This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DP-MVS Recon91.72 7590.85 8494.34 3499.50 185.00 6398.51 3595.96 14180.57 23788.08 13597.63 7876.84 11599.89 785.67 15394.88 11698.13 74
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2397.10 3095.17 392.11 7898.46 2687.33 2499.97 297.21 2899.31 499.63 7
MG-MVS94.25 2793.72 3395.85 1199.38 389.35 1197.98 5998.09 989.99 5192.34 7496.97 10881.30 5898.99 10788.54 12998.88 2099.20 22
AdaColmapbinary88.81 13687.61 14792.39 10799.33 479.95 17096.70 15995.58 16177.51 29083.05 18796.69 12161.90 26099.72 4384.29 16393.47 13797.50 123
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1697.12 2894.66 596.79 1698.78 986.42 2999.95 397.59 2399.18 799.00 27
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3794.11 995.59 3298.64 1785.07 3399.91 495.61 4599.10 999.00 27
OPU-MVS97.30 299.19 792.31 399.12 1198.54 2092.06 399.84 1299.11 299.37 199.74 1
ZD-MVS99.09 883.22 9696.60 8182.88 19993.61 6198.06 5082.93 5099.14 9795.51 4898.49 37
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4996.77 5588.38 7397.70 898.77 1092.06 399.84 1297.47 2499.37 199.70 3
MSC_two_6792asdad97.14 399.05 992.19 496.83 4699.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4699.81 2198.08 1498.81 2499.43 11
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1696.46 9688.75 6496.69 1798.76 1287.69 2299.76 3197.90 1798.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 985.18 5499.11 1496.78 4988.75 6497.65 1198.91 287.69 22
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1696.77 5599.84 1297.90 1798.85 2199.45 10
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6199.12 1196.78 4988.72 6697.79 698.91 288.48 1799.82 1898.15 1198.97 1799.74 1
IU-MVS99.03 1585.34 4996.86 4592.05 2798.74 198.15 1198.97 1799.42 13
test_241102_ONE99.03 1585.03 6196.78 4988.72 6697.79 698.90 588.48 1799.82 18
test_one_060198.91 1884.56 7196.70 6588.06 7996.57 2298.77 1088.04 20
test_part298.90 1985.14 6096.07 28
PAPR92.74 5192.17 6594.45 3298.89 2084.87 6697.20 11396.20 12287.73 8888.40 13098.12 4378.71 8699.76 3187.99 13696.28 9798.74 35
DeepC-MVS_fast89.06 294.48 2394.30 2895.02 2098.86 2185.68 4498.06 5596.64 7593.64 1291.74 8498.54 2080.17 6999.90 592.28 8498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft94.56 2294.75 1993.96 4698.84 2283.40 9298.04 5796.41 10285.79 12495.00 4298.28 3484.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6697.77 7296.74 6086.11 11796.54 2398.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APD-MVScopyleft93.61 3693.59 3793.69 5698.76 2483.26 9597.21 11196.09 13082.41 21094.65 4898.21 3681.96 5698.81 11994.65 5698.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS92.89 4892.86 5092.98 8398.71 2581.12 13897.58 8696.70 6585.20 13791.75 8397.97 5778.47 8899.71 4590.95 9598.41 4198.12 75
region2R92.72 5492.70 5292.79 9098.68 2680.53 15897.53 9096.51 9085.22 13591.94 8197.98 5577.26 10799.67 5390.83 9998.37 4498.18 69
test_prior93.09 7998.68 2681.91 11896.40 10499.06 10498.29 64
ACMMPR92.69 5692.67 5392.75 9198.66 2880.57 15497.58 8696.69 6785.20 13791.57 8597.92 5877.01 11299.67 5390.95 9598.41 4198.00 84
API-MVS90.18 10988.97 12193.80 5098.66 2882.95 10097.50 9495.63 16075.16 31086.31 15097.69 7072.49 18799.90 581.26 19496.07 10298.56 47
CDPH-MVS93.12 4292.91 4893.74 5298.65 3083.88 8097.67 8196.26 11683.00 19693.22 6598.24 3581.31 5799.21 8889.12 12498.74 2998.14 73
TEST998.64 3183.71 8497.82 6896.65 7284.29 16495.16 3598.09 4584.39 3799.36 81
train_agg94.28 2594.45 2493.74 5298.64 3183.71 8497.82 6896.65 7284.50 15595.16 3598.09 4584.33 3899.36 8195.91 4198.96 1998.16 71
test_898.63 3383.64 8797.81 7096.63 7784.50 15595.10 3998.11 4484.33 3899.23 86
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 7096.93 4092.45 2095.69 3198.50 2485.38 3199.85 1094.75 5499.18 798.65 43
agg_prior98.59 3583.13 9796.56 8694.19 5399.16 96
CSCG92.02 6991.65 7493.12 7798.53 3680.59 15397.47 9597.18 2577.06 29884.64 16897.98 5583.98 4399.52 6990.72 10197.33 7699.23 21
XVS92.69 5692.71 5192.63 9898.52 3780.29 16197.37 10596.44 9887.04 10591.38 8797.83 6677.24 10999.59 6090.46 10598.07 5298.02 79
X-MVStestdata86.26 18584.14 20492.63 9898.52 3780.29 16197.37 10596.44 9887.04 10591.38 8720.73 39877.24 10999.59 6090.46 10598.07 5298.02 79
FOURS198.51 3978.01 22798.13 4996.21 12183.04 19494.39 51
CP-MVS92.54 6192.60 5592.34 10898.50 4079.90 17298.40 3896.40 10484.75 14690.48 10498.09 4577.40 10699.21 8891.15 9498.23 5097.92 90
PAPM_NR91.46 8190.82 8593.37 7098.50 4081.81 12495.03 24296.13 12784.65 15186.10 15397.65 7679.24 7799.75 3683.20 18296.88 8698.56 47
MAR-MVS90.63 10090.22 9891.86 13398.47 4278.20 22397.18 11596.61 7883.87 17688.18 13498.18 3868.71 21699.75 3683.66 17697.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
patch_mono-295.14 1296.08 792.33 11098.44 4377.84 23598.43 3697.21 2292.58 1997.68 1097.65 7686.88 2699.83 1698.25 997.60 6799.33 17
mPP-MVS91.88 7191.82 7092.07 12498.38 4478.63 20797.29 10896.09 13085.12 13988.45 12997.66 7275.53 14199.68 5189.83 11598.02 5597.88 91
SR-MVS92.16 6692.27 6191.83 13698.37 4578.41 21396.67 16095.76 15282.19 21491.97 7998.07 4976.44 12398.64 12393.71 6697.27 7898.45 54
test1294.25 3798.34 4685.55 4696.35 11192.36 7380.84 5999.22 8798.31 4797.98 86
CPTT-MVS89.72 11789.87 11089.29 20598.33 4773.30 29697.70 7895.35 17875.68 30687.40 13997.44 8870.43 20998.25 14389.56 12096.90 8496.33 171
MSP-MVS95.62 796.54 192.86 8798.31 4880.10 16997.42 10296.78 4992.20 2297.11 1498.29 3393.46 199.10 10196.01 3899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++94.28 2594.39 2693.97 4598.30 4984.06 7998.64 3196.93 4090.71 4093.08 6798.70 1579.98 7099.21 8894.12 6299.07 1198.63 44
PGM-MVS91.93 7091.80 7192.32 11298.27 5079.74 17895.28 22697.27 2083.83 17790.89 9997.78 6876.12 13099.56 6688.82 12797.93 6097.66 110
ZNCC-MVS92.75 5092.60 5593.23 7498.24 5181.82 12397.63 8296.50 9285.00 14391.05 9597.74 6978.38 8999.80 2590.48 10498.34 4698.07 77
save fliter98.24 5183.34 9398.61 3396.57 8491.32 32
114514_t88.79 13887.57 14892.45 10398.21 5381.74 12696.99 13395.45 17075.16 31082.48 19095.69 13968.59 21798.50 13080.33 20095.18 11497.10 143
GST-MVS92.43 6392.22 6493.04 8198.17 5481.64 13097.40 10496.38 10784.71 14990.90 9897.40 9077.55 10499.76 3189.75 11797.74 6397.72 105
DP-MVS81.47 26378.28 28091.04 15998.14 5578.48 20995.09 24186.97 35961.14 37071.12 31292.78 20759.59 27199.38 7853.11 36186.61 19495.27 196
MP-MVScopyleft92.61 5992.67 5392.42 10698.13 5679.73 17997.33 10796.20 12285.63 12690.53 10297.66 7278.14 9499.70 4892.12 8698.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
9.1494.26 2998.10 5798.14 4696.52 8984.74 14794.83 4698.80 782.80 5299.37 8095.95 4098.42 40
PHI-MVS93.59 3793.63 3693.48 6798.05 5881.76 12598.64 3197.13 2682.60 20694.09 5598.49 2580.35 6499.85 1094.74 5598.62 3298.83 32
SMA-MVScopyleft94.70 2094.68 2094.76 2698.02 5985.94 3997.47 9596.77 5585.32 13297.92 398.70 1583.09 4999.84 1295.79 4299.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PLCcopyleft83.97 788.00 15887.38 15489.83 19798.02 5976.46 26097.16 11994.43 22779.26 26981.98 20196.28 12669.36 21499.27 8477.71 22692.25 15393.77 224
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MTAPA92.45 6292.31 6092.86 8797.90 6180.85 14792.88 29396.33 11287.92 8390.20 10798.18 3876.71 12099.76 3192.57 8398.09 5197.96 89
APD-MVS_3200maxsize91.23 8891.35 7890.89 16597.89 6276.35 26396.30 18295.52 16579.82 25691.03 9697.88 6374.70 16098.54 12892.11 8796.89 8597.77 102
HPM-MVScopyleft91.62 7891.53 7691.89 13297.88 6379.22 19196.99 13395.73 15582.07 21689.50 11897.19 9975.59 13998.93 11490.91 9797.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SD-MVS94.84 1795.02 1894.29 3697.87 6484.61 6997.76 7496.19 12489.59 5696.66 1998.17 4184.33 3899.60 5996.09 3798.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
dcpmvs_293.10 4393.46 4192.02 12897.77 6579.73 17994.82 24693.86 25986.91 10791.33 9096.76 11785.20 3298.06 14896.90 3297.60 6798.27 66
原ACMM191.22 15597.77 6578.10 22596.61 7881.05 22791.28 9297.42 8977.92 9898.98 10879.85 20898.51 3496.59 162
SR-MVS-dyc-post91.29 8691.45 7790.80 16797.76 6776.03 26896.20 18995.44 17180.56 23890.72 10097.84 6475.76 13698.61 12491.99 8896.79 8997.75 103
RE-MVS-def91.18 8297.76 6776.03 26896.20 18995.44 17180.56 23890.72 10097.84 6473.36 18091.99 8896.79 8997.75 103
TSAR-MVS + MP.94.79 1995.17 1793.64 5797.66 6984.10 7895.85 20796.42 10191.26 3397.49 1296.80 11686.50 2898.49 13195.54 4799.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast90.38 10790.17 10191.03 16097.61 7077.35 24797.15 12195.48 16779.51 26288.79 12496.90 10971.64 19898.81 11987.01 14797.44 7296.94 147
EI-MVSNet-Vis-set91.84 7291.77 7292.04 12797.60 7181.17 13796.61 16196.87 4388.20 7789.19 11997.55 8478.69 8799.14 9790.29 11190.94 16395.80 181
CNLPA86.96 17285.37 18191.72 13997.59 7279.34 18997.21 11191.05 32774.22 31678.90 23296.75 11967.21 22598.95 11174.68 25990.77 16496.88 152
ACMMPcopyleft90.39 10589.97 10591.64 14197.58 7378.21 22296.78 15296.72 6384.73 14884.72 16697.23 9771.22 20199.63 5788.37 13492.41 15197.08 144
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS94.17 2894.05 3294.55 3197.56 7485.95 3797.73 7696.43 10084.02 16995.07 4198.74 1482.93 5099.38 7895.42 4998.51 3498.32 60
CANet94.89 1594.64 2195.63 1397.55 7588.12 1699.06 1696.39 10694.07 1095.34 3497.80 6776.83 11799.87 897.08 3097.64 6698.89 30
PVSNet_BlendedMVS90.05 11189.96 10690.33 18197.47 7683.86 8198.02 5896.73 6187.98 8189.53 11689.61 25476.42 12499.57 6494.29 5979.59 25187.57 319
PVSNet_Blended93.13 4192.98 4793.57 6197.47 7683.86 8199.32 196.73 6191.02 3889.53 11696.21 12776.42 12499.57 6494.29 5995.81 10997.29 135
新几何193.12 7797.44 7881.60 13296.71 6474.54 31591.22 9397.57 8079.13 7999.51 7177.40 23398.46 3898.26 67
LS3D82.22 25379.94 26889.06 20897.43 7974.06 29293.20 28892.05 31061.90 36473.33 29595.21 15259.35 27499.21 8854.54 35792.48 15093.90 222
test_yl91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 22889.85 10896.14 12875.61 13798.81 11990.42 10988.56 18098.74 35
DCV-MVSNet91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 22889.85 10896.14 12875.61 13798.81 11990.42 10988.56 18098.74 35
EI-MVSNet-UG-set91.35 8591.22 7991.73 13897.39 8280.68 15196.47 16996.83 4687.92 8388.30 13397.36 9177.84 9999.13 9989.43 12289.45 17095.37 192
旧先验197.39 8279.58 18396.54 8798.08 4884.00 4297.42 7497.62 114
TSAR-MVS + GP.94.35 2494.50 2293.89 4797.38 8483.04 9998.10 5195.29 18191.57 3093.81 5797.45 8586.64 2799.43 7696.28 3694.01 12899.20 22
MVS_111021_HR93.41 3993.39 4293.47 6997.34 8582.83 10197.56 8898.27 689.16 6189.71 11197.14 10079.77 7299.56 6693.65 6797.94 5898.02 79
MP-MVS-pluss92.58 6092.35 5993.29 7197.30 8682.53 10596.44 17296.04 13584.68 15089.12 12098.37 2977.48 10599.74 3893.31 7398.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPNet94.06 3194.15 3093.76 5197.27 8784.35 7398.29 4197.64 1594.57 695.36 3396.88 11179.96 7199.12 10091.30 9296.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP93.46 3893.23 4494.17 4197.16 8884.28 7696.82 14996.65 7286.24 11594.27 5297.99 5277.94 9699.83 1693.39 6998.57 3398.39 57
LFMVS89.27 12687.64 14494.16 4397.16 8885.52 4797.18 11594.66 21179.17 27089.63 11496.57 12255.35 30998.22 14489.52 12189.54 16998.74 35
DeepPCF-MVS89.82 194.61 2196.17 589.91 19497.09 9070.21 32698.99 2296.69 6795.57 295.08 4099.23 186.40 3099.87 897.84 2098.66 3199.65 6
VNet92.11 6891.22 7994.79 2596.91 9186.98 2797.91 6397.96 1086.38 11493.65 5995.74 13670.16 21298.95 11193.39 6988.87 17698.43 55
TAPA-MVS81.61 1285.02 20583.67 20889.06 20896.79 9273.27 29995.92 20194.79 20474.81 31380.47 21696.83 11371.07 20398.19 14649.82 37092.57 14795.71 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521184.41 21681.93 23791.85 13596.78 9378.41 21397.44 9891.34 32270.29 34384.06 17194.26 17841.09 36198.96 10979.46 21082.65 23198.17 70
CS-MVS-test92.98 4593.67 3590.90 16496.52 9476.87 25498.68 2894.73 20690.36 4894.84 4597.89 6277.94 9697.15 20094.28 6197.80 6298.70 41
DELS-MVS94.98 1394.49 2396.44 696.42 9590.59 799.21 497.02 3294.40 891.46 8697.08 10483.32 4799.69 4992.83 7998.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thres20088.92 13287.65 14392.73 9396.30 9685.62 4597.85 6698.86 184.38 15984.82 16493.99 18675.12 15598.01 14970.86 28986.67 19394.56 212
CS-MVS92.73 5293.48 4090.48 17696.27 9775.93 27398.55 3494.93 19389.32 5894.54 5097.67 7178.91 8297.02 20493.80 6497.32 7798.49 51
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3493.39 1496.45 2498.79 890.17 1099.99 189.33 12399.25 699.70 3
tfpn200view988.48 14587.15 15892.47 10296.21 9985.30 5297.44 9898.85 283.37 18683.99 17393.82 18975.36 14897.93 15169.04 29786.24 20094.17 214
thres40088.42 14887.15 15892.23 11696.21 9985.30 5297.44 9898.85 283.37 18683.99 17393.82 18975.36 14897.93 15169.04 29786.24 20093.45 230
test22296.15 10178.41 21395.87 20596.46 9671.97 33589.66 11397.45 8576.33 12798.24 4998.30 63
HY-MVS84.06 691.63 7790.37 9695.39 1796.12 10288.25 1590.22 32097.58 1688.33 7590.50 10391.96 21779.26 7699.06 10490.29 11189.07 17398.88 31
thres100view90088.30 15186.95 16492.33 11096.10 10384.90 6597.14 12298.85 282.69 20483.41 18193.66 19375.43 14597.93 15169.04 29786.24 20094.17 214
thres600view788.06 15686.70 16892.15 12296.10 10385.17 5897.14 12298.85 282.70 20383.41 18193.66 19375.43 14597.82 15867.13 30685.88 20493.45 230
WTY-MVS92.65 5891.68 7395.56 1496.00 10588.90 1398.23 4397.65 1488.57 6989.82 11097.22 9879.29 7599.06 10489.57 11988.73 17898.73 39
MVSTER89.25 12788.92 12490.24 18395.98 10684.66 6896.79 15195.36 17687.19 10380.33 21990.61 24090.02 1295.97 24785.38 15678.64 26090.09 260
testdata90.13 18695.92 10774.17 29096.49 9573.49 32494.82 4797.99 5278.80 8597.93 15183.53 17997.52 6998.29 64
PatchMatch-RL85.00 20683.66 20989.02 21095.86 10874.55 28792.49 29793.60 27579.30 26779.29 23191.47 22358.53 28198.45 13570.22 29392.17 15594.07 219
iter_conf0590.14 11089.79 11191.17 15695.85 10986.93 2897.68 8088.67 35389.93 5281.73 20692.80 20490.37 896.03 24290.44 10780.65 24490.56 248
canonicalmvs92.27 6591.22 7995.41 1695.80 11088.31 1497.09 12994.64 21488.49 7192.99 6997.31 9272.68 18598.57 12793.38 7188.58 17999.36 16
Anonymous2024052983.15 23680.60 25790.80 16795.74 11178.27 21796.81 15094.92 19460.10 37481.89 20392.54 20845.82 34598.82 11879.25 21378.32 26795.31 194
MVS_111021_LR91.60 7991.64 7591.47 14795.74 11178.79 20496.15 19196.77 5588.49 7188.64 12797.07 10572.33 18999.19 9393.13 7796.48 9696.43 166
PS-MVSNAJ94.17 2893.52 3996.10 995.65 11392.35 298.21 4495.79 15192.42 2196.24 2698.18 3871.04 20499.17 9596.77 3397.39 7596.79 154
iter_conf_final89.51 12089.21 11790.39 17895.60 11484.44 7297.22 10989.09 34689.11 6282.07 20092.80 20487.03 2596.03 24289.10 12580.89 24090.70 246
Anonymous2023121179.72 28177.19 28987.33 25095.59 11577.16 25295.18 23594.18 24259.31 37772.57 30386.20 30647.89 33995.66 26774.53 26369.24 31789.18 278
alignmvs92.97 4692.26 6295.12 1995.54 11687.77 2098.67 2996.38 10788.04 8093.01 6897.45 8579.20 7898.60 12593.25 7488.76 17798.99 29
PVSNet82.34 989.02 12987.79 14192.71 9495.49 11781.50 13397.70 7897.29 1987.76 8785.47 15795.12 15956.90 29898.90 11580.33 20094.02 12797.71 107
tpmvs83.04 23980.77 25289.84 19695.43 11877.96 22985.59 35495.32 18075.31 30976.27 26483.70 33573.89 17297.41 18259.53 33781.93 23894.14 216
SteuartSystems-ACMMP94.13 3094.44 2593.20 7595.41 11981.35 13599.02 2096.59 8289.50 5794.18 5498.36 3083.68 4699.45 7594.77 5398.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
EPMVS87.47 16885.90 17492.18 11995.41 11982.26 11287.00 34496.28 11585.88 12384.23 17085.57 31375.07 15696.26 23571.14 28792.50 14998.03 78
BH-RMVSNet86.84 17585.28 18291.49 14695.35 12180.26 16496.95 14092.21 30882.86 20081.77 20595.46 14759.34 27597.64 16469.79 29593.81 13296.57 163
OMC-MVS88.80 13788.16 13590.72 17095.30 12277.92 23294.81 24794.51 22186.80 11084.97 16296.85 11267.53 22198.60 12585.08 15787.62 18795.63 185
test_fmvsm_n_192094.81 1895.60 1092.45 10395.29 12380.96 14499.29 297.21 2294.50 797.29 1398.44 2782.15 5499.78 2898.56 797.68 6596.61 161
MVS_Test90.29 10889.18 11893.62 5995.23 12484.93 6494.41 25394.66 21184.31 16090.37 10691.02 23275.13 15497.82 15883.11 18494.42 12398.12 75
F-COLMAP84.50 21583.44 21587.67 23995.22 12572.22 30595.95 19993.78 26675.74 30576.30 26395.18 15559.50 27398.45 13572.67 27586.59 19592.35 238
baseline188.85 13587.49 15092.93 8695.21 12686.85 2995.47 22094.61 21687.29 9883.11 18694.99 16480.70 6296.89 21282.28 18873.72 28595.05 199
CHOSEN 1792x268891.07 9290.21 9993.64 5795.18 12783.53 8996.26 18496.13 12788.92 6384.90 16393.10 20272.86 18399.62 5888.86 12695.67 11097.79 101
UGNet87.73 16386.55 16991.27 15295.16 12879.11 19596.35 17996.23 11988.14 7887.83 13790.48 24150.65 32699.09 10280.13 20594.03 12695.60 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS88.28 15287.02 16392.06 12595.09 12980.18 16797.55 8994.45 22683.09 19289.10 12195.92 13447.97 33798.49 13193.08 7886.91 19297.52 122
PVSNet_Blended_VisFu91.24 8790.77 8692.66 9595.09 12982.40 10997.77 7295.87 14888.26 7686.39 14993.94 18776.77 11899.27 8488.80 12894.00 12996.31 172
h-mvs3389.30 12588.95 12390.36 18095.07 13176.04 26796.96 13997.11 2990.39 4692.22 7695.10 16074.70 16098.86 11693.14 7565.89 34396.16 174
xiu_mvs_v2_base93.92 3393.26 4395.91 1095.07 13192.02 698.19 4595.68 15792.06 2596.01 3098.14 4270.83 20798.96 10996.74 3596.57 9496.76 157
cl2285.11 20484.17 20287.92 23495.06 13378.82 20195.51 21894.22 23979.74 25876.77 25387.92 27675.96 13295.68 26679.93 20772.42 29289.27 276
BH-w/o88.24 15387.47 15290.54 17595.03 13478.54 20897.41 10393.82 26184.08 16778.23 23994.51 17469.34 21597.21 19480.21 20494.58 12195.87 180
CHOSEN 280x42091.71 7691.85 6991.29 15194.94 13582.69 10287.89 33796.17 12585.94 12187.27 14294.31 17690.27 995.65 26994.04 6395.86 10795.53 188
GG-mvs-BLEND93.49 6694.94 13586.26 3381.62 36797.00 3388.32 13294.30 17791.23 596.21 23888.49 13197.43 7398.00 84
HyFIR lowres test89.36 12388.60 12791.63 14394.91 13780.76 15095.60 21695.53 16382.56 20784.03 17291.24 22978.03 9596.81 21887.07 14688.41 18297.32 132
MVS_030495.36 995.20 1695.85 1194.89 13889.22 1298.83 2597.88 1194.68 495.14 3897.99 5280.80 6099.81 2198.60 697.95 5798.50 50
miper_enhance_ethall85.95 19085.20 18388.19 23094.85 13979.76 17596.00 19694.06 24982.98 19777.74 24388.76 26279.42 7395.46 27980.58 19872.42 29289.36 274
mvs_anonymous88.68 13987.62 14691.86 13394.80 14081.69 12993.53 27894.92 19482.03 21778.87 23490.43 24375.77 13595.34 28385.04 15893.16 14298.55 49
CANet_DTU90.98 9390.04 10393.83 4994.76 14186.23 3496.32 18193.12 29693.11 1693.71 5896.82 11563.08 25099.48 7384.29 16395.12 11595.77 182
PMMVS89.46 12289.92 10888.06 23194.64 14269.57 33296.22 18694.95 19287.27 9991.37 8996.54 12365.88 23297.39 18488.54 12993.89 13097.23 136
TR-MVS86.30 18484.93 19190.42 17794.63 14377.58 24296.57 16393.82 26180.30 24682.42 19295.16 15658.74 27997.55 17174.88 25787.82 18696.13 176
EPNet_dtu87.65 16587.89 13886.93 26094.57 14471.37 32096.72 15596.50 9288.56 7087.12 14595.02 16275.91 13494.01 32166.62 30890.00 16695.42 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n93.69 3594.13 3192.34 10894.56 14582.01 11399.07 1597.13 2692.09 2396.25 2598.53 2276.47 12299.80 2598.39 894.71 11995.22 197
FMVSNet384.71 20982.71 22690.70 17194.55 14687.71 2195.92 20194.67 21081.73 22075.82 27388.08 27466.99 22694.47 31371.23 28475.38 27889.91 264
ETV-MVS92.72 5492.87 4992.28 11494.54 14781.89 11997.98 5995.21 18489.77 5593.11 6696.83 11377.23 11197.50 17795.74 4395.38 11397.44 126
EIA-MVS91.73 7392.05 6890.78 16994.52 14876.40 26298.06 5595.34 17989.19 6088.90 12397.28 9677.56 10397.73 16190.77 10096.86 8898.20 68
BH-untuned86.95 17385.94 17389.99 18994.52 14877.46 24496.78 15293.37 28681.80 21976.62 25693.81 19166.64 22997.02 20476.06 24693.88 13195.48 190
DeepC-MVS86.58 391.53 8091.06 8392.94 8594.52 14881.89 11995.95 19995.98 13990.76 3983.76 17996.76 11773.24 18199.71 4591.67 9196.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
gg-mvs-nofinetune85.48 19982.90 22293.24 7394.51 15185.82 4179.22 37196.97 3661.19 36987.33 14153.01 38790.58 696.07 24186.07 15197.23 7997.81 100
fmvsm_l_conf0.5_n_a94.91 1495.30 1493.72 5594.50 15284.30 7599.14 996.00 13791.94 2897.91 598.60 1884.78 3599.77 2998.84 496.03 10497.08 144
3Dnovator+82.88 889.63 11987.85 13994.99 2194.49 15386.76 3197.84 6795.74 15486.10 11875.47 27896.02 13165.00 24099.51 7182.91 18697.07 8298.72 40
fmvsm_l_conf0.5_n94.89 1595.24 1593.86 4894.42 15484.61 6999.13 1096.15 12692.06 2597.92 398.52 2384.52 3699.74 3898.76 595.67 11097.22 137
ET-MVSNet_ETH3D90.01 11289.03 11992.95 8494.38 15586.77 3098.14 4696.31 11489.30 5963.33 34996.72 12090.09 1193.63 32890.70 10282.29 23598.46 53
tpmrst88.36 14987.38 15491.31 14994.36 15679.92 17187.32 34195.26 18385.32 13288.34 13186.13 30780.60 6396.70 22283.78 17085.34 21197.30 134
FE-MVS86.06 18884.15 20391.78 13794.33 15779.81 17384.58 35996.61 7876.69 30085.00 16187.38 28270.71 20898.37 13970.39 29291.70 15997.17 141
MVS90.60 10188.64 12696.50 594.25 15890.53 893.33 28297.21 2277.59 28978.88 23397.31 9271.52 19999.69 4989.60 11898.03 5499.27 20
dp84.30 21882.31 23190.28 18294.24 15977.97 22886.57 34795.53 16379.94 25580.75 21385.16 32171.49 20096.39 23163.73 32383.36 22196.48 165
FA-MVS(test-final)87.71 16486.23 17192.17 12094.19 16080.55 15587.16 34396.07 13382.12 21585.98 15488.35 26972.04 19498.49 13180.26 20289.87 16797.48 125
sss90.87 9789.96 10693.60 6094.15 16183.84 8397.14 12298.13 785.93 12289.68 11296.09 13071.67 19699.30 8387.69 13989.16 17297.66 110
SDMVSNet87.02 17185.61 17691.24 15394.14 16283.30 9493.88 27095.98 13984.30 16279.63 22792.01 21358.23 28397.68 16290.28 11382.02 23692.75 233
sd_testset84.62 21183.11 21989.17 20694.14 16277.78 23791.54 31194.38 23084.30 16279.63 22792.01 21352.28 32196.98 20677.67 22782.02 23692.75 233
PatchmatchNetpermissive86.83 17685.12 18791.95 13094.12 16482.27 11186.55 34895.64 15984.59 15382.98 18884.99 32577.26 10795.96 25068.61 30091.34 16197.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.69 20794.09 16581.01 14186.78 34696.09 13083.81 17884.75 16584.32 33074.44 16696.54 22663.88 32285.07 212
UA-Net88.92 13288.48 13090.24 18394.06 16677.18 25193.04 29094.66 21187.39 9691.09 9493.89 18874.92 15798.18 14775.83 24991.43 16095.35 193
Fast-Effi-MVS+87.93 16086.94 16590.92 16394.04 16779.16 19398.26 4293.72 27081.29 22483.94 17692.90 20369.83 21396.68 22376.70 23991.74 15896.93 148
QAPM86.88 17484.51 19593.98 4494.04 16785.89 4097.19 11496.05 13473.62 32175.12 28195.62 14262.02 25799.74 3870.88 28896.06 10396.30 173
thisisatest051590.95 9590.26 9793.01 8294.03 16984.27 7797.91 6396.67 6983.18 18986.87 14795.51 14688.66 1697.85 15780.46 19989.01 17496.92 150
Vis-MVSNet (Re-imp)88.88 13488.87 12588.91 21293.89 17074.43 28896.93 14294.19 24184.39 15883.22 18495.67 14078.24 9194.70 30778.88 21794.40 12497.61 115
ADS-MVSNet279.57 28377.53 28685.71 27993.78 17172.13 30779.48 36986.11 36573.09 32780.14 22179.99 35462.15 25590.14 36259.49 33883.52 21894.85 204
ADS-MVSNet81.26 26678.36 27989.96 19293.78 17179.78 17479.48 36993.60 27573.09 32780.14 22179.99 35462.15 25595.24 28959.49 33883.52 21894.85 204
EPP-MVSNet89.76 11689.72 11289.87 19593.78 17176.02 27097.22 10996.51 9079.35 26485.11 15995.01 16384.82 3497.10 20287.46 14288.21 18496.50 164
3Dnovator82.32 1089.33 12487.64 14494.42 3393.73 17485.70 4397.73 7696.75 5986.73 11376.21 26695.93 13262.17 25499.68 5181.67 19297.81 6197.88 91
Effi-MVS+90.70 9989.90 10993.09 7993.61 17583.48 9095.20 23292.79 30183.22 18891.82 8295.70 13871.82 19597.48 17991.25 9393.67 13498.32 60
IS-MVSNet88.67 14088.16 13590.20 18593.61 17576.86 25596.77 15493.07 29784.02 16983.62 18095.60 14374.69 16396.24 23778.43 22193.66 13597.49 124
AUN-MVS86.25 18685.57 17788.26 22693.57 17773.38 29495.45 22195.88 14683.94 17385.47 15794.21 18073.70 17796.67 22483.54 17864.41 34794.73 210
test250690.96 9490.39 9492.65 9693.54 17882.46 10896.37 17797.35 1886.78 11187.55 13895.25 14977.83 10097.50 17784.07 16594.80 11797.98 86
ECVR-MVScopyleft88.35 15087.25 15691.65 14093.54 17879.40 18696.56 16590.78 33286.78 11185.57 15695.25 14957.25 29697.56 16984.73 16194.80 11797.98 86
hse-mvs288.22 15488.21 13388.25 22793.54 17873.41 29395.41 22395.89 14590.39 4692.22 7694.22 17974.70 16096.66 22593.14 7564.37 34894.69 211
LCM-MVSNet-Re83.75 22683.54 21384.39 30593.54 17864.14 35392.51 29684.03 37283.90 17566.14 33886.59 29667.36 22392.68 33584.89 16092.87 14496.35 168
EC-MVSNet91.73 7392.11 6690.58 17393.54 17877.77 23898.07 5494.40 22987.44 9492.99 6997.11 10374.59 16496.87 21493.75 6597.08 8197.11 142
tpm cat183.63 22881.38 24590.39 17893.53 18378.19 22485.56 35595.09 18770.78 34178.51 23683.28 33874.80 15997.03 20366.77 30784.05 21695.95 177
thisisatest053089.65 11889.02 12091.53 14593.46 18480.78 14996.52 16696.67 6981.69 22183.79 17894.90 16688.85 1597.68 16277.80 22287.49 19096.14 175
MSDG80.62 27577.77 28589.14 20793.43 18577.24 24891.89 30490.18 33669.86 34668.02 32691.94 21952.21 32298.84 11759.32 34083.12 22291.35 240
fmvsm_s_conf0.5_n_a93.34 4093.71 3492.22 11793.38 18681.71 12898.86 2496.98 3491.64 2996.85 1598.55 1975.58 14099.77 2997.88 1993.68 13395.18 198
ab-mvs87.08 17084.94 19093.48 6793.34 18783.67 8688.82 32895.70 15681.18 22584.55 16990.14 24962.72 25198.94 11385.49 15582.54 23297.85 95
131488.94 13187.20 15794.17 4193.21 18885.73 4293.33 28296.64 7582.89 19875.98 26996.36 12466.83 22899.39 7783.52 18096.02 10597.39 130
1112_ss88.60 14387.47 15292.00 12993.21 18880.97 14396.47 16992.46 30483.64 18380.86 21297.30 9480.24 6797.62 16577.60 22885.49 20897.40 129
GeoE86.36 18285.20 18389.83 19793.17 19076.13 26597.53 9092.11 30979.58 26180.99 21094.01 18566.60 23096.17 24073.48 27189.30 17197.20 140
test111188.11 15587.04 16291.35 14893.15 19178.79 20496.57 16390.78 33286.88 10985.04 16095.20 15357.23 29797.39 18483.88 16894.59 12097.87 93
Test_1112_low_res88.03 15786.73 16691.94 13193.15 19180.88 14696.44 17292.41 30683.59 18580.74 21491.16 23080.18 6897.59 16777.48 23185.40 20997.36 131
CostFormer89.08 12888.39 13191.15 15793.13 19379.15 19488.61 33196.11 12983.14 19089.58 11586.93 29183.83 4596.87 21488.22 13585.92 20397.42 127
IB-MVS85.34 488.67 14087.14 16093.26 7293.12 19484.32 7498.76 2697.27 2087.19 10379.36 23090.45 24283.92 4498.53 12984.41 16269.79 31196.93 148
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
diffmvspermissive91.17 8990.74 8792.44 10593.11 19582.50 10796.25 18593.62 27487.79 8690.40 10595.93 13273.44 17997.42 18193.62 6892.55 14897.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051788.57 14488.19 13489.71 20193.00 19675.99 27195.67 21296.67 6980.78 23281.82 20494.40 17588.97 1497.58 16876.05 24786.31 19795.57 187
MVSFormer91.36 8490.57 9093.73 5493.00 19688.08 1794.80 24894.48 22280.74 23394.90 4397.13 10178.84 8395.10 29783.77 17197.46 7098.02 79
lupinMVS93.87 3493.58 3894.75 2793.00 19688.08 1799.15 795.50 16691.03 3794.90 4397.66 7278.84 8397.56 16994.64 5797.46 7098.62 45
casdiffmvs_mvgpermissive91.13 9090.45 9393.17 7692.99 19983.58 8897.46 9794.56 21987.69 8987.19 14494.98 16574.50 16597.60 16691.88 9092.79 14598.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs187.79 16288.52 12985.62 28392.98 20064.31 35197.88 6592.42 30587.95 8292.24 7595.82 13547.94 33898.44 13795.31 5094.09 12594.09 218
tpm287.35 16986.26 17090.62 17292.93 20178.67 20688.06 33695.99 13879.33 26587.40 13986.43 30280.28 6696.40 23080.23 20385.73 20796.79 154
baseline90.76 9890.10 10292.74 9292.90 20282.56 10494.60 25094.56 21987.69 8989.06 12295.67 14073.76 17497.51 17690.43 10892.23 15498.16 71
test_fmvsmconf_n93.99 3294.36 2792.86 8792.82 20381.12 13899.26 396.37 11093.47 1395.16 3598.21 3679.00 8099.64 5598.21 1096.73 9297.83 97
casdiffmvspermissive90.95 9590.39 9492.63 9892.82 20382.53 10596.83 14794.47 22487.69 8988.47 12895.56 14574.04 17197.54 17390.90 9892.74 14697.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive88.67 14087.82 14091.24 15392.68 20578.82 20196.95 14093.85 26087.55 9287.07 14695.13 15863.43 24897.21 19477.58 22996.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net82.42 24980.43 26088.39 22292.66 20681.95 11494.30 25993.38 28379.06 27375.82 27385.66 30956.38 30493.84 32371.23 28475.38 27889.38 271
test182.42 24980.43 26088.39 22292.66 20681.95 11494.30 25993.38 28379.06 27375.82 27385.66 30956.38 30493.84 32371.23 28475.38 27889.38 271
FMVSNet282.79 24380.44 25989.83 19792.66 20685.43 4895.42 22294.35 23179.06 27374.46 28587.28 28356.38 30494.31 31669.72 29674.68 28289.76 266
miper_ehance_all_eth84.57 21383.60 21287.50 24792.64 20978.25 21895.40 22493.47 27979.28 26876.41 26087.64 27976.53 12195.24 28978.58 21972.42 29289.01 287
cascas86.50 18084.48 19792.55 10192.64 20985.95 3797.04 13295.07 18975.32 30880.50 21591.02 23254.33 31697.98 15086.79 14987.62 18793.71 225
TESTMET0.1,189.83 11589.34 11691.31 14992.54 21180.19 16697.11 12596.57 8486.15 11686.85 14891.83 22179.32 7496.95 20881.30 19392.35 15296.77 156
COLMAP_ROBcopyleft73.24 1975.74 31273.00 31983.94 30792.38 21269.08 33491.85 30586.93 36061.48 36765.32 34190.27 24542.27 35696.93 21150.91 36675.63 27785.80 346
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_n_192089.95 11390.59 8988.03 23392.36 21368.98 33599.12 1194.34 23293.86 1193.64 6097.01 10751.54 32399.59 6096.76 3496.71 9395.53 188
xiu_mvs_v1_base_debu90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
xiu_mvs_v1_base90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
xiu_mvs_v1_base_debi90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
SCA85.63 19583.64 21091.60 14492.30 21781.86 12192.88 29395.56 16284.85 14482.52 18985.12 32358.04 28595.39 28073.89 26787.58 18997.54 117
gm-plane-assit92.27 21879.64 18284.47 15795.15 15797.93 15185.81 152
test-LLR88.48 14587.98 13789.98 19092.26 21977.23 24997.11 12595.96 14183.76 18086.30 15191.38 22572.30 19096.78 22080.82 19691.92 15695.94 178
test-mter88.95 13088.60 12789.98 19092.26 21977.23 24997.11 12595.96 14185.32 13286.30 15191.38 22576.37 12696.78 22080.82 19691.92 15695.94 178
PAPM92.87 4992.40 5894.30 3592.25 22187.85 1996.40 17696.38 10791.07 3688.72 12696.90 10982.11 5597.37 18690.05 11497.70 6497.67 109
cl____83.27 23382.12 23386.74 26192.20 22275.95 27295.11 23893.27 28978.44 28274.82 28387.02 29074.19 16895.19 29174.67 26069.32 31589.09 282
DIV-MVS_self_test83.27 23382.12 23386.74 26192.19 22375.92 27495.11 23893.26 29078.44 28274.81 28487.08 28974.19 16895.19 29174.66 26169.30 31689.11 281
AllTest75.92 31073.06 31884.47 30192.18 22467.29 34091.07 31484.43 37067.63 35063.48 34690.18 24638.20 36697.16 19757.04 34873.37 28788.97 290
TestCases84.47 30192.18 22467.29 34084.43 37067.63 35063.48 34690.18 24638.20 36697.16 19757.04 34873.37 28788.97 290
CLD-MVS87.97 15987.48 15189.44 20392.16 22680.54 15798.14 4694.92 19491.41 3179.43 22995.40 14862.34 25397.27 19290.60 10382.90 22790.50 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Syy-MVS77.97 29678.05 28277.74 34692.13 22756.85 37393.97 26794.23 23782.43 20873.39 29193.57 19557.95 28887.86 36832.40 38682.34 23388.51 297
myMVS_eth3d81.93 25782.18 23281.18 33092.13 22767.18 34293.97 26794.23 23782.43 20873.39 29193.57 19576.98 11387.86 36850.53 36882.34 23388.51 297
c3_l83.80 22582.65 22787.25 25492.10 22977.74 24095.25 22993.04 29878.58 27976.01 26887.21 28775.25 15395.11 29677.54 23068.89 31988.91 293
HQP-NCC92.08 23097.63 8290.52 4382.30 193
ACMP_Plane92.08 23097.63 8290.52 4382.30 193
HQP-MVS87.91 16187.55 14988.98 21192.08 23078.48 20997.63 8294.80 20290.52 4382.30 19394.56 17265.40 23697.32 18787.67 14083.01 22491.13 241
PCF-MVS84.09 586.77 17885.00 18992.08 12392.06 23383.07 9892.14 30194.47 22479.63 26076.90 25294.78 16871.15 20299.20 9272.87 27391.05 16293.98 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS92.04 23478.22 21994.56 172
plane_prior691.98 23577.92 23264.77 242
Effi-MVS+-dtu84.61 21284.90 19283.72 31291.96 23663.14 35994.95 24393.34 28785.57 12779.79 22587.12 28861.99 25895.61 27383.55 17785.83 20592.41 237
plane_prior191.95 237
CDS-MVSNet89.50 12188.96 12291.14 15891.94 23880.93 14597.09 12995.81 15084.26 16584.72 16694.20 18180.31 6595.64 27083.37 18188.96 17596.85 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP_MVS87.50 16787.09 16188.74 21691.86 23977.96 22997.18 11594.69 20789.89 5381.33 20794.15 18264.77 24297.30 18987.08 14482.82 22890.96 243
plane_prior791.86 23977.55 243
eth_miper_zixun_eth83.12 23782.01 23586.47 26691.85 24174.80 28394.33 25793.18 29379.11 27175.74 27687.25 28672.71 18495.32 28576.78 23867.13 33789.27 276
VDDNet86.44 18184.51 19592.22 11791.56 24281.83 12297.10 12894.64 21469.50 34787.84 13695.19 15448.01 33697.92 15689.82 11686.92 19196.89 151
EI-MVSNet85.80 19285.20 18387.59 24391.55 24377.41 24595.13 23695.36 17680.43 24380.33 21994.71 16973.72 17595.97 24776.96 23778.64 26089.39 269
CVMVSNet84.83 20885.57 17782.63 32291.55 24360.38 36795.13 23695.03 19080.60 23682.10 19994.71 16966.40 23190.19 36174.30 26490.32 16597.31 133
ACMP81.66 1184.00 22183.22 21886.33 26791.53 24572.95 30395.91 20393.79 26583.70 18273.79 28892.22 21154.31 31796.89 21283.98 16679.74 24989.16 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IterMVS-LS83.93 22282.80 22587.31 25291.46 24677.39 24695.66 21393.43 28180.44 24175.51 27787.26 28573.72 17595.16 29376.99 23570.72 30289.39 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re84.10 22082.90 22287.70 23891.41 24773.28 29790.59 31893.19 29185.02 14177.96 24293.68 19257.92 29096.18 23975.50 25280.87 24193.63 226
Patchmatch-test78.25 29274.72 30688.83 21491.20 24874.10 29173.91 38488.70 35259.89 37566.82 33385.12 32378.38 8994.54 31148.84 37379.58 25297.86 94
miper_lstm_enhance81.66 26280.66 25684.67 29791.19 24971.97 31291.94 30393.19 29177.86 28672.27 30585.26 31773.46 17893.42 33173.71 27067.05 33888.61 295
ACMM80.70 1383.72 22782.85 22486.31 27091.19 24972.12 30895.88 20494.29 23580.44 24177.02 25091.96 21755.24 31097.14 20179.30 21280.38 24589.67 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testing380.74 27381.17 24879.44 33991.15 25163.48 35797.16 11995.76 15280.83 23071.36 30993.15 20178.22 9287.30 37343.19 38079.67 25087.55 322
TAMVS88.48 14587.79 14190.56 17491.09 25279.18 19296.45 17195.88 14683.64 18383.12 18593.33 19775.94 13395.74 26582.40 18788.27 18396.75 158
ACMH+76.62 1677.47 30174.94 30385.05 29191.07 25371.58 31893.26 28690.01 33771.80 33664.76 34388.55 26541.62 35896.48 22862.35 32971.00 29987.09 328
OpenMVScopyleft79.58 1486.09 18783.62 21193.50 6590.95 25486.71 3297.44 9895.83 14975.35 30772.64 30295.72 13757.42 29599.64 5571.41 28295.85 10894.13 217
LPG-MVS_test84.20 21983.49 21486.33 26790.88 25573.06 30095.28 22694.13 24482.20 21276.31 26193.20 19854.83 31496.95 20883.72 17380.83 24288.98 288
LGP-MVS_train86.33 26790.88 25573.06 30094.13 24482.20 21276.31 26193.20 19854.83 31496.95 20883.72 17380.83 24288.98 288
test_fmvsmvis_n_192092.12 6792.10 6792.17 12090.87 25781.04 14098.34 4093.90 25692.71 1887.24 14397.90 6174.83 15899.72 4396.96 3196.20 9895.76 183
KD-MVS_2432*160077.63 29974.92 30485.77 27790.86 25879.44 18488.08 33493.92 25476.26 30267.05 33182.78 34072.15 19291.92 34461.53 33041.62 38785.94 343
miper_refine_blended77.63 29974.92 30485.77 27790.86 25879.44 18488.08 33493.92 25476.26 30267.05 33182.78 34072.15 19291.92 34461.53 33041.62 38785.94 343
baseline290.39 10590.21 9990.93 16290.86 25880.99 14295.20 23297.41 1786.03 12080.07 22494.61 17190.58 697.47 18087.29 14389.86 16894.35 213
PVSNet_077.72 1581.70 26078.95 27789.94 19390.77 26176.72 25895.96 19896.95 3885.01 14270.24 31988.53 26752.32 32098.20 14586.68 15044.08 38494.89 202
ACMH75.40 1777.99 29474.96 30287.10 25790.67 26276.41 26193.19 28991.64 31772.47 33363.44 34887.61 28043.34 35197.16 19758.34 34273.94 28487.72 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS-HIRNet71.36 33367.00 33884.46 30390.58 26369.74 33079.15 37287.74 35846.09 38461.96 35750.50 38845.14 34695.64 27053.74 35988.11 18588.00 311
fmvsm_s_conf0.1_n92.93 4793.16 4692.24 11590.52 26481.92 11798.42 3796.24 11891.17 3496.02 2998.35 3175.34 15199.74 3897.84 2094.58 12195.05 199
jason92.73 5292.23 6394.21 4090.50 26587.30 2698.65 3095.09 18790.61 4292.76 7197.13 10175.28 15297.30 18993.32 7296.75 9198.02 79
jason: jason.
LTVRE_ROB73.68 1877.99 29475.74 29984.74 29490.45 26672.02 31086.41 34991.12 32472.57 33266.63 33587.27 28454.95 31396.98 20656.29 35275.98 27385.21 349
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVG-OURS85.18 20284.38 19987.59 24390.42 26771.73 31691.06 31594.07 24882.00 21883.29 18395.08 16156.42 30397.55 17183.70 17583.42 22093.49 229
VPA-MVSNet85.32 20083.83 20689.77 20090.25 26882.63 10396.36 17897.07 3183.03 19581.21 20989.02 25961.58 26196.31 23485.02 15970.95 30090.36 251
XVG-OURS-SEG-HR85.74 19485.16 18687.49 24890.22 26971.45 31991.29 31294.09 24781.37 22383.90 17795.22 15160.30 26897.53 17585.58 15484.42 21593.50 228
tpm85.55 19784.47 19888.80 21590.19 27075.39 27888.79 32994.69 20784.83 14583.96 17585.21 31978.22 9294.68 30876.32 24578.02 26996.34 169
CR-MVSNet83.53 22981.36 24690.06 18790.16 27179.75 17679.02 37391.12 32484.24 16682.27 19780.35 35275.45 14393.67 32763.37 32686.25 19896.75 158
RPMNet79.85 27975.92 29891.64 14190.16 27179.75 17679.02 37395.44 17158.43 37982.27 19772.55 37673.03 18298.41 13846.10 37786.25 19896.75 158
test_cas_vis1_n_192089.90 11490.02 10489.54 20290.14 27374.63 28598.71 2794.43 22793.04 1792.40 7296.35 12553.41 31999.08 10395.59 4696.16 9994.90 201
FIs86.73 17986.10 17288.61 21890.05 27480.21 16596.14 19296.95 3885.56 12978.37 23892.30 21076.73 11995.28 28779.51 20979.27 25490.35 252
FMVSNet576.46 30874.16 31283.35 31790.05 27476.17 26489.58 32389.85 33871.39 33965.29 34280.42 35150.61 32787.70 37161.05 33569.24 31786.18 339
IterMVS80.67 27479.16 27485.20 28989.79 27676.08 26692.97 29291.86 31280.28 24771.20 31185.14 32257.93 28991.34 35172.52 27670.74 30188.18 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvsany_test187.58 16688.22 13285.67 28189.78 27767.18 34295.25 22987.93 35583.96 17288.79 12497.06 10672.52 18694.53 31292.21 8586.45 19695.30 195
UniMVSNet (Re)85.31 20184.23 20188.55 21989.75 27880.55 15596.72 15596.89 4285.42 13078.40 23788.93 26075.38 14795.52 27778.58 21968.02 32889.57 268
Patchmtry77.36 30274.59 30785.67 28189.75 27875.75 27677.85 37691.12 32460.28 37271.23 31080.35 35275.45 14393.56 32957.94 34367.34 33687.68 316
JIA-IIPM79.00 28977.20 28884.40 30489.74 28064.06 35475.30 38195.44 17162.15 36381.90 20259.08 38578.92 8195.59 27466.51 31185.78 20693.54 227
MS-PatchMatch83.05 23881.82 23986.72 26589.64 28179.10 19694.88 24594.59 21879.70 25970.67 31589.65 25350.43 32896.82 21770.82 29195.99 10684.25 355
IterMVS-SCA-FT80.51 27679.10 27584.73 29589.63 28274.66 28492.98 29191.81 31480.05 25271.06 31385.18 32058.04 28591.40 35072.48 27770.70 30388.12 309
Fast-Effi-MVS+-dtu83.33 23282.60 22885.50 28589.55 28369.38 33396.09 19591.38 31982.30 21175.96 27091.41 22456.71 29995.58 27575.13 25684.90 21391.54 239
PatchT79.75 28076.85 29288.42 22089.55 28375.49 27777.37 37794.61 21663.07 36082.46 19173.32 37375.52 14293.41 33251.36 36484.43 21496.36 167
GA-MVS85.79 19384.04 20591.02 16189.47 28580.27 16396.90 14494.84 20085.57 12780.88 21189.08 25756.56 30296.47 22977.72 22585.35 21096.34 169
UniMVSNet_NR-MVSNet85.49 19884.59 19388.21 22989.44 28679.36 18796.71 15796.41 10285.22 13578.11 24090.98 23476.97 11495.14 29479.14 21468.30 32590.12 257
FC-MVSNet-test85.96 18985.39 18087.66 24089.38 28778.02 22695.65 21496.87 4385.12 13977.34 24591.94 21976.28 12894.74 30677.09 23478.82 25890.21 255
WR-MVS84.32 21782.96 22088.41 22189.38 28780.32 16096.59 16296.25 11783.97 17176.63 25590.36 24467.53 22194.86 30475.82 25070.09 30990.06 262
VPNet84.69 21082.92 22190.01 18889.01 28983.45 9196.71 15795.46 16985.71 12579.65 22692.18 21256.66 30196.01 24683.05 18567.84 33190.56 248
nrg03086.79 17785.43 17990.87 16688.76 29085.34 4997.06 13194.33 23384.31 16080.45 21791.98 21672.36 18896.36 23288.48 13271.13 29890.93 245
DU-MVS84.57 21383.33 21688.28 22588.76 29079.36 18796.43 17495.41 17585.42 13078.11 24090.82 23667.61 21895.14 29479.14 21468.30 32590.33 253
NR-MVSNet83.35 23181.52 24488.84 21388.76 29081.31 13694.45 25295.16 18584.65 15167.81 32790.82 23670.36 21094.87 30374.75 25866.89 34090.33 253
test_040272.68 32669.54 33382.09 32688.67 29371.81 31592.72 29586.77 36261.52 36662.21 35583.91 33343.22 35293.76 32634.60 38572.23 29580.72 373
RPSCF77.73 29876.63 29381.06 33188.66 29455.76 37887.77 33887.88 35664.82 35974.14 28792.79 20649.22 33396.81 21867.47 30476.88 27190.62 247
FMVSNet179.50 28476.54 29488.39 22288.47 29581.95 11494.30 25993.38 28373.14 32672.04 30785.66 30943.86 34893.84 32365.48 31572.53 29189.38 271
test_fmvsmconf0.1_n93.08 4493.22 4592.65 9688.45 29680.81 14899.00 2195.11 18693.21 1594.00 5697.91 6076.84 11599.59 6097.91 1696.55 9597.54 117
OPM-MVS85.84 19185.10 18888.06 23188.34 29777.83 23695.72 21094.20 24087.89 8580.45 21794.05 18458.57 28097.26 19383.88 16882.76 23089.09 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal78.14 29375.42 30086.31 27088.33 29879.24 19094.41 25396.22 12073.51 32269.81 32185.52 31555.43 30895.75 26247.65 37567.86 33083.95 358
TinyColmap72.41 32768.99 33682.68 32188.11 29969.59 33188.41 33285.20 36765.55 35657.91 36984.82 32730.80 38095.94 25151.38 36368.70 32082.49 366
fmvsm_s_conf0.1_n_a92.38 6492.49 5792.06 12588.08 30081.62 13197.97 6196.01 13690.62 4196.58 2198.33 3274.09 17099.71 4597.23 2793.46 13894.86 203
WR-MVS_H81.02 26980.09 26383.79 30988.08 30071.26 32194.46 25196.54 8780.08 25172.81 30186.82 29270.36 21092.65 33664.18 32067.50 33487.46 324
mvsmamba85.17 20384.54 19487.05 25887.94 30275.11 28196.22 18687.79 35786.91 10778.55 23591.77 22264.93 24195.91 25386.94 14879.80 24690.12 257
CP-MVSNet81.01 27080.08 26483.79 30987.91 30370.51 32394.29 26295.65 15880.83 23072.54 30488.84 26163.71 24692.32 33968.58 30168.36 32488.55 296
D2MVS82.67 24581.55 24286.04 27587.77 30476.47 25995.21 23196.58 8382.66 20570.26 31885.46 31660.39 26795.80 25976.40 24379.18 25585.83 345
TranMVSNet+NR-MVSNet83.24 23581.71 24087.83 23587.71 30578.81 20396.13 19494.82 20184.52 15476.18 26790.78 23864.07 24594.60 30974.60 26266.59 34290.09 260
USDC78.65 29076.25 29585.85 27687.58 30674.60 28689.58 32390.58 33584.05 16863.13 35088.23 27140.69 36496.86 21666.57 31075.81 27686.09 341
PS-CasMVS80.27 27779.18 27383.52 31587.56 30769.88 32894.08 26595.29 18180.27 24872.08 30688.51 26859.22 27792.23 34167.49 30368.15 32788.45 302
test_fmvs1_n86.34 18386.72 16785.17 29087.54 30863.64 35696.91 14392.37 30787.49 9391.33 9095.58 14440.81 36398.46 13495.00 5293.49 13693.41 232
RRT_MVS83.88 22383.27 21785.71 27987.53 30972.12 30895.35 22594.33 23383.81 17875.86 27291.28 22860.55 26695.09 29983.93 16776.76 27289.90 265
MIMVSNet79.18 28875.99 29788.72 21787.37 31080.66 15279.96 36891.82 31377.38 29274.33 28681.87 34441.78 35790.74 35766.36 31383.10 22394.76 206
XXY-MVS83.84 22482.00 23689.35 20487.13 31181.38 13495.72 21094.26 23680.15 25075.92 27190.63 23961.96 25996.52 22778.98 21673.28 29090.14 256
ITE_SJBPF82.38 32387.00 31265.59 34889.55 34079.99 25469.37 32391.30 22741.60 35995.33 28462.86 32874.63 28386.24 338
test0.0.03 182.79 24382.48 22983.74 31186.81 31372.22 30596.52 16695.03 19083.76 18073.00 29893.20 19872.30 19088.88 36464.15 32177.52 27090.12 257
v881.88 25880.06 26687.32 25186.63 31479.04 19994.41 25393.65 27378.77 27773.19 29785.57 31366.87 22795.81 25873.84 26967.61 33387.11 327
tt080581.20 26879.06 27687.61 24186.50 31572.97 30293.66 27395.48 16774.11 31776.23 26591.99 21541.36 36097.40 18377.44 23274.78 28192.45 236
v1081.43 26479.53 27287.11 25686.38 31678.87 20094.31 25893.43 28177.88 28573.24 29685.26 31765.44 23595.75 26272.14 27867.71 33286.72 331
PEN-MVS79.47 28578.26 28183.08 31886.36 31768.58 33693.85 27194.77 20579.76 25771.37 30888.55 26559.79 26992.46 33764.50 31965.40 34488.19 307
UniMVSNet_ETH3D80.86 27278.75 27887.22 25586.31 31872.02 31091.95 30293.76 26973.51 32275.06 28290.16 24843.04 35495.66 26776.37 24478.55 26493.98 220
v114482.90 24281.27 24787.78 23786.29 31979.07 19896.14 19293.93 25280.05 25277.38 24486.80 29365.50 23495.93 25275.21 25570.13 30688.33 305
V4283.04 23981.53 24387.57 24586.27 32079.09 19795.87 20594.11 24680.35 24577.22 24886.79 29465.32 23896.02 24577.74 22470.14 30587.61 318
v2v48283.46 23081.86 23888.25 22786.19 32179.65 18196.34 18094.02 25081.56 22277.32 24688.23 27165.62 23396.03 24277.77 22369.72 31389.09 282
v14882.41 25180.89 25086.99 25986.18 32276.81 25696.27 18393.82 26180.49 24075.28 28086.11 30867.32 22495.75 26275.48 25367.03 33988.42 303
pmmvs482.54 24780.79 25187.79 23686.11 32380.49 15993.55 27793.18 29377.29 29373.35 29489.40 25665.26 23995.05 30175.32 25473.61 28687.83 313
MVP-Stereo82.65 24681.67 24185.59 28486.10 32478.29 21693.33 28292.82 30077.75 28769.17 32587.98 27559.28 27695.76 26171.77 27996.88 8682.73 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119282.31 25280.55 25887.60 24285.94 32578.47 21295.85 20793.80 26479.33 26576.97 25186.51 29763.33 24995.87 25573.11 27270.13 30688.46 301
TransMVSNet (Re)76.94 30574.38 30984.62 29985.92 32675.25 27995.28 22689.18 34573.88 32067.22 32886.46 29959.64 27094.10 31959.24 34152.57 37384.50 353
PS-MVSNAJss84.91 20784.30 20086.74 26185.89 32774.40 28994.95 24394.16 24383.93 17476.45 25990.11 25071.04 20495.77 26083.16 18379.02 25790.06 262
v14419282.43 24880.73 25487.54 24685.81 32878.22 21995.98 19793.78 26679.09 27277.11 24986.49 29864.66 24495.91 25374.20 26569.42 31488.49 299
bld_raw_dy_0_6482.13 25480.76 25386.24 27285.78 32975.03 28294.40 25682.62 37783.12 19176.46 25890.96 23553.83 31894.55 31081.04 19578.60 26389.14 280
v192192082.02 25680.23 26287.41 24985.62 33077.92 23295.79 20993.69 27178.86 27676.67 25486.44 30062.50 25295.83 25772.69 27469.77 31288.47 300
v124081.70 26079.83 27087.30 25385.50 33177.70 24195.48 21993.44 28078.46 28176.53 25786.44 30060.85 26595.84 25671.59 28170.17 30488.35 304
pm-mvs180.05 27878.02 28386.15 27385.42 33275.81 27595.11 23892.69 30377.13 29570.36 31787.43 28158.44 28295.27 28871.36 28364.25 34987.36 325
our_test_377.90 29775.37 30185.48 28685.39 33376.74 25793.63 27491.67 31573.39 32565.72 34084.65 32858.20 28493.13 33457.82 34467.87 32986.57 334
ppachtmachnet_test77.19 30374.22 31186.13 27485.39 33378.22 21993.98 26691.36 32171.74 33767.11 33084.87 32656.67 30093.37 33352.21 36264.59 34686.80 330
MDA-MVSNet-bldmvs71.45 33267.94 33781.98 32785.33 33568.50 33792.35 30088.76 35070.40 34242.99 38381.96 34346.57 34391.31 35248.75 37454.39 36786.11 340
Baseline_NR-MVSNet81.22 26780.07 26584.68 29685.32 33675.12 28096.48 16888.80 34976.24 30477.28 24786.40 30367.61 21894.39 31575.73 25166.73 34184.54 352
DTE-MVSNet78.37 29177.06 29082.32 32585.22 33767.17 34593.40 27993.66 27278.71 27870.53 31688.29 27059.06 27892.23 34161.38 33363.28 35387.56 320
pmmvs581.34 26579.54 27186.73 26485.02 33876.91 25396.22 18691.65 31677.65 28873.55 28988.61 26455.70 30794.43 31474.12 26673.35 28988.86 294
XVG-ACMP-BASELINE79.38 28677.90 28483.81 30884.98 33967.14 34689.03 32793.18 29380.26 24972.87 30088.15 27338.55 36596.26 23576.05 24778.05 26888.02 310
test_vis1_n85.60 19685.70 17585.33 28784.79 34064.98 34996.83 14791.61 31887.36 9791.00 9794.84 16736.14 36997.18 19695.66 4493.03 14393.82 223
MDA-MVSNet_test_wron73.54 32170.43 32982.86 31984.55 34171.85 31391.74 30791.32 32367.63 35046.73 38081.09 34955.11 31190.42 36055.91 35459.76 35986.31 337
SixPastTwentyTwo76.04 30974.32 31081.22 32984.54 34261.43 36591.16 31389.30 34477.89 28464.04 34586.31 30448.23 33494.29 31763.54 32563.84 35187.93 312
YYNet173.53 32270.43 32982.85 32084.52 34371.73 31691.69 30891.37 32067.63 35046.79 37981.21 34855.04 31290.43 35955.93 35359.70 36086.38 336
N_pmnet61.30 34560.20 34864.60 36584.32 34417.00 40691.67 30910.98 40461.77 36558.45 36878.55 35849.89 33191.83 34742.27 38163.94 35084.97 350
mvs_tets81.74 25980.71 25584.84 29384.22 34570.29 32593.91 26993.78 26682.77 20273.37 29389.46 25547.36 34295.31 28681.99 19079.55 25388.92 292
jajsoiax82.12 25581.15 24985.03 29284.19 34670.70 32294.22 26393.95 25183.07 19373.48 29089.75 25249.66 33295.37 28282.24 18979.76 24789.02 286
EU-MVSNet76.92 30676.95 29176.83 34984.10 34754.73 38091.77 30692.71 30272.74 33069.57 32288.69 26358.03 28787.43 37264.91 31870.00 31088.33 305
test_djsdf83.00 24182.45 23084.64 29884.07 34869.78 32994.80 24894.48 22280.74 23375.41 27987.70 27861.32 26495.10 29783.77 17179.76 24789.04 285
v7n79.32 28777.34 28785.28 28884.05 34972.89 30493.38 28093.87 25875.02 31270.68 31484.37 32959.58 27295.62 27267.60 30267.50 33487.32 326
test_vis1_rt73.96 31872.40 32178.64 34383.91 35061.16 36695.63 21568.18 39376.32 30160.09 36474.77 36729.01 38297.54 17387.74 13875.94 27477.22 377
dmvs_testset72.00 33173.36 31767.91 36083.83 35131.90 40085.30 35677.12 38582.80 20163.05 35292.46 20961.54 26282.55 38342.22 38271.89 29689.29 275
OurMVSNet-221017-077.18 30476.06 29680.55 33483.78 35260.00 36990.35 31991.05 32777.01 29966.62 33687.92 27647.73 34094.03 32071.63 28068.44 32387.62 317
EG-PatchMatch MVS74.92 31572.02 32283.62 31383.76 35373.28 29793.62 27592.04 31168.57 34958.88 36683.80 33431.87 37895.57 27656.97 35078.67 25982.00 369
K. test v373.62 31971.59 32479.69 33782.98 35459.85 37090.85 31788.83 34877.13 29558.90 36582.11 34243.62 34991.72 34865.83 31454.10 36887.50 323
test_fmvs279.59 28279.90 26978.67 34282.86 35555.82 37795.20 23289.55 34081.09 22680.12 22389.80 25134.31 37493.51 33087.82 13778.36 26686.69 332
test_fmvsmconf0.01_n91.08 9190.68 8892.29 11382.43 35680.12 16897.94 6293.93 25292.07 2491.97 7997.60 7967.56 22099.53 6897.09 2995.56 11297.21 139
EGC-MVSNET52.46 35347.56 35667.15 36181.98 35760.11 36882.54 36672.44 3890.11 4010.70 40274.59 36825.11 38383.26 38029.04 38861.51 35758.09 386
anonymousdsp80.98 27179.97 26784.01 30681.73 35870.44 32492.49 29793.58 27777.10 29772.98 29986.31 30457.58 29194.90 30279.32 21178.63 26286.69 332
Anonymous2023120675.29 31473.64 31580.22 33580.75 35963.38 35893.36 28190.71 33473.09 32767.12 32983.70 33550.33 32990.85 35653.63 36070.10 30886.44 335
Gipumacopyleft45.11 35842.05 36054.30 37580.69 36051.30 38235.80 39383.81 37328.13 38927.94 39334.53 39311.41 39676.70 38921.45 39254.65 36534.90 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
lessismore_v079.98 33680.59 36158.34 37280.87 37958.49 36783.46 33743.10 35393.89 32263.11 32748.68 37787.72 314
OpenMVS_ROBcopyleft68.52 2073.02 32569.57 33283.37 31680.54 36271.82 31493.60 27688.22 35462.37 36261.98 35683.15 33935.31 37395.47 27845.08 37875.88 27582.82 361
testgi74.88 31673.40 31679.32 34080.13 36361.75 36293.21 28786.64 36379.49 26366.56 33791.06 23135.51 37288.67 36556.79 35171.25 29787.56 320
CMPMVSbinary54.94 2175.71 31374.56 30879.17 34179.69 36455.98 37589.59 32293.30 28860.28 37253.85 37689.07 25847.68 34196.33 23376.55 24081.02 23985.22 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LF4IMVS72.36 32870.82 32676.95 34879.18 36556.33 37486.12 35186.11 36569.30 34863.06 35186.66 29533.03 37692.25 34065.33 31668.64 32182.28 367
pmmvs674.65 31771.67 32383.60 31479.13 36669.94 32793.31 28590.88 33161.05 37165.83 33984.15 33243.43 35094.83 30566.62 30860.63 35886.02 342
DeepMVS_CXcopyleft64.06 36678.53 36743.26 39168.11 39569.94 34538.55 38576.14 36518.53 38779.34 38443.72 37941.62 38769.57 381
CL-MVSNet_self_test75.81 31174.14 31380.83 33378.33 36867.79 33994.22 26393.52 27877.28 29469.82 32081.54 34661.47 26389.22 36357.59 34653.51 36985.48 347
test20.0372.36 32871.15 32575.98 35377.79 36959.16 37192.40 29989.35 34374.09 31861.50 35884.32 33048.09 33585.54 37850.63 36762.15 35683.24 359
UnsupCasMVSNet_eth73.25 32370.57 32881.30 32877.53 37066.33 34787.24 34293.89 25780.38 24457.90 37081.59 34542.91 35590.56 35865.18 31748.51 37887.01 329
DSMNet-mixed73.13 32472.45 32075.19 35577.51 37146.82 38585.09 35782.01 37867.61 35469.27 32481.33 34750.89 32586.28 37554.54 35783.80 21792.46 235
Patchmatch-RL test76.65 30774.01 31484.55 30077.37 37264.23 35278.49 37582.84 37678.48 28064.63 34473.40 37276.05 13191.70 34976.99 23557.84 36297.72 105
Anonymous2024052172.06 33069.91 33178.50 34477.11 37361.67 36491.62 31090.97 32965.52 35762.37 35479.05 35736.32 36890.96 35557.75 34568.52 32282.87 360
test_method56.77 34754.53 35163.49 36776.49 37440.70 39375.68 38074.24 38719.47 39548.73 37871.89 37819.31 38665.80 39557.46 34747.51 38183.97 357
MIMVSNet169.44 33666.65 34077.84 34576.48 37562.84 36087.42 34088.97 34766.96 35557.75 37179.72 35632.77 37785.83 37746.32 37663.42 35284.85 351
pmmvs-eth3d73.59 32070.66 32782.38 32376.40 37673.38 29489.39 32689.43 34272.69 33160.34 36377.79 36046.43 34491.26 35366.42 31257.06 36382.51 364
new_pmnet66.18 34263.18 34575.18 35676.27 37761.74 36383.79 36284.66 36956.64 38151.57 37771.85 37931.29 37987.93 36749.98 36962.55 35475.86 378
KD-MVS_self_test70.97 33469.31 33475.95 35476.24 37855.39 37987.45 33990.94 33070.20 34462.96 35377.48 36144.01 34788.09 36661.25 33453.26 37084.37 354
UnsupCasMVSNet_bld68.60 34064.50 34480.92 33274.63 37967.80 33883.97 36192.94 29965.12 35854.63 37568.23 38135.97 37092.17 34360.13 33644.83 38282.78 362
PM-MVS69.32 33766.93 33976.49 35073.60 38055.84 37685.91 35279.32 38374.72 31461.09 36078.18 35921.76 38591.10 35470.86 28956.90 36482.51 364
new-patchmatchnet68.85 33965.93 34177.61 34773.57 38163.94 35590.11 32188.73 35171.62 33855.08 37473.60 37140.84 36287.22 37451.35 36548.49 37981.67 372
WB-MVS57.26 34656.22 34960.39 37169.29 38235.91 39886.39 35070.06 39159.84 37646.46 38172.71 37451.18 32478.11 38515.19 39534.89 39067.14 384
test_fmvs369.56 33569.19 33570.67 35869.01 38347.05 38490.87 31686.81 36171.31 34066.79 33477.15 36216.40 38983.17 38181.84 19162.51 35581.79 371
SSC-MVS56.01 34954.96 35059.17 37268.42 38434.13 39984.98 35869.23 39258.08 38045.36 38271.67 38050.30 33077.46 38614.28 39632.33 39165.91 385
ambc76.02 35268.11 38551.43 38164.97 38989.59 33960.49 36274.49 36917.17 38892.46 33761.50 33252.85 37284.17 356
APD_test156.56 34853.58 35265.50 36267.93 38646.51 38777.24 37972.95 38838.09 38642.75 38475.17 36613.38 39282.78 38240.19 38354.53 36667.23 383
pmmvs365.75 34362.18 34676.45 35167.12 38764.54 35088.68 33085.05 36854.77 38357.54 37273.79 37029.40 38186.21 37655.49 35647.77 38078.62 375
TDRefinement69.20 33865.78 34279.48 33866.04 38862.21 36188.21 33386.12 36462.92 36161.03 36185.61 31233.23 37594.16 31855.82 35553.02 37182.08 368
mvsany_test367.19 34165.34 34372.72 35763.08 38948.57 38383.12 36478.09 38472.07 33461.21 35977.11 36322.94 38487.78 37078.59 21851.88 37481.80 370
test_f64.01 34462.13 34769.65 35963.00 39045.30 39083.66 36380.68 38061.30 36855.70 37372.62 37514.23 39184.64 37969.84 29458.11 36179.00 374
test_vis3_rt54.10 35151.04 35463.27 36858.16 39146.08 38984.17 36049.32 40356.48 38236.56 38749.48 3908.03 39991.91 34667.29 30549.87 37551.82 389
FPMVS55.09 35052.93 35361.57 36955.98 39240.51 39483.11 36583.41 37537.61 38734.95 38871.95 37714.40 39076.95 38729.81 38765.16 34567.25 382
PMMVS250.90 35446.31 35764.67 36455.53 39346.67 38677.30 37871.02 39040.89 38534.16 38959.32 3849.83 39776.14 39040.09 38428.63 39271.21 379
wuyk23d14.10 36513.89 36814.72 38155.23 39422.91 40533.83 3943.56 4054.94 3984.11 3992.28 4012.06 40419.66 40010.23 3998.74 3981.59 398
E-PMN32.70 36232.39 36433.65 37953.35 39525.70 40374.07 38353.33 40121.08 39317.17 39733.63 39511.85 39554.84 39712.98 39714.04 39420.42 394
testf145.70 35642.41 35855.58 37353.29 39640.02 39568.96 38762.67 39727.45 39029.85 39061.58 3825.98 40073.83 39228.49 39043.46 38552.90 387
APD_test245.70 35642.41 35855.58 37353.29 39640.02 39568.96 38762.67 39727.45 39029.85 39061.58 3825.98 40073.83 39228.49 39043.46 38552.90 387
EMVS31.70 36331.45 36532.48 38050.72 39823.95 40474.78 38252.30 40220.36 39416.08 39831.48 39612.80 39353.60 39811.39 39813.10 39719.88 395
LCM-MVSNet52.52 35248.24 35565.35 36347.63 39941.45 39272.55 38583.62 37431.75 38837.66 38657.92 3869.19 39876.76 38849.26 37144.60 38377.84 376
MVEpermissive35.65 2233.85 36129.49 36646.92 37741.86 40036.28 39750.45 39256.52 40018.75 39618.28 39537.84 3922.41 40358.41 39618.71 39320.62 39346.06 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high46.22 35541.28 36261.04 37039.91 40146.25 38870.59 38676.18 38658.87 37823.09 39448.00 39112.58 39466.54 39428.65 38913.62 39570.35 380
PMVScopyleft34.80 2339.19 36035.53 36350.18 37629.72 40230.30 40159.60 39166.20 39626.06 39217.91 39649.53 3893.12 40274.09 39118.19 39449.40 37646.14 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt41.54 35941.93 36140.38 37820.10 40326.84 40261.93 39059.09 39914.81 39728.51 39280.58 35035.53 37148.33 39963.70 32413.11 39645.96 392
testmvs9.92 36612.94 3690.84 3830.65 4040.29 40893.78 2720.39 4060.42 3992.85 40015.84 3990.17 4060.30 4022.18 4000.21 3991.91 397
test1239.07 36711.73 3701.11 3820.50 4050.77 40789.44 3250.20 4070.34 4002.15 40110.72 4000.34 4050.32 4011.79 4010.08 4002.23 396
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
eth-test20.00 406
eth-test0.00 406
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k21.43 36428.57 3670.00 3840.00 4060.00 4090.00 39595.93 1440.00 4020.00 40397.66 7263.57 2470.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.92 3697.89 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40271.04 2040.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.11 36810.81 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40397.30 940.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
MM96.15 889.50 999.18 598.10 895.68 196.64 2097.92 5880.72 6199.80 2599.16 197.96 5699.15 24
WAC-MVS67.18 34249.00 372
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2198.96 399.37 199.70 3
test_241102_TWO96.78 4988.72 6697.70 898.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_0728_THIRD88.38 7396.69 1798.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
GSMVS97.54 117
sam_mvs177.59 10297.54 117
sam_mvs75.35 150
MTGPAbinary96.33 112
test_post185.88 35330.24 39773.77 17395.07 30073.89 267
test_post33.80 39476.17 12995.97 247
patchmatchnet-post77.09 36477.78 10195.39 280
MTMP97.53 9068.16 394
test9_res96.00 3999.03 1398.31 62
agg_prior294.30 5899.00 1598.57 46
test_prior482.34 11097.75 75
test_prior298.37 3986.08 11994.57 4998.02 5183.14 4895.05 5198.79 26
旧先验296.97 13874.06 31996.10 2797.76 16088.38 133
新几何296.42 175
无先验96.87 14596.78 4977.39 29199.52 6979.95 20698.43 55
原ACMM296.84 146
testdata299.48 7376.45 242
segment_acmp82.69 53
testdata195.57 21787.44 94
plane_prior594.69 20797.30 18987.08 14482.82 22890.96 243
plane_prior494.15 182
plane_prior377.75 23990.17 5081.33 207
plane_prior297.18 11589.89 53
plane_prior77.96 22997.52 9390.36 4882.96 226
n20.00 408
nn0.00 408
door-mid79.75 382
test1196.50 92
door80.13 381
HQP5-MVS78.48 209
BP-MVS87.67 140
HQP4-MVS82.30 19397.32 18791.13 241
HQP3-MVS94.80 20283.01 224
HQP2-MVS65.40 236
MDTV_nov1_ep13_2view81.74 12686.80 34580.65 23585.65 15574.26 16776.52 24196.98 146
ACMMP++_ref78.45 265
ACMMP++79.05 256
Test By Simon71.65 197