This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 9996.80 10498.51 10699.99 195.60 16099.09 24498.84 5893.32 16496.74 16299.72 8186.04 216100.00 198.01 11599.43 11099.94 74
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 30100.00 199.74 30100.00 1100.00 1
mPP-MVS98.39 4698.20 4598.97 7499.97 396.92 11299.95 5298.38 15395.04 9798.61 11199.80 5193.39 97100.00 198.64 89100.00 199.98 48
CPTT-MVS97.64 8397.32 8698.58 9899.97 395.77 15199.96 3498.35 15989.90 26598.36 12199.79 5591.18 15299.99 3698.37 9999.99 2199.99 23
DP-MVS Recon98.41 4498.02 5699.56 2599.97 398.70 4699.92 7898.44 11992.06 21298.40 12099.84 4195.68 40100.00 198.19 10599.71 8399.97 58
PAPR98.52 3498.16 4899.58 2499.97 398.77 4099.95 5298.43 12795.35 9198.03 13199.75 6994.03 8499.98 4398.11 11099.83 7299.99 23
HFP-MVS98.56 3198.37 3599.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 77100.00 198.70 8499.98 3299.98 48
region2R98.54 3298.37 3599.05 6699.96 897.18 10199.96 3498.55 9594.87 10399.45 6499.85 3094.07 83100.00 198.67 86100.00 199.98 48
ACMMPR98.50 3598.32 3999.05 6699.96 897.18 10199.95 5298.60 8394.77 10599.31 7699.84 4193.73 92100.00 198.70 8499.98 3299.98 48
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 3998.32 3998.87 7999.96 896.62 12099.97 2798.39 14994.43 11798.90 9499.87 2494.30 75100.00 199.04 6399.99 2199.99 23
test_one_060199.94 1399.30 1298.41 14296.63 5699.75 2999.93 1197.49 10
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 127100.00 199.99 5100.00 1100.00 1
XVS98.70 2598.55 2599.15 5799.94 1397.50 9099.94 6898.42 13896.22 7199.41 6899.78 5994.34 7399.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 20392.06 23599.15 5799.94 1397.50 9099.94 6898.42 13896.22 7199.41 6841.37 40094.34 7399.96 6198.92 7099.95 4999.99 23
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 36100.00 199.51 40100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8298.39 14997.20 3899.46 6399.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5697.97 5899.03 6899.94 1397.17 10499.95 5298.39 14994.70 10998.26 12799.81 5091.84 143100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 2798.36 3799.49 3299.94 1398.73 4499.87 10098.33 16493.97 14399.76 2899.87 2494.99 5799.75 13298.55 93100.00 199.98 48
PAPM_NR98.12 5997.93 6398.70 8799.94 1396.13 14299.82 13098.43 12794.56 11397.52 14399.70 8594.40 6899.98 4397.00 14999.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 17799.44 2097.33 3199.00 9099.72 8194.03 8499.98 4398.73 83100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 12797.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14297.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 12797.26 3699.80 1799.88 2196.71 24100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 16697.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3498.42 13897.28 3299.86 799.94 497.22 19
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 13897.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 4098.43 12799.63 4399.85 108
FOURS199.92 3197.66 8399.95 5298.36 15795.58 8599.52 59
ZD-MVS99.92 3198.57 5498.52 10192.34 20499.31 7699.83 4395.06 5299.80 12199.70 3499.97 42
GST-MVS98.27 5197.97 5899.17 5399.92 3197.57 8599.93 7598.39 14994.04 14198.80 9899.74 7692.98 111100.00 198.16 10799.76 8099.93 76
TEST999.92 3198.92 2899.96 3498.43 12793.90 14899.71 3499.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 12794.35 12299.71 3499.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3199.96 3498.43 12794.35 12299.69 3699.85 3095.94 3499.85 108
PGM-MVS98.34 4798.13 5098.99 7299.92 3197.00 10899.75 15099.50 1893.90 14899.37 7399.76 6393.24 105100.00 197.75 13299.96 4699.98 48
ACMMPcopyleft97.74 7897.44 8098.66 9099.92 3196.13 14299.18 23899.45 1994.84 10496.41 17299.71 8391.40 14699.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 12796.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 142100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 142100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 8997.56 2599.44 6599.85 3095.38 46100.00 199.31 5199.99 2199.87 87
APD-MVScopyleft98.62 2898.35 3899.41 3899.90 4298.51 5799.87 10098.36 15794.08 13599.74 3199.73 7894.08 8299.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 2099.90 4298.85 3499.24 23398.47 11298.14 1099.08 8699.91 1493.09 108100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10098.44 11997.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 62
CSCG97.10 10297.04 9697.27 17499.89 4591.92 25899.90 8799.07 3488.67 28895.26 19499.82 4693.17 10799.98 4398.15 10899.47 10499.90 83
ZNCC-MVS98.31 4898.03 5599.17 5399.88 4997.59 8499.94 6898.44 11994.31 12598.50 11599.82 4693.06 10999.99 3698.30 10399.99 2199.93 76
SR-MVS98.46 3898.30 4298.93 7799.88 4997.04 10699.84 12098.35 15994.92 10199.32 7599.80 5193.35 9899.78 12599.30 5299.95 4999.96 64
9.1498.38 3399.87 5199.91 8298.33 16493.22 16799.78 2699.89 1994.57 6599.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2398.48 2899.62 2099.87 5198.87 3299.86 11398.38 15393.19 16899.77 2799.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4498.21 4499.03 6899.86 5397.10 10599.98 1498.80 6290.78 25199.62 4699.78 5995.30 47100.00 199.80 2599.93 6099.99 23
MTAPA98.29 5097.96 6199.30 4299.85 5497.93 7399.39 21498.28 17395.76 8097.18 15199.88 2192.74 119100.00 198.67 8699.88 6899.99 23
LS3D95.84 15195.11 16198.02 13199.85 5495.10 18098.74 28698.50 10987.22 30993.66 21199.86 2687.45 20099.95 6990.94 25299.81 7899.02 195
HPM-MVScopyleft97.96 6297.72 7098.68 8899.84 5696.39 12999.90 8798.17 18592.61 19098.62 11099.57 10791.87 14299.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 5198.11 5298.75 8599.83 5796.59 12299.40 21098.51 10495.29 9398.51 11499.76 6393.60 9699.71 13898.53 9499.52 9999.95 71
save fliter99.82 5898.79 3899.96 3498.40 14697.66 21
PLCcopyleft95.54 397.93 6497.89 6698.05 13099.82 5894.77 18999.92 7898.46 11493.93 14697.20 15099.27 13295.44 4599.97 5397.41 13799.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 5498.08 5498.78 8299.81 6096.60 12199.82 13098.30 17193.95 14599.37 7399.77 6192.84 11599.76 13198.95 6799.92 6399.97 58
EI-MVSNet-UG-set98.14 5897.99 5798.60 9599.80 6196.27 13299.36 21998.50 10995.21 9598.30 12499.75 6993.29 10299.73 13798.37 9999.30 11699.81 94
SR-MVS-dyc-post98.31 4898.17 4798.71 8699.79 6296.37 13099.76 14798.31 16894.43 11799.40 7099.75 6993.28 10399.78 12598.90 7399.92 6399.97 58
RE-MVS-def98.13 5099.79 6296.37 13099.76 14798.31 16894.43 11799.40 7099.75 6992.95 11298.90 7399.92 6399.97 58
HPM-MVS_fast97.80 7397.50 7898.68 8899.79 6296.42 12599.88 9798.16 18991.75 22298.94 9299.54 11091.82 14499.65 14797.62 13599.99 2199.99 23
SF-MVS98.67 2698.40 3199.50 3099.77 6598.67 4799.90 8798.21 18093.53 15899.81 1599.89 1994.70 6399.86 10799.84 2299.93 6099.96 64
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
OMC-MVS97.28 9697.23 8897.41 16599.76 6693.36 22799.65 17397.95 20796.03 7597.41 14799.70 8589.61 17699.51 15296.73 15698.25 14999.38 164
新几何199.42 3799.75 6898.27 6198.63 8092.69 18599.55 5499.82 4694.40 68100.00 191.21 24499.94 5499.99 23
MP-MVS-pluss98.07 6197.64 7399.38 4199.74 6998.41 6099.74 15398.18 18493.35 16296.45 16999.85 3092.64 12199.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14298.38 15396.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5598.40 14699.65 4094.76 6099.75 13299.98 3299.99 23
原ACMM198.96 7599.73 7296.99 10998.51 10494.06 13899.62 4699.85 3094.97 5899.96 6195.11 17499.95 4999.92 81
TSAR-MVS + GP.98.60 2998.51 2798.86 8099.73 7296.63 11999.97 2797.92 21298.07 1198.76 10299.55 10895.00 5699.94 7799.91 1597.68 16299.99 23
CANet98.27 5197.82 6899.63 1799.72 7499.10 2399.98 1498.51 10497.00 4398.52 11399.71 8387.80 19599.95 6999.75 2899.38 11299.83 91
F-COLMAP96.93 10996.95 9996.87 18399.71 7591.74 26399.85 11697.95 20793.11 17195.72 18799.16 14392.35 13199.94 7795.32 17299.35 11498.92 197
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16396.38 6599.81 1599.76 6394.59 6499.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 5599.12 595.59 21799.67 7786.91 33699.95 5298.89 4997.60 2299.90 399.76 6396.54 2899.98 4399.94 1199.82 7699.88 85
ACMMP_NAP98.49 3698.14 4999.54 2799.66 7898.62 5399.85 11698.37 15694.68 11099.53 5799.83 4392.87 114100.00 198.66 8899.84 7199.99 23
DeepPCF-MVS95.94 297.71 8198.98 1293.92 28199.63 7981.76 36399.96 3498.56 8999.47 199.19 8399.99 194.16 81100.00 199.92 1299.93 60100.00 1
EPNet98.49 3698.40 3198.77 8499.62 8096.80 11699.90 8799.51 1797.60 2299.20 8199.36 12693.71 9399.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS96.05 14495.82 14196.72 18899.59 8196.99 10999.95 5299.10 3194.06 13898.27 12595.80 28489.00 18799.95 6999.12 5887.53 27793.24 336
PVSNet_Blended97.94 6397.64 7398.83 8199.59 8196.99 109100.00 199.10 3195.38 9098.27 12599.08 14689.00 18799.95 6999.12 5899.25 11899.57 137
PatchMatch-RL96.04 14595.40 15097.95 13299.59 8195.22 17699.52 19599.07 3493.96 14496.49 16898.35 20982.28 24599.82 12090.15 26899.22 12198.81 204
dcpmvs_297.42 9198.09 5395.42 22299.58 8487.24 33299.23 23496.95 30694.28 12798.93 9399.73 7894.39 7199.16 17099.89 1699.82 7699.86 89
test22299.55 8597.41 9699.34 22098.55 9591.86 21799.27 8099.83 4393.84 9099.95 4999.99 23
CNLPA97.76 7797.38 8298.92 7899.53 8696.84 11499.87 10098.14 19293.78 15196.55 16799.69 8792.28 13399.98 4397.13 14499.44 10899.93 76
API-MVS97.86 6797.66 7298.47 10899.52 8795.41 16799.47 20498.87 5291.68 22398.84 9699.85 3092.34 13299.99 3698.44 9699.96 46100.00 1
PVSNet91.05 1397.13 10196.69 10798.45 11099.52 8795.81 14999.95 5299.65 1294.73 10799.04 8899.21 13984.48 23199.95 6994.92 18098.74 13699.58 136
114514_t97.41 9296.83 10299.14 5999.51 8997.83 7599.89 9598.27 17588.48 29299.06 8799.66 9690.30 16899.64 14896.32 16099.97 4299.96 64
cl2293.77 20793.25 21195.33 22699.49 9094.43 19399.61 18198.09 19490.38 25689.16 28095.61 29190.56 16497.34 26991.93 23684.45 29894.21 281
testdata98.42 11399.47 9195.33 17098.56 8993.78 15199.79 2599.85 3093.64 9599.94 7794.97 17899.94 54100.00 1
MAR-MVS97.43 8797.19 9098.15 12699.47 9194.79 18899.05 25598.76 6392.65 18898.66 10899.82 4688.52 19299.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 18593.42 20497.91 13699.46 9394.04 20698.93 26797.48 25281.15 35990.04 25399.55 10887.02 20699.95 6988.97 27898.11 15399.73 105
MVS_111021_LR98.42 4398.38 3398.53 10599.39 9495.79 15099.87 10099.86 296.70 5498.78 9999.79 5592.03 13999.90 9199.17 5799.86 7099.88 85
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9598.87 3298.46 30399.42 2297.03 4299.02 8999.09 14599.35 198.21 23499.73 3299.78 7999.77 101
MVS_111021_HR98.72 2498.62 2299.01 7199.36 9697.18 10199.93 7599.90 196.81 5198.67 10799.77 6193.92 8699.89 9699.27 5399.94 5499.96 64
DPM-MVS98.83 2198.46 2999.97 199.33 9799.92 199.96 3498.44 11997.96 1499.55 5499.94 497.18 21100.00 193.81 20999.94 5499.98 48
TAPA-MVS92.12 894.42 19093.60 19796.90 18299.33 9791.78 26299.78 13998.00 20189.89 26694.52 20099.47 11491.97 14099.18 16869.90 37399.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 6697.94 6297.70 14999.28 9995.20 17799.98 1497.15 28495.53 8799.62 4699.79 5592.08 13898.38 21898.75 8299.28 11799.52 147
test_fmvsm_n_192098.44 4098.61 2397.92 13499.27 10095.18 178100.00 198.90 4798.05 1299.80 1799.73 7892.64 12199.99 3699.58 3899.51 10298.59 214
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10197.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6199.97 5399.87 1999.64 8799.95 71
test_yl97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17799.27 2791.43 23197.88 13798.99 15595.84 3899.84 11698.82 7795.32 21399.79 97
DCV-MVSNet97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17799.27 2791.43 23197.88 13798.99 15595.84 3899.84 11698.82 7795.32 21399.79 97
MVS_030498.87 2098.61 2399.67 1699.18 10299.13 2299.87 10099.65 1298.17 898.75 10499.75 6992.76 11899.94 7799.88 1899.44 10899.94 74
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10597.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 7999.97 5399.87 1999.52 9999.98 48
DeepC-MVS94.51 496.92 11096.40 11698.45 11099.16 10695.90 14799.66 17198.06 19796.37 6894.37 20399.49 11383.29 24199.90 9197.63 13499.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3298.22 4399.50 3099.15 10798.65 51100.00 198.58 8597.70 2098.21 12999.24 13792.58 12499.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 7597.91 6497.43 16499.10 10894.42 19499.99 497.10 28995.07 9699.68 3799.75 6992.95 11298.34 22298.38 9899.14 12399.54 143
Anonymous20240521193.10 22591.99 23796.40 19899.10 10889.65 30798.88 27297.93 20983.71 34694.00 20898.75 18368.79 34199.88 10295.08 17691.71 23699.68 111
fmvsm_s_conf0.5_n97.80 7397.85 6797.67 15099.06 11094.41 19599.98 1498.97 4097.34 2999.63 4399.69 8787.27 20299.97 5399.62 3799.06 12798.62 213
HyFIR lowres test96.66 12396.43 11597.36 17099.05 11193.91 21199.70 16599.80 390.54 25496.26 17598.08 21492.15 13698.23 23396.84 15595.46 20999.93 76
LFMVS94.75 17993.56 20098.30 11999.03 11295.70 15698.74 28697.98 20487.81 30298.47 11699.39 12367.43 34999.53 15098.01 11595.20 21599.67 113
AllTest92.48 23991.64 24295.00 23699.01 11388.43 32198.94 26696.82 32186.50 31888.71 28698.47 20574.73 31899.88 10285.39 31696.18 19196.71 240
TestCases95.00 23699.01 11388.43 32196.82 32186.50 31888.71 28698.47 20574.73 31899.88 10285.39 31696.18 19196.71 240
COLMAP_ROBcopyleft90.47 1492.18 24691.49 24894.25 26999.00 11588.04 32798.42 30896.70 32882.30 35588.43 29399.01 15276.97 29499.85 10886.11 31296.50 18794.86 251
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs195.35 16595.68 14694.36 26698.99 11684.98 34599.96 3496.65 33097.60 2299.73 3298.96 16171.58 33199.93 8598.31 10299.37 11398.17 220
HY-MVS92.50 797.79 7597.17 9299.63 1798.98 11799.32 997.49 33299.52 1595.69 8298.32 12397.41 23593.32 10099.77 12898.08 11395.75 20599.81 94
VNet97.21 10096.57 11199.13 6398.97 11897.82 7699.03 25899.21 2994.31 12599.18 8498.88 17286.26 21599.89 9698.93 6994.32 22199.69 110
thres20096.96 10796.21 12099.22 4698.97 11898.84 3599.85 11699.71 793.17 16996.26 17598.88 17289.87 17399.51 15294.26 19894.91 21699.31 174
tfpn200view996.79 11495.99 12599.19 4998.94 12098.82 3699.78 13999.71 792.86 17496.02 18098.87 17589.33 18099.50 15493.84 20694.57 21799.27 179
thres40096.78 11595.99 12599.16 5598.94 12098.82 3699.78 13999.71 792.86 17496.02 18098.87 17589.33 18099.50 15493.84 20694.57 21799.16 186
Anonymous2023121189.86 29588.44 30294.13 27298.93 12290.68 28598.54 30098.26 17676.28 37186.73 31495.54 29570.60 33797.56 26290.82 25580.27 33394.15 289
canonicalmvs97.09 10496.32 11799.39 4098.93 12298.95 2799.72 16197.35 26394.45 11597.88 13799.42 11886.71 20999.52 15198.48 9593.97 22699.72 107
SDMVSNet94.80 17593.96 18897.33 17298.92 12495.42 16699.59 18398.99 3792.41 20192.55 22697.85 22475.81 30898.93 17897.90 12391.62 23797.64 231
sd_testset93.55 21492.83 21895.74 21598.92 12490.89 28298.24 31498.85 5692.41 20192.55 22697.85 22471.07 33698.68 19493.93 20391.62 23797.64 231
EPNet_dtu95.71 15595.39 15196.66 19098.92 12493.41 22499.57 18798.90 4796.19 7397.52 14398.56 19792.65 12097.36 26777.89 35698.33 14499.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6097.60 7599.60 2298.92 12499.28 1799.89 9599.52 1595.58 8598.24 12899.39 12393.33 9999.74 13497.98 11995.58 20899.78 100
CHOSEN 1792x268896.81 11396.53 11297.64 15298.91 12893.07 22999.65 17399.80 395.64 8395.39 19198.86 17784.35 23499.90 9196.98 15099.16 12299.95 71
thres100view90096.74 11895.92 13799.18 5098.90 12998.77 4099.74 15399.71 792.59 19295.84 18398.86 17789.25 18299.50 15493.84 20694.57 21799.27 179
thres600view796.69 12195.87 14099.14 5998.90 12998.78 3999.74 15399.71 792.59 19295.84 18398.86 17789.25 18299.50 15493.44 21894.50 22099.16 186
MSDG94.37 19293.36 20897.40 16698.88 13193.95 21099.37 21797.38 26185.75 32990.80 24599.17 14284.11 23699.88 10286.35 30998.43 14298.36 218
h-mvs3394.92 17394.36 17796.59 19298.85 13291.29 27498.93 26798.94 4195.90 7698.77 10098.42 20890.89 16099.77 12897.80 12570.76 36798.72 210
Anonymous2024052992.10 24790.65 25896.47 19398.82 13390.61 28798.72 28898.67 7375.54 37593.90 21098.58 19566.23 35399.90 9194.70 18990.67 23998.90 200
PVSNet_Blended_VisFu97.27 9796.81 10398.66 9098.81 13496.67 11899.92 7898.64 7694.51 11496.38 17398.49 20189.05 18699.88 10297.10 14698.34 14399.43 160
PS-MVSNAJ98.44 4098.20 4599.16 5598.80 13598.92 2899.54 19398.17 18597.34 2999.85 999.85 3091.20 14999.89 9699.41 4899.67 8598.69 211
CANet_DTU96.76 11696.15 12198.60 9598.78 13697.53 8699.84 12097.63 23197.25 3799.20 8199.64 9981.36 25499.98 4392.77 22998.89 13098.28 219
mvsany_test197.82 7197.90 6597.55 15798.77 13793.04 23299.80 13697.93 20996.95 4599.61 5299.68 9390.92 15799.83 11899.18 5698.29 14899.80 96
alignmvs97.81 7297.33 8599.25 4498.77 13798.66 4999.99 498.44 11994.40 12198.41 11899.47 11493.65 9499.42 16298.57 9294.26 22299.67 113
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 13997.71 7999.98 1498.44 11996.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 5697.97 5899.02 7098.69 14098.66 4999.52 19598.08 19697.05 4199.86 799.86 2690.65 16299.71 13899.39 5098.63 13898.69 211
miper_enhance_ethall94.36 19493.98 18795.49 21898.68 14195.24 17499.73 15897.29 27193.28 16689.86 25895.97 28294.37 7297.05 29192.20 23384.45 29894.19 282
test250697.53 8597.19 9098.58 9898.66 14296.90 11398.81 28199.77 594.93 9997.95 13398.96 16192.51 12699.20 16694.93 17998.15 15099.64 119
ECVR-MVScopyleft95.66 15895.05 16397.51 16098.66 14293.71 21598.85 27898.45 11594.93 9996.86 15898.96 16175.22 31499.20 16695.34 17198.15 15099.64 119
fmvsm_s_conf0.5_n_a97.73 8097.72 7097.77 14498.63 14494.26 20099.96 3498.92 4697.18 3999.75 2999.69 8787.00 20799.97 5399.46 4498.89 13099.08 194
test111195.57 16094.98 16697.37 16898.56 14593.37 22698.86 27698.45 11594.95 9896.63 16498.95 16675.21 31599.11 17195.02 17798.14 15299.64 119
MVSTER95.53 16195.22 15796.45 19598.56 14597.72 7899.91 8297.67 22992.38 20391.39 23797.14 24297.24 1897.30 27494.80 18587.85 27194.34 273
VDD-MVS93.77 20792.94 21596.27 20398.55 14790.22 29698.77 28597.79 22390.85 24796.82 16099.42 11861.18 37099.77 12898.95 6794.13 22398.82 203
tpmvs94.28 19693.57 19996.40 19898.55 14791.50 27295.70 36698.55 9587.47 30492.15 23094.26 34191.42 14598.95 17788.15 28895.85 20198.76 206
UGNet95.33 16694.57 17497.62 15598.55 14794.85 18498.67 29499.32 2695.75 8196.80 16196.27 27372.18 32899.96 6194.58 19299.05 12898.04 224
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 16794.10 18498.43 11298.55 14795.99 14597.91 32797.31 26890.35 25889.48 26999.22 13885.19 22499.89 9690.40 26598.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_n_192095.44 16395.31 15495.82 21398.50 15188.74 31599.98 1497.30 26997.84 1699.85 999.19 14066.82 35199.97 5398.82 7799.46 10698.76 206
BH-w/o95.71 15595.38 15296.68 18998.49 15292.28 24999.84 12097.50 25092.12 20992.06 23398.79 18184.69 22998.67 19595.29 17399.66 8699.09 192
baseline195.78 15294.86 16898.54 10398.47 15398.07 6599.06 25197.99 20292.68 18694.13 20798.62 19293.28 10398.69 19393.79 21185.76 28698.84 202
iter_conf0596.07 14395.95 13396.44 19798.43 15497.52 8799.91 8296.85 31794.16 13192.49 22897.98 22098.20 497.34 26997.26 14188.29 26494.45 263
EPMVS96.53 12796.01 12498.09 12898.43 15496.12 14496.36 35399.43 2193.53 15897.64 14195.04 31994.41 6798.38 21891.13 24698.11 15399.75 103
iter_conf_final96.01 14695.93 13596.28 20298.38 15697.03 10799.87 10097.03 29794.05 14092.61 22497.98 22098.01 597.34 26997.02 14888.39 26394.47 257
sss97.57 8497.03 9799.18 5098.37 15798.04 6799.73 15899.38 2393.46 16098.76 10299.06 14891.21 14899.89 9696.33 15997.01 17999.62 124
BH-untuned95.18 16794.83 16996.22 20498.36 15891.22 27599.80 13697.32 26790.91 24591.08 24198.67 18583.51 23898.54 20194.23 19999.61 9398.92 197
ET-MVSNet_ETH3D94.37 19293.28 21097.64 15298.30 15997.99 6999.99 497.61 23694.35 12271.57 37899.45 11796.23 3195.34 34896.91 15485.14 29399.59 130
AUN-MVS93.28 21992.60 22395.34 22598.29 16090.09 29999.31 22498.56 8991.80 22196.35 17498.00 21789.38 17998.28 22892.46 23069.22 37297.64 231
FMVSNet392.69 23591.58 24495.99 20898.29 16097.42 9599.26 23297.62 23389.80 26789.68 26295.32 30981.62 25296.27 32887.01 30585.65 28794.29 275
PMMVS96.76 11696.76 10596.76 18698.28 16292.10 25399.91 8297.98 20494.12 13399.53 5799.39 12386.93 20898.73 18896.95 15297.73 16099.45 157
hse-mvs294.38 19194.08 18595.31 22798.27 16390.02 30199.29 22998.56 8995.90 7698.77 10098.00 21790.89 16098.26 23297.80 12569.20 37397.64 231
PVSNet_088.03 1991.80 25490.27 26796.38 20098.27 16390.46 29199.94 6899.61 1493.99 14286.26 32497.39 23771.13 33599.89 9698.77 8067.05 37898.79 205
UA-Net96.54 12695.96 13198.27 12098.23 16595.71 15598.00 32598.45 11593.72 15498.41 11899.27 13288.71 19199.66 14691.19 24597.69 16199.44 159
test_cas_vis1_n_192096.59 12596.23 11997.65 15198.22 16694.23 20199.99 497.25 27597.77 1799.58 5399.08 14677.10 29199.97 5397.64 13399.45 10798.74 208
FE-MVS95.70 15795.01 16597.79 14198.21 16794.57 19095.03 36798.69 6888.90 28397.50 14596.19 27592.60 12399.49 15889.99 27097.94 15999.31 174
GG-mvs-BLEND98.54 10398.21 16798.01 6893.87 37298.52 10197.92 13497.92 22399.02 297.94 25098.17 10699.58 9699.67 113
mvs_anonymous95.65 15995.03 16497.53 15898.19 16995.74 15399.33 22197.49 25190.87 24690.47 24897.10 24488.23 19397.16 28295.92 16697.66 16399.68 111
MVS_Test96.46 12995.74 14298.61 9498.18 17097.23 9999.31 22497.15 28491.07 24298.84 9697.05 24888.17 19498.97 17594.39 19497.50 16599.61 127
BH-RMVSNet95.18 16794.31 18097.80 13998.17 17195.23 17599.76 14797.53 24692.52 19794.27 20599.25 13676.84 29698.80 18290.89 25499.54 9899.35 169
RPSCF91.80 25492.79 22088.83 34398.15 17269.87 38198.11 32196.60 33283.93 34494.33 20499.27 13279.60 27399.46 16191.99 23593.16 23397.18 238
ETV-MVS97.92 6597.80 6998.25 12198.14 17396.48 12399.98 1497.63 23195.61 8499.29 7999.46 11692.55 12598.82 18199.02 6698.54 13999.46 155
IS-MVSNet96.29 13995.90 13897.45 16298.13 17494.80 18799.08 24697.61 23692.02 21495.54 19098.96 16190.64 16398.08 23993.73 21497.41 16999.47 154
test_fmvsmconf_n98.43 4298.32 3998.78 8298.12 17596.41 12699.99 498.83 5998.22 699.67 3899.64 9991.11 15399.94 7799.67 3699.62 8999.98 48
ab-mvs94.69 18093.42 20498.51 10698.07 17696.26 13396.49 35198.68 7090.31 25994.54 19997.00 25076.30 30399.71 13895.98 16593.38 23199.56 138
XVG-OURS-SEG-HR94.79 17694.70 17395.08 23398.05 17789.19 31099.08 24697.54 24493.66 15594.87 19799.58 10678.78 28199.79 12397.31 13993.40 23096.25 244
EIA-MVS97.53 8597.46 7997.76 14698.04 17894.84 18599.98 1497.61 23694.41 12097.90 13599.59 10492.40 13098.87 17998.04 11499.13 12499.59 130
XVG-OURS94.82 17494.74 17295.06 23498.00 17989.19 31099.08 24697.55 24294.10 13494.71 19899.62 10280.51 26599.74 13496.04 16493.06 23596.25 244
dp95.05 17094.43 17696.91 18197.99 18092.73 23996.29 35697.98 20489.70 26895.93 18294.67 33293.83 9198.45 20786.91 30896.53 18699.54 143
tpmrst96.27 14195.98 12797.13 17697.96 18193.15 22896.34 35498.17 18592.07 21098.71 10695.12 31793.91 8798.73 18894.91 18296.62 18499.50 151
TR-MVS94.54 18593.56 20097.49 16197.96 18194.34 19898.71 28997.51 24990.30 26094.51 20198.69 18475.56 30998.77 18592.82 22895.99 19599.35 169
Vis-MVSNet (Re-imp)96.32 13695.98 12797.35 17197.93 18394.82 18699.47 20498.15 19191.83 21895.09 19599.11 14491.37 14797.47 26593.47 21797.43 16699.74 104
MDTV_nov1_ep1395.69 14497.90 18494.15 20395.98 36298.44 11993.12 17097.98 13295.74 28695.10 5098.58 19890.02 26996.92 181
Fast-Effi-MVS+95.02 17194.19 18297.52 15997.88 18594.55 19199.97 2797.08 29288.85 28594.47 20297.96 22284.59 23098.41 21089.84 27297.10 17499.59 130
ADS-MVSNet293.80 20693.88 19193.55 29597.87 18685.94 33994.24 36896.84 31890.07 26296.43 17094.48 33790.29 16995.37 34787.44 29597.23 17199.36 167
ADS-MVSNet94.79 17694.02 18697.11 17897.87 18693.79 21294.24 36898.16 18990.07 26296.43 17094.48 33790.29 16998.19 23587.44 29597.23 17199.36 167
Effi-MVS+96.30 13895.69 14498.16 12397.85 18896.26 13397.41 33497.21 27790.37 25798.65 10998.58 19586.61 21198.70 19297.11 14597.37 17099.52 147
PatchmatchNetpermissive95.94 14895.45 14997.39 16797.83 18994.41 19596.05 36098.40 14692.86 17497.09 15295.28 31494.21 7998.07 24189.26 27698.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 18393.61 19597.74 14897.82 19096.26 13399.96 3497.78 22485.76 32794.00 20897.54 23176.95 29599.21 16597.23 14295.43 21097.76 230
1112_ss96.01 14695.20 15898.42 11397.80 19196.41 12699.65 17396.66 32992.71 18392.88 22199.40 12192.16 13599.30 16391.92 23793.66 22799.55 139
Test_1112_low_res95.72 15394.83 16998.42 11397.79 19296.41 12699.65 17396.65 33092.70 18492.86 22296.13 27892.15 13699.30 16391.88 23893.64 22899.55 139
Effi-MVS+-dtu94.53 18795.30 15592.22 31697.77 19382.54 35699.59 18397.06 29494.92 10195.29 19395.37 30785.81 21797.89 25194.80 18597.07 17596.23 246
tpm cat193.51 21592.52 22896.47 19397.77 19391.47 27396.13 35898.06 19780.98 36092.91 22093.78 34589.66 17498.87 17987.03 30496.39 18999.09 192
FA-MVS(test-final)95.86 14995.09 16298.15 12697.74 19595.62 15996.31 35598.17 18591.42 23396.26 17596.13 27890.56 16499.47 16092.18 23497.07 17599.35 169
xiu_mvs_v1_base_debu97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
xiu_mvs_v1_base97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
xiu_mvs_v1_base_debi97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
EPP-MVSNet96.69 12196.60 10996.96 18097.74 19593.05 23199.37 21798.56 8988.75 28695.83 18599.01 15296.01 3298.56 19996.92 15397.20 17399.25 181
gg-mvs-nofinetune93.51 21591.86 24198.47 10897.72 20097.96 7292.62 37698.51 10474.70 37897.33 14869.59 39198.91 397.79 25497.77 13099.56 9799.67 113
IB-MVS92.85 694.99 17293.94 18998.16 12397.72 20095.69 15799.99 498.81 6094.28 12792.70 22396.90 25295.08 5199.17 16996.07 16373.88 36299.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9297.02 9898.59 9797.71 20297.52 8799.97 2798.54 9891.83 21897.45 14699.04 14997.50 999.10 17294.75 18796.37 19099.16 186
Syy-MVS90.00 29390.63 25988.11 35097.68 20374.66 37899.71 16398.35 15990.79 24992.10 23198.67 18579.10 27993.09 37063.35 38495.95 19896.59 242
myMVS_eth3d94.46 18994.76 17193.55 29597.68 20390.97 27799.71 16398.35 15990.79 24992.10 23198.67 18592.46 12993.09 37087.13 30195.95 19896.59 242
test_fmvs1_n94.25 19794.36 17793.92 28197.68 20383.70 35199.90 8796.57 33397.40 2899.67 3898.88 17261.82 36799.92 8898.23 10499.13 12498.14 223
diffmvspermissive97.00 10696.64 10898.09 12897.64 20696.17 14199.81 13297.19 27894.67 11198.95 9199.28 12986.43 21298.76 18698.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 15395.15 16097.45 16297.62 20794.28 19999.28 23098.24 17794.27 12996.84 15998.94 16879.39 27498.76 18693.25 21998.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 10296.72 10698.22 12297.60 20896.70 11799.92 7898.54 9891.11 24197.07 15398.97 15997.47 1299.03 17393.73 21496.09 19398.92 197
miper_ehance_all_eth93.16 22292.60 22394.82 24497.57 20993.56 21899.50 19997.07 29388.75 28688.85 28595.52 29790.97 15696.74 31090.77 25684.45 29894.17 283
testing393.92 20194.23 18192.99 30897.54 21090.23 29599.99 499.16 3090.57 25391.33 24098.63 19192.99 11092.52 37482.46 33495.39 21196.22 247
LCM-MVSNet-Re92.31 24392.60 22391.43 32397.53 21179.27 37399.02 25991.83 38792.07 21080.31 35394.38 34083.50 23995.48 34597.22 14397.58 16499.54 143
GBi-Net90.88 27089.82 27694.08 27397.53 21191.97 25498.43 30596.95 30687.05 31089.68 26294.72 32871.34 33296.11 33387.01 30585.65 28794.17 283
test190.88 27089.82 27694.08 27397.53 21191.97 25498.43 30596.95 30687.05 31089.68 26294.72 32871.34 33296.11 33387.01 30585.65 28794.17 283
FMVSNet291.02 26789.56 28195.41 22397.53 21195.74 15398.98 26197.41 25987.05 31088.43 29395.00 32271.34 33296.24 33085.12 31885.21 29294.25 278
tttt051796.85 11196.49 11397.92 13497.48 21595.89 14899.85 11698.54 9890.72 25296.63 16498.93 17097.47 1299.02 17493.03 22695.76 20498.85 201
casdiffmvs_mvgpermissive96.43 13095.94 13497.89 13897.44 21695.47 16399.86 11397.29 27193.35 16296.03 17999.19 14085.39 22298.72 19097.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 9497.24 8797.80 13997.41 21795.64 15899.99 497.06 29494.59 11299.63 4399.32 12889.20 18598.14 23698.76 8199.23 12099.62 124
c3_l92.53 23891.87 24094.52 25697.40 21892.99 23399.40 21096.93 31187.86 30088.69 28895.44 30189.95 17296.44 32190.45 26280.69 32994.14 292
fmvsm_s_conf0.1_n97.30 9597.21 8997.60 15697.38 21994.40 19799.90 8798.64 7696.47 6199.51 6199.65 9884.99 22799.93 8599.22 5599.09 12698.46 215
CDS-MVSNet96.34 13596.07 12297.13 17697.37 22094.96 18299.53 19497.91 21391.55 22695.37 19298.32 21095.05 5397.13 28593.80 21095.75 20599.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 11896.26 11898.16 12397.36 22196.48 12399.96 3498.29 17291.93 21595.77 18698.07 21595.54 4298.29 22690.55 26098.89 13099.70 108
miper_lstm_enhance91.81 25191.39 25093.06 30797.34 22289.18 31299.38 21596.79 32386.70 31787.47 30695.22 31590.00 17195.86 34288.26 28681.37 31994.15 289
baseline96.43 13095.98 12797.76 14697.34 22295.17 17999.51 19797.17 28193.92 14796.90 15799.28 12985.37 22398.64 19697.50 13696.86 18399.46 155
cl____92.31 24391.58 24494.52 25697.33 22492.77 23599.57 18796.78 32486.97 31487.56 30495.51 29889.43 17896.62 31588.60 28182.44 31194.16 288
DIV-MVS_self_test92.32 24291.60 24394.47 26097.31 22592.74 23799.58 18596.75 32586.99 31387.64 30295.54 29589.55 17796.50 31988.58 28282.44 31194.17 283
casdiffmvspermissive96.42 13295.97 13097.77 14497.30 22694.98 18199.84 12097.09 29193.75 15396.58 16699.26 13585.07 22598.78 18497.77 13097.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 19493.48 20296.99 17997.29 22793.54 21999.96 3496.72 32788.35 29593.43 21298.94 16882.05 24698.05 24288.12 29096.48 18899.37 166
eth_miper_zixun_eth92.41 24191.93 23893.84 28597.28 22890.68 28598.83 27996.97 30588.57 29189.19 27995.73 28889.24 18496.69 31389.97 27181.55 31794.15 289
MVSFormer96.94 10896.60 10997.95 13297.28 22897.70 8199.55 19197.27 27391.17 23899.43 6699.54 11090.92 15796.89 30394.67 19099.62 8999.25 181
lupinMVS97.85 6897.60 7598.62 9397.28 22897.70 8199.99 497.55 24295.50 8999.43 6699.67 9490.92 15798.71 19198.40 9799.62 8999.45 157
SCA94.69 18093.81 19397.33 17297.10 23194.44 19298.86 27698.32 16693.30 16596.17 17895.59 29376.48 30197.95 24891.06 24897.43 16699.59 130
TAMVS95.85 15095.58 14796.65 19197.07 23293.50 22099.17 23997.82 22291.39 23595.02 19698.01 21692.20 13497.30 27493.75 21395.83 20299.14 189
Fast-Effi-MVS+-dtu93.72 21093.86 19293.29 30097.06 23386.16 33799.80 13696.83 31992.66 18792.58 22597.83 22681.39 25397.67 25989.75 27396.87 18296.05 249
CostFormer96.10 14295.88 13996.78 18597.03 23492.55 24597.08 34297.83 22190.04 26498.72 10594.89 32695.01 5598.29 22696.54 15895.77 20399.50 151
test_fmvsmvis_n_192097.67 8297.59 7797.91 13697.02 23595.34 16999.95 5298.45 11597.87 1597.02 15499.59 10489.64 17599.98 4399.41 4899.34 11598.42 216
test-LLR96.47 12896.04 12397.78 14297.02 23595.44 16499.96 3498.21 18094.07 13695.55 18896.38 26993.90 8898.27 23090.42 26398.83 13499.64 119
test-mter96.39 13395.93 13597.78 14297.02 23595.44 16499.96 3498.21 18091.81 22095.55 18896.38 26995.17 4898.27 23090.42 26398.83 13499.64 119
gm-plane-assit96.97 23893.76 21491.47 22998.96 16198.79 18394.92 180
QAPM95.40 16494.17 18399.10 6496.92 23997.71 7999.40 21098.68 7089.31 27188.94 28398.89 17182.48 24499.96 6193.12 22599.83 7299.62 124
KD-MVS_2432*160088.00 31286.10 31693.70 29196.91 24094.04 20697.17 33997.12 28784.93 33781.96 34492.41 35692.48 12794.51 35879.23 34952.68 39092.56 346
miper_refine_blended88.00 31286.10 31693.70 29196.91 24094.04 20697.17 33997.12 28784.93 33781.96 34492.41 35692.48 12794.51 35879.23 34952.68 39092.56 346
tpm295.47 16295.18 15996.35 20196.91 24091.70 26796.96 34597.93 20988.04 29998.44 11795.40 30393.32 10097.97 24594.00 20195.61 20799.38 164
FMVSNet588.32 30987.47 31190.88 32696.90 24388.39 32397.28 33695.68 35382.60 35484.67 33392.40 35879.83 27191.16 37976.39 36381.51 31893.09 338
3Dnovator+91.53 1196.31 13795.24 15699.52 2896.88 24498.64 5299.72 16198.24 17795.27 9488.42 29598.98 15782.76 24399.94 7797.10 14699.83 7299.96 64
Patchmatch-test92.65 23791.50 24796.10 20796.85 24590.49 29091.50 38197.19 27882.76 35390.23 25095.59 29395.02 5498.00 24477.41 35896.98 18099.82 92
MVS96.60 12495.56 14899.72 1396.85 24599.22 2098.31 31198.94 4191.57 22590.90 24499.61 10386.66 21099.96 6197.36 13899.88 6899.99 23
3Dnovator91.47 1296.28 14095.34 15399.08 6596.82 24797.47 9399.45 20798.81 6095.52 8889.39 27099.00 15481.97 24799.95 6997.27 14099.83 7299.84 90
EI-MVSNet93.73 20993.40 20794.74 24596.80 24892.69 24099.06 25197.67 22988.96 28091.39 23799.02 15088.75 19097.30 27491.07 24787.85 27194.22 279
CVMVSNet94.68 18294.94 16793.89 28496.80 24886.92 33599.06 25198.98 3894.45 11594.23 20699.02 15085.60 21895.31 34990.91 25395.39 21199.43 160
IterMVS-LS92.69 23592.11 23394.43 26496.80 24892.74 23799.45 20796.89 31488.98 27889.65 26595.38 30688.77 18996.34 32590.98 25182.04 31494.22 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 26990.17 27193.12 30496.78 25190.42 29398.89 27097.05 29689.03 27586.49 31995.42 30276.59 29995.02 35187.22 30084.09 30193.93 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 11295.96 13199.48 3496.74 25298.52 5698.31 31198.86 5395.82 7889.91 25698.98 15787.49 19999.96 6197.80 12599.73 8299.96 64
IterMVS-SCA-FT90.85 27290.16 27292.93 30996.72 25389.96 30298.89 27096.99 30188.95 28186.63 31695.67 28976.48 30195.00 35287.04 30384.04 30493.84 317
MVS-HIRNet86.22 31983.19 33295.31 22796.71 25490.29 29492.12 37897.33 26662.85 38586.82 31370.37 39069.37 34097.49 26475.12 36597.99 15898.15 221
VDDNet93.12 22491.91 23996.76 18696.67 25592.65 24398.69 29298.21 18082.81 35297.75 14099.28 12961.57 36899.48 15998.09 11294.09 22498.15 221
dmvs_re93.20 22193.15 21293.34 29896.54 25683.81 35098.71 28998.51 10491.39 23592.37 22998.56 19778.66 28397.83 25393.89 20489.74 24098.38 217
MIMVSNet90.30 28588.67 29995.17 23296.45 25791.64 26992.39 37797.15 28485.99 32490.50 24793.19 35266.95 35094.86 35582.01 33893.43 22999.01 196
CR-MVSNet93.45 21892.62 22295.94 20996.29 25892.66 24192.01 37996.23 34292.62 18996.94 15593.31 35091.04 15496.03 33879.23 34995.96 19699.13 190
RPMNet89.76 29787.28 31297.19 17596.29 25892.66 24192.01 37998.31 16870.19 38496.94 15585.87 38387.25 20399.78 12562.69 38595.96 19699.13 190
tt080591.28 26290.18 27094.60 25196.26 26087.55 32998.39 30998.72 6589.00 27789.22 27698.47 20562.98 36498.96 17690.57 25988.00 27097.28 237
Patchmtry89.70 29888.49 30193.33 29996.24 26189.94 30591.37 38296.23 34278.22 36887.69 30193.31 35091.04 15496.03 33880.18 34882.10 31394.02 300
test_vis1_rt86.87 31786.05 31989.34 33996.12 26278.07 37499.87 10083.54 39892.03 21378.21 36389.51 36945.80 38499.91 8996.25 16193.11 23490.03 369
JIA-IIPM91.76 25790.70 25794.94 23896.11 26387.51 33093.16 37598.13 19375.79 37497.58 14277.68 38892.84 11597.97 24588.47 28596.54 18599.33 172
OpenMVScopyleft90.15 1594.77 17893.59 19898.33 11796.07 26497.48 9299.56 18998.57 8790.46 25586.51 31898.95 16678.57 28499.94 7793.86 20599.74 8197.57 235
PAPM98.60 2998.42 3099.14 5996.05 26598.96 2699.90 8799.35 2596.68 5598.35 12299.66 9696.45 2998.51 20299.45 4599.89 6699.96 64
CLD-MVS94.06 20093.90 19094.55 25596.02 26690.69 28499.98 1497.72 22596.62 5891.05 24398.85 18077.21 29098.47 20398.11 11089.51 24694.48 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 28288.75 29895.25 22995.99 26790.16 29791.22 38397.54 24476.80 37097.26 14986.01 38291.88 14196.07 33766.16 38195.91 20099.51 149
ACMH+89.98 1690.35 28389.54 28292.78 31295.99 26786.12 33898.81 28197.18 28089.38 27083.14 34097.76 22868.42 34598.43 20889.11 27786.05 28593.78 320
DeepMVS_CXcopyleft82.92 36095.98 26958.66 39196.01 34792.72 18278.34 36295.51 29858.29 37398.08 23982.57 33385.29 29092.03 354
ACMP92.05 992.74 23292.42 23093.73 28795.91 27088.72 31699.81 13297.53 24694.13 13287.00 31298.23 21174.07 32298.47 20396.22 16288.86 25393.99 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 21393.03 21495.35 22495.86 27186.94 33499.87 10096.36 34096.85 4699.54 5698.79 18152.41 38099.83 11898.64 8998.97 12999.29 178
HQP-NCC95.78 27299.87 10096.82 4893.37 213
ACMP_Plane95.78 27299.87 10096.82 4893.37 213
HQP-MVS94.61 18494.50 17594.92 23995.78 27291.85 25999.87 10097.89 21496.82 4893.37 21398.65 18880.65 26398.39 21497.92 12189.60 24194.53 252
NP-MVS95.77 27591.79 26198.65 188
test_fmvsmconf0.1_n97.74 7897.44 8098.64 9295.76 27696.20 13899.94 6898.05 19998.17 898.89 9599.42 11887.65 19799.90 9199.50 4199.60 9599.82 92
plane_prior695.76 27691.72 26680.47 267
ACMM91.95 1092.88 22992.52 22893.98 28095.75 27889.08 31399.77 14297.52 24893.00 17289.95 25597.99 21976.17 30598.46 20693.63 21688.87 25294.39 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 20392.84 21796.80 18495.73 27993.57 21799.88 9797.24 27692.57 19492.92 21996.66 26178.73 28297.67 25987.75 29394.06 22599.17 185
plane_prior195.73 279
jason97.24 9896.86 10198.38 11695.73 27997.32 9799.97 2797.40 26095.34 9298.60 11299.54 11087.70 19698.56 19997.94 12099.47 10499.25 181
jason: jason.
HQP_MVS94.49 18894.36 17794.87 24095.71 28291.74 26399.84 12097.87 21696.38 6593.01 21798.59 19380.47 26798.37 22097.79 12889.55 24494.52 254
plane_prior795.71 28291.59 271
ITE_SJBPF92.38 31495.69 28485.14 34395.71 35292.81 17889.33 27398.11 21370.23 33898.42 20985.91 31488.16 26793.59 328
fmvsm_s_conf0.1_n_a97.09 10496.90 10097.63 15495.65 28594.21 20299.83 12798.50 10996.27 7099.65 4099.64 9984.72 22899.93 8599.04 6398.84 13398.74 208
ACMH89.72 1790.64 27689.63 27993.66 29395.64 28688.64 31998.55 29897.45 25389.03 27581.62 34797.61 23069.75 33998.41 21089.37 27487.62 27693.92 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12096.49 11397.37 16895.63 28795.96 14699.74 15398.88 5192.94 17391.61 23598.97 15997.72 798.62 19794.83 18498.08 15697.53 236
FMVSNet188.50 30886.64 31494.08 27395.62 28891.97 25498.43 30596.95 30683.00 35086.08 32694.72 32859.09 37296.11 33381.82 34084.07 30294.17 283
LPG-MVS_test92.96 22792.71 22193.71 28995.43 28988.67 31799.75 15097.62 23392.81 17890.05 25198.49 20175.24 31298.40 21295.84 16889.12 24894.07 297
LGP-MVS_train93.71 28995.43 28988.67 31797.62 23392.81 17890.05 25198.49 20175.24 31298.40 21295.84 16889.12 24894.07 297
tpm93.70 21193.41 20694.58 25395.36 29187.41 33197.01 34396.90 31390.85 24796.72 16394.14 34290.40 16796.84 30690.75 25788.54 26099.51 149
D2MVS92.76 23192.59 22693.27 30195.13 29289.54 30999.69 16699.38 2392.26 20687.59 30394.61 33485.05 22697.79 25491.59 24188.01 26992.47 349
VPA-MVSNet92.70 23491.55 24696.16 20595.09 29396.20 13898.88 27299.00 3691.02 24491.82 23495.29 31376.05 30797.96 24795.62 17081.19 32094.30 274
LTVRE_ROB88.28 1890.29 28689.05 29394.02 27695.08 29490.15 29897.19 33897.43 25584.91 33983.99 33697.06 24774.00 32398.28 22884.08 32387.71 27493.62 327
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 31486.51 31591.94 31995.05 29585.57 34197.65 33194.08 37584.40 34281.82 34696.85 25662.14 36698.33 22380.25 34786.37 28491.91 356
test0.0.03 193.86 20293.61 19594.64 24995.02 29692.18 25299.93 7598.58 8594.07 13687.96 29998.50 20093.90 8894.96 35381.33 34193.17 23296.78 239
UniMVSNet (Re)93.07 22692.13 23295.88 21094.84 29796.24 13799.88 9798.98 3892.49 19989.25 27495.40 30387.09 20597.14 28493.13 22478.16 34394.26 276
USDC90.00 29388.96 29493.10 30694.81 29888.16 32598.71 28995.54 35793.66 15583.75 33897.20 24165.58 35598.31 22583.96 32687.49 27892.85 343
VPNet91.81 25190.46 26195.85 21294.74 29995.54 16298.98 26198.59 8492.14 20890.77 24697.44 23468.73 34397.54 26394.89 18377.89 34594.46 258
FIs94.10 19893.43 20396.11 20694.70 30096.82 11599.58 18598.93 4592.54 19589.34 27297.31 23887.62 19897.10 28894.22 20086.58 28294.40 265
UniMVSNet_ETH3D90.06 29288.58 30094.49 25994.67 30188.09 32697.81 33097.57 24183.91 34588.44 29197.41 23557.44 37497.62 26191.41 24288.59 25997.77 229
UniMVSNet_NR-MVSNet92.95 22892.11 23395.49 21894.61 30295.28 17299.83 12799.08 3391.49 22789.21 27796.86 25587.14 20496.73 31193.20 22077.52 34894.46 258
test_fmvs289.47 30189.70 27888.77 34694.54 30375.74 37599.83 12794.70 37194.71 10891.08 24196.82 26054.46 37797.78 25692.87 22788.27 26592.80 344
WR-MVS92.31 24391.25 25195.48 22194.45 30495.29 17199.60 18298.68 7090.10 26188.07 29896.89 25380.68 26296.80 30993.14 22379.67 33694.36 269
nrg03093.51 21592.53 22796.45 19594.36 30597.20 10099.81 13297.16 28391.60 22489.86 25897.46 23386.37 21397.68 25895.88 16780.31 33294.46 258
tfpnnormal89.29 30487.61 31094.34 26794.35 30694.13 20498.95 26598.94 4183.94 34384.47 33495.51 29874.84 31797.39 26677.05 36180.41 33091.48 359
FC-MVSNet-test93.81 20593.15 21295.80 21494.30 30796.20 13899.42 20998.89 4992.33 20589.03 28297.27 24087.39 20196.83 30793.20 22086.48 28394.36 269
MS-PatchMatch90.65 27590.30 26691.71 32294.22 30885.50 34298.24 31497.70 22688.67 28886.42 32196.37 27167.82 34798.03 24383.62 32899.62 8991.60 357
WR-MVS_H91.30 26090.35 26494.15 27094.17 30992.62 24499.17 23998.94 4188.87 28486.48 32094.46 33984.36 23296.61 31688.19 28778.51 34193.21 337
DU-MVS92.46 24091.45 24995.49 21894.05 31095.28 17299.81 13298.74 6492.25 20789.21 27796.64 26381.66 25096.73 31193.20 22077.52 34894.46 258
NR-MVSNet91.56 25990.22 26895.60 21694.05 31095.76 15298.25 31398.70 6791.16 24080.78 35296.64 26383.23 24296.57 31791.41 24277.73 34794.46 258
CP-MVSNet91.23 26490.22 26894.26 26893.96 31292.39 24899.09 24498.57 8788.95 28186.42 32196.57 26679.19 27796.37 32390.29 26678.95 33894.02 300
XXY-MVS91.82 25090.46 26195.88 21093.91 31395.40 16898.87 27597.69 22788.63 29087.87 30097.08 24574.38 32197.89 25191.66 24084.07 30294.35 272
PS-CasMVS90.63 27789.51 28493.99 27993.83 31491.70 26798.98 26198.52 10188.48 29286.15 32596.53 26875.46 31096.31 32788.83 27978.86 34093.95 308
test_040285.58 32183.94 32690.50 33093.81 31585.04 34498.55 29895.20 36576.01 37279.72 35795.13 31664.15 36196.26 32966.04 38286.88 28190.21 368
XVG-ACMP-BASELINE91.22 26590.75 25692.63 31393.73 31685.61 34098.52 30297.44 25492.77 18189.90 25796.85 25666.64 35298.39 21492.29 23288.61 25793.89 313
TranMVSNet+NR-MVSNet91.68 25890.61 26094.87 24093.69 31793.98 20999.69 16698.65 7491.03 24388.44 29196.83 25980.05 27096.18 33190.26 26776.89 35694.45 263
mvsmamba94.10 19893.72 19495.25 22993.57 31894.13 20499.67 17096.45 33893.63 15791.34 23997.77 22786.29 21497.22 28096.65 15788.10 26894.40 265
TransMVSNet (Re)87.25 31585.28 32293.16 30393.56 31991.03 27698.54 30094.05 37783.69 34781.09 35096.16 27675.32 31196.40 32276.69 36268.41 37492.06 353
v1090.25 28788.82 29694.57 25493.53 32093.43 22399.08 24696.87 31685.00 33687.34 31094.51 33580.93 25997.02 29882.85 33279.23 33793.26 335
testgi89.01 30688.04 30791.90 32093.49 32184.89 34699.73 15895.66 35493.89 15085.14 33198.17 21259.68 37194.66 35777.73 35788.88 25196.16 248
v890.54 27989.17 28994.66 24893.43 32293.40 22599.20 23696.94 31085.76 32787.56 30494.51 33581.96 24897.19 28184.94 32078.25 34293.38 333
V4291.28 26290.12 27394.74 24593.42 32393.46 22199.68 16897.02 29887.36 30689.85 26095.05 31881.31 25597.34 26987.34 29880.07 33493.40 331
pm-mvs189.36 30387.81 30994.01 27793.40 32491.93 25798.62 29796.48 33786.25 32283.86 33796.14 27773.68 32497.04 29386.16 31175.73 36093.04 340
RRT_MVS93.14 22392.92 21693.78 28693.31 32590.04 30099.66 17197.69 22792.53 19688.91 28497.76 22884.36 23296.93 30195.10 17586.99 28094.37 268
v114491.09 26689.83 27594.87 24093.25 32693.69 21699.62 18096.98 30386.83 31689.64 26694.99 32380.94 25897.05 29185.08 31981.16 32193.87 315
v119290.62 27889.25 28894.72 24793.13 32793.07 22999.50 19997.02 29886.33 32189.56 26895.01 32079.22 27697.09 29082.34 33681.16 32194.01 302
v2v48291.30 26090.07 27495.01 23593.13 32793.79 21299.77 14297.02 29888.05 29889.25 27495.37 30780.73 26197.15 28387.28 29980.04 33594.09 296
OPM-MVS93.21 22092.80 21994.44 26293.12 32990.85 28399.77 14297.61 23696.19 7391.56 23698.65 18875.16 31698.47 20393.78 21289.39 24793.99 305
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 27389.52 28394.59 25293.11 33092.77 23599.56 18996.99 30186.38 32089.82 26194.95 32580.50 26697.10 28883.98 32580.41 33093.90 312
bld_raw_dy_0_6492.74 23292.03 23694.87 24093.09 33193.46 22199.12 24195.41 35992.84 17790.44 24997.54 23178.08 28897.04 29393.94 20287.77 27394.11 294
PEN-MVS90.19 28989.06 29293.57 29493.06 33290.90 28199.06 25198.47 11288.11 29785.91 32796.30 27276.67 29795.94 34187.07 30276.91 35593.89 313
v124090.20 28888.79 29794.44 26293.05 33392.27 25099.38 21596.92 31285.89 32589.36 27194.87 32777.89 28997.03 29680.66 34481.08 32494.01 302
v14890.70 27489.63 27993.92 28192.97 33490.97 27799.75 15096.89 31487.51 30388.27 29695.01 32081.67 24997.04 29387.40 29777.17 35393.75 321
v192192090.46 28089.12 29094.50 25892.96 33592.46 24699.49 20196.98 30386.10 32389.61 26795.30 31078.55 28597.03 29682.17 33780.89 32894.01 302
Baseline_NR-MVSNet90.33 28489.51 28492.81 31192.84 33689.95 30399.77 14293.94 37884.69 34189.04 28195.66 29081.66 25096.52 31890.99 25076.98 35491.97 355
test_method80.79 34179.70 34584.08 35792.83 33767.06 38399.51 19795.42 35854.34 38981.07 35193.53 34744.48 38592.22 37678.90 35377.23 35292.94 341
pmmvs492.10 24791.07 25495.18 23192.82 33894.96 18299.48 20396.83 31987.45 30588.66 28996.56 26783.78 23796.83 30789.29 27584.77 29693.75 321
LF4IMVS89.25 30588.85 29590.45 33292.81 33981.19 36698.12 32094.79 36891.44 23086.29 32397.11 24365.30 35898.11 23888.53 28485.25 29192.07 352
DTE-MVSNet89.40 30288.24 30592.88 31092.66 34089.95 30399.10 24398.22 17987.29 30785.12 33296.22 27476.27 30495.30 35083.56 32975.74 35993.41 330
EU-MVSNet90.14 29190.34 26589.54 33892.55 34181.06 36798.69 29298.04 20091.41 23486.59 31796.84 25880.83 26093.31 36986.20 31081.91 31594.26 276
APD_test181.15 34080.92 34181.86 36192.45 34259.76 39096.04 36193.61 38173.29 38177.06 36696.64 26344.28 38696.16 33272.35 36982.52 30989.67 372
our_test_390.39 28189.48 28693.12 30492.40 34389.57 30899.33 22196.35 34187.84 30185.30 33094.99 32384.14 23596.09 33680.38 34584.56 29793.71 326
ppachtmachnet_test89.58 30088.35 30393.25 30292.40 34390.44 29299.33 22196.73 32685.49 33285.90 32895.77 28581.09 25796.00 34076.00 36482.49 31093.30 334
v7n89.65 29988.29 30493.72 28892.22 34590.56 28999.07 25097.10 28985.42 33486.73 31494.72 32880.06 26997.13 28581.14 34278.12 34493.49 329
dmvs_testset83.79 33486.07 31876.94 36592.14 34648.60 40096.75 34890.27 39089.48 26978.65 36098.55 19979.25 27586.65 38866.85 37982.69 30895.57 250
PS-MVSNAJss93.64 21293.31 20994.61 25092.11 34792.19 25199.12 24197.38 26192.51 19888.45 29096.99 25191.20 14997.29 27794.36 19587.71 27494.36 269
pmmvs590.17 29089.09 29193.40 29792.10 34889.77 30699.74 15395.58 35685.88 32687.24 31195.74 28673.41 32596.48 32088.54 28383.56 30593.95 308
N_pmnet80.06 34480.78 34277.89 36491.94 34945.28 40298.80 28356.82 40478.10 36980.08 35593.33 34877.03 29295.76 34368.14 37782.81 30792.64 345
test_djsdf92.83 23092.29 23194.47 26091.90 35092.46 24699.55 19197.27 27391.17 23889.96 25496.07 28181.10 25696.89 30394.67 19088.91 25094.05 299
SixPastTwentyTwo88.73 30788.01 30890.88 32691.85 35182.24 35898.22 31795.18 36688.97 27982.26 34396.89 25371.75 33096.67 31484.00 32482.98 30693.72 325
K. test v388.05 31187.24 31390.47 33191.82 35282.23 35998.96 26497.42 25789.05 27476.93 36895.60 29268.49 34495.42 34685.87 31581.01 32693.75 321
OurMVSNet-221017-089.81 29689.48 28690.83 32891.64 35381.21 36598.17 31995.38 36191.48 22885.65 32997.31 23872.66 32697.29 27788.15 28884.83 29593.97 307
mvs_tets91.81 25191.08 25394.00 27891.63 35490.58 28898.67 29497.43 25592.43 20087.37 30997.05 24871.76 32997.32 27394.75 18788.68 25694.11 294
Gipumacopyleft66.95 35765.00 35772.79 37091.52 35567.96 38266.16 39395.15 36747.89 39158.54 38867.99 39329.74 39087.54 38750.20 39277.83 34662.87 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.01_n96.39 13395.74 14298.32 11891.47 35695.56 16199.84 12097.30 26997.74 1897.89 13699.35 12779.62 27299.85 10899.25 5499.24 11999.55 139
jajsoiax91.92 24991.18 25294.15 27091.35 35790.95 28099.00 26097.42 25792.61 19087.38 30897.08 24572.46 32797.36 26794.53 19388.77 25494.13 293
MDA-MVSNet-bldmvs84.09 33281.52 33991.81 32191.32 35888.00 32898.67 29495.92 34980.22 36355.60 39193.32 34968.29 34693.60 36773.76 36676.61 35793.82 319
MVP-Stereo90.93 26890.45 26392.37 31591.25 35988.76 31498.05 32496.17 34487.27 30884.04 33595.30 31078.46 28697.27 27983.78 32799.70 8491.09 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 32383.32 33192.10 31790.96 36088.58 32099.20 23696.52 33579.70 36557.12 39092.69 35479.11 27893.86 36477.10 36077.46 35093.86 316
YYNet185.50 32483.33 33092.00 31890.89 36188.38 32499.22 23596.55 33479.60 36657.26 38992.72 35379.09 28093.78 36577.25 35977.37 35193.84 317
anonymousdsp91.79 25690.92 25594.41 26590.76 36292.93 23498.93 26797.17 28189.08 27387.46 30795.30 31078.43 28796.92 30292.38 23188.73 25593.39 332
lessismore_v090.53 32990.58 36380.90 36895.80 35077.01 36795.84 28366.15 35496.95 29983.03 33175.05 36193.74 324
EG-PatchMatch MVS85.35 32583.81 32889.99 33690.39 36481.89 36198.21 31896.09 34681.78 35774.73 37493.72 34651.56 38297.12 28779.16 35288.61 25790.96 362
EGC-MVSNET69.38 35063.76 36086.26 35490.32 36581.66 36496.24 35793.85 3790.99 4013.22 40292.33 35952.44 37992.92 37259.53 38884.90 29484.21 382
CMPMVSbinary61.59 2184.75 32885.14 32383.57 35890.32 36562.54 38696.98 34497.59 24074.33 37969.95 38096.66 26164.17 36098.32 22487.88 29288.41 26289.84 371
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 33182.92 33489.21 34090.03 36782.60 35596.89 34795.62 35580.59 36175.77 37389.17 37065.04 35994.79 35672.12 37081.02 32590.23 367
pmmvs685.69 32083.84 32791.26 32590.00 36884.41 34897.82 32996.15 34575.86 37381.29 34995.39 30561.21 36996.87 30583.52 33073.29 36392.50 348
DSMNet-mixed88.28 31088.24 30588.42 34889.64 36975.38 37798.06 32389.86 39185.59 33188.20 29792.14 36076.15 30691.95 37778.46 35496.05 19497.92 225
UnsupCasMVSNet_eth85.52 32283.99 32490.10 33489.36 37083.51 35296.65 34997.99 20289.14 27275.89 37293.83 34463.25 36393.92 36281.92 33967.90 37792.88 342
Anonymous2023120686.32 31885.42 32189.02 34289.11 37180.53 37199.05 25595.28 36285.43 33382.82 34193.92 34374.40 32093.44 36866.99 37881.83 31693.08 339
Anonymous2024052185.15 32683.81 32889.16 34188.32 37282.69 35498.80 28395.74 35179.72 36481.53 34890.99 36365.38 35794.16 36072.69 36881.11 32390.63 365
OpenMVS_ROBcopyleft79.82 2083.77 33581.68 33890.03 33588.30 37382.82 35398.46 30395.22 36473.92 38076.00 37191.29 36255.00 37696.94 30068.40 37688.51 26190.34 366
test20.0384.72 32983.99 32486.91 35288.19 37480.62 37098.88 27295.94 34888.36 29478.87 35894.62 33368.75 34289.11 38366.52 38075.82 35891.00 361
KD-MVS_self_test83.59 33682.06 33688.20 34986.93 37580.70 36997.21 33796.38 33982.87 35182.49 34288.97 37167.63 34892.32 37573.75 36762.30 38691.58 358
MIMVSNet182.58 33780.51 34388.78 34486.68 37684.20 34996.65 34995.41 35978.75 36778.59 36192.44 35551.88 38189.76 38265.26 38378.95 33892.38 351
CL-MVSNet_self_test84.50 33083.15 33388.53 34786.00 37781.79 36298.82 28097.35 26385.12 33583.62 33990.91 36576.66 29891.40 37869.53 37460.36 38792.40 350
UnsupCasMVSNet_bld79.97 34677.03 35188.78 34485.62 37881.98 36093.66 37397.35 26375.51 37670.79 37983.05 38548.70 38394.91 35478.31 35560.29 38889.46 375
Patchmatch-RL test86.90 31685.98 32089.67 33784.45 37975.59 37689.71 38692.43 38486.89 31577.83 36590.94 36494.22 7793.63 36687.75 29369.61 36999.79 97
pmmvs-eth3d84.03 33381.97 33790.20 33384.15 38087.09 33398.10 32294.73 37083.05 34974.10 37687.77 37765.56 35694.01 36181.08 34369.24 37189.49 374
test_fmvs379.99 34580.17 34479.45 36384.02 38162.83 38499.05 25593.49 38288.29 29680.06 35686.65 38028.09 39288.00 38488.63 28073.27 36487.54 380
PM-MVS80.47 34278.88 34785.26 35583.79 38272.22 37995.89 36491.08 38885.71 33076.56 37088.30 37336.64 38893.90 36382.39 33569.57 37089.66 373
new-patchmatchnet81.19 33979.34 34686.76 35382.86 38380.36 37297.92 32695.27 36382.09 35672.02 37786.87 37962.81 36590.74 38171.10 37163.08 38489.19 377
mvsany_test382.12 33881.14 34085.06 35681.87 38470.41 38097.09 34192.14 38591.27 23777.84 36488.73 37239.31 38795.49 34490.75 25771.24 36689.29 376
WB-MVS76.28 34877.28 35073.29 36981.18 38554.68 39497.87 32894.19 37481.30 35869.43 38190.70 36677.02 29382.06 39235.71 39768.11 37683.13 383
test_f78.40 34777.59 34980.81 36280.82 38662.48 38796.96 34593.08 38383.44 34874.57 37584.57 38427.95 39392.63 37384.15 32272.79 36587.32 381
SSC-MVS75.42 34976.40 35272.49 37380.68 38753.62 39597.42 33394.06 37680.42 36268.75 38290.14 36876.54 30081.66 39333.25 39866.34 38082.19 384
pmmvs380.27 34377.77 34887.76 35180.32 38882.43 35798.23 31691.97 38672.74 38278.75 35987.97 37657.30 37590.99 38070.31 37262.37 38589.87 370
testf168.38 35366.92 35472.78 37178.80 38950.36 39790.95 38487.35 39655.47 38758.95 38688.14 37420.64 39787.60 38557.28 38964.69 38180.39 386
APD_test268.38 35366.92 35472.78 37178.80 38950.36 39790.95 38487.35 39655.47 38758.95 38688.14 37420.64 39787.60 38557.28 38964.69 38180.39 386
ambc83.23 35977.17 39162.61 38587.38 38894.55 37376.72 36986.65 38030.16 38996.36 32484.85 32169.86 36890.73 364
test_vis3_rt68.82 35166.69 35675.21 36876.24 39260.41 38996.44 35268.71 40375.13 37750.54 39469.52 39216.42 40296.32 32680.27 34666.92 37968.89 390
TDRefinement84.76 32782.56 33591.38 32474.58 39384.80 34797.36 33594.56 37284.73 34080.21 35496.12 28063.56 36298.39 21487.92 29163.97 38390.95 363
E-PMN52.30 36152.18 36352.67 37971.51 39445.40 40193.62 37476.60 40136.01 39543.50 39664.13 39527.11 39467.31 39831.06 39926.06 39445.30 397
EMVS51.44 36351.22 36552.11 38070.71 39544.97 40394.04 37075.66 40235.34 39742.40 39761.56 39828.93 39165.87 39927.64 40024.73 39545.49 396
PMMVS267.15 35664.15 35976.14 36770.56 39662.07 38893.89 37187.52 39558.09 38660.02 38578.32 38722.38 39684.54 39059.56 38747.03 39281.80 385
FPMVS68.72 35268.72 35368.71 37565.95 39744.27 40495.97 36394.74 36951.13 39053.26 39290.50 36725.11 39583.00 39160.80 38680.97 32778.87 388
wuyk23d20.37 36720.84 37018.99 38365.34 39827.73 40650.43 3947.67 4079.50 4008.01 4016.34 4016.13 40526.24 40023.40 40110.69 3992.99 398
LCM-MVSNet67.77 35564.73 35876.87 36662.95 39956.25 39389.37 38793.74 38044.53 39261.99 38480.74 38620.42 39986.53 38969.37 37559.50 38987.84 378
MVEpermissive53.74 2251.54 36247.86 36662.60 37759.56 40050.93 39679.41 39177.69 40035.69 39636.27 39861.76 3975.79 40669.63 39637.97 39636.61 39367.24 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 35952.24 36267.66 37649.27 40156.82 39283.94 38982.02 39970.47 38333.28 39964.54 39417.23 40169.16 39745.59 39423.85 39677.02 389
tmp_tt65.23 35862.94 36172.13 37444.90 40250.03 39981.05 39089.42 39438.45 39348.51 39599.90 1854.09 37878.70 39591.84 23918.26 39787.64 379
PMVScopyleft49.05 2353.75 36051.34 36460.97 37840.80 40334.68 40574.82 39289.62 39337.55 39428.67 40072.12 3897.09 40481.63 39443.17 39568.21 37566.59 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 36539.14 36833.31 38119.94 40424.83 40798.36 3109.75 40615.53 39951.31 39387.14 37819.62 40017.74 40147.10 3933.47 40057.36 394
testmvs40.60 36444.45 36729.05 38219.49 40514.11 40899.68 16818.47 40520.74 39864.59 38398.48 20410.95 40317.09 40256.66 39111.01 39855.94 395
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.02 4020.00 4070.00 4030.00 4020.00 4010.00 399
eth-test20.00 406
eth-test0.00 406
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.43 36631.24 3690.00 3840.00 4060.00 4090.00 39598.09 1940.00 4020.00 40399.67 9483.37 2400.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.60 36910.13 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40391.20 1490.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.28 36811.04 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.40 1210.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
MM99.76 1099.33 899.99 499.76 698.39 399.39 7299.80 5190.49 16699.96 6199.89 1699.43 11099.98 48
WAC-MVS90.97 27786.10 313
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 12797.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
GSMVS99.59 130
sam_mvs194.72 6199.59 130
sam_mvs94.25 76
MTGPAbinary98.28 173
test_post195.78 36559.23 39993.20 10697.74 25791.06 248
test_post63.35 39694.43 6698.13 237
patchmatchnet-post91.70 36195.12 4997.95 248
MTMP99.87 10096.49 336
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 6699.94 68
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3399.78 27100.00 1
旧先验299.46 20694.21 13099.85 999.95 6996.96 151
新几何299.40 210
无先验99.49 20198.71 6693.46 160100.00 194.36 19599.99 23
原ACMM299.90 87
testdata299.99 3690.54 261
segment_acmp96.68 26
testdata199.28 23096.35 69
plane_prior597.87 21698.37 22097.79 12889.55 24494.52 254
plane_prior498.59 193
plane_prior391.64 26996.63 5693.01 217
plane_prior299.84 12096.38 65
plane_prior91.74 26399.86 11396.76 5289.59 243
n20.00 408
nn0.00 408
door-mid89.69 392
test1198.44 119
door90.31 389
HQP5-MVS91.85 259
BP-MVS97.92 121
HQP4-MVS93.37 21398.39 21494.53 252
HQP3-MVS97.89 21489.60 241
HQP2-MVS80.65 263
MDTV_nov1_ep13_2view96.26 13396.11 35991.89 21698.06 13094.40 6894.30 19799.67 113
ACMMP++_ref87.04 279
ACMMP++88.23 266
Test By Simon92.82 117