This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
test_vis3_rt99.14 4699.17 4399.07 12199.78 2698.38 10998.92 7699.94 297.80 17499.91 1199.67 2597.15 15498.91 38199.76 1699.56 21099.92 9
test_fmvs399.12 5199.41 1998.25 23199.76 3295.07 28299.05 6599.94 297.78 17699.82 2199.84 298.56 5299.71 24799.96 199.96 2599.97 3
test_fmvs1_n98.09 18498.28 15597.52 28999.68 5993.47 33098.63 9899.93 495.41 30399.68 3999.64 3291.88 30699.48 33199.82 899.87 7899.62 68
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3699.31 41100.00 199.82 25
test_fmvs298.70 10498.97 6697.89 25699.54 9994.05 30998.55 10799.92 696.78 25599.72 3199.78 896.60 18799.67 26699.91 299.90 7099.94 7
test_vis1_n_192098.40 15198.92 6996.81 32599.74 3890.76 37198.15 15299.91 798.33 13099.89 1599.55 4895.07 24499.88 8499.76 1699.93 4499.79 30
test_vis1_n98.31 16298.50 12197.73 27299.76 3294.17 30798.68 9599.91 796.31 27399.79 2599.57 4292.85 29499.42 34299.79 1399.84 8699.60 75
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1399.99 599.96 5
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
CS-MVS99.13 4999.10 5499.24 9699.06 21399.15 4799.36 1999.88 1199.36 4898.21 24698.46 26498.68 4299.93 4199.03 6099.85 8298.64 317
CS-MVS-test99.13 4999.09 5599.26 9199.13 19898.97 6699.31 2799.88 1199.44 3898.16 24998.51 25698.64 4399.93 4198.91 6699.85 8298.88 285
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16199.75 3696.59 23397.97 18099.86 1398.22 14199.88 1799.71 1798.59 4999.84 13999.73 1999.98 1299.98 2
dcpmvs_298.78 9199.11 5297.78 26399.56 9093.67 32799.06 6399.86 1399.50 3099.66 4299.26 10197.21 15299.99 298.00 12399.91 6399.68 55
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18299.71 4896.10 24497.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 12299.72 2199.98 1299.97 3
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6596.97 21998.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 308
test_cas_vis1_n_192098.33 15998.68 9697.27 30399.69 5792.29 35098.03 16899.85 1597.62 18699.96 499.62 3493.98 27599.74 23499.52 3199.86 8199.79 30
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7198.10 13597.68 21599.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1899.98 1299.89 11
EC-MVSNet99.09 5499.05 5999.20 10099.28 16098.93 7199.24 4199.84 1899.08 8498.12 25498.37 27298.72 3899.90 6599.05 5899.77 12498.77 302
test_fmvsm_n_192099.33 2699.45 1898.99 13699.57 8297.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 214
LCM-MVSNet-Re98.64 11998.48 12699.11 11398.85 25298.51 10298.49 11999.83 2098.37 12799.69 3799.46 6698.21 7699.92 5194.13 31499.30 25898.91 281
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16799.55 9496.59 23397.79 20199.82 2298.21 14299.81 2399.53 5498.46 5899.84 13999.70 2299.97 2099.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 19099.55 9496.09 24797.74 20999.81 2398.55 12399.85 1999.55 4898.60 4899.84 13999.69 2499.98 1299.89 11
test_fmvs197.72 21397.94 19097.07 31298.66 29292.39 34797.68 21599.81 2395.20 30799.54 5699.44 7191.56 30899.41 34399.78 1599.77 12499.40 174
test_f98.67 11598.87 7298.05 24899.72 4595.59 26098.51 11699.81 2396.30 27599.78 2699.82 496.14 20498.63 38699.82 899.93 4499.95 6
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10899.48 6498.82 3199.95 2398.94 6599.93 4499.59 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17999.30 4399.97 2099.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14399.65 6697.05 21597.80 20099.76 2898.70 11099.78 2699.11 13498.79 3499.95 2399.85 599.96 2599.83 22
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13399.64 7197.28 20197.82 19799.76 2898.73 10799.82 2199.09 14098.81 3299.95 2399.86 499.96 2599.83 22
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 10199.36 3899.92 5599.64 64
Gipumacopyleft99.03 6099.16 4598.64 18299.94 298.51 10299.32 2399.75 3199.58 2598.60 21299.62 3498.22 7499.51 32697.70 14299.73 14297.89 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UA-Net99.47 1399.40 2099.70 299.49 11699.29 1999.80 399.72 3299.82 399.04 14399.81 598.05 8999.96 1298.85 7099.99 599.86 18
Patchmatch-RL test97.26 24597.02 24897.99 25299.52 10495.53 26496.13 31699.71 3397.47 20299.27 10899.16 12384.30 35999.62 29097.89 12899.77 12498.81 294
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3399.27 5899.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3399.38 4499.53 6099.61 3798.64 4399.80 18698.24 10799.84 8699.52 119
test_vis1_rt97.75 21197.72 20797.83 25998.81 26196.35 23997.30 25399.69 3694.61 31897.87 27098.05 29996.26 20298.32 38998.74 7798.18 33898.82 290
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
patch_mono-298.51 14198.63 10398.17 23799.38 14194.78 28797.36 24899.69 3698.16 15298.49 22799.29 9697.06 15899.97 498.29 10699.91 6399.76 39
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3698.93 9799.65 4599.72 1698.93 2699.95 2399.11 53100.00 199.82 25
Effi-MVS+98.02 18897.82 20098.62 18798.53 30997.19 20997.33 25099.68 4197.30 22296.68 33597.46 33498.56 5299.80 18696.63 21598.20 33798.86 287
PM-MVS98.82 8598.72 8899.12 11199.64 7198.54 10097.98 17799.68 4197.62 18699.34 9699.18 11797.54 12799.77 21697.79 13699.74 13999.04 257
PVSNet_Blended_VisFu98.17 17998.15 17198.22 23499.73 3995.15 27897.36 24899.68 4194.45 32498.99 14999.27 9996.87 16999.94 3697.13 17199.91 6399.57 92
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4599.48 3299.92 899.71 1798.07 8699.96 1299.53 30100.00 199.93 8
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4699.30 5599.65 4599.60 3999.16 2099.82 16699.07 5699.83 9399.56 98
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13699.43 13597.73 17898.00 17499.62 4799.22 6199.55 5599.22 11098.93 2699.75 22998.66 8499.81 10099.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268897.49 22897.14 24498.54 20499.68 5996.09 24796.50 29699.62 4791.58 36298.84 18298.97 17292.36 29999.88 8496.76 20499.95 3299.67 58
XXY-MVS99.14 4699.15 5099.10 11599.76 3297.74 17698.85 8299.62 4798.48 12599.37 9099.49 6398.75 3699.86 11098.20 11099.80 11099.71 47
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5099.66 1399.68 3999.66 2798.44 5999.95 2399.73 1999.96 2599.75 43
EIA-MVS98.00 19097.74 20498.80 16198.72 27298.09 13698.05 16599.60 5197.39 21396.63 33795.55 37297.68 11299.80 18696.73 20899.27 26298.52 323
EG-PatchMatch MVS98.99 6399.01 6198.94 14399.50 10997.47 19098.04 16799.59 5298.15 15399.40 8399.36 8398.58 5199.76 22298.78 7399.68 16799.59 81
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5299.59 2399.71 3399.57 4297.12 15599.90 6599.21 4999.87 7899.54 109
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 3299.78 33
AllTest98.44 14798.20 16399.16 10699.50 10998.55 9798.25 14299.58 5496.80 25398.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
TestCases99.16 10699.50 10998.55 9799.58 5496.80 25398.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
diffmvspermissive98.22 17398.24 16098.17 23799.00 22295.44 26896.38 30399.58 5497.79 17598.53 22498.50 26096.76 17999.74 23497.95 12799.64 18199.34 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5499.44 3899.78 2699.76 1096.39 19599.92 5199.44 3699.92 5599.68 55
1112_ss97.29 24496.86 25698.58 19499.34 15496.32 24096.75 28699.58 5493.14 34596.89 32797.48 33292.11 30399.86 11096.91 18799.54 21599.57 92
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4898.83 7698.60 10299.58 5499.11 7299.53 6099.18 11798.81 3299.67 26696.71 21199.77 12499.50 124
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2998.37 11199.30 3299.57 6199.61 2299.40 8399.50 5997.12 15599.85 12299.02 6199.94 4099.80 29
casdiffmvspermissive98.95 7099.00 6298.81 15999.38 14197.33 19897.82 19799.57 6199.17 7099.35 9499.17 12198.35 6699.69 25498.46 9799.73 14299.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 6199.39 4399.75 3099.62 3499.17 1899.83 15699.06 5799.62 18799.66 59
Baseline_NR-MVSNet98.98 6698.86 7599.36 6499.82 2298.55 9797.47 24299.57 6199.37 4599.21 12099.61 3796.76 17999.83 15698.06 11899.83 9399.71 47
door-mid99.57 61
RPSCF98.62 12398.36 14599.42 5899.65 6699.42 798.55 10799.57 6197.72 18098.90 16899.26 10196.12 20699.52 32295.72 27099.71 15499.32 205
CSCG98.68 11298.50 12199.20 10099.45 12998.63 8998.56 10699.57 6197.87 16998.85 17998.04 30097.66 11499.84 13996.72 20999.81 10099.13 246
GeoE99.05 5998.99 6599.25 9499.44 13098.35 11598.73 8999.56 6898.42 12698.91 16798.81 21098.94 2599.91 6098.35 10299.73 14299.49 128
MVSFormer98.26 16998.43 13497.77 26498.88 24793.89 32199.39 1799.56 6899.11 7298.16 24998.13 29093.81 27899.97 499.26 4499.57 20799.43 159
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4499.98 1299.89 11
COLMAP_ROBcopyleft96.50 1098.99 6398.85 7699.41 6099.58 7899.10 6098.74 8699.56 6899.09 8299.33 9799.19 11498.40 6199.72 24695.98 25799.76 13599.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1098.97 6799.11 5298.55 20199.44 13096.21 24398.90 7799.55 7298.73 10799.48 6899.60 3996.63 18699.83 15699.70 2299.99 599.61 74
WR-MVS_H99.33 2699.22 4099.65 599.71 4899.24 2599.32 2399.55 7299.46 3599.50 6799.34 8897.30 14499.93 4198.90 6799.93 4499.77 35
mvsmamba99.24 3799.15 5099.49 4899.83 2098.85 7499.41 1399.55 7299.54 2799.40 8399.52 5795.86 22299.91 6099.32 4099.95 3299.70 52
114514_t96.50 28795.77 29498.69 17999.48 12397.43 19497.84 19699.55 7281.42 39396.51 34398.58 24995.53 23099.67 26693.41 33399.58 20398.98 266
ACMH96.65 799.25 3399.24 3999.26 9199.72 4598.38 10999.07 6299.55 7298.30 13399.65 4599.45 7099.22 1599.76 22298.44 9899.77 12499.64 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FOURS199.73 3999.67 299.43 1199.54 7799.43 4099.26 112
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7599.06 6498.69 9499.54 7799.31 5399.62 5199.53 5497.36 14299.86 11099.24 4899.71 15499.39 177
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7799.62 2099.56 5399.42 7498.16 8299.96 1298.78 7399.93 4499.77 35
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 8099.53 2999.46 7199.41 7798.23 7199.95 2398.89 6999.95 3299.81 28
Test_1112_low_res96.99 26896.55 27998.31 22799.35 15295.47 26795.84 33199.53 8091.51 36496.80 33298.48 26391.36 30999.83 15696.58 21799.53 21999.62 68
USDC97.41 23597.40 22797.44 29698.94 23193.67 32795.17 35099.53 8094.03 33498.97 15499.10 13795.29 23799.34 35395.84 26699.73 14299.30 212
FIs99.14 4699.09 5599.29 8499.70 5598.28 11799.13 5599.52 8399.48 3299.24 11799.41 7796.79 17699.82 16698.69 8299.88 7599.76 39
Anonymous2023121199.27 3099.27 3599.26 9199.29 15998.18 12699.49 899.51 8499.70 899.80 2499.68 2096.84 17099.83 15699.21 4999.91 6399.77 35
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8499.64 1599.56 5399.46 6698.23 7199.97 498.78 7399.93 4499.72 46
ETV-MVS98.03 18797.86 19898.56 20098.69 28498.07 14297.51 23899.50 8698.10 15497.50 29895.51 37398.41 6099.88 8496.27 24399.24 26797.71 363
Fast-Effi-MVS+-dtu98.27 16798.09 17698.81 15998.43 31898.11 13397.61 22699.50 8698.64 11197.39 30697.52 33098.12 8599.95 2396.90 19298.71 31998.38 332
HPM-MVS_fast99.01 6198.82 7899.57 1699.71 4899.35 1299.00 6999.50 8697.33 21898.94 16498.86 19998.75 3699.82 16697.53 14999.71 15499.56 98
XVG-OURS98.53 13798.34 14899.11 11399.50 10998.82 7895.97 32099.50 8697.30 22299.05 14198.98 17099.35 1299.32 35695.72 27099.68 16799.18 238
baseline98.96 6999.02 6098.76 17199.38 14197.26 20398.49 11999.50 8698.86 10299.19 12299.06 14198.23 7199.69 25498.71 8099.76 13599.33 203
FMVSNet596.01 30095.20 31698.41 21897.53 36596.10 24498.74 8699.50 8697.22 23698.03 26399.04 15069.80 39499.88 8497.27 16099.71 15499.25 221
HyFIR lowres test97.19 25296.60 27798.96 14099.62 7797.28 20195.17 35099.50 8694.21 32999.01 14798.32 27986.61 33899.99 297.10 17399.84 8699.60 75
testgi98.32 16098.39 14198.13 24099.57 8295.54 26397.78 20299.49 9397.37 21599.19 12297.65 32298.96 2499.49 32896.50 23098.99 30099.34 198
PGM-MVS98.66 11698.37 14499.55 2399.53 10299.18 3898.23 14399.49 9397.01 24598.69 19998.88 19698.00 9299.89 7595.87 26399.59 19899.58 87
SDMVSNet99.23 3899.32 2898.96 14099.68 5997.35 19798.84 8499.48 9599.69 999.63 4899.68 2099.03 2199.96 1297.97 12599.92 5599.57 92
new-patchmatchnet98.35 15798.74 8497.18 30699.24 16792.23 35296.42 30199.48 9598.30 13399.69 3799.53 5497.44 13899.82 16698.84 7199.77 12499.49 128
nrg03099.40 2199.35 2399.54 2799.58 7899.13 5598.98 7299.48 9599.68 1199.46 7199.26 10198.62 4699.73 23999.17 5299.92 5599.76 39
APDe-MVScopyleft98.99 6398.79 8199.60 1199.21 17499.15 4798.87 7999.48 9597.57 19299.35 9499.24 10697.83 10299.89 7597.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
XVG-OURS-SEG-HR98.49 14298.28 15599.14 10999.49 11698.83 7696.54 29499.48 9597.32 22099.11 12998.61 24699.33 1399.30 35996.23 24498.38 33199.28 216
LPG-MVS_test98.71 10098.46 13099.47 5499.57 8298.97 6698.23 14399.48 9596.60 26299.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
LGP-MVS_train99.47 5499.57 8298.97 6699.48 9596.60 26299.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
v899.01 6199.16 4598.57 19699.47 12596.31 24198.90 7799.47 10299.03 8899.52 6299.57 4296.93 16699.81 17999.60 2599.98 1299.60 75
LF4IMVS97.90 19597.69 20898.52 20699.17 18997.66 18197.19 26499.47 10296.31 27397.85 27398.20 28796.71 18399.52 32294.62 29699.72 14998.38 332
canonicalmvs98.34 15898.26 15898.58 19498.46 31597.82 16998.96 7399.46 10499.19 6997.46 30195.46 37698.59 4999.46 33698.08 11798.71 31998.46 325
XVG-ACMP-BASELINE98.56 12998.34 14899.22 9999.54 9998.59 9497.71 21299.46 10497.25 22798.98 15098.99 16697.54 12799.84 13995.88 26099.74 13999.23 226
DeepC-MVS97.60 498.97 6798.93 6899.10 11599.35 15297.98 15298.01 17399.46 10497.56 19499.54 5699.50 5998.97 2399.84 13998.06 11899.92 5599.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD_test198.83 8498.66 9999.34 7399.78 2699.47 698.42 12999.45 10798.28 13898.98 15099.19 11497.76 10899.58 30596.57 21999.55 21398.97 269
Fast-Effi-MVS+97.67 21797.38 22998.57 19698.71 27597.43 19497.23 25899.45 10794.82 31596.13 35096.51 35498.52 5499.91 6096.19 24798.83 31198.37 334
v124098.55 13398.62 10598.32 22599.22 17295.58 26297.51 23899.45 10797.16 23899.45 7499.24 10696.12 20699.85 12299.60 2599.88 7599.55 105
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11698.36 11499.00 6999.45 10799.63 1799.52 6299.44 7198.25 6999.88 8499.09 5599.84 8699.62 68
Anonymous2024052198.69 10798.87 7298.16 23999.77 2995.11 28199.08 5999.44 11199.34 4999.33 9799.55 4894.10 27499.94 3699.25 4699.96 2599.42 162
tfpnnormal98.90 7698.90 7198.91 14899.67 6397.82 16999.00 6999.44 11199.45 3699.51 6699.24 10698.20 7799.86 11095.92 25999.69 16299.04 257
GBi-Net98.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27099.86 11097.77 13799.69 16299.41 165
test198.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27099.86 11097.77 13799.69 16299.41 165
FMVSNet199.17 4299.17 4399.17 10399.55 9498.24 12099.20 4599.44 11199.21 6399.43 7699.55 4897.82 10599.86 11098.42 10099.89 7499.41 165
TinyColmap97.89 19797.98 18697.60 28098.86 24994.35 30296.21 31199.44 11197.45 20999.06 13698.88 19697.99 9599.28 36394.38 30899.58 20399.18 238
HPM-MVScopyleft98.79 8998.53 11799.59 1599.65 6699.29 1999.16 5199.43 11796.74 25798.61 21098.38 27198.62 4699.87 10196.47 23199.67 17399.59 81
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_BlendedMVS97.55 22597.53 22097.60 28098.92 23793.77 32596.64 29199.43 11794.49 32097.62 28699.18 11796.82 17399.67 26694.73 29399.93 4499.36 192
PVSNet_Blended96.88 27196.68 26997.47 29498.92 23793.77 32594.71 36199.43 11790.98 37097.62 28697.36 34096.82 17399.67 26694.73 29399.56 21098.98 266
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14798.87 7398.39 13199.42 12099.42 4199.36 9299.06 14198.38 6299.95 2398.34 10399.90 7099.57 92
SF-MVS98.53 13798.27 15799.32 8099.31 15598.75 8198.19 14799.41 12196.77 25698.83 18398.90 18997.80 10699.82 16695.68 27399.52 22299.38 184
door99.41 121
bld_raw_dy_0_6499.07 5899.00 6299.29 8499.85 1798.18 12699.11 5899.40 12399.33 5099.38 8799.44 7195.21 23999.97 499.31 4199.98 1299.73 45
PMMVS298.07 18698.08 17998.04 24999.41 13894.59 29694.59 36899.40 12397.50 19998.82 18698.83 20596.83 17299.84 13997.50 15199.81 10099.71 47
UniMVSNet_NR-MVSNet98.86 8298.68 9699.40 6299.17 18998.74 8297.68 21599.40 12399.14 7199.06 13698.59 24896.71 18399.93 4198.57 9099.77 12499.53 116
DPE-MVScopyleft98.59 12798.26 15899.57 1699.27 16299.15 4797.01 27099.39 12697.67 18299.44 7598.99 16697.53 12999.89 7595.40 28199.68 16799.66 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-LS98.55 13398.70 9398.09 24199.48 12394.73 29097.22 26199.39 12698.97 9399.38 8799.31 9496.00 21299.93 4198.58 8899.97 2099.60 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss98.57 12898.23 16199.60 1199.69 5799.35 1297.16 26599.38 12894.87 31498.97 15498.99 16698.01 9199.88 8497.29 15999.70 15999.58 87
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UniMVSNet (Re)98.87 7998.71 9099.35 7099.24 16798.73 8597.73 21199.38 12898.93 9799.12 12898.73 22196.77 17799.86 11098.63 8799.80 11099.46 147
PHI-MVS98.29 16697.95 18899.34 7398.44 31799.16 4398.12 15599.38 12896.01 28498.06 25998.43 26697.80 10699.67 26695.69 27299.58 20399.20 231
ACMP95.32 1598.41 14998.09 17699.36 6499.51 10698.79 8097.68 21599.38 12895.76 29198.81 18898.82 20898.36 6399.82 16694.75 29299.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMPcopyleft98.75 9698.50 12199.52 3999.56 9099.16 4398.87 7999.37 13297.16 23898.82 18699.01 16297.71 11199.87 10196.29 24299.69 16299.54 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft96.65 797.09 25996.68 26998.32 22598.32 32697.16 21298.86 8199.37 13289.48 37896.29 34999.15 12796.56 18899.90 6592.90 33899.20 27397.89 351
MSDG97.71 21497.52 22198.28 23098.91 24096.82 22694.42 37199.37 13297.65 18498.37 23998.29 28197.40 14099.33 35594.09 31599.22 27098.68 315
ACMM96.08 1298.91 7498.73 8699.48 5199.55 9499.14 5298.07 16299.37 13297.62 18699.04 14398.96 17598.84 3099.79 19997.43 15399.65 17999.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419298.54 13598.57 11398.45 21399.21 17495.98 25197.63 22399.36 13697.15 24099.32 10399.18 11795.84 22399.84 13999.50 3299.91 6399.54 109
v192192098.54 13598.60 11098.38 22199.20 17895.76 25997.56 23299.36 13697.23 23399.38 8799.17 12196.02 21099.84 13999.57 2799.90 7099.54 109
v119298.60 12598.66 9998.41 21899.27 16295.88 25497.52 23699.36 13697.41 21199.33 9799.20 11396.37 19899.82 16699.57 2799.92 5599.55 105
SD-MVS98.40 15198.68 9697.54 28798.96 22997.99 14997.88 18999.36 13698.20 14699.63 4899.04 15098.76 3595.33 39896.56 22399.74 13999.31 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CP-MVS98.70 10498.42 13699.52 3999.36 14899.12 5798.72 9099.36 13697.54 19798.30 24198.40 26897.86 10199.89 7596.53 22899.72 14999.56 98
test072699.50 10999.21 2898.17 15199.35 14197.97 16099.26 11299.06 14197.61 121
MSP-MVS98.40 15198.00 18599.61 999.57 8299.25 2498.57 10599.35 14197.55 19699.31 10597.71 31894.61 25999.88 8496.14 25199.19 27699.70 52
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPNet98.87 7998.83 7799.01 13499.70 5597.62 18598.43 12799.35 14199.47 3499.28 10699.05 14896.72 18299.82 16698.09 11699.36 24799.59 81
UnsupCasMVSNet_eth97.89 19797.60 21798.75 17499.31 15597.17 21197.62 22499.35 14198.72 10998.76 19498.68 23092.57 29899.74 23497.76 14195.60 38499.34 198
DP-MVS Recon97.33 24096.92 25298.57 19699.09 20597.99 14996.79 28299.35 14193.18 34497.71 28198.07 29895.00 24699.31 35793.97 31799.13 28498.42 331
ITE_SJBPF98.87 15299.22 17298.48 10499.35 14197.50 19998.28 24398.60 24797.64 11899.35 35293.86 32299.27 26298.79 300
v114498.60 12598.66 9998.41 21899.36 14895.90 25397.58 23099.34 14797.51 19899.27 10899.15 12796.34 20099.80 18699.47 3499.93 4499.51 121
XVS98.72 9998.45 13199.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29498.63 24297.50 13399.83 15696.79 20099.53 21999.56 98
X-MVStestdata94.32 33092.59 34899.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29445.85 39797.50 13399.83 15696.79 20099.53 21999.56 98
CP-MVSNet99.21 3999.09 5599.56 2199.65 6698.96 7099.13 5599.34 14799.42 4199.33 9799.26 10197.01 16399.94 3698.74 7799.93 4499.79 30
test_040298.76 9598.71 9098.93 14599.56 9098.14 13198.45 12699.34 14799.28 5798.95 15798.91 18698.34 6799.79 19995.63 27499.91 6398.86 287
APD-MVS_3200maxsize98.84 8398.61 10999.53 3499.19 18199.27 2298.49 11999.33 15298.64 11199.03 14698.98 17097.89 9999.85 12296.54 22799.42 24099.46 147
DP-MVS98.93 7298.81 8099.28 8699.21 17498.45 10698.46 12499.33 15299.63 1799.48 6899.15 12797.23 15099.75 22997.17 16599.66 17899.63 67
DVP-MVS++98.90 7698.70 9399.51 4398.43 31899.15 4799.43 1199.32 15498.17 14999.26 11299.02 15398.18 7899.88 8497.07 17599.45 23699.49 128
9.1497.78 20199.07 20997.53 23599.32 15495.53 29798.54 22398.70 22797.58 12399.76 22294.32 30999.46 234
test_0728_SECOND99.60 1199.50 10999.23 2698.02 17099.32 15499.88 8496.99 18199.63 18499.68 55
Anonymous2023120698.21 17498.21 16298.20 23599.51 10695.43 26998.13 15399.32 15496.16 27898.93 16598.82 20896.00 21299.83 15697.32 15899.73 14299.36 192
LS3D98.63 12198.38 14399.36 6497.25 37499.38 899.12 5799.32 15499.21 6398.44 23198.88 19697.31 14399.80 18696.58 21799.34 25198.92 278
test_one_060199.39 14099.20 3499.31 15998.49 12498.66 20399.02 15397.64 118
SED-MVS98.91 7498.72 8899.49 4899.49 11699.17 3998.10 15899.31 15998.03 15799.66 4299.02 15398.36 6399.88 8496.91 18799.62 18799.41 165
test_241102_ONE99.49 11699.17 3999.31 15997.98 15999.66 4298.90 18998.36 6399.48 331
miper_lstm_enhance97.18 25397.16 24197.25 30598.16 33692.85 33995.15 35299.31 15997.25 22798.74 19798.78 21490.07 31799.78 21097.19 16499.80 11099.11 248
HFP-MVS98.71 10098.44 13399.51 4399.49 11699.16 4398.52 11199.31 15997.47 20298.58 21698.50 26097.97 9699.85 12296.57 21999.59 19899.53 116
region2R98.69 10798.40 13899.54 2799.53 10299.17 3998.52 11199.31 15997.46 20798.44 23198.51 25697.83 10299.88 8496.46 23299.58 20399.58 87
ACMMPR98.70 10498.42 13699.54 2799.52 10499.14 5298.52 11199.31 15997.47 20298.56 21998.54 25297.75 10999.88 8496.57 21999.59 19899.58 87
SteuartSystems-ACMMP98.79 8998.54 11699.54 2799.73 3999.16 4398.23 14399.31 15997.92 16598.90 16898.90 18998.00 9299.88 8496.15 25099.72 14999.58 87
Skip Steuart: Steuart Systems R&D Blog.
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1297.25 16299.92 5599.57 92
SR-MVS-dyc-post98.81 8798.55 11499.57 1699.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.49 13699.86 11096.56 22399.39 24399.45 151
RE-MVS-def98.58 11299.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.75 10996.56 22399.39 24399.45 151
test_241102_TWO99.30 16798.03 15799.26 11299.02 15397.51 13299.88 8496.91 18799.60 19499.66 59
RPMNet97.02 26496.93 25097.30 30197.71 35794.22 30398.11 15699.30 16799.37 4596.91 32399.34 8886.72 33799.87 10197.53 14997.36 36397.81 356
MVS_111021_LR98.30 16398.12 17498.83 15699.16 19198.03 14796.09 31799.30 16797.58 19198.10 25698.24 28398.25 6999.34 35396.69 21299.65 17999.12 247
F-COLMAP97.30 24296.68 26999.14 10999.19 18198.39 10897.27 25799.30 16792.93 34896.62 33898.00 30195.73 22599.68 26392.62 34798.46 33099.35 196
3Dnovator98.27 298.81 8798.73 8699.05 12898.76 26697.81 17199.25 4099.30 16798.57 12098.55 22199.33 9097.95 9799.90 6597.16 16699.67 17399.44 155
EGC-MVSNET85.24 36280.54 36599.34 7399.77 2999.20 3499.08 5999.29 17512.08 39920.84 40099.42 7497.55 12699.85 12297.08 17499.72 14998.96 271
ZNCC-MVS98.68 11298.40 13899.54 2799.57 8299.21 2898.46 12499.29 17597.28 22498.11 25598.39 26998.00 9299.87 10196.86 19799.64 18199.55 105
SR-MVS98.71 10098.43 13499.57 1699.18 18899.35 1298.36 13499.29 17598.29 13698.88 17498.85 20297.53 12999.87 10196.14 25199.31 25599.48 138
pmmvs-eth3d98.47 14498.34 14898.86 15399.30 15897.76 17497.16 26599.28 17895.54 29699.42 7999.19 11497.27 14799.63 28897.89 12899.97 2099.20 231
APD-MVScopyleft98.10 18197.67 20999.42 5899.11 20098.93 7197.76 20799.28 17894.97 31198.72 19898.77 21697.04 15999.85 12293.79 32499.54 21599.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS96.21 1196.63 28195.95 29298.65 18198.93 23398.09 13696.93 27699.28 17883.58 39198.13 25397.78 31496.13 20599.40 34493.52 32999.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS97.99 19397.67 20998.93 14599.19 18197.65 18297.77 20499.27 18198.20 14697.79 27797.98 30394.90 24799.70 25094.42 30499.51 22499.45 151
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 151
CPTT-MVS97.84 20797.36 23199.27 8999.31 15598.46 10598.29 13899.27 18194.90 31397.83 27498.37 27294.90 24799.84 13993.85 32399.54 21599.51 121
UnsupCasMVSNet_bld97.30 24296.92 25298.45 21399.28 16096.78 23096.20 31299.27 18195.42 30098.28 24398.30 28093.16 28599.71 24794.99 28797.37 36198.87 286
MVS_111021_HR98.25 17198.08 17998.75 17499.09 20597.46 19195.97 32099.27 18197.60 19097.99 26498.25 28298.15 8499.38 34896.87 19599.57 20799.42 162
cascas94.79 32594.33 33196.15 34296.02 39492.36 34992.34 39099.26 18685.34 38995.08 37294.96 38392.96 29198.53 38794.41 30798.59 32797.56 368
GST-MVS98.61 12498.30 15399.52 3999.51 10699.20 3498.26 14199.25 18797.44 21098.67 20198.39 26997.68 11299.85 12296.00 25599.51 22499.52 119
IterMVS-SCA-FT97.85 20698.18 16696.87 32199.27 16291.16 36795.53 33999.25 18799.10 7999.41 8099.35 8493.10 28799.96 1298.65 8599.94 4099.49 128
ACMMP_NAP98.75 9698.48 12699.57 1699.58 7899.29 1997.82 19799.25 18796.94 24898.78 18999.12 13398.02 9099.84 13997.13 17199.67 17399.59 81
DU-MVS98.82 8598.63 10399.39 6399.16 19198.74 8297.54 23499.25 18798.84 10599.06 13698.76 21896.76 17999.93 4198.57 9099.77 12499.50 124
OMC-MVS97.88 19997.49 22399.04 13098.89 24698.63 8996.94 27499.25 18795.02 30998.53 22498.51 25697.27 14799.47 33493.50 33199.51 22499.01 261
test20.0398.78 9198.77 8398.78 16799.46 12697.20 20897.78 20299.24 19299.04 8799.41 8098.90 18997.65 11599.76 22297.70 14299.79 11599.39 177
mPP-MVS98.64 11998.34 14899.54 2799.54 9999.17 3998.63 9899.24 19297.47 20298.09 25798.68 23097.62 12099.89 7596.22 24599.62 18799.57 92
MSLP-MVS++98.02 18898.14 17397.64 27898.58 30295.19 27797.48 24099.23 19497.47 20297.90 26898.62 24497.04 15998.81 38497.55 14699.41 24198.94 276
SMA-MVScopyleft98.40 15198.03 18399.51 4399.16 19199.21 2898.05 16599.22 19594.16 33098.98 15099.10 13797.52 13199.79 19996.45 23399.64 18199.53 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS97.73 21298.11 17596.57 32999.24 16790.28 37295.52 34199.21 19698.86 10299.33 9799.33 9093.11 28699.94 3698.49 9699.94 4099.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS97.49 22897.16 24198.48 21099.07 20997.03 21794.71 36199.21 19694.46 32298.06 25997.16 34497.57 12499.48 33194.46 30199.78 12098.95 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MTGPAbinary99.20 198
MTAPA98.88 7898.64 10299.61 999.67 6399.36 1198.43 12799.20 19898.83 10698.89 17098.90 18996.98 16599.92 5197.16 16699.70 15999.56 98
NR-MVSNet98.95 7098.82 7899.36 6499.16 19198.72 8799.22 4299.20 19899.10 7999.72 3198.76 21896.38 19799.86 11098.00 12399.82 9699.50 124
DELS-MVS98.27 16798.20 16398.48 21098.86 24996.70 23195.60 33799.20 19897.73 17898.45 23098.71 22497.50 13399.82 16698.21 10999.59 19898.93 277
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
V4298.78 9198.78 8298.76 17199.44 13097.04 21698.27 14099.19 20297.87 16999.25 11699.16 12396.84 17099.78 21099.21 4999.84 8699.46 147
MP-MVScopyleft98.46 14598.09 17699.54 2799.57 8299.22 2798.50 11899.19 20297.61 18997.58 29098.66 23597.40 14099.88 8494.72 29599.60 19499.54 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM97.31 24196.81 26298.82 15798.80 26497.49 18999.06 6399.19 20290.22 37497.69 28399.16 12396.91 16799.90 6590.89 37099.41 24199.07 251
3Dnovator+97.89 398.69 10798.51 11999.24 9698.81 26198.40 10799.02 6699.19 20298.99 9198.07 25899.28 9797.11 15799.84 13996.84 19899.32 25399.47 145
eth_miper_zixun_eth97.23 24997.25 23697.17 30798.00 34492.77 34194.71 36199.18 20697.27 22598.56 21998.74 22091.89 30599.69 25497.06 17799.81 10099.05 253
OPM-MVS98.56 12998.32 15299.25 9499.41 13898.73 8597.13 26799.18 20697.10 24198.75 19598.92 18598.18 7899.65 28296.68 21399.56 21099.37 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVP-Stereo98.08 18597.92 19298.57 19698.96 22996.79 22797.90 18699.18 20696.41 26998.46 22998.95 17995.93 21999.60 29796.51 22998.98 30299.31 209
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DeepPCF-MVS96.93 598.32 16098.01 18499.23 9898.39 32398.97 6695.03 35499.18 20696.88 25199.33 9798.78 21498.16 8299.28 36396.74 20699.62 18799.44 155
xiu_mvs_v1_base_debu97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
xiu_mvs_v1_base97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
xiu_mvs_v1_base_debi97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
cl____97.02 26496.83 25997.58 28297.82 35294.04 31194.66 36499.16 21397.04 24398.63 20698.71 22488.68 32899.69 25497.00 17999.81 10099.00 264
DIV-MVS_self_test97.02 26496.84 25897.58 28297.82 35294.03 31294.66 36499.16 21397.04 24398.63 20698.71 22488.69 32699.69 25497.00 17999.81 10099.01 261
c3_l97.36 23797.37 23097.31 30098.09 34093.25 33295.01 35599.16 21397.05 24298.77 19298.72 22392.88 29299.64 28596.93 18699.76 13599.05 253
Effi-MVS+-dtu98.26 16997.90 19499.35 7098.02 34399.49 598.02 17099.16 21398.29 13697.64 28597.99 30296.44 19499.95 2396.66 21498.93 30798.60 320
v2v48298.56 12998.62 10598.37 22299.42 13695.81 25797.58 23099.16 21397.90 16799.28 10699.01 16295.98 21699.79 19999.33 3999.90 7099.51 121
MDA-MVSNet-bldmvs97.94 19497.91 19398.06 24699.44 13094.96 28496.63 29299.15 21898.35 12898.83 18399.11 13494.31 26799.85 12296.60 21698.72 31799.37 186
iter_conf0596.54 28496.07 29097.92 25397.90 34994.50 29797.87 19299.14 21997.73 17898.89 17098.95 17975.75 39099.87 10198.50 9599.92 5599.40 174
FMVSNet298.49 14298.40 13898.75 17498.90 24197.14 21498.61 10199.13 22098.59 11799.19 12299.28 9794.14 27099.82 16697.97 12599.80 11099.29 214
DSMNet-mixed97.42 23497.60 21796.87 32199.15 19591.46 35898.54 10999.12 22192.87 35097.58 29099.63 3396.21 20399.90 6595.74 26999.54 21599.27 217
CMPMVSbinary75.91 2396.29 29395.44 30798.84 15596.25 39198.69 8897.02 26999.12 22188.90 38197.83 27498.86 19989.51 32198.90 38291.92 35299.51 22498.92 278
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
iter_conf_final97.10 25796.65 27498.45 21398.53 30996.08 24998.30 13799.11 22398.10 15498.85 17998.95 17979.38 38099.87 10198.68 8399.91 6399.40 174
PCF-MVS92.86 1894.36 32993.00 34698.42 21798.70 27997.56 18693.16 38699.11 22379.59 39497.55 29397.43 33592.19 30199.73 23979.85 39599.45 23697.97 350
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvsany_test398.87 7998.92 6998.74 17899.38 14196.94 22398.58 10499.10 22596.49 26699.96 499.81 598.18 7899.45 33798.97 6499.79 11599.83 22
cdsmvs_eth3d_5k24.66 36532.88 3680.00 3840.00 4060.00 4090.00 39599.10 2250.00 4020.00 40397.58 32699.21 160.00 4030.00 4020.00 4010.00 399
miper_ehance_all_eth97.06 26197.03 24797.16 30997.83 35193.06 33494.66 36499.09 22795.99 28598.69 19998.45 26592.73 29699.61 29696.79 20099.03 29498.82 290
DeepC-MVS_fast96.85 698.30 16398.15 17198.75 17498.61 29597.23 20497.76 20799.09 22797.31 22198.75 19598.66 23597.56 12599.64 28596.10 25499.55 21399.39 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZD-MVS99.01 22198.84 7599.07 22994.10 33298.05 26198.12 29296.36 19999.86 11092.70 34699.19 276
v14898.45 14698.60 11098.00 25199.44 13094.98 28397.44 24499.06 23098.30 13399.32 10398.97 17296.65 18599.62 29098.37 10199.85 8299.39 177
PatchMatch-RL97.24 24896.78 26398.61 19099.03 22097.83 16696.36 30499.06 23093.49 34297.36 30897.78 31495.75 22499.49 32893.44 33298.77 31498.52 323
PLCcopyleft94.65 1696.51 28595.73 29698.85 15498.75 26897.91 15996.42 30199.06 23090.94 37195.59 35997.38 33894.41 26399.59 30190.93 36898.04 35199.05 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ppachtmachnet_test97.50 22697.74 20496.78 32798.70 27991.23 36694.55 36999.05 23396.36 27099.21 12098.79 21396.39 19599.78 21096.74 20699.82 9699.34 198
CANet97.87 20097.76 20298.19 23697.75 35495.51 26596.76 28599.05 23397.74 17796.93 32098.21 28695.59 22999.89 7597.86 13399.93 4499.19 236
pmmvs597.64 21997.49 22398.08 24499.14 19695.12 28096.70 28999.05 23393.77 33798.62 20898.83 20593.23 28399.75 22998.33 10599.76 13599.36 192
HQP3-MVS99.04 23699.26 265
HQP-MVS97.00 26796.49 28198.55 20198.67 28796.79 22796.29 30799.04 23696.05 28195.55 36296.84 34993.84 27699.54 31692.82 34199.26 26599.32 205
TEST998.71 27598.08 14095.96 32299.03 23891.40 36595.85 35697.53 32896.52 19099.76 222
train_agg97.10 25796.45 28299.07 12198.71 27598.08 14095.96 32299.03 23891.64 36095.85 35697.53 32896.47 19299.76 22293.67 32599.16 27999.36 192
test_prior98.95 14298.69 28497.95 15799.03 23899.59 30199.30 212
save fliter99.11 20097.97 15396.53 29599.02 24198.24 139
test_898.67 28798.01 14895.91 32799.02 24191.64 36095.79 35897.50 33196.47 19299.76 222
MVS_Test98.18 17798.36 14597.67 27498.48 31394.73 29098.18 14899.02 24197.69 18198.04 26299.11 13497.22 15199.56 31098.57 9098.90 30998.71 308
agg_prior98.68 28697.99 14999.01 24495.59 35999.77 216
CDPH-MVS97.26 24596.66 27299.07 12199.00 22298.15 12996.03 31899.01 24491.21 36897.79 27797.85 31296.89 16899.69 25492.75 34499.38 24699.39 177
ambc98.24 23398.82 25895.97 25298.62 10099.00 24699.27 10899.21 11196.99 16499.50 32796.55 22699.50 23199.26 220
Anonymous2024052998.93 7298.87 7299.12 11199.19 18198.22 12599.01 6798.99 24799.25 5999.54 5699.37 8097.04 15999.80 18697.89 12899.52 22299.35 196
our_test_397.39 23697.73 20696.34 33398.70 27989.78 37494.61 36798.97 24896.50 26599.04 14398.85 20295.98 21699.84 13997.26 16199.67 17399.41 165
TSAR-MVS + MP.98.63 12198.49 12599.06 12799.64 7197.90 16098.51 11698.94 24996.96 24699.24 11798.89 19597.83 10299.81 17996.88 19499.49 23299.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
WR-MVS98.40 15198.19 16599.03 13199.00 22297.65 18296.85 28098.94 24998.57 12098.89 17098.50 26095.60 22899.85 12297.54 14899.85 8299.59 81
CNVR-MVS98.17 17997.87 19799.07 12198.67 28798.24 12097.01 27098.93 25197.25 22797.62 28698.34 27697.27 14799.57 30796.42 23499.33 25299.39 177
CNLPA97.17 25496.71 26798.55 20198.56 30598.05 14696.33 30598.93 25196.91 25097.06 31697.39 33794.38 26599.45 33791.66 35599.18 27898.14 341
AdaColmapbinary97.14 25696.71 26798.46 21298.34 32597.80 17296.95 27398.93 25195.58 29596.92 32197.66 32195.87 22199.53 31890.97 36799.14 28298.04 346
CR-MVSNet96.28 29495.95 29297.28 30297.71 35794.22 30398.11 15698.92 25492.31 35696.91 32399.37 8085.44 35099.81 17997.39 15597.36 36397.81 356
Patchmtry97.35 23896.97 24998.50 20997.31 37396.47 23698.18 14898.92 25498.95 9698.78 18999.37 8085.44 35099.85 12295.96 25899.83 9399.17 242
FMVSNet397.50 22697.24 23798.29 22998.08 34195.83 25697.86 19498.91 25697.89 16898.95 15798.95 17987.06 33599.81 17997.77 13799.69 16299.23 226
mvs_anonymous97.83 20998.16 17096.87 32198.18 33591.89 35497.31 25298.90 25797.37 21598.83 18399.46 6696.28 20199.79 19998.90 6798.16 34198.95 272
NCCC97.86 20197.47 22699.05 12898.61 29598.07 14296.98 27298.90 25797.63 18597.04 31797.93 30895.99 21599.66 27795.31 28298.82 31399.43 159
miper_enhance_ethall96.01 30095.74 29596.81 32596.41 38992.27 35193.69 38398.89 25991.14 36998.30 24197.35 34190.58 31499.58 30596.31 24099.03 29498.60 320
D2MVS97.84 20797.84 19997.83 25999.14 19694.74 28996.94 27498.88 26095.84 28998.89 17098.96 17594.40 26499.69 25497.55 14699.95 3299.05 253
CHOSEN 280x42095.51 31595.47 30495.65 35098.25 33088.27 38093.25 38598.88 26093.53 34094.65 37697.15 34586.17 34299.93 4197.41 15499.93 4498.73 307
IU-MVS99.49 11699.15 4798.87 26292.97 34799.41 8096.76 20499.62 18799.66 59
EI-MVSNet-UG-set98.69 10798.71 9098.62 18799.10 20296.37 23897.23 25898.87 26299.20 6599.19 12298.99 16697.30 14499.85 12298.77 7699.79 11599.65 63
EI-MVSNet98.40 15198.51 11998.04 24999.10 20294.73 29097.20 26298.87 26298.97 9399.06 13699.02 15396.00 21299.80 18698.58 8899.82 9699.60 75
test1198.87 262
MVSTER96.86 27296.55 27997.79 26297.91 34894.21 30597.56 23298.87 26297.49 20199.06 13699.05 14880.72 37299.80 18698.44 9899.82 9699.37 186
MSC_two_6792asdad99.32 8098.43 31898.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
No_MVS99.32 8098.43 31898.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
EI-MVSNet-Vis-set98.68 11298.70 9398.63 18699.09 20596.40 23797.23 25898.86 26799.20 6599.18 12698.97 17297.29 14699.85 12298.72 7999.78 12099.64 64
PS-MVSNAJ97.08 26097.39 22896.16 34198.56 30592.46 34595.24 34998.85 27097.25 22797.49 29995.99 36498.07 8699.90 6596.37 23698.67 32396.12 387
DVP-MVScopyleft98.77 9498.52 11899.52 3999.50 10999.21 2898.02 17098.84 27197.97 16099.08 13499.02 15397.61 12199.88 8496.99 18199.63 18499.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xiu_mvs_v2_base97.16 25597.49 22396.17 33998.54 30792.46 34595.45 34398.84 27197.25 22797.48 30096.49 35598.31 6899.90 6596.34 23998.68 32296.15 386
MS-PatchMatch97.68 21697.75 20397.45 29598.23 33393.78 32497.29 25498.84 27196.10 28098.64 20598.65 23796.04 20999.36 34996.84 19899.14 28299.20 231
PMMVS96.51 28595.98 29198.09 24197.53 36595.84 25594.92 35798.84 27191.58 36296.05 35495.58 37195.68 22699.66 27795.59 27698.09 34598.76 304
原ACMM198.35 22398.90 24196.25 24298.83 27592.48 35496.07 35398.10 29495.39 23699.71 24792.61 34898.99 30099.08 249
ab-mvs98.41 14998.36 14598.59 19399.19 18197.23 20499.32 2398.81 27697.66 18398.62 20899.40 7996.82 17399.80 18695.88 26099.51 22498.75 305
TAMVS98.24 17298.05 18198.80 16199.07 20997.18 21097.88 18998.81 27696.66 26199.17 12799.21 11194.81 25399.77 21696.96 18599.88 7599.44 155
testdata98.09 24198.93 23395.40 27098.80 27890.08 37697.45 30298.37 27295.26 23899.70 25093.58 32898.95 30599.17 242
CL-MVSNet_self_test97.44 23397.22 23898.08 24498.57 30495.78 25894.30 37498.79 27996.58 26498.60 21298.19 28894.74 25899.64 28596.41 23598.84 31098.82 290
CANet_DTU97.26 24597.06 24697.84 25897.57 36294.65 29496.19 31398.79 27997.23 23395.14 37198.24 28393.22 28499.84 13997.34 15799.84 8699.04 257
test22298.92 23796.93 22495.54 33898.78 28185.72 38896.86 32998.11 29394.43 26299.10 28999.23 226
WB-MVS98.52 14098.55 11498.43 21699.65 6695.59 26098.52 11198.77 28299.65 1499.52 6299.00 16594.34 26699.93 4198.65 8598.83 31199.76 39
新几何198.91 14898.94 23197.76 17498.76 28387.58 38596.75 33498.10 29494.80 25499.78 21092.73 34599.00 29999.20 231
旧先验198.82 25897.45 19298.76 28398.34 27695.50 23399.01 29899.23 226
PAPM_NR96.82 27596.32 28598.30 22899.07 20996.69 23297.48 24098.76 28395.81 29096.61 33996.47 35794.12 27399.17 37090.82 37197.78 35399.06 252
HPM-MVS++copyleft98.10 18197.64 21499.48 5199.09 20599.13 5597.52 23698.75 28697.46 20796.90 32697.83 31396.01 21199.84 13995.82 26799.35 24999.46 147
CDS-MVSNet97.69 21597.35 23298.69 17998.73 27097.02 21896.92 27898.75 28695.89 28898.59 21498.67 23292.08 30499.74 23496.72 20999.81 10099.32 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
无先验95.74 33398.74 28889.38 37999.73 23992.38 35199.22 230
MCST-MVS98.00 19097.63 21599.10 11599.24 16798.17 12896.89 27998.73 28995.66 29297.92 26697.70 32097.17 15399.66 27796.18 24999.23 26999.47 145
PAPR95.29 31794.47 32697.75 26897.50 36995.14 27994.89 35898.71 29091.39 36695.35 36995.48 37594.57 26099.14 37384.95 38697.37 36198.97 269
PMVScopyleft91.26 2097.86 20197.94 19097.65 27699.71 4897.94 15898.52 11198.68 29198.99 9197.52 29699.35 8497.41 13998.18 39091.59 35899.67 17396.82 378
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VNet98.42 14898.30 15398.79 16498.79 26597.29 20098.23 14398.66 29299.31 5398.85 17998.80 21194.80 25499.78 21098.13 11399.13 28499.31 209
test1298.93 14598.58 30297.83 16698.66 29296.53 34195.51 23299.69 25499.13 28499.27 217
TSAR-MVS + GP.98.18 17797.98 18698.77 17098.71 27597.88 16196.32 30698.66 29296.33 27199.23 11998.51 25697.48 13799.40 34497.16 16699.46 23499.02 260
SSC-MVS98.71 10098.74 8498.62 18799.72 4596.08 24998.74 8698.64 29599.74 699.67 4199.24 10694.57 26099.95 2399.11 5399.24 26799.82 25
OpenMVS_ROBcopyleft95.38 1495.84 30695.18 31797.81 26198.41 32297.15 21397.37 24798.62 29683.86 39098.65 20498.37 27294.29 26899.68 26388.41 37898.62 32696.60 381
MAR-MVS96.47 28995.70 29798.79 16497.92 34799.12 5798.28 13998.60 29792.16 35895.54 36596.17 36294.77 25799.52 32289.62 37598.23 33597.72 362
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
h-mvs3397.77 21097.33 23499.10 11599.21 17497.84 16598.35 13598.57 29899.11 7298.58 21699.02 15388.65 32999.96 1298.11 11496.34 37699.49 128
UGNet98.53 13798.45 13198.79 16497.94 34696.96 22199.08 5998.54 29999.10 7996.82 33199.47 6596.55 18999.84 13998.56 9399.94 4099.55 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
cl2295.79 30795.39 31096.98 31596.77 38492.79 34094.40 37298.53 30094.59 31997.89 26998.17 28982.82 36899.24 36596.37 23699.03 29498.92 278
pmmvs497.58 22497.28 23598.51 20798.84 25396.93 22495.40 34598.52 30193.60 33998.61 21098.65 23795.10 24399.60 29796.97 18499.79 11598.99 265
API-MVS97.04 26396.91 25497.42 29797.88 35098.23 12498.18 14898.50 30297.57 19297.39 30696.75 35196.77 17799.15 37290.16 37399.02 29794.88 392
sss97.21 25096.93 25098.06 24698.83 25595.22 27696.75 28698.48 30394.49 32097.27 30997.90 30992.77 29599.80 18696.57 21999.32 25399.16 245
Vis-MVSNet (Re-imp)97.46 23097.16 24198.34 22499.55 9496.10 24498.94 7498.44 30498.32 13298.16 24998.62 24488.76 32599.73 23993.88 32199.79 11599.18 238
MDA-MVSNet_test_wron97.60 22197.66 21297.41 29899.04 21793.09 33395.27 34798.42 30597.26 22698.88 17498.95 17995.43 23599.73 23997.02 17898.72 31799.41 165
jason97.45 23297.35 23297.76 26799.24 16793.93 31795.86 32898.42 30594.24 32898.50 22698.13 29094.82 25199.91 6097.22 16399.73 14299.43 159
jason: jason.
test_method79.78 36379.50 36680.62 38080.21 40245.76 40670.82 39498.41 30731.08 39880.89 39997.71 31884.85 35297.37 39391.51 36080.03 39798.75 305
YYNet197.60 22197.67 20997.39 29999.04 21793.04 33795.27 34798.38 30897.25 22798.92 16698.95 17995.48 23499.73 23996.99 18198.74 31599.41 165
IS-MVSNet98.19 17697.90 19499.08 11999.57 8297.97 15399.31 2798.32 30999.01 9098.98 15099.03 15291.59 30799.79 19995.49 27999.80 11099.48 138
131495.74 30895.60 30196.17 33997.53 36592.75 34298.07 16298.31 31091.22 36794.25 37996.68 35295.53 23099.03 37491.64 35797.18 36696.74 379
DPM-MVS96.32 29295.59 30298.51 20798.76 26697.21 20794.54 37098.26 31191.94 35996.37 34797.25 34293.06 28999.43 34091.42 36198.74 31598.89 282
BH-untuned96.83 27396.75 26597.08 31098.74 26993.33 33196.71 28898.26 31196.72 25898.44 23197.37 33995.20 24099.47 33491.89 35397.43 35998.44 329
EU-MVSNet97.66 21898.50 12195.13 35899.63 7585.84 38898.35 13598.21 31398.23 14099.54 5699.46 6695.02 24599.68 26398.24 10799.87 7899.87 16
SixPastTwentyTwo98.75 9698.62 10599.16 10699.83 2097.96 15699.28 3798.20 31499.37 4599.70 3599.65 3092.65 29799.93 4199.04 5999.84 8699.60 75
new_pmnet96.99 26896.76 26497.67 27498.72 27294.89 28595.95 32498.20 31492.62 35398.55 22198.54 25294.88 25099.52 32293.96 31899.44 23998.59 322
CVMVSNet96.25 29597.21 23993.38 37599.10 20280.56 40297.20 26298.19 31696.94 24899.00 14899.02 15389.50 32299.80 18696.36 23899.59 19899.78 33
RRT_MVS99.09 5498.94 6799.55 2399.87 1298.82 7899.48 998.16 31799.49 3199.59 5299.65 3094.79 25699.95 2399.45 3599.96 2599.88 14
KD-MVS_2432*160092.87 35191.99 35495.51 35391.37 39989.27 37594.07 37698.14 31895.42 30097.25 31096.44 35867.86 39699.24 36591.28 36396.08 38198.02 347
miper_refine_blended92.87 35191.99 35495.51 35391.37 39989.27 37594.07 37698.14 31895.42 30097.25 31096.44 35867.86 39699.24 36591.28 36396.08 38198.02 347
MG-MVS96.77 27696.61 27597.26 30498.31 32793.06 33495.93 32598.12 32096.45 26897.92 26698.73 22193.77 28099.39 34691.19 36699.04 29399.33 203
EPP-MVSNet98.30 16398.04 18299.07 12199.56 9097.83 16699.29 3398.07 32199.03 8898.59 21499.13 13192.16 30299.90 6596.87 19599.68 16799.49 128
MVS93.19 34892.09 35296.50 33196.91 38094.03 31298.07 16298.06 32268.01 39594.56 37896.48 35695.96 21899.30 35983.84 38896.89 37196.17 384
lupinMVS97.06 26196.86 25697.65 27698.88 24793.89 32195.48 34297.97 32393.53 34098.16 24997.58 32693.81 27899.91 6096.77 20399.57 20799.17 242
GA-MVS95.86 30595.32 31397.49 29298.60 29794.15 30893.83 38197.93 32495.49 29896.68 33597.42 33683.21 36499.30 35996.22 24598.55 32999.01 261
WTY-MVS96.67 27996.27 28897.87 25798.81 26194.61 29596.77 28497.92 32594.94 31297.12 31297.74 31791.11 31199.82 16693.89 32098.15 34299.18 238
Patchmatch-test96.55 28396.34 28497.17 30798.35 32493.06 33498.40 13097.79 32697.33 21898.41 23498.67 23283.68 36399.69 25495.16 28599.31 25598.77 302
ADS-MVSNet295.43 31694.98 32096.76 32898.14 33791.74 35597.92 18397.76 32790.23 37296.51 34398.91 18685.61 34799.85 12292.88 33996.90 36998.69 312
PVSNet93.40 1795.67 30995.70 29795.57 35198.83 25588.57 37792.50 38897.72 32892.69 35296.49 34696.44 35893.72 28199.43 34093.61 32699.28 26198.71 308
pmmvs395.03 32294.40 32896.93 31797.70 35992.53 34495.08 35397.71 32988.57 38297.71 28198.08 29779.39 37999.82 16696.19 24799.11 28898.43 330
alignmvs97.35 23896.88 25598.78 16798.54 30798.09 13697.71 21297.69 33099.20 6597.59 28995.90 36788.12 33499.55 31398.18 11198.96 30498.70 311
AUN-MVS96.24 29695.45 30698.60 19298.70 27997.22 20697.38 24697.65 33195.95 28695.53 36697.96 30782.11 37199.79 19996.31 24097.44 35898.80 299
tpm cat193.29 34793.13 34593.75 37097.39 37184.74 39297.39 24597.65 33183.39 39294.16 38098.41 26782.86 36799.39 34691.56 35995.35 38697.14 374
hse-mvs297.46 23097.07 24598.64 18298.73 27097.33 19897.45 24397.64 33399.11 7298.58 21697.98 30388.65 32999.79 19998.11 11497.39 36098.81 294
PVSNet_089.98 2191.15 36190.30 36493.70 37197.72 35584.34 39690.24 39197.42 33490.20 37593.79 38693.09 39290.90 31298.89 38386.57 38472.76 39897.87 353
BH-w/o95.13 32094.89 32495.86 34398.20 33491.31 36295.65 33597.37 33593.64 33896.52 34295.70 37093.04 29099.02 37588.10 38095.82 38397.24 373
test_yl96.69 27796.29 28697.90 25498.28 32895.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34099.55 31394.87 29098.32 33298.89 282
DCV-MVSNet96.69 27796.29 28697.90 25498.28 32895.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34099.55 31394.87 29098.32 33298.89 282
BH-RMVSNet96.83 27396.58 27897.58 28298.47 31494.05 30996.67 29097.36 33696.70 26097.87 27097.98 30395.14 24299.44 33990.47 37298.58 32899.25 221
ADS-MVSNet95.24 31994.93 32396.18 33898.14 33790.10 37397.92 18397.32 33990.23 37296.51 34398.91 18685.61 34799.74 23492.88 33996.90 36998.69 312
VDDNet98.21 17497.95 18899.01 13499.58 7897.74 17699.01 6797.29 34099.67 1298.97 15499.50 5990.45 31599.80 18697.88 13199.20 27399.48 138
PAPM91.88 36090.34 36396.51 33098.06 34292.56 34392.44 38997.17 34186.35 38690.38 39396.01 36386.61 33899.21 36870.65 39995.43 38597.75 360
FPMVS93.44 34692.23 35097.08 31099.25 16697.86 16395.61 33697.16 34292.90 34993.76 38798.65 23775.94 38995.66 39679.30 39697.49 35697.73 361
mvsany_test197.60 22197.54 21997.77 26497.72 35595.35 27195.36 34697.13 34394.13 33199.71 3399.33 9097.93 9899.30 35997.60 14598.94 30698.67 316
E-PMN94.17 33494.37 32993.58 37296.86 38185.71 39090.11 39297.07 34498.17 14997.82 27697.19 34384.62 35598.94 37989.77 37497.68 35596.09 388
VDD-MVS98.56 12998.39 14199.07 12199.13 19898.07 14298.59 10397.01 34599.59 2399.11 12999.27 9994.82 25199.79 19998.34 10399.63 18499.34 198
FA-MVS(test-final)96.99 26896.82 26097.50 29198.70 27994.78 28799.34 2096.99 34695.07 30898.48 22899.33 9088.41 33299.65 28296.13 25398.92 30898.07 345
tt080598.69 10798.62 10598.90 15199.75 3699.30 1799.15 5396.97 34798.86 10298.87 17897.62 32598.63 4598.96 37899.41 3798.29 33498.45 327
tpmrst95.07 32195.46 30593.91 36897.11 37684.36 39597.62 22496.96 34894.98 31096.35 34898.80 21185.46 34999.59 30195.60 27596.23 37897.79 359
wuyk23d96.06 29897.62 21691.38 37898.65 29498.57 9698.85 8296.95 34996.86 25299.90 1299.16 12399.18 1798.40 38889.23 37799.77 12477.18 396
HY-MVS95.94 1395.90 30495.35 31297.55 28697.95 34594.79 28698.81 8596.94 35092.28 35795.17 37098.57 25089.90 31999.75 22991.20 36597.33 36598.10 343
MIMVSNet96.62 28296.25 28997.71 27399.04 21794.66 29399.16 5196.92 35197.23 23397.87 27099.10 13786.11 34499.65 28291.65 35699.21 27298.82 290
SCA96.41 29196.66 27295.67 34898.24 33188.35 37995.85 33096.88 35296.11 27997.67 28498.67 23293.10 28799.85 12294.16 31099.22 27098.81 294
tpmvs95.02 32395.25 31494.33 36496.39 39085.87 38798.08 16096.83 35395.46 29995.51 36798.69 22885.91 34599.53 31894.16 31096.23 37897.58 367
PatchmatchNetpermissive95.58 31295.67 29995.30 35797.34 37287.32 38497.65 22196.65 35495.30 30497.07 31598.69 22884.77 35399.75 22994.97 28898.64 32498.83 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchT96.65 28096.35 28397.54 28797.40 37095.32 27297.98 17796.64 35599.33 5096.89 32799.42 7484.32 35899.81 17997.69 14497.49 35697.48 369
Syy-MVS96.04 29995.56 30397.49 29297.10 37794.48 29896.18 31496.58 35695.65 29394.77 37492.29 39491.27 31099.36 34998.17 11298.05 34998.63 318
myMVS_eth3d91.92 35990.45 36296.30 33497.10 37790.90 36996.18 31496.58 35695.65 29394.77 37492.29 39453.88 40399.36 34989.59 37698.05 34998.63 318
TR-MVS95.55 31395.12 31896.86 32497.54 36493.94 31696.49 29796.53 35894.36 32797.03 31896.61 35394.26 26999.16 37186.91 38396.31 37797.47 370
dp93.47 34593.59 33893.13 37796.64 38581.62 40197.66 21996.42 35992.80 35196.11 35198.64 24078.55 38699.59 30193.31 33492.18 39598.16 340
EMVS93.83 34094.02 33293.23 37696.83 38384.96 39189.77 39396.32 36097.92 16597.43 30496.36 36186.17 34298.93 38087.68 38197.73 35495.81 389
Anonymous20240521197.90 19597.50 22299.08 11998.90 24198.25 11998.53 11096.16 36198.87 10199.11 12998.86 19990.40 31699.78 21097.36 15699.31 25599.19 236
MDTV_nov1_ep1395.22 31597.06 37983.20 39797.74 20996.16 36194.37 32696.99 31998.83 20583.95 36199.53 31893.90 31997.95 352
FE-MVS95.66 31094.95 32297.77 26498.53 30995.28 27399.40 1696.09 36393.11 34697.96 26599.26 10179.10 38299.77 21692.40 35098.71 31998.27 336
baseline195.96 30395.44 30797.52 28998.51 31293.99 31598.39 13196.09 36398.21 14298.40 23897.76 31686.88 33699.63 28895.42 28089.27 39698.95 272
CostFormer93.97 33893.78 33594.51 36397.53 36585.83 38997.98 17795.96 36589.29 38094.99 37398.63 24278.63 38499.62 29094.54 29896.50 37498.09 344
JIA-IIPM95.52 31495.03 31997.00 31396.85 38294.03 31296.93 27695.82 36699.20 6594.63 37799.71 1783.09 36599.60 29794.42 30494.64 38897.36 372
tpm293.09 34992.58 34994.62 36297.56 36386.53 38697.66 21995.79 36786.15 38794.07 38398.23 28575.95 38899.53 31890.91 36996.86 37297.81 356
dmvs_re95.98 30295.39 31097.74 27098.86 24997.45 19298.37 13395.69 36897.95 16296.56 34095.95 36590.70 31397.68 39288.32 37996.13 38098.11 342
EPNet_dtu94.93 32494.78 32595.38 35693.58 39887.68 38396.78 28395.69 36897.35 21789.14 39598.09 29688.15 33399.49 32894.95 28999.30 25898.98 266
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing393.51 34492.09 35297.75 26898.60 29794.40 30097.32 25195.26 37097.56 19496.79 33395.50 37453.57 40499.77 21695.26 28398.97 30399.08 249
tpm94.67 32694.34 33095.66 34997.68 36188.42 37897.88 18994.90 37194.46 32296.03 35598.56 25178.66 38399.79 19995.88 26095.01 38798.78 301
EPNet96.14 29795.44 30798.25 23190.76 40195.50 26697.92 18394.65 37298.97 9392.98 38898.85 20289.12 32499.87 10195.99 25699.68 16799.39 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20093.72 34293.14 34495.46 35598.66 29291.29 36396.61 29394.63 37397.39 21396.83 33093.71 39079.88 37499.56 31082.40 39298.13 34395.54 391
MM98.91 14896.97 21997.89 18894.44 37499.54 2798.95 15799.14 13093.50 28299.92 5199.80 1299.96 2599.85 19
DeepMVS_CXcopyleft93.44 37498.24 33194.21 30594.34 37564.28 39691.34 39294.87 38689.45 32392.77 39977.54 39793.14 39293.35 394
tfpn200view994.03 33793.44 33995.78 34698.93 23391.44 35997.60 22794.29 37697.94 16397.10 31394.31 38879.67 37799.62 29083.05 38998.08 34696.29 382
thres40094.14 33593.44 33996.24 33798.93 23391.44 35997.60 22794.29 37697.94 16397.10 31394.31 38879.67 37799.62 29083.05 38998.08 34697.66 364
thres100view90094.19 33393.67 33795.75 34799.06 21391.35 36198.03 16894.24 37898.33 13097.40 30594.98 38279.84 37599.62 29083.05 38998.08 34696.29 382
thres600view794.45 32893.83 33496.29 33599.06 21391.53 35797.99 17694.24 37898.34 12997.44 30395.01 38079.84 37599.67 26684.33 38798.23 33597.66 364
LFMVS97.20 25196.72 26698.64 18298.72 27296.95 22298.93 7594.14 38099.74 698.78 18999.01 16284.45 35699.73 23997.44 15299.27 26299.25 221
test0.0.03 194.51 32793.69 33696.99 31496.05 39293.61 32994.97 35693.49 38196.17 27697.57 29294.88 38482.30 36999.01 37793.60 32794.17 39198.37 334
N_pmnet97.63 22097.17 24098.99 13699.27 16297.86 16395.98 31993.41 38295.25 30599.47 7098.90 18995.63 22799.85 12296.91 18799.73 14299.27 217
IB-MVS91.63 1992.24 35790.90 36196.27 33697.22 37591.24 36594.36 37393.33 38392.37 35592.24 39094.58 38766.20 40199.89 7593.16 33694.63 38997.66 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.30 33293.21 34297.58 28298.14 33794.47 29994.78 36093.24 38494.72 31689.56 39495.87 36878.57 38599.81 17996.91 18797.11 36898.46 325
K. test v398.00 19097.66 21299.03 13199.79 2597.56 18699.19 4992.47 38599.62 2099.52 6299.66 2789.61 32099.96 1299.25 4699.81 10099.56 98
test-LLR93.90 33993.85 33394.04 36696.53 38684.62 39394.05 37892.39 38696.17 27694.12 38195.07 37882.30 36999.67 26695.87 26398.18 33897.82 354
test-mter92.33 35691.76 35994.04 36696.53 38684.62 39394.05 37892.39 38694.00 33594.12 38195.07 37865.63 40299.67 26695.87 26398.18 33897.82 354
dmvs_testset92.94 35092.21 35195.13 35898.59 30090.99 36897.65 22192.09 38896.95 24794.00 38493.55 39192.34 30096.97 39572.20 39892.52 39397.43 371
MTMP97.93 18191.91 389
TESTMET0.1,192.19 35891.77 35893.46 37396.48 38882.80 39894.05 37891.52 39094.45 32494.00 38494.88 38466.65 39999.56 31095.78 26898.11 34498.02 347
MVS_030498.10 18197.88 19698.76 17198.82 25896.50 23597.90 18691.35 39199.56 2698.32 24099.13 13196.06 20899.93 4199.84 799.97 2099.85 19
thisisatest051594.12 33693.16 34396.97 31698.60 29792.90 33893.77 38290.61 39294.10 33296.91 32395.87 36874.99 39199.80 18694.52 29999.12 28798.20 338
tttt051795.64 31194.98 32097.64 27899.36 14893.81 32398.72 9090.47 39398.08 15698.67 20198.34 27673.88 39299.92 5197.77 13799.51 22499.20 231
thisisatest053095.27 31894.45 32797.74 27099.19 18194.37 30197.86 19490.20 39497.17 23798.22 24597.65 32273.53 39399.90 6596.90 19299.35 24998.95 272
baseline293.73 34192.83 34796.42 33297.70 35991.28 36496.84 28189.77 39593.96 33692.44 38995.93 36679.14 38199.77 21692.94 33796.76 37398.21 337
MVS-HIRNet94.32 33095.62 30090.42 37998.46 31575.36 40396.29 30789.13 39695.25 30595.38 36899.75 1192.88 29299.19 36994.07 31699.39 24396.72 380
test111196.49 28896.82 26095.52 35299.42 13687.08 38599.22 4287.14 39799.11 7299.46 7199.58 4188.69 32699.86 11098.80 7299.95 3299.62 68
lessismore_v098.97 13999.73 3997.53 18886.71 39899.37 9099.52 5789.93 31899.92 5198.99 6399.72 14999.44 155
ECVR-MVScopyleft96.42 29096.61 27595.85 34499.38 14188.18 38199.22 4286.00 39999.08 8499.36 9299.57 4288.47 33199.82 16698.52 9499.95 3299.54 109
EPMVS93.72 34293.27 34195.09 36096.04 39387.76 38298.13 15385.01 40094.69 31796.92 32198.64 24078.47 38799.31 35795.04 28696.46 37598.20 338
MVEpermissive83.40 2292.50 35391.92 35694.25 36598.83 25591.64 35692.71 38783.52 40195.92 28786.46 39895.46 37695.20 24095.40 39780.51 39498.64 32495.73 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
gg-mvs-nofinetune92.37 35591.20 36095.85 34495.80 39592.38 34899.31 2781.84 40299.75 591.83 39199.74 1368.29 39599.02 37587.15 38297.12 36796.16 385
GG-mvs-BLEND94.76 36194.54 39792.13 35399.31 2780.47 40388.73 39691.01 39667.59 39898.16 39182.30 39394.53 39093.98 393
tmp_tt78.77 36478.73 36778.90 38158.45 40374.76 40594.20 37578.26 40439.16 39786.71 39792.82 39380.50 37375.19 40086.16 38592.29 39486.74 395
test250692.39 35491.89 35793.89 36999.38 14182.28 39999.32 2366.03 40599.08 8498.77 19299.57 4266.26 40099.84 13998.71 8099.95 3299.54 109
testmvs17.12 36620.53 3696.87 38312.05 4044.20 40893.62 3846.73 4064.62 40110.41 40124.33 3988.28 4063.56 4029.69 40115.07 39912.86 398
test12317.04 36720.11 3707.82 38210.25 4054.91 40794.80 3594.47 4074.93 40010.00 40224.28 3999.69 4053.64 40110.14 40012.43 40014.92 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas8.17 36810.90 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40298.07 860.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
n20.00 408
nn0.00 408
ab-mvs-re8.12 36910.83 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40397.48 3320.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS90.90 36991.37 362
PC_three_145293.27 34399.40 8398.54 25298.22 7497.00 39495.17 28499.45 23699.49 128
eth-test20.00 406
eth-test0.00 406
OPU-MVS98.82 15798.59 30098.30 11698.10 15898.52 25598.18 7898.75 38594.62 29699.48 23399.41 165
test_0728_THIRD98.17 14999.08 13499.02 15397.89 9999.88 8497.07 17599.71 15499.70 52
GSMVS98.81 294
test_part299.36 14899.10 6099.05 141
sam_mvs184.74 35498.81 294
sam_mvs84.29 360
test_post197.59 22920.48 40183.07 36699.66 27794.16 310
test_post21.25 40083.86 36299.70 250
patchmatchnet-post98.77 21684.37 35799.85 122
gm-plane-assit94.83 39681.97 40088.07 38494.99 38199.60 29791.76 354
test9_res93.28 33599.15 28199.38 184
agg_prior292.50 34999.16 27999.37 186
test_prior497.97 15395.86 328
test_prior295.74 33396.48 26796.11 35197.63 32495.92 22094.16 31099.20 273
旧先验295.76 33288.56 38397.52 29699.66 27794.48 300
新几何295.93 325
原ACMM295.53 339
testdata299.79 19992.80 343
segment_acmp97.02 162
testdata195.44 34496.32 272
plane_prior799.19 18197.87 162
plane_prior698.99 22597.70 18094.90 247
plane_prior497.98 303
plane_prior397.78 17397.41 21197.79 277
plane_prior297.77 20498.20 146
plane_prior199.05 216
plane_prior97.65 18297.07 26896.72 25899.36 247
HQP5-MVS96.79 227
HQP-NCC98.67 28796.29 30796.05 28195.55 362
ACMP_Plane98.67 28796.29 30796.05 28195.55 362
BP-MVS92.82 341
HQP4-MVS95.56 36199.54 31699.32 205
HQP2-MVS93.84 276
NP-MVS98.84 25397.39 19696.84 349
MDTV_nov1_ep13_2view74.92 40497.69 21490.06 37797.75 28085.78 34693.52 32998.69 312
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190