 | 73.31 77 | 79.07 97 | 81.32 92 | 79.98 67 | 60.12 141 | 69.72 72 | 64.11 76 | 70.53 59 | 73.22 67 | 68.90 73 | 80.14 107 | 79.48 106 | 87.67 87 | 85.50 84 |
|
Effi-MVS+ | | | 75.28 73 | 76.20 79 | 74.20 73 | 81.15 77 | 83.24 77 | 81.11 60 | 63.13 99 | 66.37 84 | 60.27 87 | 64.30 88 | 68.88 93 | 70.93 65 | 81.56 78 | 81.69 67 | 88.61 63 | 87.35 65 |
|
DI_MVS_plusplus_trai | | | 75.13 74 | 76.12 80 | 73.96 74 | 78.18 103 | 81.55 87 | 80.97 61 | 62.54 113 | 68.59 75 | 65.13 73 | 61.43 95 | 74.81 61 | 69.32 71 | 81.01 92 | 79.59 102 | 87.64 88 | 85.89 78 |
|
diffmvs |  | | 74.86 75 | 77.37 72 | 71.93 81 | 75.62 125 | 80.35 105 | 79.42 77 | 60.15 140 | 72.81 66 | 64.63 75 | 71.51 54 | 73.11 69 | 66.53 91 | 79.02 120 | 77.98 123 | 85.25 145 | 86.83 73 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
UA-Net | | | 74.47 76 | 77.80 66 | 70.59 91 | 85.33 52 | 85.40 55 | 73.54 141 | 65.98 73 | 60.65 129 | 56.00 108 | 72.11 50 | 79.15 45 | 54.63 166 | 83.13 67 | 82.25 62 | 88.04 77 | 81.92 124 |
|
GeoE | | | 74.23 77 | 74.84 85 | 73.52 75 | 80.42 87 | 81.46 90 | 79.77 71 | 61.06 128 | 67.23 81 | 63.67 78 | 59.56 108 | 68.74 95 | 67.90 78 | 80.25 105 | 79.37 108 | 88.31 66 | 87.26 68 |
|
LS3D | | | 74.08 78 | 73.39 93 | 74.88 67 | 85.05 54 | 82.62 83 | 79.71 73 | 68.66 52 | 72.82 65 | 58.80 91 | 57.61 122 | 61.31 119 | 71.07 64 | 80.32 101 | 78.87 114 | 86.00 132 | 80.18 141 |
|
EPP-MVSNet | | | 74.00 79 | 77.41 71 | 70.02 99 | 80.53 85 | 83.91 66 | 74.99 118 | 62.68 111 | 65.06 93 | 49.77 144 | 68.68 68 | 72.09 72 | 63.06 105 | 82.49 73 | 80.73 79 | 89.12 56 | 88.91 54 |
|
FA-MVS(training) | | | 73.66 80 | 74.95 84 | 72.15 80 | 78.63 101 | 80.46 103 | 78.92 83 | 54.79 169 | 69.71 73 | 65.37 70 | 62.04 93 | 66.89 102 | 67.10 80 | 80.72 94 | 79.87 97 | 88.10 76 | 84.97 94 |
|
DCV-MVSNet | | | 73.65 81 | 75.78 81 | 71.16 85 | 80.19 89 | 79.27 114 | 77.45 98 | 61.68 125 | 66.73 83 | 58.72 92 | 65.31 81 | 69.96 83 | 62.19 110 | 81.29 86 | 80.97 75 | 86.74 109 | 86.91 70 |
|
IS_MVSNet | | | 73.33 82 | 77.34 73 | 68.65 114 | 81.29 75 | 83.47 73 | 74.45 123 | 63.58 93 | 65.75 90 | 48.49 149 | 67.11 77 | 70.61 79 | 54.63 166 | 84.51 52 | 83.58 53 | 89.48 47 | 86.34 76 |
|
CANet_DTU | | | 73.29 83 | 76.96 76 | 69.00 111 | 77.04 115 | 82.06 85 | 79.49 76 | 56.30 166 | 67.85 79 | 53.29 124 | 71.12 56 | 70.37 82 | 61.81 119 | 81.59 77 | 80.96 76 | 86.09 125 | 84.73 98 |
|
Fast-Effi-MVS+ | | | 73.11 84 | 73.66 90 | 72.48 79 | 77.72 109 | 80.88 99 | 78.55 86 | 58.83 156 | 65.19 92 | 60.36 86 | 59.98 105 | 62.42 116 | 71.22 63 | 81.66 75 | 80.61 89 | 88.20 70 | 84.88 97 |
|
UGNet | | | 72.78 85 | 77.67 67 | 67.07 136 | 71.65 163 | 83.24 77 | 75.20 112 | 63.62 92 | 64.93 94 | 56.72 104 | 71.82 52 | 73.30 66 | 49.02 179 | 81.02 91 | 80.70 85 | 86.22 122 | 88.67 56 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet |  | | 72.77 86 | 77.20 74 | 67.59 126 | 74.19 139 | 84.01 65 | 76.61 106 | 61.69 124 | 60.62 130 | 50.61 139 | 70.25 61 | 71.31 76 | 55.57 162 | 83.85 58 | 82.28 61 | 86.90 103 | 88.08 60 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
FC-MVSNet-train | | | 72.60 87 | 75.07 83 | 69.71 102 | 81.10 80 | 78.79 120 | 73.74 140 | 65.23 78 | 66.10 87 | 53.34 123 | 70.36 60 | 63.40 113 | 56.92 151 | 81.44 80 | 80.96 76 | 87.93 79 | 84.46 102 |
|
ET-MVSNet_ETH3D | | | 72.46 88 | 74.19 87 | 70.44 92 | 62.50 198 | 81.17 94 | 79.90 70 | 62.46 116 | 64.52 99 | 57.52 100 | 71.49 55 | 59.15 129 | 72.08 53 | 78.61 125 | 81.11 73 | 88.16 71 | 83.29 112 |
|
ECVR-MVS |  | | 72.20 89 | 73.91 89 | 70.20 96 | 81.49 72 | 83.27 75 | 75.74 107 | 67.59 61 | 68.19 77 | 49.31 147 | 55.77 130 | 62.00 117 | 58.82 133 | 84.76 48 | 82.94 56 | 88.27 67 | 80.41 139 |
|
MVSTER | | | 72.06 90 | 74.24 86 | 69.51 105 | 70.39 174 | 75.97 150 | 76.91 102 | 57.36 163 | 64.64 97 | 61.39 85 | 68.86 66 | 63.76 111 | 63.46 102 | 81.44 80 | 79.70 99 | 87.56 89 | 85.31 88 |
|
Anonymous20231211 | | | 71.90 91 | 72.48 102 | 71.21 84 | 80.14 90 | 81.53 88 | 76.92 101 | 62.89 102 | 64.46 100 | 58.94 89 | 43.80 190 | 70.98 77 | 62.22 109 | 80.70 95 | 80.19 94 | 86.18 123 | 85.73 79 |
|
Effi-MVS+-dtu | | | 71.82 92 | 71.86 107 | 71.78 82 | 78.77 98 | 80.47 102 | 78.55 86 | 61.67 126 | 60.68 128 | 55.49 109 | 58.48 115 | 65.48 106 | 68.85 74 | 76.92 142 | 75.55 154 | 87.35 92 | 85.46 85 |
|
test2506 | | | 71.72 93 | 72.95 97 | 70.29 94 | 81.49 72 | 83.27 75 | 75.74 107 | 67.59 61 | 68.19 77 | 49.81 143 | 61.15 96 | 49.73 189 | 58.82 133 | 84.76 48 | 82.94 56 | 88.27 67 | 80.63 135 |
|
IterMVS-LS | | | 71.69 94 | 72.82 100 | 70.37 93 | 77.54 111 | 76.34 147 | 75.13 116 | 60.46 136 | 61.53 123 | 57.57 99 | 64.89 83 | 67.33 100 | 66.04 94 | 77.09 141 | 77.37 135 | 85.48 141 | 85.18 90 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test1111 | | | 71.56 95 | 73.44 92 | 69.38 107 | 81.16 76 | 82.95 80 | 74.99 118 | 67.68 59 | 66.89 82 | 46.33 163 | 55.19 136 | 60.91 120 | 57.99 141 | 84.59 51 | 82.70 60 | 88.12 74 | 80.85 132 |
|
MSDG | | | 71.52 96 | 69.87 119 | 73.44 76 | 82.21 70 | 79.35 113 | 79.52 75 | 64.59 82 | 66.15 86 | 61.87 82 | 53.21 154 | 56.09 144 | 65.85 95 | 78.94 121 | 78.50 117 | 86.60 115 | 76.85 163 |
|
thisisatest0530 | | | 71.48 97 | 73.01 96 | 69.70 103 | 73.83 144 | 78.62 122 | 74.53 122 | 59.12 150 | 64.13 101 | 58.63 93 | 64.60 86 | 58.63 131 | 64.27 98 | 80.28 103 | 80.17 95 | 87.82 84 | 84.64 100 |
|
tttt0517 | | | 71.41 98 | 72.95 97 | 69.60 104 | 73.70 146 | 78.70 121 | 74.42 126 | 59.12 150 | 63.89 105 | 58.35 96 | 64.56 87 | 58.39 133 | 64.27 98 | 80.29 102 | 80.17 95 | 87.74 86 | 84.69 99 |
|
ACMH+ | | 66.54 13 | 71.36 99 | 70.09 117 | 72.85 78 | 82.59 65 | 81.13 95 | 78.56 85 | 68.04 55 | 61.55 122 | 52.52 130 | 51.50 169 | 54.14 154 | 68.56 76 | 78.85 122 | 79.50 105 | 86.82 106 | 83.94 106 |
|
IB-MVS | | 66.94 12 | 71.21 100 | 71.66 108 | 70.68 88 | 79.18 96 | 82.83 82 | 72.61 147 | 61.77 123 | 59.66 134 | 63.44 80 | 53.26 152 | 59.65 127 | 59.16 132 | 76.78 145 | 82.11 63 | 87.90 80 | 87.33 66 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
GBi-Net | | | 70.78 101 | 73.37 94 | 67.76 119 | 72.95 151 | 78.00 127 | 75.15 113 | 62.72 106 | 64.13 101 | 51.44 132 | 58.37 116 | 69.02 90 | 57.59 143 | 81.33 83 | 80.72 80 | 86.70 110 | 82.02 118 |
|
test1 | | | 70.78 101 | 73.37 94 | 67.76 119 | 72.95 151 | 78.00 127 | 75.15 113 | 62.72 106 | 64.13 101 | 51.44 132 | 58.37 116 | 69.02 90 | 57.59 143 | 81.33 83 | 80.72 80 | 86.70 110 | 82.02 118 |
|
ACMH | | 65.37 14 | 70.71 103 | 70.00 118 | 71.54 83 | 82.51 66 | 82.47 84 | 77.78 93 | 68.13 54 | 56.19 156 | 46.06 166 | 54.30 140 | 51.20 181 | 68.68 75 | 80.66 96 | 80.72 80 | 86.07 126 | 84.45 103 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet_NR-MVSNet | | | 70.59 104 | 72.19 103 | 68.72 112 | 77.72 109 | 80.72 100 | 73.81 138 | 69.65 45 | 61.99 118 | 43.23 175 | 60.54 101 | 57.50 136 | 58.57 135 | 79.56 113 | 81.07 74 | 89.34 49 | 83.97 104 |
|
FMVSNet3 | | | 70.49 105 | 72.90 99 | 67.67 124 | 72.88 154 | 77.98 130 | 74.96 120 | 62.72 106 | 64.13 101 | 51.44 132 | 58.37 116 | 69.02 90 | 57.43 146 | 79.43 115 | 79.57 103 | 86.59 116 | 81.81 125 |
|
baseline | | | 70.45 106 | 74.09 88 | 66.20 144 | 70.95 171 | 75.67 151 | 74.26 130 | 53.57 171 | 68.33 76 | 58.42 94 | 69.87 62 | 71.45 73 | 61.55 120 | 74.84 156 | 74.76 159 | 78.42 177 | 83.72 109 |
|
FMVSNet2 | | | 70.39 107 | 72.67 101 | 67.72 122 | 72.95 151 | 78.00 127 | 75.15 113 | 62.69 110 | 63.29 109 | 51.25 136 | 55.64 131 | 68.49 97 | 57.59 143 | 80.91 93 | 80.35 92 | 86.70 110 | 82.02 118 |
|
v8 | | | 70.23 108 | 69.86 120 | 70.67 89 | 74.69 134 | 79.82 109 | 78.79 84 | 59.18 149 | 58.80 138 | 58.20 97 | 55.00 137 | 57.33 137 | 66.31 93 | 77.51 135 | 76.71 144 | 86.82 106 | 83.88 107 |
|
v10 | | | 70.22 109 | 69.76 122 | 70.74 86 | 74.79 133 | 80.30 107 | 79.22 79 | 59.81 144 | 57.71 145 | 56.58 106 | 54.22 145 | 55.31 147 | 66.95 84 | 78.28 128 | 77.47 132 | 87.12 100 | 85.07 92 |
|
MS-PatchMatch | | | 70.17 110 | 70.49 114 | 69.79 101 | 80.98 81 | 77.97 132 | 77.51 95 | 58.95 153 | 62.33 116 | 55.22 112 | 53.14 155 | 65.90 105 | 62.03 113 | 79.08 119 | 77.11 139 | 84.08 155 | 77.91 155 |
|
baseline1 | | | 70.10 111 | 72.17 104 | 67.69 123 | 79.74 92 | 76.80 142 | 73.91 134 | 64.38 84 | 62.74 114 | 48.30 151 | 64.94 82 | 64.08 110 | 54.17 168 | 81.46 79 | 78.92 112 | 85.66 138 | 76.22 165 |
|
v2v482 | | | 70.05 112 | 69.46 126 | 70.74 86 | 74.62 135 | 80.32 106 | 79.00 81 | 60.62 133 | 57.41 147 | 56.89 103 | 55.43 135 | 55.14 149 | 66.39 92 | 77.25 138 | 77.14 138 | 86.90 103 | 83.57 111 |
|
v1144 | | | 69.93 113 | 69.36 127 | 70.61 90 | 74.89 132 | 80.93 96 | 79.11 80 | 60.64 132 | 55.97 158 | 55.31 111 | 53.85 147 | 54.14 154 | 66.54 90 | 78.10 130 | 77.44 133 | 87.14 97 | 85.09 91 |
|
baseline2 | | | 69.69 114 | 70.27 116 | 69.01 110 | 75.72 124 | 77.13 140 | 73.82 137 | 58.94 154 | 61.35 124 | 57.09 102 | 61.68 94 | 57.17 139 | 61.99 114 | 78.10 130 | 76.58 146 | 86.48 119 | 79.85 143 |
|
DU-MVS | | | 69.63 115 | 70.91 111 | 68.13 118 | 75.99 120 | 79.54 110 | 73.81 138 | 69.20 50 | 61.20 126 | 43.23 175 | 58.52 113 | 53.50 161 | 58.57 135 | 79.22 117 | 80.45 90 | 87.97 78 | 83.97 104 |
|
UniMVSNet (Re) | | | 69.53 116 | 71.90 106 | 66.76 141 | 76.42 118 | 80.93 96 | 72.59 148 | 68.03 56 | 61.75 121 | 41.68 180 | 58.34 119 | 57.23 138 | 53.27 171 | 79.53 114 | 80.62 88 | 88.57 64 | 84.90 96 |
|
v1192 | | | 69.50 117 | 68.83 133 | 70.29 94 | 74.49 136 | 80.92 98 | 78.55 86 | 60.54 134 | 55.04 164 | 54.21 114 | 52.79 161 | 52.33 174 | 66.92 85 | 77.88 132 | 77.35 136 | 87.04 101 | 85.51 83 |
|
HyFIR lowres test | | | 69.47 118 | 68.94 132 | 70.09 98 | 76.77 117 | 82.93 81 | 76.63 105 | 60.17 139 | 59.00 137 | 54.03 117 | 40.54 199 | 65.23 107 | 67.89 79 | 76.54 148 | 78.30 120 | 85.03 148 | 80.07 142 |
|
v144192 | | | 69.34 119 | 68.68 137 | 70.12 97 | 74.06 140 | 80.54 101 | 78.08 92 | 60.54 134 | 54.99 166 | 54.13 116 | 52.92 159 | 52.80 172 | 66.73 88 | 77.13 140 | 76.72 143 | 87.15 94 | 85.63 81 |
|
TranMVSNet+NR-MVSNet | | | 69.25 120 | 70.81 112 | 67.43 127 | 77.23 114 | 79.46 112 | 73.48 143 | 69.66 44 | 60.43 131 | 39.56 183 | 58.82 112 | 53.48 163 | 55.74 160 | 79.59 111 | 81.21 72 | 88.89 59 | 82.70 114 |
|
CHOSEN 1792x2688 | | | 69.20 121 | 69.26 128 | 69.13 108 | 76.86 116 | 78.93 116 | 77.27 99 | 60.12 141 | 61.86 120 | 54.42 113 | 42.54 194 | 61.61 118 | 66.91 86 | 78.55 126 | 78.14 122 | 79.23 175 | 83.23 113 |
|
v1921920 | | | 69.03 122 | 68.32 141 | 69.86 100 | 74.03 141 | 80.37 104 | 77.55 94 | 60.25 138 | 54.62 168 | 53.59 122 | 52.36 165 | 51.50 180 | 66.75 87 | 77.17 139 | 76.69 145 | 86.96 102 | 85.56 82 |
|
CostFormer | | | 68.92 123 | 69.58 124 | 68.15 117 | 75.98 122 | 76.17 149 | 78.22 91 | 51.86 183 | 65.80 89 | 61.56 84 | 63.57 89 | 62.83 114 | 61.85 117 | 70.40 188 | 68.67 185 | 79.42 173 | 79.62 146 |
|
FMVSNet1 | | | 68.84 124 | 70.47 115 | 66.94 138 | 71.35 168 | 77.68 135 | 74.71 121 | 62.35 117 | 56.93 149 | 49.94 142 | 50.01 175 | 64.59 108 | 57.07 148 | 81.33 83 | 80.72 80 | 86.25 121 | 82.00 121 |
|
NR-MVSNet | | | 68.79 125 | 70.56 113 | 66.71 143 | 77.48 112 | 79.54 110 | 73.52 142 | 69.20 50 | 61.20 126 | 39.76 182 | 58.52 113 | 50.11 187 | 51.37 175 | 80.26 104 | 80.71 84 | 88.97 57 | 83.59 110 |
|
V42 | | | 68.76 126 | 69.63 123 | 67.74 121 | 64.93 194 | 78.01 126 | 78.30 90 | 56.48 165 | 58.65 139 | 56.30 107 | 54.26 143 | 57.03 140 | 64.85 96 | 77.47 136 | 77.01 140 | 85.60 139 | 84.96 95 |
|
v1240 | | | 68.64 127 | 67.89 146 | 69.51 105 | 73.89 143 | 80.26 108 | 76.73 104 | 59.97 143 | 53.43 176 | 53.08 125 | 51.82 168 | 50.84 183 | 66.62 89 | 76.79 144 | 76.77 142 | 86.78 108 | 85.34 87 |
|
Fast-Effi-MVS+-dtu | | | 68.34 128 | 69.47 125 | 67.01 137 | 75.15 128 | 77.97 132 | 77.12 100 | 55.40 168 | 57.87 140 | 46.68 161 | 56.17 129 | 60.39 121 | 62.36 108 | 76.32 149 | 76.25 150 | 85.35 144 | 81.34 128 |
|
GA-MVS | | | 68.14 129 | 69.17 130 | 66.93 139 | 73.77 145 | 78.50 124 | 74.45 123 | 58.28 158 | 55.11 163 | 48.44 150 | 60.08 103 | 53.99 157 | 61.50 121 | 78.43 127 | 77.57 130 | 85.13 146 | 80.54 136 |
|
tfpn200view9 | | | 68.11 130 | 68.72 136 | 67.40 128 | 77.83 107 | 78.93 116 | 74.28 128 | 62.81 103 | 56.64 151 | 46.82 159 | 52.65 162 | 53.47 164 | 56.59 152 | 80.41 97 | 78.43 118 | 86.11 124 | 80.52 137 |
|
EPNet_dtu | | | 68.08 131 | 71.00 110 | 64.67 152 | 79.64 93 | 68.62 183 | 75.05 117 | 63.30 94 | 66.36 85 | 45.27 170 | 67.40 75 | 66.84 103 | 43.64 188 | 75.37 152 | 74.98 158 | 81.15 167 | 77.44 158 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres200 | | | 67.98 132 | 68.55 139 | 67.30 131 | 77.89 106 | 78.86 118 | 74.18 132 | 62.75 104 | 56.35 154 | 46.48 162 | 52.98 158 | 53.54 160 | 56.46 153 | 80.41 97 | 77.97 124 | 86.05 128 | 79.78 145 |
|
thres400 | | | 67.95 133 | 68.62 138 | 67.17 133 | 77.90 104 | 78.59 123 | 74.27 129 | 62.72 106 | 56.34 155 | 45.77 168 | 53.00 157 | 53.35 167 | 56.46 153 | 80.21 106 | 78.43 118 | 85.91 135 | 80.43 138 |
|
pmmvs4 | | | 67.89 134 | 67.39 151 | 68.48 115 | 71.60 165 | 73.57 165 | 74.45 123 | 60.98 129 | 64.65 96 | 57.97 98 | 54.95 138 | 51.73 179 | 61.88 116 | 73.78 162 | 75.11 156 | 83.99 157 | 77.91 155 |
|
v148 | | | 67.85 135 | 67.53 147 | 68.23 116 | 73.25 149 | 77.57 138 | 74.26 130 | 57.36 163 | 55.70 159 | 57.45 101 | 53.53 148 | 55.42 146 | 61.96 115 | 75.23 153 | 73.92 162 | 85.08 147 | 81.32 129 |
|
Vis-MVSNet (Re-imp) | | | 67.83 136 | 73.52 91 | 61.19 168 | 78.37 102 | 76.72 144 | 66.80 173 | 62.96 100 | 65.50 91 | 34.17 194 | 67.19 76 | 69.68 86 | 39.20 197 | 79.39 116 | 79.44 107 | 85.68 137 | 76.73 164 |
|
PatchMatch-RL | | | 67.78 137 | 66.65 156 | 69.10 109 | 73.01 150 | 72.69 168 | 68.49 163 | 61.85 122 | 62.93 112 | 60.20 88 | 56.83 127 | 50.42 185 | 69.52 69 | 75.62 151 | 74.46 161 | 81.51 165 | 73.62 182 |
|
thres600view7 | | | 67.68 138 | 68.43 140 | 66.80 140 | 77.90 104 | 78.86 118 | 73.84 136 | 62.75 104 | 56.07 157 | 44.70 173 | 52.85 160 | 52.81 171 | 55.58 161 | 80.41 97 | 77.77 126 | 86.05 128 | 80.28 140 |
|
COLMAP_ROB |  | 62.73 15 | 67.66 139 | 66.76 155 | 68.70 113 | 80.49 86 | 77.98 130 | 75.29 111 | 62.95 101 | 63.62 107 | 49.96 141 | 47.32 185 | 50.72 184 | 58.57 135 | 76.87 143 | 75.50 155 | 84.94 150 | 75.33 174 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CDS-MVSNet | | | 67.65 140 | 69.83 121 | 65.09 148 | 75.39 127 | 76.55 145 | 74.42 126 | 63.75 89 | 53.55 174 | 49.37 146 | 59.41 109 | 62.45 115 | 44.44 186 | 79.71 110 | 79.82 98 | 83.17 161 | 77.36 159 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RPSCF | | | 67.64 141 | 71.25 109 | 63.43 161 | 61.86 200 | 70.73 175 | 67.26 168 | 50.86 188 | 74.20 59 | 58.91 90 | 67.49 74 | 69.33 87 | 64.10 100 | 71.41 175 | 68.45 189 | 77.61 179 | 77.17 160 |
|
thres100view900 | | | 67.60 142 | 68.02 143 | 67.12 135 | 77.83 107 | 77.75 134 | 73.90 135 | 62.52 114 | 56.64 151 | 46.82 159 | 52.65 162 | 53.47 164 | 55.92 157 | 78.77 123 | 77.62 129 | 85.72 136 | 79.23 148 |
|
Baseline_NR-MVSNet | | | 67.53 143 | 68.77 135 | 66.09 145 | 75.99 120 | 74.75 161 | 72.43 149 | 68.41 53 | 61.33 125 | 38.33 187 | 51.31 170 | 54.13 156 | 56.03 156 | 79.22 117 | 78.19 121 | 85.37 143 | 82.45 116 |
|
thisisatest0515 | | | 67.40 144 | 68.78 134 | 65.80 146 | 70.02 176 | 75.24 157 | 69.36 160 | 57.37 162 | 54.94 167 | 53.67 121 | 55.53 134 | 54.85 150 | 58.00 140 | 78.19 129 | 78.91 113 | 86.39 120 | 83.78 108 |
|
USDC | | | 67.36 145 | 67.90 145 | 66.74 142 | 71.72 161 | 75.23 158 | 71.58 151 | 60.28 137 | 67.45 80 | 50.54 140 | 60.93 97 | 45.20 202 | 62.08 111 | 76.56 147 | 74.50 160 | 84.25 154 | 75.38 173 |
|
EG-PatchMatch MVS | | | 67.24 146 | 66.94 153 | 67.60 125 | 78.73 99 | 81.35 91 | 73.28 145 | 59.49 146 | 46.89 198 | 51.42 135 | 43.65 191 | 53.49 162 | 55.50 163 | 81.38 82 | 80.66 86 | 87.15 94 | 81.17 130 |
|
UniMVSNet_ETH3D | | | 67.18 147 | 67.03 152 | 67.36 129 | 74.44 137 | 78.12 125 | 74.07 133 | 66.38 67 | 52.22 181 | 46.87 158 | 48.64 180 | 51.84 178 | 56.96 149 | 77.29 137 | 78.53 116 | 85.42 142 | 82.59 115 |
|
v7n | | | 67.05 148 | 66.94 153 | 67.17 133 | 72.35 156 | 78.97 115 | 73.26 146 | 58.88 155 | 51.16 187 | 50.90 137 | 48.21 182 | 50.11 187 | 60.96 124 | 77.70 133 | 77.38 134 | 86.68 113 | 85.05 93 |
|
IterMVS-SCA-FT | | | 66.89 149 | 69.22 129 | 64.17 154 | 71.30 169 | 75.64 152 | 71.33 152 | 53.17 175 | 57.63 146 | 49.08 148 | 60.72 99 | 60.05 125 | 63.09 104 | 74.99 155 | 73.92 162 | 77.07 183 | 81.57 127 |
|
IterMVS | | | 66.36 150 | 68.30 142 | 64.10 155 | 69.48 181 | 74.61 162 | 73.41 144 | 50.79 189 | 57.30 148 | 48.28 152 | 60.64 100 | 59.92 126 | 60.85 128 | 74.14 160 | 72.66 169 | 81.80 164 | 78.82 151 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TDRefinement | | | 66.09 151 | 65.03 168 | 67.31 130 | 69.73 178 | 76.75 143 | 75.33 109 | 64.55 83 | 60.28 132 | 49.72 145 | 45.63 188 | 42.83 205 | 60.46 129 | 75.75 150 | 75.95 151 | 84.08 155 | 78.04 154 |
|
pm-mvs1 | | | 65.62 152 | 67.42 149 | 63.53 160 | 73.66 147 | 76.39 146 | 69.66 157 | 60.87 131 | 49.73 191 | 43.97 174 | 51.24 171 | 57.00 141 | 48.16 180 | 79.89 108 | 77.84 125 | 84.85 152 | 79.82 144 |
|
tpm cat1 | | | 65.41 153 | 63.81 176 | 67.28 132 | 75.61 126 | 72.88 167 | 75.32 110 | 52.85 177 | 62.97 111 | 63.66 79 | 53.24 153 | 53.29 169 | 61.83 118 | 65.54 199 | 64.14 201 | 74.43 195 | 74.60 176 |
|
SCA | | | 65.40 154 | 66.58 157 | 64.02 156 | 70.65 172 | 73.37 166 | 67.35 167 | 53.46 173 | 63.66 106 | 54.14 115 | 60.84 98 | 60.20 124 | 61.50 121 | 69.96 189 | 68.14 190 | 77.01 184 | 69.91 188 |
|
anonymousdsp | | | 65.28 155 | 67.98 144 | 62.13 164 | 58.73 206 | 73.98 164 | 67.10 170 | 50.69 190 | 48.41 194 | 47.66 157 | 54.27 141 | 52.75 173 | 61.45 123 | 76.71 146 | 80.20 93 | 87.13 98 | 89.53 52 |
|
PMMVS | | | 65.06 156 | 69.17 130 | 60.26 173 | 55.25 212 | 63.43 199 | 66.71 174 | 43.01 208 | 62.41 115 | 50.64 138 | 69.44 63 | 67.04 101 | 63.29 103 | 74.36 159 | 73.54 165 | 82.68 162 | 73.99 181 |
|
CR-MVSNet | | | 64.83 157 | 65.54 162 | 64.01 157 | 70.64 173 | 69.41 178 | 65.97 178 | 52.74 178 | 57.81 142 | 52.65 127 | 54.27 141 | 56.31 143 | 60.92 125 | 72.20 171 | 73.09 167 | 81.12 168 | 75.69 170 |
|
TransMVSNet (Re) | | | 64.74 158 | 65.66 161 | 63.66 159 | 77.40 113 | 75.33 156 | 69.86 156 | 62.67 112 | 47.63 196 | 41.21 181 | 50.01 175 | 52.33 174 | 45.31 185 | 79.57 112 | 77.69 128 | 85.49 140 | 77.07 162 |
|
test-LLR | | | 64.42 159 | 64.36 172 | 64.49 153 | 75.02 130 | 63.93 196 | 66.61 175 | 61.96 120 | 54.41 169 | 47.77 154 | 57.46 123 | 60.25 122 | 55.20 164 | 70.80 182 | 69.33 180 | 80.40 171 | 74.38 178 |
|
MDTV_nov1_ep13 | | | 64.37 160 | 65.24 164 | 63.37 162 | 68.94 183 | 70.81 174 | 72.40 150 | 50.29 192 | 60.10 133 | 53.91 119 | 60.07 104 | 59.15 129 | 57.21 147 | 69.43 192 | 67.30 192 | 77.47 180 | 69.78 190 |
|
tfpnnormal | | | 64.27 161 | 63.64 177 | 65.02 149 | 75.84 123 | 75.61 153 | 71.24 154 | 62.52 114 | 47.79 195 | 42.97 177 | 42.65 193 | 44.49 203 | 52.66 173 | 78.77 123 | 76.86 141 | 84.88 151 | 79.29 147 |
|
PatchmatchNet |  | | 64.21 162 | 64.65 170 | 63.69 158 | 71.29 170 | 68.66 182 | 69.63 158 | 51.70 185 | 63.04 110 | 53.77 120 | 59.83 107 | 58.34 134 | 60.23 130 | 68.54 195 | 66.06 197 | 75.56 190 | 68.08 194 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
dps | | | 64.00 163 | 62.99 179 | 65.18 147 | 73.29 148 | 72.07 170 | 68.98 162 | 53.07 176 | 57.74 144 | 58.41 95 | 55.55 133 | 47.74 195 | 60.89 127 | 69.53 191 | 67.14 194 | 76.44 187 | 71.19 186 |
|
pmmvs-eth3d | | | 63.52 164 | 62.44 186 | 64.77 151 | 66.82 189 | 70.12 177 | 69.41 159 | 59.48 147 | 54.34 172 | 52.71 126 | 46.24 187 | 44.35 204 | 56.93 150 | 72.37 166 | 73.77 164 | 83.30 159 | 75.91 167 |
|
WR-MVS | | | 63.03 165 | 67.40 150 | 57.92 183 | 75.14 129 | 77.60 137 | 60.56 196 | 66.10 70 | 54.11 173 | 23.88 205 | 53.94 146 | 53.58 159 | 34.50 201 | 73.93 161 | 77.71 127 | 87.35 92 | 80.94 131 |
|
PEN-MVS | | | 62.96 166 | 65.77 160 | 59.70 176 | 73.98 142 | 75.45 154 | 63.39 189 | 67.61 60 | 52.49 179 | 25.49 204 | 53.39 149 | 49.12 191 | 40.85 194 | 71.94 173 | 77.26 137 | 86.86 105 | 80.72 134 |
|
TinyColmap | | | 62.84 167 | 61.03 192 | 64.96 150 | 69.61 179 | 71.69 171 | 68.48 164 | 59.76 145 | 55.41 160 | 47.69 156 | 47.33 184 | 34.20 214 | 62.76 107 | 74.52 157 | 72.59 170 | 81.44 166 | 71.47 185 |
|
CP-MVSNet | | | 62.68 168 | 65.49 163 | 59.40 179 | 71.84 159 | 75.34 155 | 62.87 191 | 67.04 65 | 52.64 178 | 27.19 202 | 53.38 150 | 48.15 193 | 41.40 192 | 71.26 176 | 75.68 152 | 86.07 126 | 82.00 121 |
|
gg-mvs-nofinetune | | | 62.55 169 | 65.05 167 | 59.62 177 | 78.72 100 | 77.61 136 | 70.83 155 | 53.63 170 | 39.71 210 | 22.04 211 | 36.36 203 | 64.32 109 | 47.53 181 | 81.16 88 | 79.03 111 | 85.00 149 | 77.17 160 |
|
CVMVSNet | | | 62.55 169 | 65.89 158 | 58.64 181 | 66.95 187 | 69.15 180 | 66.49 177 | 56.29 167 | 52.46 180 | 32.70 195 | 59.27 110 | 58.21 135 | 50.09 177 | 71.77 174 | 71.39 174 | 79.31 174 | 78.99 150 |
|
CMPMVS |  | 47.78 17 | 62.49 171 | 62.52 184 | 62.46 163 | 70.01 177 | 70.66 176 | 62.97 190 | 51.84 184 | 51.98 183 | 56.71 105 | 42.87 192 | 53.62 158 | 57.80 142 | 72.23 169 | 70.37 177 | 75.45 192 | 75.91 167 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs6 | | | 62.41 172 | 62.88 180 | 61.87 165 | 71.38 167 | 75.18 160 | 67.76 166 | 59.45 148 | 41.64 206 | 42.52 179 | 37.33 201 | 52.91 170 | 46.87 182 | 77.67 134 | 76.26 149 | 83.23 160 | 79.18 149 |
|
tpm | | | 62.41 172 | 63.15 178 | 61.55 167 | 72.24 157 | 63.79 198 | 71.31 153 | 46.12 206 | 57.82 141 | 55.33 110 | 59.90 106 | 54.74 151 | 53.63 169 | 67.24 198 | 64.29 200 | 70.65 205 | 74.25 180 |
|
PS-CasMVS | | | 62.38 174 | 65.06 166 | 59.25 180 | 71.73 160 | 75.21 159 | 62.77 192 | 66.99 66 | 51.94 185 | 26.96 203 | 52.00 167 | 47.52 196 | 41.06 193 | 71.16 179 | 75.60 153 | 85.97 133 | 81.97 123 |
|
pmmvs5 | | | 62.37 175 | 64.04 174 | 60.42 171 | 65.03 192 | 71.67 172 | 67.17 169 | 52.70 180 | 50.30 188 | 44.80 171 | 54.23 144 | 51.19 182 | 49.37 178 | 72.88 165 | 73.48 166 | 83.45 158 | 74.55 177 |
|
tpmrst | | | 62.00 176 | 62.35 187 | 61.58 166 | 71.62 164 | 64.14 195 | 69.07 161 | 48.22 202 | 62.21 117 | 53.93 118 | 58.26 120 | 55.30 148 | 55.81 159 | 63.22 204 | 62.62 203 | 70.85 204 | 70.70 187 |
|
PatchT | | | 61.97 177 | 64.04 174 | 59.55 178 | 60.49 202 | 67.40 186 | 56.54 203 | 48.65 198 | 56.69 150 | 52.65 127 | 51.10 172 | 52.14 177 | 60.92 125 | 72.20 171 | 73.09 167 | 78.03 178 | 75.69 170 |
|
DTE-MVSNet | | | 61.85 178 | 64.96 169 | 58.22 182 | 74.32 138 | 74.39 163 | 61.01 195 | 67.85 58 | 51.76 186 | 21.91 212 | 53.28 151 | 48.17 192 | 37.74 198 | 72.22 170 | 76.44 147 | 86.52 118 | 78.49 152 |
|
SixPastTwentyTwo | | | 61.84 179 | 62.45 185 | 61.12 169 | 69.20 182 | 72.20 169 | 62.03 193 | 57.40 161 | 46.54 199 | 38.03 189 | 57.14 126 | 41.72 207 | 58.12 139 | 69.67 190 | 71.58 173 | 81.94 163 | 78.30 153 |
|
WR-MVS_H | | | 61.83 180 | 65.87 159 | 57.12 186 | 71.72 161 | 76.87 141 | 61.45 194 | 66.19 68 | 51.97 184 | 22.92 209 | 53.13 156 | 52.30 176 | 33.80 202 | 71.03 180 | 75.00 157 | 86.65 114 | 80.78 133 |
|
LTVRE_ROB | | 59.44 16 | 61.82 181 | 62.64 183 | 60.87 170 | 72.83 155 | 77.19 139 | 64.37 185 | 58.97 152 | 33.56 215 | 28.00 201 | 52.59 164 | 42.21 206 | 63.93 101 | 74.52 157 | 76.28 148 | 77.15 182 | 82.13 117 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
RPMNet | | | 61.71 182 | 62.88 180 | 60.34 172 | 69.51 180 | 69.41 178 | 63.48 188 | 49.23 194 | 57.81 142 | 45.64 169 | 50.51 173 | 50.12 186 | 53.13 172 | 68.17 197 | 68.49 188 | 81.07 169 | 75.62 172 |
|
TESTMET0.1,1 | | | 61.10 183 | 64.36 172 | 57.29 185 | 57.53 207 | 63.93 196 | 66.61 175 | 36.22 212 | 54.41 169 | 47.77 154 | 57.46 123 | 60.25 122 | 55.20 164 | 70.80 182 | 69.33 180 | 80.40 171 | 74.38 178 |
|
test-mter | | | 60.84 184 | 64.62 171 | 56.42 188 | 55.99 210 | 64.18 194 | 65.39 180 | 34.23 213 | 54.39 171 | 46.21 165 | 57.40 125 | 59.49 128 | 55.86 158 | 71.02 181 | 69.65 179 | 80.87 170 | 76.20 166 |
|
PM-MVS | | | 60.48 185 | 60.94 193 | 59.94 174 | 58.85 205 | 66.83 189 | 64.27 186 | 51.39 186 | 55.03 165 | 48.03 153 | 50.00 177 | 40.79 209 | 58.26 138 | 69.20 193 | 67.13 195 | 78.84 176 | 77.60 157 |
|
MDTV_nov1_ep13_2view | | | 60.16 186 | 60.51 194 | 59.75 175 | 65.39 191 | 69.05 181 | 68.00 165 | 48.29 200 | 51.99 182 | 45.95 167 | 48.01 183 | 49.64 190 | 53.39 170 | 68.83 194 | 66.52 196 | 77.47 180 | 69.55 191 |
|
EPMVS | | | 60.00 187 | 61.97 188 | 57.71 184 | 68.46 184 | 63.17 202 | 64.54 184 | 48.23 201 | 63.30 108 | 44.72 172 | 60.19 102 | 56.05 145 | 50.85 176 | 65.27 202 | 62.02 204 | 69.44 207 | 63.81 201 |
|
TAMVS | | | 59.58 188 | 62.81 182 | 55.81 190 | 66.03 190 | 65.64 193 | 63.86 187 | 48.74 197 | 49.95 190 | 37.07 191 | 54.77 139 | 58.54 132 | 44.44 186 | 72.29 168 | 71.79 171 | 74.70 194 | 66.66 196 |
|
test0.0.03 1 | | | 58.80 189 | 61.58 190 | 55.56 191 | 75.02 130 | 68.45 184 | 59.58 200 | 61.96 120 | 52.74 177 | 29.57 198 | 49.75 178 | 54.56 152 | 31.46 204 | 71.19 177 | 69.77 178 | 75.75 188 | 64.57 199 |
|
CHOSEN 280x420 | | | 58.70 190 | 61.88 189 | 54.98 193 | 55.45 211 | 50.55 214 | 64.92 182 | 40.36 209 | 55.21 161 | 38.13 188 | 48.31 181 | 63.76 111 | 63.03 106 | 73.73 163 | 68.58 187 | 68.00 210 | 73.04 183 |
|
MIMVSNet | | | 58.52 191 | 61.34 191 | 55.22 192 | 60.76 201 | 67.01 188 | 66.81 172 | 49.02 196 | 56.43 153 | 38.90 185 | 40.59 198 | 54.54 153 | 40.57 195 | 73.16 164 | 71.65 172 | 75.30 193 | 66.00 197 |
|
FMVSNet5 | | | 57.24 192 | 60.02 195 | 53.99 196 | 56.45 209 | 62.74 203 | 65.27 181 | 47.03 203 | 55.14 162 | 39.55 184 | 40.88 196 | 53.42 166 | 41.83 189 | 72.35 167 | 71.10 176 | 73.79 197 | 64.50 200 |
|
gm-plane-assit | | | 57.00 193 | 57.62 200 | 56.28 189 | 76.10 119 | 62.43 205 | 47.62 213 | 46.57 204 | 33.84 214 | 23.24 207 | 37.52 200 | 40.19 210 | 59.61 131 | 79.81 109 | 77.55 131 | 84.55 153 | 72.03 184 |
|
FC-MVSNet-test | | | 56.90 194 | 65.20 165 | 47.21 204 | 66.98 186 | 63.20 201 | 49.11 212 | 58.60 157 | 59.38 136 | 11.50 219 | 65.60 79 | 56.68 142 | 24.66 211 | 71.17 178 | 71.36 175 | 72.38 201 | 69.02 192 |
|
Anonymous20231206 | | | 56.36 195 | 57.80 199 | 54.67 194 | 70.08 175 | 66.39 190 | 60.46 197 | 57.54 160 | 49.50 193 | 29.30 199 | 33.86 206 | 46.64 197 | 35.18 200 | 70.44 186 | 68.88 184 | 75.47 191 | 68.88 193 |
|
ADS-MVSNet | | | 55.94 196 | 58.01 197 | 53.54 198 | 62.48 199 | 58.48 208 | 59.12 201 | 46.20 205 | 59.65 135 | 42.88 178 | 52.34 166 | 53.31 168 | 46.31 183 | 62.00 206 | 60.02 207 | 64.23 212 | 60.24 208 |
|
pmnet_mix02 | | | 55.30 197 | 57.01 201 | 53.30 199 | 64.14 195 | 59.09 207 | 58.39 202 | 50.24 193 | 53.47 175 | 38.68 186 | 49.75 178 | 45.86 200 | 40.14 196 | 65.38 201 | 60.22 206 | 68.19 209 | 65.33 198 |
|
EU-MVSNet | | | 54.63 198 | 58.69 196 | 49.90 202 | 56.99 208 | 62.70 204 | 56.41 204 | 50.64 191 | 45.95 201 | 23.14 208 | 50.42 174 | 46.51 198 | 36.63 199 | 65.51 200 | 64.85 199 | 75.57 189 | 74.91 175 |
|
MVS-HIRNet | | | 54.41 199 | 52.10 206 | 57.11 187 | 58.99 204 | 56.10 211 | 49.68 211 | 49.10 195 | 46.18 200 | 52.15 131 | 33.18 207 | 46.11 199 | 56.10 155 | 63.19 205 | 59.70 208 | 76.64 186 | 60.25 207 |
|
testgi | | | 54.39 200 | 57.86 198 | 50.35 201 | 71.59 166 | 67.24 187 | 54.95 205 | 53.25 174 | 43.36 203 | 23.78 206 | 44.64 189 | 47.87 194 | 24.96 209 | 70.45 185 | 68.66 186 | 73.60 198 | 62.78 204 |
|
test20.03 | | | 53.93 201 | 56.28 202 | 51.19 200 | 72.19 158 | 65.83 191 | 53.20 207 | 61.08 127 | 42.74 204 | 22.08 210 | 37.07 202 | 45.76 201 | 24.29 212 | 70.44 186 | 69.04 182 | 74.31 196 | 63.05 203 |
|
MDA-MVSNet-bldmvs | | | 53.37 202 | 53.01 205 | 53.79 197 | 43.67 216 | 67.95 185 | 59.69 199 | 57.92 159 | 43.69 202 | 32.41 196 | 41.47 195 | 27.89 219 | 52.38 174 | 56.97 212 | 65.99 198 | 76.68 185 | 67.13 195 |
|
FPMVS | | | 51.87 203 | 50.00 208 | 54.07 195 | 66.83 188 | 57.25 209 | 60.25 198 | 50.91 187 | 50.25 189 | 34.36 193 | 36.04 204 | 32.02 216 | 41.49 191 | 58.98 210 | 56.07 209 | 70.56 206 | 59.36 209 |
|
MIMVSNet1 | | | 49.27 204 | 53.25 204 | 44.62 206 | 44.61 214 | 61.52 206 | 53.61 206 | 52.18 181 | 41.62 207 | 18.68 215 | 28.14 212 | 41.58 208 | 25.50 207 | 68.46 196 | 69.04 182 | 73.15 199 | 62.37 205 |
|
pmmvs3 | | | 47.65 205 | 49.08 210 | 45.99 205 | 44.61 214 | 54.79 212 | 50.04 209 | 31.95 216 | 33.91 213 | 29.90 197 | 30.37 208 | 33.53 215 | 46.31 183 | 63.50 203 | 63.67 202 | 73.14 200 | 63.77 202 |
|
N_pmnet | | | 47.35 206 | 50.13 207 | 44.11 207 | 59.98 203 | 51.64 213 | 51.86 208 | 44.80 207 | 49.58 192 | 20.76 213 | 40.65 197 | 40.05 211 | 29.64 205 | 59.84 208 | 55.15 210 | 57.63 213 | 54.00 211 |
|
new-patchmatchnet | | | 46.97 207 | 49.47 209 | 44.05 208 | 62.82 197 | 56.55 210 | 45.35 214 | 52.01 182 | 42.47 205 | 17.04 217 | 35.73 205 | 35.21 213 | 21.84 215 | 61.27 207 | 54.83 211 | 65.26 211 | 60.26 206 |
|
GG-mvs-BLEND | | | 46.86 208 | 67.51 148 | 22.75 213 | 0.05 224 | 76.21 148 | 64.69 183 | 0.04 221 | 61.90 119 | 0.09 225 | 55.57 132 | 71.32 75 | 0.08 220 | 70.54 184 | 67.19 193 | 71.58 202 | 69.86 189 |
|
PMVS |  | 39.38 18 | 46.06 209 | 43.30 211 | 49.28 203 | 62.93 196 | 38.75 216 | 41.88 215 | 53.50 172 | 33.33 216 | 35.46 192 | 28.90 211 | 31.01 217 | 33.04 203 | 58.61 211 | 54.63 212 | 68.86 208 | 57.88 210 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 38.40 210 | 42.64 212 | 33.44 210 | 37.54 219 | 45.00 215 | 36.60 216 | 32.72 215 | 40.27 208 | 12.72 218 | 29.89 209 | 28.90 218 | 24.78 210 | 53.17 213 | 52.90 213 | 56.31 214 | 48.34 212 |
|
Gipuma |  | | 36.38 211 | 35.80 213 | 37.07 209 | 45.76 213 | 33.90 217 | 29.81 217 | 48.47 199 | 39.91 209 | 18.02 216 | 8.00 220 | 8.14 224 | 25.14 208 | 59.29 209 | 61.02 205 | 55.19 215 | 40.31 213 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 25.60 212 | 29.75 214 | 20.76 214 | 28.00 220 | 30.93 218 | 23.10 219 | 29.18 217 | 23.14 218 | 1.46 224 | 18.23 216 | 16.54 221 | 5.08 218 | 40.22 214 | 41.40 215 | 37.76 216 | 37.79 215 |
|
test_method | | | 22.26 213 | 25.94 215 | 17.95 215 | 3.24 223 | 7.17 223 | 23.83 218 | 7.27 219 | 37.35 212 | 20.44 214 | 21.87 215 | 39.16 212 | 18.67 216 | 34.56 215 | 20.84 219 | 34.28 217 | 20.64 219 |
|
E-PMN | | | 21.77 214 | 18.24 217 | 25.89 211 | 40.22 217 | 19.58 220 | 12.46 222 | 39.87 210 | 18.68 220 | 6.71 221 | 9.57 217 | 4.31 227 | 22.36 214 | 19.89 219 | 27.28 217 | 33.73 218 | 28.34 217 |
|
EMVS | | | 20.98 215 | 17.15 218 | 25.44 212 | 39.51 218 | 19.37 221 | 12.66 221 | 39.59 211 | 19.10 219 | 6.62 222 | 9.27 218 | 4.40 226 | 22.43 213 | 17.99 220 | 24.40 218 | 31.81 219 | 25.53 218 |
|
MVE |  | 19.12 19 | 20.47 216 | 23.27 216 | 17.20 216 | 12.66 222 | 25.41 219 | 10.52 223 | 34.14 214 | 14.79 221 | 6.53 223 | 8.79 219 | 4.68 225 | 16.64 217 | 29.49 217 | 41.63 214 | 22.73 221 | 38.11 214 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.09 217 | 0.15 219 | 0.02 218 | 0.01 225 | 0.02 225 | 0.05 226 | 0.01 222 | 0.11 222 | 0.01 226 | 0.26 222 | 0.01 228 | 0.06 222 | 0.10 221 | 0.10 220 | 0.01 223 | 0.43 221 |
|
test123 | | | 0.09 217 | 0.14 220 | 0.02 218 | 0.00 226 | 0.02 225 | 0.02 227 | 0.01 222 | 0.09 223 | 0.00 227 | 0.30 221 | 0.00 229 | 0.08 220 | 0.03 222 | 0.09 221 | 0.01 223 | 0.45 220 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 226 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 227 | 0.00 223 | 0.00 229 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 226 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 227 | 0.00 223 | 0.00 229 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 226 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 227 | 0.00 223 | 0.00 229 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 46.24 164 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 86.88 16 | | | | | |
|
SR-MVS | | | | | | 88.99 33 | | | 73.57 24 | | | | 87.54 14 | | | | | |
|
Anonymous202405211 | | | | 72.16 105 | | 80.85 82 | 81.85 86 | 76.88 103 | 65.40 76 | 62.89 113 | | 46.35 186 | 67.99 98 | 62.05 112 | 81.15 89 | 80.38 91 | 85.97 133 | 84.50 101 |
|
our_test_3 | | | | | | 67.93 185 | 70.99 173 | 66.89 171 | | | | | | | | | | |
|
ambc | | | | 53.42 203 | | 64.99 193 | 63.36 200 | 49.96 210 | | 47.07 197 | 37.12 190 | 28.97 210 | 16.36 222 | 41.82 190 | 75.10 154 | 67.34 191 | 71.55 203 | 75.72 169 |
|
MTAPA | | | | | | | | | | | 83.48 1 | | 86.45 19 | | | | | |
|
MTMP | | | | | | | | | | | 82.66 5 | | 84.91 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.85 225 | | | | | | | | | | |
|
tmp_tt | | | | | 14.50 217 | 14.68 221 | 7.17 223 | 10.46 224 | 2.21 220 | 37.73 211 | 28.71 200 | 25.26 213 | 16.98 220 | 4.37 219 | 31.49 216 | 29.77 216 | 26.56 220 | |
|
XVS | | | | | | 86.63 44 | 88.68 27 | 85.00 46 | | | 71.81 44 | | 81.92 36 | | | | 90.47 23 | |
|
X-MVStestdata | | | | | | 86.63 44 | 88.68 27 | 85.00 46 | | | 71.81 44 | | 81.92 36 | | | | 90.47 23 | |
|
mPP-MVS | | | | | | 89.90 24 | | | | | | | 81.29 41 | | | | | |
|
NP-MVS | | | | | | | | | | 80.10 44 | | | | | | | | |
|
Patchmtry | | | | | | | 65.80 192 | 65.97 178 | 52.74 178 | | 52.65 127 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 18.74 222 | 18.55 220 | 8.02 218 | 26.96 217 | 7.33 220 | 23.81 214 | 13.05 223 | 25.99 206 | 25.17 218 | | 22.45 222 | 36.25 216 |
|