This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft95.20 795.07 995.59 498.14 3688.48 796.26 4197.28 2885.90 13897.67 398.10 288.41 1899.56 894.66 1199.19 198.71 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.57 395.67 395.25 898.36 2587.28 1695.56 7797.51 489.13 5897.14 797.91 991.64 699.62 194.61 1299.17 298.86 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.91 196.28 194.80 3498.77 485.99 5697.13 1097.44 1290.31 2797.71 198.07 492.31 399.58 695.66 399.13 398.84 10
IU-MVS98.77 486.00 5596.84 6381.26 24597.26 695.50 899.13 399.03 5
test_0728_THIRD90.75 1997.04 998.05 692.09 599.55 1395.64 599.13 399.13 1
test_241102_TWO97.44 1290.31 2797.62 598.07 491.46 999.58 695.66 399.12 698.98 7
DVP-MVScopyleft95.67 296.02 294.64 4198.78 285.93 5997.09 1296.73 7790.27 2997.04 998.05 691.47 799.55 1395.62 699.08 798.45 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1698.79 186.43 4297.09 1297.49 599.61 395.62 699.08 798.99 6
No_MVS96.52 197.78 5590.86 196.85 6299.61 396.03 199.06 999.07 4
APDe-MVS95.46 495.64 494.91 2398.26 2886.29 5097.46 297.40 1789.03 6296.20 1398.10 289.39 1499.34 3495.88 299.03 1099.10 3
PC_three_145282.47 21397.09 897.07 4292.72 198.04 15292.70 4099.02 1198.86 8
OPU-MVS96.21 298.00 4490.85 297.13 1097.08 4092.59 298.94 8592.25 4998.99 1298.84 10
ACMMP_NAP94.74 1494.56 1695.28 798.02 4387.70 1195.68 7097.34 1988.28 8295.30 2197.67 1385.90 5099.54 1793.91 1898.95 1398.60 19
HPM-MVS++copyleft95.14 994.91 1195.83 398.25 2989.65 395.92 6096.96 5291.75 794.02 3696.83 5288.12 2299.55 1393.41 2698.94 1498.28 47
MP-MVS-pluss94.21 3394.00 3794.85 2898.17 3486.65 3494.82 12297.17 3886.26 13292.83 6597.87 1085.57 5399.56 894.37 1598.92 1598.34 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 795.32 894.85 2896.99 7786.33 4697.33 397.30 2691.38 1195.39 1997.46 1788.98 1799.40 2994.12 1698.89 1698.82 12
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS94.96 1195.33 793.88 6397.25 7486.69 3196.19 4497.11 4290.42 2696.95 1197.27 2789.53 1296.91 24194.38 1498.85 1798.03 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 695.37 695.50 698.11 3788.51 695.29 9096.96 5292.09 395.32 2097.08 4089.49 1399.33 3795.10 998.85 1798.66 16
CP-MVS94.34 2694.21 2794.74 3898.39 2386.64 3597.60 197.24 3088.53 7592.73 7097.23 3085.20 5899.32 3892.15 5398.83 1998.25 52
ZNCC-MVS94.47 1894.28 2295.03 1598.52 1486.96 1896.85 2497.32 2488.24 8393.15 5697.04 4386.17 4599.62 192.40 4598.81 2098.52 22
MP-MVScopyleft94.25 2994.07 3494.77 3698.47 1786.31 4896.71 2796.98 4889.04 6091.98 8797.19 3485.43 5599.56 892.06 5898.79 2198.44 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS93.89 4393.65 4894.62 4396.84 8086.43 4296.69 2897.49 585.15 16093.56 5096.28 7785.60 5299.31 3992.45 4298.79 2198.12 61
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4897.85 4885.63 6995.21 9695.47 17289.44 4795.71 1697.70 1188.28 2099.35 3293.89 1998.78 2398.48 26
SF-MVS94.97 1094.90 1295.20 997.84 5087.76 996.65 2997.48 787.76 9895.71 1697.70 1188.28 2099.35 3293.89 1998.78 2398.48 26
ACMMPR94.43 2294.28 2294.91 2398.63 886.69 3196.94 1697.32 2488.63 7193.53 5197.26 2985.04 6099.54 1792.35 4798.78 2398.50 24
HFP-MVS94.52 1794.40 1994.86 2698.61 986.81 2596.94 1697.34 1988.63 7193.65 4497.21 3286.10 4699.49 2492.35 4798.77 2698.30 43
#test#94.32 2894.14 3194.86 2698.61 986.81 2596.43 3297.34 1987.51 10493.65 4497.21 3286.10 4699.49 2491.68 7198.77 2698.30 43
ETH3D-3000-0.194.61 1694.44 1895.12 1297.70 5687.71 1095.98 5797.44 1286.67 12495.25 2297.31 2587.73 2699.24 4593.11 3398.76 2898.40 37
zzz-MVS94.47 1894.30 2195.00 1798.42 2086.95 1995.06 10896.97 4991.07 1393.14 5797.56 1484.30 6899.56 893.43 2498.75 2998.47 30
MTAPA94.42 2494.22 2595.00 1798.42 2086.95 1994.36 15896.97 4991.07 1393.14 5797.56 1484.30 6899.56 893.43 2498.75 2998.47 30
region2R94.43 2294.27 2494.92 2198.65 786.67 3396.92 2097.23 3288.60 7393.58 4897.27 2785.22 5799.54 1792.21 5098.74 3198.56 21
test9_res91.91 6498.71 3298.07 65
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11296.52 9180.00 21394.00 18297.08 4390.05 3395.65 1897.29 2689.66 1198.97 8193.95 1798.71 3298.50 24
9.1494.47 1797.79 5296.08 5197.44 1286.13 13695.10 2397.40 2188.34 1999.22 4793.25 3098.70 34
train_agg93.44 5393.08 5894.52 4697.53 5986.49 4094.07 17596.78 7081.86 23192.77 6796.20 8187.63 2899.12 5692.14 5498.69 3597.94 74
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3497.48 6386.78 2795.65 7496.89 5889.40 5092.81 6696.97 4685.37 5699.24 4590.87 8698.69 3598.38 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.94.85 1294.94 1094.58 4498.25 2986.33 4696.11 5096.62 9088.14 8996.10 1496.96 4789.09 1698.94 8594.48 1398.68 3798.48 26
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior290.54 9098.68 3798.27 49
ETH3 D test640093.64 4993.22 5594.92 2197.79 5286.84 2395.31 8497.26 2982.67 21193.81 4096.29 7687.29 3399.27 4389.87 9598.67 3998.65 17
test_prior393.60 5093.53 5093.82 6597.29 7084.49 8694.12 16896.88 5987.67 10192.63 7296.39 7386.62 4098.87 8991.50 7498.67 3998.11 63
test_prior294.12 16887.67 10192.63 7296.39 7386.62 4091.50 7498.67 39
MSLP-MVS++93.72 4694.08 3392.65 10497.31 6883.43 11795.79 6597.33 2290.03 3493.58 4896.96 4784.87 6397.76 16892.19 5298.66 4296.76 123
CDPH-MVS92.83 6592.30 7394.44 4997.79 5286.11 5394.06 17796.66 8780.09 25892.77 6796.63 6386.62 4099.04 6487.40 12398.66 4298.17 56
HPM-MVScopyleft94.02 3793.88 3994.43 5198.39 2385.78 6697.25 697.07 4486.90 11992.62 7496.80 5684.85 6499.17 5192.43 4398.65 4498.33 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 3893.78 4394.63 4298.50 1585.90 6496.87 2296.91 5688.70 6991.83 9397.17 3683.96 7599.55 1391.44 7698.64 4598.43 36
MCST-MVS94.45 2094.20 2895.19 1098.46 1887.50 1495.00 11097.12 4087.13 11192.51 7796.30 7589.24 1599.34 3493.46 2398.62 4698.73 13
APD-MVScopyleft94.24 3094.07 3494.75 3798.06 4186.90 2295.88 6196.94 5485.68 14495.05 2497.18 3587.31 3299.07 5991.90 6798.61 4798.28 47
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS93.96 4093.72 4594.68 3998.43 1986.22 5195.30 8797.78 187.45 10793.26 5297.33 2484.62 6699.51 2290.75 8998.57 4898.32 42
XVS94.45 2094.32 2094.85 2898.54 1286.60 3796.93 1897.19 3590.66 2392.85 6397.16 3785.02 6199.49 2491.99 5998.56 4998.47 30
X-MVStestdata88.31 16586.13 20794.85 2898.54 1286.60 3796.93 1897.19 3590.66 2392.85 6323.41 36585.02 6199.49 2491.99 5998.56 4998.47 30
agg_prior193.29 5892.97 6294.26 5697.38 6585.92 6193.92 18696.72 7981.96 22592.16 8296.23 7987.85 2398.97 8191.95 6398.55 5197.90 78
DELS-MVS93.43 5593.25 5493.97 6095.42 12885.04 7593.06 22397.13 3990.74 2091.84 9195.09 11886.32 4499.21 4891.22 7898.45 5297.65 88
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZD-MVS98.15 3586.62 3697.07 4483.63 18794.19 3196.91 4987.57 3099.26 4491.99 5998.44 53
ETH3D cwj APD-0.1693.91 4193.53 5095.06 1496.76 8287.78 894.92 11597.21 3484.33 17493.89 3997.09 3987.20 3499.29 4291.90 6798.44 5398.12 61
GST-MVS94.21 3393.97 3894.90 2598.41 2286.82 2496.54 3197.19 3588.24 8393.26 5296.83 5285.48 5499.59 591.43 7798.40 5598.30 43
HPM-MVS_fast93.40 5693.22 5593.94 6298.36 2584.83 7797.15 996.80 6985.77 14192.47 7897.13 3882.38 8999.07 5990.51 9198.40 5597.92 77
NCCC94.81 1394.69 1595.17 1197.83 5187.46 1595.66 7296.93 5592.34 293.94 3796.58 6687.74 2599.44 2892.83 3598.40 5598.62 18
testtj94.39 2594.18 2995.00 1798.24 3186.77 2996.16 4597.23 3287.28 10994.85 2597.04 4386.99 3899.52 2191.54 7398.33 5898.71 14
DeepC-MVS88.79 393.31 5792.99 6194.26 5696.07 10685.83 6594.89 11796.99 4789.02 6389.56 12097.37 2382.51 8899.38 3092.20 5198.30 5997.57 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG93.23 6193.05 5993.76 7098.04 4284.07 9996.22 4397.37 1884.15 17690.05 11795.66 10287.77 2499.15 5489.91 9498.27 6098.07 65
原ACMM192.01 13197.34 6781.05 18196.81 6878.89 27290.45 11295.92 9282.65 8698.84 9780.68 21898.26 6196.14 143
CS-MVS92.55 7092.87 6591.58 15494.21 18280.54 19695.30 8796.68 8588.18 8892.09 8594.57 14084.06 7298.05 15192.56 4198.19 6296.15 141
MVS_111021_HR93.45 5293.31 5393.84 6496.99 7784.84 7693.24 21697.24 3088.76 6891.60 9895.85 9586.07 4898.66 10391.91 6498.16 6398.03 69
DROMVSNet93.44 5393.71 4692.63 10595.21 13782.43 14697.27 596.71 8190.57 2592.88 6295.80 9783.16 8098.16 13793.68 2198.14 6497.31 100
test1294.34 5497.13 7586.15 5296.29 10891.04 10885.08 5999.01 7198.13 6597.86 81
新几何193.10 8297.30 6984.35 9595.56 16471.09 34091.26 10496.24 7882.87 8598.86 9279.19 23998.10 6696.07 150
112190.42 10989.49 11593.20 7897.27 7284.46 8992.63 23495.51 17071.01 34191.20 10596.21 8082.92 8499.05 6180.56 22098.07 6796.10 148
MSP-MVS95.42 595.56 594.98 2098.49 1686.52 3996.91 2197.47 891.73 896.10 1496.69 5989.90 1099.30 4094.70 1098.04 6899.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS94.23 3194.17 3094.43 5198.21 3385.78 6696.40 3596.90 5788.20 8694.33 2897.40 2184.75 6599.03 6593.35 2797.99 6998.48 26
test117293.97 3994.07 3493.66 7298.11 3783.45 11696.26 4196.84 6388.33 7994.19 3197.43 1884.24 7099.01 7193.26 2997.98 7098.52 22
3Dnovator86.66 591.73 8390.82 9494.44 4994.59 16786.37 4497.18 897.02 4689.20 5584.31 23596.66 6273.74 19599.17 5186.74 13397.96 7197.79 85
CANet93.54 5193.20 5794.55 4595.65 12285.73 6894.94 11396.69 8491.89 590.69 11095.88 9481.99 10099.54 1793.14 3297.95 7298.39 38
DPM-MVS92.58 6991.74 7995.08 1396.19 9989.31 492.66 23396.56 9683.44 19391.68 9795.04 11986.60 4398.99 7885.60 14497.92 7396.93 119
APD-MVS_3200maxsize93.78 4593.77 4493.80 6997.92 4584.19 9796.30 3796.87 6186.96 11593.92 3897.47 1683.88 7698.96 8492.71 3997.87 7498.26 51
CPTT-MVS91.99 7791.80 7892.55 10998.24 3181.98 15696.76 2696.49 9881.89 23090.24 11496.44 7278.59 13498.61 10889.68 9697.85 7597.06 112
SR-MVS-dyc-post93.82 4493.82 4093.82 6597.92 4584.57 8296.28 3996.76 7387.46 10593.75 4197.43 1884.24 7099.01 7192.73 3697.80 7697.88 79
RE-MVS-def93.68 4797.92 4584.57 8296.28 3996.76 7387.46 10593.75 4197.43 1882.94 8392.73 3697.80 7697.88 79
test22296.55 8981.70 16192.22 24895.01 19968.36 34690.20 11596.14 8680.26 11397.80 7696.05 152
3Dnovator+87.14 492.42 7491.37 8295.55 595.63 12388.73 597.07 1496.77 7290.84 1684.02 24096.62 6475.95 16099.34 3487.77 11897.68 7998.59 20
旧先验196.79 8181.81 15995.67 15696.81 5486.69 3997.66 8096.97 117
Regformer-194.22 3294.13 3294.51 4795.54 12586.36 4594.57 13896.44 9991.69 994.32 2996.56 6887.05 3799.03 6593.35 2797.65 8198.15 58
Regformer-294.33 2794.22 2594.68 3995.54 12586.75 3094.57 13896.70 8291.84 694.41 2696.56 6887.19 3599.13 5593.50 2297.65 8198.16 57
EPNet91.79 8091.02 9094.10 5990.10 31285.25 7496.03 5492.05 28392.83 187.39 15795.78 9879.39 12599.01 7188.13 11597.48 8398.05 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS-test92.55 7092.72 6792.02 13094.87 15381.34 17396.43 3296.57 9489.04 6091.05 10794.41 14383.85 7798.09 14690.83 8897.47 8496.64 128
testdata90.49 19596.40 9377.89 25995.37 18472.51 33393.63 4696.69 5982.08 9797.65 17783.08 17297.39 8595.94 154
MVS_111021_LR92.47 7392.29 7492.98 8895.99 11084.43 9393.08 22196.09 12388.20 8691.12 10695.72 10181.33 10597.76 16891.74 6997.37 8696.75 124
abl_693.18 6293.05 5993.57 7497.52 6184.27 9695.53 7896.67 8687.85 9593.20 5597.22 3180.35 11099.18 5091.91 6497.21 8797.26 103
MVSFormer91.68 8591.30 8392.80 9593.86 19783.88 10495.96 5895.90 13984.66 17091.76 9494.91 12277.92 14297.30 20989.64 9797.11 8897.24 104
lupinMVS90.92 9690.21 10093.03 8693.86 19783.88 10492.81 23093.86 24679.84 26191.76 9494.29 14877.92 14298.04 15290.48 9297.11 8897.17 108
EIA-MVS91.95 7891.94 7691.98 13495.16 13980.01 21295.36 8196.73 7788.44 7689.34 12492.16 22283.82 7898.45 11989.35 10097.06 9097.48 96
MG-MVS91.77 8191.70 8092.00 13397.08 7680.03 21193.60 19995.18 19287.85 9590.89 10996.47 7182.06 9898.36 12385.07 14897.04 9197.62 89
jason90.80 9790.10 10492.90 9293.04 22383.53 11493.08 22194.15 23680.22 25591.41 10194.91 12276.87 14897.93 16290.28 9396.90 9297.24 104
jason: jason.
Vis-MVSNetpermissive91.75 8291.23 8593.29 7595.32 13283.78 10796.14 4795.98 13189.89 3690.45 11296.58 6675.09 17298.31 13084.75 15496.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
114514_t89.51 13088.50 14092.54 11098.11 3781.99 15595.16 10196.36 10670.19 34385.81 18495.25 11276.70 15298.63 10682.07 19196.86 9497.00 116
Vis-MVSNet (Re-imp)89.59 12889.44 11790.03 21595.74 11875.85 29095.61 7590.80 31887.66 10387.83 14695.40 10976.79 15096.46 26778.37 24496.73 9597.80 84
API-MVS90.66 10390.07 10592.45 11496.36 9584.57 8296.06 5395.22 19182.39 21489.13 12694.27 15180.32 11198.46 11680.16 22796.71 9694.33 218
MAR-MVS90.30 11089.37 12093.07 8596.61 8684.48 8895.68 7095.67 15682.36 21687.85 14592.85 20076.63 15498.80 9980.01 22896.68 9795.91 155
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Regformer-393.68 4793.64 4993.81 6895.36 12984.61 8094.68 13095.83 14591.27 1293.60 4796.71 5785.75 5198.86 9292.87 3496.65 9897.96 73
Regformer-493.91 4193.81 4194.19 5895.36 12985.47 7194.68 13096.41 10291.60 1093.75 4196.71 5785.95 4999.10 5893.21 3196.65 9898.01 71
OpenMVScopyleft83.78 1188.74 15587.29 17093.08 8392.70 23285.39 7296.57 3096.43 10178.74 27780.85 28596.07 8869.64 24599.01 7178.01 25096.65 9894.83 194
ETV-MVS92.74 6792.66 6892.97 8995.20 13884.04 10195.07 10596.51 9790.73 2192.96 6191.19 25584.06 7298.34 12691.72 7096.54 10196.54 133
QAPM89.51 13088.15 15193.59 7394.92 15084.58 8196.82 2596.70 8278.43 28183.41 25696.19 8473.18 20399.30 4077.11 25996.54 10196.89 121
IS-MVSNet91.43 8791.09 8992.46 11395.87 11681.38 17296.95 1593.69 25189.72 4389.50 12295.98 9078.57 13597.77 16783.02 17496.50 10398.22 54
DP-MVS Recon91.95 7891.28 8493.96 6198.33 2785.92 6194.66 13396.66 8782.69 21090.03 11895.82 9682.30 9299.03 6584.57 15696.48 10496.91 120
CANet_DTU90.26 11289.41 11992.81 9493.46 21183.01 12993.48 20294.47 22489.43 4987.76 14994.23 15270.54 23599.03 6584.97 14996.39 10596.38 135
UGNet89.95 11988.95 13192.95 9094.51 17083.31 12095.70 6995.23 18989.37 5187.58 15193.94 16264.00 29598.78 10083.92 16396.31 10696.74 125
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.66 4893.41 5294.41 5396.59 8786.78 2794.40 15093.93 24289.77 4194.21 3095.59 10587.35 3198.61 10892.72 3896.15 10797.83 83
PVSNet_Blended90.73 10090.32 9991.98 13496.12 10181.25 17592.55 23896.83 6582.04 22389.10 12792.56 21081.04 10798.85 9586.72 13595.91 10895.84 159
PS-MVSNAJ91.18 9390.92 9191.96 13695.26 13582.60 14592.09 25395.70 15486.27 13191.84 9192.46 21279.70 12098.99 7889.08 10395.86 10994.29 219
ACMMPcopyleft93.24 6092.88 6494.30 5598.09 4085.33 7396.86 2397.45 1188.33 7990.15 11697.03 4581.44 10399.51 2290.85 8795.74 11098.04 68
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LCM-MVSNet-Re88.30 16688.32 14788.27 26694.71 16272.41 32193.15 21790.98 31287.77 9779.25 30791.96 23478.35 13895.75 29883.04 17395.62 11196.65 127
CHOSEN 1792x268888.84 15287.69 16092.30 12396.14 10081.42 17190.01 29195.86 14374.52 31787.41 15493.94 16275.46 16998.36 12380.36 22395.53 11297.12 111
AdaColmapbinary89.89 12289.07 12892.37 11997.41 6483.03 12794.42 14995.92 13682.81 20886.34 17794.65 13573.89 19199.02 6980.69 21795.51 11395.05 182
MVS87.44 19686.10 21091.44 16092.61 23483.62 11292.63 23495.66 15867.26 34781.47 27792.15 22377.95 14198.22 13479.71 23195.48 11492.47 295
UA-Net92.83 6592.54 7093.68 7196.10 10484.71 7995.66 7296.39 10491.92 493.22 5496.49 7083.16 8098.87 8984.47 15795.47 11597.45 98
xiu_mvs_v2_base91.13 9490.89 9391.86 14294.97 14682.42 14792.24 24795.64 16186.11 13791.74 9693.14 19279.67 12398.89 8889.06 10495.46 11694.28 220
casdiffmvs92.51 7292.43 7292.74 9994.41 17681.98 15694.54 14096.23 11489.57 4591.96 8896.17 8582.58 8798.01 15590.95 8495.45 11798.23 53
PVSNet_Blended_VisFu91.38 8890.91 9292.80 9596.39 9483.17 12394.87 11996.66 8783.29 19789.27 12594.46 14280.29 11299.17 5187.57 12195.37 11896.05 152
PAPM_NR91.22 9290.78 9592.52 11197.60 5881.46 16994.37 15796.24 11386.39 13087.41 15494.80 12982.06 9898.48 11482.80 18095.37 11897.61 90
CHOSEN 280x42085.15 25383.99 25588.65 25792.47 23578.40 24779.68 35392.76 26674.90 31481.41 27989.59 29369.85 24395.51 30579.92 23095.29 12092.03 305
TAPA-MVS84.62 688.16 16987.01 17791.62 15296.64 8580.65 19294.39 15296.21 11876.38 29786.19 18095.44 10679.75 11898.08 14862.75 34295.29 12096.13 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline92.39 7592.29 7492.69 10394.46 17381.77 16094.14 16796.27 10989.22 5491.88 8996.00 8982.35 9097.99 15791.05 8095.27 12298.30 43
LS3D87.89 17586.32 20292.59 10796.07 10682.92 13295.23 9494.92 20775.66 30482.89 26395.98 9072.48 21199.21 4868.43 31695.23 12395.64 167
MVS_Test91.31 9091.11 8791.93 13894.37 17780.14 20493.46 20495.80 14786.46 12791.35 10393.77 17382.21 9498.09 14687.57 12194.95 12497.55 95
PAPR90.02 11689.27 12592.29 12495.78 11780.95 18592.68 23296.22 11581.91 22886.66 17093.75 17582.23 9398.44 12079.40 23894.79 12597.48 96
xiu_mvs_v1_base_debu90.64 10490.05 10692.40 11593.97 19484.46 8993.32 20695.46 17385.17 15792.25 7994.03 15470.59 23198.57 11090.97 8194.67 12694.18 221
xiu_mvs_v1_base90.64 10490.05 10692.40 11593.97 19484.46 8993.32 20695.46 17385.17 15792.25 7994.03 15470.59 23198.57 11090.97 8194.67 12694.18 221
xiu_mvs_v1_base_debi90.64 10490.05 10692.40 11593.97 19484.46 8993.32 20695.46 17385.17 15792.25 7994.03 15470.59 23198.57 11090.97 8194.67 12694.18 221
gg-mvs-nofinetune81.77 28579.37 29888.99 24990.85 29477.73 26686.29 33079.63 36174.88 31583.19 26169.05 35660.34 31796.11 28275.46 27394.64 12993.11 276
BH-RMVSNet88.37 16387.48 16591.02 17795.28 13379.45 22392.89 22893.07 26085.45 15186.91 16594.84 12870.35 23697.76 16873.97 28594.59 13095.85 158
diffmvs91.37 8991.23 8591.77 14893.09 22080.27 20192.36 24395.52 16987.03 11491.40 10294.93 12180.08 11497.44 19492.13 5594.56 13197.61 90
BH-untuned88.60 15988.13 15290.01 21795.24 13678.50 24493.29 21194.15 23684.75 16884.46 22593.40 18075.76 16397.40 20377.59 25394.52 13294.12 225
Effi-MVS+91.59 8691.11 8793.01 8794.35 18083.39 11994.60 13595.10 19687.10 11290.57 11193.10 19481.43 10498.07 14989.29 10194.48 13397.59 92
PCF-MVS84.11 1087.74 18086.08 21192.70 10294.02 18884.43 9389.27 30195.87 14273.62 32484.43 22794.33 14578.48 13798.86 9270.27 30294.45 13494.81 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-Vis-set93.01 6492.92 6393.29 7595.01 14383.51 11594.48 14295.77 14990.87 1592.52 7696.67 6184.50 6799.00 7691.99 5994.44 13597.36 99
MS-PatchMatch85.05 25584.16 25287.73 27891.42 26878.51 24391.25 27093.53 25277.50 28880.15 29591.58 24661.99 30495.51 30575.69 27194.35 13689.16 341
mvs_anonymous89.37 13989.32 12289.51 23793.47 21074.22 30191.65 26494.83 21382.91 20685.45 20093.79 17181.23 10696.36 27386.47 13794.09 13797.94 74
MVP-Stereo85.97 23784.86 24389.32 23990.92 29082.19 15292.11 25294.19 23478.76 27678.77 30991.63 24468.38 26496.56 25975.01 27993.95 13889.20 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS90.08 11489.13 12792.95 9096.71 8382.32 15196.08 5189.91 33386.79 12092.15 8496.81 5462.60 30098.34 12687.18 12793.90 13998.19 55
PVSNet78.82 1885.55 24484.65 24788.23 26994.72 16171.93 32287.12 32692.75 26778.80 27584.95 21690.53 27564.43 29496.71 24874.74 28093.86 14096.06 151
CNLPA89.07 14487.98 15592.34 12096.87 7984.78 7894.08 17493.24 25681.41 24184.46 22595.13 11775.57 16896.62 25177.21 25793.84 14195.61 168
EPNet_dtu86.49 23185.94 21788.14 27190.24 31072.82 31394.11 17092.20 27986.66 12579.42 30692.36 21673.52 19695.81 29671.26 29693.66 14295.80 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GeoE90.05 11589.43 11891.90 14195.16 13980.37 20095.80 6494.65 22183.90 18187.55 15394.75 13078.18 14097.62 18181.28 20693.63 14397.71 87
EI-MVSNet-UG-set92.74 6792.62 6993.12 8194.86 15583.20 12294.40 15095.74 15290.71 2292.05 8696.60 6584.00 7498.99 7891.55 7293.63 14397.17 108
Fast-Effi-MVS+89.41 13688.64 13791.71 15094.74 15980.81 18993.54 20095.10 19683.11 20086.82 16890.67 27379.74 11997.75 17180.51 22293.55 14596.57 131
131487.51 19386.57 19390.34 20492.42 23779.74 21992.63 23495.35 18678.35 28280.14 29691.62 24574.05 18897.15 22281.05 20893.53 14694.12 225
BH-w/o87.57 19187.05 17689.12 24494.90 15277.90 25892.41 24093.51 25382.89 20783.70 24891.34 24975.75 16497.07 23075.49 27293.49 14792.39 298
PMMVS85.71 24384.96 24087.95 27588.90 32577.09 27688.68 31190.06 32972.32 33486.47 17190.76 27172.15 21494.40 32081.78 19993.49 14792.36 299
PatchMatch-RL86.77 22285.54 22790.47 19795.88 11482.71 14090.54 28092.31 27679.82 26284.32 23391.57 24868.77 25996.39 27073.16 29093.48 14992.32 301
PLCcopyleft84.53 789.06 14588.03 15392.15 12797.27 7282.69 14194.29 16095.44 17879.71 26384.01 24194.18 15376.68 15398.75 10177.28 25693.41 15095.02 183
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet92.24 7691.91 7793.24 7796.59 8783.43 11794.84 12196.44 9989.19 5694.08 3595.90 9377.85 14598.17 13688.90 10593.38 15198.13 60
test-LLR85.87 23985.41 23087.25 29090.95 28671.67 32489.55 29589.88 33583.41 19484.54 22287.95 31667.25 26795.11 31481.82 19793.37 15294.97 184
test-mter84.54 26383.64 26187.25 29090.95 28671.67 32489.55 29589.88 33579.17 26884.54 22287.95 31655.56 33495.11 31481.82 19793.37 15294.97 184
EPP-MVSNet91.70 8491.56 8192.13 12895.88 11480.50 19897.33 395.25 18886.15 13489.76 11995.60 10483.42 7998.32 12987.37 12593.25 15497.56 94
CDS-MVSNet89.45 13388.51 13992.29 12493.62 20683.61 11393.01 22494.68 22081.95 22687.82 14793.24 18878.69 13296.99 23680.34 22493.23 15596.28 138
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM86.68 22385.39 23190.53 19193.05 22279.33 23089.79 29494.77 21878.82 27481.95 27493.24 18876.81 14997.30 20966.94 32593.16 15694.95 190
alignmvs93.08 6392.50 7194.81 3395.62 12487.61 1395.99 5596.07 12589.77 4194.12 3394.87 12480.56 10998.66 10392.42 4493.10 15798.15 58
mvs-test189.45 13389.14 12690.38 20193.33 21377.63 26894.95 11294.36 22787.70 9987.10 16192.81 20473.45 19898.03 15485.57 14593.04 15895.48 170
thisisatest051587.33 19985.99 21391.37 16293.49 20979.55 22090.63 27989.56 34080.17 25687.56 15290.86 26667.07 27198.28 13181.50 20493.02 15996.29 137
TAMVS89.21 14188.29 14891.96 13693.71 20382.62 14493.30 21094.19 23482.22 21887.78 14893.94 16278.83 12996.95 23877.70 25292.98 16096.32 136
OMC-MVS91.23 9190.62 9693.08 8396.27 9784.07 9993.52 20195.93 13586.95 11689.51 12196.13 8778.50 13698.35 12585.84 14192.90 16196.83 122
canonicalmvs93.27 5992.75 6694.85 2895.70 12187.66 1296.33 3696.41 10290.00 3594.09 3494.60 13782.33 9198.62 10792.40 4592.86 16298.27 49
TESTMET0.1,183.74 27182.85 27086.42 30589.96 31671.21 32889.55 29587.88 34477.41 28983.37 25787.31 32556.71 33193.65 33280.62 21992.85 16394.40 217
thisisatest053088.67 15687.61 16391.86 14294.87 15380.07 20794.63 13489.90 33484.00 17988.46 13593.78 17266.88 27498.46 11683.30 17092.65 16497.06 112
VDD-MVS90.74 9989.92 11193.20 7896.27 9783.02 12895.73 6793.86 24688.42 7892.53 7596.84 5162.09 30398.64 10590.95 8492.62 16597.93 76
test_yl90.69 10190.02 10992.71 10095.72 11982.41 14994.11 17095.12 19485.63 14591.49 9994.70 13174.75 17698.42 12186.13 13992.53 16697.31 100
DCV-MVSNet90.69 10190.02 10992.71 10095.72 11982.41 14994.11 17095.12 19485.63 14591.49 9994.70 13174.75 17698.42 12186.13 13992.53 16697.31 100
VDDNet89.56 12988.49 14292.76 9795.07 14282.09 15396.30 3793.19 25881.05 25091.88 8996.86 5061.16 31398.33 12888.43 11192.49 16897.84 82
DP-MVS87.25 20385.36 23392.90 9297.65 5783.24 12194.81 12392.00 28574.99 31281.92 27595.00 12072.66 20899.05 6166.92 32792.33 16996.40 134
GG-mvs-BLEND87.94 27689.73 32077.91 25787.80 31978.23 36380.58 28983.86 34059.88 32195.33 31171.20 29792.22 17090.60 330
tttt051788.61 15887.78 15991.11 17294.96 14777.81 26295.35 8289.69 33785.09 16288.05 14294.59 13866.93 27298.48 11483.27 17192.13 17197.03 114
HyFIR lowres test88.09 17186.81 18191.93 13896.00 10980.63 19390.01 29195.79 14873.42 32587.68 15092.10 22873.86 19297.96 15980.75 21691.70 17297.19 107
sss88.93 15088.26 15090.94 18394.05 18780.78 19091.71 26195.38 18281.55 23988.63 13293.91 16675.04 17395.47 30982.47 18491.61 17396.57 131
cascas86.43 23284.98 23990.80 18592.10 24580.92 18690.24 28595.91 13873.10 32883.57 25388.39 30965.15 29097.46 19184.90 15291.43 17494.03 232
Effi-MVS+-dtu88.65 15788.35 14489.54 23493.33 21376.39 28594.47 14594.36 22787.70 9985.43 20389.56 29573.45 19897.26 21585.57 14591.28 17594.97 184
thres100view90087.63 18686.71 18590.38 20196.12 10178.55 24195.03 10991.58 29687.15 11088.06 14192.29 21968.91 25798.10 14070.13 30691.10 17694.48 214
tfpn200view987.58 19086.64 18890.41 19895.99 11078.64 23994.58 13691.98 28786.94 11788.09 13891.77 23869.18 25498.10 14070.13 30691.10 17694.48 214
thres600view787.65 18386.67 18790.59 18896.08 10578.72 23794.88 11891.58 29687.06 11388.08 14092.30 21868.91 25798.10 14070.05 30991.10 17694.96 187
thres40087.62 18886.64 18890.57 18995.99 11078.64 23994.58 13691.98 28786.94 11788.09 13891.77 23869.18 25498.10 14070.13 30691.10 17694.96 187
F-COLMAP87.95 17486.80 18291.40 16196.35 9680.88 18794.73 12895.45 17679.65 26482.04 27394.61 13671.13 22298.50 11376.24 26791.05 18094.80 196
thres20087.21 20786.24 20590.12 21195.36 12978.53 24293.26 21392.10 28186.42 12988.00 14391.11 26169.24 25398.00 15669.58 31091.04 18193.83 243
WTY-MVS89.60 12788.92 13291.67 15195.47 12781.15 17992.38 24294.78 21783.11 20089.06 12994.32 14678.67 13396.61 25481.57 20390.89 18297.24 104
HY-MVS83.01 1289.03 14687.94 15792.29 12494.86 15582.77 13492.08 25494.49 22381.52 24086.93 16392.79 20678.32 13998.23 13279.93 22990.55 18395.88 157
CLD-MVS89.47 13288.90 13391.18 16894.22 18182.07 15492.13 25196.09 12387.90 9385.37 20992.45 21374.38 18197.56 18487.15 12890.43 18493.93 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CVMVSNet84.69 26284.79 24584.37 32291.84 25364.92 35393.70 19691.47 30166.19 34986.16 18195.28 11067.18 26993.33 33580.89 21490.42 18594.88 192
SCA86.32 23385.18 23589.73 22992.15 24176.60 28191.12 27291.69 29483.53 19185.50 19688.81 30266.79 27596.48 26476.65 26290.35 18696.12 145
Fast-Effi-MVS+-dtu87.44 19686.72 18489.63 23292.04 24677.68 26794.03 17993.94 24185.81 13982.42 26791.32 25270.33 23797.06 23180.33 22590.23 18794.14 224
OPM-MVS90.12 11389.56 11491.82 14593.14 21883.90 10394.16 16695.74 15288.96 6487.86 14495.43 10872.48 21197.91 16388.10 11690.18 18893.65 254
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 10790.19 10191.82 14594.70 16382.73 13895.85 6296.22 11590.81 1786.91 16594.86 12574.23 18398.12 13888.15 11389.99 18994.63 200
plane_prior596.22 11598.12 13888.15 11389.99 18994.63 200
XVG-OURS89.40 13888.70 13691.52 15594.06 18681.46 16991.27 26996.07 12586.14 13588.89 13195.77 9968.73 26097.26 21587.39 12489.96 19195.83 160
baseline286.50 22985.39 23189.84 22291.12 28076.70 28091.88 25588.58 34282.35 21779.95 30090.95 26573.42 20097.63 18080.27 22689.95 19295.19 179
Anonymous20240521187.68 18186.13 20792.31 12296.66 8480.74 19194.87 11991.49 30080.47 25489.46 12395.44 10654.72 33898.23 13282.19 18989.89 19397.97 72
plane_prior82.73 13895.21 9689.66 4489.88 194
TR-MVS86.78 21985.76 22489.82 22394.37 17778.41 24692.47 23992.83 26481.11 24986.36 17692.40 21468.73 26097.48 18973.75 28889.85 19593.57 256
HQP3-MVS96.04 12989.77 196
HQP-MVS89.80 12489.28 12491.34 16394.17 18381.56 16394.39 15296.04 12988.81 6585.43 20393.97 16173.83 19397.96 15987.11 13089.77 19694.50 211
XVG-OURS-SEG-HR89.95 11989.45 11691.47 15994.00 19281.21 17891.87 25696.06 12785.78 14088.55 13395.73 10074.67 17997.27 21388.71 10889.64 19895.91 155
GA-MVS86.61 22485.27 23490.66 18691.33 27378.71 23890.40 28293.81 24985.34 15485.12 21389.57 29461.25 31097.11 22680.99 21289.59 19996.15 141
1112_ss88.42 16187.33 16991.72 14994.92 15080.98 18392.97 22694.54 22278.16 28683.82 24593.88 16778.78 13197.91 16379.45 23489.41 20096.26 139
ab-mvs89.41 13688.35 14492.60 10695.15 14182.65 14392.20 24995.60 16383.97 18088.55 13393.70 17774.16 18798.21 13582.46 18589.37 20196.94 118
CR-MVSNet85.35 24883.76 25890.12 21190.58 30379.34 22785.24 33691.96 28978.27 28385.55 19187.87 31971.03 22495.61 30073.96 28689.36 20295.40 174
RPMNet83.95 26881.53 27891.21 16690.58 30379.34 22785.24 33696.76 7371.44 33885.55 19182.97 34570.87 22798.91 8761.01 34689.36 20295.40 174
DSMNet-mixed76.94 31776.29 31678.89 33483.10 35456.11 36187.78 32079.77 36060.65 35375.64 32888.71 30561.56 30788.34 35560.07 34989.29 20492.21 304
LPG-MVS_test89.45 13388.90 13391.12 16994.47 17181.49 16795.30 8796.14 12086.73 12285.45 20095.16 11569.89 24198.10 14087.70 11989.23 20593.77 248
LGP-MVS_train91.12 16994.47 17181.49 16796.14 12086.73 12285.45 20095.16 11569.89 24198.10 14087.70 11989.23 20593.77 248
Test_1112_low_res87.65 18386.51 19591.08 17394.94 14979.28 23191.77 25894.30 23076.04 30283.51 25492.37 21577.86 14497.73 17278.69 24389.13 20796.22 140
PatchmatchNetpermissive85.85 24084.70 24689.29 24091.76 25675.54 29388.49 31391.30 30481.63 23785.05 21488.70 30671.71 21596.24 27774.61 28289.05 20896.08 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.56 26291.69 26069.93 33887.75 32191.54 29878.60 27984.86 21788.90 30169.54 24696.03 28470.25 30388.93 209
MIMVSNet82.59 27980.53 28488.76 25291.51 26378.32 24886.57 32990.13 32779.32 26580.70 28788.69 30752.98 34593.07 33966.03 33088.86 21094.90 191
ACMM84.12 989.14 14288.48 14391.12 16994.65 16681.22 17795.31 8496.12 12285.31 15585.92 18394.34 14470.19 23998.06 15085.65 14388.86 21094.08 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP84.23 889.01 14888.35 14490.99 18094.73 16081.27 17495.07 10595.89 14186.48 12683.67 24994.30 14769.33 24997.99 15787.10 13288.55 21293.72 252
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf89.03 14688.64 13790.21 20690.74 29879.28 23195.96 5895.90 13984.66 17085.33 21192.94 19874.02 18997.30 20989.64 9788.53 21394.05 231
jajsoiax88.24 16787.50 16490.48 19690.89 29280.14 20495.31 8495.65 16084.97 16484.24 23794.02 15765.31 28997.42 19688.56 10988.52 21493.89 236
PatchT82.68 27881.27 28086.89 30090.09 31370.94 33284.06 34290.15 32674.91 31385.63 19083.57 34269.37 24894.87 31865.19 33288.50 21594.84 193
MSDG84.86 25983.09 26690.14 21093.80 20080.05 20989.18 30493.09 25978.89 27278.19 31091.91 23565.86 28897.27 21368.47 31588.45 21693.11 276
MVS-HIRNet73.70 32072.20 32378.18 33691.81 25556.42 36082.94 34882.58 35555.24 35568.88 34866.48 35755.32 33695.13 31358.12 35188.42 21783.01 352
mvs_tets88.06 17387.28 17190.38 20190.94 28879.88 21595.22 9595.66 15885.10 16184.21 23893.94 16263.53 29797.40 20388.50 11088.40 21893.87 239
ET-MVSNet_ETH3D87.51 19385.91 21892.32 12193.70 20583.93 10292.33 24490.94 31484.16 17572.09 34392.52 21169.90 24095.85 29389.20 10288.36 21997.17 108
FIs90.51 10890.35 9890.99 18093.99 19380.98 18395.73 6797.54 389.15 5786.72 16994.68 13381.83 10297.24 21785.18 14788.31 22094.76 197
MVS_030483.46 27281.92 27588.10 27290.63 30277.49 27193.26 21393.75 25080.04 25980.44 29287.24 32747.94 35395.55 30275.79 27088.16 22191.26 318
PS-MVSNAJss89.97 11889.62 11391.02 17791.90 25180.85 18895.26 9395.98 13186.26 13286.21 17994.29 14879.70 12097.65 17788.87 10688.10 22294.57 206
CMPMVSbinary59.16 2180.52 30079.20 30284.48 32183.98 35167.63 34789.95 29393.84 24864.79 35066.81 35191.14 26057.93 32995.17 31276.25 26688.10 22290.65 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FC-MVSNet-test90.27 11190.18 10290.53 19193.71 20379.85 21795.77 6697.59 289.31 5286.27 17894.67 13481.93 10197.01 23584.26 15988.09 22494.71 198
ACMMP++88.01 225
D2MVS85.90 23885.09 23788.35 26490.79 29577.42 27291.83 25795.70 15480.77 25280.08 29890.02 28566.74 27796.37 27181.88 19687.97 22691.26 318
UniMVSNet_ETH3D87.53 19286.37 19891.00 17992.44 23678.96 23694.74 12795.61 16284.07 17885.36 21094.52 14159.78 32297.34 20882.93 17587.88 22796.71 126
PVSNet_BlendedMVS89.98 11789.70 11290.82 18496.12 10181.25 17593.92 18696.83 6583.49 19289.10 12792.26 22081.04 10798.85 9586.72 13587.86 22892.35 300
anonymousdsp87.84 17687.09 17490.12 21189.13 32280.54 19694.67 13295.55 16582.05 22183.82 24592.12 22571.47 22097.15 22287.15 12887.80 22992.67 289
Anonymous2024052988.09 17186.59 19292.58 10896.53 9081.92 15895.99 5595.84 14474.11 32089.06 12995.21 11461.44 30898.81 9883.67 16887.47 23097.01 115
ACMMP++_ref87.47 230
XVG-ACMP-BASELINE86.00 23684.84 24489.45 23891.20 27578.00 25591.70 26295.55 16585.05 16382.97 26292.25 22154.49 33997.48 18982.93 17587.45 23292.89 284
EI-MVSNet89.10 14388.86 13589.80 22691.84 25378.30 24993.70 19695.01 19985.73 14287.15 15895.28 11079.87 11797.21 22083.81 16587.36 23393.88 238
MVSTER88.84 15288.29 14890.51 19492.95 22880.44 19993.73 19395.01 19984.66 17087.15 15893.12 19372.79 20797.21 22087.86 11787.36 23393.87 239
EG-PatchMatch MVS82.37 28180.34 28788.46 26190.27 30979.35 22692.80 23194.33 22977.14 29373.26 34090.18 28147.47 35596.72 24670.25 30387.32 23589.30 338
EPMVS83.90 27082.70 27287.51 28290.23 31172.67 31588.62 31281.96 35781.37 24285.01 21588.34 31066.31 28294.45 31975.30 27587.12 23695.43 173
tpm284.08 26682.94 26887.48 28591.39 26971.27 32689.23 30390.37 32371.95 33684.64 21989.33 29667.30 26696.55 26175.17 27687.09 23794.63 200
CostFormer85.77 24284.94 24188.26 26791.16 27972.58 31989.47 29991.04 31176.26 30086.45 17489.97 28770.74 22996.86 24482.35 18687.07 23895.34 177
Patchmatch-test81.37 29379.30 29987.58 28190.92 29074.16 30380.99 35187.68 34770.52 34276.63 32288.81 30271.21 22192.76 34160.01 35086.93 23995.83 160
RRT_MVS88.86 15187.68 16192.39 11892.02 24886.09 5494.38 15694.94 20285.45 15187.14 16093.84 17065.88 28797.11 22688.73 10786.77 24093.98 234
LTVRE_ROB82.13 1386.26 23484.90 24290.34 20494.44 17581.50 16592.31 24694.89 20883.03 20279.63 30492.67 20769.69 24497.79 16671.20 29786.26 24191.72 309
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft80.39 1683.96 26782.04 27489.74 22795.28 13379.75 21894.25 16292.28 27775.17 31078.02 31393.77 17358.60 32797.84 16565.06 33585.92 24291.63 311
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DWT-MVSNet_test84.95 25783.68 25988.77 25191.43 26773.75 30591.74 26090.98 31280.66 25383.84 24487.36 32462.44 30197.11 22678.84 24285.81 24395.46 171
RPSCF85.07 25484.27 25187.48 28592.91 22970.62 33491.69 26392.46 27276.20 30182.67 26695.22 11363.94 29697.29 21277.51 25585.80 24494.53 208
USDC82.76 27681.26 28187.26 28991.17 27774.55 29789.27 30193.39 25578.26 28475.30 33092.08 22954.43 34096.63 25071.64 29585.79 24590.61 328
GBi-Net87.26 20185.98 21491.08 17394.01 18983.10 12495.14 10294.94 20283.57 18884.37 22891.64 24166.59 27996.34 27478.23 24785.36 24693.79 244
test187.26 20185.98 21491.08 17394.01 18983.10 12495.14 10294.94 20283.57 18884.37 22891.64 24166.59 27996.34 27478.23 24785.36 24693.79 244
FMVSNet387.40 19886.11 20991.30 16493.79 20283.64 11194.20 16594.81 21583.89 18284.37 22891.87 23768.45 26396.56 25978.23 24785.36 24693.70 253
FMVSNet287.19 20885.82 22091.30 16494.01 18983.67 11094.79 12494.94 20283.57 18883.88 24392.05 23266.59 27996.51 26277.56 25485.01 24993.73 251
ACMH80.38 1785.36 24783.68 25990.39 19994.45 17480.63 19394.73 12894.85 21182.09 22077.24 31792.65 20860.01 32097.58 18272.25 29484.87 25092.96 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF88.24 26891.88 25277.05 27792.92 26285.54 14880.13 29793.30 18557.29 33096.20 27872.46 29384.71 25191.49 313
JIA-IIPM81.04 29678.98 30687.25 29088.64 32673.48 30781.75 35089.61 33973.19 32782.05 27273.71 35366.07 28695.87 29271.18 29984.60 25292.41 297
bset_n11_16_dypcd86.83 21685.55 22690.65 18788.22 33381.70 16188.88 30890.42 32185.26 15685.49 19790.69 27267.11 27097.02 23489.51 9984.39 25393.23 270
OpenMVS_ROBcopyleft74.94 1979.51 30877.03 31486.93 29787.00 33976.23 28892.33 24490.74 31968.93 34574.52 33488.23 31349.58 35096.62 25157.64 35284.29 25487.94 349
AllTest83.42 27381.39 27989.52 23595.01 14377.79 26393.12 21890.89 31677.41 28976.12 32593.34 18154.08 34197.51 18768.31 31784.27 25593.26 266
TestCases89.52 23595.01 14377.79 26390.89 31677.41 28976.12 32593.34 18154.08 34197.51 18768.31 31784.27 25593.26 266
tpm84.73 26084.02 25486.87 30190.33 30868.90 34189.06 30589.94 33280.85 25185.75 18589.86 28968.54 26295.97 28777.76 25184.05 25795.75 163
FMVSNet185.85 24084.11 25391.08 17392.81 23083.10 12495.14 10294.94 20281.64 23682.68 26591.64 24159.01 32696.34 27475.37 27483.78 25893.79 244
ADS-MVSNet281.66 28879.71 29687.50 28391.35 27174.19 30283.33 34588.48 34372.90 33082.24 27085.77 33664.98 29193.20 33764.57 33683.74 25995.12 180
ADS-MVSNet81.56 29079.78 29486.90 29991.35 27171.82 32383.33 34589.16 34172.90 33082.24 27085.77 33664.98 29193.76 33064.57 33683.74 25995.12 180
XXY-MVS87.65 18386.85 18090.03 21592.14 24280.60 19593.76 19295.23 18982.94 20584.60 22094.02 15774.27 18295.49 30881.04 20983.68 26194.01 233
test_040281.30 29579.17 30387.67 27993.19 21778.17 25292.98 22591.71 29275.25 30976.02 32790.31 27959.23 32496.37 27150.22 35783.63 26288.47 347
tpmvs83.35 27582.07 27387.20 29491.07 28271.00 33188.31 31691.70 29378.91 27180.49 29187.18 32869.30 25297.08 22968.12 32083.56 26393.51 260
pmmvs584.21 26582.84 27188.34 26588.95 32476.94 27892.41 24091.91 29175.63 30580.28 29391.18 25764.59 29395.57 30177.09 26083.47 26492.53 293
pmmvs485.43 24683.86 25790.16 20890.02 31582.97 13190.27 28392.67 26975.93 30380.73 28691.74 24071.05 22395.73 29978.85 24183.46 26591.78 308
test0.0.03 182.41 28081.69 27684.59 32088.23 33272.89 31290.24 28587.83 34583.41 19479.86 30189.78 29167.25 26788.99 35465.18 33383.42 26691.90 307
tpmrst85.35 24884.99 23886.43 30490.88 29367.88 34588.71 31091.43 30280.13 25786.08 18288.80 30473.05 20496.02 28582.48 18383.40 26795.40 174
nrg03091.08 9590.39 9793.17 8093.07 22186.91 2196.41 3496.26 11088.30 8188.37 13794.85 12782.19 9597.64 17991.09 7982.95 26894.96 187
cl-mvsnet286.78 21985.98 21489.18 24392.34 23877.62 26990.84 27694.13 23881.33 24383.97 24290.15 28273.96 19096.60 25684.19 16082.94 26993.33 264
miper_ehance_all_eth87.22 20686.62 19189.02 24892.13 24377.40 27390.91 27594.81 21581.28 24484.32 23390.08 28479.26 12696.62 25183.81 16582.94 26993.04 279
miper_enhance_ethall86.90 21486.18 20689.06 24691.66 26177.58 27090.22 28794.82 21479.16 26984.48 22489.10 29879.19 12796.66 24984.06 16182.94 26992.94 282
ACMH+81.04 1485.05 25583.46 26389.82 22394.66 16579.37 22594.44 14794.12 23982.19 21978.04 31292.82 20358.23 32897.54 18573.77 28782.90 27292.54 292
VPA-MVSNet89.62 12688.96 13091.60 15393.86 19782.89 13395.46 7997.33 2287.91 9288.43 13693.31 18474.17 18697.40 20387.32 12682.86 27394.52 209
IterMVS-LS88.36 16487.91 15889.70 23093.80 20078.29 25093.73 19395.08 19885.73 14284.75 21891.90 23679.88 11696.92 24083.83 16482.51 27493.89 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi80.94 29980.20 29083.18 32787.96 33766.29 34891.28 26890.70 32083.70 18578.12 31192.84 20151.37 34790.82 35163.34 33982.46 27592.43 296
WR-MVS88.38 16287.67 16290.52 19393.30 21580.18 20293.26 21395.96 13388.57 7485.47 19992.81 20476.12 15696.91 24181.24 20782.29 27694.47 216
RRT_test8_iter0586.90 21486.36 19988.52 26093.00 22673.27 30994.32 15995.96 13385.50 15084.26 23692.86 19960.76 31597.70 17388.32 11282.29 27694.60 203
tpm cat181.96 28280.27 28887.01 29691.09 28171.02 33087.38 32591.53 29966.25 34880.17 29486.35 33268.22 26596.15 28169.16 31182.29 27693.86 241
v119287.25 20386.33 20190.00 21890.76 29779.04 23593.80 19095.48 17182.57 21285.48 19891.18 25773.38 20297.42 19682.30 18782.06 27993.53 257
v114487.61 18986.79 18390.06 21491.01 28379.34 22793.95 18495.42 18183.36 19685.66 18991.31 25374.98 17497.42 19683.37 16982.06 27993.42 263
v124086.78 21985.85 21989.56 23390.45 30777.79 26393.61 19895.37 18481.65 23585.43 20391.15 25971.50 21997.43 19581.47 20582.05 28193.47 261
Anonymous2023120681.03 29779.77 29584.82 31987.85 33870.26 33691.42 26792.08 28273.67 32377.75 31489.25 29762.43 30293.08 33861.50 34582.00 28291.12 323
V4287.68 18186.86 17990.15 20990.58 30380.14 20494.24 16395.28 18783.66 18685.67 18891.33 25074.73 17897.41 20184.43 15881.83 28392.89 284
v192192086.97 21386.06 21289.69 23190.53 30678.11 25493.80 19095.43 17981.90 22985.33 21191.05 26372.66 20897.41 20182.05 19281.80 28493.53 257
v2v48287.84 17687.06 17590.17 20790.99 28479.23 23494.00 18295.13 19384.87 16585.53 19392.07 23174.45 18097.45 19284.71 15581.75 28593.85 242
Anonymous2023121186.59 22685.13 23690.98 18296.52 9181.50 16596.14 4796.16 11973.78 32283.65 25092.15 22363.26 29897.37 20782.82 17981.74 28694.06 230
v14419287.19 20886.35 20089.74 22790.64 30178.24 25193.92 18695.43 17981.93 22785.51 19591.05 26374.21 18597.45 19282.86 17781.56 28793.53 257
cl-mvsnet____86.52 22885.78 22188.75 25392.03 24776.46 28390.74 27794.30 23081.83 23383.34 25890.78 27075.74 16696.57 25781.74 20081.54 28893.22 271
cl-mvsnet186.53 22785.78 22188.75 25392.02 24876.45 28490.74 27794.30 23081.83 23383.34 25890.82 26875.75 16496.57 25781.73 20181.52 28993.24 269
Anonymous2024052180.44 30179.21 30184.11 32585.75 34667.89 34492.86 22993.23 25775.61 30675.59 32987.47 32350.03 34894.33 32271.14 30081.21 29090.12 333
OurMVSNet-221017-085.35 24884.64 24887.49 28490.77 29672.59 31894.01 18194.40 22684.72 16979.62 30593.17 19061.91 30596.72 24681.99 19381.16 29193.16 274
FMVSNet581.52 29179.60 29787.27 28891.17 27777.95 25691.49 26692.26 27876.87 29476.16 32487.91 31851.67 34692.34 34367.74 32181.16 29191.52 312
CP-MVSNet87.63 18687.26 17388.74 25593.12 21976.59 28295.29 9096.58 9388.43 7783.49 25592.98 19775.28 17095.83 29478.97 24081.15 29393.79 244
cl_fuxian87.14 21086.50 19689.04 24792.20 24077.26 27491.22 27194.70 21982.01 22484.34 23290.43 27778.81 13096.61 25483.70 16781.09 29493.25 268
IterMVS-SCA-FT85.45 24584.53 25088.18 27091.71 25876.87 27990.19 28892.65 27085.40 15381.44 27890.54 27466.79 27595.00 31781.04 20981.05 29592.66 290
TinyColmap79.76 30777.69 30985.97 30891.71 25873.12 31089.55 29590.36 32475.03 31172.03 34490.19 28046.22 35696.19 28063.11 34081.03 29688.59 346
UniMVSNet_NR-MVSNet89.92 12189.29 12391.81 14793.39 21283.72 10894.43 14897.12 4089.80 3886.46 17293.32 18383.16 8097.23 21884.92 15081.02 29794.49 213
DU-MVS89.34 14088.50 14091.85 14493.04 22383.72 10894.47 14596.59 9289.50 4686.46 17293.29 18677.25 14697.23 21884.92 15081.02 29794.59 204
PS-CasMVS87.32 20086.88 17888.63 25892.99 22776.33 28795.33 8396.61 9188.22 8583.30 26093.07 19573.03 20595.79 29778.36 24581.00 29993.75 250
IterMVS84.88 25883.98 25687.60 28091.44 26476.03 28990.18 28992.41 27383.24 19981.06 28490.42 27866.60 27894.28 32479.46 23380.98 30092.48 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)89.80 12489.07 12892.01 13193.60 20784.52 8594.78 12597.47 889.26 5386.44 17592.32 21782.10 9697.39 20684.81 15380.84 30194.12 225
LF4IMVS80.37 30279.07 30584.27 32486.64 34069.87 33989.39 30091.05 31076.38 29774.97 33290.00 28647.85 35494.25 32574.55 28380.82 30288.69 345
v1087.25 20386.38 19789.85 22191.19 27679.50 22194.48 14295.45 17683.79 18483.62 25191.19 25575.13 17197.42 19681.94 19480.60 30392.63 291
tfpnnormal84.72 26183.23 26589.20 24292.79 23180.05 20994.48 14295.81 14682.38 21581.08 28391.21 25469.01 25696.95 23861.69 34480.59 30490.58 331
test_part189.00 14987.99 15492.04 12995.94 11383.81 10696.14 4796.05 12886.44 12885.69 18793.73 17671.57 21797.66 17585.80 14280.54 30594.66 199
WR-MVS_H87.80 17887.37 16889.10 24593.23 21678.12 25395.61 7597.30 2687.90 9383.72 24792.01 23379.65 12496.01 28676.36 26480.54 30593.16 274
VPNet88.20 16887.47 16690.39 19993.56 20879.46 22294.04 17895.54 16788.67 7086.96 16294.58 13969.33 24997.15 22284.05 16280.53 30794.56 207
v7n86.81 21785.76 22489.95 21990.72 29979.25 23395.07 10595.92 13684.45 17382.29 26890.86 26672.60 21097.53 18679.42 23780.52 30893.08 278
v887.50 19586.71 18589.89 22091.37 27079.40 22494.50 14195.38 18284.81 16783.60 25291.33 25076.05 15797.42 19682.84 17880.51 30992.84 286
EU-MVSNet81.32 29480.95 28282.42 33188.50 32863.67 35493.32 20691.33 30364.02 35180.57 29092.83 20261.21 31292.27 34476.34 26580.38 31091.32 316
Patchmtry82.71 27780.93 28388.06 27390.05 31476.37 28684.74 34091.96 28972.28 33581.32 28187.87 31971.03 22495.50 30768.97 31280.15 31192.32 301
NR-MVSNet88.58 16087.47 16691.93 13893.04 22384.16 9894.77 12696.25 11289.05 5980.04 29993.29 18679.02 12897.05 23281.71 20280.05 31294.59 204
Baseline_NR-MVSNet87.07 21186.63 19088.40 26291.44 26477.87 26094.23 16492.57 27184.12 17785.74 18692.08 22977.25 14696.04 28382.29 18879.94 31391.30 317
dp81.47 29280.23 28985.17 31789.92 31765.49 35186.74 32790.10 32876.30 29981.10 28287.12 32962.81 29995.92 28968.13 31979.88 31494.09 228
TranMVSNet+NR-MVSNet88.84 15287.95 15691.49 15792.68 23383.01 12994.92 11596.31 10789.88 3785.53 19393.85 16976.63 15496.96 23781.91 19579.87 31594.50 211
miper_lstm_enhance85.27 25184.59 24987.31 28791.28 27474.63 29687.69 32294.09 24081.20 24881.36 28089.85 29074.97 17594.30 32381.03 21179.84 31693.01 280
v14887.04 21286.32 20289.21 24190.94 28877.26 27493.71 19594.43 22584.84 16684.36 23190.80 26976.04 15897.05 23282.12 19079.60 31793.31 265
IB-MVS80.51 1585.24 25283.26 26491.19 16792.13 24379.86 21691.75 25991.29 30583.28 19880.66 28888.49 30861.28 30998.46 11680.99 21279.46 31895.25 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
eth_miper_zixun_eth86.50 22985.77 22388.68 25691.94 25075.81 29190.47 28194.89 20882.05 22184.05 23990.46 27675.96 15996.77 24582.76 18179.36 31993.46 262
baseline188.10 17087.28 17190.57 18994.96 14780.07 20794.27 16191.29 30586.74 12187.41 15494.00 15976.77 15196.20 27880.77 21579.31 32095.44 172
our_test_381.93 28380.46 28686.33 30688.46 32973.48 30788.46 31491.11 30776.46 29576.69 32188.25 31266.89 27394.36 32168.75 31379.08 32191.14 322
PEN-MVS86.80 21886.27 20488.40 26292.32 23975.71 29295.18 9996.38 10587.97 9082.82 26493.15 19173.39 20195.92 28976.15 26879.03 32293.59 255
pm-mvs186.61 22485.54 22789.82 22391.44 26480.18 20295.28 9294.85 21183.84 18381.66 27692.62 20972.45 21396.48 26479.67 23278.06 32392.82 287
hse-mvs390.80 9790.15 10392.75 9896.01 10882.66 14295.43 8095.53 16889.80 3893.08 5995.64 10375.77 16199.00 7692.07 5678.05 32496.60 129
SixPastTwentyTwo83.91 26982.90 26986.92 29890.99 28470.67 33393.48 20291.99 28685.54 14877.62 31692.11 22760.59 31696.87 24376.05 26977.75 32593.20 272
ppachtmachnet_test81.84 28480.07 29287.15 29588.46 32974.43 30089.04 30692.16 28075.33 30877.75 31488.99 29966.20 28395.37 31065.12 33477.60 32691.65 310
MIMVSNet179.38 30977.28 31185.69 31286.35 34173.67 30691.61 26592.75 26778.11 28772.64 34288.12 31448.16 35291.97 34760.32 34777.49 32791.43 315
DTE-MVSNet86.11 23585.48 22987.98 27491.65 26274.92 29594.93 11495.75 15187.36 10882.26 26993.04 19672.85 20695.82 29574.04 28477.46 32893.20 272
N_pmnet68.89 32368.44 32670.23 34089.07 32328.79 37088.06 31719.50 37169.47 34471.86 34584.93 33861.24 31191.75 34854.70 35477.15 32990.15 332
AUN-MVS87.78 17986.54 19491.48 15894.82 15881.05 18193.91 18993.93 24283.00 20386.93 16393.53 17969.50 24797.67 17486.14 13877.12 33095.73 165
hse-mvs289.88 12389.34 12191.51 15694.83 15781.12 18093.94 18593.91 24589.80 3893.08 5993.60 17875.77 16197.66 17592.07 5677.07 33195.74 164
test20.0379.95 30579.08 30482.55 33085.79 34567.74 34691.09 27391.08 30881.23 24774.48 33589.96 28861.63 30690.15 35260.08 34876.38 33289.76 334
FPMVS64.63 32562.55 32770.88 33970.80 36156.71 35884.42 34184.42 35351.78 35749.57 35781.61 34723.49 36481.48 36040.61 36176.25 33374.46 357
pmmvs683.42 27381.60 27788.87 25088.01 33677.87 26094.96 11194.24 23374.67 31678.80 30891.09 26260.17 31996.49 26377.06 26175.40 33492.23 303
new_pmnet72.15 32170.13 32478.20 33582.95 35565.68 34983.91 34382.40 35662.94 35264.47 35279.82 34942.85 35886.26 35757.41 35374.44 33582.65 354
MDA-MVSNet_test_wron79.21 31177.19 31385.29 31588.22 33372.77 31485.87 33290.06 32974.34 31862.62 35487.56 32266.14 28491.99 34666.90 32873.01 33691.10 325
YYNet179.22 31077.20 31285.28 31688.20 33572.66 31685.87 33290.05 33174.33 31962.70 35387.61 32166.09 28592.03 34566.94 32572.97 33791.15 321
Patchmatch-RL test81.67 28779.96 29386.81 30285.42 34871.23 32782.17 34987.50 34878.47 28077.19 31882.50 34670.81 22893.48 33382.66 18272.89 33895.71 166
pmmvs-eth3d80.97 29878.72 30787.74 27784.99 35079.97 21490.11 29091.65 29575.36 30773.51 33886.03 33359.45 32393.96 32975.17 27672.21 33989.29 339
PM-MVS78.11 31576.12 31784.09 32683.54 35370.08 33788.97 30785.27 35279.93 26074.73 33386.43 33034.70 36093.48 33379.43 23672.06 34088.72 344
Gipumacopyleft57.99 32854.91 33067.24 34288.51 32765.59 35052.21 36190.33 32543.58 36042.84 36151.18 36220.29 36785.07 35834.77 36270.45 34151.05 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
K. test v381.59 28980.15 29185.91 31189.89 31869.42 34092.57 23787.71 34685.56 14773.44 33989.71 29255.58 33395.52 30477.17 25869.76 34292.78 288
DIV-MVS_2432*160080.20 30379.24 30083.07 32885.64 34765.29 35291.01 27493.93 24278.71 27876.32 32386.40 33159.20 32592.93 34072.59 29269.35 34391.00 326
CL-MVSNet_2432*160081.74 28680.53 28485.36 31485.96 34472.45 32090.25 28493.07 26081.24 24679.85 30287.29 32670.93 22692.52 34266.95 32469.23 34491.11 324
TDRefinement79.81 30677.34 31087.22 29379.24 35875.48 29493.12 21892.03 28476.45 29675.01 33191.58 24649.19 35196.44 26870.22 30569.18 34589.75 335
MDA-MVSNet-bldmvs78.85 31276.31 31586.46 30389.76 31973.88 30488.79 30990.42 32179.16 26959.18 35588.33 31160.20 31894.04 32662.00 34368.96 34691.48 314
ambc83.06 32979.99 35763.51 35577.47 35492.86 26374.34 33684.45 33928.74 36195.06 31673.06 29168.89 34790.61 328
TransMVSNet (Re)84.43 26483.06 26788.54 25991.72 25778.44 24595.18 9992.82 26582.73 20979.67 30392.12 22573.49 19795.96 28871.10 30168.73 34891.21 320
PMVScopyleft47.18 2252.22 32948.46 33363.48 34345.72 37046.20 36673.41 35778.31 36241.03 36130.06 36465.68 3586.05 37183.43 35930.04 36365.86 34960.80 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
lessismore_v086.04 30788.46 32968.78 34280.59 35973.01 34190.11 28355.39 33596.43 26975.06 27865.06 35092.90 283
new-patchmatchnet76.41 31875.17 32080.13 33382.65 35659.61 35687.66 32391.08 30878.23 28569.85 34783.22 34354.76 33791.63 35064.14 33864.89 35189.16 341
pmmvs371.81 32268.71 32581.11 33275.86 35970.42 33586.74 32783.66 35458.95 35468.64 35080.89 34836.93 35989.52 35363.10 34163.59 35283.39 351
UnsupCasMVSNet_eth80.07 30478.27 30885.46 31385.24 34972.63 31788.45 31594.87 21082.99 20471.64 34688.07 31556.34 33291.75 34873.48 28963.36 35392.01 306
LCM-MVSNet66.00 32462.16 32877.51 33764.51 36558.29 35783.87 34490.90 31548.17 35854.69 35673.31 35416.83 37086.75 35665.47 33161.67 35487.48 350
UnsupCasMVSNet_bld76.23 31973.27 32285.09 31883.79 35272.92 31185.65 33593.47 25471.52 33768.84 34979.08 35049.77 34993.21 33666.81 32960.52 35589.13 343
KD-MVS_2432*160078.50 31376.02 31885.93 30986.22 34274.47 29884.80 33892.33 27479.29 26676.98 31985.92 33453.81 34393.97 32767.39 32257.42 35689.36 336
miper_refine_blended78.50 31376.02 31885.93 30986.22 34274.47 29884.80 33892.33 27479.29 26676.98 31985.92 33453.81 34393.97 32767.39 32257.42 35689.36 336
DeepMVS_CXcopyleft56.31 34674.23 36051.81 36356.67 36944.85 35948.54 35975.16 35127.87 36358.74 36740.92 36052.22 35858.39 360
PVSNet_073.20 2077.22 31674.83 32184.37 32290.70 30071.10 32983.09 34789.67 33872.81 33273.93 33783.13 34460.79 31493.70 33168.54 31450.84 35988.30 348
test_method50.52 33048.47 33256.66 34552.26 36918.98 37241.51 36381.40 35810.10 36544.59 36075.01 35228.51 36268.16 36353.54 35549.31 36082.83 353
PMMVS259.60 32656.40 32969.21 34168.83 36246.58 36573.02 35877.48 36455.07 35649.21 35872.95 35517.43 36980.04 36149.32 35844.33 36180.99 356
MVEpermissive39.65 2343.39 33138.59 33757.77 34456.52 36748.77 36455.38 36058.64 36829.33 36428.96 36552.65 3614.68 37264.62 36628.11 36433.07 36259.93 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 33242.29 33446.03 34765.58 36437.41 36773.51 35664.62 36533.99 36228.47 36647.87 36319.90 36867.91 36422.23 36524.45 36332.77 362
ANet_high58.88 32754.22 33172.86 33856.50 36856.67 35980.75 35286.00 34973.09 32937.39 36264.63 35922.17 36579.49 36243.51 35923.96 36482.43 355
EMVS42.07 33341.12 33544.92 34863.45 36635.56 36973.65 35563.48 36633.05 36326.88 36745.45 36421.27 36667.14 36519.80 36623.02 36532.06 363
tmp_tt35.64 33439.24 33624.84 34914.87 37123.90 37162.71 35951.51 3706.58 36736.66 36362.08 36044.37 35730.34 36952.40 35622.00 36620.27 364
wuyk23d21.27 33620.48 33923.63 35068.59 36336.41 36849.57 3626.85 3729.37 3667.89 3684.46 3704.03 37331.37 36817.47 36716.07 3673.12 365
testmvs8.92 33711.52 3401.12 3521.06 3720.46 37486.02 3310.65 3730.62 3682.74 3699.52 3680.31 3750.45 3712.38 3680.39 3682.46 367
test1238.76 33811.22 3411.39 3510.85 3730.97 37385.76 3340.35 3740.54 3692.45 3708.14 3690.60 3740.48 3702.16 3690.17 3692.71 366
uanet_test0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
cdsmvs_eth3d_5k22.14 33529.52 3380.00 3530.00 3740.00 3750.00 36495.76 1500.00 3700.00 37194.29 14875.66 1670.00 3720.00 3700.00 3700.00 368
pcd_1.5k_mvsjas6.64 3408.86 3430.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 37179.70 1200.00 3720.00 3700.00 3700.00 368
sosnet-low-res0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
sosnet0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
uncertanet0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
Regformer0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
ab-mvs-re7.82 33910.43 3420.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 37193.88 1670.00 3760.00 3720.00 3700.00 3700.00 368
uanet0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
eth-test20.00 374
eth-test0.00 374
test_241102_ONE98.77 485.99 5697.44 1290.26 3197.71 197.96 892.31 399.38 30
save fliter97.85 4885.63 6995.21 9696.82 6789.44 47
test072698.78 285.93 5997.19 797.47 890.27 2997.64 498.13 191.47 7
GSMVS96.12 145
test_part298.55 1187.22 1796.40 12
sam_mvs171.70 21696.12 145
sam_mvs70.60 230
MTGPAbinary96.97 49
test_post188.00 3189.81 36769.31 25195.53 30376.65 262
test_post10.29 36670.57 23495.91 291
patchmatchnet-post83.76 34171.53 21896.48 264
MTMP96.16 4560.64 367
gm-plane-assit89.60 32168.00 34377.28 29288.99 29997.57 18379.44 235
TEST997.53 5986.49 4094.07 17596.78 7081.61 23892.77 6796.20 8187.71 2799.12 56
test_897.49 6286.30 4994.02 18096.76 7381.86 23192.70 7196.20 8187.63 2899.02 69
agg_prior97.38 6585.92 6196.72 7992.16 8298.97 81
test_prior485.96 5894.11 170
test_prior93.82 6597.29 7084.49 8696.88 5998.87 8998.11 63
旧先验293.36 20571.25 33994.37 2797.13 22586.74 133
新几何293.11 220
无先验93.28 21296.26 11073.95 32199.05 6180.56 22096.59 130
原ACMM292.94 227
testdata298.75 10178.30 246
segment_acmp87.16 36
testdata192.15 25087.94 91
plane_prior794.70 16382.74 137
plane_prior694.52 16982.75 13574.23 183
plane_prior494.86 125
plane_prior382.75 13590.26 3186.91 165
plane_prior295.85 6290.81 17
plane_prior194.59 167
n20.00 375
nn0.00 375
door-mid85.49 350
test1196.57 94
door85.33 351
HQP5-MVS81.56 163
HQP-NCC94.17 18394.39 15288.81 6585.43 203
ACMP_Plane94.17 18394.39 15288.81 6585.43 203
BP-MVS87.11 130
HQP4-MVS85.43 20397.96 15994.51 210
HQP2-MVS73.83 193
NP-MVS94.37 17782.42 14793.98 160
MDTV_nov1_ep13_2view55.91 36287.62 32473.32 32684.59 22170.33 23774.65 28195.50 169
Test By Simon80.02 115