| test_fmvsmconf0.01_n | | | 99.57 7 | 99.63 7 | 99.36 64 | 99.87 12 | 98.13 131 | 98.08 161 | 99.95 1 | 99.45 36 | 99.98 2 | 99.75 11 | 99.80 1 | 99.97 4 | 99.82 8 | 99.99 5 | 99.99 1 |
|
| test_vis3_rt | | | 99.14 46 | 99.17 43 | 99.07 120 | 99.78 25 | 98.38 109 | 98.92 77 | 99.94 2 | 97.80 174 | 99.91 11 | 99.67 25 | 97.15 156 | 98.91 390 | 99.76 16 | 99.56 210 | 99.92 9 |
|
| test_fmvs3 | | | 99.12 51 | 99.41 19 | 98.25 231 | 99.76 31 | 95.07 284 | 99.05 64 | 99.94 2 | 97.78 176 | 99.82 21 | 99.84 2 | 98.56 54 | 99.71 246 | 99.96 1 | 99.96 25 | 99.97 3 |
|
| test_fmvs1_n | | | 98.09 186 | 98.28 154 | 97.52 291 | 99.68 58 | 93.47 333 | 98.63 99 | 99.93 4 | 95.41 312 | 99.68 39 | 99.64 32 | 91.88 309 | 99.48 339 | 99.82 8 | 99.87 77 | 99.62 67 |
|
| ANet_high | | | 99.57 7 | 99.67 5 | 99.28 85 | 99.89 6 | 98.09 135 | 99.14 54 | 99.93 4 | 99.82 3 | 99.93 6 | 99.81 5 | 99.17 18 | 99.94 35 | 99.31 41 | 100.00 1 | 99.82 25 |
|
| test_fmvs2 | | | 98.70 103 | 98.97 65 | 97.89 258 | 99.54 98 | 94.05 311 | 98.55 108 | 99.92 6 | 96.78 258 | 99.72 31 | 99.78 8 | 96.60 189 | 99.67 267 | 99.91 2 | 99.90 69 | 99.94 7 |
|
| test_vis1_n_1920 | | | 98.40 150 | 98.92 68 | 96.81 328 | 99.74 37 | 90.76 377 | 98.15 153 | 99.91 7 | 98.33 131 | 99.89 15 | 99.55 48 | 95.07 246 | 99.88 83 | 99.76 16 | 99.93 44 | 99.79 30 |
|
| test_vis1_n | | | 98.31 163 | 98.50 120 | 97.73 274 | 99.76 31 | 94.17 309 | 98.68 96 | 99.91 7 | 96.31 280 | 99.79 25 | 99.57 42 | 92.85 296 | 99.42 351 | 99.79 13 | 99.84 85 | 99.60 74 |
|
| test_fmvsmconf0.1_n | | | 99.49 12 | 99.54 10 | 99.34 73 | 99.78 25 | 98.11 132 | 97.77 205 | 99.90 9 | 99.33 50 | 99.97 3 | 99.66 27 | 99.71 3 | 99.96 11 | 99.79 13 | 99.99 5 | 99.96 5 |
|
| LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 10 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 2 | 100.00 1 | 99.81 11 | 100.00 1 | 99.85 19 |
|
| CS-MVS | | | 99.13 49 | 99.10 54 | 99.24 95 | 99.06 212 | 99.15 47 | 99.36 19 | 99.88 11 | 99.36 48 | 98.21 245 | 98.46 262 | 98.68 42 | 99.93 40 | 99.03 59 | 99.85 81 | 98.64 315 |
|
| CS-MVS-test | | | 99.13 49 | 99.09 55 | 99.26 90 | 99.13 197 | 98.97 66 | 99.31 27 | 99.88 11 | 99.44 38 | 98.16 248 | 98.51 254 | 98.64 44 | 99.93 40 | 98.91 65 | 99.85 81 | 98.88 283 |
|
| fmvsm_s_conf0.1_n_a | | | 99.17 42 | 99.30 32 | 98.80 160 | 99.75 35 | 96.59 234 | 97.97 181 | 99.86 13 | 98.22 142 | 99.88 17 | 99.71 17 | 98.59 50 | 99.84 137 | 99.73 19 | 99.98 12 | 99.98 2 |
|
| dcpmvs_2 | | | 98.78 90 | 99.11 52 | 97.78 265 | 99.56 89 | 93.67 329 | 99.06 62 | 99.86 13 | 99.50 30 | 99.66 42 | 99.26 100 | 97.21 154 | 99.99 2 | 98.00 123 | 99.91 63 | 99.68 54 |
|
| fmvsm_s_conf0.1_n | | | 99.16 45 | 99.33 26 | 98.64 181 | 99.71 47 | 96.10 247 | 97.87 193 | 99.85 15 | 98.56 123 | 99.90 12 | 99.68 20 | 98.69 41 | 99.85 120 | 99.72 21 | 99.98 12 | 99.97 3 |
|
| test_fmvsmvis_n_1920 | | | 99.26 32 | 99.49 12 | 98.54 204 | 99.66 64 | 96.97 220 | 98.00 175 | 99.85 15 | 99.24 59 | 99.92 8 | 99.50 59 | 99.39 11 | 99.95 22 | 99.89 3 | 99.98 12 | 98.71 306 |
|
| test_cas_vis1_n_1920 | | | 98.33 160 | 98.68 95 | 97.27 305 | 99.69 56 | 92.29 354 | 98.03 169 | 99.85 15 | 97.62 186 | 99.96 4 | 99.62 34 | 93.98 277 | 99.74 233 | 99.52 31 | 99.86 80 | 99.79 30 |
|
| test_fmvsmconf_n | | | 99.44 15 | 99.48 14 | 99.31 83 | 99.64 70 | 98.10 134 | 97.68 216 | 99.84 18 | 99.29 55 | 99.92 8 | 99.57 42 | 99.60 5 | 99.96 11 | 99.74 18 | 99.98 12 | 99.89 11 |
|
| EC-MVSNet | | | 99.09 54 | 99.05 59 | 99.20 99 | 99.28 159 | 98.93 71 | 99.24 41 | 99.84 18 | 99.08 85 | 98.12 253 | 98.37 270 | 98.72 38 | 99.90 64 | 99.05 57 | 99.77 124 | 98.77 300 |
|
| test_fmvsm_n_1920 | | | 99.33 26 | 99.45 18 | 98.99 135 | 99.57 81 | 97.73 178 | 97.93 182 | 99.83 20 | 99.22 60 | 99.93 6 | 99.30 94 | 99.42 10 | 99.96 11 | 99.85 5 | 99.99 5 | 99.29 212 |
|
| LCM-MVSNet-Re | | | 98.64 118 | 98.48 125 | 99.11 112 | 98.85 251 | 98.51 102 | 98.49 120 | 99.83 20 | 98.37 128 | 99.69 37 | 99.46 66 | 98.21 78 | 99.92 50 | 94.13 316 | 99.30 258 | 98.91 279 |
|
| fmvsm_s_conf0.5_n_a | | | 99.10 53 | 99.20 41 | 98.78 166 | 99.55 93 | 96.59 234 | 97.79 202 | 99.82 22 | 98.21 143 | 99.81 23 | 99.53 54 | 98.46 60 | 99.84 137 | 99.70 22 | 99.97 19 | 99.90 10 |
|
| bld_raw_dy_0_64 | | | 97.62 223 | 97.51 224 | 97.96 254 | 97.97 346 | 96.28 243 | 98.20 147 | 99.82 22 | 96.46 273 | 99.37 89 | 97.12 347 | 92.42 301 | 99.70 250 | 96.27 243 | 99.97 19 | 97.90 358 |
|
| fmvsm_s_conf0.5_n | | | 99.09 54 | 99.26 37 | 98.61 189 | 99.55 93 | 96.09 250 | 97.74 210 | 99.81 24 | 98.55 124 | 99.85 19 | 99.55 48 | 98.60 49 | 99.84 137 | 99.69 24 | 99.98 12 | 99.89 11 |
|
| test_fmvs1 | | | 97.72 215 | 97.94 192 | 97.07 315 | 98.66 291 | 92.39 351 | 97.68 216 | 99.81 24 | 95.20 316 | 99.54 56 | 99.44 71 | 91.56 311 | 99.41 352 | 99.78 15 | 99.77 124 | 99.40 173 |
|
| test_f | | | 98.67 114 | 98.87 71 | 98.05 248 | 99.72 44 | 95.59 262 | 98.51 117 | 99.81 24 | 96.30 282 | 99.78 26 | 99.82 4 | 96.14 206 | 98.63 395 | 99.82 8 | 99.93 44 | 99.95 6 |
|
| Vis-MVSNet |  | | 99.34 25 | 99.36 22 | 99.27 88 | 99.73 38 | 98.26 118 | 99.17 50 | 99.78 27 | 99.11 73 | 99.27 108 | 99.48 64 | 98.82 31 | 99.95 22 | 98.94 64 | 99.93 44 | 99.59 80 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 21 | 99.85 17 | 99.11 59 | 99.90 1 | 99.78 27 | 99.63 17 | 99.78 26 | 99.67 25 | 99.48 9 | 99.81 177 | 99.30 42 | 99.97 19 | 99.77 35 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| fmvsm_l_conf0.5_n_a | | | 99.19 41 | 99.27 35 | 98.94 142 | 99.65 65 | 97.05 216 | 97.80 201 | 99.76 29 | 98.70 111 | 99.78 26 | 99.11 133 | 98.79 34 | 99.95 22 | 99.85 5 | 99.96 25 | 99.83 22 |
|
| fmvsm_l_conf0.5_n | | | 99.21 39 | 99.28 34 | 99.02 132 | 99.64 70 | 97.28 202 | 97.82 198 | 99.76 29 | 98.73 108 | 99.82 21 | 99.09 139 | 98.81 32 | 99.95 22 | 99.86 4 | 99.96 25 | 99.83 22 |
|
| pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 11 | 99.90 4 | 99.27 22 | 99.53 7 | 99.76 29 | 99.64 15 | 99.84 20 | 99.83 3 | 99.50 8 | 99.87 100 | 99.36 38 | 99.92 55 | 99.64 63 |
|
| Gipuma |  | | 99.03 59 | 99.16 45 | 98.64 181 | 99.94 2 | 98.51 102 | 99.32 23 | 99.75 32 | 99.58 25 | 98.60 211 | 99.62 34 | 98.22 76 | 99.51 332 | 97.70 142 | 99.73 142 | 97.89 360 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| UA-Net | | | 99.47 13 | 99.40 20 | 99.70 2 | 99.49 115 | 99.29 19 | 99.80 3 | 99.72 33 | 99.82 3 | 99.04 143 | 99.81 5 | 98.05 91 | 99.96 11 | 98.85 69 | 99.99 5 | 99.86 18 |
|
| Patchmatch-RL test | | | 97.26 248 | 97.02 251 | 97.99 252 | 99.52 103 | 95.53 266 | 96.13 321 | 99.71 34 | 97.47 202 | 99.27 108 | 99.16 122 | 84.30 363 | 99.62 292 | 97.89 128 | 99.77 124 | 98.81 292 |
|
| mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 48 | 99.88 9 | 98.61 92 | 99.34 20 | 99.71 34 | 99.27 57 | 99.90 12 | 99.74 13 | 99.68 4 | 99.97 4 | 99.55 29 | 99.99 5 | 99.88 14 |
|
| TDRefinement | | | 99.42 19 | 99.38 21 | 99.55 23 | 99.76 31 | 99.33 16 | 99.68 5 | 99.71 34 | 99.38 44 | 99.53 60 | 99.61 37 | 98.64 44 | 99.80 184 | 98.24 105 | 99.84 85 | 99.52 118 |
|
| test_vis1_rt | | | 97.75 213 | 97.72 209 | 97.83 261 | 98.81 260 | 96.35 240 | 97.30 254 | 99.69 37 | 94.61 327 | 97.87 269 | 98.05 297 | 96.26 204 | 98.32 398 | 98.74 76 | 98.18 342 | 98.82 288 |
|
| testf1 | | | 99.25 33 | 99.16 45 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 93 | 99.69 37 | 98.90 100 | 99.43 76 | 99.35 83 | 98.86 28 | 99.67 267 | 97.81 134 | 99.81 99 | 99.24 222 |
|
| APD_test2 | | | 99.25 33 | 99.16 45 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 93 | 99.69 37 | 98.90 100 | 99.43 76 | 99.35 83 | 98.86 28 | 99.67 267 | 97.81 134 | 99.81 99 | 99.24 222 |
|
| patch_mono-2 | | | 98.51 140 | 98.63 102 | 98.17 237 | 99.38 140 | 94.78 289 | 97.36 249 | 99.69 37 | 98.16 153 | 98.49 226 | 99.29 95 | 97.06 160 | 99.97 4 | 98.29 104 | 99.91 63 | 99.76 39 |
|
| anonymousdsp | | | 99.51 11 | 99.47 16 | 99.62 6 | 99.88 9 | 99.08 63 | 99.34 20 | 99.69 37 | 98.93 98 | 99.65 45 | 99.72 16 | 98.93 26 | 99.95 22 | 99.11 52 | 100.00 1 | 99.82 25 |
|
| Effi-MVS+ | | | 98.02 190 | 97.82 202 | 98.62 186 | 98.53 309 | 97.19 210 | 97.33 251 | 99.68 42 | 97.30 222 | 96.68 338 | 97.46 332 | 98.56 54 | 99.80 184 | 96.63 215 | 98.20 341 | 98.86 285 |
|
| PM-MVS | | | 98.82 84 | 98.72 87 | 99.12 110 | 99.64 70 | 98.54 100 | 97.98 178 | 99.68 42 | 97.62 186 | 99.34 96 | 99.18 116 | 97.54 129 | 99.77 215 | 97.79 136 | 99.74 139 | 99.04 255 |
|
| PVSNet_Blended_VisFu | | | 98.17 181 | 98.15 172 | 98.22 234 | 99.73 38 | 95.15 280 | 97.36 249 | 99.68 42 | 94.45 333 | 98.99 149 | 99.27 98 | 96.87 171 | 99.94 35 | 97.13 171 | 99.91 63 | 99.57 91 |
|
| jajsoiax | | | 99.58 6 | 99.61 8 | 99.48 51 | 99.87 12 | 98.61 92 | 99.28 37 | 99.66 45 | 99.09 83 | 99.89 15 | 99.68 20 | 99.53 7 | 99.97 4 | 99.50 32 | 99.99 5 | 99.87 16 |
|
| PS-MVSNAJss | | | 99.46 14 | 99.49 12 | 99.35 70 | 99.90 4 | 98.15 128 | 99.20 45 | 99.65 46 | 99.48 32 | 99.92 8 | 99.71 17 | 98.07 88 | 99.96 11 | 99.53 30 | 100.00 1 | 99.93 8 |
|
| pm-mvs1 | | | 99.44 15 | 99.48 14 | 99.33 78 | 99.80 22 | 98.63 89 | 99.29 33 | 99.63 47 | 99.30 54 | 99.65 45 | 99.60 39 | 99.16 20 | 99.82 164 | 99.07 55 | 99.83 92 | 99.56 97 |
|
| casdiffmvs_mvg |  | | 99.12 51 | 99.16 45 | 98.99 135 | 99.43 134 | 97.73 178 | 98.00 175 | 99.62 48 | 99.22 60 | 99.55 55 | 99.22 109 | 98.93 26 | 99.75 228 | 98.66 82 | 99.81 99 | 99.50 123 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CHOSEN 1792x2688 | | | 97.49 231 | 97.14 247 | 98.54 204 | 99.68 58 | 96.09 250 | 96.50 298 | 99.62 48 | 91.58 371 | 98.84 181 | 98.97 171 | 92.36 302 | 99.88 83 | 96.76 204 | 99.95 32 | 99.67 57 |
|
| XXY-MVS | | | 99.14 46 | 99.15 50 | 99.10 114 | 99.76 31 | 97.74 176 | 98.85 83 | 99.62 48 | 98.48 126 | 99.37 89 | 99.49 63 | 98.75 36 | 99.86 108 | 98.20 108 | 99.80 109 | 99.71 46 |
|
| v7n | | | 99.53 9 | 99.57 9 | 99.41 60 | 99.88 9 | 98.54 100 | 99.45 10 | 99.61 51 | 99.66 13 | 99.68 39 | 99.66 27 | 98.44 61 | 99.95 22 | 99.73 19 | 99.96 25 | 99.75 43 |
|
| EIA-MVS | | | 98.00 192 | 97.74 206 | 98.80 160 | 98.72 271 | 98.09 135 | 98.05 166 | 99.60 52 | 97.39 213 | 96.63 340 | 95.55 373 | 97.68 114 | 99.80 184 | 96.73 208 | 99.27 262 | 98.52 322 |
|
| EG-PatchMatch MVS | | | 98.99 62 | 99.01 61 | 98.94 142 | 99.50 108 | 97.47 191 | 98.04 168 | 99.59 53 | 98.15 154 | 99.40 83 | 99.36 82 | 98.58 53 | 99.76 221 | 98.78 72 | 99.68 167 | 99.59 80 |
|
| MIMVSNet1 | | | 99.38 23 | 99.32 28 | 99.55 23 | 99.86 15 | 99.19 37 | 99.41 13 | 99.59 53 | 99.59 23 | 99.71 33 | 99.57 42 | 97.12 157 | 99.90 64 | 99.21 48 | 99.87 77 | 99.54 108 |
|
| UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 18 | 99.34 15 | 99.69 4 | 99.58 55 | 99.90 2 | 99.86 18 | 99.78 8 | 99.58 6 | 99.95 22 | 99.00 61 | 99.95 32 | 99.78 33 |
|
| AllTest | | | 98.44 146 | 98.20 164 | 99.16 105 | 99.50 108 | 98.55 97 | 98.25 142 | 99.58 55 | 96.80 256 | 98.88 174 | 99.06 140 | 97.65 117 | 99.57 311 | 94.45 304 | 99.61 192 | 99.37 184 |
|
| TestCases | | | | | 99.16 105 | 99.50 108 | 98.55 97 | | 99.58 55 | 96.80 256 | 98.88 174 | 99.06 140 | 97.65 117 | 99.57 311 | 94.45 304 | 99.61 192 | 99.37 184 |
|
| diffmvs |  | | 98.22 174 | 98.24 161 | 98.17 237 | 99.00 221 | 95.44 270 | 96.38 305 | 99.58 55 | 97.79 175 | 98.53 223 | 98.50 258 | 96.76 181 | 99.74 233 | 97.95 127 | 99.64 181 | 99.34 196 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| OurMVSNet-221017-0 | | | 99.37 24 | 99.31 30 | 99.53 34 | 99.91 3 | 98.98 65 | 99.63 6 | 99.58 55 | 99.44 38 | 99.78 26 | 99.76 10 | 96.39 197 | 99.92 50 | 99.44 36 | 99.92 55 | 99.68 54 |
|
| 1112_ss | | | 97.29 247 | 96.86 259 | 98.58 193 | 99.34 153 | 96.32 241 | 96.75 287 | 99.58 55 | 93.14 354 | 96.89 329 | 97.48 330 | 92.11 306 | 99.86 108 | 96.91 187 | 99.54 215 | 99.57 91 |
|
| ACMH+ | | 96.62 9 | 99.08 57 | 99.00 62 | 99.33 78 | 99.71 47 | 98.83 76 | 98.60 103 | 99.58 55 | 99.11 73 | 99.53 60 | 99.18 116 | 98.81 32 | 99.67 267 | 96.71 211 | 99.77 124 | 99.50 123 |
|
| FC-MVSNet-test | | | 99.27 30 | 99.25 38 | 99.34 73 | 99.77 28 | 98.37 111 | 99.30 32 | 99.57 62 | 99.61 22 | 99.40 83 | 99.50 59 | 97.12 157 | 99.85 120 | 99.02 60 | 99.94 40 | 99.80 29 |
|
| casdiffmvs |  | | 98.95 69 | 99.00 62 | 98.81 158 | 99.38 140 | 97.33 199 | 97.82 198 | 99.57 62 | 99.17 71 | 99.35 94 | 99.17 120 | 98.35 68 | 99.69 255 | 98.46 95 | 99.73 142 | 99.41 164 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TransMVSNet (Re) | | | 99.44 15 | 99.47 16 | 99.36 64 | 99.80 22 | 98.58 95 | 99.27 39 | 99.57 62 | 99.39 43 | 99.75 30 | 99.62 34 | 99.17 18 | 99.83 154 | 99.06 56 | 99.62 187 | 99.66 58 |
|
| Baseline_NR-MVSNet | | | 98.98 65 | 98.86 74 | 99.36 64 | 99.82 21 | 98.55 97 | 97.47 243 | 99.57 62 | 99.37 45 | 99.21 120 | 99.61 37 | 96.76 181 | 99.83 154 | 98.06 118 | 99.83 92 | 99.71 46 |
|
| door-mid | | | | | | | | | 99.57 62 | | | | | | | | |
|
| RPSCF | | | 98.62 122 | 98.36 144 | 99.42 58 | 99.65 65 | 99.42 7 | 98.55 108 | 99.57 62 | 97.72 180 | 98.90 168 | 99.26 100 | 96.12 208 | 99.52 328 | 95.72 272 | 99.71 154 | 99.32 203 |
|
| CSCG | | | 98.68 111 | 98.50 120 | 99.20 99 | 99.45 128 | 98.63 89 | 98.56 107 | 99.57 62 | 97.87 169 | 98.85 179 | 98.04 298 | 97.66 116 | 99.84 137 | 96.72 209 | 99.81 99 | 99.13 244 |
|
| GeoE | | | 99.05 58 | 98.99 64 | 99.25 93 | 99.44 129 | 98.35 115 | 98.73 90 | 99.56 69 | 98.42 127 | 98.91 167 | 98.81 208 | 98.94 25 | 99.91 59 | 98.35 100 | 99.73 142 | 99.49 127 |
|
| MVSFormer | | | 98.26 170 | 98.43 133 | 97.77 266 | 98.88 246 | 93.89 323 | 99.39 17 | 99.56 69 | 99.11 73 | 98.16 248 | 98.13 288 | 93.81 280 | 99.97 4 | 99.26 43 | 99.57 207 | 99.43 158 |
|
| test_djsdf | | | 99.52 10 | 99.51 11 | 99.53 34 | 99.86 15 | 98.74 82 | 99.39 17 | 99.56 69 | 99.11 73 | 99.70 35 | 99.73 15 | 99.00 22 | 99.97 4 | 99.26 43 | 99.98 12 | 99.89 11 |
|
| COLMAP_ROB |  | 96.50 10 | 98.99 62 | 98.85 75 | 99.41 60 | 99.58 77 | 99.10 60 | 98.74 87 | 99.56 69 | 99.09 83 | 99.33 97 | 99.19 113 | 98.40 63 | 99.72 245 | 95.98 259 | 99.76 135 | 99.42 161 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| v10 | | | 98.97 66 | 99.11 52 | 98.55 201 | 99.44 129 | 96.21 246 | 98.90 78 | 99.55 73 | 98.73 108 | 99.48 68 | 99.60 39 | 96.63 188 | 99.83 154 | 99.70 22 | 99.99 5 | 99.61 73 |
|
| WR-MVS_H | | | 99.33 26 | 99.22 40 | 99.65 5 | 99.71 47 | 99.24 25 | 99.32 23 | 99.55 73 | 99.46 35 | 99.50 67 | 99.34 87 | 97.30 146 | 99.93 40 | 98.90 66 | 99.93 44 | 99.77 35 |
|
| mvsmamba | | | 99.24 37 | 99.15 50 | 99.49 48 | 99.83 19 | 98.85 74 | 99.41 13 | 99.55 73 | 99.54 27 | 99.40 83 | 99.52 57 | 95.86 225 | 99.91 59 | 99.32 40 | 99.95 32 | 99.70 51 |
|
| 114514_t | | | 96.50 290 | 95.77 297 | 98.69 178 | 99.48 122 | 97.43 195 | 97.84 197 | 99.55 73 | 81.42 402 | 96.51 346 | 98.58 247 | 95.53 233 | 99.67 267 | 93.41 336 | 99.58 203 | 98.98 264 |
|
| ACMH | | 96.65 7 | 99.25 33 | 99.24 39 | 99.26 90 | 99.72 44 | 98.38 109 | 99.07 61 | 99.55 73 | 98.30 134 | 99.65 45 | 99.45 70 | 99.22 15 | 99.76 221 | 98.44 96 | 99.77 124 | 99.64 63 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| FOURS1 | | | | | | 99.73 38 | 99.67 2 | 99.43 11 | 99.54 78 | 99.43 40 | 99.26 112 | | | | | | |
|
| KD-MVS_self_test | | | 99.25 33 | 99.18 42 | 99.44 57 | 99.63 74 | 99.06 64 | 98.69 95 | 99.54 78 | 99.31 52 | 99.62 51 | 99.53 54 | 97.36 144 | 99.86 108 | 99.24 47 | 99.71 154 | 99.39 175 |
|
| PEN-MVS | | | 99.41 20 | 99.34 25 | 99.62 6 | 99.73 38 | 99.14 52 | 99.29 33 | 99.54 78 | 99.62 20 | 99.56 53 | 99.42 73 | 98.16 84 | 99.96 11 | 98.78 72 | 99.93 44 | 99.77 35 |
|
| PS-CasMVS | | | 99.40 21 | 99.33 26 | 99.62 6 | 99.71 47 | 99.10 60 | 99.29 33 | 99.53 81 | 99.53 29 | 99.46 71 | 99.41 76 | 98.23 73 | 99.95 22 | 98.89 68 | 99.95 32 | 99.81 28 |
|
| Test_1112_low_res | | | 96.99 270 | 96.55 281 | 98.31 227 | 99.35 151 | 95.47 269 | 95.84 338 | 99.53 81 | 91.51 373 | 96.80 334 | 98.48 261 | 91.36 313 | 99.83 154 | 96.58 217 | 99.53 219 | 99.62 67 |
|
| USDC | | | 97.41 238 | 97.40 230 | 97.44 298 | 98.94 230 | 93.67 329 | 95.17 358 | 99.53 81 | 94.03 343 | 98.97 154 | 99.10 136 | 95.29 240 | 99.34 362 | 95.84 268 | 99.73 142 | 99.30 210 |
|
| FIs | | | 99.14 46 | 99.09 55 | 99.29 84 | 99.70 54 | 98.28 117 | 99.13 55 | 99.52 84 | 99.48 32 | 99.24 117 | 99.41 76 | 96.79 178 | 99.82 164 | 98.69 81 | 99.88 74 | 99.76 39 |
|
| Anonymous20231211 | | | 99.27 30 | 99.27 35 | 99.26 90 | 99.29 158 | 98.18 126 | 99.49 8 | 99.51 85 | 99.70 8 | 99.80 24 | 99.68 20 | 96.84 172 | 99.83 154 | 99.21 48 | 99.91 63 | 99.77 35 |
|
| DTE-MVSNet | | | 99.43 18 | 99.35 23 | 99.66 4 | 99.71 47 | 99.30 17 | 99.31 27 | 99.51 85 | 99.64 15 | 99.56 53 | 99.46 66 | 98.23 73 | 99.97 4 | 98.78 72 | 99.93 44 | 99.72 45 |
|
| ETV-MVS | | | 98.03 189 | 97.86 200 | 98.56 200 | 98.69 283 | 98.07 141 | 97.51 239 | 99.50 87 | 98.10 155 | 97.50 297 | 95.51 374 | 98.41 62 | 99.88 83 | 96.27 243 | 99.24 267 | 97.71 372 |
|
| Fast-Effi-MVS+-dtu | | | 98.27 168 | 98.09 177 | 98.81 158 | 98.43 319 | 98.11 132 | 97.61 227 | 99.50 87 | 98.64 112 | 97.39 307 | 97.52 328 | 98.12 87 | 99.95 22 | 96.90 192 | 98.71 319 | 98.38 336 |
|
| HPM-MVS_fast | | | 99.01 60 | 98.82 77 | 99.57 16 | 99.71 47 | 99.35 12 | 99.00 68 | 99.50 87 | 97.33 218 | 98.94 164 | 98.86 197 | 98.75 36 | 99.82 164 | 97.53 149 | 99.71 154 | 99.56 97 |
|
| XVG-OURS | | | 98.53 136 | 98.34 147 | 99.11 112 | 99.50 108 | 98.82 78 | 95.97 327 | 99.50 87 | 97.30 222 | 99.05 141 | 98.98 169 | 99.35 12 | 99.32 365 | 95.72 272 | 99.68 167 | 99.18 236 |
|
| baseline | | | 98.96 68 | 99.02 60 | 98.76 170 | 99.38 140 | 97.26 204 | 98.49 120 | 99.50 87 | 98.86 103 | 99.19 122 | 99.06 140 | 98.23 73 | 99.69 255 | 98.71 79 | 99.76 135 | 99.33 201 |
|
| FMVSNet5 | | | 96.01 303 | 95.20 320 | 98.41 218 | 97.53 371 | 96.10 247 | 98.74 87 | 99.50 87 | 97.22 236 | 98.03 262 | 99.04 149 | 69.80 397 | 99.88 83 | 97.27 160 | 99.71 154 | 99.25 219 |
|
| HyFIR lowres test | | | 97.19 255 | 96.60 279 | 98.96 139 | 99.62 76 | 97.28 202 | 95.17 358 | 99.50 87 | 94.21 338 | 99.01 147 | 98.32 277 | 86.61 342 | 99.99 2 | 97.10 173 | 99.84 85 | 99.60 74 |
|
| testgi | | | 98.32 161 | 98.39 140 | 98.13 240 | 99.57 81 | 95.54 265 | 97.78 203 | 99.49 94 | 97.37 215 | 99.19 122 | 97.65 320 | 98.96 24 | 99.49 336 | 96.50 230 | 98.99 300 | 99.34 196 |
|
| PGM-MVS | | | 98.66 115 | 98.37 143 | 99.55 23 | 99.53 101 | 99.18 38 | 98.23 143 | 99.49 94 | 97.01 246 | 98.69 198 | 98.88 194 | 98.00 94 | 99.89 74 | 95.87 265 | 99.59 198 | 99.58 86 |
|
| MGCFI-Net | | | 98.34 157 | 98.28 154 | 98.51 207 | 98.47 313 | 97.59 186 | 98.96 72 | 99.48 96 | 99.18 70 | 97.40 305 | 95.50 375 | 98.66 43 | 99.50 333 | 98.18 109 | 98.71 319 | 98.44 329 |
|
| SDMVSNet | | | 99.23 38 | 99.32 28 | 98.96 139 | 99.68 58 | 97.35 198 | 98.84 85 | 99.48 96 | 99.69 9 | 99.63 48 | 99.68 20 | 99.03 21 | 99.96 11 | 97.97 125 | 99.92 55 | 99.57 91 |
|
| new-patchmatchnet | | | 98.35 156 | 98.74 83 | 97.18 308 | 99.24 166 | 92.23 356 | 96.42 303 | 99.48 96 | 98.30 134 | 99.69 37 | 99.53 54 | 97.44 140 | 99.82 164 | 98.84 70 | 99.77 124 | 99.49 127 |
|
| nrg030 | | | 99.40 21 | 99.35 23 | 99.54 27 | 99.58 77 | 99.13 55 | 98.98 71 | 99.48 96 | 99.68 11 | 99.46 71 | 99.26 100 | 98.62 47 | 99.73 238 | 99.17 51 | 99.92 55 | 99.76 39 |
|
| APDe-MVS |  | | 98.99 62 | 98.79 80 | 99.60 11 | 99.21 173 | 99.15 47 | 98.87 80 | 99.48 96 | 97.57 192 | 99.35 94 | 99.24 105 | 97.83 104 | 99.89 74 | 97.88 131 | 99.70 159 | 99.75 43 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| XVG-OURS-SEG-HR | | | 98.49 141 | 98.28 154 | 99.14 108 | 99.49 115 | 98.83 76 | 96.54 295 | 99.48 96 | 97.32 220 | 99.11 129 | 98.61 244 | 99.33 13 | 99.30 368 | 96.23 246 | 98.38 334 | 99.28 214 |
|
| LPG-MVS_test | | | 98.71 99 | 98.46 129 | 99.47 54 | 99.57 81 | 98.97 66 | 98.23 143 | 99.48 96 | 96.60 265 | 99.10 132 | 99.06 140 | 98.71 39 | 99.83 154 | 95.58 279 | 99.78 119 | 99.62 67 |
|
| LGP-MVS_train | | | | | 99.47 54 | 99.57 81 | 98.97 66 | | 99.48 96 | 96.60 265 | 99.10 132 | 99.06 140 | 98.71 39 | 99.83 154 | 95.58 279 | 99.78 119 | 99.62 67 |
|
| v8 | | | 99.01 60 | 99.16 45 | 98.57 196 | 99.47 124 | 96.31 242 | 98.90 78 | 99.47 104 | 99.03 89 | 99.52 62 | 99.57 42 | 96.93 168 | 99.81 177 | 99.60 25 | 99.98 12 | 99.60 74 |
|
| LF4IMVS | | | 97.90 197 | 97.69 210 | 98.52 206 | 99.17 188 | 97.66 181 | 97.19 265 | 99.47 104 | 96.31 280 | 97.85 272 | 98.20 285 | 96.71 185 | 99.52 328 | 94.62 298 | 99.72 149 | 98.38 336 |
|
| sasdasda | | | 98.34 157 | 98.26 158 | 98.58 193 | 98.46 315 | 97.82 168 | 98.96 72 | 99.46 106 | 99.19 68 | 97.46 300 | 95.46 378 | 98.59 50 | 99.46 344 | 98.08 116 | 98.71 319 | 98.46 324 |
|
| canonicalmvs | | | 98.34 157 | 98.26 158 | 98.58 193 | 98.46 315 | 97.82 168 | 98.96 72 | 99.46 106 | 99.19 68 | 97.46 300 | 95.46 378 | 98.59 50 | 99.46 344 | 98.08 116 | 98.71 319 | 98.46 324 |
|
| XVG-ACMP-BASELINE | | | 98.56 128 | 98.34 147 | 99.22 98 | 99.54 98 | 98.59 94 | 97.71 213 | 99.46 106 | 97.25 227 | 98.98 150 | 98.99 165 | 97.54 129 | 99.84 137 | 95.88 262 | 99.74 139 | 99.23 224 |
|
| DeepC-MVS | | 97.60 4 | 98.97 66 | 98.93 67 | 99.10 114 | 99.35 151 | 97.98 151 | 98.01 174 | 99.46 106 | 97.56 194 | 99.54 56 | 99.50 59 | 98.97 23 | 99.84 137 | 98.06 118 | 99.92 55 | 99.49 127 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| APD_test1 | | | 98.83 83 | 98.66 98 | 99.34 73 | 99.78 25 | 99.47 6 | 98.42 130 | 99.45 110 | 98.28 139 | 98.98 150 | 99.19 113 | 97.76 110 | 99.58 309 | 96.57 219 | 99.55 213 | 98.97 267 |
|
| Fast-Effi-MVS+ | | | 97.67 219 | 97.38 232 | 98.57 196 | 98.71 274 | 97.43 195 | 97.23 259 | 99.45 110 | 94.82 324 | 96.13 354 | 96.51 354 | 98.52 56 | 99.91 59 | 96.19 249 | 98.83 311 | 98.37 338 |
|
| v1240 | | | 98.55 132 | 98.62 104 | 98.32 225 | 99.22 171 | 95.58 264 | 97.51 239 | 99.45 110 | 97.16 239 | 99.45 74 | 99.24 105 | 96.12 208 | 99.85 120 | 99.60 25 | 99.88 74 | 99.55 104 |
|
| VPA-MVSNet | | | 99.30 28 | 99.30 32 | 99.28 85 | 99.49 115 | 98.36 114 | 99.00 68 | 99.45 110 | 99.63 17 | 99.52 62 | 99.44 71 | 98.25 71 | 99.88 83 | 99.09 54 | 99.84 85 | 99.62 67 |
|
| Anonymous20240521 | | | 98.69 106 | 98.87 71 | 98.16 239 | 99.77 28 | 95.11 283 | 99.08 58 | 99.44 114 | 99.34 49 | 99.33 97 | 99.55 48 | 94.10 276 | 99.94 35 | 99.25 45 | 99.96 25 | 99.42 161 |
|
| tfpnnormal | | | 98.90 75 | 98.90 70 | 98.91 147 | 99.67 62 | 97.82 168 | 99.00 68 | 99.44 114 | 99.45 36 | 99.51 66 | 99.24 105 | 98.20 79 | 99.86 108 | 95.92 261 | 99.69 162 | 99.04 255 |
|
| GBi-Net | | | 98.65 116 | 98.47 127 | 99.17 102 | 98.90 240 | 98.24 120 | 99.20 45 | 99.44 114 | 98.59 118 | 98.95 157 | 99.55 48 | 94.14 272 | 99.86 108 | 97.77 137 | 99.69 162 | 99.41 164 |
|
| test1 | | | 98.65 116 | 98.47 127 | 99.17 102 | 98.90 240 | 98.24 120 | 99.20 45 | 99.44 114 | 98.59 118 | 98.95 157 | 99.55 48 | 94.14 272 | 99.86 108 | 97.77 137 | 99.69 162 | 99.41 164 |
|
| FMVSNet1 | | | 99.17 42 | 99.17 43 | 99.17 102 | 99.55 93 | 98.24 120 | 99.20 45 | 99.44 114 | 99.21 62 | 99.43 76 | 99.55 48 | 97.82 107 | 99.86 108 | 98.42 98 | 99.89 73 | 99.41 164 |
|
| TinyColmap | | | 97.89 199 | 97.98 188 | 97.60 282 | 98.86 248 | 94.35 304 | 96.21 315 | 99.44 114 | 97.45 209 | 99.06 136 | 98.88 194 | 97.99 97 | 99.28 372 | 94.38 310 | 99.58 203 | 99.18 236 |
|
| HPM-MVS |  | | 98.79 88 | 98.53 116 | 99.59 15 | 99.65 65 | 99.29 19 | 99.16 51 | 99.43 120 | 96.74 260 | 98.61 209 | 98.38 269 | 98.62 47 | 99.87 100 | 96.47 231 | 99.67 173 | 99.59 80 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| PVSNet_BlendedMVS | | | 97.55 228 | 97.53 222 | 97.60 282 | 98.92 236 | 93.77 327 | 96.64 292 | 99.43 120 | 94.49 329 | 97.62 285 | 99.18 116 | 96.82 175 | 99.67 267 | 94.73 295 | 99.93 44 | 99.36 190 |
|
| PVSNet_Blended | | | 96.88 273 | 96.68 272 | 97.47 296 | 98.92 236 | 93.77 327 | 94.71 370 | 99.43 120 | 90.98 379 | 97.62 285 | 97.36 338 | 96.82 175 | 99.67 267 | 94.73 295 | 99.56 210 | 98.98 264 |
|
| TranMVSNet+NR-MVSNet | | | 99.17 42 | 99.07 58 | 99.46 56 | 99.37 146 | 98.87 73 | 98.39 132 | 99.42 123 | 99.42 41 | 99.36 92 | 99.06 140 | 98.38 64 | 99.95 22 | 98.34 101 | 99.90 69 | 99.57 91 |
|
| SF-MVS | | | 98.53 136 | 98.27 157 | 99.32 80 | 99.31 154 | 98.75 81 | 98.19 148 | 99.41 124 | 96.77 259 | 98.83 182 | 98.90 187 | 97.80 108 | 99.82 164 | 95.68 275 | 99.52 222 | 99.38 182 |
|
| door | | | | | | | | | 99.41 124 | | | | | | | | |
|
| PMMVS2 | | | 98.07 188 | 98.08 180 | 98.04 249 | 99.41 137 | 94.59 298 | 94.59 377 | 99.40 126 | 97.50 199 | 98.82 185 | 98.83 203 | 96.83 174 | 99.84 137 | 97.50 151 | 99.81 99 | 99.71 46 |
|
| UniMVSNet_NR-MVSNet | | | 98.86 81 | 98.68 95 | 99.40 62 | 99.17 188 | 98.74 82 | 97.68 216 | 99.40 126 | 99.14 72 | 99.06 136 | 98.59 246 | 96.71 185 | 99.93 40 | 98.57 88 | 99.77 124 | 99.53 115 |
|
| DPE-MVS |  | | 98.59 126 | 98.26 158 | 99.57 16 | 99.27 161 | 99.15 47 | 97.01 271 | 99.39 128 | 97.67 182 | 99.44 75 | 98.99 165 | 97.53 131 | 99.89 74 | 95.40 283 | 99.68 167 | 99.66 58 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| IterMVS-LS | | | 98.55 132 | 98.70 92 | 98.09 241 | 99.48 122 | 94.73 292 | 97.22 262 | 99.39 128 | 98.97 94 | 99.38 87 | 99.31 93 | 96.00 214 | 99.93 40 | 98.58 86 | 99.97 19 | 99.60 74 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MP-MVS-pluss | | | 98.57 127 | 98.23 162 | 99.60 11 | 99.69 56 | 99.35 12 | 97.16 266 | 99.38 130 | 94.87 323 | 98.97 154 | 98.99 165 | 98.01 93 | 99.88 83 | 97.29 159 | 99.70 159 | 99.58 86 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| UniMVSNet (Re) | | | 98.87 78 | 98.71 89 | 99.35 70 | 99.24 166 | 98.73 85 | 97.73 212 | 99.38 130 | 98.93 98 | 99.12 128 | 98.73 219 | 96.77 179 | 99.86 108 | 98.63 85 | 99.80 109 | 99.46 146 |
|
| PHI-MVS | | | 98.29 167 | 97.95 190 | 99.34 73 | 98.44 318 | 99.16 43 | 98.12 156 | 99.38 130 | 96.01 291 | 98.06 258 | 98.43 264 | 97.80 108 | 99.67 267 | 95.69 274 | 99.58 203 | 99.20 229 |
|
| ACMP | | 95.32 15 | 98.41 148 | 98.09 177 | 99.36 64 | 99.51 105 | 98.79 80 | 97.68 216 | 99.38 130 | 95.76 299 | 98.81 187 | 98.82 206 | 98.36 65 | 99.82 164 | 94.75 294 | 99.77 124 | 99.48 137 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| ACMMP |  | | 98.75 95 | 98.50 120 | 99.52 39 | 99.56 89 | 99.16 43 | 98.87 80 | 99.37 134 | 97.16 239 | 98.82 185 | 99.01 161 | 97.71 113 | 99.87 100 | 96.29 242 | 99.69 162 | 99.54 108 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| OpenMVS |  | 96.65 7 | 97.09 261 | 96.68 272 | 98.32 225 | 98.32 327 | 97.16 213 | 98.86 82 | 99.37 134 | 89.48 387 | 96.29 352 | 99.15 126 | 96.56 190 | 99.90 64 | 92.90 343 | 99.20 273 | 97.89 360 |
|
| MSDG | | | 97.71 216 | 97.52 223 | 98.28 230 | 98.91 239 | 96.82 227 | 94.42 380 | 99.37 134 | 97.65 184 | 98.37 238 | 98.29 279 | 97.40 142 | 99.33 364 | 94.09 317 | 99.22 270 | 98.68 313 |
|
| ACMM | | 96.08 12 | 98.91 73 | 98.73 85 | 99.48 51 | 99.55 93 | 99.14 52 | 98.07 163 | 99.37 134 | 97.62 186 | 99.04 143 | 98.96 174 | 98.84 30 | 99.79 197 | 97.43 153 | 99.65 179 | 99.49 127 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| v144192 | | | 98.54 134 | 98.57 112 | 98.45 214 | 99.21 173 | 95.98 253 | 97.63 224 | 99.36 138 | 97.15 241 | 99.32 103 | 99.18 116 | 95.84 226 | 99.84 137 | 99.50 32 | 99.91 63 | 99.54 108 |
|
| v1921920 | | | 98.54 134 | 98.60 109 | 98.38 221 | 99.20 177 | 95.76 261 | 97.56 233 | 99.36 138 | 97.23 233 | 99.38 87 | 99.17 120 | 96.02 212 | 99.84 137 | 99.57 27 | 99.90 69 | 99.54 108 |
|
| v1192 | | | 98.60 124 | 98.66 98 | 98.41 218 | 99.27 161 | 95.88 256 | 97.52 237 | 99.36 138 | 97.41 211 | 99.33 97 | 99.20 112 | 96.37 200 | 99.82 164 | 99.57 27 | 99.92 55 | 99.55 104 |
|
| SD-MVS | | | 98.40 150 | 98.68 95 | 97.54 289 | 98.96 228 | 97.99 148 | 97.88 190 | 99.36 138 | 98.20 147 | 99.63 48 | 99.04 149 | 98.76 35 | 95.33 407 | 96.56 223 | 99.74 139 | 99.31 207 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| CP-MVS | | | 98.70 103 | 98.42 135 | 99.52 39 | 99.36 147 | 99.12 57 | 98.72 91 | 99.36 138 | 97.54 197 | 98.30 240 | 98.40 266 | 97.86 103 | 99.89 74 | 96.53 228 | 99.72 149 | 99.56 97 |
|
| test0726 | | | | | | 99.50 108 | 99.21 28 | 98.17 152 | 99.35 143 | 97.97 160 | 99.26 112 | 99.06 140 | 97.61 123 | | | | |
|
| MSP-MVS | | | 98.40 150 | 98.00 186 | 99.61 9 | 99.57 81 | 99.25 24 | 98.57 106 | 99.35 143 | 97.55 196 | 99.31 105 | 97.71 316 | 94.61 261 | 99.88 83 | 96.14 253 | 99.19 276 | 99.70 51 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| VPNet | | | 98.87 78 | 98.83 76 | 99.01 133 | 99.70 54 | 97.62 185 | 98.43 128 | 99.35 143 | 99.47 34 | 99.28 106 | 99.05 147 | 96.72 184 | 99.82 164 | 98.09 115 | 99.36 247 | 99.59 80 |
|
| UnsupCasMVSNet_eth | | | 97.89 199 | 97.60 219 | 98.75 173 | 99.31 154 | 97.17 212 | 97.62 225 | 99.35 143 | 98.72 110 | 98.76 193 | 98.68 228 | 92.57 300 | 99.74 233 | 97.76 141 | 95.60 393 | 99.34 196 |
|
| DP-MVS Recon | | | 97.33 243 | 96.92 255 | 98.57 196 | 99.09 204 | 97.99 148 | 96.79 283 | 99.35 143 | 93.18 353 | 97.71 280 | 98.07 296 | 95.00 248 | 99.31 366 | 93.97 319 | 99.13 284 | 98.42 333 |
|
| ITE_SJBPF | | | | | 98.87 151 | 99.22 171 | 98.48 104 | | 99.35 143 | 97.50 199 | 98.28 242 | 98.60 245 | 97.64 120 | 99.35 361 | 93.86 324 | 99.27 262 | 98.79 298 |
|
| v1144 | | | 98.60 124 | 98.66 98 | 98.41 218 | 99.36 147 | 95.90 255 | 97.58 231 | 99.34 149 | 97.51 198 | 99.27 108 | 99.15 126 | 96.34 202 | 99.80 184 | 99.47 34 | 99.93 44 | 99.51 120 |
|
| XVS | | | 98.72 98 | 98.45 130 | 99.53 34 | 99.46 125 | 99.21 28 | 98.65 97 | 99.34 149 | 98.62 116 | 97.54 293 | 98.63 240 | 97.50 135 | 99.83 154 | 96.79 200 | 99.53 219 | 99.56 97 |
|
| X-MVStestdata | | | 94.32 334 | 92.59 352 | 99.53 34 | 99.46 125 | 99.21 28 | 98.65 97 | 99.34 149 | 98.62 116 | 97.54 293 | 45.85 406 | 97.50 135 | 99.83 154 | 96.79 200 | 99.53 219 | 99.56 97 |
|
| CP-MVSNet | | | 99.21 39 | 99.09 55 | 99.56 21 | 99.65 65 | 98.96 70 | 99.13 55 | 99.34 149 | 99.42 41 | 99.33 97 | 99.26 100 | 97.01 165 | 99.94 35 | 98.74 76 | 99.93 44 | 99.79 30 |
|
| test_0402 | | | 98.76 94 | 98.71 89 | 98.93 144 | 99.56 89 | 98.14 130 | 98.45 127 | 99.34 149 | 99.28 56 | 98.95 157 | 98.91 184 | 98.34 69 | 99.79 197 | 95.63 276 | 99.91 63 | 98.86 285 |
|
| APD-MVS_3200maxsize | | | 98.84 82 | 98.61 108 | 99.53 34 | 99.19 180 | 99.27 22 | 98.49 120 | 99.33 154 | 98.64 112 | 99.03 146 | 98.98 169 | 97.89 101 | 99.85 120 | 96.54 227 | 99.42 240 | 99.46 146 |
|
| DP-MVS | | | 98.93 71 | 98.81 79 | 99.28 85 | 99.21 173 | 98.45 106 | 98.46 125 | 99.33 154 | 99.63 17 | 99.48 68 | 99.15 126 | 97.23 152 | 99.75 228 | 97.17 165 | 99.66 178 | 99.63 66 |
|
| DVP-MVS++ | | | 98.90 75 | 98.70 92 | 99.51 43 | 98.43 319 | 99.15 47 | 99.43 11 | 99.32 156 | 98.17 150 | 99.26 112 | 99.02 152 | 98.18 80 | 99.88 83 | 97.07 175 | 99.45 236 | 99.49 127 |
|
| 9.14 | | | | 97.78 203 | | 99.07 208 | | 97.53 236 | 99.32 156 | 95.53 306 | 98.54 222 | 98.70 225 | 97.58 125 | 99.76 221 | 94.32 311 | 99.46 234 | |
|
| test_0728_SECOND | | | | | 99.60 11 | 99.50 108 | 99.23 26 | 98.02 171 | 99.32 156 | | | | | 99.88 83 | 96.99 181 | 99.63 184 | 99.68 54 |
|
| Anonymous20231206 | | | 98.21 176 | 98.21 163 | 98.20 235 | 99.51 105 | 95.43 271 | 98.13 154 | 99.32 156 | 96.16 285 | 98.93 165 | 98.82 206 | 96.00 214 | 99.83 154 | 97.32 158 | 99.73 142 | 99.36 190 |
|
| LS3D | | | 98.63 120 | 98.38 142 | 99.36 64 | 97.25 382 | 99.38 8 | 99.12 57 | 99.32 156 | 99.21 62 | 98.44 230 | 98.88 194 | 97.31 145 | 99.80 184 | 96.58 217 | 99.34 251 | 98.92 276 |
|
| test_one_0601 | | | | | | 99.39 139 | 99.20 34 | | 99.31 161 | 98.49 125 | 98.66 202 | 99.02 152 | 97.64 120 | | | | |
|
| SED-MVS | | | 98.91 73 | 98.72 87 | 99.49 48 | 99.49 115 | 99.17 39 | 98.10 159 | 99.31 161 | 98.03 157 | 99.66 42 | 99.02 152 | 98.36 65 | 99.88 83 | 96.91 187 | 99.62 187 | 99.41 164 |
|
| test_241102_ONE | | | | | | 99.49 115 | 99.17 39 | | 99.31 161 | 97.98 159 | 99.66 42 | 98.90 187 | 98.36 65 | 99.48 339 | | | |
|
| miper_lstm_enhance | | | 97.18 256 | 97.16 244 | 97.25 307 | 98.16 337 | 92.85 342 | 95.15 360 | 99.31 161 | 97.25 227 | 98.74 196 | 98.78 212 | 90.07 321 | 99.78 208 | 97.19 164 | 99.80 109 | 99.11 246 |
|
| HFP-MVS | | | 98.71 99 | 98.44 132 | 99.51 43 | 99.49 115 | 99.16 43 | 98.52 112 | 99.31 161 | 97.47 202 | 98.58 215 | 98.50 258 | 97.97 98 | 99.85 120 | 96.57 219 | 99.59 198 | 99.53 115 |
|
| region2R | | | 98.69 106 | 98.40 137 | 99.54 27 | 99.53 101 | 99.17 39 | 98.52 112 | 99.31 161 | 97.46 207 | 98.44 230 | 98.51 254 | 97.83 104 | 99.88 83 | 96.46 232 | 99.58 203 | 99.58 86 |
|
| ACMMPR | | | 98.70 103 | 98.42 135 | 99.54 27 | 99.52 103 | 99.14 52 | 98.52 112 | 99.31 161 | 97.47 202 | 98.56 218 | 98.54 250 | 97.75 111 | 99.88 83 | 96.57 219 | 99.59 198 | 99.58 86 |
|
| SteuartSystems-ACMMP | | | 98.79 88 | 98.54 115 | 99.54 27 | 99.73 38 | 99.16 43 | 98.23 143 | 99.31 161 | 97.92 165 | 98.90 168 | 98.90 187 | 98.00 94 | 99.88 83 | 96.15 252 | 99.72 149 | 99.58 86 |
| Skip Steuart: Steuart Systems R&D Blog. |
| sd_testset | | | 99.28 29 | 99.31 30 | 99.19 101 | 99.68 58 | 98.06 144 | 99.41 13 | 99.30 169 | 99.69 9 | 99.63 48 | 99.68 20 | 99.25 14 | 99.96 11 | 97.25 162 | 99.92 55 | 99.57 91 |
|
| SR-MVS-dyc-post | | | 98.81 86 | 98.55 113 | 99.57 16 | 99.20 177 | 99.38 8 | 98.48 123 | 99.30 169 | 98.64 112 | 98.95 157 | 98.96 174 | 97.49 138 | 99.86 108 | 96.56 223 | 99.39 243 | 99.45 150 |
|
| RE-MVS-def | | | | 98.58 111 | | 99.20 177 | 99.38 8 | 98.48 123 | 99.30 169 | 98.64 112 | 98.95 157 | 98.96 174 | 97.75 111 | | 96.56 223 | 99.39 243 | 99.45 150 |
|
| test_241102_TWO | | | | | | | | | 99.30 169 | 98.03 157 | 99.26 112 | 99.02 152 | 97.51 134 | 99.88 83 | 96.91 187 | 99.60 194 | 99.66 58 |
|
| RPMNet | | | 97.02 266 | 96.93 253 | 97.30 303 | 97.71 360 | 94.22 305 | 98.11 157 | 99.30 169 | 99.37 45 | 96.91 325 | 99.34 87 | 86.72 341 | 99.87 100 | 97.53 149 | 97.36 371 | 97.81 365 |
|
| MVS_111021_LR | | | 98.30 164 | 98.12 175 | 98.83 155 | 99.16 190 | 98.03 146 | 96.09 323 | 99.30 169 | 97.58 191 | 98.10 255 | 98.24 281 | 98.25 71 | 99.34 362 | 96.69 212 | 99.65 179 | 99.12 245 |
|
| F-COLMAP | | | 97.30 245 | 96.68 272 | 99.14 108 | 99.19 180 | 98.39 108 | 97.27 258 | 99.30 169 | 92.93 357 | 96.62 341 | 98.00 299 | 95.73 228 | 99.68 264 | 92.62 352 | 98.46 333 | 99.35 194 |
|
| 3Dnovator | | 98.27 2 | 98.81 86 | 98.73 85 | 99.05 127 | 98.76 265 | 97.81 171 | 99.25 40 | 99.30 169 | 98.57 121 | 98.55 220 | 99.33 89 | 97.95 99 | 99.90 64 | 97.16 166 | 99.67 173 | 99.44 154 |
|
| EGC-MVSNET | | | 85.24 372 | 80.54 375 | 99.34 73 | 99.77 28 | 99.20 34 | 99.08 58 | 99.29 177 | 12.08 408 | 20.84 409 | 99.42 73 | 97.55 128 | 99.85 120 | 97.08 174 | 99.72 149 | 98.96 269 |
|
| ZNCC-MVS | | | 98.68 111 | 98.40 137 | 99.54 27 | 99.57 81 | 99.21 28 | 98.46 125 | 99.29 177 | 97.28 224 | 98.11 254 | 98.39 267 | 98.00 94 | 99.87 100 | 96.86 197 | 99.64 181 | 99.55 104 |
|
| SR-MVS | | | 98.71 99 | 98.43 133 | 99.57 16 | 99.18 187 | 99.35 12 | 98.36 135 | 99.29 177 | 98.29 137 | 98.88 174 | 98.85 200 | 97.53 131 | 99.87 100 | 96.14 253 | 99.31 255 | 99.48 137 |
|
| pmmvs-eth3d | | | 98.47 143 | 98.34 147 | 98.86 152 | 99.30 157 | 97.76 174 | 97.16 266 | 99.28 180 | 95.54 305 | 99.42 79 | 99.19 113 | 97.27 149 | 99.63 289 | 97.89 128 | 99.97 19 | 99.20 229 |
|
| APD-MVS |  | | 98.10 183 | 97.67 211 | 99.42 58 | 99.11 199 | 98.93 71 | 97.76 208 | 99.28 180 | 94.97 320 | 98.72 197 | 98.77 214 | 97.04 161 | 99.85 120 | 93.79 326 | 99.54 215 | 99.49 127 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| TAPA-MVS | | 96.21 11 | 96.63 284 | 95.95 295 | 98.65 180 | 98.93 232 | 98.09 135 | 96.93 277 | 99.28 180 | 83.58 400 | 98.13 252 | 97.78 312 | 96.13 207 | 99.40 353 | 93.52 332 | 99.29 260 | 98.45 327 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| HQP_MVS | | | 97.99 195 | 97.67 211 | 98.93 144 | 99.19 180 | 97.65 182 | 97.77 205 | 99.27 183 | 98.20 147 | 97.79 276 | 97.98 301 | 94.90 249 | 99.70 250 | 94.42 306 | 99.51 224 | 99.45 150 |
|
| plane_prior5 | | | | | | | | | 99.27 183 | | | | | 99.70 250 | 94.42 306 | 99.51 224 | 99.45 150 |
|
| CPTT-MVS | | | 97.84 209 | 97.36 234 | 99.27 88 | 99.31 154 | 98.46 105 | 98.29 138 | 99.27 183 | 94.90 322 | 97.83 273 | 98.37 270 | 94.90 249 | 99.84 137 | 93.85 325 | 99.54 215 | 99.51 120 |
|
| UnsupCasMVSNet_bld | | | 97.30 245 | 96.92 255 | 98.45 214 | 99.28 159 | 96.78 231 | 96.20 316 | 99.27 183 | 95.42 309 | 98.28 242 | 98.30 278 | 93.16 287 | 99.71 246 | 94.99 289 | 97.37 369 | 98.87 284 |
|
| MVS_111021_HR | | | 98.25 172 | 98.08 180 | 98.75 173 | 99.09 204 | 97.46 192 | 95.97 327 | 99.27 183 | 97.60 190 | 97.99 263 | 98.25 280 | 98.15 86 | 99.38 357 | 96.87 195 | 99.57 207 | 99.42 161 |
|
| cascas | | | 94.79 329 | 94.33 335 | 96.15 350 | 96.02 404 | 92.36 353 | 92.34 399 | 99.26 188 | 85.34 398 | 95.08 376 | 94.96 387 | 92.96 293 | 98.53 396 | 94.41 309 | 98.59 330 | 97.56 377 |
|
| GST-MVS | | | 98.61 123 | 98.30 152 | 99.52 39 | 99.51 105 | 99.20 34 | 98.26 141 | 99.25 189 | 97.44 210 | 98.67 200 | 98.39 267 | 97.68 114 | 99.85 120 | 96.00 257 | 99.51 224 | 99.52 118 |
|
| IterMVS-SCA-FT | | | 97.85 208 | 98.18 167 | 96.87 324 | 99.27 161 | 91.16 372 | 95.53 346 | 99.25 189 | 99.10 80 | 99.41 80 | 99.35 83 | 93.10 289 | 99.96 11 | 98.65 83 | 99.94 40 | 99.49 127 |
|
| ACMMP_NAP | | | 98.75 95 | 98.48 125 | 99.57 16 | 99.58 77 | 99.29 19 | 97.82 198 | 99.25 189 | 96.94 249 | 98.78 188 | 99.12 132 | 98.02 92 | 99.84 137 | 97.13 171 | 99.67 173 | 99.59 80 |
|
| DU-MVS | | | 98.82 84 | 98.63 102 | 99.39 63 | 99.16 190 | 98.74 82 | 97.54 235 | 99.25 189 | 98.84 106 | 99.06 136 | 98.76 216 | 96.76 181 | 99.93 40 | 98.57 88 | 99.77 124 | 99.50 123 |
|
| OMC-MVS | | | 97.88 201 | 97.49 226 | 99.04 129 | 98.89 245 | 98.63 89 | 96.94 275 | 99.25 189 | 95.02 318 | 98.53 223 | 98.51 254 | 97.27 149 | 99.47 342 | 93.50 334 | 99.51 224 | 99.01 259 |
|
| test20.03 | | | 98.78 90 | 98.77 82 | 98.78 166 | 99.46 125 | 97.20 209 | 97.78 203 | 99.24 194 | 99.04 88 | 99.41 80 | 98.90 187 | 97.65 117 | 99.76 221 | 97.70 142 | 99.79 114 | 99.39 175 |
|
| mPP-MVS | | | 98.64 118 | 98.34 147 | 99.54 27 | 99.54 98 | 99.17 39 | 98.63 99 | 99.24 194 | 97.47 202 | 98.09 256 | 98.68 228 | 97.62 122 | 99.89 74 | 96.22 247 | 99.62 187 | 99.57 91 |
|
| MSLP-MVS++ | | | 98.02 190 | 98.14 174 | 97.64 280 | 98.58 302 | 95.19 279 | 97.48 241 | 99.23 196 | 97.47 202 | 97.90 267 | 98.62 242 | 97.04 161 | 98.81 393 | 97.55 146 | 99.41 241 | 98.94 274 |
|
| SMA-MVS |  | | 98.40 150 | 98.03 184 | 99.51 43 | 99.16 190 | 99.21 28 | 98.05 166 | 99.22 197 | 94.16 339 | 98.98 150 | 99.10 136 | 97.52 133 | 99.79 197 | 96.45 233 | 99.64 181 | 99.53 115 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| IterMVS | | | 97.73 214 | 98.11 176 | 96.57 333 | 99.24 166 | 90.28 380 | 95.52 348 | 99.21 198 | 98.86 103 | 99.33 97 | 99.33 89 | 93.11 288 | 99.94 35 | 98.49 94 | 99.94 40 | 99.48 137 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CLD-MVS | | | 97.49 231 | 97.16 244 | 98.48 211 | 99.07 208 | 97.03 218 | 94.71 370 | 99.21 198 | 94.46 331 | 98.06 258 | 97.16 342 | 97.57 126 | 99.48 339 | 94.46 303 | 99.78 119 | 98.95 270 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| MTGPA |  | | | | | | | | 99.20 200 | | | | | | | | |
|
| MTAPA | | | 98.88 77 | 98.64 101 | 99.61 9 | 99.67 62 | 99.36 11 | 98.43 128 | 99.20 200 | 98.83 107 | 98.89 170 | 98.90 187 | 96.98 167 | 99.92 50 | 97.16 166 | 99.70 159 | 99.56 97 |
|
| NR-MVSNet | | | 98.95 69 | 98.82 77 | 99.36 64 | 99.16 190 | 98.72 87 | 99.22 42 | 99.20 200 | 99.10 80 | 99.72 31 | 98.76 216 | 96.38 199 | 99.86 108 | 98.00 123 | 99.82 95 | 99.50 123 |
|
| DELS-MVS | | | 98.27 168 | 98.20 164 | 98.48 211 | 98.86 248 | 96.70 232 | 95.60 344 | 99.20 200 | 97.73 178 | 98.45 229 | 98.71 222 | 97.50 135 | 99.82 164 | 98.21 107 | 99.59 198 | 98.93 275 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| V42 | | | 98.78 90 | 98.78 81 | 98.76 170 | 99.44 129 | 97.04 217 | 98.27 140 | 99.19 204 | 97.87 169 | 99.25 116 | 99.16 122 | 96.84 172 | 99.78 208 | 99.21 48 | 99.84 85 | 99.46 146 |
|
| MP-MVS |  | | 98.46 144 | 98.09 177 | 99.54 27 | 99.57 81 | 99.22 27 | 98.50 119 | 99.19 204 | 97.61 189 | 97.58 289 | 98.66 233 | 97.40 142 | 99.88 83 | 94.72 297 | 99.60 194 | 99.54 108 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| QAPM | | | 97.31 244 | 96.81 265 | 98.82 156 | 98.80 263 | 97.49 190 | 99.06 62 | 99.19 204 | 90.22 383 | 97.69 282 | 99.16 122 | 96.91 169 | 99.90 64 | 90.89 377 | 99.41 241 | 99.07 249 |
|
| 3Dnovator+ | | 97.89 3 | 98.69 106 | 98.51 118 | 99.24 95 | 98.81 260 | 98.40 107 | 99.02 65 | 99.19 204 | 98.99 92 | 98.07 257 | 99.28 96 | 97.11 159 | 99.84 137 | 96.84 198 | 99.32 253 | 99.47 144 |
|
| eth_miper_zixun_eth | | | 97.23 252 | 97.25 239 | 97.17 310 | 98.00 345 | 92.77 344 | 94.71 370 | 99.18 208 | 97.27 225 | 98.56 218 | 98.74 218 | 91.89 308 | 99.69 255 | 97.06 177 | 99.81 99 | 99.05 251 |
|
| OPM-MVS | | | 98.56 128 | 98.32 151 | 99.25 93 | 99.41 137 | 98.73 85 | 97.13 268 | 99.18 208 | 97.10 242 | 98.75 194 | 98.92 183 | 98.18 80 | 99.65 283 | 96.68 213 | 99.56 210 | 99.37 184 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| MVP-Stereo | | | 98.08 187 | 97.92 194 | 98.57 196 | 98.96 228 | 96.79 228 | 97.90 187 | 99.18 208 | 96.41 276 | 98.46 228 | 98.95 178 | 95.93 222 | 99.60 299 | 96.51 229 | 98.98 302 | 99.31 207 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| DeepPCF-MVS | | 96.93 5 | 98.32 161 | 98.01 185 | 99.23 97 | 98.39 324 | 98.97 66 | 95.03 362 | 99.18 208 | 96.88 252 | 99.33 97 | 98.78 212 | 98.16 84 | 99.28 372 | 96.74 206 | 99.62 187 | 99.44 154 |
|
| xiu_mvs_v1_base_debu | | | 97.86 203 | 98.17 168 | 96.92 321 | 98.98 225 | 93.91 320 | 96.45 300 | 99.17 212 | 97.85 171 | 98.41 233 | 97.14 344 | 98.47 57 | 99.92 50 | 98.02 120 | 99.05 290 | 96.92 384 |
|
| xiu_mvs_v1_base | | | 97.86 203 | 98.17 168 | 96.92 321 | 98.98 225 | 93.91 320 | 96.45 300 | 99.17 212 | 97.85 171 | 98.41 233 | 97.14 344 | 98.47 57 | 99.92 50 | 98.02 120 | 99.05 290 | 96.92 384 |
|
| xiu_mvs_v1_base_debi | | | 97.86 203 | 98.17 168 | 96.92 321 | 98.98 225 | 93.91 320 | 96.45 300 | 99.17 212 | 97.85 171 | 98.41 233 | 97.14 344 | 98.47 57 | 99.92 50 | 98.02 120 | 99.05 290 | 96.92 384 |
|
| cl____ | | | 97.02 266 | 96.83 262 | 97.58 284 | 97.82 355 | 94.04 313 | 94.66 373 | 99.16 215 | 97.04 244 | 98.63 205 | 98.71 222 | 88.68 332 | 99.69 255 | 97.00 179 | 99.81 99 | 99.00 262 |
|
| DIV-MVS_self_test | | | 97.02 266 | 96.84 261 | 97.58 284 | 97.82 355 | 94.03 314 | 94.66 373 | 99.16 215 | 97.04 244 | 98.63 205 | 98.71 222 | 88.69 330 | 99.69 255 | 97.00 179 | 99.81 99 | 99.01 259 |
|
| c3_l | | | 97.36 240 | 97.37 233 | 97.31 302 | 98.09 341 | 93.25 335 | 95.01 363 | 99.16 215 | 97.05 243 | 98.77 191 | 98.72 221 | 92.88 294 | 99.64 286 | 96.93 186 | 99.76 135 | 99.05 251 |
|
| Effi-MVS+-dtu | | | 98.26 170 | 97.90 196 | 99.35 70 | 98.02 344 | 99.49 5 | 98.02 171 | 99.16 215 | 98.29 137 | 97.64 284 | 97.99 300 | 96.44 196 | 99.95 22 | 96.66 214 | 98.93 307 | 98.60 318 |
|
| v2v482 | | | 98.56 128 | 98.62 104 | 98.37 222 | 99.42 135 | 95.81 259 | 97.58 231 | 99.16 215 | 97.90 167 | 99.28 106 | 99.01 161 | 95.98 219 | 99.79 197 | 99.33 39 | 99.90 69 | 99.51 120 |
|
| MDA-MVSNet-bldmvs | | | 97.94 196 | 97.91 195 | 98.06 246 | 99.44 129 | 94.96 286 | 96.63 293 | 99.15 220 | 98.35 129 | 98.83 182 | 99.11 133 | 94.31 269 | 99.85 120 | 96.60 216 | 98.72 317 | 99.37 184 |
|
| iter_conf05 | | | 96.54 287 | 96.07 293 | 97.92 255 | 97.90 352 | 94.50 299 | 97.87 193 | 99.14 221 | 97.73 178 | 98.89 170 | 98.95 178 | 75.75 393 | 99.87 100 | 98.50 93 | 99.92 55 | 99.40 173 |
|
| FMVSNet2 | | | 98.49 141 | 98.40 137 | 98.75 173 | 98.90 240 | 97.14 215 | 98.61 102 | 99.13 222 | 98.59 118 | 99.19 122 | 99.28 96 | 94.14 272 | 99.82 164 | 97.97 125 | 99.80 109 | 99.29 212 |
|
| DSMNet-mixed | | | 97.42 237 | 97.60 219 | 96.87 324 | 99.15 194 | 91.46 362 | 98.54 110 | 99.12 223 | 92.87 359 | 97.58 289 | 99.63 33 | 96.21 205 | 99.90 64 | 95.74 271 | 99.54 215 | 99.27 215 |
|
| CMPMVS |  | 75.91 23 | 96.29 296 | 95.44 311 | 98.84 154 | 96.25 401 | 98.69 88 | 97.02 270 | 99.12 223 | 88.90 390 | 97.83 273 | 98.86 197 | 89.51 325 | 98.90 391 | 91.92 357 | 99.51 224 | 98.92 276 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| PCF-MVS | | 92.86 18 | 94.36 333 | 93.00 350 | 98.42 217 | 98.70 278 | 97.56 187 | 93.16 395 | 99.11 225 | 79.59 403 | 97.55 292 | 97.43 333 | 92.19 304 | 99.73 238 | 79.85 404 | 99.45 236 | 97.97 357 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| mvsany_test3 | | | 98.87 78 | 98.92 68 | 98.74 177 | 99.38 140 | 96.94 224 | 98.58 105 | 99.10 226 | 96.49 270 | 99.96 4 | 99.81 5 | 98.18 80 | 99.45 346 | 98.97 63 | 99.79 114 | 99.83 22 |
|
| cdsmvs_eth3d_5k | | | 24.66 375 | 32.88 378 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 99.10 226 | 0.00 411 | 0.00 412 | 97.58 324 | 99.21 16 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| miper_ehance_all_eth | | | 97.06 263 | 97.03 250 | 97.16 312 | 97.83 354 | 93.06 337 | 94.66 373 | 99.09 228 | 95.99 292 | 98.69 198 | 98.45 263 | 92.73 298 | 99.61 298 | 96.79 200 | 99.03 294 | 98.82 288 |
|
| DeepC-MVS_fast | | 96.85 6 | 98.30 164 | 98.15 172 | 98.75 173 | 98.61 295 | 97.23 205 | 97.76 208 | 99.09 228 | 97.31 221 | 98.75 194 | 98.66 233 | 97.56 127 | 99.64 286 | 96.10 256 | 99.55 213 | 99.39 175 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ZD-MVS | | | | | | 99.01 220 | 98.84 75 | | 99.07 230 | 94.10 341 | 98.05 260 | 98.12 290 | 96.36 201 | 99.86 108 | 92.70 351 | 99.19 276 | |
|
| v148 | | | 98.45 145 | 98.60 109 | 98.00 251 | 99.44 129 | 94.98 285 | 97.44 245 | 99.06 231 | 98.30 134 | 99.32 103 | 98.97 171 | 96.65 187 | 99.62 292 | 98.37 99 | 99.85 81 | 99.39 175 |
|
| PatchMatch-RL | | | 97.24 251 | 96.78 266 | 98.61 189 | 99.03 219 | 97.83 165 | 96.36 306 | 99.06 231 | 93.49 351 | 97.36 309 | 97.78 312 | 95.75 227 | 99.49 336 | 93.44 335 | 98.77 314 | 98.52 322 |
|
| PLC |  | 94.65 16 | 96.51 288 | 95.73 299 | 98.85 153 | 98.75 267 | 97.91 158 | 96.42 303 | 99.06 231 | 90.94 380 | 95.59 363 | 97.38 336 | 94.41 265 | 99.59 303 | 90.93 375 | 98.04 355 | 99.05 251 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| ppachtmachnet_test | | | 97.50 229 | 97.74 206 | 96.78 330 | 98.70 278 | 91.23 371 | 94.55 378 | 99.05 234 | 96.36 277 | 99.21 120 | 98.79 211 | 96.39 197 | 99.78 208 | 96.74 206 | 99.82 95 | 99.34 196 |
|
| CANet | | | 97.87 202 | 97.76 204 | 98.19 236 | 97.75 357 | 95.51 267 | 96.76 286 | 99.05 234 | 97.74 177 | 96.93 322 | 98.21 284 | 95.59 232 | 99.89 74 | 97.86 133 | 99.93 44 | 99.19 234 |
|
| pmmvs5 | | | 97.64 221 | 97.49 226 | 98.08 244 | 99.14 195 | 95.12 282 | 96.70 290 | 99.05 234 | 93.77 346 | 98.62 207 | 98.83 203 | 93.23 285 | 99.75 228 | 98.33 103 | 99.76 135 | 99.36 190 |
|
| HQP3-MVS | | | | | | | | | 99.04 237 | | | | | | | 99.26 265 | |
|
| HQP-MVS | | | 97.00 269 | 96.49 283 | 98.55 201 | 98.67 286 | 96.79 228 | 96.29 311 | 99.04 237 | 96.05 288 | 95.55 366 | 96.84 348 | 93.84 278 | 99.54 322 | 92.82 346 | 99.26 265 | 99.32 203 |
|
| TEST9 | | | | | | 98.71 274 | 98.08 139 | 95.96 329 | 99.03 239 | 91.40 374 | 95.85 360 | 97.53 326 | 96.52 192 | 99.76 221 | | | |
|
| train_agg | | | 97.10 260 | 96.45 284 | 99.07 120 | 98.71 274 | 98.08 139 | 95.96 329 | 99.03 239 | 91.64 369 | 95.85 360 | 97.53 326 | 96.47 194 | 99.76 221 | 93.67 328 | 99.16 279 | 99.36 190 |
|
| test_prior | | | | | 98.95 141 | 98.69 283 | 97.95 156 | | 99.03 239 | | | | | 99.59 303 | | | 99.30 210 |
|
| save fliter | | | | | | 99.11 199 | 97.97 152 | 96.53 297 | 99.02 242 | 98.24 140 | | | | | | | |
|
| test_8 | | | | | | 98.67 286 | 98.01 147 | 95.91 334 | 99.02 242 | 91.64 369 | 95.79 362 | 97.50 329 | 96.47 194 | 99.76 221 | | | |
|
| MVS_Test | | | 98.18 179 | 98.36 144 | 97.67 276 | 98.48 312 | 94.73 292 | 98.18 149 | 99.02 242 | 97.69 181 | 98.04 261 | 99.11 133 | 97.22 153 | 99.56 314 | 98.57 88 | 98.90 309 | 98.71 306 |
|
| agg_prior | | | | | | 98.68 285 | 97.99 148 | | 99.01 245 | | 95.59 363 | | | 99.77 215 | | | |
|
| CDPH-MVS | | | 97.26 248 | 96.66 275 | 99.07 120 | 99.00 221 | 98.15 128 | 96.03 325 | 99.01 245 | 91.21 377 | 97.79 276 | 97.85 310 | 96.89 170 | 99.69 255 | 92.75 349 | 99.38 246 | 99.39 175 |
|
| ambc | | | | | 98.24 233 | 98.82 257 | 95.97 254 | 98.62 101 | 99.00 247 | | 99.27 108 | 99.21 110 | 96.99 166 | 99.50 333 | 96.55 226 | 99.50 231 | 99.26 218 |
|
| Anonymous20240529 | | | 98.93 71 | 98.87 71 | 99.12 110 | 99.19 180 | 98.22 125 | 99.01 66 | 98.99 248 | 99.25 58 | 99.54 56 | 99.37 79 | 97.04 161 | 99.80 184 | 97.89 128 | 99.52 222 | 99.35 194 |
|
| our_test_3 | | | 97.39 239 | 97.73 208 | 96.34 338 | 98.70 278 | 89.78 382 | 94.61 376 | 98.97 249 | 96.50 269 | 99.04 143 | 98.85 200 | 95.98 219 | 99.84 137 | 97.26 161 | 99.67 173 | 99.41 164 |
|
| TSAR-MVS + MP. | | | 98.63 120 | 98.49 124 | 99.06 126 | 99.64 70 | 97.90 159 | 98.51 117 | 98.94 250 | 96.96 247 | 99.24 117 | 98.89 193 | 97.83 104 | 99.81 177 | 96.88 194 | 99.49 232 | 99.48 137 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| WR-MVS | | | 98.40 150 | 98.19 166 | 99.03 130 | 99.00 221 | 97.65 182 | 96.85 281 | 98.94 250 | 98.57 121 | 98.89 170 | 98.50 258 | 95.60 231 | 99.85 120 | 97.54 148 | 99.85 81 | 99.59 80 |
|
| CNVR-MVS | | | 98.17 181 | 97.87 199 | 99.07 120 | 98.67 286 | 98.24 120 | 97.01 271 | 98.93 252 | 97.25 227 | 97.62 285 | 98.34 274 | 97.27 149 | 99.57 311 | 96.42 234 | 99.33 252 | 99.39 175 |
|
| CNLPA | | | 97.17 257 | 96.71 270 | 98.55 201 | 98.56 305 | 98.05 145 | 96.33 308 | 98.93 252 | 96.91 251 | 97.06 317 | 97.39 335 | 94.38 267 | 99.45 346 | 91.66 361 | 99.18 278 | 98.14 347 |
|
| AdaColmap |  | | 97.14 259 | 96.71 270 | 98.46 213 | 98.34 326 | 97.80 172 | 96.95 274 | 98.93 252 | 95.58 304 | 96.92 323 | 97.66 319 | 95.87 224 | 99.53 324 | 90.97 374 | 99.14 282 | 98.04 352 |
|
| CR-MVSNet | | | 96.28 297 | 95.95 295 | 97.28 304 | 97.71 360 | 94.22 305 | 98.11 157 | 98.92 255 | 92.31 365 | 96.91 325 | 99.37 79 | 85.44 354 | 99.81 177 | 97.39 155 | 97.36 371 | 97.81 365 |
|
| Patchmtry | | | 97.35 241 | 96.97 252 | 98.50 210 | 97.31 381 | 96.47 237 | 98.18 149 | 98.92 255 | 98.95 97 | 98.78 188 | 99.37 79 | 85.44 354 | 99.85 120 | 95.96 260 | 99.83 92 | 99.17 240 |
|
| FMVSNet3 | | | 97.50 229 | 97.24 240 | 98.29 229 | 98.08 342 | 95.83 258 | 97.86 195 | 98.91 257 | 97.89 168 | 98.95 157 | 98.95 178 | 87.06 339 | 99.81 177 | 97.77 137 | 99.69 162 | 99.23 224 |
|
| mvs_anonymous | | | 97.83 211 | 98.16 171 | 96.87 324 | 98.18 336 | 91.89 358 | 97.31 253 | 98.90 258 | 97.37 215 | 98.83 182 | 99.46 66 | 96.28 203 | 99.79 197 | 98.90 66 | 98.16 345 | 98.95 270 |
|
| NCCC | | | 97.86 203 | 97.47 229 | 99.05 127 | 98.61 295 | 98.07 141 | 96.98 273 | 98.90 258 | 97.63 185 | 97.04 318 | 97.93 306 | 95.99 218 | 99.66 278 | 95.31 284 | 98.82 313 | 99.43 158 |
|
| miper_enhance_ethall | | | 96.01 303 | 95.74 298 | 96.81 328 | 96.41 399 | 92.27 355 | 93.69 392 | 98.89 260 | 91.14 378 | 98.30 240 | 97.35 339 | 90.58 318 | 99.58 309 | 96.31 240 | 99.03 294 | 98.60 318 |
|
| D2MVS | | | 97.84 209 | 97.84 201 | 97.83 261 | 99.14 195 | 94.74 291 | 96.94 275 | 98.88 261 | 95.84 297 | 98.89 170 | 98.96 174 | 94.40 266 | 99.69 255 | 97.55 146 | 99.95 32 | 99.05 251 |
|
| CHOSEN 280x420 | | | 95.51 319 | 95.47 308 | 95.65 358 | 98.25 331 | 88.27 388 | 93.25 394 | 98.88 261 | 93.53 349 | 94.65 381 | 97.15 343 | 86.17 346 | 99.93 40 | 97.41 154 | 99.93 44 | 98.73 305 |
|
| IU-MVS | | | | | | 99.49 115 | 99.15 47 | | 98.87 263 | 92.97 356 | 99.41 80 | | | | 96.76 204 | 99.62 187 | 99.66 58 |
|
| EI-MVSNet-UG-set | | | 98.69 106 | 98.71 89 | 98.62 186 | 99.10 201 | 96.37 239 | 97.23 259 | 98.87 263 | 99.20 64 | 99.19 122 | 98.99 165 | 97.30 146 | 99.85 120 | 98.77 75 | 99.79 114 | 99.65 62 |
|
| EI-MVSNet | | | 98.40 150 | 98.51 118 | 98.04 249 | 99.10 201 | 94.73 292 | 97.20 263 | 98.87 263 | 98.97 94 | 99.06 136 | 99.02 152 | 96.00 214 | 99.80 184 | 98.58 86 | 99.82 95 | 99.60 74 |
|
| test11 | | | | | | | | | 98.87 263 | | | | | | | | |
|
| MVSTER | | | 96.86 274 | 96.55 281 | 97.79 264 | 97.91 351 | 94.21 307 | 97.56 233 | 98.87 263 | 97.49 201 | 99.06 136 | 99.05 147 | 80.72 376 | 99.80 184 | 98.44 96 | 99.82 95 | 99.37 184 |
|
| MSC_two_6792asdad | | | | | 99.32 80 | 98.43 319 | 98.37 111 | | 98.86 268 | | | | | 99.89 74 | 97.14 169 | 99.60 194 | 99.71 46 |
|
| No_MVS | | | | | 99.32 80 | 98.43 319 | 98.37 111 | | 98.86 268 | | | | | 99.89 74 | 97.14 169 | 99.60 194 | 99.71 46 |
|
| EI-MVSNet-Vis-set | | | 98.68 111 | 98.70 92 | 98.63 185 | 99.09 204 | 96.40 238 | 97.23 259 | 98.86 268 | 99.20 64 | 99.18 126 | 98.97 171 | 97.29 148 | 99.85 120 | 98.72 78 | 99.78 119 | 99.64 63 |
|
| PS-MVSNAJ | | | 97.08 262 | 97.39 231 | 96.16 349 | 98.56 305 | 92.46 349 | 95.24 357 | 98.85 271 | 97.25 227 | 97.49 298 | 95.99 364 | 98.07 88 | 99.90 64 | 96.37 236 | 98.67 325 | 96.12 396 |
|
| DVP-MVS |  | | 98.77 93 | 98.52 117 | 99.52 39 | 99.50 108 | 99.21 28 | 98.02 171 | 98.84 272 | 97.97 160 | 99.08 134 | 99.02 152 | 97.61 123 | 99.88 83 | 96.99 181 | 99.63 184 | 99.48 137 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| xiu_mvs_v2_base | | | 97.16 258 | 97.49 226 | 96.17 347 | 98.54 307 | 92.46 349 | 95.45 350 | 98.84 272 | 97.25 227 | 97.48 299 | 96.49 355 | 98.31 70 | 99.90 64 | 96.34 239 | 98.68 324 | 96.15 395 |
|
| MS-PatchMatch | | | 97.68 218 | 97.75 205 | 97.45 297 | 98.23 334 | 93.78 326 | 97.29 255 | 98.84 272 | 96.10 287 | 98.64 204 | 98.65 235 | 96.04 211 | 99.36 358 | 96.84 198 | 99.14 282 | 99.20 229 |
|
| PMMVS | | | 96.51 288 | 95.98 294 | 98.09 241 | 97.53 371 | 95.84 257 | 94.92 366 | 98.84 272 | 91.58 371 | 96.05 358 | 95.58 372 | 95.68 229 | 99.66 278 | 95.59 278 | 98.09 349 | 98.76 302 |
|
| 原ACMM1 | | | | | 98.35 223 | 98.90 240 | 96.25 244 | | 98.83 276 | 92.48 363 | 96.07 357 | 98.10 292 | 95.39 239 | 99.71 246 | 92.61 353 | 98.99 300 | 99.08 247 |
|
| ab-mvs | | | 98.41 148 | 98.36 144 | 98.59 192 | 99.19 180 | 97.23 205 | 99.32 23 | 98.81 277 | 97.66 183 | 98.62 207 | 99.40 78 | 96.82 175 | 99.80 184 | 95.88 262 | 99.51 224 | 98.75 303 |
|
| TAMVS | | | 98.24 173 | 98.05 182 | 98.80 160 | 99.07 208 | 97.18 211 | 97.88 190 | 98.81 277 | 96.66 264 | 99.17 127 | 99.21 110 | 94.81 255 | 99.77 215 | 96.96 185 | 99.88 74 | 99.44 154 |
|
| testdata | | | | | 98.09 241 | 98.93 232 | 95.40 272 | | 98.80 279 | 90.08 385 | 97.45 302 | 98.37 270 | 95.26 241 | 99.70 250 | 93.58 331 | 98.95 305 | 99.17 240 |
|
| CL-MVSNet_self_test | | | 97.44 236 | 97.22 241 | 98.08 244 | 98.57 304 | 95.78 260 | 94.30 383 | 98.79 280 | 96.58 267 | 98.60 211 | 98.19 286 | 94.74 260 | 99.64 286 | 96.41 235 | 98.84 310 | 98.82 288 |
|
| CANet_DTU | | | 97.26 248 | 97.06 249 | 97.84 260 | 97.57 366 | 94.65 296 | 96.19 317 | 98.79 280 | 97.23 233 | 95.14 375 | 98.24 281 | 93.22 286 | 99.84 137 | 97.34 157 | 99.84 85 | 99.04 255 |
|
| test222 | | | | | | 98.92 236 | 96.93 225 | 95.54 345 | 98.78 282 | 85.72 397 | 96.86 331 | 98.11 291 | 94.43 264 | | | 99.10 289 | 99.23 224 |
|
| WB-MVS | | | 98.52 139 | 98.55 113 | 98.43 216 | 99.65 65 | 95.59 262 | 98.52 112 | 98.77 283 | 99.65 14 | 99.52 62 | 99.00 164 | 94.34 268 | 99.93 40 | 98.65 83 | 98.83 311 | 99.76 39 |
|
| 新几何1 | | | | | 98.91 147 | 98.94 230 | 97.76 174 | | 98.76 284 | 87.58 394 | 96.75 337 | 98.10 292 | 94.80 256 | 99.78 208 | 92.73 350 | 99.00 299 | 99.20 229 |
|
| 旧先验1 | | | | | | 98.82 257 | 97.45 193 | | 98.76 284 | | | 98.34 274 | 95.50 236 | | | 99.01 298 | 99.23 224 |
|
| PAPM_NR | | | 96.82 277 | 96.32 287 | 98.30 228 | 99.07 208 | 96.69 233 | 97.48 241 | 98.76 284 | 95.81 298 | 96.61 342 | 96.47 357 | 94.12 275 | 99.17 379 | 90.82 378 | 97.78 357 | 99.06 250 |
|
| HPM-MVS++ |  | | 98.10 183 | 97.64 216 | 99.48 51 | 99.09 204 | 99.13 55 | 97.52 237 | 98.75 287 | 97.46 207 | 96.90 328 | 97.83 311 | 96.01 213 | 99.84 137 | 95.82 269 | 99.35 249 | 99.46 146 |
|
| CDS-MVSNet | | | 97.69 217 | 97.35 235 | 98.69 178 | 98.73 269 | 97.02 219 | 96.92 279 | 98.75 287 | 95.89 296 | 98.59 213 | 98.67 230 | 92.08 307 | 99.74 233 | 96.72 209 | 99.81 99 | 99.32 203 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| 无先验 | | | | | | | | 95.74 340 | 98.74 289 | 89.38 388 | | | | 99.73 238 | 92.38 356 | | 99.22 228 |
|
| MCST-MVS | | | 98.00 192 | 97.63 217 | 99.10 114 | 99.24 166 | 98.17 127 | 96.89 280 | 98.73 290 | 95.66 300 | 97.92 265 | 97.70 318 | 97.17 155 | 99.66 278 | 96.18 251 | 99.23 269 | 99.47 144 |
|
| PAPR | | | 95.29 321 | 94.47 330 | 97.75 270 | 97.50 376 | 95.14 281 | 94.89 367 | 98.71 291 | 91.39 375 | 95.35 373 | 95.48 377 | 94.57 262 | 99.14 382 | 84.95 395 | 97.37 369 | 98.97 267 |
|
| PMVS |  | 91.26 20 | 97.86 203 | 97.94 192 | 97.65 278 | 99.71 47 | 97.94 157 | 98.52 112 | 98.68 292 | 98.99 92 | 97.52 295 | 99.35 83 | 97.41 141 | 98.18 399 | 91.59 364 | 99.67 173 | 96.82 387 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| VNet | | | 98.42 147 | 98.30 152 | 98.79 163 | 98.79 264 | 97.29 201 | 98.23 143 | 98.66 293 | 99.31 52 | 98.85 179 | 98.80 209 | 94.80 256 | 99.78 208 | 98.13 112 | 99.13 284 | 99.31 207 |
|
| test12 | | | | | 98.93 144 | 98.58 302 | 97.83 165 | | 98.66 293 | | 96.53 344 | | 95.51 235 | 99.69 255 | | 99.13 284 | 99.27 215 |
|
| TSAR-MVS + GP. | | | 98.18 179 | 97.98 188 | 98.77 169 | 98.71 274 | 97.88 160 | 96.32 309 | 98.66 293 | 96.33 278 | 99.23 119 | 98.51 254 | 97.48 139 | 99.40 353 | 97.16 166 | 99.46 234 | 99.02 258 |
|
| SSC-MVS | | | 98.71 99 | 98.74 83 | 98.62 186 | 99.72 44 | 96.08 252 | 98.74 87 | 98.64 296 | 99.74 6 | 99.67 41 | 99.24 105 | 94.57 262 | 99.95 22 | 99.11 52 | 99.24 267 | 99.82 25 |
|
| OpenMVS_ROB |  | 95.38 14 | 95.84 309 | 95.18 321 | 97.81 263 | 98.41 323 | 97.15 214 | 97.37 248 | 98.62 297 | 83.86 399 | 98.65 203 | 98.37 270 | 94.29 270 | 99.68 264 | 88.41 385 | 98.62 329 | 96.60 390 |
|
| MAR-MVS | | | 96.47 292 | 95.70 300 | 98.79 163 | 97.92 350 | 99.12 57 | 98.28 139 | 98.60 298 | 92.16 367 | 95.54 369 | 96.17 362 | 94.77 259 | 99.52 328 | 89.62 382 | 98.23 339 | 97.72 371 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| h-mvs33 | | | 97.77 212 | 97.33 237 | 99.10 114 | 99.21 173 | 97.84 164 | 98.35 136 | 98.57 299 | 99.11 73 | 98.58 215 | 99.02 152 | 88.65 333 | 99.96 11 | 98.11 113 | 96.34 385 | 99.49 127 |
|
| UGNet | | | 98.53 136 | 98.45 130 | 98.79 163 | 97.94 349 | 96.96 222 | 99.08 58 | 98.54 300 | 99.10 80 | 96.82 333 | 99.47 65 | 96.55 191 | 99.84 137 | 98.56 91 | 99.94 40 | 99.55 104 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| cl22 | | | 95.79 310 | 95.39 314 | 96.98 318 | 96.77 393 | 92.79 343 | 94.40 381 | 98.53 301 | 94.59 328 | 97.89 268 | 98.17 287 | 82.82 372 | 99.24 374 | 96.37 236 | 99.03 294 | 98.92 276 |
|
| pmmvs4 | | | 97.58 227 | 97.28 238 | 98.51 207 | 98.84 252 | 96.93 225 | 95.40 353 | 98.52 302 | 93.60 348 | 98.61 209 | 98.65 235 | 95.10 245 | 99.60 299 | 96.97 184 | 99.79 114 | 98.99 263 |
|
| API-MVS | | | 97.04 265 | 96.91 257 | 97.42 299 | 97.88 353 | 98.23 124 | 98.18 149 | 98.50 303 | 97.57 192 | 97.39 307 | 96.75 351 | 96.77 179 | 99.15 381 | 90.16 380 | 99.02 297 | 94.88 401 |
|
| sss | | | 97.21 253 | 96.93 253 | 98.06 246 | 98.83 254 | 95.22 278 | 96.75 287 | 98.48 304 | 94.49 329 | 97.27 310 | 97.90 307 | 92.77 297 | 99.80 184 | 96.57 219 | 99.32 253 | 99.16 243 |
|
| Vis-MVSNet (Re-imp) | | | 97.46 233 | 97.16 244 | 98.34 224 | 99.55 93 | 96.10 247 | 98.94 75 | 98.44 305 | 98.32 133 | 98.16 248 | 98.62 242 | 88.76 329 | 99.73 238 | 93.88 323 | 99.79 114 | 99.18 236 |
|
| MDA-MVSNet_test_wron | | | 97.60 224 | 97.66 214 | 97.41 300 | 99.04 216 | 93.09 336 | 95.27 355 | 98.42 306 | 97.26 226 | 98.88 174 | 98.95 178 | 95.43 238 | 99.73 238 | 97.02 178 | 98.72 317 | 99.41 164 |
|
| jason | | | 97.45 235 | 97.35 235 | 97.76 269 | 99.24 166 | 93.93 319 | 95.86 335 | 98.42 306 | 94.24 337 | 98.50 225 | 98.13 288 | 94.82 253 | 99.91 59 | 97.22 163 | 99.73 142 | 99.43 158 |
| jason: jason. |
| test_method | | | 79.78 373 | 79.50 376 | 80.62 389 | 80.21 412 | 45.76 415 | 70.82 403 | 98.41 308 | 31.08 407 | 80.89 408 | 97.71 316 | 84.85 356 | 97.37 402 | 91.51 366 | 80.03 406 | 98.75 303 |
|
| YYNet1 | | | 97.60 224 | 97.67 211 | 97.39 301 | 99.04 216 | 93.04 340 | 95.27 355 | 98.38 309 | 97.25 227 | 98.92 166 | 98.95 178 | 95.48 237 | 99.73 238 | 96.99 181 | 98.74 315 | 99.41 164 |
|
| IS-MVSNet | | | 98.19 178 | 97.90 196 | 99.08 118 | 99.57 81 | 97.97 152 | 99.31 27 | 98.32 310 | 99.01 91 | 98.98 150 | 99.03 151 | 91.59 310 | 99.79 197 | 95.49 281 | 99.80 109 | 99.48 137 |
|
| 1314 | | | 95.74 311 | 95.60 304 | 96.17 347 | 97.53 371 | 92.75 345 | 98.07 163 | 98.31 311 | 91.22 376 | 94.25 384 | 96.68 352 | 95.53 233 | 99.03 383 | 91.64 363 | 97.18 375 | 96.74 388 |
|
| DPM-MVS | | | 96.32 295 | 95.59 305 | 98.51 207 | 98.76 265 | 97.21 208 | 94.54 379 | 98.26 312 | 91.94 368 | 96.37 350 | 97.25 340 | 93.06 291 | 99.43 349 | 91.42 367 | 98.74 315 | 98.89 280 |
|
| BH-untuned | | | 96.83 275 | 96.75 268 | 97.08 313 | 98.74 268 | 93.33 334 | 96.71 289 | 98.26 312 | 96.72 261 | 98.44 230 | 97.37 337 | 95.20 242 | 99.47 342 | 91.89 358 | 97.43 366 | 98.44 329 |
|
| EU-MVSNet | | | 97.66 220 | 98.50 120 | 95.13 366 | 99.63 74 | 85.84 396 | 98.35 136 | 98.21 314 | 98.23 141 | 99.54 56 | 99.46 66 | 95.02 247 | 99.68 264 | 98.24 105 | 99.87 77 | 99.87 16 |
|
| SixPastTwentyTwo | | | 98.75 95 | 98.62 104 | 99.16 105 | 99.83 19 | 97.96 155 | 99.28 37 | 98.20 315 | 99.37 45 | 99.70 35 | 99.65 30 | 92.65 299 | 99.93 40 | 99.04 58 | 99.84 85 | 99.60 74 |
|
| new_pmnet | | | 96.99 270 | 96.76 267 | 97.67 276 | 98.72 271 | 94.89 287 | 95.95 331 | 98.20 315 | 92.62 362 | 98.55 220 | 98.54 250 | 94.88 252 | 99.52 328 | 93.96 320 | 99.44 239 | 98.59 320 |
|
| CVMVSNet | | | 96.25 298 | 97.21 242 | 93.38 384 | 99.10 201 | 80.56 411 | 97.20 263 | 98.19 317 | 96.94 249 | 99.00 148 | 99.02 152 | 89.50 326 | 99.80 184 | 96.36 238 | 99.59 198 | 99.78 33 |
|
| RRT_MVS | | | 99.09 54 | 98.94 66 | 99.55 23 | 99.87 12 | 98.82 78 | 99.48 9 | 98.16 318 | 99.49 31 | 99.59 52 | 99.65 30 | 94.79 258 | 99.95 22 | 99.45 35 | 99.96 25 | 99.88 14 |
|
| KD-MVS_2432*1600 | | | 92.87 358 | 91.99 360 | 95.51 361 | 91.37 409 | 89.27 383 | 94.07 385 | 98.14 319 | 95.42 309 | 97.25 311 | 96.44 358 | 67.86 399 | 99.24 374 | 91.28 369 | 96.08 390 | 98.02 353 |
|
| miper_refine_blended | | | 92.87 358 | 91.99 360 | 95.51 361 | 91.37 409 | 89.27 383 | 94.07 385 | 98.14 319 | 95.42 309 | 97.25 311 | 96.44 358 | 67.86 399 | 99.24 374 | 91.28 369 | 96.08 390 | 98.02 353 |
|
| MG-MVS | | | 96.77 278 | 96.61 277 | 97.26 306 | 98.31 328 | 93.06 337 | 95.93 332 | 98.12 321 | 96.45 274 | 97.92 265 | 98.73 219 | 93.77 282 | 99.39 355 | 91.19 372 | 99.04 293 | 99.33 201 |
|
| EPP-MVSNet | | | 98.30 164 | 98.04 183 | 99.07 120 | 99.56 89 | 97.83 165 | 99.29 33 | 98.07 322 | 99.03 89 | 98.59 213 | 99.13 130 | 92.16 305 | 99.90 64 | 96.87 195 | 99.68 167 | 99.49 127 |
|
| MVS | | | 93.19 353 | 92.09 357 | 96.50 335 | 96.91 389 | 94.03 314 | 98.07 163 | 98.06 323 | 68.01 404 | 94.56 383 | 96.48 356 | 95.96 221 | 99.30 368 | 83.84 397 | 96.89 380 | 96.17 393 |
|
| lupinMVS | | | 97.06 263 | 96.86 259 | 97.65 278 | 98.88 246 | 93.89 323 | 95.48 349 | 97.97 324 | 93.53 349 | 98.16 248 | 97.58 324 | 93.81 280 | 99.91 59 | 96.77 203 | 99.57 207 | 99.17 240 |
|
| GA-MVS | | | 95.86 308 | 95.32 317 | 97.49 294 | 98.60 297 | 94.15 310 | 93.83 390 | 97.93 325 | 95.49 307 | 96.68 338 | 97.42 334 | 83.21 368 | 99.30 368 | 96.22 247 | 98.55 332 | 99.01 259 |
|
| WTY-MVS | | | 96.67 282 | 96.27 291 | 97.87 259 | 98.81 260 | 94.61 297 | 96.77 285 | 97.92 326 | 94.94 321 | 97.12 313 | 97.74 315 | 91.11 315 | 99.82 164 | 93.89 322 | 98.15 346 | 99.18 236 |
|
| Patchmatch-test | | | 96.55 286 | 96.34 286 | 97.17 310 | 98.35 325 | 93.06 337 | 98.40 131 | 97.79 327 | 97.33 218 | 98.41 233 | 98.67 230 | 83.68 367 | 99.69 255 | 95.16 287 | 99.31 255 | 98.77 300 |
|
| ADS-MVSNet2 | | | 95.43 320 | 94.98 324 | 96.76 331 | 98.14 338 | 91.74 359 | 97.92 184 | 97.76 328 | 90.23 381 | 96.51 346 | 98.91 184 | 85.61 351 | 99.85 120 | 92.88 344 | 96.90 378 | 98.69 310 |
|
| PVSNet | | 93.40 17 | 95.67 313 | 95.70 300 | 95.57 359 | 98.83 254 | 88.57 385 | 92.50 397 | 97.72 329 | 92.69 361 | 96.49 349 | 96.44 358 | 93.72 283 | 99.43 349 | 93.61 329 | 99.28 261 | 98.71 306 |
|
| pmmvs3 | | | 95.03 326 | 94.40 332 | 96.93 320 | 97.70 362 | 92.53 348 | 95.08 361 | 97.71 330 | 88.57 391 | 97.71 280 | 98.08 295 | 79.39 383 | 99.82 164 | 96.19 249 | 99.11 288 | 98.43 331 |
|
| alignmvs | | | 97.35 241 | 96.88 258 | 98.78 166 | 98.54 307 | 98.09 135 | 97.71 213 | 97.69 331 | 99.20 64 | 97.59 288 | 95.90 367 | 88.12 338 | 99.55 317 | 98.18 109 | 98.96 304 | 98.70 309 |
|
| AUN-MVS | | | 96.24 299 | 95.45 310 | 98.60 191 | 98.70 278 | 97.22 207 | 97.38 247 | 97.65 332 | 95.95 294 | 95.53 370 | 97.96 305 | 82.11 375 | 99.79 197 | 96.31 240 | 97.44 365 | 98.80 297 |
|
| tpm cat1 | | | 93.29 352 | 93.13 349 | 93.75 379 | 97.39 379 | 84.74 400 | 97.39 246 | 97.65 332 | 83.39 401 | 94.16 385 | 98.41 265 | 82.86 371 | 99.39 355 | 91.56 365 | 95.35 395 | 97.14 383 |
|
| hse-mvs2 | | | 97.46 233 | 97.07 248 | 98.64 181 | 98.73 269 | 97.33 199 | 97.45 244 | 97.64 334 | 99.11 73 | 98.58 215 | 97.98 301 | 88.65 333 | 99.79 197 | 98.11 113 | 97.39 368 | 98.81 292 |
|
| PVSNet_0 | | 89.98 21 | 91.15 371 | 90.30 374 | 93.70 380 | 97.72 358 | 84.34 405 | 90.24 400 | 97.42 335 | 90.20 384 | 93.79 391 | 93.09 399 | 90.90 316 | 98.89 392 | 86.57 393 | 72.76 407 | 97.87 362 |
|
| BH-w/o | | | 95.13 324 | 94.89 328 | 95.86 351 | 98.20 335 | 91.31 366 | 95.65 342 | 97.37 336 | 93.64 347 | 96.52 345 | 95.70 371 | 93.04 292 | 99.02 384 | 88.10 387 | 95.82 392 | 97.24 382 |
|
| test_yl | | | 96.69 280 | 96.29 289 | 97.90 256 | 98.28 329 | 95.24 276 | 97.29 255 | 97.36 337 | 98.21 143 | 98.17 246 | 97.86 308 | 86.27 344 | 99.55 317 | 94.87 292 | 98.32 335 | 98.89 280 |
|
| DCV-MVSNet | | | 96.69 280 | 96.29 289 | 97.90 256 | 98.28 329 | 95.24 276 | 97.29 255 | 97.36 337 | 98.21 143 | 98.17 246 | 97.86 308 | 86.27 344 | 99.55 317 | 94.87 292 | 98.32 335 | 98.89 280 |
|
| BH-RMVSNet | | | 96.83 275 | 96.58 280 | 97.58 284 | 98.47 313 | 94.05 311 | 96.67 291 | 97.36 337 | 96.70 263 | 97.87 269 | 97.98 301 | 95.14 244 | 99.44 348 | 90.47 379 | 98.58 331 | 99.25 219 |
|
| ADS-MVSNet | | | 95.24 323 | 94.93 327 | 96.18 346 | 98.14 338 | 90.10 381 | 97.92 184 | 97.32 340 | 90.23 381 | 96.51 346 | 98.91 184 | 85.61 351 | 99.74 233 | 92.88 344 | 96.90 378 | 98.69 310 |
|
| VDDNet | | | 98.21 176 | 97.95 190 | 99.01 133 | 99.58 77 | 97.74 176 | 99.01 66 | 97.29 341 | 99.67 12 | 98.97 154 | 99.50 59 | 90.45 319 | 99.80 184 | 97.88 131 | 99.20 273 | 99.48 137 |
|
| PAPM | | | 91.88 370 | 90.34 373 | 96.51 334 | 98.06 343 | 92.56 347 | 92.44 398 | 97.17 342 | 86.35 395 | 90.38 402 | 96.01 363 | 86.61 342 | 99.21 377 | 70.65 408 | 95.43 394 | 97.75 369 |
|
| FPMVS | | | 93.44 350 | 92.23 355 | 97.08 313 | 99.25 165 | 97.86 162 | 95.61 343 | 97.16 343 | 92.90 358 | 93.76 392 | 98.65 235 | 75.94 392 | 95.66 405 | 79.30 405 | 97.49 362 | 97.73 370 |
|
| mvsany_test1 | | | 97.60 224 | 97.54 221 | 97.77 266 | 97.72 358 | 95.35 273 | 95.36 354 | 97.13 344 | 94.13 340 | 99.71 33 | 99.33 89 | 97.93 100 | 99.30 368 | 97.60 145 | 98.94 306 | 98.67 314 |
|
| E-PMN | | | 94.17 338 | 94.37 333 | 93.58 381 | 96.86 390 | 85.71 398 | 90.11 401 | 97.07 345 | 98.17 150 | 97.82 275 | 97.19 341 | 84.62 359 | 98.94 388 | 89.77 381 | 97.68 359 | 96.09 397 |
|
| VDD-MVS | | | 98.56 128 | 98.39 140 | 99.07 120 | 99.13 197 | 98.07 141 | 98.59 104 | 97.01 346 | 99.59 23 | 99.11 129 | 99.27 98 | 94.82 253 | 99.79 197 | 98.34 101 | 99.63 184 | 99.34 196 |
|
| FA-MVS(test-final) | | | 96.99 270 | 96.82 263 | 97.50 293 | 98.70 278 | 94.78 289 | 99.34 20 | 96.99 347 | 95.07 317 | 98.48 227 | 99.33 89 | 88.41 336 | 99.65 283 | 96.13 255 | 98.92 308 | 98.07 351 |
|
| tt0805 | | | 98.69 106 | 98.62 104 | 98.90 150 | 99.75 35 | 99.30 17 | 99.15 53 | 96.97 348 | 98.86 103 | 98.87 178 | 97.62 323 | 98.63 46 | 98.96 387 | 99.41 37 | 98.29 338 | 98.45 327 |
|
| tpmrst | | | 95.07 325 | 95.46 309 | 93.91 377 | 97.11 385 | 84.36 404 | 97.62 225 | 96.96 349 | 94.98 319 | 96.35 351 | 98.80 209 | 85.46 353 | 99.59 303 | 95.60 277 | 96.23 387 | 97.79 368 |
|
| wuyk23d | | | 96.06 301 | 97.62 218 | 91.38 387 | 98.65 294 | 98.57 96 | 98.85 83 | 96.95 350 | 96.86 254 | 99.90 12 | 99.16 122 | 99.18 17 | 98.40 397 | 89.23 384 | 99.77 124 | 77.18 405 |
|
| HY-MVS | | 95.94 13 | 95.90 307 | 95.35 316 | 97.55 288 | 97.95 348 | 94.79 288 | 98.81 86 | 96.94 351 | 92.28 366 | 95.17 374 | 98.57 248 | 89.90 323 | 99.75 228 | 91.20 371 | 97.33 373 | 98.10 349 |
|
| MIMVSNet | | | 96.62 285 | 96.25 292 | 97.71 275 | 99.04 216 | 94.66 295 | 99.16 51 | 96.92 352 | 97.23 233 | 97.87 269 | 99.10 136 | 86.11 348 | 99.65 283 | 91.65 362 | 99.21 272 | 98.82 288 |
|
| SCA | | | 96.41 294 | 96.66 275 | 95.67 356 | 98.24 332 | 88.35 387 | 95.85 337 | 96.88 353 | 96.11 286 | 97.67 283 | 98.67 230 | 93.10 289 | 99.85 120 | 94.16 312 | 99.22 270 | 98.81 292 |
|
| tpmvs | | | 95.02 327 | 95.25 318 | 94.33 372 | 96.39 400 | 85.87 395 | 98.08 161 | 96.83 354 | 95.46 308 | 95.51 371 | 98.69 226 | 85.91 349 | 99.53 324 | 94.16 312 | 96.23 387 | 97.58 376 |
|
| testing91 | | | 93.32 351 | 92.27 354 | 96.47 336 | 97.54 369 | 91.25 369 | 96.17 320 | 96.76 355 | 97.18 237 | 93.65 393 | 93.50 397 | 65.11 407 | 99.63 289 | 93.04 341 | 97.45 364 | 98.53 321 |
|
| PatchmatchNet |  | | 95.58 316 | 95.67 302 | 95.30 365 | 97.34 380 | 87.32 392 | 97.65 222 | 96.65 356 | 95.30 313 | 97.07 316 | 98.69 226 | 84.77 357 | 99.75 228 | 94.97 290 | 98.64 326 | 98.83 287 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| PatchT | | | 96.65 283 | 96.35 285 | 97.54 289 | 97.40 378 | 95.32 274 | 97.98 178 | 96.64 357 | 99.33 50 | 96.89 329 | 99.42 73 | 84.32 362 | 99.81 177 | 97.69 144 | 97.49 362 | 97.48 378 |
|
| Syy-MVS | | | 96.04 302 | 95.56 307 | 97.49 294 | 97.10 386 | 94.48 300 | 96.18 318 | 96.58 358 | 95.65 301 | 94.77 378 | 92.29 403 | 91.27 314 | 99.36 358 | 98.17 111 | 98.05 353 | 98.63 316 |
|
| myMVS_eth3d | | | 91.92 369 | 90.45 371 | 96.30 339 | 97.10 386 | 90.90 374 | 96.18 318 | 96.58 358 | 95.65 301 | 94.77 378 | 92.29 403 | 53.88 412 | 99.36 358 | 89.59 383 | 98.05 353 | 98.63 316 |
|
| TR-MVS | | | 95.55 317 | 95.12 322 | 96.86 327 | 97.54 369 | 93.94 318 | 96.49 299 | 96.53 360 | 94.36 336 | 97.03 320 | 96.61 353 | 94.26 271 | 99.16 380 | 86.91 392 | 96.31 386 | 97.47 379 |
|
| dp | | | 93.47 349 | 93.59 342 | 93.13 386 | 96.64 395 | 81.62 410 | 97.66 220 | 96.42 361 | 92.80 360 | 96.11 355 | 98.64 238 | 78.55 389 | 99.59 303 | 93.31 337 | 92.18 404 | 98.16 346 |
|
| EMVS | | | 93.83 344 | 94.02 336 | 93.23 385 | 96.83 392 | 84.96 399 | 89.77 402 | 96.32 362 | 97.92 165 | 97.43 304 | 96.36 361 | 86.17 346 | 98.93 389 | 87.68 388 | 97.73 358 | 95.81 398 |
|
| iter_conf05_11 | | | 96.72 279 | 96.30 288 | 97.97 253 | 97.97 346 | 96.24 245 | 94.99 364 | 96.19 363 | 96.45 274 | 96.77 336 | 96.84 348 | 91.46 312 | 99.78 208 | 96.27 243 | 99.78 119 | 97.90 358 |
|
| Anonymous202405211 | | | 97.90 197 | 97.50 225 | 99.08 118 | 98.90 240 | 98.25 119 | 98.53 111 | 96.16 364 | 98.87 102 | 99.11 129 | 98.86 197 | 90.40 320 | 99.78 208 | 97.36 156 | 99.31 255 | 99.19 234 |
|
| MDTV_nov1_ep13 | | | | 95.22 319 | | 97.06 388 | 83.20 406 | 97.74 210 | 96.16 364 | 94.37 335 | 96.99 321 | 98.83 203 | 83.95 365 | 99.53 324 | 93.90 321 | 97.95 356 | |
|
| FE-MVS | | | 95.66 314 | 94.95 326 | 97.77 266 | 98.53 309 | 95.28 275 | 99.40 16 | 96.09 366 | 93.11 355 | 97.96 264 | 99.26 100 | 79.10 385 | 99.77 215 | 92.40 355 | 98.71 319 | 98.27 342 |
|
| baseline1 | | | 95.96 306 | 95.44 311 | 97.52 291 | 98.51 311 | 93.99 317 | 98.39 132 | 96.09 366 | 98.21 143 | 98.40 237 | 97.76 314 | 86.88 340 | 99.63 289 | 95.42 282 | 89.27 405 | 98.95 270 |
|
| CostFormer | | | 93.97 342 | 93.78 339 | 94.51 371 | 97.53 371 | 85.83 397 | 97.98 178 | 95.96 368 | 89.29 389 | 94.99 377 | 98.63 240 | 78.63 387 | 99.62 292 | 94.54 300 | 96.50 383 | 98.09 350 |
|
| testing99 | | | 93.04 356 | 91.98 362 | 96.23 344 | 97.53 371 | 90.70 378 | 96.35 307 | 95.94 369 | 96.87 253 | 93.41 394 | 93.43 398 | 63.84 409 | 99.59 303 | 93.24 339 | 97.19 374 | 98.40 334 |
|
| JIA-IIPM | | | 95.52 318 | 95.03 323 | 97.00 316 | 96.85 391 | 94.03 314 | 96.93 277 | 95.82 370 | 99.20 64 | 94.63 382 | 99.71 17 | 83.09 369 | 99.60 299 | 94.42 306 | 94.64 397 | 97.36 381 |
|
| tpm2 | | | 93.09 354 | 92.58 353 | 94.62 370 | 97.56 367 | 86.53 394 | 97.66 220 | 95.79 371 | 86.15 396 | 94.07 388 | 98.23 283 | 75.95 391 | 99.53 324 | 90.91 376 | 96.86 381 | 97.81 365 |
|
| testing11 | | | 93.08 355 | 92.02 359 | 96.26 342 | 97.56 367 | 90.83 376 | 96.32 309 | 95.70 372 | 96.47 272 | 92.66 397 | 93.73 394 | 64.36 408 | 99.59 303 | 93.77 327 | 97.57 360 | 98.37 338 |
|
| ETVMVS | | | 92.60 360 | 91.08 369 | 97.18 308 | 97.70 362 | 93.65 331 | 96.54 295 | 95.70 372 | 96.51 268 | 94.68 380 | 92.39 402 | 61.80 410 | 99.50 333 | 86.97 390 | 97.41 367 | 98.40 334 |
|
| dmvs_re | | | 95.98 305 | 95.39 314 | 97.74 272 | 98.86 248 | 97.45 193 | 98.37 134 | 95.69 374 | 97.95 162 | 96.56 343 | 95.95 365 | 90.70 317 | 97.68 401 | 88.32 386 | 96.13 389 | 98.11 348 |
|
| EPNet_dtu | | | 94.93 328 | 94.78 329 | 95.38 364 | 93.58 408 | 87.68 391 | 96.78 284 | 95.69 374 | 97.35 217 | 89.14 404 | 98.09 294 | 88.15 337 | 99.49 336 | 94.95 291 | 99.30 258 | 98.98 264 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| testing3 | | | 93.51 348 | 92.09 357 | 97.75 270 | 98.60 297 | 94.40 302 | 97.32 252 | 95.26 376 | 97.56 194 | 96.79 335 | 95.50 375 | 53.57 413 | 99.77 215 | 95.26 285 | 98.97 303 | 99.08 247 |
|
| tpm | | | 94.67 330 | 94.34 334 | 95.66 357 | 97.68 365 | 88.42 386 | 97.88 190 | 94.90 377 | 94.46 331 | 96.03 359 | 98.56 249 | 78.66 386 | 99.79 197 | 95.88 262 | 95.01 396 | 98.78 299 |
|
| testing222 | | | 91.96 368 | 90.37 372 | 96.72 332 | 97.47 377 | 92.59 346 | 96.11 322 | 94.76 378 | 96.83 255 | 92.90 396 | 92.87 400 | 57.92 411 | 99.55 317 | 86.93 391 | 97.52 361 | 98.00 356 |
|
| EPNet | | | 96.14 300 | 95.44 311 | 98.25 231 | 90.76 411 | 95.50 268 | 97.92 184 | 94.65 379 | 98.97 94 | 92.98 395 | 98.85 200 | 89.12 328 | 99.87 100 | 95.99 258 | 99.68 167 | 99.39 175 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| thres200 | | | 93.72 346 | 93.14 348 | 95.46 363 | 98.66 291 | 91.29 367 | 96.61 294 | 94.63 380 | 97.39 213 | 96.83 332 | 93.71 395 | 79.88 378 | 99.56 314 | 82.40 401 | 98.13 347 | 95.54 400 |
|
| MM | | | 98.22 174 | 97.99 187 | 98.91 147 | 98.66 291 | 96.97 220 | 97.89 189 | 94.44 381 | 99.54 27 | 98.95 157 | 99.14 129 | 93.50 284 | 99.92 50 | 99.80 12 | 99.96 25 | 99.85 19 |
|
| DeepMVS_CX |  | | | | 93.44 383 | 98.24 332 | 94.21 307 | | 94.34 382 | 64.28 405 | 91.34 401 | 94.87 390 | 89.45 327 | 92.77 408 | 77.54 406 | 93.14 401 | 93.35 403 |
|
| tfpn200view9 | | | 94.03 341 | 93.44 343 | 95.78 354 | 98.93 232 | 91.44 363 | 97.60 228 | 94.29 383 | 97.94 163 | 97.10 314 | 94.31 392 | 79.67 381 | 99.62 292 | 83.05 398 | 98.08 350 | 96.29 391 |
|
| thres400 | | | 94.14 339 | 93.44 343 | 96.24 343 | 98.93 232 | 91.44 363 | 97.60 228 | 94.29 383 | 97.94 163 | 97.10 314 | 94.31 392 | 79.67 381 | 99.62 292 | 83.05 398 | 98.08 350 | 97.66 373 |
|
| thres100view900 | | | 94.19 337 | 93.67 341 | 95.75 355 | 99.06 212 | 91.35 365 | 98.03 169 | 94.24 385 | 98.33 131 | 97.40 305 | 94.98 386 | 79.84 379 | 99.62 292 | 83.05 398 | 98.08 350 | 96.29 391 |
|
| thres600view7 | | | 94.45 332 | 93.83 338 | 96.29 340 | 99.06 212 | 91.53 361 | 97.99 177 | 94.24 385 | 98.34 130 | 97.44 303 | 95.01 384 | 79.84 379 | 99.67 267 | 84.33 396 | 98.23 339 | 97.66 373 |
|
| LFMVS | | | 97.20 254 | 96.72 269 | 98.64 181 | 98.72 271 | 96.95 223 | 98.93 76 | 94.14 387 | 99.74 6 | 98.78 188 | 99.01 161 | 84.45 360 | 99.73 238 | 97.44 152 | 99.27 262 | 99.25 219 |
|
| WB-MVSnew | | | 95.73 312 | 95.57 306 | 96.23 344 | 96.70 394 | 90.70 378 | 96.07 324 | 93.86 388 | 95.60 303 | 97.04 318 | 95.45 381 | 96.00 214 | 99.55 317 | 91.04 373 | 98.31 337 | 98.43 331 |
|
| test0.0.03 1 | | | 94.51 331 | 93.69 340 | 96.99 317 | 96.05 402 | 93.61 332 | 94.97 365 | 93.49 389 | 96.17 283 | 97.57 291 | 94.88 388 | 82.30 373 | 99.01 386 | 93.60 330 | 94.17 400 | 98.37 338 |
|
| N_pmnet | | | 97.63 222 | 97.17 243 | 98.99 135 | 99.27 161 | 97.86 162 | 95.98 326 | 93.41 390 | 95.25 314 | 99.47 70 | 98.90 187 | 95.63 230 | 99.85 120 | 96.91 187 | 99.73 142 | 99.27 215 |
|
| IB-MVS | | 91.63 19 | 92.24 366 | 90.90 370 | 96.27 341 | 97.22 383 | 91.24 370 | 94.36 382 | 93.33 391 | 92.37 364 | 92.24 399 | 94.58 391 | 66.20 405 | 99.89 74 | 93.16 340 | 94.63 398 | 97.66 373 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| ET-MVSNet_ETH3D | | | 94.30 336 | 93.21 346 | 97.58 284 | 98.14 338 | 94.47 301 | 94.78 369 | 93.24 392 | 94.72 325 | 89.56 403 | 95.87 368 | 78.57 388 | 99.81 177 | 96.91 187 | 97.11 377 | 98.46 324 |
|
| K. test v3 | | | 98.00 192 | 97.66 214 | 99.03 130 | 99.79 24 | 97.56 187 | 99.19 49 | 92.47 393 | 99.62 20 | 99.52 62 | 99.66 27 | 89.61 324 | 99.96 11 | 99.25 45 | 99.81 99 | 99.56 97 |
|
| test-LLR | | | 93.90 343 | 93.85 337 | 94.04 375 | 96.53 396 | 84.62 402 | 94.05 387 | 92.39 394 | 96.17 283 | 94.12 386 | 95.07 382 | 82.30 373 | 99.67 267 | 95.87 265 | 98.18 342 | 97.82 363 |
|
| test-mter | | | 92.33 365 | 91.76 366 | 94.04 375 | 96.53 396 | 84.62 402 | 94.05 387 | 92.39 394 | 94.00 344 | 94.12 386 | 95.07 382 | 65.63 406 | 99.67 267 | 95.87 265 | 98.18 342 | 97.82 363 |
|
| dmvs_testset | | | 92.94 357 | 92.21 356 | 95.13 366 | 98.59 300 | 90.99 373 | 97.65 222 | 92.09 396 | 96.95 248 | 94.00 389 | 93.55 396 | 92.34 303 | 96.97 404 | 72.20 407 | 92.52 402 | 97.43 380 |
|
| MTMP | | | | | | | | 97.93 182 | 91.91 397 | | | | | | | | |
|
| TESTMET0.1,1 | | | 92.19 367 | 91.77 365 | 93.46 382 | 96.48 398 | 82.80 407 | 94.05 387 | 91.52 398 | 94.45 333 | 94.00 389 | 94.88 388 | 66.65 402 | 99.56 314 | 95.78 270 | 98.11 348 | 98.02 353 |
|
| MVS_0304 | | | 98.10 183 | 97.88 198 | 98.76 170 | 98.82 257 | 96.50 236 | 97.90 187 | 91.35 399 | 99.56 26 | 98.32 239 | 99.13 130 | 96.06 210 | 99.93 40 | 99.84 7 | 99.97 19 | 99.85 19 |
|
| thisisatest0515 | | | 94.12 340 | 93.16 347 | 96.97 319 | 98.60 297 | 92.90 341 | 93.77 391 | 90.61 400 | 94.10 341 | 96.91 325 | 95.87 368 | 74.99 394 | 99.80 184 | 94.52 301 | 99.12 287 | 98.20 344 |
|
| tttt0517 | | | 95.64 315 | 94.98 324 | 97.64 280 | 99.36 147 | 93.81 325 | 98.72 91 | 90.47 401 | 98.08 156 | 98.67 200 | 98.34 274 | 73.88 395 | 99.92 50 | 97.77 137 | 99.51 224 | 99.20 229 |
|
| thisisatest0530 | | | 95.27 322 | 94.45 331 | 97.74 272 | 99.19 180 | 94.37 303 | 97.86 195 | 90.20 402 | 97.17 238 | 98.22 244 | 97.65 320 | 73.53 396 | 99.90 64 | 96.90 192 | 99.35 249 | 98.95 270 |
|
| baseline2 | | | 93.73 345 | 92.83 351 | 96.42 337 | 97.70 362 | 91.28 368 | 96.84 282 | 89.77 403 | 93.96 345 | 92.44 398 | 95.93 366 | 79.14 384 | 99.77 215 | 92.94 342 | 96.76 382 | 98.21 343 |
|
| MVS-HIRNet | | | 94.32 334 | 95.62 303 | 90.42 388 | 98.46 315 | 75.36 412 | 96.29 311 | 89.13 404 | 95.25 314 | 95.38 372 | 99.75 11 | 92.88 294 | 99.19 378 | 94.07 318 | 99.39 243 | 96.72 389 |
|
| UWE-MVS | | | 92.38 363 | 91.76 366 | 94.21 374 | 97.16 384 | 84.65 401 | 95.42 352 | 88.45 405 | 95.96 293 | 96.17 353 | 95.84 370 | 66.36 403 | 99.71 246 | 91.87 359 | 98.64 326 | 98.28 341 |
|
| test1111 | | | 96.49 291 | 96.82 263 | 95.52 360 | 99.42 135 | 87.08 393 | 99.22 42 | 87.14 406 | 99.11 73 | 99.46 71 | 99.58 41 | 88.69 330 | 99.86 108 | 98.80 71 | 99.95 32 | 99.62 67 |
|
| lessismore_v0 | | | | | 98.97 138 | 99.73 38 | 97.53 189 | | 86.71 407 | | 99.37 89 | 99.52 57 | 89.93 322 | 99.92 50 | 98.99 62 | 99.72 149 | 99.44 154 |
|
| ECVR-MVS |  | | 96.42 293 | 96.61 277 | 95.85 352 | 99.38 140 | 88.18 389 | 99.22 42 | 86.00 408 | 99.08 85 | 99.36 92 | 99.57 42 | 88.47 335 | 99.82 164 | 98.52 92 | 99.95 32 | 99.54 108 |
|
| EPMVS | | | 93.72 346 | 93.27 345 | 95.09 368 | 96.04 403 | 87.76 390 | 98.13 154 | 85.01 409 | 94.69 326 | 96.92 323 | 98.64 238 | 78.47 390 | 99.31 366 | 95.04 288 | 96.46 384 | 98.20 344 |
|
| MVE |  | 83.40 22 | 92.50 361 | 91.92 363 | 94.25 373 | 98.83 254 | 91.64 360 | 92.71 396 | 83.52 410 | 95.92 295 | 86.46 407 | 95.46 378 | 95.20 242 | 95.40 406 | 80.51 403 | 98.64 326 | 95.73 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| gg-mvs-nofinetune | | | 92.37 364 | 91.20 368 | 95.85 352 | 95.80 405 | 92.38 352 | 99.31 27 | 81.84 411 | 99.75 5 | 91.83 400 | 99.74 13 | 68.29 398 | 99.02 384 | 87.15 389 | 97.12 376 | 96.16 394 |
|
| GG-mvs-BLEND | | | | | 94.76 369 | 94.54 407 | 92.13 357 | 99.31 27 | 80.47 412 | | 88.73 405 | 91.01 405 | 67.59 401 | 98.16 400 | 82.30 402 | 94.53 399 | 93.98 402 |
|
| tmp_tt | | | 78.77 374 | 78.73 377 | 78.90 390 | 58.45 413 | 74.76 414 | 94.20 384 | 78.26 413 | 39.16 406 | 86.71 406 | 92.82 401 | 80.50 377 | 75.19 409 | 86.16 394 | 92.29 403 | 86.74 404 |
|
| test2506 | | | 92.39 362 | 91.89 364 | 93.89 378 | 99.38 140 | 82.28 408 | 99.32 23 | 66.03 414 | 99.08 85 | 98.77 191 | 99.57 42 | 66.26 404 | 99.84 137 | 98.71 79 | 99.95 32 | 99.54 108 |
|
| testmvs | | | 17.12 376 | 20.53 379 | 6.87 392 | 12.05 414 | 4.20 417 | 93.62 393 | 6.73 415 | 4.62 410 | 10.41 410 | 24.33 407 | 8.28 415 | 3.56 411 | 9.69 410 | 15.07 408 | 12.86 407 |
|
| test123 | | | 17.04 377 | 20.11 380 | 7.82 391 | 10.25 415 | 4.91 416 | 94.80 368 | 4.47 416 | 4.93 409 | 10.00 411 | 24.28 408 | 9.69 414 | 3.64 410 | 10.14 409 | 12.43 409 | 14.92 406 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| pcd_1.5k_mvsjas | | | 8.17 378 | 10.90 381 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 98.07 88 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| ab-mvs-re | | | 8.12 379 | 10.83 382 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 97.48 330 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WAC-MVS | | | | | | | 90.90 374 | | | | | | | | 91.37 368 | | |
|
| PC_three_1452 | | | | | | | | | | 93.27 352 | 99.40 83 | 98.54 250 | 98.22 76 | 97.00 403 | 95.17 286 | 99.45 236 | 99.49 127 |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 98.82 156 | 98.59 300 | 98.30 116 | 98.10 159 | | | | 98.52 253 | 98.18 80 | 98.75 394 | 94.62 298 | 99.48 233 | 99.41 164 |
|
| test_0728_THIRD | | | | | | | | | | 98.17 150 | 99.08 134 | 99.02 152 | 97.89 101 | 99.88 83 | 97.07 175 | 99.71 154 | 99.70 51 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.81 292 |
|
| test_part2 | | | | | | 99.36 147 | 99.10 60 | | | | 99.05 141 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 84.74 358 | | | | 98.81 292 |
|
| sam_mvs | | | | | | | | | | | | | 84.29 364 | | | | |
|
| test_post1 | | | | | | | | 97.59 230 | | | | 20.48 410 | 83.07 370 | 99.66 278 | 94.16 312 | | |
|
| test_post | | | | | | | | | | | | 21.25 409 | 83.86 366 | 99.70 250 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 98.77 214 | 84.37 361 | 99.85 120 | | | |
|
| gm-plane-assit | | | | | | 94.83 406 | 81.97 409 | | | 88.07 393 | | 94.99 385 | | 99.60 299 | 91.76 360 | | |
|
| test9_res | | | | | | | | | | | | | | | 93.28 338 | 99.15 281 | 99.38 182 |
|
| agg_prior2 | | | | | | | | | | | | | | | 92.50 354 | 99.16 279 | 99.37 184 |
|
| test_prior4 | | | | | | | 97.97 152 | 95.86 335 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.74 340 | | 96.48 271 | 96.11 355 | 97.63 322 | 95.92 223 | | 94.16 312 | 99.20 273 | |
|
| 旧先验2 | | | | | | | | 95.76 339 | | 88.56 392 | 97.52 295 | | | 99.66 278 | 94.48 302 | | |
|
| 新几何2 | | | | | | | | 95.93 332 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 95.53 346 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.79 197 | 92.80 348 | | |
|
| segment_acmp | | | | | | | | | | | | | 97.02 164 | | | | |
|
| testdata1 | | | | | | | | 95.44 351 | | 96.32 279 | | | | | | | |
|
| plane_prior7 | | | | | | 99.19 180 | 97.87 161 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.99 224 | 97.70 180 | | | | | | 94.90 249 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 97.98 301 | | | | | |
|
| plane_prior3 | | | | | | | 97.78 173 | | | 97.41 211 | 97.79 276 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.77 205 | | 98.20 147 | | | | | | | |
|
| plane_prior1 | | | | | | 99.05 215 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 97.65 182 | 97.07 269 | | 96.72 261 | | | | | | 99.36 247 | |
|
| HQP5-MVS | | | | | | | 96.79 228 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 98.67 286 | | 96.29 311 | | 96.05 288 | 95.55 366 | | | | | | |
|
| ACMP_Plane | | | | | | 98.67 286 | | 96.29 311 | | 96.05 288 | 95.55 366 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 92.82 346 | | |
|
| HQP4-MVS | | | | | | | | | | | 95.56 365 | | | 99.54 322 | | | 99.32 203 |
|
| HQP2-MVS | | | | | | | | | | | | | 93.84 278 | | | | |
|
| NP-MVS | | | | | | 98.84 252 | 97.39 197 | | | | | 96.84 348 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 74.92 413 | 97.69 215 | | 90.06 386 | 97.75 279 | | 85.78 350 | | 93.52 332 | | 98.69 310 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 124 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.68 167 | |
|
| Test By Simon | | | | | | | | | | | | | 96.52 192 | | | | |
|