This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7690.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7697.51 489.13 5897.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 6196.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8896.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13697.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9695.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23794.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8796.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7196.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3498.40 5398.62 16
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6997.34 1988.28 8195.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9495.47 16989.44 4795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12295.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 7093.65 4397.21 3286.10 4599.49 2392.35 4498.77 2498.30 41
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8293.15 5597.04 4286.17 4499.62 192.40 4298.81 1898.52 20
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10696.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6197.16 3785.02 6099.49 2391.99 5698.56 4798.47 28
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10897.12 4087.13 10992.51 7596.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7293.58 4797.27 2785.22 5699.54 1692.21 4798.74 2998.56 19
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 7093.53 5097.26 2985.04 5999.54 1692.35 4498.78 2198.50 22
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15696.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10794.85 2497.04 4286.99 3799.52 2091.54 7098.33 5698.71 12
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7492.73 6897.23 3085.20 5799.32 3792.15 5098.83 1798.25 50
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13696.70 8091.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7898.16 55
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3297.34 1987.51 10293.65 4397.21 3286.10 4599.49 2391.68 6898.77 2498.30 41
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 6091.98 8597.19 3485.43 5499.56 792.06 5598.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14295.05 2397.18 3587.31 3199.07 5891.90 6498.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8594.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13696.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7898.15 56
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3197.19 3588.24 8293.26 5196.83 5185.48 5399.59 491.43 7498.40 5398.30 41
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 12097.17 3886.26 13092.83 6397.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 21094.00 18097.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7396.89 5889.40 5092.81 6496.97 4585.37 5599.24 4490.87 8398.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11792.62 7296.80 5584.85 6399.17 5092.43 4098.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6891.83 9197.17 3683.96 7399.55 1291.44 7398.64 4398.43 34
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 4096.84 6288.33 7894.19 3097.43 1884.24 6999.01 7093.26 2797.98 6798.52 20
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8697.78 187.45 10593.26 5197.33 2484.62 6599.51 2190.75 8598.57 4698.32 40
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11397.21 3484.33 17293.89 3897.09 3987.20 3399.29 4191.90 6498.44 5198.12 59
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 12896.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15893.56 4996.28 7685.60 5199.31 3892.45 3998.79 1998.12 59
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7287.46 10393.75 4097.43 1884.24 6999.01 7092.73 3597.80 7397.88 77
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11393.92 3797.47 1683.88 7498.96 8392.71 3897.87 7198.26 49
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6497.33 2290.03 3393.58 4796.96 4684.87 6297.76 16492.19 4998.66 4096.76 121
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 12895.83 14291.27 1293.60 4696.71 5685.75 5098.86 9192.87 3396.65 9497.96 71
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14893.93 23989.77 4094.21 2995.59 10387.35 3098.61 10792.72 3796.15 10397.83 81
ETH3 D test640093.64 4993.22 5594.92 2097.79 5286.84 2295.31 8397.26 2982.67 20993.81 3996.29 7587.29 3299.27 4289.87 9198.67 3798.65 15
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16696.88 5987.67 9992.63 7096.39 7286.62 3998.87 8891.50 7198.67 3798.11 61
CANet93.54 5193.20 5794.55 4495.65 12185.73 6794.94 11196.69 8291.89 590.69 10795.88 9381.99 9799.54 1693.14 3097.95 6998.39 36
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21497.24 3088.76 6791.60 9695.85 9486.07 4798.66 10291.91 6198.16 6098.03 67
train_agg93.44 5393.08 5894.52 4597.53 5886.49 3994.07 17396.78 6981.86 22892.77 6596.20 8087.63 2799.12 5592.14 5198.69 3397.94 72
DELS-MVS93.43 5493.25 5493.97 5995.42 12785.04 7493.06 22197.13 3990.74 2091.84 8995.09 11786.32 4399.21 4791.22 7598.45 5097.65 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5593.22 5593.94 6198.36 2584.83 7697.15 896.80 6885.77 13992.47 7697.13 3882.38 8699.07 5890.51 8798.40 5397.92 75
DeepC-MVS88.79 393.31 5692.99 6194.26 5596.07 10585.83 6494.89 11596.99 4789.02 6289.56 11797.37 2382.51 8599.38 2992.20 4898.30 5797.57 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior193.29 5792.97 6294.26 5597.38 6485.92 6093.92 18496.72 7881.96 22292.16 8196.23 7887.85 2298.97 8091.95 6098.55 4997.90 76
canonicalmvs93.27 5892.75 6594.85 2795.70 12087.66 1196.33 3596.41 9990.00 3494.09 3394.60 13682.33 8898.62 10692.40 4292.86 15898.27 47
ACMMPcopyleft93.24 5992.88 6494.30 5498.09 4085.33 7296.86 2297.45 1188.33 7890.15 11397.03 4481.44 10099.51 2190.85 8495.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6093.05 5993.76 6998.04 4284.07 9896.22 4297.37 1884.15 17490.05 11495.66 10087.77 2399.15 5389.91 9098.27 5898.07 63
abl_693.18 6193.05 5993.57 7397.52 6084.27 9595.53 7796.67 8387.85 9393.20 5497.22 3180.35 10799.18 4991.91 6197.21 8397.26 100
alignmvs93.08 6292.50 6994.81 3295.62 12387.61 1295.99 5496.07 12289.77 4094.12 3294.87 12380.56 10698.66 10292.42 4193.10 15398.15 56
CS-MVS93.01 6393.28 5392.21 12594.70 16081.67 16196.60 2996.65 8789.58 4492.34 7795.10 11683.39 7798.15 13693.11 3197.99 6596.82 120
EI-MVSNet-Vis-set93.01 6392.92 6393.29 7495.01 14183.51 11494.48 14095.77 14690.87 1592.52 7496.67 6084.50 6699.00 7591.99 5694.44 13197.36 97
UA-Net92.83 6592.54 6893.68 7096.10 10384.71 7895.66 7196.39 10191.92 493.22 5396.49 6983.16 7898.87 8884.47 15395.47 11197.45 96
CDPH-MVS92.83 6592.30 7194.44 4897.79 5286.11 5294.06 17596.66 8480.09 25592.77 6596.63 6286.62 3999.04 6387.40 11998.66 4098.17 54
ETV-MVS92.74 6792.66 6692.97 8895.20 13684.04 10095.07 10396.51 9490.73 2192.96 6091.19 25284.06 7198.34 12591.72 6796.54 9796.54 130
EI-MVSNet-UG-set92.74 6792.62 6793.12 8094.86 15283.20 12194.40 14895.74 14990.71 2292.05 8496.60 6484.00 7298.99 7791.55 6993.63 13997.17 105
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 23196.56 9383.44 19191.68 9595.04 11886.60 4298.99 7785.60 14097.92 7096.93 116
casdiffmvs92.51 7092.43 7092.74 9894.41 17481.98 15494.54 13896.23 11189.57 4591.96 8696.17 8482.58 8498.01 15190.95 8195.45 11398.23 51
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10984.43 9293.08 21996.09 12088.20 8591.12 10495.72 9981.33 10297.76 16491.74 6697.37 8296.75 122
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12288.73 497.07 1396.77 7190.84 1684.02 23796.62 6375.95 15799.34 3387.77 11497.68 7698.59 18
baseline92.39 7392.29 7292.69 10294.46 17181.77 15894.14 16596.27 10689.22 5491.88 8796.00 8882.35 8797.99 15391.05 7795.27 11898.30 41
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11996.44 9689.19 5694.08 3495.90 9277.85 14298.17 13588.90 10193.38 14798.13 58
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22790.24 11196.44 7178.59 13198.61 10789.68 9297.85 7297.06 109
EIA-MVS91.95 7691.94 7491.98 13295.16 13780.01 20995.36 8096.73 7688.44 7589.34 12192.16 21983.82 7598.45 11889.35 9697.06 8697.48 94
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 13196.66 8482.69 20890.03 11595.82 9582.30 8999.03 6484.57 15296.48 10096.91 117
EPNet91.79 7891.02 8894.10 5890.10 30985.25 7396.03 5392.05 28092.83 187.39 15495.78 9679.39 12299.01 7088.13 11197.48 8098.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 7991.70 7892.00 13197.08 7580.03 20893.60 19795.18 18987.85 9390.89 10696.47 7082.06 9598.36 12285.07 14497.04 8797.62 87
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13183.78 10696.14 4695.98 12889.89 3590.45 10996.58 6575.09 16998.31 12984.75 15096.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16586.37 4397.18 797.02 4689.20 5584.31 23296.66 6173.74 19299.17 5086.74 12997.96 6897.79 83
EPP-MVSNet91.70 8291.56 7992.13 12795.88 11380.50 19597.33 395.25 18586.15 13289.76 11695.60 10283.42 7698.32 12887.37 12193.25 15097.56 92
MVSFormer91.68 8391.30 8192.80 9493.86 19483.88 10395.96 5795.90 13684.66 16891.76 9294.91 12177.92 13997.30 20589.64 9397.11 8497.24 101
Effi-MVS+91.59 8491.11 8593.01 8694.35 17883.39 11894.60 13395.10 19387.10 11090.57 10893.10 19181.43 10198.07 14789.29 9794.48 12997.59 90
IS-MVSNet91.43 8591.09 8792.46 11195.87 11581.38 17196.95 1493.69 24889.72 4289.50 11995.98 8978.57 13297.77 16383.02 17096.50 9998.22 52
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11796.66 8483.29 19589.27 12294.46 14080.29 10999.17 5087.57 11795.37 11496.05 148
diffmvs91.37 8791.23 8391.77 14693.09 21780.27 19892.36 24195.52 16687.03 11291.40 10094.93 12080.08 11197.44 19092.13 5294.56 12797.61 88
MVS_Test91.31 8891.11 8591.93 13694.37 17580.14 20193.46 20295.80 14486.46 12591.35 10193.77 17082.21 9198.09 14587.57 11794.95 12097.55 93
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19995.93 13286.95 11489.51 11896.13 8678.50 13398.35 12485.84 13792.90 15796.83 119
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16894.37 15596.24 11086.39 12887.41 15194.80 12882.06 9598.48 11382.80 17695.37 11497.61 88
PS-MVSNAJ91.18 9190.92 8991.96 13495.26 13482.60 14492.09 25195.70 15186.27 12991.84 8992.46 20979.70 11798.99 7789.08 9995.86 10594.29 215
xiu_mvs_v2_base91.13 9290.89 9191.86 14094.97 14482.42 14592.24 24595.64 15886.11 13591.74 9493.14 18979.67 12098.89 8789.06 10095.46 11294.28 216
nrg03091.08 9390.39 9593.17 7993.07 21886.91 2096.41 3396.26 10788.30 8088.37 13494.85 12682.19 9297.64 17591.09 7682.95 26494.96 183
lupinMVS90.92 9490.21 9893.03 8593.86 19483.88 10392.81 22893.86 24379.84 25891.76 9294.29 14577.92 13998.04 14990.48 8897.11 8497.17 105
hse-mvs390.80 9590.15 10192.75 9796.01 10782.66 14195.43 7995.53 16589.80 3793.08 5895.64 10175.77 15899.00 7592.07 5378.05 32096.60 126
jason90.80 9590.10 10292.90 9193.04 22083.53 11393.08 21994.15 23380.22 25291.41 9994.91 12176.87 14597.93 15890.28 8996.90 8897.24 101
jason: jason.
VDD-MVS90.74 9789.92 10993.20 7796.27 9683.02 12795.73 6693.86 24388.42 7792.53 7396.84 5062.09 30098.64 10490.95 8192.62 16197.93 74
PVSNet_Blended90.73 9890.32 9791.98 13296.12 10081.25 17392.55 23696.83 6482.04 22089.10 12492.56 20781.04 10498.85 9486.72 13195.91 10495.84 155
test_yl90.69 9990.02 10792.71 9995.72 11882.41 14794.11 16895.12 19185.63 14391.49 9794.70 13074.75 17398.42 12086.13 13592.53 16297.31 98
DCV-MVSNet90.69 9990.02 10792.71 9995.72 11882.41 14794.11 16895.12 19185.63 14391.49 9794.70 13074.75 17398.42 12086.13 13592.53 16297.31 98
API-MVS90.66 10190.07 10392.45 11296.36 9484.57 8196.06 5295.22 18882.39 21189.13 12394.27 14880.32 10898.46 11580.16 22396.71 9294.33 214
xiu_mvs_v1_base_debu90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
xiu_mvs_v1_base90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
xiu_mvs_v1_base_debi90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
HQP_MVS90.60 10590.19 9991.82 14394.70 16082.73 13795.85 6196.22 11290.81 1786.91 16294.86 12474.23 18098.12 13788.15 10989.99 18594.63 196
FIs90.51 10690.35 9690.99 17793.99 19080.98 18195.73 6697.54 389.15 5786.72 16694.68 13281.83 9997.24 21385.18 14388.31 21694.76 193
112190.42 10789.49 11393.20 7797.27 7184.46 8892.63 23295.51 16771.01 33891.20 10396.21 7982.92 8199.05 6080.56 21698.07 6396.10 144
MAR-MVS90.30 10889.37 11893.07 8496.61 8584.48 8795.68 6995.67 15382.36 21387.85 14292.85 19776.63 15198.80 9880.01 22496.68 9395.91 151
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 10990.18 10090.53 18893.71 20079.85 21495.77 6597.59 289.31 5286.27 17594.67 13381.93 9897.01 23184.26 15588.09 22094.71 194
CANet_DTU90.26 11089.41 11792.81 9393.46 20883.01 12893.48 20094.47 22189.43 4987.76 14694.23 14970.54 23299.03 6484.97 14596.39 10196.38 132
OPM-MVS90.12 11189.56 11291.82 14393.14 21583.90 10294.16 16495.74 14988.96 6387.86 14195.43 10672.48 20897.91 15988.10 11290.18 18493.65 250
LFMVS90.08 11289.13 12592.95 8996.71 8282.32 14996.08 5089.91 33086.79 11892.15 8396.81 5362.60 29798.34 12587.18 12393.90 13598.19 53
GeoE90.05 11389.43 11691.90 13995.16 13780.37 19795.80 6394.65 21883.90 17987.55 15094.75 12978.18 13797.62 17781.28 20293.63 13997.71 85
PAPR90.02 11489.27 12392.29 12295.78 11680.95 18392.68 23096.22 11281.91 22586.66 16793.75 17282.23 9098.44 11979.40 23494.79 12197.48 94
PVSNet_BlendedMVS89.98 11589.70 11090.82 18196.12 10081.25 17393.92 18496.83 6483.49 19089.10 12492.26 21781.04 10498.85 9486.72 13187.86 22492.35 296
PS-MVSNAJss89.97 11689.62 11191.02 17491.90 24880.85 18695.26 9195.98 12886.26 13086.21 17694.29 14579.70 11797.65 17388.87 10288.10 21894.57 202
XVG-OURS-SEG-HR89.95 11789.45 11491.47 15694.00 18981.21 17691.87 25496.06 12485.78 13888.55 13095.73 9874.67 17697.27 20988.71 10489.64 19495.91 151
UGNet89.95 11788.95 12992.95 8994.51 16883.31 11995.70 6895.23 18689.37 5187.58 14893.94 15964.00 29298.78 9983.92 15996.31 10296.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 11989.29 12191.81 14593.39 20983.72 10794.43 14697.12 4089.80 3786.46 16993.32 18083.16 7897.23 21484.92 14681.02 29394.49 209
AdaColmapbinary89.89 12089.07 12692.37 11797.41 6383.03 12694.42 14795.92 13382.81 20686.34 17494.65 13473.89 18899.02 6880.69 21395.51 10995.05 178
hse-mvs289.88 12189.34 11991.51 15394.83 15481.12 17893.94 18393.91 24289.80 3793.08 5893.60 17575.77 15897.66 17192.07 5377.07 32795.74 160
UniMVSNet (Re)89.80 12289.07 12692.01 12993.60 20484.52 8494.78 12397.47 889.26 5386.44 17292.32 21482.10 9397.39 20284.81 14980.84 29794.12 221
HQP-MVS89.80 12289.28 12291.34 16094.17 18081.56 16294.39 15096.04 12688.81 6485.43 20093.97 15873.83 19097.96 15587.11 12689.77 19294.50 207
VPA-MVSNet89.62 12488.96 12891.60 15193.86 19482.89 13295.46 7897.33 2287.91 9088.43 13393.31 18174.17 18397.40 19987.32 12282.86 26994.52 205
WTY-MVS89.60 12588.92 13091.67 14995.47 12681.15 17792.38 24094.78 21483.11 19889.06 12694.32 14378.67 13096.61 25081.57 19990.89 17897.24 101
Vis-MVSNet (Re-imp)89.59 12689.44 11590.03 21295.74 11775.85 28795.61 7490.80 31587.66 10187.83 14395.40 10776.79 14796.46 26378.37 24096.73 9197.80 82
VDDNet89.56 12788.49 14092.76 9695.07 14082.09 15196.30 3693.19 25581.05 24791.88 8796.86 4961.16 31098.33 12788.43 10792.49 16497.84 80
114514_t89.51 12888.50 13892.54 10898.11 3781.99 15395.16 9996.36 10370.19 34085.81 18195.25 11076.70 14998.63 10582.07 18796.86 9097.00 113
QAPM89.51 12888.15 14993.59 7294.92 14884.58 8096.82 2496.70 8078.43 27883.41 25396.19 8373.18 20099.30 3977.11 25596.54 9796.89 118
CLD-MVS89.47 13088.90 13191.18 16594.22 17982.07 15292.13 24996.09 12087.90 9185.37 20692.45 21074.38 17897.56 18087.15 12490.43 18093.93 231
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
mvs-test189.45 13189.14 12490.38 19893.33 21077.63 26594.95 11094.36 22487.70 9787.10 15892.81 20173.45 19598.03 15085.57 14193.04 15495.48 166
LPG-MVS_test89.45 13188.90 13191.12 16694.47 16981.49 16695.30 8696.14 11786.73 12085.45 19795.16 11369.89 23898.10 13987.70 11589.23 20193.77 244
CDS-MVSNet89.45 13188.51 13792.29 12293.62 20383.61 11293.01 22294.68 21781.95 22387.82 14493.24 18578.69 12996.99 23280.34 22093.23 15196.28 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+89.41 13488.64 13591.71 14894.74 15680.81 18793.54 19895.10 19383.11 19886.82 16590.67 27079.74 11697.75 16780.51 21893.55 14196.57 128
ab-mvs89.41 13488.35 14292.60 10495.15 13982.65 14292.20 24795.60 16083.97 17888.55 13093.70 17474.16 18498.21 13482.46 18189.37 19796.94 115
XVG-OURS89.40 13688.70 13491.52 15294.06 18381.46 16891.27 26796.07 12286.14 13388.89 12895.77 9768.73 25797.26 21187.39 12089.96 18795.83 156
mvs_anonymous89.37 13789.32 12089.51 23493.47 20774.22 29891.65 26294.83 21082.91 20485.45 19793.79 16881.23 10396.36 26986.47 13394.09 13397.94 72
DU-MVS89.34 13888.50 13891.85 14293.04 22083.72 10794.47 14396.59 9089.50 4686.46 16993.29 18377.25 14397.23 21484.92 14681.02 29394.59 200
TAMVS89.21 13988.29 14691.96 13493.71 20082.62 14393.30 20894.19 23182.22 21587.78 14593.94 15978.83 12696.95 23477.70 24892.98 15696.32 133
ACMM84.12 989.14 14088.48 14191.12 16694.65 16481.22 17595.31 8396.12 11985.31 15385.92 18094.34 14170.19 23698.06 14885.65 13988.86 20694.08 225
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet89.10 14188.86 13389.80 22391.84 25078.30 24693.70 19495.01 19685.73 14087.15 15595.28 10879.87 11497.21 21683.81 16187.36 22993.88 234
CNLPA89.07 14287.98 15392.34 11896.87 7884.78 7794.08 17293.24 25381.41 23884.46 22295.13 11575.57 16596.62 24777.21 25393.84 13795.61 164
PLCcopyleft84.53 789.06 14388.03 15192.15 12697.27 7182.69 14094.29 15895.44 17579.71 26084.01 23894.18 15076.68 15098.75 10077.28 25293.41 14695.02 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 14488.64 13590.21 20390.74 29579.28 22895.96 5795.90 13684.66 16885.33 20892.94 19574.02 18697.30 20589.64 9388.53 20994.05 227
HY-MVS83.01 1289.03 14487.94 15592.29 12294.86 15282.77 13392.08 25294.49 22081.52 23786.93 16092.79 20378.32 13698.23 13179.93 22590.55 17995.88 153
ACMP84.23 889.01 14688.35 14290.99 17794.73 15781.27 17295.07 10395.89 13886.48 12483.67 24694.30 14469.33 24697.99 15387.10 12888.55 20893.72 248
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part189.00 14787.99 15292.04 12895.94 11283.81 10596.14 4696.05 12586.44 12685.69 18493.73 17371.57 21497.66 17185.80 13880.54 30194.66 195
sss88.93 14888.26 14890.94 18094.05 18480.78 18891.71 25995.38 17981.55 23688.63 12993.91 16375.04 17095.47 30582.47 18091.61 16996.57 128
RRT_MVS88.86 14987.68 15992.39 11692.02 24586.09 5394.38 15494.94 19985.45 14987.14 15793.84 16765.88 28497.11 22288.73 10386.77 23693.98 230
TranMVSNet+NR-MVSNet88.84 15087.95 15491.49 15492.68 23083.01 12894.92 11396.31 10489.88 3685.53 19093.85 16676.63 15196.96 23381.91 19179.87 31194.50 207
CHOSEN 1792x268888.84 15087.69 15892.30 12196.14 9981.42 17090.01 28995.86 14074.52 31487.41 15193.94 15975.46 16698.36 12280.36 21995.53 10897.12 108
MVSTER88.84 15088.29 14690.51 19192.95 22580.44 19693.73 19195.01 19684.66 16887.15 15593.12 19072.79 20497.21 21687.86 11387.36 22993.87 235
OpenMVScopyleft83.78 1188.74 15387.29 16893.08 8292.70 22985.39 7196.57 3096.43 9878.74 27480.85 28296.07 8769.64 24299.01 7078.01 24696.65 9494.83 190
thisisatest053088.67 15487.61 16191.86 14094.87 15180.07 20494.63 13289.90 33184.00 17788.46 13293.78 16966.88 27198.46 11583.30 16692.65 16097.06 109
Effi-MVS+-dtu88.65 15588.35 14289.54 23193.33 21076.39 28294.47 14394.36 22487.70 9785.43 20089.56 29273.45 19597.26 21185.57 14191.28 17194.97 180
tttt051788.61 15687.78 15791.11 16994.96 14577.81 25995.35 8189.69 33485.09 16088.05 13994.59 13766.93 26998.48 11383.27 16792.13 16797.03 111
BH-untuned88.60 15788.13 15090.01 21495.24 13578.50 24193.29 20994.15 23384.75 16684.46 22293.40 17775.76 16097.40 19977.59 24994.52 12894.12 221
NR-MVSNet88.58 15887.47 16491.93 13693.04 22084.16 9794.77 12496.25 10989.05 5980.04 29693.29 18379.02 12597.05 22881.71 19880.05 30894.59 200
1112_ss88.42 15987.33 16791.72 14794.92 14880.98 18192.97 22494.54 21978.16 28383.82 24293.88 16478.78 12897.91 15979.45 23089.41 19696.26 136
WR-MVS88.38 16087.67 16090.52 19093.30 21280.18 19993.26 21195.96 13088.57 7385.47 19692.81 20176.12 15396.91 23781.24 20382.29 27294.47 212
BH-RMVSNet88.37 16187.48 16391.02 17495.28 13279.45 22092.89 22693.07 25785.45 14986.91 16294.84 12770.35 23397.76 16473.97 28194.59 12695.85 154
IterMVS-LS88.36 16287.91 15689.70 22793.80 19778.29 24793.73 19195.08 19585.73 14084.75 21591.90 23379.88 11396.92 23683.83 16082.51 27093.89 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 16386.13 20594.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6123.41 36285.02 6099.49 2391.99 5698.56 4798.47 28
LCM-MVSNet-Re88.30 16488.32 14588.27 26394.71 15972.41 31893.15 21590.98 30987.77 9579.25 30491.96 23178.35 13595.75 29483.04 16995.62 10796.65 125
jajsoiax88.24 16587.50 16290.48 19390.89 28980.14 20195.31 8395.65 15784.97 16284.24 23494.02 15465.31 28697.42 19288.56 10588.52 21093.89 232
VPNet88.20 16687.47 16490.39 19693.56 20579.46 21994.04 17695.54 16488.67 6986.96 15994.58 13869.33 24697.15 21884.05 15880.53 30394.56 203
TAPA-MVS84.62 688.16 16787.01 17591.62 15096.64 8480.65 19094.39 15096.21 11576.38 29486.19 17795.44 10479.75 11598.08 14662.75 33895.29 11696.13 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 16887.28 16990.57 18694.96 14580.07 20494.27 15991.29 30286.74 11987.41 15194.00 15676.77 14896.20 27480.77 21179.31 31695.44 168
Anonymous2024052988.09 16986.59 19092.58 10696.53 8981.92 15695.99 5495.84 14174.11 31789.06 12695.21 11261.44 30598.81 9783.67 16487.47 22697.01 112
HyFIR lowres test88.09 16986.81 17991.93 13696.00 10880.63 19190.01 28995.79 14573.42 32287.68 14792.10 22573.86 18997.96 15580.75 21291.70 16897.19 104
mvs_tets88.06 17187.28 16990.38 19890.94 28579.88 21295.22 9395.66 15585.10 15984.21 23593.94 15963.53 29497.40 19988.50 10688.40 21493.87 235
F-COLMAP87.95 17286.80 18091.40 15896.35 9580.88 18594.73 12695.45 17379.65 26182.04 27094.61 13571.13 21998.50 11276.24 26391.05 17694.80 192
LS3D87.89 17386.32 20092.59 10596.07 10582.92 13195.23 9294.92 20475.66 30182.89 26095.98 8972.48 20899.21 4768.43 31295.23 11995.64 163
anonymousdsp87.84 17487.09 17290.12 20889.13 31980.54 19494.67 13095.55 16282.05 21883.82 24292.12 22271.47 21797.15 21887.15 12487.80 22592.67 285
v2v48287.84 17487.06 17390.17 20490.99 28179.23 23194.00 18095.13 19084.87 16385.53 19092.07 22874.45 17797.45 18884.71 15181.75 28193.85 238
WR-MVS_H87.80 17687.37 16689.10 24293.23 21378.12 25095.61 7497.30 2687.90 9183.72 24492.01 23079.65 12196.01 28276.36 26080.54 30193.16 270
AUN-MVS87.78 17786.54 19291.48 15594.82 15581.05 17993.91 18793.93 23983.00 20186.93 16093.53 17669.50 24497.67 17086.14 13477.12 32695.73 161
PCF-MVS84.11 1087.74 17886.08 20992.70 10194.02 18584.43 9289.27 29995.87 13973.62 32184.43 22494.33 14278.48 13498.86 9170.27 29894.45 13094.81 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 17986.13 20592.31 12096.66 8380.74 18994.87 11791.49 29780.47 25189.46 12095.44 10454.72 33598.23 13182.19 18589.89 18997.97 70
V4287.68 17986.86 17790.15 20690.58 30080.14 20194.24 16195.28 18483.66 18485.67 18591.33 24774.73 17597.41 19784.43 15481.83 27992.89 280
thres600view787.65 18186.67 18590.59 18596.08 10478.72 23494.88 11691.58 29387.06 11188.08 13792.30 21568.91 25498.10 13970.05 30591.10 17294.96 183
XXY-MVS87.65 18186.85 17890.03 21292.14 23980.60 19393.76 19095.23 18682.94 20384.60 21794.02 15474.27 17995.49 30481.04 20583.68 25794.01 229
Test_1112_low_res87.65 18186.51 19391.08 17094.94 14779.28 22891.77 25694.30 22776.04 29983.51 25192.37 21277.86 14197.73 16878.69 23989.13 20396.22 137
thres100view90087.63 18486.71 18390.38 19896.12 10078.55 23895.03 10791.58 29387.15 10888.06 13892.29 21668.91 25498.10 13970.13 30291.10 17294.48 210
CP-MVSNet87.63 18487.26 17188.74 25293.12 21676.59 27995.29 8896.58 9188.43 7683.49 25292.98 19475.28 16795.83 29078.97 23681.15 28993.79 240
thres40087.62 18686.64 18690.57 18695.99 10978.64 23694.58 13491.98 28486.94 11588.09 13591.77 23569.18 25198.10 13970.13 30291.10 17294.96 183
v114487.61 18786.79 18190.06 21191.01 28079.34 22493.95 18295.42 17883.36 19485.66 18691.31 25074.98 17197.42 19283.37 16582.06 27593.42 259
tfpn200view987.58 18886.64 18690.41 19595.99 10978.64 23694.58 13491.98 28486.94 11588.09 13591.77 23569.18 25198.10 13970.13 30291.10 17294.48 210
BH-w/o87.57 18987.05 17489.12 24194.90 15077.90 25592.41 23893.51 25082.89 20583.70 24591.34 24675.75 16197.07 22675.49 26893.49 14392.39 294
UniMVSNet_ETH3D87.53 19086.37 19691.00 17692.44 23378.96 23394.74 12595.61 15984.07 17685.36 20794.52 13959.78 31997.34 20482.93 17187.88 22396.71 124
ET-MVSNet_ETH3D87.51 19185.91 21692.32 11993.70 20283.93 10192.33 24290.94 31184.16 17372.09 34092.52 20869.90 23795.85 28989.20 9888.36 21597.17 105
131487.51 19186.57 19190.34 20192.42 23479.74 21692.63 23295.35 18378.35 27980.14 29391.62 24274.05 18597.15 21881.05 20493.53 14294.12 221
v887.50 19386.71 18389.89 21791.37 26779.40 22194.50 13995.38 17984.81 16583.60 24991.33 24776.05 15497.42 19282.84 17480.51 30592.84 282
Fast-Effi-MVS+-dtu87.44 19486.72 18289.63 22992.04 24377.68 26494.03 17793.94 23885.81 13782.42 26491.32 24970.33 23497.06 22780.33 22190.23 18394.14 220
MVS87.44 19486.10 20891.44 15792.61 23183.62 11192.63 23295.66 15567.26 34481.47 27492.15 22077.95 13898.22 13379.71 22795.48 11092.47 291
FMVSNet387.40 19686.11 20791.30 16193.79 19983.64 11094.20 16394.81 21283.89 18084.37 22591.87 23468.45 26096.56 25578.23 24385.36 24293.70 249
thisisatest051587.33 19785.99 21191.37 15993.49 20679.55 21790.63 27789.56 33780.17 25387.56 14990.86 26367.07 26898.28 13081.50 20093.02 15596.29 134
PS-CasMVS87.32 19886.88 17688.63 25592.99 22476.33 28495.33 8296.61 8988.22 8483.30 25793.07 19273.03 20295.79 29378.36 24181.00 29593.75 246
GBi-Net87.26 19985.98 21291.08 17094.01 18683.10 12395.14 10094.94 19983.57 18684.37 22591.64 23866.59 27696.34 27078.23 24385.36 24293.79 240
test187.26 19985.98 21291.08 17094.01 18683.10 12395.14 10094.94 19983.57 18684.37 22591.64 23866.59 27696.34 27078.23 24385.36 24293.79 240
v119287.25 20186.33 19990.00 21590.76 29479.04 23293.80 18895.48 16882.57 21085.48 19591.18 25473.38 19997.42 19282.30 18382.06 27593.53 253
v1087.25 20186.38 19589.85 21891.19 27379.50 21894.48 14095.45 17383.79 18283.62 24891.19 25275.13 16897.42 19281.94 19080.60 29992.63 287
DP-MVS87.25 20185.36 23192.90 9197.65 5683.24 12094.81 12192.00 28274.99 30981.92 27295.00 11972.66 20599.05 6066.92 32392.33 16596.40 131
miper_ehance_all_eth87.22 20486.62 18989.02 24592.13 24077.40 27090.91 27394.81 21281.28 24184.32 23090.08 28179.26 12396.62 24783.81 16182.94 26593.04 275
thres20087.21 20586.24 20390.12 20895.36 12878.53 23993.26 21192.10 27886.42 12788.00 14091.11 25869.24 25098.00 15269.58 30691.04 17793.83 239
v14419287.19 20686.35 19889.74 22490.64 29878.24 24893.92 18495.43 17681.93 22485.51 19291.05 26074.21 18297.45 18882.86 17381.56 28393.53 253
FMVSNet287.19 20685.82 21891.30 16194.01 18683.67 10994.79 12294.94 19983.57 18683.88 24092.05 22966.59 27696.51 25877.56 25085.01 24593.73 247
cl_fuxian87.14 20886.50 19489.04 24492.20 23777.26 27191.22 26994.70 21682.01 22184.34 22990.43 27478.81 12796.61 25083.70 16381.09 29093.25 264
Baseline_NR-MVSNet87.07 20986.63 18888.40 25991.44 26177.87 25794.23 16292.57 26884.12 17585.74 18392.08 22677.25 14396.04 27982.29 18479.94 30991.30 313
v14887.04 21086.32 20089.21 23890.94 28577.26 27193.71 19394.43 22284.84 16484.36 22890.80 26676.04 15597.05 22882.12 18679.60 31393.31 261
v192192086.97 21186.06 21089.69 22890.53 30378.11 25193.80 18895.43 17681.90 22685.33 20891.05 26072.66 20597.41 19782.05 18881.80 28093.53 253
miper_enhance_ethall86.90 21286.18 20489.06 24391.66 25877.58 26790.22 28594.82 21179.16 26684.48 22189.10 29579.19 12496.66 24584.06 15782.94 26592.94 278
RRT_test8_iter0586.90 21286.36 19788.52 25793.00 22373.27 30694.32 15795.96 13085.50 14884.26 23392.86 19660.76 31297.70 16988.32 10882.29 27294.60 199
bset_n11_16_dypcd86.83 21485.55 22490.65 18488.22 33081.70 15988.88 30690.42 31885.26 15485.49 19490.69 26967.11 26797.02 23089.51 9584.39 24993.23 266
v7n86.81 21585.76 22289.95 21690.72 29679.25 23095.07 10395.92 13384.45 17182.29 26590.86 26372.60 20797.53 18279.42 23380.52 30493.08 274
PEN-MVS86.80 21686.27 20288.40 25992.32 23675.71 28995.18 9796.38 10287.97 8882.82 26193.15 18873.39 19895.92 28576.15 26479.03 31893.59 251
cl-mvsnet286.78 21785.98 21289.18 24092.34 23577.62 26690.84 27494.13 23581.33 24083.97 23990.15 27973.96 18796.60 25284.19 15682.94 26593.33 260
v124086.78 21785.85 21789.56 23090.45 30477.79 26093.61 19695.37 18181.65 23285.43 20091.15 25671.50 21697.43 19181.47 20182.05 27793.47 257
TR-MVS86.78 21785.76 22289.82 22094.37 17578.41 24392.47 23792.83 26181.11 24686.36 17392.40 21168.73 25797.48 18573.75 28489.85 19193.57 252
PatchMatch-RL86.77 22085.54 22590.47 19495.88 11382.71 13990.54 27892.31 27379.82 25984.32 23091.57 24568.77 25696.39 26673.16 28693.48 14592.32 297
PAPM86.68 22185.39 22990.53 18893.05 21979.33 22789.79 29294.77 21578.82 27181.95 27193.24 18576.81 14697.30 20566.94 32193.16 15294.95 186
pm-mvs186.61 22285.54 22589.82 22091.44 26180.18 19995.28 9094.85 20883.84 18181.66 27392.62 20672.45 21096.48 26079.67 22878.06 31992.82 283
GA-MVS86.61 22285.27 23290.66 18391.33 27078.71 23590.40 28093.81 24685.34 15285.12 21089.57 29161.25 30797.11 22280.99 20889.59 19596.15 138
Anonymous2023121186.59 22485.13 23490.98 17996.52 9081.50 16496.14 4696.16 11673.78 31983.65 24792.15 22063.26 29597.37 20382.82 17581.74 28294.06 226
cl-mvsnet186.53 22585.78 21988.75 25092.02 24576.45 28190.74 27594.30 22781.83 23083.34 25590.82 26575.75 16196.57 25381.73 19781.52 28593.24 265
cl-mvsnet____86.52 22685.78 21988.75 25092.03 24476.46 28090.74 27594.30 22781.83 23083.34 25590.78 26775.74 16396.57 25381.74 19681.54 28493.22 267
eth_miper_zixun_eth86.50 22785.77 22188.68 25391.94 24775.81 28890.47 27994.89 20582.05 21884.05 23690.46 27375.96 15696.77 24182.76 17779.36 31593.46 258
baseline286.50 22785.39 22989.84 21991.12 27776.70 27791.88 25388.58 33982.35 21479.95 29790.95 26273.42 19797.63 17680.27 22289.95 18895.19 175
EPNet_dtu86.49 22985.94 21588.14 26890.24 30772.82 31094.11 16892.20 27686.66 12379.42 30392.36 21373.52 19395.81 29271.26 29293.66 13895.80 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas86.43 23084.98 23790.80 18292.10 24280.92 18490.24 28395.91 13573.10 32583.57 25088.39 30665.15 28797.46 18784.90 14891.43 17094.03 228
SCA86.32 23185.18 23389.73 22692.15 23876.60 27891.12 27091.69 29183.53 18985.50 19388.81 29966.79 27296.48 26076.65 25890.35 18296.12 141
LTVRE_ROB82.13 1386.26 23284.90 24090.34 20194.44 17381.50 16492.31 24494.89 20583.03 20079.63 30192.67 20469.69 24197.79 16271.20 29386.26 23791.72 305
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 23385.48 22787.98 27191.65 25974.92 29294.93 11295.75 14887.36 10682.26 26693.04 19372.85 20395.82 29174.04 28077.46 32493.20 268
XVG-ACMP-BASELINE86.00 23484.84 24289.45 23591.20 27278.00 25291.70 26095.55 16285.05 16182.97 25992.25 21854.49 33697.48 18582.93 17187.45 22892.89 280
MVP-Stereo85.97 23584.86 24189.32 23690.92 28782.19 15092.11 25094.19 23178.76 27378.77 30691.63 24168.38 26196.56 25575.01 27593.95 13489.20 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 23685.09 23588.35 26190.79 29277.42 26991.83 25595.70 15180.77 24980.08 29590.02 28266.74 27496.37 26781.88 19287.97 22291.26 314
test-LLR85.87 23785.41 22887.25 28790.95 28371.67 32189.55 29389.88 33283.41 19284.54 21987.95 31367.25 26495.11 31081.82 19393.37 14894.97 180
FMVSNet185.85 23884.11 25191.08 17092.81 22783.10 12395.14 10094.94 19981.64 23382.68 26291.64 23859.01 32396.34 27075.37 27083.78 25493.79 240
PatchmatchNetpermissive85.85 23884.70 24489.29 23791.76 25375.54 29088.49 31191.30 30181.63 23485.05 21188.70 30371.71 21296.24 27374.61 27889.05 20496.08 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 24084.94 23988.26 26491.16 27672.58 31689.47 29791.04 30876.26 29786.45 17189.97 28470.74 22696.86 24082.35 18287.07 23495.34 173
PMMVS85.71 24184.96 23887.95 27288.90 32277.09 27388.68 30990.06 32672.32 33186.47 16890.76 26872.15 21194.40 31681.78 19593.49 14392.36 295
PVSNet78.82 1885.55 24284.65 24588.23 26694.72 15871.93 31987.12 32492.75 26478.80 27284.95 21390.53 27264.43 29196.71 24474.74 27693.86 13696.06 147
IterMVS-SCA-FT85.45 24384.53 24888.18 26791.71 25576.87 27690.19 28692.65 26785.40 15181.44 27590.54 27166.79 27295.00 31381.04 20581.05 29192.66 286
pmmvs485.43 24483.86 25590.16 20590.02 31282.97 13090.27 28192.67 26675.93 30080.73 28391.74 23771.05 22095.73 29578.85 23783.46 26191.78 304
ACMH80.38 1785.36 24583.68 25790.39 19694.45 17280.63 19194.73 12694.85 20882.09 21777.24 31492.65 20560.01 31797.58 17872.25 29084.87 24692.96 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 24684.64 24687.49 28190.77 29372.59 31594.01 17994.40 22384.72 16779.62 30293.17 18761.91 30296.72 24281.99 18981.16 28793.16 270
CR-MVSNet85.35 24683.76 25690.12 20890.58 30079.34 22485.24 33491.96 28678.27 28085.55 18887.87 31671.03 22195.61 29673.96 28289.36 19895.40 170
tpmrst85.35 24684.99 23686.43 30190.88 29067.88 34288.71 30891.43 29980.13 25486.08 17988.80 30173.05 20196.02 28182.48 17983.40 26395.40 170
miper_lstm_enhance85.27 24984.59 24787.31 28491.28 27174.63 29387.69 32094.09 23781.20 24581.36 27789.85 28774.97 17294.30 31981.03 20779.84 31293.01 276
IB-MVS80.51 1585.24 25083.26 26291.19 16492.13 24079.86 21391.75 25791.29 30283.28 19680.66 28588.49 30561.28 30698.46 11580.99 20879.46 31495.25 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 25183.99 25388.65 25492.47 23278.40 24479.68 35192.76 26374.90 31181.41 27689.59 29069.85 24095.51 30179.92 22695.29 11692.03 301
RPSCF85.07 25284.27 24987.48 28292.91 22670.62 33191.69 26192.46 26976.20 29882.67 26395.22 11163.94 29397.29 20877.51 25185.80 24094.53 204
MS-PatchMatch85.05 25384.16 25087.73 27591.42 26578.51 24091.25 26893.53 24977.50 28580.15 29291.58 24361.99 30195.51 30175.69 26794.35 13289.16 337
ACMH+81.04 1485.05 25383.46 26189.82 22094.66 16379.37 22294.44 14594.12 23682.19 21678.04 30992.82 20058.23 32597.54 18173.77 28382.90 26892.54 288
DWT-MVSNet_test84.95 25583.68 25788.77 24891.43 26473.75 30291.74 25890.98 30980.66 25083.84 24187.36 32162.44 29897.11 22278.84 23885.81 23995.46 167
IterMVS84.88 25683.98 25487.60 27791.44 26176.03 28690.18 28792.41 27083.24 19781.06 28190.42 27566.60 27594.28 32079.46 22980.98 29692.48 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 25783.09 26490.14 20793.80 19780.05 20689.18 30293.09 25678.89 26978.19 30791.91 23265.86 28597.27 20968.47 31188.45 21293.11 272
tpm84.73 25884.02 25286.87 29890.33 30568.90 33889.06 30389.94 32980.85 24885.75 18289.86 28668.54 25995.97 28377.76 24784.05 25395.75 159
tfpnnormal84.72 25983.23 26389.20 23992.79 22880.05 20694.48 14095.81 14382.38 21281.08 28091.21 25169.01 25396.95 23461.69 34080.59 30090.58 327
CVMVSNet84.69 26084.79 24384.37 31991.84 25064.92 35093.70 19491.47 29866.19 34686.16 17895.28 10867.18 26693.33 33180.89 21090.42 18194.88 188
test-mter84.54 26183.64 25987.25 28790.95 28371.67 32189.55 29389.88 33279.17 26584.54 21987.95 31355.56 33195.11 31081.82 19393.37 14894.97 180
TransMVSNet (Re)84.43 26283.06 26588.54 25691.72 25478.44 24295.18 9792.82 26282.73 20779.67 30092.12 22273.49 19495.96 28471.10 29768.73 34491.21 316
pmmvs584.21 26382.84 26988.34 26288.95 32176.94 27592.41 23891.91 28875.63 30280.28 29091.18 25464.59 29095.57 29777.09 25683.47 26092.53 289
tpm284.08 26482.94 26687.48 28291.39 26671.27 32389.23 30190.37 32071.95 33384.64 21689.33 29367.30 26396.55 25775.17 27287.09 23394.63 196
COLMAP_ROBcopyleft80.39 1683.96 26582.04 27289.74 22495.28 13279.75 21594.25 16092.28 27475.17 30778.02 31093.77 17058.60 32497.84 16165.06 33185.92 23891.63 307
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 26681.53 27691.21 16390.58 30079.34 22485.24 33496.76 7271.44 33585.55 18882.97 34270.87 22498.91 8661.01 34289.36 19895.40 170
SixPastTwentyTwo83.91 26782.90 26786.92 29590.99 28170.67 33093.48 20091.99 28385.54 14677.62 31392.11 22460.59 31396.87 23976.05 26577.75 32193.20 268
EPMVS83.90 26882.70 27087.51 27990.23 30872.67 31288.62 31081.96 35481.37 23985.01 21288.34 30766.31 27994.45 31575.30 27187.12 23295.43 169
TESTMET0.1,183.74 26982.85 26886.42 30289.96 31371.21 32589.55 29387.88 34177.41 28683.37 25487.31 32256.71 32893.65 32880.62 21592.85 15994.40 213
MVS_030483.46 27081.92 27388.10 26990.63 29977.49 26893.26 21193.75 24780.04 25680.44 28987.24 32447.94 35095.55 29875.79 26688.16 21791.26 314
pmmvs683.42 27181.60 27588.87 24788.01 33377.87 25794.96 10994.24 23074.67 31378.80 30591.09 25960.17 31696.49 25977.06 25775.40 33092.23 299
AllTest83.42 27181.39 27789.52 23295.01 14177.79 26093.12 21690.89 31377.41 28676.12 32293.34 17854.08 33897.51 18368.31 31384.27 25193.26 262
tpmvs83.35 27382.07 27187.20 29191.07 27971.00 32888.31 31491.70 29078.91 26880.49 28887.18 32569.30 24997.08 22568.12 31683.56 25993.51 256
USDC82.76 27481.26 27987.26 28691.17 27474.55 29489.27 29993.39 25278.26 28175.30 32792.08 22654.43 33796.63 24671.64 29185.79 24190.61 324
Patchmtry82.71 27580.93 28188.06 27090.05 31176.37 28384.74 33891.96 28672.28 33281.32 27887.87 31671.03 22195.50 30368.97 30880.15 30792.32 297
PatchT82.68 27681.27 27886.89 29790.09 31070.94 32984.06 34090.15 32374.91 31085.63 18783.57 33969.37 24594.87 31465.19 32888.50 21194.84 189
MIMVSNet82.59 27780.53 28288.76 24991.51 26078.32 24586.57 32790.13 32479.32 26280.70 28488.69 30452.98 34293.07 33566.03 32688.86 20694.90 187
test0.0.03 182.41 27881.69 27484.59 31788.23 32972.89 30990.24 28387.83 34283.41 19279.86 29889.78 28867.25 26488.99 35065.18 32983.42 26291.90 303
EG-PatchMatch MVS82.37 27980.34 28588.46 25890.27 30679.35 22392.80 22994.33 22677.14 29073.26 33790.18 27847.47 35296.72 24270.25 29987.32 23189.30 334
tpm cat181.96 28080.27 28687.01 29391.09 27871.02 32787.38 32391.53 29666.25 34580.17 29186.35 32968.22 26296.15 27769.16 30782.29 27293.86 237
our_test_381.93 28180.46 28486.33 30388.46 32673.48 30488.46 31291.11 30476.46 29276.69 31888.25 30966.89 27094.36 31768.75 30979.08 31791.14 318
ppachtmachnet_test81.84 28280.07 29087.15 29288.46 32674.43 29789.04 30492.16 27775.33 30577.75 31188.99 29666.20 28095.37 30665.12 33077.60 32291.65 306
gg-mvs-nofinetune81.77 28379.37 29688.99 24690.85 29177.73 26386.29 32879.63 35874.88 31283.19 25869.05 35360.34 31496.11 27875.46 26994.64 12593.11 272
CL-MVSNet_2432*160081.74 28480.53 28285.36 31185.96 34172.45 31790.25 28293.07 25781.24 24379.85 29987.29 32370.93 22392.52 33866.95 32069.23 34091.11 320
Patchmatch-RL test81.67 28579.96 29186.81 29985.42 34571.23 32482.17 34787.50 34578.47 27777.19 31582.50 34370.81 22593.48 32982.66 17872.89 33495.71 162
ADS-MVSNet281.66 28679.71 29487.50 28091.35 26874.19 29983.33 34388.48 34072.90 32782.24 26785.77 33364.98 28893.20 33364.57 33283.74 25595.12 176
K. test v381.59 28780.15 28985.91 30889.89 31569.42 33792.57 23587.71 34385.56 14573.44 33689.71 28955.58 33095.52 30077.17 25469.76 33892.78 284
ADS-MVSNet81.56 28879.78 29286.90 29691.35 26871.82 32083.33 34389.16 33872.90 32782.24 26785.77 33364.98 28893.76 32664.57 33283.74 25595.12 176
FMVSNet581.52 28979.60 29587.27 28591.17 27477.95 25391.49 26492.26 27576.87 29176.16 32187.91 31551.67 34392.34 33967.74 31781.16 28791.52 308
dp81.47 29080.23 28785.17 31489.92 31465.49 34886.74 32590.10 32576.30 29681.10 27987.12 32662.81 29695.92 28568.13 31579.88 31094.09 224
Patchmatch-test81.37 29179.30 29787.58 27890.92 28774.16 30080.99 34987.68 34470.52 33976.63 31988.81 29971.21 21892.76 33760.01 34686.93 23595.83 156
EU-MVSNet81.32 29280.95 28082.42 32888.50 32563.67 35193.32 20491.33 30064.02 34880.57 28792.83 19961.21 30992.27 34076.34 26180.38 30691.32 312
test_040281.30 29379.17 30187.67 27693.19 21478.17 24992.98 22391.71 28975.25 30676.02 32490.31 27659.23 32196.37 26750.22 35383.63 25888.47 343
JIA-IIPM81.04 29478.98 30487.25 28788.64 32373.48 30481.75 34889.61 33673.19 32482.05 26973.71 35066.07 28395.87 28871.18 29584.60 24892.41 293
Anonymous2023120681.03 29579.77 29384.82 31687.85 33570.26 33391.42 26592.08 27973.67 32077.75 31189.25 29462.43 29993.08 33461.50 34182.00 27891.12 319
pmmvs-eth3d80.97 29678.72 30587.74 27484.99 34779.97 21190.11 28891.65 29275.36 30473.51 33586.03 33059.45 32093.96 32575.17 27272.21 33589.29 335
testgi80.94 29780.20 28883.18 32487.96 33466.29 34591.28 26690.70 31783.70 18378.12 30892.84 19851.37 34490.82 34763.34 33582.46 27192.43 292
CMPMVSbinary59.16 2180.52 29879.20 30084.48 31883.98 34867.63 34489.95 29193.84 24564.79 34766.81 34891.14 25757.93 32695.17 30876.25 26288.10 21890.65 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052180.44 29979.21 29984.11 32285.75 34367.89 34192.86 22793.23 25475.61 30375.59 32687.47 32050.03 34594.33 31871.14 29681.21 28690.12 329
LF4IMVS80.37 30079.07 30384.27 32186.64 33769.87 33689.39 29891.05 30776.38 29474.97 32990.00 28347.85 35194.25 32174.55 27980.82 29888.69 341
DIV-MVS_2432*160080.20 30179.24 29883.07 32585.64 34465.29 34991.01 27293.93 23978.71 27576.32 32086.40 32859.20 32292.93 33672.59 28869.35 33991.00 322
UnsupCasMVSNet_eth80.07 30278.27 30685.46 31085.24 34672.63 31488.45 31394.87 20782.99 20271.64 34388.07 31256.34 32991.75 34473.48 28563.36 34992.01 302
test20.0379.95 30379.08 30282.55 32785.79 34267.74 34391.09 27191.08 30581.23 24474.48 33289.96 28561.63 30390.15 34860.08 34476.38 32889.76 330
TDRefinement79.81 30477.34 30887.22 29079.24 35575.48 29193.12 21692.03 28176.45 29375.01 32891.58 24349.19 34896.44 26470.22 30169.18 34189.75 331
TinyColmap79.76 30577.69 30785.97 30591.71 25573.12 30789.55 29390.36 32175.03 30872.03 34190.19 27746.22 35396.19 27663.11 33681.03 29288.59 342
OpenMVS_ROBcopyleft74.94 1979.51 30677.03 31286.93 29487.00 33676.23 28592.33 24290.74 31668.93 34274.52 33188.23 31049.58 34796.62 24757.64 34884.29 25087.94 345
MIMVSNet179.38 30777.28 30985.69 30986.35 33873.67 30391.61 26392.75 26478.11 28472.64 33988.12 31148.16 34991.97 34360.32 34377.49 32391.43 311
YYNet179.22 30877.20 31085.28 31388.20 33272.66 31385.87 33090.05 32874.33 31662.70 35087.61 31866.09 28292.03 34166.94 32172.97 33391.15 317
MDA-MVSNet_test_wron79.21 30977.19 31185.29 31288.22 33072.77 31185.87 33090.06 32674.34 31562.62 35187.56 31966.14 28191.99 34266.90 32473.01 33291.10 321
MDA-MVSNet-bldmvs78.85 31076.31 31386.46 30089.76 31673.88 30188.79 30790.42 31879.16 26659.18 35288.33 30860.20 31594.04 32262.00 33968.96 34291.48 310
KD-MVS_2432*160078.50 31176.02 31685.93 30686.22 33974.47 29584.80 33692.33 27179.29 26376.98 31685.92 33153.81 34093.97 32367.39 31857.42 35289.36 332
miper_refine_blended78.50 31176.02 31685.93 30686.22 33974.47 29584.80 33692.33 27179.29 26376.98 31685.92 33153.81 34093.97 32367.39 31857.42 35289.36 332
PM-MVS78.11 31376.12 31584.09 32383.54 35070.08 33488.97 30585.27 34979.93 25774.73 33086.43 32734.70 35793.48 32979.43 23272.06 33688.72 340
PVSNet_073.20 2077.22 31474.83 31984.37 31990.70 29771.10 32683.09 34589.67 33572.81 32973.93 33483.13 34160.79 31193.70 32768.54 31050.84 35588.30 344
DSMNet-mixed76.94 31576.29 31478.89 33183.10 35156.11 35887.78 31879.77 35760.65 35075.64 32588.71 30261.56 30488.34 35160.07 34589.29 20092.21 300
new-patchmatchnet76.41 31675.17 31880.13 33082.65 35359.61 35387.66 32191.08 30578.23 28269.85 34483.22 34054.76 33491.63 34664.14 33464.89 34789.16 337
UnsupCasMVSNet_bld76.23 31773.27 32085.09 31583.79 34972.92 30885.65 33393.47 25171.52 33468.84 34679.08 34749.77 34693.21 33266.81 32560.52 35189.13 339
MVS-HIRNet73.70 31872.20 32178.18 33391.81 25256.42 35782.94 34682.58 35255.24 35268.88 34566.48 35455.32 33395.13 30958.12 34788.42 21383.01 348
new_pmnet72.15 31970.13 32278.20 33282.95 35265.68 34683.91 34182.40 35362.94 34964.47 34979.82 34642.85 35586.26 35357.41 34974.44 33182.65 350
pmmvs371.81 32068.71 32381.11 32975.86 35670.42 33286.74 32583.66 35158.95 35168.64 34780.89 34536.93 35689.52 34963.10 33763.59 34883.39 347
N_pmnet68.89 32168.44 32470.23 33789.07 32028.79 36788.06 31519.50 36869.47 34171.86 34284.93 33561.24 30891.75 34454.70 35077.15 32590.15 328
LCM-MVSNet66.00 32262.16 32677.51 33464.51 36258.29 35483.87 34290.90 31248.17 35554.69 35373.31 35116.83 36786.75 35265.47 32761.67 35087.48 346
FPMVS64.63 32362.55 32570.88 33670.80 35856.71 35584.42 33984.42 35051.78 35449.57 35481.61 34423.49 36181.48 35640.61 35776.25 32974.46 353
PMMVS259.60 32456.40 32769.21 33868.83 35946.58 36273.02 35677.48 36155.07 35349.21 35572.95 35217.43 36680.04 35749.32 35444.33 35780.99 352
ANet_high58.88 32554.22 32972.86 33556.50 36556.67 35680.75 35086.00 34673.09 32637.39 35964.63 35622.17 36279.49 35843.51 35523.96 36082.43 351
Gipumacopyleft57.99 32654.91 32867.24 33988.51 32465.59 34752.21 35990.33 32243.58 35742.84 35851.18 35920.29 36485.07 35434.77 35870.45 33751.05 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 32748.46 33163.48 34045.72 36746.20 36373.41 35578.31 35941.03 35830.06 36165.68 3556.05 36883.43 35530.04 35965.86 34560.80 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 32848.47 33056.66 34252.26 36618.98 36941.51 36181.40 35510.10 36244.59 35775.01 34928.51 35968.16 35953.54 35149.31 35682.83 349
MVEpermissive39.65 2343.39 32938.59 33557.77 34156.52 36448.77 36155.38 35858.64 36529.33 36128.96 36252.65 3584.68 36964.62 36228.11 36033.07 35859.93 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 33042.29 33246.03 34465.58 36137.41 36473.51 35464.62 36233.99 35928.47 36347.87 36019.90 36567.91 36022.23 36124.45 35932.77 358
EMVS42.07 33141.12 33344.92 34563.45 36335.56 36673.65 35363.48 36333.05 36026.88 36445.45 36121.27 36367.14 36119.80 36223.02 36132.06 359
tmp_tt35.64 33239.24 33424.84 34614.87 36823.90 36862.71 35751.51 3676.58 36436.66 36062.08 35744.37 35430.34 36552.40 35222.00 36220.27 360
cdsmvs_eth3d_5k22.14 33329.52 3360.00 3500.00 3710.00 3720.00 36295.76 1470.00 3670.00 36894.29 14575.66 1640.00 3680.00 3660.00 3660.00 364
wuyk23d21.27 33420.48 33723.63 34768.59 36036.41 36549.57 3606.85 3699.37 3637.89 3654.46 3674.03 37031.37 36417.47 36316.07 3633.12 361
testmvs8.92 33511.52 3381.12 3491.06 3690.46 37186.02 3290.65 3700.62 3652.74 3669.52 3650.31 3720.45 3672.38 3640.39 3642.46 363
test1238.76 33611.22 3391.39 3480.85 3700.97 37085.76 3320.35 3710.54 3662.45 3678.14 3660.60 3710.48 3662.16 3650.17 3652.71 362
ab-mvs-re7.82 33710.43 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36893.88 1640.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.64 3388.86 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36879.70 1170.00 3680.00 3660.00 3660.00 364
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS98.15 3586.62 3597.07 4483.63 18594.19 3096.91 4887.57 2999.26 4391.99 5698.44 51
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7287.46 10393.75 4097.43 1882.94 8092.73 3597.80 7397.88 77
IU-MVS98.77 486.00 5496.84 6281.26 24297.26 695.50 799.13 399.03 4
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4698.99 1098.84 8
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
9.1494.47 1797.79 5296.08 5097.44 1286.13 13495.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
save fliter97.85 4885.63 6895.21 9496.82 6689.44 47
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
GSMVS96.12 141
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 21396.12 141
sam_mvs70.60 227
ambc83.06 32679.99 35463.51 35277.47 35292.86 26074.34 33384.45 33628.74 35895.06 31273.06 28768.89 34390.61 324
MTGPAbinary96.97 49
test_post188.00 3169.81 36469.31 24895.53 29976.65 258
test_post10.29 36370.57 23195.91 287
patchmatchnet-post83.76 33871.53 21596.48 260
GG-mvs-BLEND87.94 27389.73 31777.91 25487.80 31778.23 36080.58 28683.86 33759.88 31895.33 30771.20 29392.22 16690.60 326
MTMP96.16 4460.64 364
gm-plane-assit89.60 31868.00 34077.28 28988.99 29697.57 17979.44 231
test9_res91.91 6198.71 3098.07 63
TEST997.53 5886.49 3994.07 17396.78 6981.61 23592.77 6596.20 8087.71 2699.12 55
test_897.49 6186.30 4894.02 17896.76 7281.86 22892.70 6996.20 8087.63 2799.02 68
agg_prior290.54 8698.68 3598.27 47
agg_prior97.38 6485.92 6096.72 7892.16 8198.97 80
TestCases89.52 23295.01 14177.79 26090.89 31377.41 28676.12 32293.34 17854.08 33897.51 18368.31 31384.27 25193.26 262
test_prior485.96 5794.11 168
test_prior294.12 16687.67 9992.63 7096.39 7286.62 3991.50 7198.67 37
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
旧先验293.36 20371.25 33694.37 2697.13 22186.74 129
新几何293.11 218
新几何193.10 8197.30 6884.35 9495.56 16171.09 33791.26 10296.24 7782.87 8298.86 9179.19 23598.10 6296.07 146
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7796.97 114
无先验93.28 21096.26 10773.95 31899.05 6080.56 21696.59 127
原ACMM292.94 225
原ACMM192.01 12997.34 6681.05 17996.81 6778.89 26990.45 10995.92 9182.65 8398.84 9680.68 21498.26 5996.14 139
test22296.55 8881.70 15992.22 24695.01 19668.36 34390.20 11296.14 8580.26 11097.80 7396.05 148
testdata298.75 10078.30 242
segment_acmp87.16 35
testdata90.49 19296.40 9277.89 25695.37 18172.51 33093.63 4596.69 5882.08 9497.65 17383.08 16897.39 8195.94 150
testdata192.15 24887.94 89
test1294.34 5397.13 7486.15 5196.29 10591.04 10585.08 5899.01 7098.13 6197.86 79
plane_prior794.70 16082.74 136
plane_prior694.52 16782.75 13474.23 180
plane_prior596.22 11298.12 13788.15 10989.99 18594.63 196
plane_prior494.86 124
plane_prior382.75 13490.26 3086.91 162
plane_prior295.85 6190.81 17
plane_prior194.59 165
plane_prior82.73 13795.21 9489.66 4389.88 190
n20.00 372
nn0.00 372
door-mid85.49 347
lessismore_v086.04 30488.46 32668.78 33980.59 35673.01 33890.11 28055.39 33296.43 26575.06 27465.06 34692.90 279
LGP-MVS_train91.12 16694.47 16981.49 16696.14 11786.73 12085.45 19795.16 11369.89 23898.10 13987.70 11589.23 20193.77 244
test1196.57 92
door85.33 348
HQP5-MVS81.56 162
HQP-NCC94.17 18094.39 15088.81 6485.43 200
ACMP_Plane94.17 18094.39 15088.81 6485.43 200
BP-MVS87.11 126
HQP4-MVS85.43 20097.96 15594.51 206
HQP3-MVS96.04 12689.77 192
HQP2-MVS73.83 190
NP-MVS94.37 17582.42 14593.98 157
MDTV_nov1_ep13_2view55.91 35987.62 32273.32 32384.59 21870.33 23474.65 27795.50 165
MDTV_nov1_ep1383.56 26091.69 25769.93 33587.75 31991.54 29578.60 27684.86 21488.90 29869.54 24396.03 28070.25 29988.93 205
ACMMP++_ref87.47 226
ACMMP++88.01 221
Test By Simon80.02 112
ITE_SJBPF88.24 26591.88 24977.05 27492.92 25985.54 14680.13 29493.30 18257.29 32796.20 27472.46 28984.71 24791.49 309
DeepMVS_CXcopyleft56.31 34374.23 35751.81 36056.67 36644.85 35648.54 35675.16 34827.87 36058.74 36340.92 35652.22 35458.39 356