This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5698.29 197.49 590.75 2097.62 598.06 692.59 299.61 395.64 699.02 1298.86 9
SED-MVS95.91 296.28 294.80 3698.77 585.99 5897.13 1297.44 1490.31 2997.71 198.07 492.31 499.58 895.66 499.13 398.84 12
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6197.09 1496.73 8190.27 3197.04 1098.05 891.47 899.55 1595.62 899.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8297.51 489.13 6197.14 897.91 1191.64 799.62 194.61 1499.17 298.86 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 497.40 2089.03 6596.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 3
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2397.47 1091.73 896.10 1796.69 6189.90 1299.30 4294.70 1298.04 7099.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 9596.96 5592.09 395.32 2397.08 4289.49 1599.33 3995.10 1198.85 1998.66 18
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4397.28 3185.90 14497.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8186.33 4797.33 597.30 2991.38 1195.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 14
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 6596.96 5591.75 794.02 3996.83 5488.12 2499.55 1593.41 2898.94 1698.28 52
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3197.48 987.76 10495.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
SD-MVS94.96 1295.33 893.88 6597.25 7886.69 3296.19 4797.11 4590.42 2896.95 1297.27 2989.53 1496.91 24694.38 1698.85 1998.03 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5496.62 9488.14 9296.10 1796.96 4989.09 1898.94 8794.48 1598.68 3998.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 7796.93 5892.34 293.94 4096.58 7187.74 2799.44 3092.83 3798.40 5798.62 20
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 7597.34 2288.28 8595.30 2497.67 1585.90 5299.54 1993.91 2098.95 1598.60 21
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7295.21 10195.47 17689.44 5095.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
ETH3D-3000-0.194.61 1794.44 1995.12 1397.70 6087.71 1195.98 6297.44 1486.67 13095.25 2597.31 2787.73 2899.24 4793.11 3598.76 3098.40 39
HFP-MVS94.52 1894.40 2094.86 2798.61 1086.81 2696.94 1897.34 2288.63 7493.65 4797.21 3486.10 4899.49 2692.35 4998.77 2898.30 48
ZNCC-MVS94.47 1994.28 2395.03 1698.52 1686.96 1996.85 2697.32 2788.24 8693.15 5997.04 4586.17 4799.62 192.40 4798.81 2298.52 24
zzz-MVS94.47 1994.30 2295.00 1898.42 2286.95 2095.06 11396.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
XVS94.45 2194.32 2194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6697.16 3985.02 6399.49 2691.99 6198.56 5198.47 32
MCST-MVS94.45 2194.20 2995.19 1198.46 2087.50 1595.00 11597.12 4387.13 11792.51 8096.30 8089.24 1799.34 3693.46 2598.62 4898.73 15
region2R94.43 2394.27 2594.92 2298.65 886.67 3496.92 2297.23 3588.60 7693.58 5197.27 2985.22 5999.54 1992.21 5298.74 3398.56 23
ACMMPR94.43 2394.28 2394.91 2498.63 986.69 3296.94 1897.32 2788.63 7493.53 5497.26 3185.04 6299.54 1992.35 4998.78 2598.50 26
MTAPA94.42 2594.22 2695.00 1898.42 2286.95 2094.36 16396.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
testtj94.39 2694.18 3095.00 1898.24 3386.77 3096.16 4897.23 3587.28 11594.85 2897.04 4586.99 4099.52 2391.54 7598.33 6098.71 16
CP-MVS94.34 2794.21 2894.74 4098.39 2586.64 3697.60 397.24 3388.53 7892.73 7397.23 3285.20 6099.32 4092.15 5598.83 2198.25 57
Regformer-294.33 2894.22 2694.68 4195.54 13186.75 3194.57 14396.70 8691.84 694.41 2996.56 7387.19 3799.13 5793.50 2497.65 8398.16 62
#test#94.32 2994.14 3294.86 2798.61 1086.81 2696.43 3497.34 2287.51 11093.65 4797.21 3486.10 4899.49 2691.68 7398.77 2898.30 48
MP-MVScopyleft94.25 3094.07 3594.77 3898.47 1986.31 4996.71 2996.98 5189.04 6391.98 9097.19 3685.43 5799.56 1092.06 6098.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3194.07 3594.75 3998.06 4386.90 2395.88 6696.94 5785.68 15095.05 2797.18 3787.31 3499.07 6191.90 6998.61 4998.28 52
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3294.17 3194.43 5398.21 3585.78 6996.40 3796.90 6088.20 8994.33 3197.40 2384.75 6799.03 6793.35 2997.99 7198.48 28
Regformer-194.22 3394.13 3394.51 4995.54 13186.36 4694.57 14396.44 10391.69 994.32 3296.56 7387.05 3999.03 6793.35 2997.65 8398.15 63
GST-MVS94.21 3493.97 3994.90 2698.41 2486.82 2596.54 3397.19 3888.24 8693.26 5596.83 5485.48 5699.59 791.43 7998.40 5798.30 48
MP-MVS-pluss94.21 3494.00 3894.85 2998.17 3686.65 3594.82 12797.17 4186.26 13892.83 6897.87 1285.57 5599.56 1094.37 1798.92 1798.34 43
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11496.52 9580.00 21794.00 18797.08 4690.05 3595.65 2197.29 2889.66 1398.97 8393.95 1998.71 3498.50 26
DeepC-MVS_fast89.43 294.04 3793.79 4394.80 3697.48 6786.78 2895.65 7996.89 6189.40 5392.81 6996.97 4885.37 5899.24 4790.87 8898.69 3798.38 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft94.02 3893.88 4094.43 5398.39 2585.78 6997.25 897.07 4786.90 12592.62 7796.80 5884.85 6699.17 5392.43 4598.65 4698.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 3993.78 4494.63 4498.50 1785.90 6696.87 2496.91 5988.70 7291.83 9697.17 3883.96 7799.55 1591.44 7898.64 4798.43 38
test117293.97 4094.07 3593.66 7498.11 3983.45 12096.26 4396.84 6788.33 8294.19 3497.43 2084.24 7299.01 7393.26 3197.98 7298.52 24
PGM-MVS93.96 4193.72 4694.68 4198.43 2186.22 5295.30 9297.78 187.45 11393.26 5597.33 2684.62 6899.51 2490.75 9198.57 5098.32 47
ETH3D cwj APD-0.1693.91 4293.53 5195.06 1596.76 8687.78 994.92 12097.21 3784.33 18093.89 4297.09 4187.20 3699.29 4491.90 6998.44 5598.12 66
Regformer-493.91 4293.81 4294.19 6095.36 13685.47 7594.68 13596.41 10691.60 1093.75 4496.71 5985.95 5199.10 6093.21 3396.65 10398.01 76
PHI-MVS93.89 4493.65 4994.62 4596.84 8486.43 4396.69 3097.49 585.15 16693.56 5396.28 8285.60 5499.31 4192.45 4498.79 2398.12 66
SR-MVS-dyc-post93.82 4593.82 4193.82 6797.92 4784.57 8696.28 4196.76 7787.46 11193.75 4497.43 2084.24 7299.01 7392.73 3897.80 7897.88 84
APD-MVS_3200maxsize93.78 4693.77 4593.80 7197.92 4784.19 10196.30 3996.87 6486.96 12193.92 4197.47 1883.88 7898.96 8692.71 4197.87 7698.26 56
MSLP-MVS++93.72 4794.08 3492.65 10697.31 7283.43 12195.79 7097.33 2590.03 3693.58 5196.96 4984.87 6597.76 17392.19 5498.66 4496.76 128
Regformer-393.68 4893.64 5093.81 7095.36 13684.61 8494.68 13595.83 14991.27 1293.60 5096.71 5985.75 5398.86 9492.87 3696.65 10397.96 78
TSAR-MVS + GP.93.66 4993.41 5394.41 5596.59 9186.78 2894.40 15593.93 24689.77 4494.21 3395.59 11087.35 3398.61 11092.72 4096.15 11297.83 88
ETH3 D test640093.64 5093.22 5694.92 2297.79 5486.84 2495.31 8997.26 3282.67 21793.81 4396.29 8187.29 3599.27 4589.87 9798.67 4198.65 19
test_prior393.60 5193.53 5193.82 6797.29 7484.49 9094.12 17396.88 6287.67 10792.63 7596.39 7886.62 4298.87 9191.50 7698.67 4198.11 68
CANet93.54 5293.20 5894.55 4795.65 12685.73 7194.94 11896.69 8891.89 590.69 11395.88 9981.99 10299.54 1993.14 3497.95 7498.39 40
MVS_111021_HR93.45 5393.31 5493.84 6696.99 8184.84 8093.24 22197.24 3388.76 7191.60 10195.85 10086.07 5098.66 10591.91 6698.16 6598.03 74
train_agg93.44 5493.08 5994.52 4897.53 6386.49 4194.07 18096.78 7481.86 23792.77 7096.20 8687.63 3099.12 5892.14 5698.69 3797.94 79
DROMVSNet93.44 5493.71 4792.63 10795.21 14482.43 15097.27 796.71 8590.57 2792.88 6595.80 10283.16 8298.16 13993.68 2398.14 6697.31 105
DELS-MVS93.43 5693.25 5593.97 6295.42 13585.04 7993.06 22897.13 4290.74 2291.84 9495.09 12386.32 4699.21 5091.22 8098.45 5497.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5793.22 5693.94 6498.36 2784.83 8197.15 1196.80 7385.77 14792.47 8197.13 4082.38 9199.07 6190.51 9398.40 5797.92 82
DeepC-MVS88.79 393.31 5892.99 6294.26 5896.07 11085.83 6794.89 12296.99 5089.02 6689.56 12697.37 2582.51 9099.38 3292.20 5398.30 6197.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior193.29 5992.97 6394.26 5897.38 6985.92 6393.92 19196.72 8381.96 23192.16 8596.23 8487.85 2598.97 8391.95 6598.55 5397.90 83
canonicalmvs93.27 6092.75 6794.85 2995.70 12587.66 1396.33 3896.41 10690.00 3794.09 3794.60 14282.33 9398.62 10992.40 4792.86 16798.27 54
ACMMPcopyleft93.24 6192.88 6594.30 5798.09 4285.33 7796.86 2597.45 1388.33 8290.15 12297.03 4781.44 10599.51 2490.85 8995.74 11598.04 73
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6293.05 6093.76 7298.04 4484.07 10396.22 4697.37 2184.15 18290.05 12395.66 10787.77 2699.15 5689.91 9698.27 6298.07 70
abl_693.18 6393.05 6093.57 7697.52 6584.27 10095.53 8396.67 9087.85 10193.20 5897.22 3380.35 11299.18 5291.91 6697.21 8997.26 108
alignmvs93.08 6492.50 7294.81 3595.62 12887.61 1495.99 6096.07 12989.77 4494.12 3694.87 12980.56 11198.66 10592.42 4693.10 16298.15 63
EI-MVSNet-Vis-set93.01 6592.92 6493.29 7795.01 15083.51 11994.48 14795.77 15390.87 1692.52 7996.67 6384.50 6999.00 7891.99 6194.44 14097.36 104
UA-Net92.83 6692.54 7193.68 7396.10 10884.71 8395.66 7796.39 10891.92 493.22 5796.49 7583.16 8298.87 9184.47 16295.47 12097.45 103
CDPH-MVS92.83 6692.30 7494.44 5197.79 5486.11 5494.06 18296.66 9180.09 26492.77 7096.63 6886.62 4299.04 6687.40 12598.66 4498.17 61
ETV-MVS92.74 6892.66 6992.97 9195.20 14584.04 10595.07 11096.51 10190.73 2392.96 6491.19 26084.06 7498.34 12891.72 7296.54 10696.54 138
EI-MVSNet-UG-set92.74 6892.62 7093.12 8394.86 16283.20 12694.40 15595.74 15690.71 2492.05 8996.60 7084.00 7698.99 8091.55 7493.63 14897.17 113
DPM-MVS92.58 7091.74 8095.08 1496.19 10389.31 592.66 23896.56 10083.44 19991.68 10095.04 12486.60 4598.99 8085.60 14997.92 7596.93 124
CS-MVS92.55 7192.87 6691.58 15694.21 18980.54 20095.30 9296.68 8988.18 9192.09 8894.57 14584.06 7498.05 15692.56 4398.19 6496.15 146
CS-MVS-test92.55 7192.72 6892.02 13294.87 16081.34 17796.43 3496.57 9889.04 6391.05 11094.41 14883.85 7998.09 15090.83 9097.47 8696.64 133
casdiffmvs92.51 7392.43 7392.74 10194.41 18381.98 16094.54 14596.23 11889.57 4891.96 9196.17 9082.58 8998.01 16090.95 8695.45 12298.23 58
MVS_111021_LR92.47 7492.29 7592.98 9095.99 11484.43 9793.08 22696.09 12788.20 8991.12 10995.72 10681.33 10797.76 17391.74 7197.37 8896.75 129
3Dnovator+87.14 492.42 7591.37 8395.55 695.63 12788.73 697.07 1696.77 7690.84 1784.02 24696.62 6975.95 16299.34 3687.77 12097.68 8198.59 22
baseline92.39 7692.29 7592.69 10594.46 18081.77 16494.14 17296.27 11389.22 5791.88 9296.00 9482.35 9297.99 16291.05 8295.27 12798.30 48
VNet92.24 7791.91 7893.24 7996.59 9183.43 12194.84 12696.44 10389.19 5994.08 3895.90 9877.85 14798.17 13888.90 10793.38 15698.13 65
CPTT-MVS91.99 7891.80 7992.55 11198.24 3381.98 16096.76 2896.49 10281.89 23690.24 11896.44 7778.59 13698.61 11089.68 9897.85 7797.06 117
EIA-MVS91.95 7991.94 7791.98 13695.16 14680.01 21695.36 8696.73 8188.44 7989.34 13092.16 22783.82 8098.45 12189.35 10297.06 9297.48 101
DP-MVS Recon91.95 7991.28 8593.96 6398.33 2985.92 6394.66 13896.66 9182.69 21690.03 12495.82 10182.30 9499.03 6784.57 16196.48 10996.91 125
EPNet91.79 8191.02 9194.10 6190.10 31985.25 7896.03 5992.05 28792.83 187.39 16395.78 10379.39 12799.01 7388.13 11797.48 8598.05 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 8291.70 8192.00 13597.08 8080.03 21593.60 20495.18 19687.85 10190.89 11296.47 7682.06 10098.36 12585.07 15397.04 9397.62 94
Vis-MVSNetpermissive91.75 8391.23 8693.29 7795.32 13983.78 11196.14 5195.98 13589.89 3890.45 11596.58 7175.09 17498.31 13284.75 15996.90 9697.78 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 8490.82 9594.44 5194.59 17486.37 4597.18 1097.02 4989.20 5884.31 24196.66 6473.74 19799.17 5386.74 13597.96 7397.79 90
EPP-MVSNet91.70 8591.56 8292.13 13095.88 11880.50 20297.33 595.25 19286.15 14089.76 12595.60 10983.42 8198.32 13187.37 12793.25 15997.56 99
MVSFormer91.68 8691.30 8492.80 9793.86 20483.88 10895.96 6395.90 14384.66 17691.76 9794.91 12777.92 14497.30 21489.64 9997.11 9097.24 109
Effi-MVS+91.59 8791.11 8893.01 8994.35 18783.39 12394.60 14095.10 20087.10 11890.57 11493.10 19981.43 10698.07 15489.29 10394.48 13897.59 97
IS-MVSNet91.43 8891.09 9092.46 11595.87 12081.38 17696.95 1793.69 25589.72 4689.50 12895.98 9578.57 13797.77 17283.02 17996.50 10898.22 59
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9883.17 12794.87 12496.66 9183.29 20389.27 13194.46 14780.29 11499.17 5387.57 12395.37 12396.05 157
diffmvs91.37 9091.23 8691.77 15093.09 22780.27 20592.36 24895.52 17387.03 12091.40 10594.93 12680.08 11697.44 19992.13 5794.56 13697.61 95
MVS_Test91.31 9191.11 8891.93 14094.37 18480.14 20893.46 20995.80 15186.46 13391.35 10693.77 17882.21 9698.09 15087.57 12394.95 12997.55 100
OMC-MVS91.23 9290.62 9793.08 8596.27 10184.07 10393.52 20695.93 13986.95 12289.51 12796.13 9278.50 13898.35 12785.84 14692.90 16696.83 127
PAPM_NR91.22 9390.78 9692.52 11397.60 6281.46 17394.37 16296.24 11786.39 13687.41 16094.80 13482.06 10098.48 11682.80 18595.37 12397.61 95
PS-MVSNAJ91.18 9490.92 9291.96 13895.26 14282.60 14992.09 25895.70 15886.27 13791.84 9492.46 21779.70 12298.99 8089.08 10595.86 11494.29 224
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 15382.42 15192.24 25295.64 16586.11 14391.74 9993.14 19779.67 12598.89 9089.06 10695.46 12194.28 225
nrg03091.08 9690.39 9893.17 8293.07 22886.91 2296.41 3696.26 11488.30 8488.37 14394.85 13282.19 9797.64 18491.09 8182.95 27394.96 192
lupinMVS90.92 9790.21 10193.03 8893.86 20483.88 10892.81 23593.86 25079.84 26791.76 9794.29 15377.92 14498.04 15790.48 9497.11 9097.17 113
h-mvs3390.80 9890.15 10492.75 10096.01 11282.66 14695.43 8595.53 17289.80 4093.08 6295.64 10875.77 16399.00 7892.07 5878.05 32996.60 134
jason90.80 9890.10 10592.90 9493.04 23083.53 11893.08 22694.15 24080.22 26191.41 10494.91 12776.87 15097.93 16790.28 9596.90 9697.24 109
jason: jason.
VDD-MVS90.74 10089.92 11293.20 8096.27 10183.02 13295.73 7293.86 25088.42 8192.53 7896.84 5362.09 30798.64 10790.95 8692.62 17097.93 81
PVSNet_Blended90.73 10190.32 10091.98 13696.12 10581.25 17992.55 24396.83 6982.04 22989.10 13392.56 21581.04 10998.85 9786.72 13795.91 11395.84 164
test_yl90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17595.12 19885.63 15191.49 10294.70 13674.75 17898.42 12386.13 14292.53 17197.31 105
DCV-MVSNet90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17595.12 19885.63 15191.49 10294.70 13674.75 17898.42 12386.13 14292.53 17197.31 105
API-MVS90.66 10490.07 10692.45 11696.36 9984.57 8696.06 5895.22 19582.39 22089.13 13294.27 15680.32 11398.46 11880.16 23296.71 10194.33 223
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
HQP_MVS90.60 10890.19 10291.82 14794.70 17082.73 14295.85 6796.22 11990.81 1886.91 17194.86 13074.23 18598.12 14088.15 11589.99 19494.63 205
FIs90.51 10990.35 9990.99 18293.99 20080.98 18795.73 7297.54 389.15 6086.72 17594.68 13881.83 10497.24 22285.18 15288.31 22594.76 202
112190.42 11089.49 11693.20 8097.27 7684.46 9392.63 23995.51 17471.01 34791.20 10896.21 8582.92 8699.05 6380.56 22598.07 6996.10 153
MAR-MVS90.30 11189.37 12193.07 8796.61 9084.48 9295.68 7595.67 16082.36 22287.85 15192.85 20576.63 15698.80 10180.01 23396.68 10295.91 160
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 11290.18 10390.53 19493.71 21079.85 22195.77 7197.59 289.31 5586.27 18494.67 13981.93 10397.01 24084.26 16488.09 22994.71 203
CANet_DTU90.26 11389.41 12092.81 9693.46 21883.01 13393.48 20794.47 22889.43 5287.76 15594.23 15770.54 23799.03 6784.97 15496.39 11096.38 140
OPM-MVS90.12 11489.56 11591.82 14793.14 22583.90 10794.16 17195.74 15688.96 6787.86 15095.43 11372.48 21397.91 16888.10 11890.18 19393.65 259
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 11589.13 12892.95 9296.71 8782.32 15596.08 5589.91 33786.79 12692.15 8796.81 5662.60 30498.34 12887.18 12993.90 14498.19 60
GeoE90.05 11689.43 11991.90 14395.16 14680.37 20495.80 6994.65 22583.90 18787.55 15994.75 13578.18 14297.62 18681.28 21193.63 14897.71 92
PAPR90.02 11789.27 12692.29 12695.78 12180.95 18992.68 23796.22 11981.91 23486.66 17693.75 18082.23 9598.44 12279.40 24394.79 13097.48 101
PVSNet_BlendedMVS89.98 11889.70 11390.82 18696.12 10581.25 17993.92 19196.83 6983.49 19889.10 13392.26 22581.04 10998.85 9786.72 13787.86 23392.35 305
PS-MVSNAJss89.97 11989.62 11491.02 17991.90 25880.85 19295.26 9895.98 13586.26 13886.21 18594.29 15379.70 12297.65 18288.87 10888.10 22794.57 211
XVG-OURS-SEG-HR89.95 12089.45 11791.47 16194.00 19981.21 18291.87 26196.06 13185.78 14688.55 13995.73 10574.67 18197.27 21888.71 11089.64 20395.91 160
UGNet89.95 12088.95 13292.95 9294.51 17783.31 12495.70 7495.23 19389.37 5487.58 15793.94 16764.00 29798.78 10283.92 16896.31 11196.74 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 12289.29 12491.81 14993.39 21983.72 11294.43 15397.12 4389.80 4086.46 17893.32 18883.16 8297.23 22384.92 15581.02 30294.49 218
AdaColmapbinary89.89 12389.07 12992.37 12197.41 6883.03 13194.42 15495.92 14082.81 21486.34 18394.65 14073.89 19399.02 7180.69 22295.51 11895.05 187
hse-mvs289.88 12489.34 12291.51 15894.83 16481.12 18493.94 19093.91 24989.80 4093.08 6293.60 18375.77 16397.66 18092.07 5877.07 33695.74 169
UniMVSNet (Re)89.80 12589.07 12992.01 13393.60 21484.52 8994.78 13097.47 1089.26 5686.44 18192.32 22282.10 9897.39 21184.81 15880.84 30694.12 230
HQP-MVS89.80 12589.28 12591.34 16594.17 19081.56 16794.39 15796.04 13388.81 6885.43 20993.97 16673.83 19597.96 16487.11 13289.77 20194.50 216
VPA-MVSNet89.62 12788.96 13191.60 15593.86 20482.89 13795.46 8497.33 2587.91 9688.43 14293.31 18974.17 18897.40 20887.32 12882.86 27894.52 214
WTY-MVS89.60 12888.92 13391.67 15395.47 13481.15 18392.38 24794.78 22183.11 20689.06 13594.32 15178.67 13596.61 25981.57 20890.89 18797.24 109
Vis-MVSNet (Re-imp)89.59 12989.44 11890.03 21995.74 12275.85 29595.61 8090.80 32287.66 10987.83 15295.40 11476.79 15296.46 27278.37 24996.73 10097.80 89
VDDNet89.56 13088.49 14592.76 9995.07 14982.09 15796.30 3993.19 26281.05 25691.88 9296.86 5261.16 31798.33 13088.43 11392.49 17397.84 87
114514_t89.51 13188.50 14392.54 11298.11 3981.99 15995.16 10696.36 11070.19 34985.81 19095.25 11776.70 15498.63 10882.07 19696.86 9997.00 121
QAPM89.51 13188.15 15493.59 7594.92 15784.58 8596.82 2796.70 8678.43 28783.41 26296.19 8973.18 20599.30 4277.11 26496.54 10696.89 126
CLD-MVS89.47 13388.90 13491.18 17094.22 18882.07 15892.13 25696.09 12787.90 9785.37 21592.45 21874.38 18397.56 18987.15 13090.43 18993.93 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
mvs-test189.45 13489.14 12790.38 20593.33 22077.63 27294.95 11794.36 23187.70 10587.10 16792.81 20973.45 20098.03 15985.57 15093.04 16395.48 175
LPG-MVS_test89.45 13488.90 13491.12 17194.47 17881.49 17195.30 9296.14 12486.73 12885.45 20695.16 12069.89 24398.10 14287.70 12189.23 21093.77 253
CDS-MVSNet89.45 13488.51 14292.29 12693.62 21383.61 11793.01 22994.68 22481.95 23287.82 15393.24 19378.69 13496.99 24180.34 22993.23 16096.28 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+89.41 13788.64 13891.71 15294.74 16680.81 19393.54 20595.10 20083.11 20686.82 17490.67 27879.74 12197.75 17680.51 22793.55 15096.57 136
ab-mvs89.41 13788.35 14792.60 10895.15 14882.65 14792.20 25495.60 16783.97 18688.55 13993.70 18274.16 18998.21 13782.46 19089.37 20696.94 123
XVG-OURS89.40 13988.70 13791.52 15794.06 19381.46 17391.27 27496.07 12986.14 14188.89 13795.77 10468.73 26297.26 22087.39 12689.96 19695.83 165
mvs_anonymous89.37 14089.32 12389.51 24293.47 21774.22 30791.65 26994.83 21782.91 21285.45 20693.79 17681.23 10896.36 27886.47 13994.09 14297.94 79
DU-MVS89.34 14188.50 14391.85 14693.04 23083.72 11294.47 15096.59 9689.50 4986.46 17893.29 19177.25 14897.23 22384.92 15581.02 30294.59 209
TAMVS89.21 14288.29 15191.96 13893.71 21082.62 14893.30 21594.19 23882.22 22487.78 15493.94 16778.83 13196.95 24377.70 25792.98 16596.32 141
ACMM84.12 989.14 14388.48 14691.12 17194.65 17381.22 18195.31 8996.12 12685.31 16185.92 18994.34 14970.19 24198.06 15585.65 14888.86 21594.08 234
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 14488.64 13890.48 19995.53 13374.97 30096.08 5584.89 35788.13 9390.16 12196.65 6563.29 30098.10 14286.14 14096.90 9698.39 40
EI-MVSNet89.10 14488.86 13689.80 23191.84 26078.30 25393.70 20195.01 20385.73 14887.15 16495.28 11579.87 11997.21 22583.81 17087.36 23893.88 243
ECVR-MVScopyleft89.09 14688.53 14190.77 18895.62 12875.89 29496.16 4884.22 35987.89 9990.20 11996.65 6563.19 30298.10 14285.90 14596.94 9498.33 44
CNLPA89.07 14787.98 15892.34 12296.87 8384.78 8294.08 17993.24 26081.41 24784.46 23195.13 12275.57 17096.62 25677.21 26293.84 14695.61 173
PLCcopyleft84.53 789.06 14888.03 15692.15 12997.27 7682.69 14594.29 16595.44 18279.71 26984.01 24794.18 15876.68 15598.75 10377.28 26193.41 15595.02 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 14988.64 13890.21 21090.74 30579.28 23595.96 6395.90 14384.66 17685.33 21792.94 20374.02 19197.30 21489.64 9988.53 21894.05 236
HY-MVS83.01 1289.03 14987.94 16092.29 12694.86 16282.77 13892.08 25994.49 22781.52 24686.93 16992.79 21178.32 14198.23 13479.93 23490.55 18895.88 162
ACMP84.23 889.01 15188.35 14790.99 18294.73 16781.27 17895.07 11095.89 14586.48 13283.67 25594.30 15269.33 25197.99 16287.10 13488.55 21793.72 257
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part189.00 15287.99 15792.04 13195.94 11783.81 11096.14 5196.05 13286.44 13485.69 19393.73 18171.57 21997.66 18085.80 14780.54 31094.66 204
sss88.93 15388.26 15390.94 18594.05 19480.78 19491.71 26695.38 18681.55 24588.63 13893.91 17175.04 17595.47 31482.47 18991.61 17896.57 136
RRT_MVS88.86 15487.68 16492.39 12092.02 25586.09 5594.38 16194.94 20685.45 15787.14 16693.84 17565.88 28997.11 23188.73 10986.77 24593.98 239
TranMVSNet+NR-MVSNet88.84 15587.95 15991.49 15992.68 24083.01 13394.92 12096.31 11189.88 3985.53 19993.85 17476.63 15696.96 24281.91 20079.87 32094.50 216
CHOSEN 1792x268888.84 15587.69 16392.30 12596.14 10481.42 17590.01 29695.86 14774.52 32387.41 16093.94 16775.46 17198.36 12580.36 22895.53 11797.12 116
MVSTER88.84 15588.29 15190.51 19792.95 23580.44 20393.73 19895.01 20384.66 17687.15 16493.12 19872.79 20997.21 22587.86 11987.36 23893.87 244
OpenMVScopyleft83.78 1188.74 15887.29 17393.08 8592.70 23985.39 7696.57 3296.43 10578.74 28380.85 29196.07 9369.64 24799.01 7378.01 25596.65 10394.83 199
thisisatest053088.67 15987.61 16691.86 14494.87 16080.07 21194.63 13989.90 33884.00 18588.46 14193.78 17766.88 27698.46 11883.30 17592.65 16997.06 117
Effi-MVS+-dtu88.65 16088.35 14789.54 23993.33 22076.39 28994.47 15094.36 23187.70 10585.43 20989.56 30073.45 20097.26 22085.57 15091.28 18094.97 189
tttt051788.61 16187.78 16291.11 17494.96 15477.81 26695.35 8789.69 34185.09 16888.05 14894.59 14366.93 27498.48 11683.27 17692.13 17697.03 119
BH-untuned88.60 16288.13 15590.01 22295.24 14378.50 24893.29 21694.15 24084.75 17484.46 23193.40 18575.76 16597.40 20877.59 25894.52 13794.12 230
NR-MVSNet88.58 16387.47 16991.93 14093.04 23084.16 10294.77 13196.25 11689.05 6280.04 30593.29 19179.02 13097.05 23781.71 20780.05 31794.59 209
1112_ss88.42 16487.33 17291.72 15194.92 15780.98 18792.97 23194.54 22678.16 29283.82 25193.88 17278.78 13397.91 16879.45 23989.41 20596.26 144
WR-MVS88.38 16587.67 16590.52 19693.30 22280.18 20693.26 21895.96 13788.57 7785.47 20592.81 20976.12 15896.91 24681.24 21282.29 28194.47 221
BH-RMVSNet88.37 16687.48 16891.02 17995.28 14079.45 22792.89 23393.07 26485.45 15786.91 17194.84 13370.35 23897.76 17373.97 29094.59 13595.85 163
IterMVS-LS88.36 16787.91 16189.70 23593.80 20778.29 25493.73 19895.08 20285.73 14884.75 22491.90 24179.88 11896.92 24583.83 16982.51 27993.89 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 16886.13 21194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6623.41 37185.02 6399.49 2691.99 6198.56 5198.47 32
LCM-MVSNet-Re88.30 16988.32 15088.27 27194.71 16972.41 32993.15 22290.98 31687.77 10379.25 31391.96 23978.35 14095.75 30383.04 17895.62 11696.65 132
jajsoiax88.24 17087.50 16790.48 19990.89 29980.14 20895.31 8995.65 16484.97 17084.24 24394.02 16265.31 29197.42 20188.56 11188.52 21993.89 241
VPNet88.20 17187.47 16990.39 20393.56 21579.46 22694.04 18395.54 17188.67 7386.96 16894.58 14469.33 25197.15 22784.05 16780.53 31294.56 212
TAPA-MVS84.62 688.16 17287.01 18091.62 15496.64 8980.65 19694.39 15796.21 12276.38 30386.19 18695.44 11179.75 12098.08 15362.75 34795.29 12596.13 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 17387.28 17490.57 19294.96 15480.07 21194.27 16691.29 30986.74 12787.41 16094.00 16476.77 15396.20 28380.77 22079.31 32595.44 177
Anonymous2024052988.09 17486.59 19592.58 11096.53 9481.92 16295.99 6095.84 14874.11 32689.06 13595.21 11961.44 31298.81 10083.67 17387.47 23597.01 120
HyFIR lowres test88.09 17486.81 18491.93 14096.00 11380.63 19790.01 29695.79 15273.42 33187.68 15692.10 23373.86 19497.96 16480.75 22191.70 17797.19 112
mvs_tets88.06 17687.28 17490.38 20590.94 29579.88 21995.22 10095.66 16285.10 16784.21 24493.94 16763.53 29997.40 20888.50 11288.40 22393.87 244
F-COLMAP87.95 17786.80 18591.40 16396.35 10080.88 19194.73 13395.45 18079.65 27082.04 27994.61 14171.13 22498.50 11576.24 27291.05 18594.80 201
LS3D87.89 17886.32 20592.59 10996.07 11082.92 13695.23 9994.92 21175.66 31082.89 26995.98 9572.48 21399.21 5068.43 32195.23 12895.64 172
anonymousdsp87.84 17987.09 17790.12 21589.13 33080.54 20094.67 13795.55 16982.05 22783.82 25192.12 23071.47 22297.15 22787.15 13087.80 23492.67 294
v2v48287.84 17987.06 17890.17 21190.99 29179.23 23894.00 18795.13 19784.87 17185.53 19992.07 23674.45 18297.45 19784.71 16081.75 29093.85 247
WR-MVS_H87.80 18187.37 17189.10 25093.23 22378.12 25795.61 8097.30 2987.90 9783.72 25392.01 23879.65 12696.01 29176.36 26980.54 31093.16 279
AUN-MVS87.78 18286.54 19791.48 16094.82 16581.05 18593.91 19493.93 24683.00 20986.93 16993.53 18469.50 24997.67 17986.14 14077.12 33595.73 170
PCF-MVS84.11 1087.74 18386.08 21592.70 10494.02 19584.43 9789.27 30695.87 14673.62 33084.43 23394.33 15078.48 13998.86 9470.27 30794.45 13994.81 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 18486.13 21192.31 12496.66 8880.74 19594.87 12491.49 30480.47 26089.46 12995.44 11154.72 34398.23 13482.19 19489.89 19897.97 77
V4287.68 18486.86 18290.15 21390.58 31080.14 20894.24 16895.28 19183.66 19285.67 19491.33 25574.73 18097.41 20684.43 16381.83 28892.89 289
thres600view787.65 18686.67 19090.59 19196.08 10978.72 24194.88 12391.58 30087.06 11988.08 14692.30 22368.91 25998.10 14270.05 31491.10 18194.96 192
XXY-MVS87.65 18686.85 18390.03 21992.14 24980.60 19993.76 19795.23 19382.94 21184.60 22694.02 16274.27 18495.49 31381.04 21483.68 26694.01 238
Test_1112_low_res87.65 18686.51 19891.08 17594.94 15679.28 23591.77 26394.30 23476.04 30883.51 26092.37 22077.86 14697.73 17778.69 24889.13 21296.22 145
thres100view90087.63 18986.71 18890.38 20596.12 10578.55 24595.03 11491.58 30087.15 11688.06 14792.29 22468.91 25998.10 14270.13 31191.10 18194.48 219
CP-MVSNet87.63 18987.26 17688.74 26093.12 22676.59 28695.29 9596.58 9788.43 8083.49 26192.98 20275.28 17295.83 29978.97 24581.15 29893.79 249
thres40087.62 19186.64 19190.57 19295.99 11478.64 24394.58 14191.98 29186.94 12388.09 14491.77 24369.18 25698.10 14270.13 31191.10 18194.96 192
v114487.61 19286.79 18690.06 21891.01 29079.34 23193.95 18995.42 18583.36 20285.66 19591.31 25874.98 17697.42 20183.37 17482.06 28493.42 268
tfpn200view987.58 19386.64 19190.41 20295.99 11478.64 24394.58 14191.98 29186.94 12388.09 14491.77 24369.18 25698.10 14270.13 31191.10 18194.48 219
BH-w/o87.57 19487.05 17989.12 24994.90 15977.90 26292.41 24593.51 25782.89 21383.70 25491.34 25475.75 16697.07 23575.49 27793.49 15292.39 303
UniMVSNet_ETH3D87.53 19586.37 20191.00 18192.44 24378.96 24094.74 13295.61 16684.07 18485.36 21694.52 14659.78 32697.34 21382.93 18087.88 23296.71 131
ET-MVSNet_ETH3D87.51 19685.91 22292.32 12393.70 21283.93 10692.33 24990.94 31884.16 18172.09 34992.52 21669.90 24295.85 29889.20 10488.36 22497.17 113
131487.51 19686.57 19690.34 20892.42 24479.74 22392.63 23995.35 19078.35 28880.14 30291.62 25074.05 19097.15 22781.05 21393.53 15194.12 230
v887.50 19886.71 18889.89 22591.37 27779.40 22894.50 14695.38 18684.81 17383.60 25891.33 25576.05 15997.42 20182.84 18380.51 31492.84 291
Fast-Effi-MVS+-dtu87.44 19986.72 18789.63 23792.04 25377.68 27194.03 18493.94 24585.81 14582.42 27391.32 25770.33 23997.06 23680.33 23090.23 19294.14 229
MVS87.44 19986.10 21491.44 16292.61 24183.62 11692.63 23995.66 16267.26 35381.47 28392.15 22877.95 14398.22 13679.71 23695.48 11992.47 300
FMVSNet387.40 20186.11 21391.30 16693.79 20983.64 11594.20 17094.81 21983.89 18884.37 23491.87 24268.45 26596.56 26478.23 25285.36 25193.70 258
thisisatest051587.33 20285.99 21791.37 16493.49 21679.55 22490.63 28489.56 34480.17 26287.56 15890.86 27167.07 27398.28 13381.50 20993.02 16496.29 142
PS-CasMVS87.32 20386.88 18188.63 26392.99 23476.33 29195.33 8896.61 9588.22 8883.30 26693.07 20073.03 20795.79 30278.36 25081.00 30493.75 255
GBi-Net87.26 20485.98 21891.08 17594.01 19683.10 12895.14 10794.94 20683.57 19484.37 23491.64 24666.59 28196.34 27978.23 25285.36 25193.79 249
test187.26 20485.98 21891.08 17594.01 19683.10 12895.14 10794.94 20683.57 19484.37 23491.64 24666.59 28196.34 27978.23 25285.36 25193.79 249
v119287.25 20686.33 20490.00 22390.76 30479.04 23993.80 19595.48 17582.57 21885.48 20491.18 26273.38 20497.42 20182.30 19282.06 28493.53 262
v1087.25 20686.38 20089.85 22691.19 28379.50 22594.48 14795.45 18083.79 19083.62 25791.19 26075.13 17397.42 20181.94 19980.60 30892.63 296
DP-MVS87.25 20685.36 23792.90 9497.65 6183.24 12594.81 12892.00 28974.99 31881.92 28195.00 12572.66 21099.05 6366.92 33292.33 17496.40 139
miper_ehance_all_eth87.22 20986.62 19489.02 25392.13 25077.40 27790.91 28094.81 21981.28 25084.32 23990.08 28979.26 12896.62 25683.81 17082.94 27493.04 284
test250687.21 21086.28 20790.02 22195.62 12873.64 31396.25 4571.38 37287.89 9990.45 11596.65 6555.29 34198.09 15086.03 14496.94 9498.33 44
thres20087.21 21086.24 20990.12 21595.36 13678.53 24693.26 21892.10 28586.42 13588.00 14991.11 26669.24 25598.00 16169.58 31591.04 18693.83 248
v14419287.19 21286.35 20389.74 23290.64 30878.24 25593.92 19195.43 18381.93 23385.51 20191.05 26874.21 18797.45 19782.86 18281.56 29293.53 262
FMVSNet287.19 21285.82 22491.30 16694.01 19683.67 11494.79 12994.94 20683.57 19483.88 24992.05 23766.59 28196.51 26777.56 25985.01 25493.73 256
c3_l87.14 21486.50 19989.04 25292.20 24777.26 27891.22 27694.70 22382.01 23084.34 23890.43 28278.81 13296.61 25983.70 17281.09 29993.25 273
Baseline_NR-MVSNet87.07 21586.63 19388.40 26791.44 27177.87 26494.23 16992.57 27584.12 18385.74 19292.08 23477.25 14896.04 28882.29 19379.94 31891.30 322
v14887.04 21686.32 20589.21 24690.94 29577.26 27893.71 20094.43 22984.84 17284.36 23790.80 27476.04 16097.05 23782.12 19579.60 32293.31 270
v192192086.97 21786.06 21689.69 23690.53 31378.11 25893.80 19595.43 18381.90 23585.33 21791.05 26872.66 21097.41 20682.05 19781.80 28993.53 262
miper_enhance_ethall86.90 21886.18 21089.06 25191.66 26877.58 27490.22 29294.82 21879.16 27584.48 23089.10 30379.19 12996.66 25484.06 16682.94 27492.94 287
RRT_test8_iter0586.90 21886.36 20288.52 26593.00 23373.27 31794.32 16495.96 13785.50 15684.26 24292.86 20460.76 31997.70 17888.32 11482.29 28194.60 208
bset_n11_16_dypcd86.83 22085.55 23090.65 19088.22 34181.70 16588.88 31490.42 32585.26 16285.49 20390.69 27767.11 27297.02 23989.51 10184.39 25893.23 275
v7n86.81 22185.76 22889.95 22490.72 30679.25 23795.07 11095.92 14084.45 17982.29 27490.86 27172.60 21297.53 19179.42 24280.52 31393.08 283
PEN-MVS86.80 22286.27 20888.40 26792.32 24675.71 29795.18 10496.38 10987.97 9482.82 27093.15 19673.39 20395.92 29476.15 27379.03 32793.59 260
cl2286.78 22385.98 21889.18 24892.34 24577.62 27390.84 28194.13 24281.33 24983.97 24890.15 28773.96 19296.60 26184.19 16582.94 27493.33 269
v124086.78 22385.85 22389.56 23890.45 31477.79 26793.61 20395.37 18881.65 24185.43 20991.15 26471.50 22197.43 20081.47 21082.05 28693.47 266
TR-MVS86.78 22385.76 22889.82 22894.37 18478.41 25092.47 24492.83 26881.11 25586.36 18292.40 21968.73 26297.48 19473.75 29389.85 20093.57 261
PatchMatch-RL86.77 22685.54 23190.47 20195.88 11882.71 14490.54 28592.31 28079.82 26884.32 23991.57 25368.77 26196.39 27573.16 29593.48 15492.32 306
PAPM86.68 22785.39 23590.53 19493.05 22979.33 23489.79 29994.77 22278.82 28081.95 28093.24 19376.81 15197.30 21466.94 33093.16 16194.95 195
pm-mvs186.61 22885.54 23189.82 22891.44 27180.18 20695.28 9794.85 21583.84 18981.66 28292.62 21472.45 21596.48 26979.67 23778.06 32892.82 292
GA-MVS86.61 22885.27 23890.66 18991.33 28078.71 24290.40 28793.81 25385.34 16085.12 21989.57 29961.25 31497.11 23180.99 21789.59 20496.15 146
Anonymous2023121186.59 23085.13 24090.98 18496.52 9581.50 16996.14 5196.16 12373.78 32883.65 25692.15 22863.26 30197.37 21282.82 18481.74 29194.06 235
DIV-MVS_self_test86.53 23185.78 22588.75 25892.02 25576.45 28890.74 28294.30 23481.83 23983.34 26490.82 27375.75 16696.57 26281.73 20681.52 29493.24 274
cl____86.52 23285.78 22588.75 25892.03 25476.46 28790.74 28294.30 23481.83 23983.34 26490.78 27575.74 16896.57 26281.74 20581.54 29393.22 276
eth_miper_zixun_eth86.50 23385.77 22788.68 26191.94 25775.81 29690.47 28694.89 21282.05 22784.05 24590.46 28175.96 16196.77 25082.76 18679.36 32493.46 267
baseline286.50 23385.39 23589.84 22791.12 28776.70 28491.88 26088.58 34682.35 22379.95 30690.95 27073.42 20297.63 18580.27 23189.95 19795.19 184
EPNet_dtu86.49 23585.94 22188.14 27690.24 31772.82 32194.11 17592.20 28386.66 13179.42 31292.36 22173.52 19895.81 30171.26 30193.66 14795.80 167
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas86.43 23684.98 24390.80 18792.10 25280.92 19090.24 29095.91 14273.10 33483.57 25988.39 31465.15 29297.46 19684.90 15791.43 17994.03 237
SCA86.32 23785.18 23989.73 23492.15 24876.60 28591.12 27791.69 29883.53 19785.50 20288.81 30766.79 27796.48 26976.65 26790.35 19196.12 150
LTVRE_ROB82.13 1386.26 23884.90 24690.34 20894.44 18281.50 16992.31 25194.89 21283.03 20879.63 31092.67 21269.69 24697.79 17171.20 30286.26 24691.72 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 23985.48 23387.98 27991.65 26974.92 30194.93 11995.75 15587.36 11482.26 27593.04 20172.85 20895.82 30074.04 28977.46 33393.20 277
XVG-ACMP-BASELINE86.00 24084.84 24889.45 24391.20 28278.00 25991.70 26795.55 16985.05 16982.97 26892.25 22654.49 34497.48 19482.93 18087.45 23792.89 289
MVP-Stereo85.97 24184.86 24789.32 24490.92 29782.19 15692.11 25794.19 23878.76 28278.77 31591.63 24968.38 26696.56 26475.01 28493.95 14389.20 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 24285.09 24188.35 26990.79 30277.42 27691.83 26295.70 15880.77 25880.08 30490.02 29066.74 27996.37 27681.88 20187.97 23191.26 323
test-LLR85.87 24385.41 23487.25 29590.95 29371.67 33289.55 30089.88 33983.41 20084.54 22887.95 32167.25 26995.11 31981.82 20293.37 15794.97 189
FMVSNet185.85 24484.11 25791.08 17592.81 23783.10 12895.14 10794.94 20681.64 24282.68 27191.64 24659.01 33096.34 27975.37 27983.78 26393.79 249
PatchmatchNetpermissive85.85 24484.70 25089.29 24591.76 26375.54 29888.49 31991.30 30881.63 24385.05 22088.70 31171.71 21796.24 28274.61 28789.05 21396.08 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 24684.94 24588.26 27291.16 28672.58 32789.47 30491.04 31576.26 30686.45 18089.97 29270.74 23196.86 24982.35 19187.07 24395.34 182
PMMVS85.71 24784.96 24487.95 28088.90 33377.09 28088.68 31790.06 33372.32 34086.47 17790.76 27672.15 21694.40 32581.78 20493.49 15292.36 304
PVSNet78.82 1885.55 24884.65 25188.23 27494.72 16871.93 33087.12 33292.75 27178.80 28184.95 22290.53 28064.43 29696.71 25374.74 28593.86 14596.06 156
IterMVS-SCA-FT85.45 24984.53 25488.18 27591.71 26576.87 28390.19 29392.65 27485.40 15981.44 28490.54 27966.79 27795.00 32281.04 21481.05 30092.66 295
pmmvs485.43 25083.86 26190.16 21290.02 32282.97 13590.27 28892.67 27375.93 30980.73 29291.74 24571.05 22595.73 30478.85 24683.46 27091.78 313
ACMH80.38 1785.36 25183.68 26390.39 20394.45 18180.63 19794.73 13394.85 21582.09 22677.24 32392.65 21360.01 32497.58 18772.25 29984.87 25592.96 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 25284.64 25287.49 28990.77 30372.59 32694.01 18694.40 23084.72 17579.62 31193.17 19561.91 30996.72 25181.99 19881.16 29693.16 279
CR-MVSNet85.35 25283.76 26290.12 21590.58 31079.34 23185.24 34291.96 29378.27 28985.55 19787.87 32471.03 22695.61 30573.96 29189.36 20795.40 179
tpmrst85.35 25284.99 24286.43 30990.88 30067.88 35388.71 31691.43 30680.13 26386.08 18888.80 30973.05 20696.02 29082.48 18883.40 27295.40 179
miper_lstm_enhance85.27 25584.59 25387.31 29291.28 28174.63 30287.69 32894.09 24481.20 25481.36 28689.85 29574.97 17794.30 32881.03 21679.84 32193.01 285
IB-MVS80.51 1585.24 25683.26 26891.19 16992.13 25079.86 22091.75 26491.29 30983.28 20480.66 29488.49 31361.28 31398.46 11880.99 21779.46 32395.25 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 25783.99 25988.65 26292.47 24278.40 25179.68 35992.76 27074.90 32081.41 28589.59 29869.85 24595.51 31079.92 23595.29 12592.03 310
RPSCF85.07 25884.27 25587.48 29092.91 23670.62 34291.69 26892.46 27676.20 30782.67 27295.22 11863.94 29897.29 21777.51 26085.80 24994.53 213
MS-PatchMatch85.05 25984.16 25687.73 28391.42 27578.51 24791.25 27593.53 25677.50 29480.15 30191.58 25161.99 30895.51 31075.69 27694.35 14189.16 346
ACMH+81.04 1485.05 25983.46 26789.82 22894.66 17279.37 22994.44 15294.12 24382.19 22578.04 31892.82 20858.23 33297.54 19073.77 29282.90 27792.54 297
DWT-MVSNet_test84.95 26183.68 26388.77 25691.43 27473.75 31191.74 26590.98 31680.66 25983.84 25087.36 32962.44 30597.11 23178.84 24785.81 24895.46 176
IterMVS84.88 26283.98 26087.60 28591.44 27176.03 29390.18 29492.41 27783.24 20581.06 29090.42 28366.60 28094.28 32979.46 23880.98 30592.48 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 26383.09 27090.14 21493.80 20780.05 21389.18 30993.09 26378.89 27878.19 31691.91 24065.86 29097.27 21868.47 32088.45 22193.11 281
tpm84.73 26484.02 25886.87 30690.33 31568.90 34989.06 31189.94 33680.85 25785.75 19189.86 29468.54 26495.97 29277.76 25684.05 26295.75 168
tfpnnormal84.72 26583.23 26989.20 24792.79 23880.05 21394.48 14795.81 15082.38 22181.08 28991.21 25969.01 25896.95 24361.69 34980.59 30990.58 336
CVMVSNet84.69 26684.79 24984.37 32791.84 26064.92 36193.70 20191.47 30566.19 35586.16 18795.28 11567.18 27193.33 34080.89 21990.42 19094.88 197
test-mter84.54 26783.64 26587.25 29590.95 29371.67 33289.55 30089.88 33979.17 27484.54 22887.95 32155.56 33895.11 31981.82 20293.37 15794.97 189
TransMVSNet (Re)84.43 26883.06 27188.54 26491.72 26478.44 24995.18 10492.82 26982.73 21579.67 30992.12 23073.49 19995.96 29371.10 30668.73 35491.21 325
pmmvs584.21 26982.84 27588.34 27088.95 33276.94 28292.41 24591.91 29575.63 31180.28 29991.18 26264.59 29595.57 30677.09 26583.47 26992.53 298
tpm284.08 27082.94 27287.48 29091.39 27671.27 33489.23 30890.37 32771.95 34284.64 22589.33 30167.30 26896.55 26675.17 28187.09 24294.63 205
COLMAP_ROBcopyleft80.39 1683.96 27182.04 27889.74 23295.28 14079.75 22294.25 16792.28 28175.17 31678.02 31993.77 17858.60 33197.84 17065.06 34085.92 24791.63 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 27281.53 28291.21 16890.58 31079.34 23185.24 34296.76 7771.44 34485.55 19782.97 35170.87 22998.91 8961.01 35189.36 20795.40 179
SixPastTwentyTwo83.91 27382.90 27386.92 30390.99 29170.67 34193.48 20791.99 29085.54 15477.62 32292.11 23260.59 32096.87 24876.05 27477.75 33093.20 277
EPMVS83.90 27482.70 27687.51 28790.23 31872.67 32388.62 31881.96 36481.37 24885.01 22188.34 31566.31 28494.45 32475.30 28087.12 24195.43 178
TESTMET0.1,183.74 27582.85 27486.42 31089.96 32371.21 33689.55 30087.88 34877.41 29583.37 26387.31 33056.71 33593.65 33780.62 22492.85 16894.40 222
MVS_030483.46 27681.92 27988.10 27790.63 30977.49 27593.26 21893.75 25480.04 26580.44 29887.24 33247.94 35895.55 30775.79 27588.16 22691.26 323
pmmvs683.42 27781.60 28188.87 25588.01 34477.87 26494.96 11694.24 23774.67 32278.80 31491.09 26760.17 32396.49 26877.06 26675.40 34092.23 308
AllTest83.42 27781.39 28389.52 24095.01 15077.79 26793.12 22390.89 32077.41 29576.12 33193.34 18654.08 34697.51 19268.31 32284.27 26093.26 271
tpmvs83.35 27982.07 27787.20 29991.07 28971.00 33988.31 32291.70 29778.91 27780.49 29787.18 33369.30 25497.08 23468.12 32583.56 26893.51 265
USDC82.76 28081.26 28587.26 29491.17 28474.55 30389.27 30693.39 25978.26 29075.30 33692.08 23454.43 34596.63 25571.64 30085.79 25090.61 333
Patchmtry82.71 28180.93 28788.06 27890.05 32176.37 29084.74 34691.96 29372.28 34181.32 28787.87 32471.03 22695.50 31268.97 31780.15 31692.32 306
PatchT82.68 28281.27 28486.89 30590.09 32070.94 34084.06 34890.15 33074.91 31985.63 19683.57 34869.37 25094.87 32365.19 33788.50 22094.84 198
MIMVSNet82.59 28380.53 28888.76 25791.51 27078.32 25286.57 33590.13 33179.32 27180.70 29388.69 31252.98 35093.07 34466.03 33588.86 21594.90 196
test0.0.03 182.41 28481.69 28084.59 32588.23 34072.89 32090.24 29087.83 34983.41 20079.86 30789.78 29667.25 26988.99 36065.18 33883.42 27191.90 312
EG-PatchMatch MVS82.37 28580.34 29188.46 26690.27 31679.35 23092.80 23694.33 23377.14 29973.26 34690.18 28647.47 36096.72 25170.25 30887.32 24089.30 343
tpm cat181.96 28680.27 29287.01 30191.09 28871.02 33887.38 33191.53 30366.25 35480.17 30086.35 33768.22 26796.15 28669.16 31682.29 28193.86 246
our_test_381.93 28780.46 29086.33 31188.46 33773.48 31588.46 32091.11 31176.46 30176.69 32788.25 31766.89 27594.36 32668.75 31879.08 32691.14 327
ppachtmachnet_test81.84 28880.07 29687.15 30088.46 33774.43 30689.04 31292.16 28475.33 31477.75 32088.99 30466.20 28595.37 31565.12 33977.60 33191.65 315
gg-mvs-nofinetune81.77 28979.37 30288.99 25490.85 30177.73 27086.29 33679.63 36874.88 32183.19 26769.05 36260.34 32196.11 28775.46 27894.64 13493.11 281
CL-MVSNet_self_test81.74 29080.53 28885.36 31985.96 35272.45 32890.25 28993.07 26481.24 25279.85 30887.29 33170.93 22892.52 34766.95 32969.23 35091.11 329
Patchmatch-RL test81.67 29179.96 29786.81 30785.42 35671.23 33582.17 35587.50 35278.47 28677.19 32482.50 35270.81 23093.48 33882.66 18772.89 34495.71 171
ADS-MVSNet281.66 29279.71 30087.50 28891.35 27874.19 30883.33 35188.48 34772.90 33682.24 27685.77 34164.98 29393.20 34264.57 34183.74 26495.12 185
K. test v381.59 29380.15 29585.91 31689.89 32569.42 34892.57 24287.71 35085.56 15373.44 34589.71 29755.58 33795.52 30977.17 26369.76 34892.78 293
ADS-MVSNet81.56 29479.78 29886.90 30491.35 27871.82 33183.33 35189.16 34572.90 33682.24 27685.77 34164.98 29393.76 33564.57 34183.74 26495.12 185
FMVSNet581.52 29579.60 30187.27 29391.17 28477.95 26091.49 27192.26 28276.87 30076.16 33087.91 32351.67 35192.34 34867.74 32681.16 29691.52 317
dp81.47 29680.23 29385.17 32289.92 32465.49 35986.74 33390.10 33276.30 30581.10 28887.12 33462.81 30395.92 29468.13 32479.88 31994.09 233
Patchmatch-test81.37 29779.30 30387.58 28690.92 29774.16 30980.99 35787.68 35170.52 34876.63 32888.81 30771.21 22392.76 34660.01 35586.93 24495.83 165
EU-MVSNet81.32 29880.95 28682.42 33688.50 33663.67 36293.32 21191.33 30764.02 35780.57 29692.83 20761.21 31692.27 34976.34 27080.38 31591.32 321
test_040281.30 29979.17 30787.67 28493.19 22478.17 25692.98 23091.71 29675.25 31576.02 33390.31 28459.23 32896.37 27650.22 36283.63 26788.47 352
JIA-IIPM81.04 30078.98 31087.25 29588.64 33473.48 31581.75 35689.61 34373.19 33382.05 27873.71 35966.07 28895.87 29771.18 30484.60 25792.41 302
Anonymous2023120681.03 30179.77 29984.82 32487.85 34670.26 34491.42 27292.08 28673.67 32977.75 32089.25 30262.43 30693.08 34361.50 35082.00 28791.12 328
pmmvs-eth3d80.97 30278.72 31187.74 28284.99 35879.97 21890.11 29591.65 29975.36 31373.51 34486.03 33859.45 32793.96 33475.17 28172.21 34589.29 344
testgi80.94 30380.20 29483.18 33287.96 34566.29 35691.28 27390.70 32483.70 19178.12 31792.84 20651.37 35290.82 35663.34 34482.46 28092.43 301
CMPMVSbinary59.16 2180.52 30479.20 30684.48 32683.98 35967.63 35589.95 29893.84 25264.79 35666.81 35791.14 26557.93 33395.17 31776.25 27188.10 22790.65 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052180.44 30579.21 30584.11 33085.75 35467.89 35292.86 23493.23 26175.61 31275.59 33587.47 32850.03 35394.33 32771.14 30581.21 29590.12 338
LF4IMVS80.37 30679.07 30984.27 32986.64 34869.87 34789.39 30591.05 31476.38 30374.97 33890.00 29147.85 35994.25 33074.55 28880.82 30788.69 350
KD-MVS_self_test80.20 30779.24 30483.07 33385.64 35565.29 36091.01 27993.93 24678.71 28476.32 32986.40 33659.20 32992.93 34572.59 29769.35 34991.00 331
UnsupCasMVSNet_eth80.07 30878.27 31285.46 31885.24 35772.63 32588.45 32194.87 21482.99 21071.64 35288.07 32056.34 33691.75 35373.48 29463.36 35992.01 311
test20.0379.95 30979.08 30882.55 33585.79 35367.74 35491.09 27891.08 31281.23 25374.48 34189.96 29361.63 31090.15 35760.08 35376.38 33789.76 339
TDRefinement79.81 31077.34 31487.22 29879.24 36675.48 29993.12 22392.03 28876.45 30275.01 33791.58 25149.19 35696.44 27370.22 31069.18 35189.75 340
TinyColmap79.76 31177.69 31385.97 31391.71 26573.12 31889.55 30090.36 32875.03 31772.03 35090.19 28546.22 36196.19 28563.11 34581.03 30188.59 351
OpenMVS_ROBcopyleft74.94 1979.51 31277.03 31886.93 30287.00 34776.23 29292.33 24990.74 32368.93 35174.52 34088.23 31849.58 35596.62 25657.64 35784.29 25987.94 354
MIMVSNet179.38 31377.28 31585.69 31786.35 34973.67 31291.61 27092.75 27178.11 29372.64 34888.12 31948.16 35791.97 35260.32 35277.49 33291.43 320
YYNet179.22 31477.20 31685.28 32188.20 34372.66 32485.87 33890.05 33574.33 32562.70 35987.61 32666.09 28792.03 35066.94 33072.97 34391.15 326
MDA-MVSNet_test_wron79.21 31577.19 31785.29 32088.22 34172.77 32285.87 33890.06 33374.34 32462.62 36087.56 32766.14 28691.99 35166.90 33373.01 34291.10 330
MDA-MVSNet-bldmvs78.85 31676.31 31986.46 30889.76 32673.88 31088.79 31590.42 32579.16 27559.18 36188.33 31660.20 32294.04 33162.00 34868.96 35291.48 319
KD-MVS_2432*160078.50 31776.02 32285.93 31486.22 35074.47 30484.80 34492.33 27879.29 27276.98 32585.92 33953.81 34893.97 33267.39 32757.42 36289.36 341
miper_refine_blended78.50 31776.02 32285.93 31486.22 35074.47 30484.80 34492.33 27879.29 27276.98 32585.92 33953.81 34893.97 33267.39 32757.42 36289.36 341
PM-MVS78.11 31976.12 32184.09 33183.54 36170.08 34588.97 31385.27 35679.93 26674.73 33986.43 33534.70 36693.48 33879.43 24172.06 34688.72 349
PVSNet_073.20 2077.22 32074.83 32584.37 32790.70 30771.10 33783.09 35389.67 34272.81 33873.93 34383.13 35060.79 31893.70 33668.54 31950.84 36588.30 353
DSMNet-mixed76.94 32176.29 32078.89 33983.10 36256.11 36987.78 32679.77 36760.65 35975.64 33488.71 31061.56 31188.34 36160.07 35489.29 20992.21 309
new-patchmatchnet76.41 32275.17 32480.13 33882.65 36459.61 36487.66 32991.08 31278.23 29169.85 35383.22 34954.76 34291.63 35564.14 34364.89 35789.16 346
UnsupCasMVSNet_bld76.23 32373.27 32685.09 32383.79 36072.92 31985.65 34193.47 25871.52 34368.84 35579.08 35649.77 35493.21 34166.81 33460.52 36189.13 348
MVS-HIRNet73.70 32472.20 32778.18 34291.81 26256.42 36882.94 35482.58 36255.24 36168.88 35466.48 36355.32 34095.13 31858.12 35688.42 22283.01 357
new_pmnet72.15 32570.13 32878.20 34182.95 36365.68 35783.91 34982.40 36362.94 35864.47 35879.82 35542.85 36386.26 36357.41 35874.44 34182.65 359
pmmvs371.81 32668.71 32981.11 33775.86 36770.42 34386.74 33383.66 36058.95 36068.64 35680.89 35436.93 36589.52 35963.10 34663.59 35883.39 356
N_pmnet68.89 32768.44 33070.23 34689.07 33128.79 37888.06 32319.50 37969.47 35071.86 35184.93 34361.24 31591.75 35354.70 35977.15 33490.15 337
LCM-MVSNet66.00 32862.16 33277.51 34364.51 37358.29 36583.87 35090.90 31948.17 36454.69 36273.31 36016.83 37686.75 36265.47 33661.67 36087.48 355
FPMVS64.63 32962.55 33170.88 34570.80 36956.71 36684.42 34784.42 35851.78 36349.57 36381.61 35323.49 37081.48 36640.61 36776.25 33874.46 362
EGC-MVSNET61.97 33056.37 33478.77 34089.63 32873.50 31489.12 31082.79 3610.21 3761.24 37784.80 34439.48 36490.04 35844.13 36475.94 33972.79 363
PMMVS259.60 33156.40 33369.21 34768.83 37046.58 37373.02 36477.48 37155.07 36249.21 36472.95 36117.43 37580.04 36749.32 36344.33 36780.99 361
ANet_high58.88 33254.22 33672.86 34456.50 37656.67 36780.75 35886.00 35373.09 33537.39 36864.63 36522.17 37179.49 36843.51 36523.96 37082.43 360
Gipumacopyleft57.99 33354.91 33567.24 34888.51 33565.59 35852.21 36790.33 32943.58 36642.84 36751.18 36820.29 37385.07 36434.77 36870.45 34751.05 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 33448.46 33863.48 34945.72 37846.20 37473.41 36378.31 36941.03 36730.06 37065.68 3646.05 37783.43 36530.04 36965.86 35560.80 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 33548.47 33756.66 35152.26 37718.98 38041.51 36981.40 36510.10 37144.59 36675.01 35828.51 36868.16 36953.54 36049.31 36682.83 358
MVEpermissive39.65 2343.39 33638.59 34257.77 35056.52 37548.77 37255.38 36658.64 37629.33 37028.96 37152.65 3674.68 37864.62 37228.11 37033.07 36859.93 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 33742.29 33946.03 35365.58 37237.41 37573.51 36264.62 37333.99 36828.47 37247.87 36919.90 37467.91 37022.23 37124.45 36932.77 368
EMVS42.07 33841.12 34044.92 35463.45 37435.56 37773.65 36163.48 37433.05 36926.88 37345.45 37021.27 37267.14 37119.80 37223.02 37132.06 369
tmp_tt35.64 33939.24 34124.84 35514.87 37923.90 37962.71 36551.51 3786.58 37336.66 36962.08 36644.37 36230.34 37552.40 36122.00 37220.27 370
cdsmvs_eth3d_5k22.14 34029.52 3430.00 3590.00 3820.00 3830.00 37095.76 1540.00 3770.00 37894.29 15375.66 1690.00 3780.00 3760.00 3760.00 374
wuyk23d21.27 34120.48 34423.63 35668.59 37136.41 37649.57 3686.85 3809.37 3727.89 3744.46 3764.03 37931.37 37417.47 37316.07 3733.12 371
testmvs8.92 34211.52 3451.12 3581.06 3800.46 38286.02 3370.65 3810.62 3742.74 3759.52 3740.31 3810.45 3772.38 3740.39 3742.46 373
test1238.76 34311.22 3461.39 3570.85 3810.97 38185.76 3400.35 3820.54 3752.45 3768.14 3750.60 3800.48 3762.16 3750.17 3752.71 372
ab-mvs-re7.82 34410.43 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37893.88 1720.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas6.64 3458.86 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37779.70 1220.00 3780.00 3760.00 3760.00 374
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS198.86 185.54 7498.29 197.49 589.79 4396.29 15
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
PC_three_145282.47 21997.09 997.07 4492.72 198.04 15792.70 4299.02 1298.86 9
No_MVS96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
test_one_060198.58 1285.83 6797.44 1491.05 1596.78 1398.06 691.45 11
eth-test20.00 382
eth-test0.00 382
ZD-MVS98.15 3786.62 3797.07 4783.63 19394.19 3496.91 5187.57 3299.26 4691.99 6198.44 55
RE-MVS-def93.68 4897.92 4784.57 8696.28 4196.76 7787.46 11193.75 4497.43 2082.94 8592.73 3897.80 7897.88 84
IU-MVS98.77 586.00 5696.84 6781.26 25197.26 795.50 1099.13 399.03 6
OPU-MVS96.21 398.00 4690.85 397.13 1297.08 4292.59 298.94 8792.25 5198.99 1498.84 12
test_241102_TWO97.44 1490.31 2997.62 598.07 491.46 1099.58 895.66 499.12 698.98 8
test_241102_ONE98.77 585.99 5897.44 1490.26 3397.71 197.96 1092.31 499.38 32
9.1494.47 1897.79 5496.08 5597.44 1486.13 14295.10 2697.40 2388.34 2199.22 4993.25 3298.70 36
save fliter97.85 5085.63 7295.21 10196.82 7189.44 50
test_0728_THIRD90.75 2097.04 1098.05 892.09 699.55 1595.64 699.13 399.13 1
test_0728_SECOND95.01 1798.79 286.43 4397.09 1497.49 599.61 395.62 899.08 798.99 7
test072698.78 385.93 6197.19 997.47 1090.27 3197.64 498.13 191.47 8
GSMVS96.12 150
test_part298.55 1387.22 1896.40 14
sam_mvs171.70 21896.12 150
sam_mvs70.60 232
ambc83.06 33479.99 36563.51 36377.47 36092.86 26774.34 34284.45 34528.74 36795.06 32173.06 29668.89 35390.61 333
MTGPAbinary96.97 52
test_post188.00 3249.81 37369.31 25395.53 30876.65 267
test_post10.29 37270.57 23695.91 296
patchmatchnet-post83.76 34771.53 22096.48 269
GG-mvs-BLEND87.94 28189.73 32777.91 26187.80 32578.23 37080.58 29583.86 34659.88 32595.33 31671.20 30292.22 17590.60 335
MTMP96.16 4860.64 375
gm-plane-assit89.60 32968.00 35177.28 29888.99 30497.57 18879.44 240
test9_res91.91 6698.71 3498.07 70
TEST997.53 6386.49 4194.07 18096.78 7481.61 24492.77 7096.20 8687.71 2999.12 58
test_897.49 6686.30 5094.02 18596.76 7781.86 23792.70 7496.20 8687.63 3099.02 71
agg_prior290.54 9298.68 3998.27 54
agg_prior97.38 6985.92 6396.72 8392.16 8598.97 83
TestCases89.52 24095.01 15077.79 26790.89 32077.41 29576.12 33193.34 18654.08 34697.51 19268.31 32284.27 26093.26 271
test_prior485.96 6094.11 175
test_prior294.12 17387.67 10792.63 7596.39 7886.62 4291.50 7698.67 41
test_prior93.82 6797.29 7484.49 9096.88 6298.87 9198.11 68
旧先验293.36 21071.25 34594.37 3097.13 23086.74 135
新几何293.11 225
新几何193.10 8497.30 7384.35 9995.56 16871.09 34691.26 10796.24 8382.87 8798.86 9479.19 24498.10 6896.07 155
旧先验196.79 8581.81 16395.67 16096.81 5686.69 4197.66 8296.97 122
无先验93.28 21796.26 11473.95 32799.05 6380.56 22596.59 135
原ACMM292.94 232
原ACMM192.01 13397.34 7181.05 18596.81 7278.89 27890.45 11595.92 9782.65 8898.84 9980.68 22398.26 6396.14 148
test22296.55 9381.70 16592.22 25395.01 20368.36 35290.20 11996.14 9180.26 11597.80 7896.05 157
testdata298.75 10378.30 251
segment_acmp87.16 38
testdata90.49 19896.40 9777.89 26395.37 18872.51 33993.63 4996.69 6182.08 9997.65 18283.08 17797.39 8795.94 159
testdata192.15 25587.94 95
test1294.34 5697.13 7986.15 5396.29 11291.04 11185.08 6199.01 7398.13 6797.86 86
plane_prior794.70 17082.74 141
plane_prior694.52 17682.75 13974.23 185
plane_prior596.22 11998.12 14088.15 11589.99 19494.63 205
plane_prior494.86 130
plane_prior382.75 13990.26 3386.91 171
plane_prior295.85 6790.81 18
plane_prior194.59 174
plane_prior82.73 14295.21 10189.66 4789.88 199
n20.00 383
nn0.00 383
door-mid85.49 354
lessismore_v086.04 31288.46 33768.78 35080.59 36673.01 34790.11 28855.39 33996.43 27475.06 28365.06 35692.90 288
LGP-MVS_train91.12 17194.47 17881.49 17196.14 12486.73 12885.45 20695.16 12069.89 24398.10 14287.70 12189.23 21093.77 253
test1196.57 98
door85.33 355
HQP5-MVS81.56 167
HQP-NCC94.17 19094.39 15788.81 6885.43 209
ACMP_Plane94.17 19094.39 15788.81 6885.43 209
BP-MVS87.11 132
HQP4-MVS85.43 20997.96 16494.51 215
HQP3-MVS96.04 13389.77 201
HQP2-MVS73.83 195
NP-MVS94.37 18482.42 15193.98 165
MDTV_nov1_ep13_2view55.91 37087.62 33073.32 33284.59 22770.33 23974.65 28695.50 174
MDTV_nov1_ep1383.56 26691.69 26769.93 34687.75 32791.54 30278.60 28584.86 22388.90 30669.54 24896.03 28970.25 30888.93 214
ACMMP++_ref87.47 235
ACMMP++88.01 230
Test By Simon80.02 117
ITE_SJBPF88.24 27391.88 25977.05 28192.92 26685.54 15480.13 30393.30 19057.29 33496.20 28372.46 29884.71 25691.49 318
DeepMVS_CXcopyleft56.31 35274.23 36851.81 37156.67 37744.85 36548.54 36575.16 35727.87 36958.74 37340.92 36652.22 36458.39 366