SMA-MVS |  | | 95.20 8 | 95.07 10 | 95.59 5 | 98.14 38 | 88.48 8 | 96.26 44 | 97.28 31 | 85.90 146 | 97.67 3 | 98.10 2 | 88.41 20 | 99.56 10 | 94.66 13 | 99.19 1 | 98.71 18 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 9 | 98.36 27 | 87.28 17 | 95.56 83 | 97.51 4 | 89.13 63 | 97.14 8 | 97.91 11 | 91.64 7 | 99.62 1 | 94.61 14 | 99.17 2 | 98.86 10 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 36 | 98.77 5 | 85.99 58 | 97.13 13 | 97.44 14 | 90.31 31 | 97.71 1 | 98.07 4 | 92.31 4 | 99.58 8 | 95.66 4 | 99.13 3 | 98.84 13 |
|
IU-MVS | | | | | | 98.77 5 | 86.00 56 | | 96.84 69 | 81.26 253 | 97.26 7 | | | | 95.50 10 | 99.13 3 | 99.03 7 |
|
test_0728_THIRD | | | | | | | | | | 90.75 22 | 97.04 10 | 98.05 8 | 92.09 6 | 99.55 15 | 95.64 6 | 99.13 3 | 99.13 2 |
|
test_241102_TWO | | | | | | | | | 97.44 14 | 90.31 31 | 97.62 5 | 98.07 4 | 91.46 10 | 99.58 8 | 95.66 4 | 99.12 6 | 98.98 9 |
|
DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 43 | 98.78 3 | 85.93 61 | 97.09 15 | 96.73 83 | 90.27 33 | 97.04 10 | 98.05 8 | 91.47 8 | 99.55 15 | 95.62 8 | 99.08 7 | 98.45 38 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 43 | 97.09 15 | 97.49 5 | | | | | 99.61 3 | 95.62 8 | 99.08 7 | 98.99 8 |
|
MSC_two_6792asdad | | | | | 96.52 1 | 97.78 57 | 90.86 1 | | 96.85 67 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 5 |
|
No_MVS | | | | | 96.52 1 | 97.78 57 | 90.86 1 | | 96.85 67 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 5 |
|
APDe-MVS | | | 95.46 5 | 95.64 5 | 94.91 24 | 98.26 30 | 86.29 51 | 97.46 5 | 97.40 20 | 89.03 66 | 96.20 16 | 98.10 2 | 89.39 16 | 99.34 36 | 95.88 3 | 99.03 11 | 99.10 4 |
|
DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 34 | 97.78 57 | 86.00 56 | 98.29 1 | 97.49 5 | 90.75 22 | 97.62 5 | 98.06 6 | 92.59 2 | 99.61 3 | 95.64 6 | 99.02 12 | 98.86 10 |
|
PC_three_1452 | | | | | | | | | | 82.47 221 | 97.09 9 | 97.07 45 | 92.72 1 | 98.04 159 | 92.70 46 | 99.02 12 | 98.86 10 |
|
OPU-MVS | | | | | 96.21 3 | 98.00 46 | 90.85 3 | 97.13 13 | | | | 97.08 43 | 92.59 2 | 98.94 87 | 92.25 54 | 98.99 14 | 98.84 13 |
|
ACMMP_NAP | | | 94.74 15 | 94.56 17 | 95.28 8 | 98.02 45 | 87.70 12 | 95.68 76 | 97.34 22 | 88.28 87 | 95.30 24 | 97.67 15 | 85.90 54 | 99.54 19 | 93.91 21 | 98.95 15 | 98.60 23 |
|
HPM-MVS++ |  | | 95.14 10 | 94.91 12 | 95.83 4 | 98.25 31 | 89.65 4 | 95.92 66 | 96.96 57 | 91.75 8 | 94.02 41 | 96.83 56 | 88.12 25 | 99.55 15 | 93.41 32 | 98.94 16 | 98.28 54 |
|
MP-MVS-pluss | | | 94.21 34 | 94.00 41 | 94.85 29 | 98.17 36 | 86.65 35 | 94.82 127 | 97.17 42 | 86.26 140 | 92.83 72 | 97.87 12 | 85.57 58 | 99.56 10 | 94.37 17 | 98.92 17 | 98.34 45 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 29 | 96.99 83 | 86.33 47 | 97.33 6 | 97.30 29 | 91.38 13 | 95.39 22 | 97.46 19 | 88.98 19 | 99.40 31 | 94.12 18 | 98.89 18 | 98.82 15 |
Skip Steuart: Steuart Systems R&D Blog. |
SD-MVS | | | 94.96 12 | 95.33 8 | 93.88 65 | 97.25 80 | 86.69 32 | 96.19 48 | 97.11 46 | 90.42 30 | 96.95 12 | 97.27 29 | 89.53 14 | 96.91 248 | 94.38 16 | 98.85 19 | 98.03 78 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 7 | 98.11 39 | 88.51 7 | 95.29 95 | 96.96 57 | 92.09 3 | 95.32 23 | 97.08 43 | 89.49 15 | 99.33 39 | 95.10 11 | 98.85 19 | 98.66 20 |
|
CP-MVS | | | 94.34 27 | 94.21 30 | 94.74 40 | 98.39 25 | 86.64 36 | 97.60 4 | 97.24 33 | 88.53 79 | 92.73 77 | 97.23 32 | 85.20 63 | 99.32 40 | 92.15 58 | 98.83 21 | 98.25 59 |
|
ZNCC-MVS | | | 94.47 19 | 94.28 25 | 95.03 16 | 98.52 16 | 86.96 19 | 96.85 27 | 97.32 27 | 88.24 88 | 93.15 63 | 97.04 46 | 86.17 49 | 99.62 1 | 92.40 50 | 98.81 22 | 98.52 26 |
|
MP-MVS |  | | 94.25 30 | 94.07 38 | 94.77 38 | 98.47 19 | 86.31 49 | 96.71 30 | 96.98 52 | 89.04 65 | 91.98 93 | 97.19 37 | 85.43 60 | 99.56 10 | 92.06 63 | 98.79 23 | 98.44 39 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PHI-MVS | | | 93.89 45 | 93.65 53 | 94.62 45 | 96.84 86 | 86.43 43 | 96.69 31 | 97.49 5 | 85.15 168 | 93.56 55 | 96.28 84 | 85.60 57 | 99.31 41 | 92.45 47 | 98.79 23 | 98.12 70 |
|
xxxxxxxxxxxxxcwj | | | 94.65 16 | 94.70 15 | 94.48 50 | 97.85 50 | 85.63 72 | 95.21 101 | 95.47 178 | 89.44 52 | 95.71 19 | 97.70 13 | 88.28 23 | 99.35 34 | 93.89 22 | 98.78 25 | 98.48 30 |
|
SF-MVS | | | 94.97 11 | 94.90 13 | 95.20 10 | 97.84 52 | 87.76 10 | 96.65 32 | 97.48 9 | 87.76 106 | 95.71 19 | 97.70 13 | 88.28 23 | 99.35 34 | 93.89 22 | 98.78 25 | 98.48 30 |
|
ACMMPR | | | 94.43 23 | 94.28 25 | 94.91 24 | 98.63 9 | 86.69 32 | 96.94 19 | 97.32 27 | 88.63 75 | 93.53 56 | 97.26 31 | 85.04 65 | 99.54 19 | 92.35 52 | 98.78 25 | 98.50 28 |
|
HFP-MVS | | | 94.52 18 | 94.40 21 | 94.86 27 | 98.61 10 | 86.81 26 | 96.94 19 | 97.34 22 | 88.63 75 | 93.65 49 | 97.21 34 | 86.10 50 | 99.49 26 | 92.35 52 | 98.77 28 | 98.30 50 |
|
#test# | | | 94.32 29 | 94.14 35 | 94.86 27 | 98.61 10 | 86.81 26 | 96.43 35 | 97.34 22 | 87.51 112 | 93.65 49 | 97.21 34 | 86.10 50 | 99.49 26 | 91.68 76 | 98.77 28 | 98.30 50 |
|
ETH3D-3000-0.1 | | | 94.61 17 | 94.44 20 | 95.12 13 | 97.70 60 | 87.71 11 | 95.98 63 | 97.44 14 | 86.67 132 | 95.25 25 | 97.31 27 | 87.73 30 | 99.24 47 | 93.11 39 | 98.76 30 | 98.40 41 |
|
zzz-MVS | | | 94.47 19 | 94.30 24 | 95.00 18 | 98.42 22 | 86.95 20 | 95.06 113 | 96.97 53 | 91.07 15 | 93.14 64 | 97.56 16 | 84.30 73 | 99.56 10 | 93.43 30 | 98.75 31 | 98.47 34 |
|
MTAPA | | | 94.42 25 | 94.22 28 | 95.00 18 | 98.42 22 | 86.95 20 | 94.36 163 | 96.97 53 | 91.07 15 | 93.14 64 | 97.56 16 | 84.30 73 | 99.56 10 | 93.43 30 | 98.75 31 | 98.47 34 |
|
region2R | | | 94.43 23 | 94.27 27 | 94.92 22 | 98.65 8 | 86.67 34 | 96.92 23 | 97.23 35 | 88.60 77 | 93.58 53 | 97.27 29 | 85.22 62 | 99.54 19 | 92.21 55 | 98.74 33 | 98.56 25 |
|
test9_res | | | | | | | | | | | | | | | 91.91 69 | 98.71 34 | 98.07 74 |
|
DeepPCF-MVS | | 89.96 1 | 94.20 36 | 94.77 14 | 92.49 116 | 96.52 99 | 80.00 217 | 94.00 188 | 97.08 47 | 90.05 37 | 95.65 21 | 97.29 28 | 89.66 13 | 98.97 83 | 93.95 20 | 98.71 34 | 98.50 28 |
|
9.14 | | | | 94.47 18 | | 97.79 54 | | 96.08 56 | 97.44 14 | 86.13 144 | 95.10 26 | 97.40 23 | 88.34 22 | 99.22 49 | 93.25 36 | 98.70 36 | |
|
train_agg | | | 93.44 58 | 93.08 63 | 94.52 48 | 97.53 65 | 86.49 41 | 94.07 181 | 96.78 76 | 81.86 239 | 92.77 74 | 96.20 89 | 87.63 32 | 99.12 58 | 92.14 59 | 98.69 37 | 97.94 83 |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 38 | 93.79 47 | 94.80 36 | 97.48 69 | 86.78 28 | 95.65 80 | 96.89 63 | 89.40 55 | 92.81 73 | 96.97 49 | 85.37 61 | 99.24 47 | 90.87 91 | 98.69 37 | 98.38 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + MP. | | | 94.85 13 | 94.94 11 | 94.58 46 | 98.25 31 | 86.33 47 | 96.11 55 | 96.62 95 | 88.14 93 | 96.10 17 | 96.96 50 | 89.09 18 | 98.94 87 | 94.48 15 | 98.68 39 | 98.48 30 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
agg_prior2 | | | | | | | | | | | | | | | 90.54 94 | 98.68 39 | 98.27 56 |
|
ETH3 D test6400 | | | 93.64 52 | 93.22 60 | 94.92 22 | 97.79 54 | 86.84 24 | 95.31 90 | 97.26 32 | 82.67 219 | 93.81 45 | 96.29 83 | 87.29 37 | 99.27 45 | 89.87 99 | 98.67 41 | 98.65 21 |
|
test_prior3 | | | 93.60 54 | 93.53 55 | 93.82 67 | 97.29 76 | 84.49 90 | 94.12 174 | 96.88 64 | 87.67 109 | 92.63 79 | 96.39 80 | 86.62 44 | 98.87 91 | 91.50 79 | 98.67 41 | 98.11 72 |
|
test_prior2 | | | | | | | | 94.12 174 | | 87.67 109 | 92.63 79 | 96.39 80 | 86.62 44 | | 91.50 79 | 98.67 41 | |
|
MSLP-MVS++ | | | 93.72 49 | 94.08 37 | 92.65 108 | 97.31 74 | 83.43 121 | 95.79 71 | 97.33 25 | 90.03 38 | 93.58 53 | 96.96 50 | 84.87 68 | 97.76 175 | 92.19 57 | 98.66 44 | 96.76 132 |
|
CDPH-MVS | | | 92.83 70 | 92.30 76 | 94.44 51 | 97.79 54 | 86.11 54 | 94.06 183 | 96.66 92 | 80.09 266 | 92.77 74 | 96.63 70 | 86.62 44 | 99.04 66 | 87.40 127 | 98.66 44 | 98.17 65 |
|
HPM-MVS |  | | 94.02 39 | 93.88 43 | 94.43 53 | 98.39 25 | 85.78 69 | 97.25 9 | 97.07 48 | 86.90 127 | 92.62 81 | 96.80 60 | 84.85 69 | 99.17 53 | 92.43 48 | 98.65 46 | 98.33 46 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mPP-MVS | | | 93.99 40 | 93.78 48 | 94.63 44 | 98.50 17 | 85.90 66 | 96.87 25 | 96.91 61 | 88.70 73 | 91.83 99 | 97.17 39 | 83.96 79 | 99.55 15 | 91.44 81 | 98.64 47 | 98.43 40 |
|
MCST-MVS | | | 94.45 21 | 94.20 31 | 95.19 11 | 98.46 20 | 87.50 15 | 95.00 115 | 97.12 44 | 87.13 119 | 92.51 84 | 96.30 82 | 89.24 17 | 99.34 36 | 93.46 29 | 98.62 48 | 98.73 16 |
|
APD-MVS |  | | 94.24 31 | 94.07 38 | 94.75 39 | 98.06 43 | 86.90 23 | 95.88 67 | 96.94 59 | 85.68 152 | 95.05 27 | 97.18 38 | 87.31 36 | 99.07 61 | 91.90 72 | 98.61 49 | 98.28 54 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PGM-MVS | | | 93.96 42 | 93.72 50 | 94.68 41 | 98.43 21 | 86.22 52 | 95.30 93 | 97.78 1 | 87.45 115 | 93.26 59 | 97.33 26 | 84.62 71 | 99.51 24 | 90.75 93 | 98.57 50 | 98.32 49 |
|
XVS | | | 94.45 21 | 94.32 22 | 94.85 29 | 98.54 14 | 86.60 38 | 96.93 21 | 97.19 38 | 90.66 27 | 92.85 70 | 97.16 40 | 85.02 66 | 99.49 26 | 91.99 64 | 98.56 51 | 98.47 34 |
|
X-MVStestdata | | | 88.31 170 | 86.13 213 | 94.85 29 | 98.54 14 | 86.60 38 | 96.93 21 | 97.19 38 | 90.66 27 | 92.85 70 | 23.41 373 | 85.02 66 | 99.49 26 | 91.99 64 | 98.56 51 | 98.47 34 |
|
agg_prior1 | | | 93.29 63 | 92.97 67 | 94.26 58 | 97.38 71 | 85.92 63 | 93.92 192 | 96.72 85 | 81.96 233 | 92.16 89 | 96.23 86 | 87.85 27 | 98.97 83 | 91.95 68 | 98.55 53 | 97.90 87 |
|
DELS-MVS | | | 93.43 60 | 93.25 59 | 93.97 62 | 95.42 139 | 85.04 79 | 93.06 230 | 97.13 43 | 90.74 24 | 91.84 97 | 95.09 126 | 86.32 48 | 99.21 50 | 91.22 83 | 98.45 54 | 97.65 97 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ZD-MVS | | | | | | 98.15 37 | 86.62 37 | | 97.07 48 | 83.63 195 | 94.19 36 | 96.91 52 | 87.57 34 | 99.26 46 | 91.99 64 | 98.44 55 | |
|
ETH3D cwj APD-0.16 | | | 93.91 43 | 93.53 55 | 95.06 15 | 96.76 88 | 87.78 9 | 94.92 120 | 97.21 37 | 84.33 182 | 93.89 44 | 97.09 42 | 87.20 38 | 99.29 44 | 91.90 72 | 98.44 55 | 98.12 70 |
|
GST-MVS | | | 94.21 34 | 93.97 42 | 94.90 26 | 98.41 24 | 86.82 25 | 96.54 34 | 97.19 38 | 88.24 88 | 93.26 59 | 96.83 56 | 85.48 59 | 99.59 7 | 91.43 82 | 98.40 57 | 98.30 50 |
|
HPM-MVS_fast | | | 93.40 61 | 93.22 60 | 93.94 64 | 98.36 27 | 84.83 81 | 97.15 12 | 96.80 75 | 85.77 149 | 92.47 85 | 97.13 41 | 82.38 93 | 99.07 61 | 90.51 95 | 98.40 57 | 97.92 86 |
|
NCCC | | | 94.81 14 | 94.69 16 | 95.17 12 | 97.83 53 | 87.46 16 | 95.66 78 | 96.93 60 | 92.34 2 | 93.94 42 | 96.58 73 | 87.74 29 | 99.44 30 | 92.83 41 | 98.40 57 | 98.62 22 |
|
testtj | | | 94.39 26 | 94.18 33 | 95.00 18 | 98.24 33 | 86.77 30 | 96.16 49 | 97.23 35 | 87.28 117 | 94.85 29 | 97.04 46 | 86.99 42 | 99.52 23 | 91.54 78 | 98.33 60 | 98.71 18 |
|
DeepC-MVS | | 88.79 3 | 93.31 62 | 92.99 66 | 94.26 58 | 96.07 114 | 85.83 67 | 94.89 122 | 96.99 51 | 89.02 67 | 89.56 128 | 97.37 25 | 82.51 92 | 99.38 32 | 92.20 56 | 98.30 61 | 97.57 102 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CSCG | | | 93.23 66 | 93.05 64 | 93.76 72 | 98.04 44 | 84.07 103 | 96.22 47 | 97.37 21 | 84.15 184 | 90.05 125 | 95.66 110 | 87.77 28 | 99.15 56 | 89.91 98 | 98.27 62 | 98.07 74 |
|
原ACMM1 | | | | | 92.01 134 | 97.34 73 | 81.05 186 | | 96.81 74 | 78.89 280 | 90.45 117 | 95.92 100 | 82.65 90 | 98.84 99 | 80.68 225 | 98.26 63 | 96.14 150 |
|
CS-MVS | | | 94.05 37 | 94.45 19 | 92.84 97 | 96.57 96 | 82.09 158 | 97.63 3 | 96.97 53 | 91.71 10 | 93.51 58 | 96.22 87 | 85.65 56 | 98.24 136 | 93.60 27 | 98.17 64 | 98.20 63 |
|
CS-MVS-test | | | 93.62 53 | 93.88 43 | 92.86 96 | 96.59 93 | 82.12 157 | 96.43 35 | 96.57 99 | 91.76 7 | 93.52 57 | 94.41 150 | 83.85 81 | 98.24 136 | 93.62 25 | 98.17 64 | 98.21 62 |
|
MVS_111021_HR | | | 93.45 57 | 93.31 58 | 93.84 66 | 96.99 83 | 84.84 80 | 93.24 223 | 97.24 33 | 88.76 72 | 91.60 104 | 95.85 103 | 86.07 52 | 98.66 105 | 91.91 69 | 98.16 66 | 98.03 78 |
|
DROMVSNet | | | 93.44 58 | 93.71 51 | 92.63 109 | 95.21 148 | 82.43 150 | 97.27 8 | 96.71 87 | 90.57 29 | 92.88 69 | 95.80 105 | 83.16 84 | 98.16 143 | 93.68 24 | 98.14 67 | 97.31 109 |
|
test12 | | | | | 94.34 56 | 97.13 81 | 86.15 53 | | 96.29 113 | | 91.04 113 | | 85.08 64 | 99.01 73 | | 98.13 68 | 97.86 90 |
|
新几何1 | | | | | 93.10 84 | 97.30 75 | 84.35 99 | | 95.56 170 | 71.09 348 | 91.26 110 | 96.24 85 | 82.87 89 | 98.86 94 | 79.19 246 | 98.10 69 | 96.07 157 |
|
patch_mono-2 | | | 93.74 48 | 94.32 22 | 92.01 134 | 97.54 64 | 78.37 252 | 93.40 211 | 97.19 38 | 88.02 95 | 94.99 28 | 97.21 34 | 88.35 21 | 98.44 123 | 94.07 19 | 98.09 70 | 99.23 1 |
|
dcpmvs_2 | | | 93.49 56 | 94.19 32 | 91.38 165 | 97.69 61 | 76.78 285 | 94.25 167 | 96.29 113 | 88.33 83 | 94.46 30 | 96.88 53 | 88.07 26 | 98.64 107 | 93.62 25 | 98.09 70 | 98.73 16 |
|
1121 | | | 90.42 112 | 89.49 118 | 93.20 80 | 97.27 78 | 84.46 93 | 92.63 241 | 95.51 176 | 71.01 349 | 91.20 111 | 96.21 88 | 82.92 88 | 99.05 63 | 80.56 227 | 98.07 72 | 96.10 155 |
|
MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 21 | 98.49 18 | 86.52 40 | 96.91 24 | 97.47 10 | 91.73 9 | 96.10 17 | 96.69 63 | 89.90 12 | 99.30 42 | 94.70 12 | 98.04 73 | 99.13 2 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SR-MVS | | | 94.23 32 | 94.17 34 | 94.43 53 | 98.21 35 | 85.78 69 | 96.40 38 | 96.90 62 | 88.20 91 | 94.33 33 | 97.40 23 | 84.75 70 | 99.03 67 | 93.35 33 | 97.99 74 | 98.48 30 |
|
test1172 | | | 93.97 41 | 94.07 38 | 93.66 74 | 98.11 39 | 83.45 120 | 96.26 44 | 96.84 69 | 88.33 83 | 94.19 36 | 97.43 20 | 84.24 75 | 99.01 73 | 93.26 35 | 97.98 75 | 98.52 26 |
|
3Dnovator | | 86.66 5 | 91.73 86 | 90.82 97 | 94.44 51 | 94.59 177 | 86.37 45 | 97.18 11 | 97.02 50 | 89.20 60 | 84.31 243 | 96.66 66 | 73.74 199 | 99.17 53 | 86.74 137 | 97.96 76 | 97.79 94 |
|
CANet | | | 93.54 55 | 93.20 62 | 94.55 47 | 95.65 130 | 85.73 71 | 94.94 118 | 96.69 90 | 91.89 5 | 90.69 115 | 95.88 102 | 81.99 104 | 99.54 19 | 93.14 38 | 97.95 77 | 98.39 42 |
|
DPM-MVS | | | 92.58 74 | 91.74 82 | 95.08 14 | 96.19 107 | 89.31 5 | 92.66 240 | 96.56 101 | 83.44 201 | 91.68 103 | 95.04 127 | 86.60 47 | 98.99 80 | 85.60 151 | 97.92 78 | 96.93 128 |
|
APD-MVS_3200maxsize | | | 93.78 47 | 93.77 49 | 93.80 71 | 97.92 47 | 84.19 101 | 96.30 40 | 96.87 66 | 86.96 123 | 93.92 43 | 97.47 18 | 83.88 80 | 98.96 86 | 92.71 45 | 97.87 79 | 98.26 58 |
|
CPTT-MVS | | | 91.99 80 | 91.80 81 | 92.55 113 | 98.24 33 | 81.98 162 | 96.76 29 | 96.49 103 | 81.89 238 | 90.24 120 | 96.44 79 | 78.59 138 | 98.61 111 | 89.68 100 | 97.85 80 | 97.06 121 |
|
SR-MVS-dyc-post | | | 93.82 46 | 93.82 45 | 93.82 67 | 97.92 47 | 84.57 86 | 96.28 42 | 96.76 79 | 87.46 113 | 93.75 46 | 97.43 20 | 84.24 75 | 99.01 73 | 92.73 42 | 97.80 81 | 97.88 88 |
|
RE-MVS-def | | | | 93.68 52 | | 97.92 47 | 84.57 86 | 96.28 42 | 96.76 79 | 87.46 113 | 93.75 46 | 97.43 20 | 82.94 87 | | 92.73 42 | 97.80 81 | 97.88 88 |
|
test222 | | | | | | 96.55 97 | 81.70 167 | 92.22 255 | 95.01 205 | 68.36 354 | 90.20 121 | 96.14 94 | 80.26 117 | | | 97.80 81 | 96.05 159 |
|
3Dnovator+ | | 87.14 4 | 92.42 77 | 91.37 85 | 95.55 6 | 95.63 131 | 88.73 6 | 97.07 17 | 96.77 78 | 90.84 19 | 84.02 248 | 96.62 71 | 75.95 164 | 99.34 36 | 87.77 122 | 97.68 84 | 98.59 24 |
|
旧先验1 | | | | | | 96.79 87 | 81.81 165 | | 95.67 162 | | | 96.81 58 | 86.69 43 | | | 97.66 85 | 96.97 126 |
|
Regformer-1 | | | 94.22 33 | 94.13 36 | 94.51 49 | 95.54 135 | 86.36 46 | 94.57 143 | 96.44 104 | 91.69 11 | 94.32 34 | 96.56 75 | 87.05 41 | 99.03 67 | 93.35 33 | 97.65 86 | 98.15 67 |
|
Regformer-2 | | | 94.33 28 | 94.22 28 | 94.68 41 | 95.54 135 | 86.75 31 | 94.57 143 | 96.70 88 | 91.84 6 | 94.41 31 | 96.56 75 | 87.19 39 | 99.13 57 | 93.50 28 | 97.65 86 | 98.16 66 |
|
EPNet | | | 91.79 83 | 91.02 93 | 94.10 61 | 90.10 321 | 85.25 78 | 96.03 60 | 92.05 289 | 92.83 1 | 87.39 165 | 95.78 106 | 79.39 129 | 99.01 73 | 88.13 119 | 97.48 88 | 98.05 76 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
testdata | | | | | 90.49 200 | 96.40 101 | 77.89 264 | | 95.37 190 | 72.51 341 | 93.63 51 | 96.69 63 | 82.08 101 | 97.65 184 | 83.08 179 | 97.39 89 | 95.94 161 |
|
MVS_111021_LR | | | 92.47 76 | 92.29 77 | 92.98 90 | 95.99 118 | 84.43 97 | 93.08 228 | 96.09 129 | 88.20 91 | 91.12 112 | 95.72 109 | 81.33 109 | 97.76 175 | 91.74 74 | 97.37 90 | 96.75 133 |
|
abl_6 | | | 93.18 67 | 93.05 64 | 93.57 76 | 97.52 67 | 84.27 100 | 95.53 84 | 96.67 91 | 87.85 103 | 93.20 62 | 97.22 33 | 80.35 114 | 99.18 52 | 91.91 69 | 97.21 91 | 97.26 112 |
|
MVSFormer | | | 91.68 88 | 91.30 86 | 92.80 99 | 93.86 206 | 83.88 108 | 95.96 64 | 95.90 145 | 84.66 178 | 91.76 100 | 94.91 130 | 77.92 146 | 97.30 216 | 89.64 101 | 97.11 92 | 97.24 113 |
|
lupinMVS | | | 90.92 99 | 90.21 103 | 93.03 88 | 93.86 206 | 83.88 108 | 92.81 237 | 93.86 252 | 79.84 269 | 91.76 100 | 94.29 155 | 77.92 146 | 98.04 159 | 90.48 96 | 97.11 92 | 97.17 117 |
|
EIA-MVS | | | 91.95 81 | 91.94 79 | 91.98 138 | 95.16 150 | 80.01 216 | 95.36 87 | 96.73 83 | 88.44 80 | 89.34 132 | 92.16 229 | 83.82 82 | 98.45 122 | 89.35 104 | 97.06 94 | 97.48 105 |
|
MG-MVS | | | 91.77 84 | 91.70 83 | 92.00 137 | 97.08 82 | 80.03 215 | 93.60 205 | 95.18 198 | 87.85 103 | 90.89 114 | 96.47 78 | 82.06 102 | 98.36 127 | 85.07 155 | 97.04 95 | 97.62 98 |
|
test2506 | | | 87.21 212 | 86.28 209 | 90.02 223 | 95.62 132 | 73.64 315 | 96.25 46 | 71.38 374 | 87.89 101 | 90.45 117 | 96.65 67 | 55.29 343 | 98.09 154 | 86.03 146 | 96.94 96 | 98.33 46 |
|
ECVR-MVS |  | | 89.09 148 | 88.53 143 | 90.77 190 | 95.62 132 | 75.89 296 | 96.16 49 | 84.22 361 | 87.89 101 | 90.20 121 | 96.65 67 | 63.19 304 | 98.10 146 | 85.90 147 | 96.94 96 | 98.33 46 |
|
test1111 | | | 89.10 146 | 88.64 140 | 90.48 201 | 95.53 137 | 74.97 302 | 96.08 56 | 84.89 359 | 88.13 94 | 90.16 123 | 96.65 67 | 63.29 302 | 98.10 146 | 86.14 142 | 96.90 98 | 98.39 42 |
|
jason | | | 90.80 100 | 90.10 107 | 92.90 94 | 93.04 232 | 83.53 118 | 93.08 228 | 94.15 242 | 80.22 263 | 91.41 107 | 94.91 130 | 76.87 152 | 97.93 169 | 90.28 97 | 96.90 98 | 97.24 113 |
jason: jason. |
Vis-MVSNet |  | | 91.75 85 | 91.23 88 | 93.29 77 | 95.32 143 | 83.78 111 | 96.14 52 | 95.98 137 | 89.89 40 | 90.45 117 | 96.58 73 | 75.09 176 | 98.31 134 | 84.75 161 | 96.90 98 | 97.78 95 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
114514_t | | | 89.51 133 | 88.50 145 | 92.54 114 | 98.11 39 | 81.99 161 | 95.16 106 | 96.36 111 | 70.19 351 | 85.81 192 | 95.25 120 | 76.70 156 | 98.63 109 | 82.07 198 | 96.86 101 | 97.00 125 |
|
Vis-MVSNet (Re-imp) | | | 89.59 131 | 89.44 120 | 90.03 221 | 95.74 126 | 75.85 297 | 95.61 81 | 90.80 324 | 87.66 111 | 87.83 154 | 95.40 117 | 76.79 154 | 96.46 274 | 78.37 251 | 96.73 102 | 97.80 93 |
|
API-MVS | | | 90.66 106 | 90.07 108 | 92.45 118 | 96.36 103 | 84.57 86 | 96.06 59 | 95.22 197 | 82.39 222 | 89.13 134 | 94.27 158 | 80.32 115 | 98.46 119 | 80.16 234 | 96.71 103 | 94.33 225 |
|
MAR-MVS | | | 90.30 113 | 89.37 123 | 93.07 87 | 96.61 92 | 84.48 92 | 95.68 76 | 95.67 162 | 82.36 224 | 87.85 153 | 92.85 207 | 76.63 158 | 98.80 101 | 80.01 235 | 96.68 104 | 95.91 162 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Regformer-3 | | | 93.68 50 | 93.64 54 | 93.81 70 | 95.36 140 | 84.61 84 | 94.68 135 | 95.83 151 | 91.27 14 | 93.60 52 | 96.71 61 | 85.75 55 | 98.86 94 | 92.87 40 | 96.65 105 | 97.96 82 |
|
Regformer-4 | | | 93.91 43 | 93.81 46 | 94.19 60 | 95.36 140 | 85.47 75 | 94.68 135 | 96.41 107 | 91.60 12 | 93.75 46 | 96.71 61 | 85.95 53 | 99.10 60 | 93.21 37 | 96.65 105 | 98.01 80 |
|
OpenMVS |  | 83.78 11 | 88.74 160 | 87.29 175 | 93.08 85 | 92.70 241 | 85.39 76 | 96.57 33 | 96.43 106 | 78.74 285 | 80.85 293 | 96.07 96 | 69.64 249 | 99.01 73 | 78.01 257 | 96.65 105 | 94.83 201 |
|
ETV-MVS | | | 92.74 72 | 92.66 71 | 92.97 91 | 95.20 149 | 84.04 105 | 95.07 110 | 96.51 102 | 90.73 25 | 92.96 68 | 91.19 262 | 84.06 77 | 98.34 130 | 91.72 75 | 96.54 108 | 96.54 141 |
|
QAPM | | | 89.51 133 | 88.15 156 | 93.59 75 | 94.92 161 | 84.58 85 | 96.82 28 | 96.70 88 | 78.43 289 | 83.41 264 | 96.19 92 | 73.18 207 | 99.30 42 | 77.11 266 | 96.54 108 | 96.89 130 |
|
IS-MVSNet | | | 91.43 90 | 91.09 92 | 92.46 117 | 95.87 124 | 81.38 178 | 96.95 18 | 93.69 257 | 89.72 48 | 89.50 130 | 95.98 98 | 78.57 139 | 97.77 174 | 83.02 181 | 96.50 110 | 98.22 61 |
|
DP-MVS Recon | | | 91.95 81 | 91.28 87 | 93.96 63 | 98.33 29 | 85.92 63 | 94.66 138 | 96.66 92 | 82.69 218 | 90.03 126 | 95.82 104 | 82.30 96 | 99.03 67 | 84.57 163 | 96.48 111 | 96.91 129 |
|
CANet_DTU | | | 90.26 115 | 89.41 122 | 92.81 98 | 93.46 220 | 83.01 133 | 93.48 208 | 94.47 230 | 89.43 54 | 87.76 157 | 94.23 159 | 70.54 239 | 99.03 67 | 84.97 156 | 96.39 112 | 96.38 143 |
|
UGNet | | | 89.95 122 | 88.95 134 | 92.95 92 | 94.51 180 | 83.31 124 | 95.70 75 | 95.23 195 | 89.37 56 | 87.58 159 | 93.94 169 | 64.00 299 | 98.78 102 | 83.92 170 | 96.31 113 | 96.74 134 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TSAR-MVS + GP. | | | 93.66 51 | 93.41 57 | 94.41 55 | 96.59 93 | 86.78 28 | 94.40 155 | 93.93 248 | 89.77 46 | 94.21 35 | 95.59 113 | 87.35 35 | 98.61 111 | 92.72 44 | 96.15 114 | 97.83 92 |
|
PVSNet_Blended | | | 90.73 103 | 90.32 102 | 91.98 138 | 96.12 109 | 81.25 180 | 92.55 245 | 96.83 71 | 82.04 231 | 89.10 135 | 92.56 217 | 81.04 111 | 98.85 97 | 86.72 139 | 95.91 115 | 95.84 166 |
|
PS-MVSNAJ | | | 91.18 96 | 90.92 94 | 91.96 140 | 95.26 146 | 82.60 149 | 92.09 260 | 95.70 160 | 86.27 139 | 91.84 97 | 92.46 219 | 79.70 124 | 98.99 80 | 89.08 107 | 95.86 116 | 94.29 226 |
|
ACMMP |  | | 93.24 65 | 92.88 69 | 94.30 57 | 98.09 42 | 85.33 77 | 96.86 26 | 97.45 13 | 88.33 83 | 90.15 124 | 97.03 48 | 81.44 107 | 99.51 24 | 90.85 92 | 95.74 117 | 98.04 77 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LCM-MVSNet-Re | | | 88.30 171 | 88.32 152 | 88.27 273 | 94.71 172 | 72.41 331 | 93.15 224 | 90.98 318 | 87.77 105 | 79.25 315 | 91.96 241 | 78.35 142 | 95.75 305 | 83.04 180 | 95.62 118 | 96.65 136 |
|
CHOSEN 1792x2688 | | | 88.84 157 | 87.69 165 | 92.30 127 | 96.14 108 | 81.42 177 | 90.01 298 | 95.86 149 | 74.52 325 | 87.41 162 | 93.94 169 | 75.46 173 | 98.36 127 | 80.36 230 | 95.53 119 | 97.12 120 |
|
AdaColmap |  | | 89.89 125 | 89.07 131 | 92.37 123 | 97.41 70 | 83.03 131 | 94.42 154 | 95.92 142 | 82.81 216 | 86.34 185 | 94.65 143 | 73.89 195 | 99.02 71 | 80.69 224 | 95.51 120 | 95.05 189 |
|
MVS | | | 87.44 201 | 86.10 216 | 91.44 163 | 92.61 243 | 83.62 116 | 92.63 241 | 95.66 164 | 67.26 355 | 81.47 285 | 92.15 230 | 77.95 145 | 98.22 140 | 79.71 238 | 95.48 121 | 92.47 302 |
|
UA-Net | | | 92.83 70 | 92.54 73 | 93.68 73 | 96.10 112 | 84.71 83 | 95.66 78 | 96.39 109 | 91.92 4 | 93.22 61 | 96.49 77 | 83.16 84 | 98.87 91 | 84.47 164 | 95.47 122 | 97.45 107 |
|
xiu_mvs_v2_base | | | 91.13 97 | 90.89 96 | 91.86 146 | 94.97 157 | 82.42 151 | 92.24 254 | 95.64 167 | 86.11 145 | 91.74 102 | 93.14 199 | 79.67 127 | 98.89 90 | 89.06 108 | 95.46 123 | 94.28 227 |
|
casdiffmvs | | | 92.51 75 | 92.43 75 | 92.74 103 | 94.41 186 | 81.98 162 | 94.54 145 | 96.23 120 | 89.57 50 | 91.96 94 | 96.17 93 | 82.58 91 | 98.01 162 | 90.95 89 | 95.45 124 | 98.23 60 |
|
PVSNet_Blended_VisFu | | | 91.38 91 | 90.91 95 | 92.80 99 | 96.39 102 | 83.17 127 | 94.87 124 | 96.66 92 | 83.29 205 | 89.27 133 | 94.46 149 | 80.29 116 | 99.17 53 | 87.57 125 | 95.37 125 | 96.05 159 |
|
PAPM_NR | | | 91.22 95 | 90.78 98 | 92.52 115 | 97.60 63 | 81.46 175 | 94.37 162 | 96.24 119 | 86.39 138 | 87.41 162 | 94.80 137 | 82.06 102 | 98.48 117 | 82.80 187 | 95.37 125 | 97.61 99 |
|
CHOSEN 280x420 | | | 85.15 259 | 83.99 261 | 88.65 264 | 92.47 244 | 78.40 251 | 79.68 361 | 92.76 272 | 74.90 322 | 81.41 287 | 89.59 300 | 69.85 247 | 95.51 312 | 79.92 237 | 95.29 127 | 92.03 312 |
|
TAPA-MVS | | 84.62 6 | 88.16 174 | 87.01 182 | 91.62 156 | 96.64 91 | 80.65 197 | 94.39 157 | 96.21 124 | 76.38 305 | 86.19 188 | 95.44 114 | 79.75 122 | 98.08 156 | 62.75 349 | 95.29 127 | 96.13 151 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
baseline | | | 92.39 78 | 92.29 77 | 92.69 107 | 94.46 183 | 81.77 166 | 94.14 173 | 96.27 115 | 89.22 59 | 91.88 95 | 96.00 97 | 82.35 94 | 97.99 164 | 91.05 85 | 95.27 129 | 98.30 50 |
|
LS3D | | | 87.89 180 | 86.32 207 | 92.59 111 | 96.07 114 | 82.92 136 | 95.23 99 | 94.92 213 | 75.66 312 | 82.89 271 | 95.98 98 | 72.48 215 | 99.21 50 | 68.43 323 | 95.23 130 | 95.64 174 |
|
MVS_Test | | | 91.31 93 | 91.11 90 | 91.93 142 | 94.37 187 | 80.14 208 | 93.46 210 | 95.80 153 | 86.46 135 | 91.35 109 | 93.77 180 | 82.21 98 | 98.09 154 | 87.57 125 | 94.95 131 | 97.55 104 |
|
PAPR | | | 90.02 119 | 89.27 128 | 92.29 128 | 95.78 125 | 80.95 190 | 92.68 239 | 96.22 121 | 81.91 236 | 86.66 178 | 93.75 182 | 82.23 97 | 98.44 123 | 79.40 245 | 94.79 132 | 97.48 105 |
|
xiu_mvs_v1_base_debu | | | 90.64 107 | 90.05 109 | 92.40 119 | 93.97 203 | 84.46 93 | 93.32 213 | 95.46 179 | 85.17 165 | 92.25 86 | 94.03 161 | 70.59 235 | 98.57 113 | 90.97 86 | 94.67 133 | 94.18 228 |
|
xiu_mvs_v1_base | | | 90.64 107 | 90.05 109 | 92.40 119 | 93.97 203 | 84.46 93 | 93.32 213 | 95.46 179 | 85.17 165 | 92.25 86 | 94.03 161 | 70.59 235 | 98.57 113 | 90.97 86 | 94.67 133 | 94.18 228 |
|
xiu_mvs_v1_base_debi | | | 90.64 107 | 90.05 109 | 92.40 119 | 93.97 203 | 84.46 93 | 93.32 213 | 95.46 179 | 85.17 165 | 92.25 86 | 94.03 161 | 70.59 235 | 98.57 113 | 90.97 86 | 94.67 133 | 94.18 228 |
|
gg-mvs-nofinetune | | | 81.77 291 | 79.37 304 | 88.99 256 | 90.85 303 | 77.73 271 | 86.29 338 | 79.63 370 | 74.88 323 | 83.19 269 | 69.05 364 | 60.34 323 | 96.11 289 | 75.46 280 | 94.64 136 | 93.11 283 |
|
BH-RMVSNet | | | 88.37 168 | 87.48 170 | 91.02 181 | 95.28 144 | 79.45 227 | 92.89 235 | 93.07 266 | 85.45 159 | 86.91 173 | 94.84 136 | 70.35 240 | 97.76 175 | 73.97 292 | 94.59 137 | 95.85 165 |
|
diffmvs | | | 91.37 92 | 91.23 88 | 91.77 152 | 93.09 229 | 80.27 205 | 92.36 250 | 95.52 175 | 87.03 122 | 91.40 108 | 94.93 129 | 80.08 118 | 97.44 201 | 92.13 60 | 94.56 138 | 97.61 99 |
|
BH-untuned | | | 88.60 164 | 88.13 157 | 90.01 224 | 95.24 147 | 78.50 248 | 93.29 218 | 94.15 242 | 84.75 176 | 84.46 233 | 93.40 187 | 75.76 167 | 97.40 210 | 77.59 260 | 94.52 139 | 94.12 232 |
|
Effi-MVS+ | | | 91.59 89 | 91.11 90 | 93.01 89 | 94.35 190 | 83.39 123 | 94.60 140 | 95.10 202 | 87.10 120 | 90.57 116 | 93.10 201 | 81.43 108 | 98.07 157 | 89.29 105 | 94.48 140 | 97.59 101 |
|
PCF-MVS | | 84.11 10 | 87.74 185 | 86.08 217 | 92.70 106 | 94.02 197 | 84.43 97 | 89.27 308 | 95.87 148 | 73.62 332 | 84.43 235 | 94.33 152 | 78.48 141 | 98.86 94 | 70.27 309 | 94.45 141 | 94.81 202 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EI-MVSNet-Vis-set | | | 93.01 69 | 92.92 68 | 93.29 77 | 95.01 154 | 83.51 119 | 94.48 147 | 95.77 155 | 90.87 18 | 92.52 83 | 96.67 65 | 84.50 72 | 99.00 78 | 91.99 64 | 94.44 142 | 97.36 108 |
|
MS-PatchMatch | | | 85.05 261 | 84.16 258 | 87.73 285 | 91.42 277 | 78.51 247 | 91.25 277 | 93.53 258 | 77.50 296 | 80.15 303 | 91.58 253 | 61.99 310 | 95.51 312 | 75.69 278 | 94.35 143 | 89.16 348 |
|
mvs_anonymous | | | 89.37 142 | 89.32 125 | 89.51 244 | 93.47 219 | 74.22 309 | 91.65 271 | 94.83 219 | 82.91 214 | 85.45 208 | 93.79 178 | 81.23 110 | 96.36 280 | 86.47 141 | 94.09 144 | 97.94 83 |
|
MVP-Stereo | | | 85.97 243 | 84.86 249 | 89.32 246 | 90.92 299 | 82.19 156 | 92.11 259 | 94.19 240 | 78.76 284 | 78.77 317 | 91.63 251 | 68.38 268 | 96.56 266 | 75.01 286 | 93.95 145 | 89.20 347 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
LFMVS | | | 90.08 117 | 89.13 130 | 92.95 92 | 96.71 89 | 82.32 155 | 96.08 56 | 89.91 339 | 86.79 128 | 92.15 91 | 96.81 58 | 62.60 306 | 98.34 130 | 87.18 131 | 93.90 146 | 98.19 64 |
|
PVSNet | | 78.82 18 | 85.55 250 | 84.65 253 | 88.23 276 | 94.72 171 | 71.93 332 | 87.12 334 | 92.75 273 | 78.80 283 | 84.95 224 | 90.53 282 | 64.43 298 | 96.71 255 | 74.74 287 | 93.86 147 | 96.06 158 |
|
CNLPA | | | 89.07 149 | 87.98 160 | 92.34 124 | 96.87 85 | 84.78 82 | 94.08 180 | 93.24 262 | 81.41 249 | 84.46 233 | 95.13 125 | 75.57 172 | 96.62 258 | 77.21 264 | 93.84 148 | 95.61 175 |
|
EPNet_dtu | | | 86.49 237 | 85.94 223 | 88.14 278 | 90.24 319 | 72.82 323 | 94.11 176 | 92.20 285 | 86.66 133 | 79.42 314 | 92.36 223 | 73.52 200 | 95.81 303 | 71.26 303 | 93.66 149 | 95.80 169 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
GeoE | | | 90.05 118 | 89.43 121 | 91.90 145 | 95.16 150 | 80.37 204 | 95.80 70 | 94.65 227 | 83.90 189 | 87.55 161 | 94.75 138 | 78.18 144 | 97.62 188 | 81.28 213 | 93.63 150 | 97.71 96 |
|
EI-MVSNet-UG-set | | | 92.74 72 | 92.62 72 | 93.12 83 | 94.86 165 | 83.20 126 | 94.40 155 | 95.74 158 | 90.71 26 | 92.05 92 | 96.60 72 | 84.00 78 | 98.99 80 | 91.55 77 | 93.63 150 | 97.17 117 |
|
Fast-Effi-MVS+ | | | 89.41 139 | 88.64 140 | 91.71 154 | 94.74 169 | 80.81 194 | 93.54 206 | 95.10 202 | 83.11 208 | 86.82 176 | 90.67 280 | 79.74 123 | 97.75 178 | 80.51 229 | 93.55 152 | 96.57 139 |
|
1314 | | | 87.51 198 | 86.57 198 | 90.34 210 | 92.42 246 | 79.74 223 | 92.63 241 | 95.35 192 | 78.35 290 | 80.14 304 | 91.62 252 | 74.05 192 | 97.15 229 | 81.05 215 | 93.53 153 | 94.12 232 |
|
BH-w/o | | | 87.57 196 | 87.05 181 | 89.12 251 | 94.90 163 | 77.90 263 | 92.41 247 | 93.51 259 | 82.89 215 | 83.70 256 | 91.34 256 | 75.75 168 | 97.07 237 | 75.49 279 | 93.49 154 | 92.39 305 |
|
PMMVS | | | 85.71 249 | 84.96 246 | 87.95 282 | 88.90 335 | 77.09 281 | 88.68 319 | 90.06 335 | 72.32 342 | 86.47 179 | 90.76 278 | 72.15 218 | 94.40 327 | 81.78 206 | 93.49 154 | 92.36 306 |
|
PatchMatch-RL | | | 86.77 228 | 85.54 233 | 90.47 203 | 95.88 122 | 82.71 144 | 90.54 287 | 92.31 282 | 79.82 270 | 84.32 241 | 91.57 255 | 68.77 263 | 96.39 277 | 73.16 297 | 93.48 156 | 92.32 308 |
|
PLC |  | 84.53 7 | 89.06 150 | 88.03 158 | 92.15 131 | 97.27 78 | 82.69 145 | 94.29 165 | 95.44 184 | 79.71 271 | 84.01 249 | 94.18 160 | 76.68 157 | 98.75 103 | 77.28 263 | 93.41 157 | 95.02 190 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
VNet | | | 92.24 79 | 91.91 80 | 93.24 79 | 96.59 93 | 83.43 121 | 94.84 126 | 96.44 104 | 89.19 61 | 94.08 40 | 95.90 101 | 77.85 149 | 98.17 142 | 88.90 109 | 93.38 158 | 98.13 69 |
|
test-LLR | | | 85.87 245 | 85.41 236 | 87.25 297 | 90.95 295 | 71.67 334 | 89.55 302 | 89.88 341 | 83.41 202 | 84.54 230 | 87.95 323 | 67.25 271 | 95.11 321 | 81.82 204 | 93.37 159 | 94.97 191 |
|
test-mter | | | 84.54 269 | 83.64 267 | 87.25 297 | 90.95 295 | 71.67 334 | 89.55 302 | 89.88 341 | 79.17 276 | 84.54 230 | 87.95 323 | 55.56 340 | 95.11 321 | 81.82 204 | 93.37 159 | 94.97 191 |
|
EPP-MVSNet | | | 91.70 87 | 91.56 84 | 92.13 132 | 95.88 122 | 80.50 202 | 97.33 6 | 95.25 194 | 86.15 142 | 89.76 127 | 95.60 112 | 83.42 83 | 98.32 133 | 87.37 129 | 93.25 161 | 97.56 103 |
|
CDS-MVSNet | | | 89.45 136 | 88.51 144 | 92.29 128 | 93.62 215 | 83.61 117 | 93.01 231 | 94.68 226 | 81.95 234 | 87.82 155 | 93.24 195 | 78.69 136 | 96.99 243 | 80.34 231 | 93.23 162 | 96.28 146 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PAPM | | | 86.68 229 | 85.39 237 | 90.53 196 | 93.05 231 | 79.33 234 | 89.79 301 | 94.77 224 | 78.82 282 | 81.95 282 | 93.24 195 | 76.81 153 | 97.30 216 | 66.94 332 | 93.16 163 | 94.95 197 |
|
alignmvs | | | 93.08 68 | 92.50 74 | 94.81 35 | 95.62 132 | 87.61 14 | 95.99 61 | 96.07 131 | 89.77 46 | 94.12 38 | 94.87 132 | 80.56 113 | 98.66 105 | 92.42 49 | 93.10 164 | 98.15 67 |
|
mvs-test1 | | | 89.45 136 | 89.14 129 | 90.38 207 | 93.33 222 | 77.63 273 | 94.95 117 | 94.36 233 | 87.70 107 | 87.10 169 | 92.81 211 | 73.45 202 | 98.03 161 | 85.57 152 | 93.04 165 | 95.48 177 |
|
thisisatest0515 | | | 87.33 204 | 85.99 219 | 91.37 166 | 93.49 218 | 79.55 224 | 90.63 286 | 89.56 346 | 80.17 264 | 87.56 160 | 90.86 273 | 67.07 275 | 98.28 135 | 81.50 211 | 93.02 166 | 96.29 145 |
|
TAMVS | | | 89.21 144 | 88.29 153 | 91.96 140 | 93.71 212 | 82.62 148 | 93.30 217 | 94.19 240 | 82.22 226 | 87.78 156 | 93.94 169 | 78.83 133 | 96.95 245 | 77.70 259 | 92.98 167 | 96.32 144 |
|
OMC-MVS | | | 91.23 94 | 90.62 99 | 93.08 85 | 96.27 105 | 84.07 103 | 93.52 207 | 95.93 141 | 86.95 124 | 89.51 129 | 96.13 95 | 78.50 140 | 98.35 129 | 85.84 148 | 92.90 168 | 96.83 131 |
|
canonicalmvs | | | 93.27 64 | 92.75 70 | 94.85 29 | 95.70 129 | 87.66 13 | 96.33 39 | 96.41 107 | 90.00 39 | 94.09 39 | 94.60 145 | 82.33 95 | 98.62 110 | 92.40 50 | 92.86 169 | 98.27 56 |
|
TESTMET0.1,1 | | | 83.74 277 | 82.85 276 | 86.42 312 | 89.96 325 | 71.21 338 | 89.55 302 | 87.88 350 | 77.41 297 | 83.37 265 | 87.31 332 | 56.71 337 | 93.65 339 | 80.62 226 | 92.85 170 | 94.40 224 |
|
thisisatest0530 | | | 88.67 161 | 87.61 168 | 91.86 146 | 94.87 164 | 80.07 211 | 94.63 139 | 89.90 340 | 84.00 187 | 88.46 143 | 93.78 179 | 66.88 278 | 98.46 119 | 83.30 177 | 92.65 171 | 97.06 121 |
|
VDD-MVS | | | 90.74 102 | 89.92 114 | 93.20 80 | 96.27 105 | 83.02 132 | 95.73 73 | 93.86 252 | 88.42 82 | 92.53 82 | 96.84 55 | 62.09 309 | 98.64 107 | 90.95 89 | 92.62 172 | 97.93 85 |
|
test_yl | | | 90.69 104 | 90.02 112 | 92.71 104 | 95.72 127 | 82.41 153 | 94.11 176 | 95.12 200 | 85.63 153 | 91.49 105 | 94.70 139 | 74.75 180 | 98.42 125 | 86.13 144 | 92.53 173 | 97.31 109 |
|
DCV-MVSNet | | | 90.69 104 | 90.02 112 | 92.71 104 | 95.72 127 | 82.41 153 | 94.11 176 | 95.12 200 | 85.63 153 | 91.49 105 | 94.70 139 | 74.75 180 | 98.42 125 | 86.13 144 | 92.53 173 | 97.31 109 |
|
VDDNet | | | 89.56 132 | 88.49 147 | 92.76 101 | 95.07 153 | 82.09 158 | 96.30 40 | 93.19 264 | 81.05 258 | 91.88 95 | 96.86 54 | 61.16 319 | 98.33 132 | 88.43 115 | 92.49 175 | 97.84 91 |
|
DP-MVS | | | 87.25 208 | 85.36 239 | 92.90 94 | 97.65 62 | 83.24 125 | 94.81 128 | 92.00 291 | 74.99 320 | 81.92 283 | 95.00 128 | 72.66 212 | 99.05 63 | 66.92 334 | 92.33 176 | 96.40 142 |
|
GG-mvs-BLEND | | | | | 87.94 283 | 89.73 329 | 77.91 262 | 87.80 327 | 78.23 372 | | 80.58 297 | 83.86 348 | 59.88 327 | 95.33 318 | 71.20 304 | 92.22 177 | 90.60 337 |
|
tttt0517 | | | 88.61 163 | 87.78 164 | 91.11 176 | 94.96 158 | 77.81 267 | 95.35 88 | 89.69 343 | 85.09 170 | 88.05 150 | 94.59 146 | 66.93 276 | 98.48 117 | 83.27 178 | 92.13 178 | 97.03 123 |
|
HyFIR lowres test | | | 88.09 176 | 86.81 186 | 91.93 142 | 96.00 117 | 80.63 198 | 90.01 298 | 95.79 154 | 73.42 333 | 87.68 158 | 92.10 235 | 73.86 196 | 97.96 166 | 80.75 223 | 91.70 179 | 97.19 116 |
|
sss | | | 88.93 155 | 88.26 155 | 90.94 187 | 94.05 196 | 80.78 195 | 91.71 268 | 95.38 188 | 81.55 247 | 88.63 140 | 93.91 173 | 75.04 177 | 95.47 316 | 82.47 191 | 91.61 180 | 96.57 139 |
|
cascas | | | 86.43 238 | 84.98 245 | 90.80 189 | 92.10 254 | 80.92 191 | 90.24 292 | 95.91 144 | 73.10 336 | 83.57 261 | 88.39 316 | 65.15 294 | 97.46 198 | 84.90 159 | 91.43 181 | 94.03 239 |
|
Effi-MVS+-dtu | | | 88.65 162 | 88.35 149 | 89.54 241 | 93.33 222 | 76.39 291 | 94.47 150 | 94.36 233 | 87.70 107 | 85.43 211 | 89.56 302 | 73.45 202 | 97.26 222 | 85.57 152 | 91.28 182 | 94.97 191 |
|
thres100view900 | | | 87.63 191 | 86.71 190 | 90.38 207 | 96.12 109 | 78.55 245 | 95.03 114 | 91.58 302 | 87.15 118 | 88.06 149 | 92.29 226 | 68.91 261 | 98.10 146 | 70.13 313 | 91.10 183 | 94.48 221 |
|
tfpn200view9 | | | 87.58 195 | 86.64 193 | 90.41 204 | 95.99 118 | 78.64 243 | 94.58 141 | 91.98 293 | 86.94 125 | 88.09 146 | 91.77 245 | 69.18 258 | 98.10 146 | 70.13 313 | 91.10 183 | 94.48 221 |
|
thres600view7 | | | 87.65 188 | 86.67 192 | 90.59 193 | 96.08 113 | 78.72 241 | 94.88 123 | 91.58 302 | 87.06 121 | 88.08 148 | 92.30 225 | 68.91 261 | 98.10 146 | 70.05 316 | 91.10 183 | 94.96 194 |
|
thres400 | | | 87.62 193 | 86.64 193 | 90.57 194 | 95.99 118 | 78.64 243 | 94.58 141 | 91.98 293 | 86.94 125 | 88.09 146 | 91.77 245 | 69.18 258 | 98.10 146 | 70.13 313 | 91.10 183 | 94.96 194 |
|
F-COLMAP | | | 87.95 179 | 86.80 187 | 91.40 164 | 96.35 104 | 80.88 192 | 94.73 133 | 95.45 182 | 79.65 272 | 82.04 281 | 94.61 144 | 71.13 226 | 98.50 116 | 76.24 274 | 91.05 187 | 94.80 203 |
|
thres200 | | | 87.21 212 | 86.24 211 | 90.12 217 | 95.36 140 | 78.53 246 | 93.26 220 | 92.10 287 | 86.42 137 | 88.00 151 | 91.11 268 | 69.24 257 | 98.00 163 | 69.58 317 | 91.04 188 | 93.83 250 |
|
WTY-MVS | | | 89.60 130 | 88.92 135 | 91.67 155 | 95.47 138 | 81.15 184 | 92.38 249 | 94.78 223 | 83.11 208 | 89.06 137 | 94.32 153 | 78.67 137 | 96.61 261 | 81.57 210 | 90.89 189 | 97.24 113 |
|
HY-MVS | | 83.01 12 | 89.03 151 | 87.94 162 | 92.29 128 | 94.86 165 | 82.77 138 | 92.08 261 | 94.49 229 | 81.52 248 | 86.93 171 | 92.79 213 | 78.32 143 | 98.23 138 | 79.93 236 | 90.55 190 | 95.88 164 |
|
CLD-MVS | | | 89.47 135 | 88.90 136 | 91.18 172 | 94.22 191 | 82.07 160 | 92.13 258 | 96.09 129 | 87.90 99 | 85.37 217 | 92.45 220 | 74.38 185 | 97.56 191 | 87.15 132 | 90.43 191 | 93.93 242 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CVMVSNet | | | 84.69 268 | 84.79 251 | 84.37 329 | 91.84 262 | 64.92 363 | 93.70 202 | 91.47 307 | 66.19 357 | 86.16 189 | 95.28 118 | 67.18 273 | 93.33 342 | 80.89 221 | 90.42 192 | 94.88 199 |
|
SCA | | | 86.32 239 | 85.18 241 | 89.73 236 | 92.15 250 | 76.60 287 | 91.12 279 | 91.69 300 | 83.53 199 | 85.50 204 | 88.81 309 | 66.79 279 | 96.48 271 | 76.65 269 | 90.35 193 | 96.12 152 |
|
Fast-Effi-MVS+-dtu | | | 87.44 201 | 86.72 189 | 89.63 239 | 92.04 255 | 77.68 272 | 94.03 185 | 93.94 247 | 85.81 147 | 82.42 275 | 91.32 259 | 70.33 241 | 97.06 238 | 80.33 232 | 90.23 194 | 94.14 231 |
|
OPM-MVS | | | 90.12 116 | 89.56 117 | 91.82 149 | 93.14 227 | 83.90 107 | 94.16 172 | 95.74 158 | 88.96 68 | 87.86 152 | 95.43 116 | 72.48 215 | 97.91 170 | 88.10 120 | 90.18 195 | 93.65 261 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
HQP_MVS | | | 90.60 110 | 90.19 104 | 91.82 149 | 94.70 173 | 82.73 142 | 95.85 68 | 96.22 121 | 90.81 20 | 86.91 173 | 94.86 133 | 74.23 187 | 98.12 144 | 88.15 117 | 89.99 196 | 94.63 207 |
|
plane_prior5 | | | | | | | | | 96.22 121 | | | | | 98.12 144 | 88.15 117 | 89.99 196 | 94.63 207 |
|
XVG-OURS | | | 89.40 141 | 88.70 139 | 91.52 158 | 94.06 195 | 81.46 175 | 91.27 276 | 96.07 131 | 86.14 143 | 88.89 139 | 95.77 107 | 68.73 264 | 97.26 222 | 87.39 128 | 89.96 198 | 95.83 167 |
|
baseline2 | | | 86.50 235 | 85.39 237 | 89.84 229 | 91.12 289 | 76.70 286 | 91.88 262 | 88.58 348 | 82.35 225 | 79.95 308 | 90.95 272 | 73.42 204 | 97.63 187 | 80.27 233 | 89.95 199 | 95.19 186 |
|
Anonymous202405211 | | | 87.68 186 | 86.13 213 | 92.31 126 | 96.66 90 | 80.74 196 | 94.87 124 | 91.49 306 | 80.47 262 | 89.46 131 | 95.44 114 | 54.72 345 | 98.23 138 | 82.19 196 | 89.89 200 | 97.97 81 |
|
plane_prior | | | | | | | 82.73 142 | 95.21 101 | | 89.66 49 | | | | | | 89.88 201 | |
|
TR-MVS | | | 86.78 225 | 85.76 230 | 89.82 230 | 94.37 187 | 78.41 250 | 92.47 246 | 92.83 270 | 81.11 257 | 86.36 184 | 92.40 221 | 68.73 264 | 97.48 196 | 73.75 295 | 89.85 202 | 93.57 263 |
|
HQP3-MVS | | | | | | | | | 96.04 135 | | | | | | | 89.77 203 | |
|
HQP-MVS | | | 89.80 127 | 89.28 127 | 91.34 167 | 94.17 192 | 81.56 169 | 94.39 157 | 96.04 135 | 88.81 69 | 85.43 211 | 93.97 168 | 73.83 197 | 97.96 166 | 87.11 134 | 89.77 203 | 94.50 218 |
|
XVG-OURS-SEG-HR | | | 89.95 122 | 89.45 119 | 91.47 162 | 94.00 201 | 81.21 183 | 91.87 263 | 96.06 133 | 85.78 148 | 88.55 141 | 95.73 108 | 74.67 183 | 97.27 220 | 88.71 112 | 89.64 205 | 95.91 162 |
|
GA-MVS | | | 86.61 230 | 85.27 240 | 90.66 191 | 91.33 282 | 78.71 242 | 90.40 289 | 93.81 255 | 85.34 162 | 85.12 221 | 89.57 301 | 61.25 316 | 97.11 233 | 80.99 219 | 89.59 206 | 96.15 149 |
|
1112_ss | | | 88.42 166 | 87.33 174 | 91.72 153 | 94.92 161 | 80.98 188 | 92.97 233 | 94.54 228 | 78.16 294 | 83.82 253 | 93.88 174 | 78.78 135 | 97.91 170 | 79.45 241 | 89.41 207 | 96.26 147 |
|
ab-mvs | | | 89.41 139 | 88.35 149 | 92.60 110 | 95.15 152 | 82.65 147 | 92.20 256 | 95.60 169 | 83.97 188 | 88.55 141 | 93.70 184 | 74.16 191 | 98.21 141 | 82.46 192 | 89.37 208 | 96.94 127 |
|
CR-MVSNet | | | 85.35 254 | 83.76 264 | 90.12 217 | 90.58 312 | 79.34 231 | 85.24 344 | 91.96 295 | 78.27 291 | 85.55 199 | 87.87 326 | 71.03 228 | 95.61 307 | 73.96 293 | 89.36 209 | 95.40 181 |
|
RPMNet | | | 83.95 274 | 81.53 284 | 91.21 170 | 90.58 312 | 79.34 231 | 85.24 344 | 96.76 79 | 71.44 346 | 85.55 199 | 82.97 353 | 70.87 231 | 98.91 89 | 61.01 353 | 89.36 209 | 95.40 181 |
|
DSMNet-mixed | | | 76.94 323 | 76.29 322 | 78.89 341 | 83.10 364 | 56.11 371 | 87.78 328 | 79.77 369 | 60.65 361 | 75.64 336 | 88.71 312 | 61.56 313 | 88.34 363 | 60.07 356 | 89.29 211 | 92.21 311 |
|
LPG-MVS_test | | | 89.45 136 | 88.90 136 | 91.12 173 | 94.47 181 | 81.49 173 | 95.30 93 | 96.14 126 | 86.73 130 | 85.45 208 | 95.16 123 | 69.89 245 | 98.10 146 | 87.70 123 | 89.23 212 | 93.77 255 |
|
LGP-MVS_train | | | | | 91.12 173 | 94.47 181 | 81.49 173 | | 96.14 126 | 86.73 130 | 85.45 208 | 95.16 123 | 69.89 245 | 98.10 146 | 87.70 123 | 89.23 212 | 93.77 255 |
|
Test_1112_low_res | | | 87.65 188 | 86.51 200 | 91.08 177 | 94.94 160 | 79.28 235 | 91.77 265 | 94.30 236 | 76.04 310 | 83.51 262 | 92.37 222 | 77.86 148 | 97.73 179 | 78.69 250 | 89.13 214 | 96.22 148 |
|
PatchmatchNet |  | | 85.85 246 | 84.70 252 | 89.29 247 | 91.76 265 | 75.54 300 | 88.49 321 | 91.30 310 | 81.63 245 | 85.05 222 | 88.70 313 | 71.71 219 | 96.24 284 | 74.61 289 | 89.05 215 | 96.08 156 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDTV_nov1_ep13 | | | | 83.56 268 | | 91.69 269 | 69.93 348 | 87.75 329 | 91.54 304 | 78.60 287 | 84.86 225 | 88.90 308 | 69.54 250 | 96.03 291 | 70.25 310 | 88.93 216 | |
|
MIMVSNet | | | 82.59 285 | 80.53 290 | 88.76 259 | 91.51 272 | 78.32 253 | 86.57 337 | 90.13 333 | 79.32 273 | 80.70 295 | 88.69 314 | 52.98 352 | 93.07 346 | 66.03 337 | 88.86 217 | 94.90 198 |
|
ACMM | | 84.12 9 | 89.14 145 | 88.48 148 | 91.12 173 | 94.65 176 | 81.22 182 | 95.31 90 | 96.12 128 | 85.31 163 | 85.92 191 | 94.34 151 | 70.19 243 | 98.06 158 | 85.65 150 | 88.86 217 | 94.08 236 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 84.23 8 | 89.01 153 | 88.35 149 | 90.99 184 | 94.73 170 | 81.27 179 | 95.07 110 | 95.89 147 | 86.48 134 | 83.67 257 | 94.30 154 | 69.33 253 | 97.99 164 | 87.10 136 | 88.55 219 | 93.72 259 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test_djsdf | | | 89.03 151 | 88.64 140 | 90.21 212 | 90.74 307 | 79.28 235 | 95.96 64 | 95.90 145 | 84.66 178 | 85.33 219 | 92.94 205 | 74.02 193 | 97.30 216 | 89.64 101 | 88.53 220 | 94.05 238 |
|
jajsoiax | | | 88.24 172 | 87.50 169 | 90.48 201 | 90.89 301 | 80.14 208 | 95.31 90 | 95.65 166 | 84.97 172 | 84.24 245 | 94.02 164 | 65.31 293 | 97.42 203 | 88.56 113 | 88.52 221 | 93.89 243 |
|
PatchT | | | 82.68 284 | 81.27 286 | 86.89 307 | 90.09 322 | 70.94 342 | 84.06 350 | 90.15 332 | 74.91 321 | 85.63 198 | 83.57 350 | 69.37 252 | 94.87 325 | 65.19 339 | 88.50 222 | 94.84 200 |
|
MSDG | | | 84.86 265 | 83.09 272 | 90.14 216 | 93.80 209 | 80.05 213 | 89.18 311 | 93.09 265 | 78.89 280 | 78.19 318 | 91.91 242 | 65.86 292 | 97.27 220 | 68.47 322 | 88.45 223 | 93.11 283 |
|
MVS-HIRNet | | | 73.70 326 | 72.20 329 | 78.18 344 | 91.81 264 | 56.42 370 | 82.94 356 | 82.58 364 | 55.24 363 | 68.88 356 | 66.48 365 | 55.32 342 | 95.13 320 | 58.12 358 | 88.42 224 | 83.01 359 |
|
mvs_tets | | | 88.06 178 | 87.28 176 | 90.38 207 | 90.94 297 | 79.88 219 | 95.22 100 | 95.66 164 | 85.10 169 | 84.21 246 | 93.94 169 | 63.53 301 | 97.40 210 | 88.50 114 | 88.40 225 | 93.87 246 |
|
ET-MVSNet_ETH3D | | | 87.51 198 | 85.91 224 | 92.32 125 | 93.70 214 | 83.93 106 | 92.33 251 | 90.94 320 | 84.16 183 | 72.09 351 | 92.52 218 | 69.90 244 | 95.85 300 | 89.20 106 | 88.36 226 | 97.17 117 |
|
FIs | | | 90.51 111 | 90.35 101 | 90.99 184 | 93.99 202 | 80.98 188 | 95.73 73 | 97.54 3 | 89.15 62 | 86.72 177 | 94.68 141 | 81.83 106 | 97.24 224 | 85.18 154 | 88.31 227 | 94.76 204 |
|
MVS_0304 | | | 83.46 278 | 81.92 281 | 88.10 279 | 90.63 311 | 77.49 276 | 93.26 220 | 93.75 256 | 80.04 267 | 80.44 300 | 87.24 334 | 47.94 360 | 95.55 309 | 75.79 277 | 88.16 228 | 91.26 325 |
|
PS-MVSNAJss | | | 89.97 121 | 89.62 116 | 91.02 181 | 91.90 260 | 80.85 193 | 95.26 98 | 95.98 137 | 86.26 140 | 86.21 187 | 94.29 155 | 79.70 124 | 97.65 184 | 88.87 110 | 88.10 229 | 94.57 213 |
|
CMPMVS |  | 59.16 21 | 80.52 306 | 79.20 308 | 84.48 328 | 83.98 361 | 67.63 357 | 89.95 300 | 93.84 254 | 64.79 358 | 66.81 359 | 91.14 267 | 57.93 335 | 95.17 319 | 76.25 273 | 88.10 229 | 90.65 334 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FC-MVSNet-test | | | 90.27 114 | 90.18 105 | 90.53 196 | 93.71 212 | 79.85 221 | 95.77 72 | 97.59 2 | 89.31 57 | 86.27 186 | 94.67 142 | 81.93 105 | 97.01 242 | 84.26 166 | 88.09 231 | 94.71 205 |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 232 | |
|
D2MVS | | | 85.90 244 | 85.09 243 | 88.35 271 | 90.79 304 | 77.42 277 | 91.83 264 | 95.70 160 | 80.77 260 | 80.08 306 | 90.02 292 | 66.74 281 | 96.37 278 | 81.88 203 | 87.97 233 | 91.26 325 |
|
UniMVSNet_ETH3D | | | 87.53 197 | 86.37 203 | 91.00 183 | 92.44 245 | 78.96 240 | 94.74 132 | 95.61 168 | 84.07 186 | 85.36 218 | 94.52 148 | 59.78 328 | 97.34 215 | 82.93 182 | 87.88 234 | 96.71 135 |
|
PVSNet_BlendedMVS | | | 89.98 120 | 89.70 115 | 90.82 188 | 96.12 109 | 81.25 180 | 93.92 192 | 96.83 71 | 83.49 200 | 89.10 135 | 92.26 227 | 81.04 111 | 98.85 97 | 86.72 139 | 87.86 235 | 92.35 307 |
|
anonymousdsp | | | 87.84 181 | 87.09 179 | 90.12 217 | 89.13 332 | 80.54 201 | 94.67 137 | 95.55 171 | 82.05 229 | 83.82 253 | 92.12 232 | 71.47 224 | 97.15 229 | 87.15 132 | 87.80 236 | 92.67 296 |
|
Anonymous20240529 | | | 88.09 176 | 86.59 197 | 92.58 112 | 96.53 98 | 81.92 164 | 95.99 61 | 95.84 150 | 74.11 328 | 89.06 137 | 95.21 122 | 61.44 314 | 98.81 100 | 83.67 175 | 87.47 237 | 97.01 124 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 237 | |
|
XVG-ACMP-BASELINE | | | 86.00 242 | 84.84 250 | 89.45 245 | 91.20 284 | 78.00 260 | 91.70 269 | 95.55 171 | 85.05 171 | 82.97 270 | 92.25 228 | 54.49 346 | 97.48 196 | 82.93 182 | 87.45 239 | 92.89 291 |
|
EI-MVSNet | | | 89.10 146 | 88.86 138 | 89.80 233 | 91.84 262 | 78.30 254 | 93.70 202 | 95.01 205 | 85.73 150 | 87.15 166 | 95.28 118 | 79.87 121 | 97.21 227 | 83.81 172 | 87.36 240 | 93.88 245 |
|
MVSTER | | | 88.84 157 | 88.29 153 | 90.51 199 | 92.95 237 | 80.44 203 | 93.73 199 | 95.01 205 | 84.66 178 | 87.15 166 | 93.12 200 | 72.79 211 | 97.21 227 | 87.86 121 | 87.36 240 | 93.87 246 |
|
EG-PatchMatch MVS | | | 82.37 287 | 80.34 293 | 88.46 268 | 90.27 318 | 79.35 230 | 92.80 238 | 94.33 235 | 77.14 301 | 73.26 348 | 90.18 288 | 47.47 362 | 96.72 253 | 70.25 310 | 87.32 242 | 89.30 345 |
|
EPMVS | | | 83.90 276 | 82.70 278 | 87.51 289 | 90.23 320 | 72.67 325 | 88.62 320 | 81.96 366 | 81.37 250 | 85.01 223 | 88.34 317 | 66.31 286 | 94.45 326 | 75.30 282 | 87.12 243 | 95.43 180 |
|
tpm2 | | | 84.08 272 | 82.94 274 | 87.48 292 | 91.39 278 | 71.27 336 | 89.23 310 | 90.37 329 | 71.95 344 | 84.64 227 | 89.33 303 | 67.30 270 | 96.55 268 | 75.17 283 | 87.09 244 | 94.63 207 |
|
CostFormer | | | 85.77 248 | 84.94 247 | 88.26 274 | 91.16 288 | 72.58 329 | 89.47 306 | 91.04 317 | 76.26 308 | 86.45 182 | 89.97 294 | 70.74 233 | 96.86 251 | 82.35 193 | 87.07 245 | 95.34 184 |
|
Patchmatch-test | | | 81.37 299 | 79.30 305 | 87.58 288 | 90.92 299 | 74.16 311 | 80.99 359 | 87.68 353 | 70.52 350 | 76.63 330 | 88.81 309 | 71.21 225 | 92.76 348 | 60.01 357 | 86.93 246 | 95.83 167 |
|
RRT_MVS | | | 88.86 156 | 87.68 166 | 92.39 122 | 92.02 257 | 86.09 55 | 94.38 161 | 94.94 208 | 85.45 159 | 87.14 168 | 93.84 177 | 65.88 291 | 97.11 233 | 88.73 111 | 86.77 247 | 93.98 241 |
|
LTVRE_ROB | | 82.13 13 | 86.26 240 | 84.90 248 | 90.34 210 | 94.44 185 | 81.50 171 | 92.31 253 | 94.89 214 | 83.03 210 | 79.63 312 | 92.67 214 | 69.69 248 | 97.79 173 | 71.20 304 | 86.26 248 | 91.72 316 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
COLMAP_ROB |  | 80.39 16 | 83.96 273 | 82.04 280 | 89.74 234 | 95.28 144 | 79.75 222 | 94.25 167 | 92.28 283 | 75.17 318 | 78.02 321 | 93.77 180 | 58.60 333 | 97.84 172 | 65.06 342 | 85.92 249 | 91.63 318 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DWT-MVSNet_test | | | 84.95 263 | 83.68 265 | 88.77 258 | 91.43 276 | 73.75 313 | 91.74 267 | 90.98 318 | 80.66 261 | 83.84 252 | 87.36 331 | 62.44 307 | 97.11 233 | 78.84 249 | 85.81 250 | 95.46 178 |
|
RPSCF | | | 85.07 260 | 84.27 257 | 87.48 292 | 92.91 238 | 70.62 344 | 91.69 270 | 92.46 278 | 76.20 309 | 82.67 274 | 95.22 121 | 63.94 300 | 97.29 219 | 77.51 262 | 85.80 251 | 94.53 215 |
|
USDC | | | 82.76 282 | 81.26 287 | 87.26 296 | 91.17 286 | 74.55 305 | 89.27 308 | 93.39 261 | 78.26 292 | 75.30 338 | 92.08 236 | 54.43 347 | 96.63 257 | 71.64 302 | 85.79 252 | 90.61 335 |
|
GBi-Net | | | 87.26 206 | 85.98 220 | 91.08 177 | 94.01 198 | 83.10 128 | 95.14 107 | 94.94 208 | 83.57 196 | 84.37 236 | 91.64 248 | 66.59 283 | 96.34 281 | 78.23 254 | 85.36 253 | 93.79 251 |
|
test1 | | | 87.26 206 | 85.98 220 | 91.08 177 | 94.01 198 | 83.10 128 | 95.14 107 | 94.94 208 | 83.57 196 | 84.37 236 | 91.64 248 | 66.59 283 | 96.34 281 | 78.23 254 | 85.36 253 | 93.79 251 |
|
FMVSNet3 | | | 87.40 203 | 86.11 215 | 91.30 168 | 93.79 211 | 83.64 115 | 94.20 171 | 94.81 221 | 83.89 190 | 84.37 236 | 91.87 244 | 68.45 267 | 96.56 266 | 78.23 254 | 85.36 253 | 93.70 260 |
|
FMVSNet2 | | | 87.19 214 | 85.82 226 | 91.30 168 | 94.01 198 | 83.67 114 | 94.79 129 | 94.94 208 | 83.57 196 | 83.88 251 | 92.05 239 | 66.59 283 | 96.51 269 | 77.56 261 | 85.01 256 | 93.73 258 |
|
ACMH | | 80.38 17 | 85.36 253 | 83.68 265 | 90.39 205 | 94.45 184 | 80.63 198 | 94.73 133 | 94.85 217 | 82.09 228 | 77.24 325 | 92.65 215 | 60.01 326 | 97.58 189 | 72.25 301 | 84.87 257 | 92.96 288 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ITE_SJBPF | | | | | 88.24 275 | 91.88 261 | 77.05 282 | | 92.92 268 | 85.54 156 | 80.13 305 | 93.30 192 | 57.29 336 | 96.20 285 | 72.46 300 | 84.71 258 | 91.49 320 |
|
JIA-IIPM | | | 81.04 302 | 78.98 312 | 87.25 297 | 88.64 336 | 73.48 317 | 81.75 358 | 89.61 345 | 73.19 335 | 82.05 280 | 73.71 361 | 66.07 290 | 95.87 299 | 71.18 306 | 84.60 259 | 92.41 304 |
|
bset_n11_16_dypcd | | | 86.83 222 | 85.55 232 | 90.65 192 | 88.22 343 | 81.70 167 | 88.88 316 | 90.42 327 | 85.26 164 | 85.49 205 | 90.69 279 | 67.11 274 | 97.02 241 | 89.51 103 | 84.39 260 | 93.23 277 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 314 | 77.03 320 | 86.93 304 | 87.00 349 | 76.23 294 | 92.33 251 | 90.74 325 | 68.93 353 | 74.52 342 | 88.23 320 | 49.58 357 | 96.62 258 | 57.64 359 | 84.29 261 | 87.94 356 |
|
AllTest | | | 83.42 279 | 81.39 285 | 89.52 242 | 95.01 154 | 77.79 268 | 93.12 225 | 90.89 322 | 77.41 297 | 76.12 333 | 93.34 188 | 54.08 348 | 97.51 194 | 68.31 324 | 84.27 262 | 93.26 273 |
|
TestCases | | | | | 89.52 242 | 95.01 154 | 77.79 268 | | 90.89 322 | 77.41 297 | 76.12 333 | 93.34 188 | 54.08 348 | 97.51 194 | 68.31 324 | 84.27 262 | 93.26 273 |
|
tpm | | | 84.73 266 | 84.02 260 | 86.87 308 | 90.33 317 | 68.90 351 | 89.06 313 | 89.94 338 | 80.85 259 | 85.75 193 | 89.86 296 | 68.54 266 | 95.97 294 | 77.76 258 | 84.05 264 | 95.75 170 |
|
FMVSNet1 | | | 85.85 246 | 84.11 259 | 91.08 177 | 92.81 239 | 83.10 128 | 95.14 107 | 94.94 208 | 81.64 244 | 82.68 273 | 91.64 248 | 59.01 332 | 96.34 281 | 75.37 281 | 83.78 265 | 93.79 251 |
|
ADS-MVSNet2 | | | 81.66 294 | 79.71 302 | 87.50 290 | 91.35 280 | 74.19 310 | 83.33 353 | 88.48 349 | 72.90 338 | 82.24 278 | 85.77 343 | 64.98 295 | 93.20 344 | 64.57 343 | 83.74 266 | 95.12 187 |
|
ADS-MVSNet | | | 81.56 296 | 79.78 300 | 86.90 306 | 91.35 280 | 71.82 333 | 83.33 353 | 89.16 347 | 72.90 338 | 82.24 278 | 85.77 343 | 64.98 295 | 93.76 337 | 64.57 343 | 83.74 266 | 95.12 187 |
|
XXY-MVS | | | 87.65 188 | 86.85 185 | 90.03 221 | 92.14 251 | 80.60 200 | 93.76 198 | 95.23 195 | 82.94 213 | 84.60 228 | 94.02 164 | 74.27 186 | 95.49 315 | 81.04 216 | 83.68 268 | 94.01 240 |
|
test_0402 | | | 81.30 301 | 79.17 309 | 87.67 286 | 93.19 226 | 78.17 257 | 92.98 232 | 91.71 298 | 75.25 317 | 76.02 335 | 90.31 286 | 59.23 330 | 96.37 278 | 50.22 364 | 83.63 269 | 88.47 354 |
|
tpmvs | | | 83.35 281 | 82.07 279 | 87.20 301 | 91.07 291 | 71.00 341 | 88.31 324 | 91.70 299 | 78.91 279 | 80.49 299 | 87.18 335 | 69.30 256 | 97.08 236 | 68.12 327 | 83.56 270 | 93.51 267 |
|
pmmvs5 | | | 84.21 271 | 82.84 277 | 88.34 272 | 88.95 334 | 76.94 283 | 92.41 247 | 91.91 297 | 75.63 313 | 80.28 301 | 91.18 264 | 64.59 297 | 95.57 308 | 77.09 267 | 83.47 271 | 92.53 300 |
|
pmmvs4 | | | 85.43 252 | 83.86 263 | 90.16 214 | 90.02 324 | 82.97 135 | 90.27 290 | 92.67 275 | 75.93 311 | 80.73 294 | 91.74 247 | 71.05 227 | 95.73 306 | 78.85 248 | 83.46 272 | 91.78 315 |
|
test0.0.03 1 | | | 82.41 286 | 81.69 282 | 84.59 327 | 88.23 342 | 72.89 322 | 90.24 292 | 87.83 351 | 83.41 202 | 79.86 309 | 89.78 298 | 67.25 271 | 88.99 362 | 65.18 340 | 83.42 273 | 91.90 314 |
|
tpmrst | | | 85.35 254 | 84.99 244 | 86.43 311 | 90.88 302 | 67.88 355 | 88.71 318 | 91.43 308 | 80.13 265 | 86.08 190 | 88.80 311 | 73.05 208 | 96.02 292 | 82.48 190 | 83.40 274 | 95.40 181 |
|
nrg030 | | | 91.08 98 | 90.39 100 | 93.17 82 | 93.07 230 | 86.91 22 | 96.41 37 | 96.26 116 | 88.30 86 | 88.37 145 | 94.85 135 | 82.19 99 | 97.64 186 | 91.09 84 | 82.95 275 | 94.96 194 |
|
cl22 | | | 86.78 225 | 85.98 220 | 89.18 250 | 92.34 247 | 77.62 274 | 90.84 283 | 94.13 244 | 81.33 251 | 83.97 250 | 90.15 289 | 73.96 194 | 96.60 263 | 84.19 167 | 82.94 276 | 93.33 271 |
|
miper_ehance_all_eth | | | 87.22 211 | 86.62 196 | 89.02 255 | 92.13 252 | 77.40 278 | 90.91 282 | 94.81 221 | 81.28 252 | 84.32 241 | 90.08 291 | 79.26 130 | 96.62 258 | 83.81 172 | 82.94 276 | 93.04 286 |
|
miper_enhance_ethall | | | 86.90 220 | 86.18 212 | 89.06 253 | 91.66 270 | 77.58 275 | 90.22 294 | 94.82 220 | 79.16 277 | 84.48 232 | 89.10 305 | 79.19 131 | 96.66 256 | 84.06 168 | 82.94 276 | 92.94 289 |
|
ACMH+ | | 81.04 14 | 85.05 261 | 83.46 269 | 89.82 230 | 94.66 175 | 79.37 229 | 94.44 152 | 94.12 245 | 82.19 227 | 78.04 320 | 92.82 210 | 58.23 334 | 97.54 192 | 73.77 294 | 82.90 279 | 92.54 299 |
|
VPA-MVSNet | | | 89.62 129 | 88.96 133 | 91.60 157 | 93.86 206 | 82.89 137 | 95.46 85 | 97.33 25 | 87.91 98 | 88.43 144 | 93.31 191 | 74.17 190 | 97.40 210 | 87.32 130 | 82.86 280 | 94.52 216 |
|
IterMVS-LS | | | 88.36 169 | 87.91 163 | 89.70 237 | 93.80 209 | 78.29 255 | 93.73 199 | 95.08 204 | 85.73 150 | 84.75 226 | 91.90 243 | 79.88 120 | 96.92 247 | 83.83 171 | 82.51 281 | 93.89 243 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
testgi | | | 80.94 305 | 80.20 296 | 83.18 334 | 87.96 347 | 66.29 358 | 91.28 275 | 90.70 326 | 83.70 193 | 78.12 319 | 92.84 208 | 51.37 354 | 90.82 358 | 63.34 346 | 82.46 282 | 92.43 303 |
|
WR-MVS | | | 88.38 167 | 87.67 167 | 90.52 198 | 93.30 224 | 80.18 206 | 93.26 220 | 95.96 139 | 88.57 78 | 85.47 207 | 92.81 211 | 76.12 160 | 96.91 248 | 81.24 214 | 82.29 283 | 94.47 223 |
|
RRT_test8_iter05 | | | 86.90 220 | 86.36 204 | 88.52 267 | 93.00 235 | 73.27 319 | 94.32 164 | 95.96 139 | 85.50 158 | 84.26 244 | 92.86 206 | 60.76 321 | 97.70 180 | 88.32 116 | 82.29 283 | 94.60 210 |
|
tpm cat1 | | | 81.96 288 | 80.27 294 | 87.01 303 | 91.09 290 | 71.02 340 | 87.38 333 | 91.53 305 | 66.25 356 | 80.17 302 | 86.35 339 | 68.22 269 | 96.15 288 | 69.16 318 | 82.29 283 | 93.86 248 |
|
v1192 | | | 87.25 208 | 86.33 206 | 90.00 225 | 90.76 306 | 79.04 239 | 93.80 196 | 95.48 177 | 82.57 220 | 85.48 206 | 91.18 264 | 73.38 206 | 97.42 203 | 82.30 194 | 82.06 286 | 93.53 264 |
|
v1144 | | | 87.61 194 | 86.79 188 | 90.06 220 | 91.01 292 | 79.34 231 | 93.95 190 | 95.42 187 | 83.36 204 | 85.66 197 | 91.31 260 | 74.98 178 | 97.42 203 | 83.37 176 | 82.06 286 | 93.42 270 |
|
v1240 | | | 86.78 225 | 85.85 225 | 89.56 240 | 90.45 316 | 77.79 268 | 93.61 204 | 95.37 190 | 81.65 243 | 85.43 211 | 91.15 266 | 71.50 223 | 97.43 202 | 81.47 212 | 82.05 288 | 93.47 268 |
|
Anonymous20231206 | | | 81.03 303 | 79.77 301 | 84.82 326 | 87.85 348 | 70.26 346 | 91.42 274 | 92.08 288 | 73.67 331 | 77.75 322 | 89.25 304 | 62.43 308 | 93.08 345 | 61.50 352 | 82.00 289 | 91.12 330 |
|
V42 | | | 87.68 186 | 86.86 184 | 90.15 215 | 90.58 312 | 80.14 208 | 94.24 169 | 95.28 193 | 83.66 194 | 85.67 196 | 91.33 257 | 74.73 182 | 97.41 208 | 84.43 165 | 81.83 290 | 92.89 291 |
|
v1921920 | | | 86.97 219 | 86.06 218 | 89.69 238 | 90.53 315 | 78.11 259 | 93.80 196 | 95.43 185 | 81.90 237 | 85.33 219 | 91.05 270 | 72.66 212 | 97.41 208 | 82.05 199 | 81.80 291 | 93.53 264 |
|
v2v482 | | | 87.84 181 | 87.06 180 | 90.17 213 | 90.99 293 | 79.23 238 | 94.00 188 | 95.13 199 | 84.87 173 | 85.53 201 | 92.07 238 | 74.45 184 | 97.45 199 | 84.71 162 | 81.75 292 | 93.85 249 |
|
Anonymous20231211 | | | 86.59 232 | 85.13 242 | 90.98 186 | 96.52 99 | 81.50 171 | 96.14 52 | 96.16 125 | 73.78 330 | 83.65 258 | 92.15 230 | 63.26 303 | 97.37 214 | 82.82 186 | 81.74 293 | 94.06 237 |
|
v144192 | | | 87.19 214 | 86.35 205 | 89.74 234 | 90.64 310 | 78.24 256 | 93.92 192 | 95.43 185 | 81.93 235 | 85.51 203 | 91.05 270 | 74.21 189 | 97.45 199 | 82.86 184 | 81.56 294 | 93.53 264 |
|
cl____ | | | 86.52 234 | 85.78 227 | 88.75 260 | 92.03 256 | 76.46 289 | 90.74 284 | 94.30 236 | 81.83 241 | 83.34 266 | 90.78 277 | 75.74 170 | 96.57 264 | 81.74 207 | 81.54 295 | 93.22 278 |
|
DIV-MVS_self_test | | | 86.53 233 | 85.78 227 | 88.75 260 | 92.02 257 | 76.45 290 | 90.74 284 | 94.30 236 | 81.83 241 | 83.34 266 | 90.82 275 | 75.75 168 | 96.57 264 | 81.73 208 | 81.52 296 | 93.24 276 |
|
Anonymous20240521 | | | 80.44 307 | 79.21 307 | 84.11 332 | 85.75 356 | 67.89 354 | 92.86 236 | 93.23 263 | 75.61 314 | 75.59 337 | 87.47 330 | 50.03 355 | 94.33 329 | 71.14 307 | 81.21 297 | 90.12 340 |
|
OurMVSNet-221017-0 | | | 85.35 254 | 84.64 254 | 87.49 291 | 90.77 305 | 72.59 328 | 94.01 187 | 94.40 232 | 84.72 177 | 79.62 313 | 93.17 197 | 61.91 311 | 96.72 253 | 81.99 200 | 81.16 298 | 93.16 281 |
|
FMVSNet5 | | | 81.52 297 | 79.60 303 | 87.27 295 | 91.17 286 | 77.95 261 | 91.49 273 | 92.26 284 | 76.87 302 | 76.16 332 | 87.91 325 | 51.67 353 | 92.34 350 | 67.74 328 | 81.16 298 | 91.52 319 |
|
CP-MVSNet | | | 87.63 191 | 87.26 178 | 88.74 262 | 93.12 228 | 76.59 288 | 95.29 95 | 96.58 98 | 88.43 81 | 83.49 263 | 92.98 204 | 75.28 174 | 95.83 301 | 78.97 247 | 81.15 300 | 93.79 251 |
|
c3_l | | | 87.14 216 | 86.50 201 | 89.04 254 | 92.20 249 | 77.26 279 | 91.22 278 | 94.70 225 | 82.01 232 | 84.34 240 | 90.43 284 | 78.81 134 | 96.61 261 | 83.70 174 | 81.09 301 | 93.25 275 |
|
IterMVS-SCA-FT | | | 85.45 251 | 84.53 256 | 88.18 277 | 91.71 267 | 76.87 284 | 90.19 295 | 92.65 276 | 85.40 161 | 81.44 286 | 90.54 281 | 66.79 279 | 95.00 324 | 81.04 216 | 81.05 302 | 92.66 297 |
|
TinyColmap | | | 79.76 313 | 77.69 315 | 85.97 315 | 91.71 267 | 73.12 320 | 89.55 302 | 90.36 330 | 75.03 319 | 72.03 352 | 90.19 287 | 46.22 363 | 96.19 287 | 63.11 347 | 81.03 303 | 88.59 353 |
|
UniMVSNet_NR-MVSNet | | | 89.92 124 | 89.29 126 | 91.81 151 | 93.39 221 | 83.72 112 | 94.43 153 | 97.12 44 | 89.80 42 | 86.46 180 | 93.32 190 | 83.16 84 | 97.23 225 | 84.92 157 | 81.02 304 | 94.49 220 |
|
DU-MVS | | | 89.34 143 | 88.50 145 | 91.85 148 | 93.04 232 | 83.72 112 | 94.47 150 | 96.59 97 | 89.50 51 | 86.46 180 | 93.29 193 | 77.25 150 | 97.23 225 | 84.92 157 | 81.02 304 | 94.59 211 |
|
PS-CasMVS | | | 87.32 205 | 86.88 183 | 88.63 265 | 92.99 236 | 76.33 293 | 95.33 89 | 96.61 96 | 88.22 90 | 83.30 268 | 93.07 202 | 73.03 209 | 95.79 304 | 78.36 252 | 81.00 306 | 93.75 257 |
|
IterMVS | | | 84.88 264 | 83.98 262 | 87.60 287 | 91.44 273 | 76.03 295 | 90.18 296 | 92.41 279 | 83.24 207 | 81.06 292 | 90.42 285 | 66.60 282 | 94.28 331 | 79.46 240 | 80.98 307 | 92.48 301 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet (Re) | | | 89.80 127 | 89.07 131 | 92.01 134 | 93.60 216 | 84.52 89 | 94.78 130 | 97.47 10 | 89.26 58 | 86.44 183 | 92.32 224 | 82.10 100 | 97.39 213 | 84.81 160 | 80.84 308 | 94.12 232 |
|
LF4IMVS | | | 80.37 308 | 79.07 311 | 84.27 331 | 86.64 350 | 69.87 349 | 89.39 307 | 91.05 316 | 76.38 305 | 74.97 340 | 90.00 293 | 47.85 361 | 94.25 332 | 74.55 290 | 80.82 309 | 88.69 352 |
|
v10 | | | 87.25 208 | 86.38 202 | 89.85 228 | 91.19 285 | 79.50 225 | 94.48 147 | 95.45 182 | 83.79 192 | 83.62 259 | 91.19 262 | 75.13 175 | 97.42 203 | 81.94 201 | 80.60 310 | 92.63 298 |
|
tfpnnormal | | | 84.72 267 | 83.23 271 | 89.20 249 | 92.79 240 | 80.05 213 | 94.48 147 | 95.81 152 | 82.38 223 | 81.08 291 | 91.21 261 | 69.01 260 | 96.95 245 | 61.69 351 | 80.59 311 | 90.58 338 |
|
test_part1 | | | 89.00 154 | 87.99 159 | 92.04 133 | 95.94 121 | 83.81 110 | 96.14 52 | 96.05 134 | 86.44 136 | 85.69 195 | 93.73 183 | 71.57 221 | 97.66 182 | 85.80 149 | 80.54 312 | 94.66 206 |
|
WR-MVS_H | | | 87.80 183 | 87.37 173 | 89.10 252 | 93.23 225 | 78.12 258 | 95.61 81 | 97.30 29 | 87.90 99 | 83.72 255 | 92.01 240 | 79.65 128 | 96.01 293 | 76.36 271 | 80.54 312 | 93.16 281 |
|
VPNet | | | 88.20 173 | 87.47 171 | 90.39 205 | 93.56 217 | 79.46 226 | 94.04 184 | 95.54 173 | 88.67 74 | 86.96 170 | 94.58 147 | 69.33 253 | 97.15 229 | 84.05 169 | 80.53 314 | 94.56 214 |
|
v7n | | | 86.81 223 | 85.76 230 | 89.95 226 | 90.72 308 | 79.25 237 | 95.07 110 | 95.92 142 | 84.45 181 | 82.29 276 | 90.86 273 | 72.60 214 | 97.53 193 | 79.42 244 | 80.52 315 | 93.08 285 |
|
v8 | | | 87.50 200 | 86.71 190 | 89.89 227 | 91.37 279 | 79.40 228 | 94.50 146 | 95.38 188 | 84.81 175 | 83.60 260 | 91.33 257 | 76.05 161 | 97.42 203 | 82.84 185 | 80.51 316 | 92.84 293 |
|
EU-MVSNet | | | 81.32 300 | 80.95 288 | 82.42 338 | 88.50 338 | 63.67 364 | 93.32 213 | 91.33 309 | 64.02 359 | 80.57 298 | 92.83 209 | 61.21 318 | 92.27 351 | 76.34 272 | 80.38 317 | 91.32 323 |
|
Patchmtry | | | 82.71 283 | 80.93 289 | 88.06 280 | 90.05 323 | 76.37 292 | 84.74 348 | 91.96 295 | 72.28 343 | 81.32 289 | 87.87 326 | 71.03 228 | 95.50 314 | 68.97 319 | 80.15 318 | 92.32 308 |
|
NR-MVSNet | | | 88.58 165 | 87.47 171 | 91.93 142 | 93.04 232 | 84.16 102 | 94.77 131 | 96.25 118 | 89.05 64 | 80.04 307 | 93.29 193 | 79.02 132 | 97.05 239 | 81.71 209 | 80.05 319 | 94.59 211 |
|
Baseline_NR-MVSNet | | | 87.07 217 | 86.63 195 | 88.40 269 | 91.44 273 | 77.87 265 | 94.23 170 | 92.57 277 | 84.12 185 | 85.74 194 | 92.08 236 | 77.25 150 | 96.04 290 | 82.29 195 | 79.94 320 | 91.30 324 |
|
dp | | | 81.47 298 | 80.23 295 | 85.17 324 | 89.92 326 | 65.49 361 | 86.74 335 | 90.10 334 | 76.30 307 | 81.10 290 | 87.12 336 | 62.81 305 | 95.92 296 | 68.13 326 | 79.88 321 | 94.09 235 |
|
TranMVSNet+NR-MVSNet | | | 88.84 157 | 87.95 161 | 91.49 160 | 92.68 242 | 83.01 133 | 94.92 120 | 96.31 112 | 89.88 41 | 85.53 201 | 93.85 176 | 76.63 158 | 96.96 244 | 81.91 202 | 79.87 322 | 94.50 218 |
|
miper_lstm_enhance | | | 85.27 257 | 84.59 255 | 87.31 294 | 91.28 283 | 74.63 304 | 87.69 330 | 94.09 246 | 81.20 256 | 81.36 288 | 89.85 297 | 74.97 179 | 94.30 330 | 81.03 218 | 79.84 323 | 93.01 287 |
|
v148 | | | 87.04 218 | 86.32 207 | 89.21 248 | 90.94 297 | 77.26 279 | 93.71 201 | 94.43 231 | 84.84 174 | 84.36 239 | 90.80 276 | 76.04 162 | 97.05 239 | 82.12 197 | 79.60 324 | 93.31 272 |
|
IB-MVS | | 80.51 15 | 85.24 258 | 83.26 270 | 91.19 171 | 92.13 252 | 79.86 220 | 91.75 266 | 91.29 311 | 83.28 206 | 80.66 296 | 88.49 315 | 61.28 315 | 98.46 119 | 80.99 219 | 79.46 325 | 95.25 185 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
eth_miper_zixun_eth | | | 86.50 235 | 85.77 229 | 88.68 263 | 91.94 259 | 75.81 298 | 90.47 288 | 94.89 214 | 82.05 229 | 84.05 247 | 90.46 283 | 75.96 163 | 96.77 252 | 82.76 188 | 79.36 326 | 93.46 269 |
|
baseline1 | | | 88.10 175 | 87.28 176 | 90.57 194 | 94.96 158 | 80.07 211 | 94.27 166 | 91.29 311 | 86.74 129 | 87.41 162 | 94.00 166 | 76.77 155 | 96.20 285 | 80.77 222 | 79.31 327 | 95.44 179 |
|
our_test_3 | | | 81.93 289 | 80.46 292 | 86.33 313 | 88.46 339 | 73.48 317 | 88.46 322 | 91.11 313 | 76.46 303 | 76.69 329 | 88.25 319 | 66.89 277 | 94.36 328 | 68.75 320 | 79.08 328 | 91.14 329 |
|
PEN-MVS | | | 86.80 224 | 86.27 210 | 88.40 269 | 92.32 248 | 75.71 299 | 95.18 104 | 96.38 110 | 87.97 96 | 82.82 272 | 93.15 198 | 73.39 205 | 95.92 296 | 76.15 275 | 79.03 329 | 93.59 262 |
|
pm-mvs1 | | | 86.61 230 | 85.54 233 | 89.82 230 | 91.44 273 | 80.18 206 | 95.28 97 | 94.85 217 | 83.84 191 | 81.66 284 | 92.62 216 | 72.45 217 | 96.48 271 | 79.67 239 | 78.06 330 | 92.82 294 |
|
h-mvs33 | | | 90.80 100 | 90.15 106 | 92.75 102 | 96.01 116 | 82.66 146 | 95.43 86 | 95.53 174 | 89.80 42 | 93.08 66 | 95.64 111 | 75.77 165 | 99.00 78 | 92.07 61 | 78.05 331 | 96.60 137 |
|
SixPastTwentyTwo | | | 83.91 275 | 82.90 275 | 86.92 305 | 90.99 293 | 70.67 343 | 93.48 208 | 91.99 292 | 85.54 156 | 77.62 324 | 92.11 234 | 60.59 322 | 96.87 250 | 76.05 276 | 77.75 332 | 93.20 279 |
|
ppachtmachnet_test | | | 81.84 290 | 80.07 298 | 87.15 302 | 88.46 339 | 74.43 308 | 89.04 314 | 92.16 286 | 75.33 316 | 77.75 322 | 88.99 306 | 66.20 287 | 95.37 317 | 65.12 341 | 77.60 333 | 91.65 317 |
|
MIMVSNet1 | | | 79.38 315 | 77.28 317 | 85.69 319 | 86.35 351 | 73.67 314 | 91.61 272 | 92.75 273 | 78.11 295 | 72.64 350 | 88.12 321 | 48.16 359 | 91.97 354 | 60.32 354 | 77.49 334 | 91.43 322 |
|
DTE-MVSNet | | | 86.11 241 | 85.48 235 | 87.98 281 | 91.65 271 | 74.92 303 | 94.93 119 | 95.75 157 | 87.36 116 | 82.26 277 | 93.04 203 | 72.85 210 | 95.82 302 | 74.04 291 | 77.46 335 | 93.20 279 |
|
N_pmnet | | | 68.89 329 | 68.44 332 | 70.23 348 | 89.07 333 | 28.79 380 | 88.06 325 | 19.50 381 | 69.47 352 | 71.86 353 | 84.93 345 | 61.24 317 | 91.75 355 | 54.70 361 | 77.15 336 | 90.15 339 |
|
AUN-MVS | | | 87.78 184 | 86.54 199 | 91.48 161 | 94.82 168 | 81.05 186 | 93.91 195 | 93.93 248 | 83.00 211 | 86.93 171 | 93.53 186 | 69.50 251 | 97.67 181 | 86.14 142 | 77.12 337 | 95.73 172 |
|
hse-mvs2 | | | 89.88 126 | 89.34 124 | 91.51 159 | 94.83 167 | 81.12 185 | 93.94 191 | 93.91 251 | 89.80 42 | 93.08 66 | 93.60 185 | 75.77 165 | 97.66 182 | 92.07 61 | 77.07 338 | 95.74 171 |
|
test20.03 | | | 79.95 311 | 79.08 310 | 82.55 337 | 85.79 355 | 67.74 356 | 91.09 280 | 91.08 314 | 81.23 255 | 74.48 343 | 89.96 295 | 61.63 312 | 90.15 359 | 60.08 355 | 76.38 339 | 89.76 341 |
|
FPMVS | | | 64.63 331 | 62.55 333 | 70.88 347 | 70.80 371 | 56.71 368 | 84.42 349 | 84.42 360 | 51.78 365 | 49.57 365 | 81.61 355 | 23.49 372 | 81.48 368 | 40.61 369 | 76.25 340 | 74.46 364 |
|
EGC-MVSNET | | | 61.97 332 | 56.37 336 | 78.77 342 | 89.63 330 | 73.50 316 | 89.12 312 | 82.79 363 | 0.21 378 | 1.24 379 | 84.80 346 | 39.48 366 | 90.04 360 | 44.13 366 | 75.94 341 | 72.79 365 |
|
pmmvs6 | | | 83.42 279 | 81.60 283 | 88.87 257 | 88.01 346 | 77.87 265 | 94.96 116 | 94.24 239 | 74.67 324 | 78.80 316 | 91.09 269 | 60.17 325 | 96.49 270 | 77.06 268 | 75.40 342 | 92.23 310 |
|
new_pmnet | | | 72.15 327 | 70.13 330 | 78.20 343 | 82.95 365 | 65.68 359 | 83.91 351 | 82.40 365 | 62.94 360 | 64.47 360 | 79.82 357 | 42.85 365 | 86.26 365 | 57.41 360 | 74.44 343 | 82.65 361 |
|
MDA-MVSNet_test_wron | | | 79.21 317 | 77.19 319 | 85.29 322 | 88.22 343 | 72.77 324 | 85.87 340 | 90.06 335 | 74.34 326 | 62.62 362 | 87.56 329 | 66.14 288 | 91.99 353 | 66.90 335 | 73.01 344 | 91.10 332 |
|
YYNet1 | | | 79.22 316 | 77.20 318 | 85.28 323 | 88.20 345 | 72.66 326 | 85.87 340 | 90.05 337 | 74.33 327 | 62.70 361 | 87.61 328 | 66.09 289 | 92.03 352 | 66.94 332 | 72.97 345 | 91.15 328 |
|
Patchmatch-RL test | | | 81.67 293 | 79.96 299 | 86.81 309 | 85.42 358 | 71.23 337 | 82.17 357 | 87.50 354 | 78.47 288 | 77.19 326 | 82.50 354 | 70.81 232 | 93.48 340 | 82.66 189 | 72.89 346 | 95.71 173 |
|
pmmvs-eth3d | | | 80.97 304 | 78.72 313 | 87.74 284 | 84.99 360 | 79.97 218 | 90.11 297 | 91.65 301 | 75.36 315 | 73.51 346 | 86.03 340 | 59.45 329 | 93.96 336 | 75.17 283 | 72.21 347 | 89.29 346 |
|
PM-MVS | | | 78.11 321 | 76.12 323 | 84.09 333 | 83.54 363 | 70.08 347 | 88.97 315 | 85.27 358 | 79.93 268 | 74.73 341 | 86.43 337 | 34.70 368 | 93.48 340 | 79.43 243 | 72.06 348 | 88.72 351 |
|
Gipuma |  | | 57.99 335 | 54.91 337 | 67.24 350 | 88.51 337 | 65.59 360 | 52.21 369 | 90.33 331 | 43.58 368 | 42.84 369 | 51.18 370 | 20.29 375 | 85.07 366 | 34.77 370 | 70.45 349 | 51.05 369 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
K. test v3 | | | 81.59 295 | 80.15 297 | 85.91 318 | 89.89 327 | 69.42 350 | 92.57 244 | 87.71 352 | 85.56 155 | 73.44 347 | 89.71 299 | 55.58 339 | 95.52 311 | 77.17 265 | 69.76 350 | 92.78 295 |
|
KD-MVS_self_test | | | 80.20 309 | 79.24 306 | 83.07 335 | 85.64 357 | 65.29 362 | 91.01 281 | 93.93 248 | 78.71 286 | 76.32 331 | 86.40 338 | 59.20 331 | 92.93 347 | 72.59 299 | 69.35 351 | 91.00 333 |
|
CL-MVSNet_self_test | | | 81.74 292 | 80.53 290 | 85.36 321 | 85.96 354 | 72.45 330 | 90.25 291 | 93.07 266 | 81.24 254 | 79.85 310 | 87.29 333 | 70.93 230 | 92.52 349 | 66.95 331 | 69.23 352 | 91.11 331 |
|
TDRefinement | | | 79.81 312 | 77.34 316 | 87.22 300 | 79.24 368 | 75.48 301 | 93.12 225 | 92.03 290 | 76.45 304 | 75.01 339 | 91.58 253 | 49.19 358 | 96.44 275 | 70.22 312 | 69.18 353 | 89.75 342 |
|
MDA-MVSNet-bldmvs | | | 78.85 318 | 76.31 321 | 86.46 310 | 89.76 328 | 73.88 312 | 88.79 317 | 90.42 327 | 79.16 277 | 59.18 363 | 88.33 318 | 60.20 324 | 94.04 333 | 62.00 350 | 68.96 354 | 91.48 321 |
|
ambc | | | | | 83.06 336 | 79.99 367 | 63.51 365 | 77.47 362 | 92.86 269 | | 74.34 344 | 84.45 347 | 28.74 369 | 95.06 323 | 73.06 298 | 68.89 355 | 90.61 335 |
|
TransMVSNet (Re) | | | 84.43 270 | 83.06 273 | 88.54 266 | 91.72 266 | 78.44 249 | 95.18 104 | 92.82 271 | 82.73 217 | 79.67 311 | 92.12 232 | 73.49 201 | 95.96 295 | 71.10 308 | 68.73 356 | 91.21 327 |
|
PMVS |  | 47.18 22 | 52.22 336 | 48.46 340 | 63.48 351 | 45.72 380 | 46.20 376 | 73.41 365 | 78.31 371 | 41.03 369 | 30.06 372 | 65.68 366 | 6.05 379 | 83.43 367 | 30.04 371 | 65.86 357 | 60.80 366 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
lessismore_v0 | | | | | 86.04 314 | 88.46 339 | 68.78 352 | | 80.59 368 | | 73.01 349 | 90.11 290 | 55.39 341 | 96.43 276 | 75.06 285 | 65.06 358 | 92.90 290 |
|
new-patchmatchnet | | | 76.41 324 | 75.17 326 | 80.13 340 | 82.65 366 | 59.61 366 | 87.66 331 | 91.08 314 | 78.23 293 | 69.85 355 | 83.22 351 | 54.76 344 | 91.63 357 | 64.14 345 | 64.89 359 | 89.16 348 |
|
pmmvs3 | | | 71.81 328 | 68.71 331 | 81.11 339 | 75.86 369 | 70.42 345 | 86.74 335 | 83.66 362 | 58.95 362 | 68.64 358 | 80.89 356 | 36.93 367 | 89.52 361 | 63.10 348 | 63.59 360 | 83.39 358 |
|
UnsupCasMVSNet_eth | | | 80.07 310 | 78.27 314 | 85.46 320 | 85.24 359 | 72.63 327 | 88.45 323 | 94.87 216 | 82.99 212 | 71.64 354 | 88.07 322 | 56.34 338 | 91.75 355 | 73.48 296 | 63.36 361 | 92.01 313 |
|
LCM-MVSNet | | | 66.00 330 | 62.16 334 | 77.51 345 | 64.51 375 | 58.29 367 | 83.87 352 | 90.90 321 | 48.17 366 | 54.69 364 | 73.31 362 | 16.83 378 | 86.75 364 | 65.47 338 | 61.67 362 | 87.48 357 |
|
UnsupCasMVSNet_bld | | | 76.23 325 | 73.27 328 | 85.09 325 | 83.79 362 | 72.92 321 | 85.65 343 | 93.47 260 | 71.52 345 | 68.84 357 | 79.08 358 | 49.77 356 | 93.21 343 | 66.81 336 | 60.52 363 | 89.13 350 |
|
KD-MVS_2432*1600 | | | 78.50 319 | 76.02 324 | 85.93 316 | 86.22 352 | 74.47 306 | 84.80 346 | 92.33 280 | 79.29 274 | 76.98 327 | 85.92 341 | 53.81 350 | 93.97 334 | 67.39 329 | 57.42 364 | 89.36 343 |
|
miper_refine_blended | | | 78.50 319 | 76.02 324 | 85.93 316 | 86.22 352 | 74.47 306 | 84.80 346 | 92.33 280 | 79.29 274 | 76.98 327 | 85.92 341 | 53.81 350 | 93.97 334 | 67.39 329 | 57.42 364 | 89.36 343 |
|
DeepMVS_CX |  | | | | 56.31 354 | 74.23 370 | 51.81 373 | | 56.67 379 | 44.85 367 | 48.54 367 | 75.16 359 | 27.87 371 | 58.74 375 | 40.92 368 | 52.22 366 | 58.39 368 |
|
PVSNet_0 | | 73.20 20 | 77.22 322 | 74.83 327 | 84.37 329 | 90.70 309 | 71.10 339 | 83.09 355 | 89.67 344 | 72.81 340 | 73.93 345 | 83.13 352 | 60.79 320 | 93.70 338 | 68.54 321 | 50.84 367 | 88.30 355 |
|
test_method | | | 50.52 337 | 48.47 339 | 56.66 353 | 52.26 379 | 18.98 382 | 41.51 371 | 81.40 367 | 10.10 373 | 44.59 368 | 75.01 360 | 28.51 370 | 68.16 371 | 53.54 362 | 49.31 368 | 82.83 360 |
|
PMMVS2 | | | 59.60 333 | 56.40 335 | 69.21 349 | 68.83 372 | 46.58 375 | 73.02 366 | 77.48 373 | 55.07 364 | 49.21 366 | 72.95 363 | 17.43 377 | 80.04 369 | 49.32 365 | 44.33 369 | 80.99 363 |
|
MVE |  | 39.65 23 | 43.39 338 | 38.59 344 | 57.77 352 | 56.52 377 | 48.77 374 | 55.38 368 | 58.64 378 | 29.33 372 | 28.96 373 | 52.65 369 | 4.68 380 | 64.62 374 | 28.11 372 | 33.07 370 | 59.93 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 43.23 339 | 42.29 341 | 46.03 355 | 65.58 374 | 37.41 377 | 73.51 364 | 64.62 375 | 33.99 370 | 28.47 374 | 47.87 371 | 19.90 376 | 67.91 372 | 22.23 373 | 24.45 371 | 32.77 370 |
|
ANet_high | | | 58.88 334 | 54.22 338 | 72.86 346 | 56.50 378 | 56.67 369 | 80.75 360 | 86.00 355 | 73.09 337 | 37.39 370 | 64.63 367 | 22.17 373 | 79.49 370 | 43.51 367 | 23.96 372 | 82.43 362 |
|
EMVS | | | 42.07 340 | 41.12 342 | 44.92 356 | 63.45 376 | 35.56 379 | 73.65 363 | 63.48 376 | 33.05 371 | 26.88 375 | 45.45 372 | 21.27 374 | 67.14 373 | 19.80 374 | 23.02 373 | 32.06 371 |
|
tmp_tt | | | 35.64 341 | 39.24 343 | 24.84 357 | 14.87 381 | 23.90 381 | 62.71 367 | 51.51 380 | 6.58 375 | 36.66 371 | 62.08 368 | 44.37 364 | 30.34 377 | 52.40 363 | 22.00 374 | 20.27 372 |
|
wuyk23d | | | 21.27 343 | 20.48 346 | 23.63 358 | 68.59 373 | 36.41 378 | 49.57 370 | 6.85 382 | 9.37 374 | 7.89 376 | 4.46 378 | 4.03 381 | 31.37 376 | 17.47 375 | 16.07 375 | 3.12 373 |
|
testmvs | | | 8.92 344 | 11.52 347 | 1.12 360 | 1.06 382 | 0.46 384 | 86.02 339 | 0.65 383 | 0.62 376 | 2.74 377 | 9.52 376 | 0.31 383 | 0.45 379 | 2.38 376 | 0.39 376 | 2.46 375 |
|
test123 | | | 8.76 345 | 11.22 348 | 1.39 359 | 0.85 383 | 0.97 383 | 85.76 342 | 0.35 384 | 0.54 377 | 2.45 378 | 8.14 377 | 0.60 382 | 0.48 378 | 2.16 377 | 0.17 377 | 2.71 374 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 22.14 342 | 29.52 345 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 95.76 156 | 0.00 379 | 0.00 380 | 94.29 155 | 75.66 171 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 6.64 347 | 8.86 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 79.70 124 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 7.82 346 | 10.43 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 93.88 174 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
FOURS1 | | | | | | 98.86 1 | 85.54 74 | 98.29 1 | 97.49 5 | 89.79 45 | 96.29 15 | | | | | | |
|
test_one_0601 | | | | | | 98.58 12 | 85.83 67 | | 97.44 14 | 91.05 17 | 96.78 13 | 98.06 6 | 91.45 11 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 98.77 5 | 85.99 58 | | 97.44 14 | 90.26 35 | 97.71 1 | 97.96 10 | 92.31 4 | 99.38 32 | | | |
|
save fliter | | | | | | 97.85 50 | 85.63 72 | 95.21 101 | 96.82 73 | 89.44 52 | | | | | | | |
|
test0726 | | | | | | 98.78 3 | 85.93 61 | 97.19 10 | 97.47 10 | 90.27 33 | 97.64 4 | 98.13 1 | 91.47 8 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 152 |
|
test_part2 | | | | | | 98.55 13 | 87.22 18 | | | | 96.40 14 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 220 | | | | 96.12 152 |
|
sam_mvs | | | | | | | | | | | | | 70.60 234 | | | | |
|
MTGPA |  | | | | | | | | 96.97 53 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 326 | | | | 9.81 375 | 69.31 255 | 95.53 310 | 76.65 269 | | |
|
test_post | | | | | | | | | | | | 10.29 374 | 70.57 238 | 95.91 298 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 349 | 71.53 222 | 96.48 271 | | | |
|
MTMP | | | | | | | | 96.16 49 | 60.64 377 | | | | | | | | |
|
gm-plane-assit | | | | | | 89.60 331 | 68.00 353 | | | 77.28 300 | | 88.99 306 | | 97.57 190 | 79.44 242 | | |
|
TEST9 | | | | | | 97.53 65 | 86.49 41 | 94.07 181 | 96.78 76 | 81.61 246 | 92.77 74 | 96.20 89 | 87.71 31 | 99.12 58 | | | |
|
test_8 | | | | | | 97.49 68 | 86.30 50 | 94.02 186 | 96.76 79 | 81.86 239 | 92.70 78 | 96.20 89 | 87.63 32 | 99.02 71 | | | |
|
agg_prior | | | | | | 97.38 71 | 85.92 63 | | 96.72 85 | | 92.16 89 | | | 98.97 83 | | | |
|
test_prior4 | | | | | | | 85.96 60 | 94.11 176 | | | | | | | | | |
|
test_prior | | | | | 93.82 67 | 97.29 76 | 84.49 90 | | 96.88 64 | | | | | 98.87 91 | | | 98.11 72 |
|
旧先验2 | | | | | | | | 93.36 212 | | 71.25 347 | 94.37 32 | | | 97.13 232 | 86.74 137 | | |
|
新几何2 | | | | | | | | 93.11 227 | | | | | | | | | |
|
无先验 | | | | | | | | 93.28 219 | 96.26 116 | 73.95 329 | | | | 99.05 63 | 80.56 227 | | 96.59 138 |
|
原ACMM2 | | | | | | | | 92.94 234 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 103 | 78.30 253 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 40 | | | | |
|
testdata1 | | | | | | | | 92.15 257 | | 87.94 97 | | | | | | | |
|
plane_prior7 | | | | | | 94.70 173 | 82.74 141 | | | | | | | | | | |
|
plane_prior6 | | | | | | 94.52 179 | 82.75 139 | | | | | | 74.23 187 | | | | |
|
plane_prior4 | | | | | | | | | | | | 94.86 133 | | | | | |
|
plane_prior3 | | | | | | | 82.75 139 | | | 90.26 35 | 86.91 173 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 68 | | 90.81 20 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 177 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 356 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 99 | | | | | | | | |
|
door | | | | | | | | | 85.33 357 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 169 | | | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 192 | | 94.39 157 | | 88.81 69 | 85.43 211 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 192 | | 94.39 157 | | 88.81 69 | 85.43 211 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 134 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 211 | | | 97.96 166 | | | 94.51 217 |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 197 | | | | |
|
NP-MVS | | | | | | 94.37 187 | 82.42 151 | | | | | 93.98 167 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 372 | 87.62 332 | | 73.32 334 | 84.59 229 | | 70.33 241 | | 74.65 288 | | 95.50 176 |
|
Test By Simon | | | | | | | | | | | | | 80.02 119 | | | | |
|