| SMA-MVS |  | | 95.20 8 | 95.07 11 | 95.59 6 | 98.14 35 | 88.48 8 | 96.26 47 | 97.28 31 | 85.90 151 | 97.67 3 | 98.10 7 | 88.41 20 | 99.56 12 | 94.66 24 | 99.19 1 | 98.71 19 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 10 | 98.36 25 | 87.28 17 | 95.56 93 | 97.51 5 | 89.13 63 | 97.14 9 | 97.91 18 | 91.64 7 | 99.62 2 | 94.61 25 | 99.17 2 | 98.86 11 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 32 | 98.77 5 | 85.99 51 | 97.13 14 | 97.44 15 | 90.31 28 | 97.71 1 | 98.07 9 | 92.31 4 | 99.58 10 | 95.66 15 | 99.13 3 | 98.84 14 |
|
| IU-MVS | | | | | | 98.77 5 | 86.00 49 | | 96.84 65 | 81.26 261 | 97.26 7 | | | | 95.50 21 | 99.13 3 | 99.03 8 |
|
| test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 11 | 98.05 13 | 92.09 6 | 99.55 16 | 95.64 17 | 99.13 3 | 99.13 2 |
|
| test_241102_TWO | | | | | | | | | 97.44 15 | 90.31 28 | 97.62 5 | 98.07 9 | 91.46 10 | 99.58 10 | 95.66 15 | 99.12 6 | 98.98 10 |
|
| DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 38 | 98.78 3 | 85.93 54 | 97.09 16 | 96.73 79 | 90.27 31 | 97.04 11 | 98.05 13 | 91.47 8 | 99.55 16 | 95.62 19 | 99.08 7 | 98.45 36 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 38 | 97.09 16 | 97.49 6 | | | | | 99.61 4 | 95.62 19 | 99.08 7 | 98.99 9 |
|
| MSC_two_6792asdad | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 63 | | | | | 99.61 4 | 96.03 12 | 99.06 9 | 99.07 5 |
|
| No_MVS | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 63 | | | | | 99.61 4 | 96.03 12 | 99.06 9 | 99.07 5 |
|
| APDe-MVS |  | | 95.46 5 | 95.64 5 | 94.91 21 | 98.26 28 | 86.29 45 | 97.46 6 | 97.40 20 | 89.03 67 | 96.20 17 | 98.10 7 | 89.39 16 | 99.34 34 | 95.88 14 | 99.03 11 | 99.10 4 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 30 | 97.78 51 | 86.00 49 | 98.29 1 | 97.49 6 | 90.75 19 | 97.62 5 | 98.06 11 | 92.59 2 | 99.61 4 | 95.64 17 | 99.02 12 | 98.86 11 |
|
| PC_three_1452 | | | | | | | | | | 82.47 228 | 97.09 10 | 97.07 49 | 92.72 1 | 98.04 157 | 92.70 53 | 99.02 12 | 98.86 11 |
|
| OPU-MVS | | | | | 96.21 3 | 98.00 42 | 90.85 3 | 97.13 14 | | | | 97.08 47 | 92.59 2 | 98.94 78 | 92.25 61 | 98.99 14 | 98.84 14 |
|
| ACMMP_NAP | | | 94.74 15 | 94.56 18 | 95.28 9 | 98.02 41 | 87.70 11 | 95.68 85 | 97.34 23 | 88.28 91 | 95.30 30 | 97.67 24 | 85.90 45 | 99.54 20 | 93.91 32 | 98.95 15 | 98.60 23 |
|
| HPM-MVS++ |  | | 95.14 10 | 94.91 13 | 95.83 4 | 98.25 29 | 89.65 4 | 95.92 73 | 96.96 52 | 91.75 9 | 94.02 44 | 96.83 59 | 88.12 24 | 99.55 16 | 93.41 40 | 98.94 16 | 98.28 50 |
|
| MP-MVS-pluss | | | 94.21 30 | 94.00 39 | 94.85 25 | 98.17 33 | 86.65 30 | 94.82 134 | 97.17 39 | 86.26 143 | 92.83 69 | 97.87 20 | 85.57 48 | 99.56 12 | 94.37 28 | 98.92 17 | 98.34 42 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 25 | 96.99 72 | 86.33 41 | 97.33 7 | 97.30 29 | 91.38 12 | 95.39 28 | 97.46 28 | 88.98 19 | 99.40 30 | 94.12 29 | 98.89 18 | 98.82 16 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SD-MVS | | | 94.96 12 | 95.33 8 | 93.88 57 | 97.25 69 | 86.69 27 | 96.19 50 | 97.11 43 | 90.42 27 | 96.95 13 | 97.27 36 | 89.53 14 | 96.91 246 | 94.38 27 | 98.85 19 | 98.03 70 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 8 | 98.11 36 | 88.51 7 | 95.29 103 | 96.96 52 | 92.09 6 | 95.32 29 | 97.08 47 | 89.49 15 | 99.33 37 | 95.10 22 | 98.85 19 | 98.66 20 |
|
| CP-MVS | | | 94.34 26 | 94.21 31 | 94.74 36 | 98.39 23 | 86.64 31 | 97.60 4 | 97.24 32 | 88.53 84 | 92.73 75 | 97.23 39 | 85.20 53 | 99.32 38 | 92.15 65 | 98.83 21 | 98.25 55 |
|
| ZNCC-MVS | | | 94.47 20 | 94.28 27 | 95.03 16 | 98.52 15 | 86.96 19 | 96.85 28 | 97.32 27 | 88.24 92 | 93.15 59 | 97.04 50 | 86.17 42 | 99.62 2 | 92.40 57 | 98.81 22 | 98.52 26 |
|
| MP-MVS |  | | 94.25 27 | 94.07 36 | 94.77 34 | 98.47 18 | 86.31 43 | 96.71 31 | 96.98 49 | 89.04 66 | 91.98 91 | 97.19 42 | 85.43 50 | 99.56 12 | 92.06 71 | 98.79 23 | 98.44 37 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| PHI-MVS | | | 93.89 40 | 93.65 51 | 94.62 40 | 96.84 75 | 86.43 38 | 96.69 32 | 97.49 6 | 85.15 171 | 93.56 53 | 96.28 82 | 85.60 47 | 99.31 39 | 92.45 54 | 98.79 23 | 98.12 64 |
|
| SF-MVS | | | 94.97 11 | 94.90 14 | 95.20 12 | 97.84 47 | 87.76 10 | 96.65 35 | 97.48 10 | 87.76 111 | 95.71 25 | 97.70 23 | 88.28 23 | 99.35 33 | 93.89 33 | 98.78 25 | 98.48 30 |
|
| ACMMPR | | | 94.43 23 | 94.28 27 | 94.91 21 | 98.63 9 | 86.69 27 | 96.94 20 | 97.32 27 | 88.63 80 | 93.53 54 | 97.26 38 | 85.04 56 | 99.54 20 | 92.35 59 | 98.78 25 | 98.50 27 |
|
| HFP-MVS | | | 94.52 19 | 94.40 21 | 94.86 24 | 98.61 10 | 86.81 24 | 96.94 20 | 97.34 23 | 88.63 80 | 93.65 49 | 97.21 40 | 86.10 43 | 99.49 26 | 92.35 59 | 98.77 27 | 98.30 47 |
|
| MM | | | | | 95.68 5 | | 88.34 9 | 96.68 33 | 94.37 232 | 95.08 1 | 94.68 34 | 97.72 22 | 82.94 81 | 99.64 1 | 97.85 1 | 98.76 28 | 99.06 7 |
|
| MVS_0304 | | | 94.60 17 | 94.38 22 | 95.23 11 | 95.41 129 | 87.49 15 | 96.53 38 | 92.75 275 | 93.82 2 | 93.07 63 | 97.84 21 | 83.66 72 | 99.59 8 | 97.61 2 | 98.76 28 | 98.61 22 |
|
| MTAPA | | | 94.42 25 | 94.22 30 | 95.00 18 | 98.42 21 | 86.95 20 | 94.36 168 | 96.97 50 | 91.07 13 | 93.14 60 | 97.56 25 | 84.30 65 | 99.56 12 | 93.43 38 | 98.75 30 | 98.47 33 |
|
| region2R | | | 94.43 23 | 94.27 29 | 94.92 20 | 98.65 8 | 86.67 29 | 96.92 24 | 97.23 34 | 88.60 82 | 93.58 51 | 97.27 36 | 85.22 52 | 99.54 20 | 92.21 62 | 98.74 31 | 98.56 25 |
|
| test9_res | | | | | | | | | | | | | | | 91.91 76 | 98.71 32 | 98.07 66 |
|
| DeepPCF-MVS | | 89.96 1 | 94.20 32 | 94.77 16 | 92.49 112 | 96.52 87 | 80.00 217 | 94.00 192 | 97.08 44 | 90.05 35 | 95.65 27 | 97.29 35 | 89.66 13 | 98.97 75 | 93.95 31 | 98.71 32 | 98.50 27 |
|
| 9.14 | | | | 94.47 19 | | 97.79 49 | | 96.08 61 | 97.44 15 | 86.13 149 | 95.10 31 | 97.40 31 | 88.34 22 | 99.22 44 | 93.25 42 | 98.70 34 | |
|
| train_agg | | | 93.44 52 | 93.08 59 | 94.52 43 | 97.53 58 | 86.49 36 | 94.07 184 | 96.78 72 | 81.86 245 | 92.77 72 | 96.20 85 | 87.63 29 | 99.12 51 | 92.14 66 | 98.69 35 | 97.94 74 |
|
| DeepC-MVS_fast | | 89.43 2 | 94.04 35 | 93.79 43 | 94.80 32 | 97.48 61 | 86.78 25 | 95.65 89 | 96.89 60 | 89.40 53 | 92.81 70 | 96.97 52 | 85.37 51 | 99.24 43 | 90.87 95 | 98.69 35 | 98.38 41 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TSAR-MVS + MP. | | | 94.85 13 | 94.94 12 | 94.58 41 | 98.25 29 | 86.33 41 | 96.11 60 | 96.62 88 | 88.14 98 | 96.10 18 | 96.96 53 | 89.09 18 | 98.94 78 | 94.48 26 | 98.68 37 | 98.48 30 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| agg_prior2 | | | | | | | | | | | | | | | 90.54 100 | 98.68 37 | 98.27 52 |
|
| test_prior2 | | | | | | | | 94.12 178 | | 87.67 114 | 92.63 77 | 96.39 80 | 86.62 36 | | 91.50 83 | 98.67 39 | |
|
| MSLP-MVS++ | | | 93.72 45 | 94.08 35 | 92.65 104 | 97.31 65 | 83.43 112 | 95.79 79 | 97.33 25 | 90.03 36 | 93.58 51 | 96.96 53 | 84.87 60 | 97.76 172 | 92.19 64 | 98.66 40 | 96.76 129 |
|
| CDPH-MVS | | | 92.83 66 | 92.30 72 | 94.44 44 | 97.79 49 | 86.11 48 | 94.06 186 | 96.66 85 | 80.09 274 | 92.77 72 | 96.63 71 | 86.62 36 | 99.04 57 | 87.40 134 | 98.66 40 | 98.17 60 |
|
| HPM-MVS |  | | 94.02 36 | 93.88 41 | 94.43 46 | 98.39 23 | 85.78 61 | 97.25 10 | 97.07 45 | 86.90 131 | 92.62 78 | 96.80 63 | 84.85 61 | 99.17 47 | 92.43 55 | 98.65 42 | 98.33 43 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| mPP-MVS | | | 93.99 38 | 93.78 44 | 94.63 39 | 98.50 16 | 85.90 58 | 96.87 26 | 96.91 58 | 88.70 78 | 91.83 100 | 97.17 44 | 83.96 69 | 99.55 16 | 91.44 84 | 98.64 43 | 98.43 38 |
|
| CS-MVS-test | | | 94.02 36 | 94.29 26 | 93.24 71 | 96.69 78 | 83.24 117 | 97.49 5 | 96.92 57 | 92.14 5 | 92.90 65 | 95.77 106 | 85.02 57 | 98.33 129 | 93.03 45 | 98.62 44 | 98.13 62 |
|
| MCST-MVS | | | 94.45 21 | 94.20 32 | 95.19 13 | 98.46 19 | 87.50 14 | 95.00 123 | 97.12 41 | 87.13 123 | 92.51 81 | 96.30 81 | 89.24 17 | 99.34 34 | 93.46 37 | 98.62 44 | 98.73 17 |
|
| APD-MVS |  | | 94.24 28 | 94.07 36 | 94.75 35 | 98.06 39 | 86.90 22 | 95.88 74 | 96.94 55 | 85.68 157 | 95.05 32 | 97.18 43 | 87.31 33 | 99.07 53 | 91.90 78 | 98.61 46 | 98.28 50 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PGM-MVS | | | 93.96 39 | 93.72 47 | 94.68 37 | 98.43 20 | 86.22 46 | 95.30 101 | 97.78 1 | 87.45 118 | 93.26 56 | 97.33 34 | 84.62 63 | 99.51 24 | 90.75 97 | 98.57 47 | 98.32 46 |
|
| XVS | | | 94.45 21 | 94.32 23 | 94.85 25 | 98.54 13 | 86.60 33 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 67 | 97.16 45 | 85.02 57 | 99.49 26 | 91.99 72 | 98.56 48 | 98.47 33 |
|
| X-MVStestdata | | | 88.31 171 | 86.13 217 | 94.85 25 | 98.54 13 | 86.60 33 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 67 | 23.41 394 | 85.02 57 | 99.49 26 | 91.99 72 | 98.56 48 | 98.47 33 |
|
| DELS-MVS | | | 93.43 55 | 93.25 56 | 93.97 54 | 95.42 128 | 85.04 69 | 93.06 235 | 97.13 40 | 90.74 21 | 91.84 98 | 95.09 131 | 86.32 40 | 99.21 45 | 91.22 86 | 98.45 50 | 97.65 89 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| ZD-MVS | | | | | | 98.15 34 | 86.62 32 | | 97.07 45 | 83.63 201 | 94.19 40 | 96.91 55 | 87.57 31 | 99.26 42 | 91.99 72 | 98.44 51 | |
|
| GST-MVS | | | 94.21 30 | 93.97 40 | 94.90 23 | 98.41 22 | 86.82 23 | 96.54 37 | 97.19 35 | 88.24 92 | 93.26 56 | 96.83 59 | 85.48 49 | 99.59 8 | 91.43 85 | 98.40 52 | 98.30 47 |
|
| HPM-MVS_fast | | | 93.40 56 | 93.22 57 | 93.94 56 | 98.36 25 | 84.83 72 | 97.15 13 | 96.80 71 | 85.77 154 | 92.47 82 | 97.13 46 | 82.38 88 | 99.07 53 | 90.51 102 | 98.40 52 | 97.92 77 |
|
| NCCC | | | 94.81 14 | 94.69 17 | 95.17 14 | 97.83 48 | 87.46 16 | 95.66 87 | 96.93 56 | 92.34 4 | 93.94 45 | 96.58 74 | 87.74 27 | 99.44 29 | 92.83 48 | 98.40 52 | 98.62 21 |
|
| DeepC-MVS | | 88.79 3 | 93.31 57 | 92.99 62 | 94.26 51 | 96.07 102 | 85.83 59 | 94.89 129 | 96.99 48 | 89.02 69 | 89.56 130 | 97.37 33 | 82.51 87 | 99.38 31 | 92.20 63 | 98.30 55 | 97.57 94 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CSCG | | | 93.23 60 | 93.05 60 | 93.76 63 | 98.04 40 | 84.07 94 | 96.22 49 | 97.37 21 | 84.15 189 | 90.05 126 | 95.66 110 | 87.77 26 | 99.15 50 | 89.91 105 | 98.27 56 | 98.07 66 |
|
| 原ACMM1 | | | | | 92.01 128 | 97.34 64 | 81.05 183 | | 96.81 70 | 78.89 288 | 90.45 118 | 95.92 98 | 82.65 85 | 98.84 88 | 80.68 235 | 98.26 57 | 96.14 149 |
|
| CS-MVS | | | 94.12 34 | 94.44 20 | 93.17 74 | 96.55 84 | 83.08 127 | 97.63 3 | 96.95 54 | 91.71 11 | 93.50 55 | 96.21 84 | 85.61 46 | 98.24 134 | 93.64 35 | 98.17 58 | 98.19 58 |
|
| MVS_111021_HR | | | 93.45 51 | 93.31 54 | 93.84 59 | 96.99 72 | 84.84 71 | 93.24 228 | 97.24 32 | 88.76 75 | 91.60 105 | 95.85 101 | 86.07 44 | 98.66 96 | 91.91 76 | 98.16 59 | 98.03 70 |
|
| EC-MVSNet | | | 93.44 52 | 93.71 48 | 92.63 105 | 95.21 136 | 82.43 148 | 97.27 9 | 96.71 82 | 90.57 26 | 92.88 66 | 95.80 104 | 83.16 77 | 98.16 140 | 93.68 34 | 98.14 60 | 97.31 101 |
|
| test12 | | | | | 94.34 49 | 97.13 70 | 86.15 47 | | 96.29 104 | | 91.04 113 | | 85.08 55 | 99.01 63 | | 98.13 61 | 97.86 80 |
|
| 新几何1 | | | | | 93.10 77 | 97.30 66 | 84.35 90 | | 95.56 166 | 71.09 364 | 91.26 111 | 96.24 83 | 82.87 83 | 98.86 84 | 79.19 256 | 98.10 62 | 96.07 155 |
|
| patch_mono-2 | | | 93.74 44 | 94.32 23 | 92.01 128 | 97.54 57 | 78.37 255 | 93.40 216 | 97.19 35 | 88.02 101 | 94.99 33 | 97.21 40 | 88.35 21 | 98.44 119 | 94.07 30 | 98.09 63 | 99.23 1 |
|
| dcpmvs_2 | | | 93.49 49 | 94.19 33 | 91.38 163 | 97.69 54 | 76.78 287 | 94.25 171 | 96.29 104 | 88.33 88 | 94.46 36 | 96.88 56 | 88.07 25 | 98.64 98 | 93.62 36 | 98.09 63 | 98.73 17 |
|
| test_fmvsm_n_1920 | | | 94.71 16 | 95.11 10 | 93.50 67 | 95.79 114 | 84.62 76 | 96.15 55 | 97.64 2 | 89.85 40 | 97.19 8 | 97.89 19 | 86.28 41 | 98.71 95 | 97.11 6 | 98.08 65 | 97.17 108 |
|
| MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 19 | 98.49 17 | 86.52 35 | 96.91 25 | 97.47 11 | 91.73 10 | 96.10 18 | 96.69 64 | 89.90 12 | 99.30 40 | 94.70 23 | 98.04 66 | 99.13 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SR-MVS | | | 94.23 29 | 94.17 34 | 94.43 46 | 98.21 32 | 85.78 61 | 96.40 41 | 96.90 59 | 88.20 96 | 94.33 38 | 97.40 31 | 84.75 62 | 99.03 58 | 93.35 41 | 97.99 67 | 98.48 30 |
|
| 3Dnovator | | 86.66 5 | 91.73 82 | 90.82 93 | 94.44 44 | 94.59 168 | 86.37 40 | 97.18 12 | 97.02 47 | 89.20 60 | 84.31 252 | 96.66 67 | 73.74 197 | 99.17 47 | 86.74 144 | 97.96 68 | 97.79 85 |
|
| CANet | | | 93.54 48 | 93.20 58 | 94.55 42 | 95.65 120 | 85.73 63 | 94.94 126 | 96.69 84 | 91.89 8 | 90.69 116 | 95.88 100 | 81.99 100 | 99.54 20 | 93.14 44 | 97.95 69 | 98.39 39 |
|
| DPM-MVS | | | 92.58 70 | 91.74 78 | 95.08 15 | 96.19 95 | 89.31 5 | 92.66 246 | 96.56 93 | 83.44 207 | 91.68 104 | 95.04 132 | 86.60 38 | 98.99 70 | 85.60 158 | 97.92 70 | 96.93 122 |
|
| APD-MVS_3200maxsize | | | 93.78 42 | 93.77 45 | 93.80 62 | 97.92 43 | 84.19 92 | 96.30 43 | 96.87 62 | 86.96 127 | 93.92 46 | 97.47 27 | 83.88 70 | 98.96 77 | 92.71 52 | 97.87 71 | 98.26 54 |
|
| CPTT-MVS | | | 91.99 76 | 91.80 77 | 92.55 109 | 98.24 31 | 81.98 158 | 96.76 30 | 96.49 95 | 81.89 244 | 90.24 121 | 96.44 79 | 78.59 134 | 98.61 102 | 89.68 106 | 97.85 72 | 97.06 113 |
|
| test_fmvsmconf_n | | | 94.60 17 | 94.81 15 | 93.98 53 | 94.62 167 | 84.96 70 | 96.15 55 | 97.35 22 | 89.37 54 | 96.03 21 | 98.11 5 | 86.36 39 | 99.01 63 | 97.45 3 | 97.83 73 | 97.96 73 |
|
| SR-MVS-dyc-post | | | 93.82 41 | 93.82 42 | 93.82 60 | 97.92 43 | 84.57 78 | 96.28 45 | 96.76 75 | 87.46 116 | 93.75 47 | 97.43 29 | 84.24 66 | 99.01 63 | 92.73 49 | 97.80 74 | 97.88 78 |
|
| RE-MVS-def | | | | 93.68 49 | | 97.92 43 | 84.57 78 | 96.28 45 | 96.76 75 | 87.46 116 | 93.75 47 | 97.43 29 | 82.94 81 | | 92.73 49 | 97.80 74 | 97.88 78 |
|
| test222 | | | | | | 96.55 84 | 81.70 164 | 92.22 262 | 95.01 199 | 68.36 370 | 90.20 122 | 96.14 90 | 80.26 112 | | | 97.80 74 | 96.05 157 |
|
| test_fmvsmconf0.1_n | | | 94.20 32 | 94.31 25 | 93.88 57 | 92.46 245 | 84.80 73 | 96.18 52 | 96.82 68 | 89.29 57 | 95.68 26 | 98.11 5 | 85.10 54 | 98.99 70 | 97.38 4 | 97.75 77 | 97.86 80 |
|
| 3Dnovator+ | | 87.14 4 | 92.42 73 | 91.37 81 | 95.55 7 | 95.63 121 | 88.73 6 | 97.07 18 | 96.77 74 | 90.84 16 | 84.02 256 | 96.62 72 | 75.95 161 | 99.34 34 | 87.77 128 | 97.68 78 | 98.59 24 |
|
| 旧先验1 | | | | | | 96.79 76 | 81.81 162 | | 95.67 158 | | | 96.81 61 | 86.69 35 | | | 97.66 79 | 96.97 120 |
|
| EPNet | | | 91.79 79 | 91.02 89 | 94.10 52 | 90.10 326 | 85.25 68 | 96.03 66 | 92.05 295 | 92.83 3 | 87.39 169 | 95.78 105 | 79.39 124 | 99.01 63 | 88.13 124 | 97.48 80 | 98.05 68 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_fmvsmvis_n_1920 | | | 93.44 52 | 93.55 52 | 93.10 77 | 93.67 211 | 84.26 91 | 95.83 77 | 96.14 118 | 89.00 70 | 92.43 83 | 97.50 26 | 83.37 76 | 98.72 94 | 96.61 10 | 97.44 81 | 96.32 142 |
|
| testdata | | | | | 90.49 200 | 96.40 89 | 77.89 267 | | 95.37 184 | 72.51 356 | 93.63 50 | 96.69 64 | 82.08 97 | 97.65 180 | 83.08 188 | 97.39 82 | 95.94 159 |
|
| MVS_111021_LR | | | 92.47 72 | 92.29 73 | 92.98 85 | 95.99 108 | 84.43 87 | 93.08 233 | 96.09 124 | 88.20 96 | 91.12 112 | 95.72 109 | 81.33 105 | 97.76 172 | 91.74 79 | 97.37 83 | 96.75 130 |
|
| test_fmvsmconf0.01_n | | | 93.19 61 | 93.02 61 | 93.71 64 | 89.25 338 | 84.42 89 | 96.06 64 | 96.29 104 | 89.06 64 | 94.68 34 | 98.13 3 | 79.22 126 | 98.98 74 | 97.22 5 | 97.24 84 | 97.74 87 |
|
| MVSFormer | | | 91.68 84 | 91.30 82 | 92.80 95 | 93.86 201 | 83.88 99 | 95.96 71 | 95.90 140 | 84.66 183 | 91.76 101 | 94.91 135 | 77.92 142 | 97.30 216 | 89.64 107 | 97.11 85 | 97.24 104 |
|
| lupinMVS | | | 90.92 95 | 90.21 99 | 93.03 82 | 93.86 201 | 83.88 99 | 92.81 243 | 93.86 252 | 79.84 276 | 91.76 101 | 94.29 162 | 77.92 142 | 98.04 157 | 90.48 103 | 97.11 85 | 97.17 108 |
|
| EIA-MVS | | | 91.95 77 | 91.94 75 | 91.98 132 | 95.16 138 | 80.01 216 | 95.36 96 | 96.73 79 | 88.44 85 | 89.34 134 | 92.16 237 | 83.82 71 | 98.45 117 | 89.35 109 | 97.06 87 | 97.48 97 |
|
| MG-MVS | | | 91.77 80 | 91.70 79 | 92.00 131 | 97.08 71 | 80.03 215 | 93.60 210 | 95.18 192 | 87.85 109 | 90.89 114 | 96.47 78 | 82.06 98 | 98.36 124 | 85.07 162 | 97.04 88 | 97.62 90 |
|
| test2506 | | | 87.21 216 | 86.28 213 | 90.02 225 | 95.62 122 | 73.64 318 | 96.25 48 | 71.38 394 | 87.89 107 | 90.45 118 | 96.65 68 | 55.29 352 | 98.09 152 | 86.03 153 | 96.94 89 | 98.33 43 |
|
| ECVR-MVS |  | | 89.09 147 | 88.53 144 | 90.77 191 | 95.62 122 | 75.89 299 | 96.16 53 | 84.22 372 | 87.89 107 | 90.20 122 | 96.65 68 | 63.19 311 | 98.10 144 | 85.90 154 | 96.94 89 | 98.33 43 |
|
| test1111 | | | 89.10 145 | 88.64 140 | 90.48 202 | 95.53 126 | 74.97 306 | 96.08 61 | 84.89 370 | 88.13 99 | 90.16 124 | 96.65 68 | 63.29 309 | 98.10 144 | 86.14 149 | 96.90 91 | 98.39 39 |
|
| jason | | | 90.80 96 | 90.10 103 | 92.90 90 | 93.04 229 | 83.53 110 | 93.08 233 | 94.15 241 | 80.22 271 | 91.41 108 | 94.91 135 | 76.87 149 | 97.93 166 | 90.28 104 | 96.90 91 | 97.24 104 |
| jason: jason. |
| Vis-MVSNet |  | | 91.75 81 | 91.23 84 | 93.29 69 | 95.32 131 | 83.78 101 | 96.14 57 | 95.98 132 | 89.89 38 | 90.45 118 | 96.58 74 | 75.09 173 | 98.31 132 | 84.75 168 | 96.90 91 | 97.78 86 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| 114514_t | | | 89.51 131 | 88.50 146 | 92.54 110 | 98.11 36 | 81.99 157 | 95.16 114 | 96.36 101 | 70.19 367 | 85.81 200 | 95.25 122 | 76.70 153 | 98.63 100 | 82.07 208 | 96.86 94 | 97.00 118 |
|
| Vis-MVSNet (Re-imp) | | | 89.59 129 | 89.44 118 | 90.03 223 | 95.74 116 | 75.85 300 | 95.61 91 | 90.80 330 | 87.66 115 | 87.83 158 | 95.40 118 | 76.79 151 | 96.46 273 | 78.37 260 | 96.73 95 | 97.80 84 |
|
| API-MVS | | | 90.66 102 | 90.07 104 | 92.45 114 | 96.36 91 | 84.57 78 | 96.06 64 | 95.22 191 | 82.39 229 | 89.13 136 | 94.27 165 | 80.32 110 | 98.46 113 | 80.16 243 | 96.71 96 | 94.33 228 |
|
| MAR-MVS | | | 90.30 108 | 89.37 121 | 93.07 81 | 96.61 81 | 84.48 83 | 95.68 85 | 95.67 158 | 82.36 231 | 87.85 157 | 92.85 214 | 76.63 155 | 98.80 90 | 80.01 244 | 96.68 97 | 95.91 160 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| OpenMVS |  | 83.78 11 | 88.74 160 | 87.29 177 | 93.08 79 | 92.70 240 | 85.39 66 | 96.57 36 | 96.43 97 | 78.74 293 | 80.85 301 | 96.07 92 | 69.64 247 | 99.01 63 | 78.01 267 | 96.65 98 | 94.83 202 |
|
| ETV-MVS | | | 92.74 68 | 92.66 67 | 92.97 86 | 95.20 137 | 84.04 96 | 95.07 119 | 96.51 94 | 90.73 22 | 92.96 64 | 91.19 271 | 84.06 67 | 98.34 127 | 91.72 80 | 96.54 99 | 96.54 138 |
|
| QAPM | | | 89.51 131 | 88.15 157 | 93.59 66 | 94.92 151 | 84.58 77 | 96.82 29 | 96.70 83 | 78.43 298 | 83.41 271 | 96.19 88 | 73.18 204 | 99.30 40 | 77.11 276 | 96.54 99 | 96.89 125 |
|
| IS-MVSNet | | | 91.43 86 | 91.09 88 | 92.46 113 | 95.87 113 | 81.38 175 | 96.95 19 | 93.69 258 | 89.72 47 | 89.50 132 | 95.98 96 | 78.57 135 | 97.77 171 | 83.02 190 | 96.50 101 | 98.22 57 |
|
| DP-MVS Recon | | | 91.95 77 | 91.28 83 | 93.96 55 | 98.33 27 | 85.92 56 | 94.66 145 | 96.66 85 | 82.69 226 | 90.03 127 | 95.82 103 | 82.30 91 | 99.03 58 | 84.57 170 | 96.48 102 | 96.91 124 |
|
| CANet_DTU | | | 90.26 110 | 89.41 120 | 92.81 94 | 93.46 217 | 83.01 130 | 93.48 213 | 94.47 227 | 89.43 52 | 87.76 161 | 94.23 166 | 70.54 237 | 99.03 58 | 84.97 163 | 96.39 103 | 96.38 141 |
|
| UGNet | | | 89.95 119 | 88.95 131 | 92.95 88 | 94.51 174 | 83.31 116 | 95.70 84 | 95.23 189 | 89.37 54 | 87.58 163 | 93.94 178 | 64.00 302 | 98.78 91 | 83.92 179 | 96.31 104 | 96.74 131 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| fmvsm_s_conf0.5_n | | | 93.76 43 | 94.06 38 | 92.86 92 | 95.62 122 | 83.17 120 | 96.14 57 | 96.12 121 | 88.13 99 | 95.82 24 | 98.04 16 | 83.43 73 | 98.48 109 | 96.97 7 | 96.23 105 | 96.92 123 |
|
| fmvsm_s_conf0.1_n | | | 93.46 50 | 93.66 50 | 92.85 93 | 93.75 207 | 83.13 122 | 96.02 67 | 95.74 152 | 87.68 113 | 95.89 23 | 98.17 2 | 82.78 84 | 98.46 113 | 96.71 8 | 96.17 106 | 96.98 119 |
|
| TSAR-MVS + GP. | | | 93.66 46 | 93.41 53 | 94.41 48 | 96.59 82 | 86.78 25 | 94.40 161 | 93.93 248 | 89.77 45 | 94.21 39 | 95.59 113 | 87.35 32 | 98.61 102 | 92.72 51 | 96.15 107 | 97.83 83 |
|
| PVSNet_Blended | | | 90.73 99 | 90.32 98 | 91.98 132 | 96.12 97 | 81.25 177 | 92.55 250 | 96.83 66 | 82.04 238 | 89.10 137 | 92.56 225 | 81.04 107 | 98.85 86 | 86.72 146 | 95.91 108 | 95.84 164 |
|
| PS-MVSNAJ | | | 91.18 92 | 90.92 90 | 91.96 134 | 95.26 134 | 82.60 147 | 92.09 267 | 95.70 156 | 86.27 142 | 91.84 98 | 92.46 227 | 79.70 119 | 98.99 70 | 89.08 113 | 95.86 109 | 94.29 231 |
|
| ACMMP |  | | 93.24 59 | 92.88 64 | 94.30 50 | 98.09 38 | 85.33 67 | 96.86 27 | 97.45 14 | 88.33 88 | 90.15 125 | 97.03 51 | 81.44 103 | 99.51 24 | 90.85 96 | 95.74 110 | 98.04 69 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| casdiffmvs_mvg |  | | 92.96 65 | 92.83 65 | 93.35 68 | 94.59 168 | 83.40 114 | 95.00 123 | 96.34 102 | 90.30 30 | 92.05 89 | 96.05 93 | 83.43 73 | 98.15 141 | 92.07 68 | 95.67 111 | 98.49 29 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LCM-MVSNet-Re | | | 88.30 172 | 88.32 153 | 88.27 274 | 94.71 162 | 72.41 335 | 93.15 229 | 90.98 325 | 87.77 110 | 79.25 323 | 91.96 249 | 78.35 138 | 95.75 305 | 83.04 189 | 95.62 112 | 96.65 133 |
|
| CHOSEN 1792x2688 | | | 88.84 156 | 87.69 167 | 92.30 122 | 96.14 96 | 81.42 174 | 90.01 308 | 95.86 144 | 74.52 337 | 87.41 166 | 93.94 178 | 75.46 170 | 98.36 124 | 80.36 239 | 95.53 113 | 97.12 112 |
|
| fmvsm_s_conf0.5_n_a | | | 93.57 47 | 93.76 46 | 93.00 84 | 95.02 143 | 83.67 104 | 96.19 50 | 96.10 123 | 87.27 121 | 95.98 22 | 98.05 13 | 83.07 80 | 98.45 117 | 96.68 9 | 95.51 114 | 96.88 126 |
|
| AdaColmap |  | | 89.89 122 | 89.07 128 | 92.37 118 | 97.41 62 | 83.03 128 | 94.42 160 | 95.92 137 | 82.81 223 | 86.34 193 | 94.65 150 | 73.89 193 | 99.02 61 | 80.69 234 | 95.51 114 | 95.05 190 |
|
| MVS | | | 87.44 203 | 86.10 220 | 91.44 161 | 92.61 242 | 83.62 107 | 92.63 247 | 95.66 160 | 67.26 371 | 81.47 293 | 92.15 238 | 77.95 141 | 98.22 137 | 79.71 247 | 95.48 116 | 92.47 307 |
|
| UA-Net | | | 92.83 66 | 92.54 69 | 93.68 65 | 96.10 100 | 84.71 75 | 95.66 87 | 96.39 99 | 91.92 7 | 93.22 58 | 96.49 77 | 83.16 77 | 98.87 82 | 84.47 172 | 95.47 117 | 97.45 99 |
|
| xiu_mvs_v2_base | | | 91.13 93 | 90.89 92 | 91.86 142 | 94.97 147 | 82.42 149 | 92.24 261 | 95.64 163 | 86.11 150 | 91.74 103 | 93.14 207 | 79.67 122 | 98.89 81 | 89.06 114 | 95.46 118 | 94.28 232 |
|
| casdiffmvs |  | | 92.51 71 | 92.43 71 | 92.74 99 | 94.41 180 | 81.98 158 | 94.54 151 | 96.23 112 | 89.57 49 | 91.96 93 | 96.17 89 | 82.58 86 | 98.01 159 | 90.95 93 | 95.45 119 | 98.23 56 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n_a | | | 93.19 61 | 93.26 55 | 92.97 86 | 92.49 243 | 83.62 107 | 96.02 67 | 95.72 155 | 86.78 133 | 96.04 20 | 98.19 1 | 82.30 91 | 98.43 121 | 96.38 11 | 95.42 120 | 96.86 127 |
|
| PVSNet_Blended_VisFu | | | 91.38 87 | 90.91 91 | 92.80 95 | 96.39 90 | 83.17 120 | 94.87 131 | 96.66 85 | 83.29 211 | 89.27 135 | 94.46 156 | 80.29 111 | 99.17 47 | 87.57 132 | 95.37 121 | 96.05 157 |
|
| PAPM_NR | | | 91.22 91 | 90.78 94 | 92.52 111 | 97.60 56 | 81.46 172 | 94.37 167 | 96.24 111 | 86.39 141 | 87.41 166 | 94.80 143 | 82.06 98 | 98.48 109 | 82.80 196 | 95.37 121 | 97.61 91 |
|
| CHOSEN 280x420 | | | 85.15 265 | 83.99 268 | 88.65 266 | 92.47 244 | 78.40 254 | 79.68 382 | 92.76 274 | 74.90 334 | 81.41 295 | 89.59 309 | 69.85 245 | 95.51 312 | 79.92 246 | 95.29 123 | 92.03 319 |
|
| TAPA-MVS | | 84.62 6 | 88.16 175 | 87.01 185 | 91.62 152 | 96.64 80 | 80.65 194 | 94.39 163 | 96.21 116 | 76.38 317 | 86.19 196 | 95.44 115 | 79.75 117 | 98.08 154 | 62.75 361 | 95.29 123 | 96.13 150 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| baseline | | | 92.39 74 | 92.29 73 | 92.69 103 | 94.46 177 | 81.77 163 | 94.14 177 | 96.27 107 | 89.22 59 | 91.88 96 | 96.00 94 | 82.35 89 | 97.99 161 | 91.05 88 | 95.27 125 | 98.30 47 |
|
| LS3D | | | 87.89 181 | 86.32 211 | 92.59 107 | 96.07 102 | 82.92 134 | 95.23 107 | 94.92 207 | 75.66 324 | 82.89 278 | 95.98 96 | 72.48 213 | 99.21 45 | 68.43 335 | 95.23 126 | 95.64 173 |
|
| test_vis1_n_1920 | | | 89.39 140 | 89.84 111 | 88.04 281 | 92.97 233 | 72.64 330 | 94.71 142 | 96.03 131 | 86.18 146 | 91.94 95 | 96.56 76 | 61.63 318 | 95.74 306 | 93.42 39 | 95.11 127 | 95.74 169 |
|
| MVS_Test | | | 91.31 89 | 91.11 86 | 91.93 136 | 94.37 181 | 80.14 208 | 93.46 215 | 95.80 147 | 86.46 139 | 91.35 110 | 93.77 188 | 82.21 94 | 98.09 152 | 87.57 132 | 94.95 128 | 97.55 96 |
|
| test_cas_vis1_n_1920 | | | 88.83 159 | 88.85 137 | 88.78 260 | 91.15 293 | 76.72 288 | 93.85 200 | 94.93 206 | 83.23 214 | 92.81 70 | 96.00 94 | 61.17 326 | 94.45 326 | 91.67 81 | 94.84 129 | 95.17 187 |
|
| PAPR | | | 90.02 115 | 89.27 126 | 92.29 123 | 95.78 115 | 80.95 187 | 92.68 245 | 96.22 113 | 81.91 242 | 86.66 186 | 93.75 190 | 82.23 93 | 98.44 119 | 79.40 255 | 94.79 130 | 97.48 97 |
|
| test_fmvs1 | | | 87.34 207 | 87.56 170 | 86.68 314 | 90.59 316 | 71.80 339 | 94.01 190 | 94.04 246 | 78.30 300 | 91.97 92 | 95.22 123 | 56.28 347 | 93.71 340 | 92.89 47 | 94.71 131 | 94.52 215 |
|
| xiu_mvs_v1_base_debu | | | 90.64 103 | 90.05 105 | 92.40 115 | 93.97 198 | 84.46 84 | 93.32 219 | 95.46 173 | 85.17 168 | 92.25 84 | 94.03 170 | 70.59 233 | 98.57 105 | 90.97 90 | 94.67 132 | 94.18 233 |
|
| xiu_mvs_v1_base | | | 90.64 103 | 90.05 105 | 92.40 115 | 93.97 198 | 84.46 84 | 93.32 219 | 95.46 173 | 85.17 168 | 92.25 84 | 94.03 170 | 70.59 233 | 98.57 105 | 90.97 90 | 94.67 132 | 94.18 233 |
|
| xiu_mvs_v1_base_debi | | | 90.64 103 | 90.05 105 | 92.40 115 | 93.97 198 | 84.46 84 | 93.32 219 | 95.46 173 | 85.17 168 | 92.25 84 | 94.03 170 | 70.59 233 | 98.57 105 | 90.97 90 | 94.67 132 | 94.18 233 |
|
| gg-mvs-nofinetune | | | 81.77 297 | 79.37 312 | 88.99 258 | 90.85 308 | 77.73 275 | 86.29 354 | 79.63 383 | 74.88 335 | 83.19 276 | 69.05 384 | 60.34 330 | 96.11 289 | 75.46 290 | 94.64 135 | 93.11 288 |
|
| BH-RMVSNet | | | 88.37 169 | 87.48 172 | 91.02 181 | 95.28 132 | 79.45 230 | 92.89 240 | 93.07 267 | 85.45 164 | 86.91 178 | 94.84 142 | 70.35 238 | 97.76 172 | 73.97 303 | 94.59 136 | 95.85 163 |
|
| test_fmvs1_n | | | 87.03 223 | 87.04 184 | 86.97 306 | 89.74 334 | 71.86 337 | 94.55 150 | 94.43 228 | 78.47 296 | 91.95 94 | 95.50 114 | 51.16 364 | 93.81 338 | 93.02 46 | 94.56 137 | 95.26 184 |
|
| diffmvs |  | | 91.37 88 | 91.23 84 | 91.77 148 | 93.09 226 | 80.27 203 | 92.36 255 | 95.52 171 | 87.03 126 | 91.40 109 | 94.93 134 | 80.08 113 | 97.44 200 | 92.13 67 | 94.56 137 | 97.61 91 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| BH-untuned | | | 88.60 164 | 88.13 158 | 90.01 226 | 95.24 135 | 78.50 251 | 93.29 224 | 94.15 241 | 84.75 180 | 84.46 242 | 93.40 195 | 75.76 164 | 97.40 209 | 77.59 270 | 94.52 139 | 94.12 237 |
|
| Effi-MVS+ | | | 91.59 85 | 91.11 86 | 93.01 83 | 94.35 184 | 83.39 115 | 94.60 147 | 95.10 196 | 87.10 124 | 90.57 117 | 93.10 209 | 81.43 104 | 98.07 155 | 89.29 111 | 94.48 140 | 97.59 93 |
|
| PCF-MVS | | 84.11 10 | 87.74 186 | 86.08 221 | 92.70 102 | 94.02 192 | 84.43 87 | 89.27 320 | 95.87 143 | 73.62 346 | 84.43 244 | 94.33 159 | 78.48 137 | 98.86 84 | 70.27 321 | 94.45 141 | 94.81 203 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| EI-MVSNet-Vis-set | | | 93.01 64 | 92.92 63 | 93.29 69 | 95.01 144 | 83.51 111 | 94.48 153 | 95.77 149 | 90.87 15 | 92.52 80 | 96.67 66 | 84.50 64 | 99.00 68 | 91.99 72 | 94.44 142 | 97.36 100 |
|
| MS-PatchMatch | | | 85.05 267 | 84.16 264 | 87.73 286 | 91.42 281 | 78.51 250 | 91.25 284 | 93.53 259 | 77.50 307 | 80.15 310 | 91.58 262 | 61.99 316 | 95.51 312 | 75.69 288 | 94.35 143 | 89.16 359 |
|
| FE-MVS | | | 87.40 205 | 86.02 223 | 91.57 155 | 94.56 172 | 79.69 225 | 90.27 297 | 93.72 257 | 80.57 269 | 88.80 142 | 91.62 260 | 65.32 294 | 98.59 104 | 74.97 297 | 94.33 144 | 96.44 139 |
|
| mvs_anonymous | | | 89.37 141 | 89.32 123 | 89.51 246 | 93.47 216 | 74.22 313 | 91.65 277 | 94.83 214 | 82.91 221 | 85.45 216 | 93.79 186 | 81.23 106 | 96.36 280 | 86.47 148 | 94.09 145 | 97.94 74 |
|
| test_vis1_n | | | 86.56 237 | 86.49 206 | 86.78 313 | 88.51 344 | 72.69 327 | 94.68 143 | 93.78 256 | 79.55 280 | 90.70 115 | 95.31 119 | 48.75 369 | 93.28 346 | 93.15 43 | 93.99 146 | 94.38 227 |
|
| MVP-Stereo | | | 85.97 248 | 84.86 255 | 89.32 248 | 90.92 304 | 82.19 154 | 92.11 266 | 94.19 239 | 78.76 292 | 78.77 328 | 91.63 259 | 68.38 267 | 96.56 265 | 75.01 296 | 93.95 147 | 89.20 358 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| LFMVS | | | 90.08 113 | 89.13 127 | 92.95 88 | 96.71 77 | 82.32 153 | 96.08 61 | 89.91 345 | 86.79 132 | 92.15 88 | 96.81 61 | 62.60 313 | 98.34 127 | 87.18 138 | 93.90 148 | 98.19 58 |
|
| PVSNet | | 78.82 18 | 85.55 255 | 84.65 259 | 88.23 277 | 94.72 161 | 71.93 336 | 87.12 349 | 92.75 275 | 78.80 291 | 84.95 232 | 90.53 291 | 64.43 300 | 96.71 253 | 74.74 298 | 93.86 149 | 96.06 156 |
|
| CNLPA | | | 89.07 149 | 87.98 161 | 92.34 119 | 96.87 74 | 84.78 74 | 94.08 183 | 93.24 263 | 81.41 257 | 84.46 242 | 95.13 130 | 75.57 169 | 96.62 257 | 77.21 274 | 93.84 150 | 95.61 176 |
|
| EPNet_dtu | | | 86.49 242 | 85.94 228 | 88.14 279 | 90.24 324 | 72.82 325 | 94.11 179 | 92.20 289 | 86.66 137 | 79.42 322 | 92.36 231 | 73.52 198 | 95.81 303 | 71.26 315 | 93.66 151 | 95.80 167 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| GeoE | | | 90.05 114 | 89.43 119 | 91.90 141 | 95.16 138 | 80.37 202 | 95.80 78 | 94.65 224 | 83.90 194 | 87.55 165 | 94.75 145 | 78.18 140 | 97.62 185 | 81.28 223 | 93.63 152 | 97.71 88 |
|
| EI-MVSNet-UG-set | | | 92.74 68 | 92.62 68 | 93.12 76 | 94.86 155 | 83.20 119 | 94.40 161 | 95.74 152 | 90.71 23 | 92.05 89 | 96.60 73 | 84.00 68 | 98.99 70 | 91.55 82 | 93.63 152 | 97.17 108 |
|
| Fast-Effi-MVS+ | | | 89.41 137 | 88.64 140 | 91.71 150 | 94.74 159 | 80.81 191 | 93.54 211 | 95.10 196 | 83.11 215 | 86.82 184 | 90.67 289 | 79.74 118 | 97.75 175 | 80.51 238 | 93.55 154 | 96.57 136 |
|
| FA-MVS(test-final) | | | 89.66 126 | 88.91 133 | 91.93 136 | 94.57 171 | 80.27 203 | 91.36 281 | 94.74 220 | 84.87 176 | 89.82 128 | 92.61 224 | 74.72 180 | 98.47 112 | 83.97 178 | 93.53 155 | 97.04 115 |
|
| 1314 | | | 87.51 200 | 86.57 202 | 90.34 211 | 92.42 247 | 79.74 224 | 92.63 247 | 95.35 186 | 78.35 299 | 80.14 311 | 91.62 260 | 74.05 190 | 97.15 229 | 81.05 225 | 93.53 155 | 94.12 237 |
|
| BH-w/o | | | 87.57 198 | 87.05 183 | 89.12 253 | 94.90 153 | 77.90 266 | 92.41 252 | 93.51 260 | 82.89 222 | 83.70 263 | 91.34 265 | 75.75 165 | 97.07 236 | 75.49 289 | 93.49 157 | 92.39 311 |
|
| PMMVS | | | 85.71 254 | 84.96 252 | 87.95 283 | 88.90 342 | 77.09 283 | 88.68 330 | 90.06 341 | 72.32 358 | 86.47 187 | 90.76 288 | 72.15 216 | 94.40 328 | 81.78 216 | 93.49 157 | 92.36 312 |
|
| PatchMatch-RL | | | 86.77 232 | 85.54 238 | 90.47 205 | 95.88 111 | 82.71 142 | 90.54 294 | 92.31 286 | 79.82 277 | 84.32 250 | 91.57 264 | 68.77 262 | 96.39 277 | 73.16 308 | 93.48 159 | 92.32 314 |
|
| PLC |  | 84.53 7 | 89.06 150 | 88.03 160 | 92.15 126 | 97.27 68 | 82.69 143 | 94.29 169 | 95.44 178 | 79.71 278 | 84.01 257 | 94.18 167 | 76.68 154 | 98.75 92 | 77.28 273 | 93.41 160 | 95.02 191 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| VNet | | | 92.24 75 | 91.91 76 | 93.24 71 | 96.59 82 | 83.43 112 | 94.84 133 | 96.44 96 | 89.19 61 | 94.08 43 | 95.90 99 | 77.85 145 | 98.17 139 | 88.90 115 | 93.38 161 | 98.13 62 |
|
| test-LLR | | | 85.87 250 | 85.41 241 | 87.25 298 | 90.95 300 | 71.67 341 | 89.55 314 | 89.88 347 | 83.41 208 | 84.54 239 | 87.95 333 | 67.25 272 | 95.11 321 | 81.82 214 | 93.37 162 | 94.97 192 |
|
| test-mter | | | 84.54 274 | 83.64 273 | 87.25 298 | 90.95 300 | 71.67 341 | 89.55 314 | 89.88 347 | 79.17 284 | 84.54 239 | 87.95 333 | 55.56 349 | 95.11 321 | 81.82 214 | 93.37 162 | 94.97 192 |
|
| EPP-MVSNet | | | 91.70 83 | 91.56 80 | 92.13 127 | 95.88 111 | 80.50 199 | 97.33 7 | 95.25 188 | 86.15 147 | 89.76 129 | 95.60 112 | 83.42 75 | 98.32 131 | 87.37 136 | 93.25 164 | 97.56 95 |
|
| CDS-MVSNet | | | 89.45 134 | 88.51 145 | 92.29 123 | 93.62 212 | 83.61 109 | 93.01 236 | 94.68 223 | 81.95 240 | 87.82 159 | 93.24 203 | 78.69 132 | 96.99 241 | 80.34 240 | 93.23 165 | 96.28 145 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PAPM | | | 86.68 233 | 85.39 242 | 90.53 196 | 93.05 228 | 79.33 237 | 89.79 311 | 94.77 219 | 78.82 290 | 81.95 289 | 93.24 203 | 76.81 150 | 97.30 216 | 66.94 344 | 93.16 166 | 94.95 198 |
|
| alignmvs | | | 93.08 63 | 92.50 70 | 94.81 31 | 95.62 122 | 87.61 13 | 95.99 69 | 96.07 126 | 89.77 45 | 94.12 41 | 94.87 137 | 80.56 109 | 98.66 96 | 92.42 56 | 93.10 167 | 98.15 61 |
|
| thisisatest0515 | | | 87.33 208 | 85.99 224 | 91.37 164 | 93.49 215 | 79.55 227 | 90.63 293 | 89.56 352 | 80.17 272 | 87.56 164 | 90.86 282 | 67.07 276 | 98.28 133 | 81.50 221 | 93.02 168 | 96.29 144 |
|
| TAMVS | | | 89.21 143 | 88.29 154 | 91.96 134 | 93.71 208 | 82.62 146 | 93.30 223 | 94.19 239 | 82.22 233 | 87.78 160 | 93.94 178 | 78.83 129 | 96.95 243 | 77.70 269 | 92.98 169 | 96.32 142 |
|
| OMC-MVS | | | 91.23 90 | 90.62 95 | 93.08 79 | 96.27 93 | 84.07 94 | 93.52 212 | 95.93 136 | 86.95 128 | 89.51 131 | 96.13 91 | 78.50 136 | 98.35 126 | 85.84 156 | 92.90 170 | 96.83 128 |
|
| canonicalmvs | | | 93.27 58 | 92.75 66 | 94.85 25 | 95.70 119 | 87.66 12 | 96.33 42 | 96.41 98 | 90.00 37 | 94.09 42 | 94.60 152 | 82.33 90 | 98.62 101 | 92.40 57 | 92.86 171 | 98.27 52 |
|
| TESTMET0.1,1 | | | 83.74 284 | 82.85 283 | 86.42 317 | 89.96 330 | 71.21 345 | 89.55 314 | 87.88 357 | 77.41 308 | 83.37 272 | 87.31 341 | 56.71 345 | 93.65 342 | 80.62 236 | 92.85 172 | 94.40 226 |
|
| thisisatest0530 | | | 88.67 161 | 87.61 169 | 91.86 142 | 94.87 154 | 80.07 211 | 94.63 146 | 89.90 346 | 84.00 192 | 88.46 147 | 93.78 187 | 66.88 279 | 98.46 113 | 83.30 186 | 92.65 173 | 97.06 113 |
|
| VDD-MVS | | | 90.74 98 | 89.92 110 | 93.20 73 | 96.27 93 | 83.02 129 | 95.73 82 | 93.86 252 | 88.42 87 | 92.53 79 | 96.84 58 | 62.09 315 | 98.64 98 | 90.95 93 | 92.62 174 | 97.93 76 |
|
| test_yl | | | 90.69 100 | 90.02 108 | 92.71 100 | 95.72 117 | 82.41 151 | 94.11 179 | 95.12 194 | 85.63 159 | 91.49 106 | 94.70 146 | 74.75 177 | 98.42 122 | 86.13 151 | 92.53 175 | 97.31 101 |
|
| DCV-MVSNet | | | 90.69 100 | 90.02 108 | 92.71 100 | 95.72 117 | 82.41 151 | 94.11 179 | 95.12 194 | 85.63 159 | 91.49 106 | 94.70 146 | 74.75 177 | 98.42 122 | 86.13 151 | 92.53 175 | 97.31 101 |
|
| VDDNet | | | 89.56 130 | 88.49 148 | 92.76 97 | 95.07 142 | 82.09 155 | 96.30 43 | 93.19 265 | 81.05 266 | 91.88 96 | 96.86 57 | 61.16 327 | 98.33 129 | 88.43 121 | 92.49 177 | 97.84 82 |
|
| DP-MVS | | | 87.25 212 | 85.36 244 | 92.90 90 | 97.65 55 | 83.24 117 | 94.81 135 | 92.00 297 | 74.99 332 | 81.92 290 | 95.00 133 | 72.66 210 | 99.05 55 | 66.92 346 | 92.33 178 | 96.40 140 |
|
| GG-mvs-BLEND | | | | | 87.94 284 | 89.73 335 | 77.91 265 | 87.80 339 | 78.23 387 | | 80.58 305 | 83.86 362 | 59.88 334 | 95.33 318 | 71.20 316 | 92.22 179 | 90.60 347 |
|
| tttt0517 | | | 88.61 163 | 87.78 166 | 91.11 176 | 94.96 148 | 77.81 270 | 95.35 97 | 89.69 349 | 85.09 173 | 88.05 154 | 94.59 153 | 66.93 277 | 98.48 109 | 83.27 187 | 92.13 180 | 97.03 116 |
|
| HyFIR lowres test | | | 88.09 177 | 86.81 189 | 91.93 136 | 96.00 105 | 80.63 195 | 90.01 308 | 95.79 148 | 73.42 348 | 87.68 162 | 92.10 243 | 73.86 194 | 97.96 163 | 80.75 233 | 91.70 181 | 97.19 107 |
|
| sss | | | 88.93 154 | 88.26 156 | 90.94 187 | 94.05 191 | 80.78 192 | 91.71 274 | 95.38 182 | 81.55 255 | 88.63 144 | 93.91 182 | 75.04 174 | 95.47 316 | 82.47 200 | 91.61 182 | 96.57 136 |
|
| cascas | | | 86.43 243 | 84.98 251 | 90.80 190 | 92.10 256 | 80.92 188 | 90.24 301 | 95.91 139 | 73.10 351 | 83.57 268 | 88.39 326 | 65.15 296 | 97.46 197 | 84.90 166 | 91.43 183 | 94.03 244 |
|
| Effi-MVS+-dtu | | | 88.65 162 | 88.35 150 | 89.54 243 | 93.33 220 | 76.39 294 | 94.47 156 | 94.36 233 | 87.70 112 | 85.43 219 | 89.56 311 | 73.45 200 | 97.26 222 | 85.57 159 | 91.28 184 | 94.97 192 |
|
| thres100view900 | | | 87.63 192 | 86.71 194 | 90.38 209 | 96.12 97 | 78.55 248 | 95.03 122 | 91.58 309 | 87.15 122 | 88.06 153 | 92.29 234 | 68.91 260 | 98.10 144 | 70.13 325 | 91.10 185 | 94.48 223 |
|
| tfpn200view9 | | | 87.58 197 | 86.64 197 | 90.41 206 | 95.99 108 | 78.64 246 | 94.58 148 | 91.98 299 | 86.94 129 | 88.09 150 | 91.77 253 | 69.18 257 | 98.10 144 | 70.13 325 | 91.10 185 | 94.48 223 |
|
| thres600view7 | | | 87.65 189 | 86.67 196 | 90.59 193 | 96.08 101 | 78.72 244 | 94.88 130 | 91.58 309 | 87.06 125 | 88.08 152 | 92.30 233 | 68.91 260 | 98.10 144 | 70.05 328 | 91.10 185 | 94.96 195 |
|
| thres400 | | | 87.62 194 | 86.64 197 | 90.57 194 | 95.99 108 | 78.64 246 | 94.58 148 | 91.98 299 | 86.94 129 | 88.09 150 | 91.77 253 | 69.18 257 | 98.10 144 | 70.13 325 | 91.10 185 | 94.96 195 |
|
| F-COLMAP | | | 87.95 180 | 86.80 190 | 91.40 162 | 96.35 92 | 80.88 189 | 94.73 140 | 95.45 176 | 79.65 279 | 82.04 288 | 94.61 151 | 71.13 224 | 98.50 108 | 76.24 285 | 91.05 189 | 94.80 204 |
|
| thres200 | | | 87.21 216 | 86.24 215 | 90.12 219 | 95.36 130 | 78.53 249 | 93.26 226 | 92.10 293 | 86.42 140 | 88.00 155 | 91.11 277 | 69.24 256 | 98.00 160 | 69.58 329 | 91.04 190 | 93.83 254 |
|
| WTY-MVS | | | 89.60 128 | 88.92 132 | 91.67 151 | 95.47 127 | 81.15 181 | 92.38 254 | 94.78 218 | 83.11 215 | 89.06 139 | 94.32 160 | 78.67 133 | 96.61 260 | 81.57 220 | 90.89 191 | 97.24 104 |
|
| HY-MVS | | 83.01 12 | 89.03 151 | 87.94 163 | 92.29 123 | 94.86 155 | 82.77 136 | 92.08 268 | 94.49 226 | 81.52 256 | 86.93 176 | 92.79 220 | 78.32 139 | 98.23 135 | 79.93 245 | 90.55 192 | 95.88 162 |
|
| CLD-MVS | | | 89.47 133 | 88.90 134 | 91.18 171 | 94.22 186 | 82.07 156 | 92.13 265 | 96.09 124 | 87.90 105 | 85.37 225 | 92.45 228 | 74.38 183 | 97.56 188 | 87.15 139 | 90.43 193 | 93.93 246 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| CVMVSNet | | | 84.69 273 | 84.79 257 | 84.37 335 | 91.84 265 | 64.92 371 | 93.70 207 | 91.47 314 | 66.19 373 | 86.16 197 | 95.28 120 | 67.18 274 | 93.33 345 | 80.89 231 | 90.42 194 | 94.88 200 |
|
| SCA | | | 86.32 244 | 85.18 247 | 89.73 238 | 92.15 252 | 76.60 290 | 91.12 286 | 91.69 306 | 83.53 205 | 85.50 212 | 88.81 319 | 66.79 280 | 96.48 270 | 76.65 279 | 90.35 195 | 96.12 151 |
|
| Fast-Effi-MVS+-dtu | | | 87.44 203 | 86.72 193 | 89.63 241 | 92.04 257 | 77.68 276 | 94.03 188 | 93.94 247 | 85.81 152 | 82.42 282 | 91.32 268 | 70.33 239 | 97.06 237 | 80.33 241 | 90.23 196 | 94.14 236 |
|
| OPM-MVS | | | 90.12 112 | 89.56 115 | 91.82 145 | 93.14 224 | 83.90 98 | 94.16 176 | 95.74 152 | 88.96 71 | 87.86 156 | 95.43 117 | 72.48 213 | 97.91 167 | 88.10 126 | 90.18 197 | 93.65 267 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| HQP_MVS | | | 90.60 106 | 90.19 100 | 91.82 145 | 94.70 163 | 82.73 140 | 95.85 75 | 96.22 113 | 90.81 17 | 86.91 178 | 94.86 138 | 74.23 185 | 98.12 142 | 88.15 122 | 89.99 198 | 94.63 207 |
|
| plane_prior5 | | | | | | | | | 96.22 113 | | | | | 98.12 142 | 88.15 122 | 89.99 198 | 94.63 207 |
|
| XVG-OURS | | | 89.40 139 | 88.70 138 | 91.52 156 | 94.06 190 | 81.46 172 | 91.27 283 | 96.07 126 | 86.14 148 | 88.89 141 | 95.77 106 | 68.73 263 | 97.26 222 | 87.39 135 | 89.96 200 | 95.83 165 |
|
| baseline2 | | | 86.50 240 | 85.39 242 | 89.84 231 | 91.12 294 | 76.70 289 | 91.88 269 | 88.58 355 | 82.35 232 | 79.95 315 | 90.95 281 | 73.42 201 | 97.63 184 | 80.27 242 | 89.95 201 | 95.19 186 |
|
| Anonymous202405211 | | | 87.68 187 | 86.13 217 | 92.31 121 | 96.66 79 | 80.74 193 | 94.87 131 | 91.49 313 | 80.47 270 | 89.46 133 | 95.44 115 | 54.72 354 | 98.23 135 | 82.19 206 | 89.89 202 | 97.97 72 |
|
| plane_prior | | | | | | | 82.73 140 | 95.21 109 | | 89.66 48 | | | | | | 89.88 203 | |
|
| SDMVSNet | | | 90.19 111 | 89.61 114 | 91.93 136 | 96.00 105 | 83.09 126 | 92.89 240 | 95.98 132 | 88.73 76 | 86.85 182 | 95.20 126 | 72.09 217 | 97.08 234 | 88.90 115 | 89.85 204 | 95.63 174 |
|
| sd_testset | | | 88.59 165 | 87.85 165 | 90.83 188 | 96.00 105 | 80.42 201 | 92.35 256 | 94.71 221 | 88.73 76 | 86.85 182 | 95.20 126 | 67.31 270 | 96.43 275 | 79.64 249 | 89.85 204 | 95.63 174 |
|
| TR-MVS | | | 86.78 229 | 85.76 235 | 89.82 232 | 94.37 181 | 78.41 253 | 92.47 251 | 92.83 272 | 81.11 265 | 86.36 192 | 92.40 229 | 68.73 263 | 97.48 195 | 73.75 306 | 89.85 204 | 93.57 269 |
|
| HQP3-MVS | | | | | | | | | 96.04 129 | | | | | | | 89.77 207 | |
|
| HQP-MVS | | | 89.80 124 | 89.28 125 | 91.34 165 | 94.17 187 | 81.56 166 | 94.39 163 | 96.04 129 | 88.81 72 | 85.43 219 | 93.97 177 | 73.83 195 | 97.96 163 | 87.11 141 | 89.77 207 | 94.50 220 |
|
| XVG-OURS-SEG-HR | | | 89.95 119 | 89.45 117 | 91.47 160 | 94.00 196 | 81.21 180 | 91.87 270 | 96.06 128 | 85.78 153 | 88.55 145 | 95.73 108 | 74.67 181 | 97.27 220 | 88.71 118 | 89.64 209 | 95.91 160 |
|
| GA-MVS | | | 86.61 234 | 85.27 246 | 90.66 192 | 91.33 286 | 78.71 245 | 90.40 296 | 93.81 255 | 85.34 166 | 85.12 229 | 89.57 310 | 61.25 323 | 97.11 233 | 80.99 229 | 89.59 210 | 96.15 148 |
|
| 1112_ss | | | 88.42 167 | 87.33 176 | 91.72 149 | 94.92 151 | 80.98 185 | 92.97 238 | 94.54 225 | 78.16 304 | 83.82 260 | 93.88 183 | 78.78 131 | 97.91 167 | 79.45 251 | 89.41 211 | 96.26 146 |
|
| ab-mvs | | | 89.41 137 | 88.35 150 | 92.60 106 | 95.15 140 | 82.65 145 | 92.20 263 | 95.60 165 | 83.97 193 | 88.55 145 | 93.70 191 | 74.16 189 | 98.21 138 | 82.46 201 | 89.37 212 | 96.94 121 |
|
| CR-MVSNet | | | 85.35 260 | 83.76 271 | 90.12 219 | 90.58 317 | 79.34 234 | 85.24 362 | 91.96 301 | 78.27 301 | 85.55 206 | 87.87 336 | 71.03 226 | 95.61 308 | 73.96 304 | 89.36 213 | 95.40 180 |
|
| RPMNet | | | 83.95 281 | 81.53 290 | 91.21 169 | 90.58 317 | 79.34 234 | 85.24 362 | 96.76 75 | 71.44 362 | 85.55 206 | 82.97 369 | 70.87 229 | 98.91 80 | 61.01 365 | 89.36 213 | 95.40 180 |
|
| DSMNet-mixed | | | 76.94 334 | 76.29 333 | 78.89 354 | 83.10 375 | 56.11 390 | 87.78 340 | 79.77 382 | 60.65 379 | 75.64 347 | 88.71 322 | 61.56 320 | 88.34 377 | 60.07 368 | 89.29 215 | 92.21 317 |
|
| LPG-MVS_test | | | 89.45 134 | 88.90 134 | 91.12 173 | 94.47 175 | 81.49 170 | 95.30 101 | 96.14 118 | 86.73 135 | 85.45 216 | 95.16 128 | 69.89 243 | 98.10 144 | 87.70 130 | 89.23 216 | 93.77 260 |
|
| LGP-MVS_train | | | | | 91.12 173 | 94.47 175 | 81.49 170 | | 96.14 118 | 86.73 135 | 85.45 216 | 95.16 128 | 69.89 243 | 98.10 144 | 87.70 130 | 89.23 216 | 93.77 260 |
|
| Test_1112_low_res | | | 87.65 189 | 86.51 204 | 91.08 177 | 94.94 150 | 79.28 238 | 91.77 272 | 94.30 235 | 76.04 322 | 83.51 269 | 92.37 230 | 77.86 144 | 97.73 176 | 78.69 259 | 89.13 218 | 96.22 147 |
|
| PatchmatchNet |  | | 85.85 251 | 84.70 258 | 89.29 249 | 91.76 269 | 75.54 303 | 88.49 332 | 91.30 317 | 81.63 253 | 85.05 230 | 88.70 323 | 71.71 218 | 96.24 284 | 74.61 300 | 89.05 219 | 96.08 154 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| iter_conf_final | | | 89.42 136 | 88.69 139 | 91.60 153 | 95.12 141 | 82.93 133 | 95.75 81 | 92.14 292 | 87.32 120 | 87.12 173 | 94.07 168 | 67.09 275 | 97.55 189 | 90.61 99 | 89.01 220 | 94.32 229 |
|
| iter_conf05 | | | 88.85 155 | 88.08 159 | 91.17 172 | 94.27 185 | 81.64 165 | 95.18 111 | 92.15 291 | 86.23 145 | 87.28 170 | 94.07 168 | 63.89 306 | 97.55 189 | 90.63 98 | 89.00 221 | 94.32 229 |
|
| MDTV_nov1_ep13 | | | | 83.56 274 | | 91.69 274 | 69.93 355 | 87.75 342 | 91.54 311 | 78.60 295 | 84.86 233 | 88.90 318 | 69.54 248 | 96.03 291 | 70.25 322 | 88.93 222 | |
|
| MIMVSNet | | | 82.59 291 | 80.53 296 | 88.76 261 | 91.51 277 | 78.32 256 | 86.57 353 | 90.13 339 | 79.32 281 | 80.70 303 | 88.69 324 | 52.98 361 | 93.07 350 | 66.03 349 | 88.86 223 | 94.90 199 |
|
| ACMM | | 84.12 9 | 89.14 144 | 88.48 149 | 91.12 173 | 94.65 166 | 81.22 179 | 95.31 99 | 96.12 121 | 85.31 167 | 85.92 199 | 94.34 158 | 70.19 241 | 98.06 156 | 85.65 157 | 88.86 223 | 94.08 241 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| mvsmamba | | | 89.96 118 | 89.50 116 | 91.33 166 | 92.90 236 | 81.82 161 | 96.68 33 | 92.37 283 | 89.03 67 | 87.00 174 | 94.85 140 | 73.05 205 | 97.65 180 | 91.03 89 | 88.63 225 | 94.51 217 |
|
| ACMP | | 84.23 8 | 89.01 153 | 88.35 150 | 90.99 184 | 94.73 160 | 81.27 176 | 95.07 119 | 95.89 142 | 86.48 138 | 83.67 264 | 94.30 161 | 69.33 252 | 97.99 161 | 87.10 143 | 88.55 226 | 93.72 264 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_djsdf | | | 89.03 151 | 88.64 140 | 90.21 213 | 90.74 312 | 79.28 238 | 95.96 71 | 95.90 140 | 84.66 183 | 85.33 227 | 92.94 213 | 74.02 191 | 97.30 216 | 89.64 107 | 88.53 227 | 94.05 243 |
|
| jajsoiax | | | 88.24 173 | 87.50 171 | 90.48 202 | 90.89 306 | 80.14 208 | 95.31 99 | 95.65 162 | 84.97 175 | 84.24 253 | 94.02 173 | 65.31 295 | 97.42 202 | 88.56 119 | 88.52 228 | 93.89 247 |
|
| PatchT | | | 82.68 290 | 81.27 292 | 86.89 310 | 90.09 327 | 70.94 349 | 84.06 369 | 90.15 338 | 74.91 333 | 85.63 205 | 83.57 364 | 69.37 250 | 94.87 325 | 65.19 351 | 88.50 229 | 94.84 201 |
|
| MSDG | | | 84.86 270 | 83.09 279 | 90.14 218 | 93.80 204 | 80.05 213 | 89.18 323 | 93.09 266 | 78.89 288 | 78.19 329 | 91.91 250 | 65.86 293 | 97.27 220 | 68.47 334 | 88.45 230 | 93.11 288 |
|
| MVS-HIRNet | | | 73.70 339 | 72.20 342 | 78.18 357 | 91.81 268 | 56.42 389 | 82.94 375 | 82.58 376 | 55.24 381 | 68.88 371 | 66.48 385 | 55.32 351 | 95.13 320 | 58.12 372 | 88.42 231 | 83.01 374 |
|
| mvs_tets | | | 88.06 179 | 87.28 178 | 90.38 209 | 90.94 302 | 79.88 220 | 95.22 108 | 95.66 160 | 85.10 172 | 84.21 254 | 93.94 178 | 63.53 307 | 97.40 209 | 88.50 120 | 88.40 232 | 93.87 250 |
|
| ET-MVSNet_ETH3D | | | 87.51 200 | 85.91 229 | 92.32 120 | 93.70 210 | 83.93 97 | 92.33 258 | 90.94 326 | 84.16 188 | 72.09 363 | 92.52 226 | 69.90 242 | 95.85 300 | 89.20 112 | 88.36 233 | 97.17 108 |
|
| FIs | | | 90.51 107 | 90.35 97 | 90.99 184 | 93.99 197 | 80.98 185 | 95.73 82 | 97.54 4 | 89.15 62 | 86.72 185 | 94.68 148 | 81.83 102 | 97.24 224 | 85.18 161 | 88.31 234 | 94.76 205 |
|
| PS-MVSNAJss | | | 89.97 117 | 89.62 113 | 91.02 181 | 91.90 263 | 80.85 190 | 95.26 106 | 95.98 132 | 86.26 143 | 86.21 195 | 94.29 162 | 79.70 119 | 97.65 180 | 88.87 117 | 88.10 235 | 94.57 212 |
|
| CMPMVS |  | 59.16 21 | 80.52 312 | 79.20 316 | 84.48 334 | 83.98 372 | 67.63 364 | 89.95 310 | 93.84 254 | 64.79 375 | 66.81 374 | 91.14 276 | 57.93 342 | 95.17 319 | 76.25 284 | 88.10 235 | 90.65 344 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| FC-MVSNet-test | | | 90.27 109 | 90.18 101 | 90.53 196 | 93.71 208 | 79.85 222 | 95.77 80 | 97.59 3 | 89.31 56 | 86.27 194 | 94.67 149 | 81.93 101 | 97.01 240 | 84.26 174 | 88.09 237 | 94.71 206 |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.01 238 | |
|
| D2MVS | | | 85.90 249 | 85.09 249 | 88.35 272 | 90.79 309 | 77.42 279 | 91.83 271 | 95.70 156 | 80.77 268 | 80.08 313 | 90.02 301 | 66.74 282 | 96.37 278 | 81.88 213 | 87.97 239 | 91.26 335 |
|
| UniMVSNet_ETH3D | | | 87.53 199 | 86.37 208 | 91.00 183 | 92.44 246 | 78.96 243 | 94.74 139 | 95.61 164 | 84.07 191 | 85.36 226 | 94.52 155 | 59.78 335 | 97.34 214 | 82.93 191 | 87.88 240 | 96.71 132 |
|
| PVSNet_BlendedMVS | | | 89.98 116 | 89.70 112 | 90.82 189 | 96.12 97 | 81.25 177 | 93.92 197 | 96.83 66 | 83.49 206 | 89.10 137 | 92.26 235 | 81.04 107 | 98.85 86 | 86.72 146 | 87.86 241 | 92.35 313 |
|
| Syy-MVS | | | 80.07 317 | 79.78 306 | 80.94 350 | 91.92 261 | 59.93 381 | 89.75 312 | 87.40 362 | 81.72 249 | 78.82 325 | 87.20 343 | 66.29 288 | 91.29 364 | 47.06 382 | 87.84 242 | 91.60 327 |
|
| myMVS_eth3d | | | 79.67 322 | 78.79 321 | 82.32 348 | 91.92 261 | 64.08 373 | 89.75 312 | 87.40 362 | 81.72 249 | 78.82 325 | 87.20 343 | 45.33 375 | 91.29 364 | 59.09 371 | 87.84 242 | 91.60 327 |
|
| bld_raw_dy_0_64 | | | 87.60 196 | 86.73 192 | 90.21 213 | 91.72 270 | 80.26 205 | 95.09 118 | 88.61 354 | 85.68 157 | 85.55 206 | 94.38 157 | 63.93 305 | 96.66 254 | 87.73 129 | 87.84 242 | 93.72 264 |
|
| anonymousdsp | | | 87.84 182 | 87.09 181 | 90.12 219 | 89.13 339 | 80.54 198 | 94.67 144 | 95.55 167 | 82.05 236 | 83.82 260 | 92.12 240 | 71.47 222 | 97.15 229 | 87.15 139 | 87.80 245 | 92.67 301 |
|
| testing3 | | | 80.46 313 | 79.59 311 | 83.06 343 | 93.44 218 | 64.64 372 | 93.33 218 | 85.47 367 | 84.34 187 | 79.93 316 | 90.84 284 | 44.35 377 | 92.39 354 | 57.06 375 | 87.56 246 | 92.16 318 |
|
| Anonymous20240529 | | | 88.09 177 | 86.59 201 | 92.58 108 | 96.53 86 | 81.92 160 | 95.99 69 | 95.84 145 | 74.11 341 | 89.06 139 | 95.21 125 | 61.44 321 | 98.81 89 | 83.67 184 | 87.47 247 | 97.01 117 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 247 | |
|
| XVG-ACMP-BASELINE | | | 86.00 247 | 84.84 256 | 89.45 247 | 91.20 288 | 78.00 263 | 91.70 275 | 95.55 167 | 85.05 174 | 82.97 277 | 92.25 236 | 54.49 355 | 97.48 195 | 82.93 191 | 87.45 249 | 92.89 296 |
|
| EI-MVSNet | | | 89.10 145 | 88.86 136 | 89.80 235 | 91.84 265 | 78.30 257 | 93.70 207 | 95.01 199 | 85.73 155 | 87.15 171 | 95.28 120 | 79.87 116 | 97.21 227 | 83.81 181 | 87.36 250 | 93.88 249 |
|
| MVSTER | | | 88.84 156 | 88.29 154 | 90.51 199 | 92.95 234 | 80.44 200 | 93.73 204 | 95.01 199 | 84.66 183 | 87.15 171 | 93.12 208 | 72.79 209 | 97.21 227 | 87.86 127 | 87.36 250 | 93.87 250 |
|
| EG-PatchMatch MVS | | | 82.37 293 | 80.34 299 | 88.46 269 | 90.27 323 | 79.35 233 | 92.80 244 | 94.33 234 | 77.14 312 | 73.26 360 | 90.18 297 | 47.47 372 | 96.72 251 | 70.25 322 | 87.32 252 | 89.30 356 |
|
| EPMVS | | | 83.90 283 | 82.70 285 | 87.51 290 | 90.23 325 | 72.67 328 | 88.62 331 | 81.96 378 | 81.37 258 | 85.01 231 | 88.34 327 | 66.31 287 | 94.45 326 | 75.30 292 | 87.12 253 | 95.43 179 |
|
| tpm2 | | | 84.08 278 | 82.94 281 | 87.48 293 | 91.39 282 | 71.27 343 | 89.23 322 | 90.37 334 | 71.95 360 | 84.64 236 | 89.33 312 | 67.30 271 | 96.55 267 | 75.17 293 | 87.09 254 | 94.63 207 |
|
| CostFormer | | | 85.77 253 | 84.94 253 | 88.26 275 | 91.16 292 | 72.58 333 | 89.47 318 | 91.04 324 | 76.26 320 | 86.45 190 | 89.97 303 | 70.74 231 | 96.86 249 | 82.35 203 | 87.07 255 | 95.34 183 |
|
| Patchmatch-test | | | 81.37 305 | 79.30 313 | 87.58 289 | 90.92 304 | 74.16 315 | 80.99 378 | 87.68 360 | 70.52 366 | 76.63 341 | 88.81 319 | 71.21 223 | 92.76 352 | 60.01 369 | 86.93 256 | 95.83 165 |
|
| RRT_MVS | | | 89.09 147 | 88.62 143 | 90.49 200 | 92.85 237 | 79.65 226 | 96.41 39 | 94.41 230 | 88.22 94 | 85.50 212 | 94.77 144 | 69.36 251 | 97.31 215 | 89.33 110 | 86.73 257 | 94.51 217 |
|
| mvsany_test1 | | | 85.42 258 | 85.30 245 | 85.77 324 | 87.95 355 | 75.41 305 | 87.61 346 | 80.97 380 | 76.82 314 | 88.68 143 | 95.83 102 | 77.44 146 | 90.82 368 | 85.90 154 | 86.51 258 | 91.08 342 |
|
| test_fmvs2 | | | 83.98 279 | 84.03 266 | 83.83 340 | 87.16 358 | 67.53 365 | 93.93 196 | 92.89 270 | 77.62 306 | 86.89 181 | 93.53 193 | 47.18 373 | 92.02 358 | 90.54 100 | 86.51 258 | 91.93 321 |
|
| LTVRE_ROB | | 82.13 13 | 86.26 245 | 84.90 254 | 90.34 211 | 94.44 179 | 81.50 168 | 92.31 260 | 94.89 208 | 83.03 217 | 79.63 320 | 92.67 221 | 69.69 246 | 97.79 170 | 71.20 316 | 86.26 260 | 91.72 324 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| COLMAP_ROB |  | 80.39 16 | 83.96 280 | 82.04 287 | 89.74 236 | 95.28 132 | 79.75 223 | 94.25 171 | 92.28 287 | 75.17 330 | 78.02 332 | 93.77 188 | 58.60 340 | 97.84 169 | 65.06 354 | 85.92 261 | 91.63 326 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| RPSCF | | | 85.07 266 | 84.27 263 | 87.48 293 | 92.91 235 | 70.62 351 | 91.69 276 | 92.46 281 | 76.20 321 | 82.67 281 | 95.22 123 | 63.94 303 | 97.29 219 | 77.51 272 | 85.80 262 | 94.53 214 |
|
| USDC | | | 82.76 288 | 81.26 293 | 87.26 297 | 91.17 290 | 74.55 309 | 89.27 320 | 93.39 262 | 78.26 302 | 75.30 349 | 92.08 244 | 54.43 356 | 96.63 256 | 71.64 313 | 85.79 263 | 90.61 345 |
|
| dmvs_re | | | 84.20 277 | 83.22 278 | 87.14 304 | 91.83 267 | 77.81 270 | 90.04 307 | 90.19 337 | 84.70 182 | 81.49 292 | 89.17 314 | 64.37 301 | 91.13 366 | 71.58 314 | 85.65 264 | 92.46 308 |
|
| GBi-Net | | | 87.26 210 | 85.98 225 | 91.08 177 | 94.01 193 | 83.10 123 | 95.14 115 | 94.94 202 | 83.57 202 | 84.37 245 | 91.64 256 | 66.59 284 | 96.34 281 | 78.23 264 | 85.36 265 | 93.79 255 |
|
| test1 | | | 87.26 210 | 85.98 225 | 91.08 177 | 94.01 193 | 83.10 123 | 95.14 115 | 94.94 202 | 83.57 202 | 84.37 245 | 91.64 256 | 66.59 284 | 96.34 281 | 78.23 264 | 85.36 265 | 93.79 255 |
|
| FMVSNet3 | | | 87.40 205 | 86.11 219 | 91.30 167 | 93.79 206 | 83.64 106 | 94.20 175 | 94.81 216 | 83.89 195 | 84.37 245 | 91.87 252 | 68.45 266 | 96.56 265 | 78.23 264 | 85.36 265 | 93.70 266 |
|
| FMVSNet2 | | | 87.19 218 | 85.82 231 | 91.30 167 | 94.01 193 | 83.67 104 | 94.79 136 | 94.94 202 | 83.57 202 | 83.88 259 | 92.05 247 | 66.59 284 | 96.51 268 | 77.56 271 | 85.01 268 | 93.73 263 |
|
| ACMH | | 80.38 17 | 85.36 259 | 83.68 272 | 90.39 207 | 94.45 178 | 80.63 195 | 94.73 140 | 94.85 212 | 82.09 235 | 77.24 336 | 92.65 222 | 60.01 333 | 97.58 186 | 72.25 312 | 84.87 269 | 92.96 293 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ITE_SJBPF | | | | | 88.24 276 | 91.88 264 | 77.05 284 | | 92.92 269 | 85.54 162 | 80.13 312 | 93.30 200 | 57.29 344 | 96.20 285 | 72.46 311 | 84.71 270 | 91.49 330 |
|
| JIA-IIPM | | | 81.04 308 | 78.98 320 | 87.25 298 | 88.64 343 | 73.48 320 | 81.75 377 | 89.61 351 | 73.19 350 | 82.05 287 | 73.71 381 | 66.07 292 | 95.87 299 | 71.18 318 | 84.60 271 | 92.41 310 |
|
| tt0805 | | | 86.92 225 | 85.74 237 | 90.48 202 | 92.22 250 | 79.98 218 | 95.63 90 | 94.88 210 | 83.83 197 | 84.74 235 | 92.80 219 | 57.61 343 | 97.67 177 | 85.48 160 | 84.42 272 | 93.79 255 |
|
| OpenMVS_ROB |  | 74.94 19 | 79.51 323 | 77.03 330 | 86.93 307 | 87.00 359 | 76.23 297 | 92.33 258 | 90.74 331 | 68.93 369 | 74.52 354 | 88.23 330 | 49.58 367 | 96.62 257 | 57.64 373 | 84.29 273 | 87.94 368 |
|
| AllTest | | | 83.42 285 | 81.39 291 | 89.52 244 | 95.01 144 | 77.79 272 | 93.12 230 | 90.89 328 | 77.41 308 | 76.12 344 | 93.34 196 | 54.08 357 | 97.51 193 | 68.31 336 | 84.27 274 | 93.26 279 |
|
| TestCases | | | | | 89.52 244 | 95.01 144 | 77.79 272 | | 90.89 328 | 77.41 308 | 76.12 344 | 93.34 196 | 54.08 357 | 97.51 193 | 68.31 336 | 84.27 274 | 93.26 279 |
|
| tpm | | | 84.73 271 | 84.02 267 | 86.87 311 | 90.33 322 | 68.90 358 | 89.06 325 | 89.94 344 | 80.85 267 | 85.75 201 | 89.86 305 | 68.54 265 | 95.97 294 | 77.76 268 | 84.05 276 | 95.75 168 |
|
| FMVSNet1 | | | 85.85 251 | 84.11 265 | 91.08 177 | 92.81 238 | 83.10 123 | 95.14 115 | 94.94 202 | 81.64 252 | 82.68 280 | 91.64 256 | 59.01 339 | 96.34 281 | 75.37 291 | 83.78 277 | 93.79 255 |
|
| ADS-MVSNet2 | | | 81.66 300 | 79.71 309 | 87.50 291 | 91.35 284 | 74.19 314 | 83.33 372 | 88.48 356 | 72.90 353 | 82.24 285 | 85.77 355 | 64.98 297 | 93.20 348 | 64.57 355 | 83.74 278 | 95.12 188 |
|
| ADS-MVSNet | | | 81.56 302 | 79.78 306 | 86.90 309 | 91.35 284 | 71.82 338 | 83.33 372 | 89.16 353 | 72.90 353 | 82.24 285 | 85.77 355 | 64.98 297 | 93.76 339 | 64.57 355 | 83.74 278 | 95.12 188 |
|
| XXY-MVS | | | 87.65 189 | 86.85 188 | 90.03 223 | 92.14 253 | 80.60 197 | 93.76 203 | 95.23 189 | 82.94 220 | 84.60 237 | 94.02 173 | 74.27 184 | 95.49 315 | 81.04 226 | 83.68 280 | 94.01 245 |
|
| test_0402 | | | 81.30 307 | 79.17 317 | 87.67 287 | 93.19 223 | 78.17 260 | 92.98 237 | 91.71 304 | 75.25 329 | 76.02 346 | 90.31 295 | 59.23 337 | 96.37 278 | 50.22 380 | 83.63 281 | 88.47 365 |
|
| tpmvs | | | 83.35 287 | 82.07 286 | 87.20 302 | 91.07 296 | 71.00 348 | 88.31 335 | 91.70 305 | 78.91 287 | 80.49 307 | 87.18 345 | 69.30 255 | 97.08 234 | 68.12 339 | 83.56 282 | 93.51 273 |
|
| pmmvs5 | | | 84.21 276 | 82.84 284 | 88.34 273 | 88.95 341 | 76.94 285 | 92.41 252 | 91.91 303 | 75.63 325 | 80.28 308 | 91.18 273 | 64.59 299 | 95.57 309 | 77.09 277 | 83.47 283 | 92.53 305 |
|
| pmmvs4 | | | 85.43 257 | 83.86 270 | 90.16 216 | 90.02 329 | 82.97 132 | 90.27 297 | 92.67 278 | 75.93 323 | 80.73 302 | 91.74 255 | 71.05 225 | 95.73 307 | 78.85 258 | 83.46 284 | 91.78 323 |
|
| test0.0.03 1 | | | 82.41 292 | 81.69 288 | 84.59 333 | 88.23 350 | 72.89 324 | 90.24 301 | 87.83 358 | 83.41 208 | 79.86 317 | 89.78 307 | 67.25 272 | 88.99 376 | 65.18 352 | 83.42 285 | 91.90 322 |
|
| tpmrst | | | 85.35 260 | 84.99 250 | 86.43 316 | 90.88 307 | 67.88 362 | 88.71 329 | 91.43 315 | 80.13 273 | 86.08 198 | 88.80 321 | 73.05 205 | 96.02 292 | 82.48 199 | 83.40 286 | 95.40 180 |
|
| nrg030 | | | 91.08 94 | 90.39 96 | 93.17 74 | 93.07 227 | 86.91 21 | 96.41 39 | 96.26 108 | 88.30 90 | 88.37 149 | 94.85 140 | 82.19 95 | 97.64 183 | 91.09 87 | 82.95 287 | 94.96 195 |
|
| cl22 | | | 86.78 229 | 85.98 225 | 89.18 252 | 92.34 248 | 77.62 277 | 90.84 290 | 94.13 243 | 81.33 259 | 83.97 258 | 90.15 298 | 73.96 192 | 96.60 262 | 84.19 175 | 82.94 288 | 93.33 277 |
|
| miper_ehance_all_eth | | | 87.22 215 | 86.62 200 | 89.02 257 | 92.13 254 | 77.40 280 | 90.91 289 | 94.81 216 | 81.28 260 | 84.32 250 | 90.08 300 | 79.26 125 | 96.62 257 | 83.81 181 | 82.94 288 | 93.04 291 |
|
| miper_enhance_ethall | | | 86.90 226 | 86.18 216 | 89.06 255 | 91.66 275 | 77.58 278 | 90.22 303 | 94.82 215 | 79.16 285 | 84.48 241 | 89.10 315 | 79.19 127 | 96.66 254 | 84.06 176 | 82.94 288 | 92.94 294 |
|
| ACMH+ | | 81.04 14 | 85.05 267 | 83.46 275 | 89.82 232 | 94.66 165 | 79.37 232 | 94.44 158 | 94.12 244 | 82.19 234 | 78.04 331 | 92.82 217 | 58.23 341 | 97.54 191 | 73.77 305 | 82.90 291 | 92.54 304 |
|
| VPA-MVSNet | | | 89.62 127 | 88.96 130 | 91.60 153 | 93.86 201 | 82.89 135 | 95.46 94 | 97.33 25 | 87.91 104 | 88.43 148 | 93.31 199 | 74.17 188 | 97.40 209 | 87.32 137 | 82.86 292 | 94.52 215 |
|
| IterMVS-LS | | | 88.36 170 | 87.91 164 | 89.70 239 | 93.80 204 | 78.29 258 | 93.73 204 | 95.08 198 | 85.73 155 | 84.75 234 | 91.90 251 | 79.88 115 | 96.92 245 | 83.83 180 | 82.51 293 | 93.89 247 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| testgi | | | 80.94 311 | 80.20 302 | 83.18 341 | 87.96 354 | 66.29 366 | 91.28 282 | 90.70 332 | 83.70 199 | 78.12 330 | 92.84 215 | 51.37 363 | 90.82 368 | 63.34 358 | 82.46 294 | 92.43 309 |
|
| test_vis1_rt | | | 77.96 331 | 76.46 331 | 82.48 346 | 85.89 365 | 71.74 340 | 90.25 299 | 78.89 384 | 71.03 365 | 71.30 367 | 81.35 373 | 42.49 379 | 91.05 367 | 84.55 171 | 82.37 295 | 84.65 371 |
|
| WR-MVS | | | 88.38 168 | 87.67 168 | 90.52 198 | 93.30 221 | 80.18 206 | 93.26 226 | 95.96 135 | 88.57 83 | 85.47 215 | 92.81 218 | 76.12 157 | 96.91 246 | 81.24 224 | 82.29 296 | 94.47 225 |
|
| tpm cat1 | | | 81.96 294 | 80.27 300 | 87.01 305 | 91.09 295 | 71.02 347 | 87.38 347 | 91.53 312 | 66.25 372 | 80.17 309 | 86.35 351 | 68.22 268 | 96.15 288 | 69.16 330 | 82.29 296 | 93.86 252 |
|
| v1192 | | | 87.25 212 | 86.33 210 | 90.00 227 | 90.76 311 | 79.04 242 | 93.80 201 | 95.48 172 | 82.57 227 | 85.48 214 | 91.18 273 | 73.38 203 | 97.42 202 | 82.30 204 | 82.06 298 | 93.53 270 |
|
| v1144 | | | 87.61 195 | 86.79 191 | 90.06 222 | 91.01 297 | 79.34 234 | 93.95 194 | 95.42 181 | 83.36 210 | 85.66 204 | 91.31 269 | 74.98 175 | 97.42 202 | 83.37 185 | 82.06 298 | 93.42 276 |
|
| v1240 | | | 86.78 229 | 85.85 230 | 89.56 242 | 90.45 321 | 77.79 272 | 93.61 209 | 95.37 184 | 81.65 251 | 85.43 219 | 91.15 275 | 71.50 221 | 97.43 201 | 81.47 222 | 82.05 300 | 93.47 274 |
|
| Anonymous20231206 | | | 81.03 309 | 79.77 308 | 84.82 332 | 87.85 356 | 70.26 353 | 91.42 280 | 92.08 294 | 73.67 345 | 77.75 333 | 89.25 313 | 62.43 314 | 93.08 349 | 61.50 364 | 82.00 301 | 91.12 339 |
|
| V42 | | | 87.68 187 | 86.86 187 | 90.15 217 | 90.58 317 | 80.14 208 | 94.24 173 | 95.28 187 | 83.66 200 | 85.67 203 | 91.33 266 | 74.73 179 | 97.41 207 | 84.43 173 | 81.83 302 | 92.89 296 |
|
| v1921920 | | | 86.97 224 | 86.06 222 | 89.69 240 | 90.53 320 | 78.11 262 | 93.80 201 | 95.43 179 | 81.90 243 | 85.33 227 | 91.05 279 | 72.66 210 | 97.41 207 | 82.05 209 | 81.80 303 | 93.53 270 |
|
| v2v482 | | | 87.84 182 | 87.06 182 | 90.17 215 | 90.99 298 | 79.23 241 | 94.00 192 | 95.13 193 | 84.87 176 | 85.53 209 | 92.07 246 | 74.45 182 | 97.45 198 | 84.71 169 | 81.75 304 | 93.85 253 |
|
| Anonymous20231211 | | | 86.59 236 | 85.13 248 | 90.98 186 | 96.52 87 | 81.50 168 | 96.14 57 | 96.16 117 | 73.78 344 | 83.65 265 | 92.15 238 | 63.26 310 | 97.37 213 | 82.82 195 | 81.74 305 | 94.06 242 |
|
| v144192 | | | 87.19 218 | 86.35 209 | 89.74 236 | 90.64 315 | 78.24 259 | 93.92 197 | 95.43 179 | 81.93 241 | 85.51 211 | 91.05 279 | 74.21 187 | 97.45 198 | 82.86 193 | 81.56 306 | 93.53 270 |
|
| cl____ | | | 86.52 239 | 85.78 232 | 88.75 262 | 92.03 258 | 76.46 292 | 90.74 291 | 94.30 235 | 81.83 247 | 83.34 273 | 90.78 287 | 75.74 167 | 96.57 263 | 81.74 217 | 81.54 307 | 93.22 283 |
|
| DIV-MVS_self_test | | | 86.53 238 | 85.78 232 | 88.75 262 | 92.02 259 | 76.45 293 | 90.74 291 | 94.30 235 | 81.83 247 | 83.34 273 | 90.82 285 | 75.75 165 | 96.57 263 | 81.73 218 | 81.52 308 | 93.24 282 |
|
| Anonymous20240521 | | | 80.44 314 | 79.21 315 | 84.11 338 | 85.75 367 | 67.89 361 | 92.86 242 | 93.23 264 | 75.61 326 | 75.59 348 | 87.47 340 | 50.03 365 | 94.33 330 | 71.14 319 | 81.21 309 | 90.12 350 |
|
| OurMVSNet-221017-0 | | | 85.35 260 | 84.64 260 | 87.49 292 | 90.77 310 | 72.59 332 | 94.01 190 | 94.40 231 | 84.72 181 | 79.62 321 | 93.17 205 | 61.91 317 | 96.72 251 | 81.99 210 | 81.16 310 | 93.16 286 |
|
| FMVSNet5 | | | 81.52 303 | 79.60 310 | 87.27 296 | 91.17 290 | 77.95 264 | 91.49 279 | 92.26 288 | 76.87 313 | 76.16 343 | 87.91 335 | 51.67 362 | 92.34 355 | 67.74 340 | 81.16 310 | 91.52 329 |
|
| CP-MVSNet | | | 87.63 192 | 87.26 180 | 88.74 264 | 93.12 225 | 76.59 291 | 95.29 103 | 96.58 91 | 88.43 86 | 83.49 270 | 92.98 212 | 75.28 171 | 95.83 301 | 78.97 257 | 81.15 312 | 93.79 255 |
|
| c3_l | | | 87.14 220 | 86.50 205 | 89.04 256 | 92.20 251 | 77.26 281 | 91.22 285 | 94.70 222 | 82.01 239 | 84.34 249 | 90.43 293 | 78.81 130 | 96.61 260 | 83.70 183 | 81.09 313 | 93.25 281 |
|
| IterMVS-SCA-FT | | | 85.45 256 | 84.53 262 | 88.18 278 | 91.71 272 | 76.87 286 | 90.19 304 | 92.65 279 | 85.40 165 | 81.44 294 | 90.54 290 | 66.79 280 | 95.00 324 | 81.04 226 | 81.05 314 | 92.66 302 |
|
| TinyColmap | | | 79.76 321 | 77.69 324 | 85.97 320 | 91.71 272 | 73.12 322 | 89.55 314 | 90.36 335 | 75.03 331 | 72.03 364 | 90.19 296 | 46.22 374 | 96.19 287 | 63.11 359 | 81.03 315 | 88.59 364 |
|
| UniMVSNet_NR-MVSNet | | | 89.92 121 | 89.29 124 | 91.81 147 | 93.39 219 | 83.72 102 | 94.43 159 | 97.12 41 | 89.80 41 | 86.46 188 | 93.32 198 | 83.16 77 | 97.23 225 | 84.92 164 | 81.02 316 | 94.49 222 |
|
| DU-MVS | | | 89.34 142 | 88.50 146 | 91.85 144 | 93.04 229 | 83.72 102 | 94.47 156 | 96.59 90 | 89.50 50 | 86.46 188 | 93.29 201 | 77.25 147 | 97.23 225 | 84.92 164 | 81.02 316 | 94.59 210 |
|
| PS-CasMVS | | | 87.32 209 | 86.88 186 | 88.63 267 | 92.99 232 | 76.33 296 | 95.33 98 | 96.61 89 | 88.22 94 | 83.30 275 | 93.07 210 | 73.03 207 | 95.79 304 | 78.36 261 | 81.00 318 | 93.75 262 |
|
| IterMVS | | | 84.88 269 | 83.98 269 | 87.60 288 | 91.44 278 | 76.03 298 | 90.18 305 | 92.41 282 | 83.24 213 | 81.06 300 | 90.42 294 | 66.60 283 | 94.28 332 | 79.46 250 | 80.98 319 | 92.48 306 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| UniMVSNet (Re) | | | 89.80 124 | 89.07 128 | 92.01 128 | 93.60 213 | 84.52 81 | 94.78 137 | 97.47 11 | 89.26 58 | 86.44 191 | 92.32 232 | 82.10 96 | 97.39 212 | 84.81 167 | 80.84 320 | 94.12 237 |
|
| LF4IMVS | | | 80.37 315 | 79.07 319 | 84.27 337 | 86.64 360 | 69.87 356 | 89.39 319 | 91.05 323 | 76.38 317 | 74.97 351 | 90.00 302 | 47.85 371 | 94.25 333 | 74.55 301 | 80.82 321 | 88.69 363 |
|
| v10 | | | 87.25 212 | 86.38 207 | 89.85 230 | 91.19 289 | 79.50 228 | 94.48 153 | 95.45 176 | 83.79 198 | 83.62 266 | 91.19 271 | 75.13 172 | 97.42 202 | 81.94 211 | 80.60 322 | 92.63 303 |
|
| tfpnnormal | | | 84.72 272 | 83.23 277 | 89.20 251 | 92.79 239 | 80.05 213 | 94.48 153 | 95.81 146 | 82.38 230 | 81.08 299 | 91.21 270 | 69.01 259 | 96.95 243 | 61.69 363 | 80.59 323 | 90.58 348 |
|
| WR-MVS_H | | | 87.80 184 | 87.37 175 | 89.10 254 | 93.23 222 | 78.12 261 | 95.61 91 | 97.30 29 | 87.90 105 | 83.72 262 | 92.01 248 | 79.65 123 | 96.01 293 | 76.36 282 | 80.54 324 | 93.16 286 |
|
| VPNet | | | 88.20 174 | 87.47 173 | 90.39 207 | 93.56 214 | 79.46 229 | 94.04 187 | 95.54 169 | 88.67 79 | 86.96 175 | 94.58 154 | 69.33 252 | 97.15 229 | 84.05 177 | 80.53 325 | 94.56 213 |
|
| v7n | | | 86.81 227 | 85.76 235 | 89.95 228 | 90.72 313 | 79.25 240 | 95.07 119 | 95.92 137 | 84.45 186 | 82.29 283 | 90.86 282 | 72.60 212 | 97.53 192 | 79.42 254 | 80.52 326 | 93.08 290 |
|
| v8 | | | 87.50 202 | 86.71 194 | 89.89 229 | 91.37 283 | 79.40 231 | 94.50 152 | 95.38 182 | 84.81 179 | 83.60 267 | 91.33 266 | 76.05 158 | 97.42 202 | 82.84 194 | 80.51 327 | 92.84 298 |
|
| EU-MVSNet | | | 81.32 306 | 80.95 294 | 82.42 347 | 88.50 346 | 63.67 375 | 93.32 219 | 91.33 316 | 64.02 376 | 80.57 306 | 92.83 216 | 61.21 325 | 92.27 356 | 76.34 283 | 80.38 328 | 91.32 333 |
|
| Patchmtry | | | 82.71 289 | 80.93 295 | 88.06 280 | 90.05 328 | 76.37 295 | 84.74 367 | 91.96 301 | 72.28 359 | 81.32 297 | 87.87 336 | 71.03 226 | 95.50 314 | 68.97 331 | 80.15 329 | 92.32 314 |
|
| NR-MVSNet | | | 88.58 166 | 87.47 173 | 91.93 136 | 93.04 229 | 84.16 93 | 94.77 138 | 96.25 110 | 89.05 65 | 80.04 314 | 93.29 201 | 79.02 128 | 97.05 238 | 81.71 219 | 80.05 330 | 94.59 210 |
|
| Baseline_NR-MVSNet | | | 87.07 221 | 86.63 199 | 88.40 270 | 91.44 278 | 77.87 268 | 94.23 174 | 92.57 280 | 84.12 190 | 85.74 202 | 92.08 244 | 77.25 147 | 96.04 290 | 82.29 205 | 79.94 331 | 91.30 334 |
|
| dp | | | 81.47 304 | 80.23 301 | 85.17 330 | 89.92 331 | 65.49 369 | 86.74 351 | 90.10 340 | 76.30 319 | 81.10 298 | 87.12 346 | 62.81 312 | 95.92 296 | 68.13 338 | 79.88 332 | 94.09 240 |
|
| TranMVSNet+NR-MVSNet | | | 88.84 156 | 87.95 162 | 91.49 158 | 92.68 241 | 83.01 130 | 94.92 128 | 96.31 103 | 89.88 39 | 85.53 209 | 93.85 185 | 76.63 155 | 96.96 242 | 81.91 212 | 79.87 333 | 94.50 220 |
|
| miper_lstm_enhance | | | 85.27 263 | 84.59 261 | 87.31 295 | 91.28 287 | 74.63 308 | 87.69 343 | 94.09 245 | 81.20 264 | 81.36 296 | 89.85 306 | 74.97 176 | 94.30 331 | 81.03 228 | 79.84 334 | 93.01 292 |
|
| v148 | | | 87.04 222 | 86.32 211 | 89.21 250 | 90.94 302 | 77.26 281 | 93.71 206 | 94.43 228 | 84.84 178 | 84.36 248 | 90.80 286 | 76.04 159 | 97.05 238 | 82.12 207 | 79.60 335 | 93.31 278 |
|
| IB-MVS | | 80.51 15 | 85.24 264 | 83.26 276 | 91.19 170 | 92.13 254 | 79.86 221 | 91.75 273 | 91.29 318 | 83.28 212 | 80.66 304 | 88.49 325 | 61.28 322 | 98.46 113 | 80.99 229 | 79.46 336 | 95.25 185 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| eth_miper_zixun_eth | | | 86.50 240 | 85.77 234 | 88.68 265 | 91.94 260 | 75.81 301 | 90.47 295 | 94.89 208 | 82.05 236 | 84.05 255 | 90.46 292 | 75.96 160 | 96.77 250 | 82.76 197 | 79.36 337 | 93.46 275 |
|
| baseline1 | | | 88.10 176 | 87.28 178 | 90.57 194 | 94.96 148 | 80.07 211 | 94.27 170 | 91.29 318 | 86.74 134 | 87.41 166 | 94.00 175 | 76.77 152 | 96.20 285 | 80.77 232 | 79.31 338 | 95.44 178 |
|
| our_test_3 | | | 81.93 295 | 80.46 298 | 86.33 318 | 88.46 347 | 73.48 320 | 88.46 333 | 91.11 320 | 76.46 315 | 76.69 340 | 88.25 329 | 66.89 278 | 94.36 329 | 68.75 332 | 79.08 339 | 91.14 338 |
|
| PEN-MVS | | | 86.80 228 | 86.27 214 | 88.40 270 | 92.32 249 | 75.71 302 | 95.18 111 | 96.38 100 | 87.97 102 | 82.82 279 | 93.15 206 | 73.39 202 | 95.92 296 | 76.15 286 | 79.03 340 | 93.59 268 |
|
| pm-mvs1 | | | 86.61 234 | 85.54 238 | 89.82 232 | 91.44 278 | 80.18 206 | 95.28 105 | 94.85 212 | 83.84 196 | 81.66 291 | 92.62 223 | 72.45 215 | 96.48 270 | 79.67 248 | 78.06 341 | 92.82 299 |
|
| h-mvs33 | | | 90.80 96 | 90.15 102 | 92.75 98 | 96.01 104 | 82.66 144 | 95.43 95 | 95.53 170 | 89.80 41 | 93.08 61 | 95.64 111 | 75.77 162 | 99.00 68 | 92.07 68 | 78.05 342 | 96.60 134 |
|
| SixPastTwentyTwo | | | 83.91 282 | 82.90 282 | 86.92 308 | 90.99 298 | 70.67 350 | 93.48 213 | 91.99 298 | 85.54 162 | 77.62 335 | 92.11 242 | 60.59 329 | 96.87 248 | 76.05 287 | 77.75 343 | 93.20 284 |
|
| ppachtmachnet_test | | | 81.84 296 | 80.07 304 | 87.15 303 | 88.46 347 | 74.43 312 | 89.04 326 | 92.16 290 | 75.33 328 | 77.75 333 | 88.99 316 | 66.20 289 | 95.37 317 | 65.12 353 | 77.60 344 | 91.65 325 |
|
| MIMVSNet1 | | | 79.38 324 | 77.28 326 | 85.69 325 | 86.35 361 | 73.67 317 | 91.61 278 | 92.75 275 | 78.11 305 | 72.64 362 | 88.12 331 | 48.16 370 | 91.97 360 | 60.32 366 | 77.49 345 | 91.43 332 |
|
| DTE-MVSNet | | | 86.11 246 | 85.48 240 | 87.98 282 | 91.65 276 | 74.92 307 | 94.93 127 | 95.75 151 | 87.36 119 | 82.26 284 | 93.04 211 | 72.85 208 | 95.82 302 | 74.04 302 | 77.46 346 | 93.20 284 |
|
| N_pmnet | | | 68.89 344 | 68.44 346 | 70.23 365 | 89.07 340 | 28.79 402 | 88.06 336 | 19.50 402 | 69.47 368 | 71.86 365 | 84.93 358 | 61.24 324 | 91.75 361 | 54.70 377 | 77.15 347 | 90.15 349 |
|
| AUN-MVS | | | 87.78 185 | 86.54 203 | 91.48 159 | 94.82 158 | 81.05 183 | 93.91 199 | 93.93 248 | 83.00 218 | 86.93 176 | 93.53 193 | 69.50 249 | 97.67 177 | 86.14 149 | 77.12 348 | 95.73 171 |
|
| hse-mvs2 | | | 89.88 123 | 89.34 122 | 91.51 157 | 94.83 157 | 81.12 182 | 93.94 195 | 93.91 251 | 89.80 41 | 93.08 61 | 93.60 192 | 75.77 162 | 97.66 179 | 92.07 68 | 77.07 349 | 95.74 169 |
|
| dmvs_testset | | | 74.57 338 | 75.81 337 | 70.86 364 | 87.72 357 | 40.47 397 | 87.05 350 | 77.90 389 | 82.75 224 | 71.15 368 | 85.47 357 | 67.98 269 | 84.12 386 | 45.26 383 | 76.98 350 | 88.00 367 |
|
| test20.03 | | | 79.95 319 | 79.08 318 | 82.55 345 | 85.79 366 | 67.74 363 | 91.09 287 | 91.08 321 | 81.23 263 | 74.48 355 | 89.96 304 | 61.63 318 | 90.15 370 | 60.08 367 | 76.38 351 | 89.76 351 |
|
| FPMVS | | | 64.63 349 | 62.55 351 | 70.88 363 | 70.80 389 | 56.71 385 | 84.42 368 | 84.42 371 | 51.78 384 | 49.57 384 | 81.61 372 | 23.49 389 | 81.48 389 | 40.61 389 | 76.25 352 | 74.46 382 |
|
| test_fmvs3 | | | 77.67 332 | 77.16 329 | 79.22 353 | 79.52 382 | 61.14 379 | 92.34 257 | 91.64 308 | 73.98 342 | 78.86 324 | 86.59 347 | 27.38 387 | 87.03 378 | 88.12 125 | 75.97 353 | 89.50 353 |
|
| EGC-MVSNET | | | 61.97 350 | 56.37 354 | 78.77 355 | 89.63 336 | 73.50 319 | 89.12 324 | 82.79 375 | 0.21 399 | 1.24 400 | 84.80 359 | 39.48 380 | 90.04 371 | 44.13 384 | 75.94 354 | 72.79 383 |
|
| pmmvs6 | | | 83.42 285 | 81.60 289 | 88.87 259 | 88.01 353 | 77.87 268 | 94.96 125 | 94.24 238 | 74.67 336 | 78.80 327 | 91.09 278 | 60.17 332 | 96.49 269 | 77.06 278 | 75.40 355 | 92.23 316 |
|
| new_pmnet | | | 72.15 340 | 70.13 344 | 78.20 356 | 82.95 376 | 65.68 367 | 83.91 370 | 82.40 377 | 62.94 378 | 64.47 375 | 79.82 375 | 42.85 378 | 86.26 382 | 57.41 374 | 74.44 356 | 82.65 376 |
|
| MDA-MVSNet_test_wron | | | 79.21 326 | 77.19 328 | 85.29 328 | 88.22 351 | 72.77 326 | 85.87 356 | 90.06 341 | 74.34 338 | 62.62 378 | 87.56 339 | 66.14 290 | 91.99 359 | 66.90 347 | 73.01 357 | 91.10 341 |
|
| YYNet1 | | | 79.22 325 | 77.20 327 | 85.28 329 | 88.20 352 | 72.66 329 | 85.87 356 | 90.05 343 | 74.33 339 | 62.70 376 | 87.61 338 | 66.09 291 | 92.03 357 | 66.94 344 | 72.97 358 | 91.15 337 |
|
| Patchmatch-RL test | | | 81.67 299 | 79.96 305 | 86.81 312 | 85.42 369 | 71.23 344 | 82.17 376 | 87.50 361 | 78.47 296 | 77.19 337 | 82.50 371 | 70.81 230 | 93.48 343 | 82.66 198 | 72.89 359 | 95.71 172 |
|
| pmmvs-eth3d | | | 80.97 310 | 78.72 322 | 87.74 285 | 84.99 371 | 79.97 219 | 90.11 306 | 91.65 307 | 75.36 327 | 73.51 358 | 86.03 352 | 59.45 336 | 93.96 337 | 75.17 293 | 72.21 360 | 89.29 357 |
|
| PM-MVS | | | 78.11 330 | 76.12 334 | 84.09 339 | 83.54 374 | 70.08 354 | 88.97 327 | 85.27 369 | 79.93 275 | 74.73 353 | 86.43 349 | 34.70 383 | 93.48 343 | 79.43 253 | 72.06 361 | 88.72 362 |
|
| test_f | | | 71.95 341 | 70.87 343 | 75.21 360 | 74.21 387 | 59.37 383 | 85.07 364 | 85.82 365 | 65.25 374 | 70.42 369 | 83.13 366 | 23.62 388 | 82.93 388 | 78.32 262 | 71.94 362 | 83.33 373 |
|
| Gipuma |  | | 57.99 355 | 54.91 357 | 67.24 371 | 88.51 344 | 65.59 368 | 52.21 390 | 90.33 336 | 43.58 387 | 42.84 390 | 51.18 391 | 20.29 393 | 85.07 383 | 34.77 390 | 70.45 363 | 51.05 390 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| APD_test1 | | | 69.04 343 | 66.26 349 | 77.36 359 | 80.51 380 | 62.79 378 | 85.46 361 | 83.51 374 | 54.11 383 | 59.14 381 | 84.79 360 | 23.40 390 | 89.61 372 | 55.22 376 | 70.24 364 | 79.68 380 |
|
| K. test v3 | | | 81.59 301 | 80.15 303 | 85.91 323 | 89.89 332 | 69.42 357 | 92.57 249 | 87.71 359 | 85.56 161 | 73.44 359 | 89.71 308 | 55.58 348 | 95.52 311 | 77.17 275 | 69.76 365 | 92.78 300 |
|
| KD-MVS_self_test | | | 80.20 316 | 79.24 314 | 83.07 342 | 85.64 368 | 65.29 370 | 91.01 288 | 93.93 248 | 78.71 294 | 76.32 342 | 86.40 350 | 59.20 338 | 92.93 351 | 72.59 310 | 69.35 366 | 91.00 343 |
|
| CL-MVSNet_self_test | | | 81.74 298 | 80.53 296 | 85.36 327 | 85.96 364 | 72.45 334 | 90.25 299 | 93.07 267 | 81.24 262 | 79.85 318 | 87.29 342 | 70.93 228 | 92.52 353 | 66.95 343 | 69.23 367 | 91.11 340 |
|
| TDRefinement | | | 79.81 320 | 77.34 325 | 87.22 301 | 79.24 383 | 75.48 304 | 93.12 230 | 92.03 296 | 76.45 316 | 75.01 350 | 91.58 262 | 49.19 368 | 96.44 274 | 70.22 324 | 69.18 368 | 89.75 352 |
|
| MDA-MVSNet-bldmvs | | | 78.85 327 | 76.31 332 | 86.46 315 | 89.76 333 | 73.88 316 | 88.79 328 | 90.42 333 | 79.16 285 | 59.18 380 | 88.33 328 | 60.20 331 | 94.04 334 | 62.00 362 | 68.96 369 | 91.48 331 |
|
| ambc | | | | | 83.06 343 | 79.99 381 | 63.51 376 | 77.47 383 | 92.86 271 | | 74.34 356 | 84.45 361 | 28.74 384 | 95.06 323 | 73.06 309 | 68.89 370 | 90.61 345 |
|
| TransMVSNet (Re) | | | 84.43 275 | 83.06 280 | 88.54 268 | 91.72 270 | 78.44 252 | 95.18 111 | 92.82 273 | 82.73 225 | 79.67 319 | 92.12 240 | 73.49 199 | 95.96 295 | 71.10 320 | 68.73 371 | 91.21 336 |
|
| mvsany_test3 | | | 74.95 337 | 73.26 341 | 80.02 352 | 74.61 385 | 63.16 377 | 85.53 360 | 78.42 385 | 74.16 340 | 74.89 352 | 86.46 348 | 36.02 382 | 89.09 375 | 82.39 202 | 66.91 372 | 87.82 369 |
|
| PMVS |  | 47.18 22 | 52.22 356 | 48.46 360 | 63.48 372 | 45.72 400 | 46.20 395 | 73.41 386 | 78.31 386 | 41.03 390 | 30.06 393 | 65.68 386 | 6.05 400 | 83.43 387 | 30.04 391 | 65.86 373 | 60.80 387 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_vis3_rt | | | 65.12 348 | 62.60 350 | 72.69 362 | 71.44 388 | 60.71 380 | 87.17 348 | 65.55 395 | 63.80 377 | 53.22 383 | 65.65 387 | 14.54 397 | 89.44 374 | 76.65 279 | 65.38 374 | 67.91 386 |
|
| lessismore_v0 | | | | | 86.04 319 | 88.46 347 | 68.78 359 | | 80.59 381 | | 73.01 361 | 90.11 299 | 55.39 350 | 96.43 275 | 75.06 295 | 65.06 375 | 92.90 295 |
|
| new-patchmatchnet | | | 76.41 335 | 75.17 338 | 80.13 351 | 82.65 377 | 59.61 382 | 87.66 344 | 91.08 321 | 78.23 303 | 69.85 370 | 83.22 365 | 54.76 353 | 91.63 363 | 64.14 357 | 64.89 376 | 89.16 359 |
|
| pmmvs3 | | | 71.81 342 | 68.71 345 | 81.11 349 | 75.86 384 | 70.42 352 | 86.74 351 | 83.66 373 | 58.95 380 | 68.64 373 | 80.89 374 | 36.93 381 | 89.52 373 | 63.10 360 | 63.59 377 | 83.39 372 |
|
| UnsupCasMVSNet_eth | | | 80.07 317 | 78.27 323 | 85.46 326 | 85.24 370 | 72.63 331 | 88.45 334 | 94.87 211 | 82.99 219 | 71.64 366 | 88.07 332 | 56.34 346 | 91.75 361 | 73.48 307 | 63.36 378 | 92.01 320 |
|
| LCM-MVSNet | | | 66.00 347 | 62.16 352 | 77.51 358 | 64.51 395 | 58.29 384 | 83.87 371 | 90.90 327 | 48.17 385 | 54.69 382 | 73.31 382 | 16.83 396 | 86.75 379 | 65.47 350 | 61.67 379 | 87.48 370 |
|
| UnsupCasMVSNet_bld | | | 76.23 336 | 73.27 340 | 85.09 331 | 83.79 373 | 72.92 323 | 85.65 359 | 93.47 261 | 71.52 361 | 68.84 372 | 79.08 376 | 49.77 366 | 93.21 347 | 66.81 348 | 60.52 380 | 89.13 361 |
|
| testf1 | | | 59.54 352 | 56.11 355 | 69.85 366 | 69.28 390 | 56.61 387 | 80.37 380 | 76.55 392 | 42.58 388 | 45.68 387 | 75.61 377 | 11.26 398 | 84.18 384 | 43.20 386 | 60.44 381 | 68.75 384 |
|
| APD_test2 | | | 59.54 352 | 56.11 355 | 69.85 366 | 69.28 390 | 56.61 387 | 80.37 380 | 76.55 392 | 42.58 388 | 45.68 387 | 75.61 377 | 11.26 398 | 84.18 384 | 43.20 386 | 60.44 381 | 68.75 384 |
|
| KD-MVS_2432*1600 | | | 78.50 328 | 76.02 335 | 85.93 321 | 86.22 362 | 74.47 310 | 84.80 365 | 92.33 284 | 79.29 282 | 76.98 338 | 85.92 353 | 53.81 359 | 93.97 335 | 67.39 341 | 57.42 383 | 89.36 354 |
|
| miper_refine_blended | | | 78.50 328 | 76.02 335 | 85.93 321 | 86.22 362 | 74.47 310 | 84.80 365 | 92.33 284 | 79.29 282 | 76.98 338 | 85.92 353 | 53.81 359 | 93.97 335 | 67.39 341 | 57.42 383 | 89.36 354 |
|
| DeepMVS_CX |  | | | | 56.31 375 | 74.23 386 | 51.81 392 | | 56.67 400 | 44.85 386 | 48.54 386 | 75.16 379 | 27.87 386 | 58.74 396 | 40.92 388 | 52.22 385 | 58.39 389 |
|
| WB-MVS | | | 67.92 345 | 67.49 347 | 69.21 368 | 81.09 378 | 41.17 396 | 88.03 337 | 78.00 388 | 73.50 347 | 62.63 377 | 83.11 368 | 63.94 303 | 86.52 380 | 25.66 393 | 51.45 386 | 79.94 379 |
|
| PVSNet_0 | | 73.20 20 | 77.22 333 | 74.83 339 | 84.37 335 | 90.70 314 | 71.10 346 | 83.09 374 | 89.67 350 | 72.81 355 | 73.93 357 | 83.13 366 | 60.79 328 | 93.70 341 | 68.54 333 | 50.84 387 | 88.30 366 |
|
| test_method | | | 50.52 357 | 48.47 359 | 56.66 374 | 52.26 399 | 18.98 404 | 41.51 392 | 81.40 379 | 10.10 394 | 44.59 389 | 75.01 380 | 28.51 385 | 68.16 392 | 53.54 378 | 49.31 388 | 82.83 375 |
|
| SSC-MVS | | | 67.06 346 | 66.56 348 | 68.56 370 | 80.54 379 | 40.06 398 | 87.77 341 | 77.37 391 | 72.38 357 | 61.75 379 | 82.66 370 | 63.37 308 | 86.45 381 | 24.48 394 | 48.69 389 | 79.16 381 |
|
| PMMVS2 | | | 59.60 351 | 56.40 353 | 69.21 368 | 68.83 392 | 46.58 394 | 73.02 387 | 77.48 390 | 55.07 382 | 49.21 385 | 72.95 383 | 17.43 395 | 80.04 390 | 49.32 381 | 44.33 390 | 80.99 378 |
|
| MVE |  | 39.65 23 | 43.39 358 | 38.59 364 | 57.77 373 | 56.52 397 | 48.77 393 | 55.38 389 | 58.64 399 | 29.33 393 | 28.96 394 | 52.65 390 | 4.68 401 | 64.62 395 | 28.11 392 | 33.07 391 | 59.93 388 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 43.23 359 | 42.29 361 | 46.03 376 | 65.58 394 | 37.41 399 | 73.51 385 | 64.62 396 | 33.99 391 | 28.47 395 | 47.87 392 | 19.90 394 | 67.91 393 | 22.23 395 | 24.45 392 | 32.77 391 |
|
| ANet_high | | | 58.88 354 | 54.22 358 | 72.86 361 | 56.50 398 | 56.67 386 | 80.75 379 | 86.00 364 | 73.09 352 | 37.39 391 | 64.63 388 | 22.17 391 | 79.49 391 | 43.51 385 | 23.96 393 | 82.43 377 |
|
| EMVS | | | 42.07 360 | 41.12 362 | 44.92 377 | 63.45 396 | 35.56 401 | 73.65 384 | 63.48 397 | 33.05 392 | 26.88 396 | 45.45 393 | 21.27 392 | 67.14 394 | 19.80 396 | 23.02 394 | 32.06 392 |
|
| tmp_tt | | | 35.64 361 | 39.24 363 | 24.84 378 | 14.87 401 | 23.90 403 | 62.71 388 | 51.51 401 | 6.58 396 | 36.66 392 | 62.08 389 | 44.37 376 | 30.34 398 | 52.40 379 | 22.00 395 | 20.27 393 |
|
| wuyk23d | | | 21.27 363 | 20.48 366 | 23.63 379 | 68.59 393 | 36.41 400 | 49.57 391 | 6.85 403 | 9.37 395 | 7.89 397 | 4.46 399 | 4.03 402 | 31.37 397 | 17.47 397 | 16.07 396 | 3.12 394 |
|
| testmvs | | | 8.92 364 | 11.52 367 | 1.12 381 | 1.06 402 | 0.46 406 | 86.02 355 | 0.65 404 | 0.62 397 | 2.74 398 | 9.52 397 | 0.31 404 | 0.45 400 | 2.38 398 | 0.39 397 | 2.46 396 |
|
| test123 | | | 8.76 365 | 11.22 368 | 1.39 380 | 0.85 403 | 0.97 405 | 85.76 358 | 0.35 405 | 0.54 398 | 2.45 399 | 8.14 398 | 0.60 403 | 0.48 399 | 2.16 399 | 0.17 398 | 2.71 395 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| cdsmvs_eth3d_5k | | | 22.14 362 | 29.52 365 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 95.76 150 | 0.00 400 | 0.00 401 | 94.29 162 | 75.66 168 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| pcd_1.5k_mvsjas | | | 6.64 367 | 8.86 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 79.70 119 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| ab-mvs-re | | | 7.82 366 | 10.43 369 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 93.88 183 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| WAC-MVS | | | | | | | 64.08 373 | | | | | | | | 59.14 370 | | |
|
| FOURS1 | | | | | | 98.86 1 | 85.54 65 | 98.29 1 | 97.49 6 | 89.79 44 | 96.29 16 | | | | | | |
|
| test_one_0601 | | | | | | 98.58 11 | 85.83 59 | | 97.44 15 | 91.05 14 | 96.78 14 | 98.06 11 | 91.45 11 | | | | |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| test_241102_ONE | | | | | | 98.77 5 | 85.99 51 | | 97.44 15 | 90.26 33 | 97.71 1 | 97.96 17 | 92.31 4 | 99.38 31 | | | |
|
| save fliter | | | | | | 97.85 46 | 85.63 64 | 95.21 109 | 96.82 68 | 89.44 51 | | | | | | | |
|
| test0726 | | | | | | 98.78 3 | 85.93 54 | 97.19 11 | 97.47 11 | 90.27 31 | 97.64 4 | 98.13 3 | 91.47 8 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 96.12 151 |
|
| test_part2 | | | | | | 98.55 12 | 87.22 18 | | | | 96.40 15 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 71.70 219 | | | | 96.12 151 |
|
| sam_mvs | | | | | | | | | | | | | 70.60 232 | | | | |
|
| MTGPA |  | | | | | | | | 96.97 50 | | | | | | | | |
|
| test_post1 | | | | | | | | 88.00 338 | | | | 9.81 396 | 69.31 254 | 95.53 310 | 76.65 279 | | |
|
| test_post | | | | | | | | | | | | 10.29 395 | 70.57 236 | 95.91 298 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 83.76 363 | 71.53 220 | 96.48 270 | | | |
|
| MTMP | | | | | | | | 96.16 53 | 60.64 398 | | | | | | | | |
|
| gm-plane-assit | | | | | | 89.60 337 | 68.00 360 | | | 77.28 311 | | 88.99 316 | | 97.57 187 | 79.44 252 | | |
|
| TEST9 | | | | | | 97.53 58 | 86.49 36 | 94.07 184 | 96.78 72 | 81.61 254 | 92.77 72 | 96.20 85 | 87.71 28 | 99.12 51 | | | |
|
| test_8 | | | | | | 97.49 60 | 86.30 44 | 94.02 189 | 96.76 75 | 81.86 245 | 92.70 76 | 96.20 85 | 87.63 29 | 99.02 61 | | | |
|
| agg_prior | | | | | | 97.38 63 | 85.92 56 | | 96.72 81 | | 92.16 87 | | | 98.97 75 | | | |
|
| test_prior4 | | | | | | | 85.96 53 | 94.11 179 | | | | | | | | | |
|
| test_prior | | | | | 93.82 60 | 97.29 67 | 84.49 82 | | 96.88 61 | | | | | 98.87 82 | | | 98.11 65 |
|
| 旧先验2 | | | | | | | | 93.36 217 | | 71.25 363 | 94.37 37 | | | 97.13 232 | 86.74 144 | | |
|
| 新几何2 | | | | | | | | 93.11 232 | | | | | | | | | |
|
| 无先验 | | | | | | | | 93.28 225 | 96.26 108 | 73.95 343 | | | | 99.05 55 | 80.56 237 | | 96.59 135 |
|
| 原ACMM2 | | | | | | | | 92.94 239 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 98.75 92 | 78.30 263 | | |
|
| segment_acmp | | | | | | | | | | | | | 87.16 34 | | | | |
|
| testdata1 | | | | | | | | 92.15 264 | | 87.94 103 | | | | | | | |
|
| plane_prior7 | | | | | | 94.70 163 | 82.74 139 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 94.52 173 | 82.75 137 | | | | | | 74.23 185 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 94.86 138 | | | | | |
|
| plane_prior3 | | | | | | | 82.75 137 | | | 90.26 33 | 86.91 178 | | | | | | |
|
| plane_prior2 | | | | | | | | 95.85 75 | | 90.81 17 | | | | | | | |
|
| plane_prior1 | | | | | | 94.59 168 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 85.49 366 | | | | | | | | |
|
| test11 | | | | | | | | | 96.57 92 | | | | | | | | |
|
| door | | | | | | | | | 85.33 368 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 81.56 166 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 94.17 187 | | 94.39 163 | | 88.81 72 | 85.43 219 | | | | | | |
|
| ACMP_Plane | | | | | | 94.17 187 | | 94.39 163 | | 88.81 72 | 85.43 219 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.11 141 | | |
|
| HQP4-MVS | | | | | | | | | | | 85.43 219 | | | 97.96 163 | | | 94.51 217 |
|
| HQP2-MVS | | | | | | | | | | | | | 73.83 195 | | | | |
|
| NP-MVS | | | | | | 94.37 181 | 82.42 149 | | | | | 93.98 176 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 55.91 391 | 87.62 345 | | 73.32 349 | 84.59 238 | | 70.33 239 | | 74.65 299 | | 95.50 177 |
|
| Test By Simon | | | | | | | | | | | | | 80.02 114 | | | | |
|