This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15197.67 398.10 788.41 2099.56 1294.66 2499.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9397.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2599.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1599.13 398.84 14
IU-MVS98.77 586.00 4996.84 6581.26 26197.26 795.50 2199.13 399.03 8
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1799.13 399.13 2
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1599.12 698.98 10
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 1999.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 1999.08 798.99 9
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1299.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1299.06 999.07 5
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1798.10 789.39 1699.34 3495.88 1499.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1799.02 1298.86 11
PC_three_145282.47 22897.09 1097.07 4992.72 198.04 15792.70 5399.02 1298.86 11
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4792.59 298.94 7892.25 6198.99 1498.84 14
ACMMP_NAP94.74 1594.56 1895.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3097.67 2485.90 4599.54 2093.91 3298.95 1598.60 23
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4496.83 5988.12 2499.55 1693.41 4098.94 1698.28 50
MP-MVS-pluss94.21 3094.00 3994.85 2598.17 3386.65 3094.82 13497.17 3986.26 14392.83 6997.87 2085.57 4899.56 1294.37 2898.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 2897.46 2888.98 1999.40 3094.12 2998.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS94.96 1295.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3689.53 1496.91 24694.38 2798.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10396.96 5292.09 695.32 2997.08 4789.49 1599.33 3795.10 2298.85 1998.66 20
CP-MVS94.34 2694.21 3194.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7597.23 3985.20 5399.32 3892.15 6598.83 2198.25 55
ZNCC-MVS94.47 2094.28 2795.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 5997.04 5086.17 4299.62 292.40 5798.81 2298.52 26
MP-MVScopyleft94.25 2794.07 3694.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9197.19 4285.43 5099.56 1292.06 7198.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS93.89 4093.65 5194.62 4096.84 7586.43 3896.69 3297.49 685.15 17193.56 5396.28 8285.60 4799.31 3992.45 5498.79 2398.12 64
SF-MVS94.97 1194.90 1495.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2597.70 2388.28 2399.35 3393.89 3398.78 2598.48 30
ACMMPR94.43 2394.28 2794.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5497.26 3885.04 5699.54 2092.35 5998.78 2598.50 27
HFP-MVS94.52 1994.40 2194.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 4997.21 4086.10 4399.49 2692.35 5998.77 2798.30 47
MM95.68 588.34 996.68 3394.37 23295.08 194.68 3497.72 2282.94 8199.64 197.85 198.76 2899.06 7
MVS_030494.60 1794.38 2295.23 1195.41 12987.49 1596.53 3892.75 27593.82 293.07 6397.84 2183.66 7299.59 897.61 298.76 2898.61 22
MTAPA94.42 2594.22 3095.00 1898.42 2186.95 2094.36 16896.97 5091.07 1393.14 6097.56 2584.30 6599.56 1293.43 3898.75 3098.47 33
region2R94.43 2394.27 2994.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5197.27 3685.22 5299.54 2092.21 6298.74 3198.56 25
test9_res91.91 7698.71 3298.07 66
DeepPCF-MVS89.96 194.20 3294.77 1692.49 11296.52 8780.00 21794.00 19297.08 4490.05 3595.65 2797.29 3589.66 1398.97 7593.95 3198.71 3298.50 27
9.1494.47 1997.79 4996.08 6197.44 1586.13 14995.10 3197.40 3188.34 2299.22 4493.25 4298.70 34
train_agg93.44 5293.08 5994.52 4397.53 5886.49 3694.07 18496.78 7281.86 24592.77 7296.20 8587.63 2999.12 5192.14 6698.69 3597.94 74
DeepC-MVS_fast89.43 294.04 3593.79 4394.80 3297.48 6186.78 2595.65 8996.89 6089.40 5392.81 7096.97 5285.37 5199.24 4390.87 9598.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.94.85 1394.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 1896.96 5389.09 1898.94 7894.48 2698.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior290.54 10098.68 3798.27 52
test_prior294.12 17887.67 11492.63 7796.39 8086.62 3691.50 8398.67 39
MSLP-MVS++93.72 4594.08 3592.65 10497.31 6583.43 11295.79 7997.33 2590.03 3693.58 5196.96 5384.87 6097.76 17292.19 6498.66 4096.76 129
CDPH-MVS92.83 6692.30 7294.44 4497.79 4986.11 4894.06 18696.66 8580.09 27492.77 7296.63 7186.62 3699.04 5787.40 13498.66 4098.17 60
HPM-MVScopyleft94.02 3693.88 4194.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 7896.80 6384.85 6199.17 4792.43 5598.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 3893.78 4494.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10097.17 4483.96 6999.55 1691.44 8498.64 4398.43 38
CS-MVS-test94.02 3694.29 2693.24 7196.69 7883.24 11797.49 596.92 5792.14 592.90 6595.77 10685.02 5798.33 12993.03 4598.62 4498.13 62
MCST-MVS94.45 2194.20 3295.19 1398.46 1987.50 1495.00 12397.12 4187.13 12392.51 8196.30 8189.24 1799.34 3493.46 3798.62 4498.73 17
APD-MVScopyleft94.24 2894.07 3694.75 3598.06 3986.90 2295.88 7496.94 5585.68 15795.05 3297.18 4387.31 3399.07 5391.90 7898.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS93.96 3993.72 4794.68 3798.43 2086.22 4695.30 10197.78 187.45 11893.26 5697.33 3484.62 6399.51 2490.75 9798.57 4798.32 46
XVS94.45 2194.32 2394.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6797.16 4585.02 5799.49 2691.99 7298.56 4898.47 33
X-MVStestdata88.31 17186.13 21794.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6723.41 39485.02 5799.49 2691.99 7298.56 4898.47 33
DELS-MVS93.43 5593.25 5693.97 5495.42 12885.04 6993.06 23597.13 4090.74 2191.84 9895.09 13186.32 4099.21 4591.22 8698.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZD-MVS98.15 3486.62 3297.07 4583.63 20194.19 4096.91 5587.57 3199.26 4291.99 7298.44 51
GST-MVS94.21 3093.97 4094.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5696.83 5985.48 4999.59 891.43 8598.40 5298.30 47
HPM-MVS_fast93.40 5693.22 5793.94 5698.36 2584.83 7297.15 1396.80 7185.77 15492.47 8297.13 4682.38 8899.07 5390.51 10298.40 5297.92 77
NCCC94.81 1494.69 1795.17 1497.83 4887.46 1695.66 8796.93 5692.34 493.94 4596.58 7487.74 2799.44 2992.83 4898.40 5298.62 21
DeepC-MVS88.79 393.31 5792.99 6294.26 5196.07 10285.83 5994.89 12996.99 4889.02 6989.56 13097.37 3382.51 8799.38 3192.20 6398.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG93.23 6093.05 6093.76 6398.04 4084.07 9496.22 4997.37 2184.15 18990.05 12695.66 11087.77 2699.15 5089.91 10598.27 5698.07 66
原ACMM192.01 12897.34 6481.05 18396.81 7078.89 28890.45 11895.92 9882.65 8598.84 8880.68 23598.26 5796.14 149
CS-MVS94.12 3494.44 2093.17 7496.55 8483.08 12797.63 396.95 5491.71 1193.50 5596.21 8485.61 4698.24 13493.64 3598.17 5898.19 58
MVS_111021_HR93.45 5193.31 5493.84 5996.99 7284.84 7193.24 22897.24 3288.76 7591.60 10595.85 10186.07 4498.66 9691.91 7698.16 5998.03 70
EC-MVSNet93.44 5293.71 4892.63 10595.21 13682.43 14897.27 996.71 8290.57 2692.88 6695.80 10483.16 7798.16 14093.68 3498.14 6097.31 101
test1294.34 4997.13 7086.15 4796.29 10491.04 11385.08 5599.01 6398.13 6197.86 80
新几何193.10 7797.30 6684.35 9095.56 16671.09 36491.26 11196.24 8382.87 8398.86 8479.19 25698.10 6296.07 155
patch_mono-293.74 4494.32 2392.01 12897.54 5778.37 25593.40 21697.19 3588.02 10194.99 3397.21 4088.35 2198.44 11994.07 3098.09 6399.23 1
dcpmvs_293.49 4994.19 3391.38 16397.69 5476.78 28794.25 17196.29 10488.33 8894.46 3696.88 5688.07 2598.64 9893.62 3698.09 6398.73 17
test_fmvsm_n_192094.71 1695.11 1093.50 6795.79 11484.62 7696.15 5597.64 289.85 4097.19 897.89 1986.28 4198.71 9597.11 698.08 6597.17 108
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 1896.69 6489.90 1299.30 4094.70 2398.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS94.23 2994.17 3494.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 3897.40 3184.75 6299.03 5893.35 4197.99 6798.48 30
3Dnovator86.66 591.73 8290.82 9394.44 4494.59 16886.37 4097.18 1297.02 4789.20 6084.31 25296.66 6773.74 19799.17 4786.74 14497.96 6897.79 85
CANet93.54 4893.20 5894.55 4295.65 12085.73 6394.94 12696.69 8491.89 890.69 11695.88 10081.99 10099.54 2093.14 4497.95 6998.39 39
DPM-MVS92.58 7091.74 7895.08 1596.19 9589.31 592.66 24696.56 9383.44 20791.68 10495.04 13286.60 3898.99 7085.60 15897.92 7096.93 122
APD-MVS_3200maxsize93.78 4293.77 4593.80 6297.92 4384.19 9296.30 4396.87 6286.96 12793.92 4697.47 2783.88 7098.96 7792.71 5297.87 7198.26 54
CPTT-MVS91.99 7691.80 7792.55 10998.24 3181.98 15896.76 3096.49 9581.89 24490.24 12196.44 7978.59 13498.61 10289.68 10697.85 7297.06 113
test_fmvsmconf_n94.60 1794.81 1593.98 5394.62 16784.96 7096.15 5597.35 2289.37 5496.03 2198.11 586.36 3999.01 6397.45 397.83 7397.96 73
SR-MVS-dyc-post93.82 4193.82 4293.82 6097.92 4384.57 7896.28 4596.76 7587.46 11693.75 4797.43 2984.24 6699.01 6392.73 4997.80 7497.88 78
RE-MVS-def93.68 4997.92 4384.57 7896.28 4596.76 7587.46 11693.75 4797.43 2982.94 8192.73 4997.80 7497.88 78
test22296.55 8481.70 16492.22 26295.01 19968.36 37090.20 12296.14 9080.26 11297.80 7496.05 157
test_fmvsmconf0.1_n94.20 3294.31 2593.88 5792.46 24584.80 7396.18 5296.82 6889.29 5795.68 2698.11 585.10 5498.99 7097.38 497.75 7797.86 80
3Dnovator+87.14 492.42 7391.37 8195.55 795.63 12188.73 697.07 1896.77 7490.84 1684.02 25696.62 7275.95 16199.34 3487.77 12897.68 7898.59 24
旧先验196.79 7681.81 16295.67 15896.81 6186.69 3597.66 7996.97 120
EPNet91.79 7991.02 8994.10 5290.10 32685.25 6896.03 6692.05 29592.83 387.39 16995.78 10579.39 12499.01 6388.13 12497.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmvis_n_192093.44 5293.55 5293.10 7793.67 21184.26 9195.83 7796.14 11889.00 7092.43 8397.50 2683.37 7698.72 9496.61 1097.44 8196.32 142
testdata90.49 20096.40 8977.89 26795.37 18472.51 35693.63 5096.69 6482.08 9797.65 18083.08 18897.39 8295.94 159
MVS_111021_LR92.47 7292.29 7392.98 8595.99 10884.43 8793.08 23396.09 12488.20 9691.12 11295.72 10981.33 10597.76 17291.74 7997.37 8396.75 130
test_fmvsmconf0.01_n93.19 6193.02 6193.71 6489.25 33884.42 8996.06 6496.29 10489.06 6494.68 3498.13 379.22 12698.98 7497.22 597.24 8497.74 87
MVSFormer91.68 8491.30 8292.80 9593.86 20183.88 9995.96 7195.90 14084.66 18391.76 10194.91 13577.92 14297.30 21689.64 10797.11 8597.24 104
lupinMVS90.92 9590.21 9993.03 8293.86 20183.88 9992.81 24393.86 25279.84 27691.76 10194.29 16277.92 14298.04 15790.48 10397.11 8597.17 108
EIA-MVS91.95 7791.94 7591.98 13295.16 13880.01 21695.36 9696.73 7988.44 8589.34 13492.16 23783.82 7198.45 11789.35 10997.06 8797.48 97
MG-MVS91.77 8091.70 7992.00 13197.08 7180.03 21593.60 21095.18 19287.85 10990.89 11496.47 7882.06 9898.36 12485.07 16297.04 8897.62 90
test250687.21 21686.28 21390.02 22595.62 12273.64 31896.25 4871.38 39487.89 10790.45 11896.65 6855.29 35298.09 15286.03 15396.94 8998.33 43
ECVR-MVScopyleft89.09 14788.53 14490.77 19195.62 12275.89 29996.16 5384.22 37287.89 10790.20 12296.65 6863.19 31198.10 14485.90 15496.94 8998.33 43
test111189.10 14588.64 14090.48 20295.53 12674.97 30696.08 6184.89 37088.13 9990.16 12496.65 6863.29 30998.10 14486.14 14996.90 9198.39 39
jason90.80 9690.10 10392.90 9093.04 22983.53 11093.08 23394.15 24180.22 27191.41 10894.91 13576.87 14997.93 16690.28 10496.90 9197.24 104
jason: jason.
Vis-MVSNetpermissive91.75 8191.23 8493.29 6995.32 13183.78 10196.14 5795.98 13289.89 3890.45 11896.58 7475.09 17398.31 13284.75 16896.90 9197.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
114514_t89.51 13188.50 14692.54 11098.11 3681.99 15795.16 11496.36 10170.19 36785.81 20095.25 12276.70 15398.63 10082.07 20896.86 9497.00 118
Vis-MVSNet (Re-imp)89.59 12989.44 11890.03 22395.74 11675.85 30095.61 9190.80 33087.66 11587.83 15895.40 11876.79 15196.46 27378.37 26096.73 9597.80 84
API-MVS90.66 10290.07 10492.45 11496.36 9184.57 7896.06 6495.22 19182.39 22989.13 13694.27 16580.32 11098.46 11380.16 24396.71 9694.33 228
MAR-MVS90.30 10889.37 12193.07 8196.61 8184.48 8395.68 8595.67 15882.36 23187.85 15792.85 21476.63 15598.80 9080.01 24496.68 9795.91 160
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft83.78 1188.74 16087.29 17793.08 7992.70 24085.39 6696.57 3696.43 9778.74 29380.85 30196.07 9269.64 24799.01 6378.01 26796.65 9894.83 202
ETV-MVS92.74 6892.66 6792.97 8695.20 13784.04 9695.07 11996.51 9490.73 2292.96 6491.19 27184.06 6798.34 12791.72 8096.54 9996.54 138
QAPM89.51 13188.15 15793.59 6694.92 15184.58 7796.82 2996.70 8378.43 29883.41 27196.19 8873.18 20499.30 4077.11 27696.54 9996.89 125
IS-MVSNet91.43 8691.09 8892.46 11395.87 11381.38 17596.95 1993.69 25889.72 4789.50 13295.98 9678.57 13597.77 17183.02 19096.50 10198.22 57
DP-MVS Recon91.95 7791.28 8393.96 5598.33 2785.92 5694.66 14596.66 8582.69 22690.03 12795.82 10382.30 9199.03 5884.57 17096.48 10296.91 124
CANet_DTU90.26 11089.41 12092.81 9493.46 21783.01 13093.48 21394.47 22789.43 5287.76 16194.23 16670.54 23799.03 5884.97 16396.39 10396.38 141
UGNet89.95 11988.95 13192.95 8894.51 17483.31 11695.70 8495.23 18989.37 5487.58 16393.94 17864.00 30298.78 9183.92 17996.31 10496.74 131
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.5_n93.76 4394.06 3892.86 9295.62 12283.17 12096.14 5796.12 12188.13 9995.82 2498.04 1683.43 7398.48 10996.97 796.23 10596.92 123
fmvsm_s_conf0.1_n93.46 5093.66 5092.85 9393.75 20783.13 12296.02 6795.74 15287.68 11395.89 2398.17 282.78 8498.46 11396.71 896.17 10696.98 119
TSAR-MVS + GP.93.66 4693.41 5394.41 4896.59 8286.78 2594.40 16193.93 24889.77 4594.21 3995.59 11387.35 3298.61 10292.72 5196.15 10797.83 83
PVSNet_Blended90.73 9990.32 9891.98 13296.12 9781.25 17792.55 25096.83 6682.04 23889.10 13792.56 22581.04 10798.85 8686.72 14695.91 10895.84 164
PS-MVSNAJ91.18 9290.92 9091.96 13495.26 13482.60 14792.09 26795.70 15686.27 14291.84 9892.46 22779.70 11998.99 7089.08 11395.86 10994.29 231
ACMMPcopyleft93.24 5992.88 6494.30 5098.09 3885.33 6796.86 2797.45 1488.33 8890.15 12597.03 5181.44 10399.51 2490.85 9695.74 11098.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
casdiffmvs_mvgpermissive92.96 6592.83 6593.35 6894.59 16883.40 11495.00 12396.34 10290.30 3092.05 8996.05 9383.43 7398.15 14192.07 6895.67 11198.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LCM-MVSNet-Re88.30 17288.32 15388.27 27494.71 16272.41 33593.15 22990.98 32587.77 11079.25 32391.96 24978.35 13895.75 30583.04 18995.62 11296.65 133
CHOSEN 1792x268888.84 15687.69 16792.30 12296.14 9681.42 17490.01 30895.86 14474.52 33787.41 16693.94 17875.46 17098.36 12480.36 23995.53 11397.12 112
fmvsm_s_conf0.5_n_a93.57 4793.76 4693.00 8495.02 14383.67 10496.19 5096.10 12387.27 12195.98 2298.05 1383.07 8098.45 11796.68 995.51 11496.88 126
AdaColmapbinary89.89 12289.07 12892.37 11897.41 6283.03 12894.42 16095.92 13782.81 22386.34 19394.65 15073.89 19399.02 6180.69 23495.51 11495.05 190
MVS87.44 20386.10 22091.44 16192.61 24283.62 10792.63 24795.66 16067.26 37181.47 29392.15 23877.95 14198.22 13779.71 24795.48 11692.47 307
UA-Net92.83 6692.54 6993.68 6596.10 10084.71 7595.66 8796.39 9991.92 793.22 5896.49 7783.16 7798.87 8284.47 17295.47 11797.45 99
xiu_mvs_v2_base91.13 9390.89 9291.86 14294.97 14782.42 14992.24 26195.64 16386.11 15091.74 10393.14 20779.67 12298.89 8189.06 11495.46 11894.28 232
casdiffmvspermissive92.51 7192.43 7192.74 9994.41 18081.98 15894.54 15196.23 11289.57 4991.96 9396.17 8982.58 8698.01 15990.95 9395.45 11998.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a93.19 6193.26 5592.97 8692.49 24383.62 10796.02 6795.72 15586.78 13396.04 2098.19 182.30 9198.43 12196.38 1195.42 12096.86 127
PVSNet_Blended_VisFu91.38 8790.91 9192.80 9596.39 9083.17 12094.87 13196.66 8583.29 21189.27 13594.46 15680.29 11199.17 4787.57 13295.37 12196.05 157
PAPM_NR91.22 9190.78 9492.52 11197.60 5681.46 17294.37 16796.24 11186.39 14187.41 16694.80 14382.06 9898.48 10982.80 19695.37 12197.61 91
CHOSEN 280x42085.15 26583.99 26888.65 26692.47 24478.40 25479.68 38292.76 27474.90 33481.41 29589.59 30969.85 24595.51 31279.92 24695.29 12392.03 319
TAPA-MVS84.62 688.16 17587.01 18591.62 15296.64 8080.65 19494.39 16396.21 11676.38 31786.19 19695.44 11579.75 11798.08 15462.75 36195.29 12396.13 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline92.39 7492.29 7392.69 10394.46 17781.77 16394.14 17796.27 10789.22 5991.88 9696.00 9482.35 8997.99 16191.05 8895.27 12598.30 47
LS3D87.89 18186.32 21192.59 10796.07 10282.92 13495.23 10794.92 20775.66 32482.89 27895.98 9672.48 21399.21 4568.43 33595.23 12695.64 173
test_vis1_n_192089.39 14089.84 11188.04 28192.97 23372.64 33094.71 14296.03 13186.18 14691.94 9596.56 7661.63 31895.74 30693.42 3995.11 12795.74 169
MVS_Test91.31 8991.11 8691.93 13694.37 18180.14 20893.46 21595.80 14786.46 13991.35 11093.77 18882.21 9498.09 15287.57 13294.95 12897.55 96
test_cas_vis1_n_192088.83 15988.85 13788.78 26091.15 29376.72 28893.85 20094.93 20683.23 21492.81 7096.00 9461.17 32694.45 32691.67 8194.84 12995.17 187
PAPR90.02 11589.27 12692.29 12395.78 11580.95 18792.68 24596.22 11381.91 24286.66 18693.75 19082.23 9398.44 11979.40 25594.79 13097.48 97
test_fmvs187.34 20787.56 17086.68 31490.59 31671.80 33994.01 19094.04 24678.30 30091.97 9295.22 12356.28 34793.71 34092.89 4794.71 13194.52 215
xiu_mvs_v1_base_debu90.64 10390.05 10592.40 11593.97 19884.46 8493.32 21995.46 17385.17 16892.25 8494.03 17070.59 23398.57 10590.97 9094.67 13294.18 233
xiu_mvs_v1_base90.64 10390.05 10592.40 11593.97 19884.46 8493.32 21995.46 17385.17 16892.25 8494.03 17070.59 23398.57 10590.97 9094.67 13294.18 233
xiu_mvs_v1_base_debi90.64 10390.05 10592.40 11593.97 19884.46 8493.32 21995.46 17385.17 16892.25 8494.03 17070.59 23398.57 10590.97 9094.67 13294.18 233
gg-mvs-nofinetune81.77 29779.37 31288.99 25890.85 30877.73 27586.29 35479.63 38374.88 33583.19 27669.05 38460.34 33096.11 28975.46 29094.64 13593.11 288
BH-RMVSNet88.37 16987.48 17291.02 18195.28 13279.45 23092.89 24093.07 26785.45 16486.91 17894.84 14270.35 23897.76 17273.97 30394.59 13695.85 163
test_fmvs1_n87.03 22387.04 18486.97 30689.74 33471.86 33794.55 15094.43 22878.47 29691.95 9495.50 11451.16 36493.81 33893.02 4694.56 13795.26 184
diffmvspermissive91.37 8891.23 8491.77 14893.09 22680.27 20392.36 25595.52 17187.03 12691.40 10994.93 13480.08 11397.44 20092.13 6794.56 13797.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned88.60 16488.13 15890.01 22695.24 13578.50 25193.29 22494.15 24184.75 18084.46 24293.40 19575.76 16497.40 20977.59 27094.52 13994.12 237
Effi-MVS+91.59 8591.11 8693.01 8394.35 18483.39 11594.60 14795.10 19687.10 12490.57 11793.10 20981.43 10498.07 15589.29 11194.48 14097.59 93
PCF-MVS84.11 1087.74 18686.08 22192.70 10294.02 19284.43 8789.27 32095.87 14373.62 34684.43 24494.33 15978.48 13798.86 8470.27 32194.45 14194.81 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-Vis-set93.01 6492.92 6393.29 6995.01 14483.51 11194.48 15395.77 14990.87 1592.52 8096.67 6684.50 6499.00 6891.99 7294.44 14297.36 100
MS-PatchMatch85.05 26784.16 26487.73 28691.42 28178.51 25091.25 28493.53 25977.50 30780.15 31091.58 26261.99 31695.51 31275.69 28894.35 14389.16 359
FE-MVS87.40 20586.02 22391.57 15594.56 17279.69 22590.27 29793.72 25780.57 26988.80 14291.62 26065.32 29498.59 10474.97 29794.33 14496.44 139
mvs_anonymous89.37 14189.32 12389.51 24693.47 21674.22 31391.65 27794.83 21482.91 22185.45 21693.79 18681.23 10696.36 28086.47 14894.09 14597.94 74
test_vis1_n86.56 23786.49 20686.78 31388.51 34472.69 32794.68 14393.78 25679.55 28090.70 11595.31 11948.75 36993.28 34693.15 4393.99 14694.38 227
MVP-Stereo85.97 24884.86 25589.32 24890.92 30482.19 15492.11 26694.19 23978.76 29278.77 32891.63 25968.38 26796.56 26575.01 29693.95 14789.20 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS90.08 11389.13 12792.95 8896.71 7782.32 15396.08 6189.91 34586.79 13292.15 8896.81 6162.60 31398.34 12787.18 13893.90 14898.19 58
PVSNet78.82 1885.55 25584.65 25988.23 27794.72 16171.93 33687.12 34992.75 27578.80 29184.95 23290.53 29164.43 30096.71 25374.74 29893.86 14996.06 156
CNLPA89.07 14987.98 16192.34 11996.87 7484.78 7494.08 18393.24 26381.41 25784.46 24295.13 13075.57 16996.62 25777.21 27493.84 15095.61 176
EPNet_dtu86.49 24285.94 22888.14 27990.24 32472.82 32594.11 17992.20 28986.66 13779.42 32292.36 23173.52 19895.81 30371.26 31593.66 15195.80 167
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GeoE90.05 11489.43 11991.90 14195.16 13880.37 20295.80 7894.65 22483.90 19487.55 16594.75 14578.18 14097.62 18581.28 22393.63 15297.71 88
EI-MVSNet-UG-set92.74 6892.62 6893.12 7694.86 15583.20 11994.40 16195.74 15290.71 2392.05 8996.60 7384.00 6898.99 7091.55 8293.63 15297.17 108
Fast-Effi-MVS+89.41 13788.64 14091.71 15094.74 15980.81 19193.54 21195.10 19683.11 21586.82 18490.67 28979.74 11897.75 17580.51 23893.55 15496.57 136
FA-MVS(test-final)89.66 12688.91 13391.93 13694.57 17180.27 20391.36 28194.74 22084.87 17689.82 12892.61 22474.72 18098.47 11283.97 17893.53 15597.04 115
131487.51 20086.57 20290.34 21192.42 24779.74 22492.63 24795.35 18678.35 29980.14 31191.62 26074.05 19097.15 22981.05 22593.53 15594.12 237
BH-w/o87.57 19887.05 18389.12 25394.90 15377.90 26692.41 25293.51 26082.89 22283.70 26391.34 26575.75 16597.07 23675.49 28993.49 15792.39 311
PMMVS85.71 25484.96 25287.95 28388.90 34277.09 28388.68 33090.06 34172.32 35886.47 18790.76 28872.15 21694.40 32881.78 21693.49 15792.36 312
PatchMatch-RL86.77 23285.54 23890.47 20595.88 11182.71 14290.54 29492.31 28679.82 27784.32 25091.57 26468.77 26296.39 27773.16 30893.48 15992.32 314
PLCcopyleft84.53 789.06 15088.03 16092.15 12697.27 6882.69 14394.29 16995.44 17879.71 27884.01 25794.18 16776.68 15498.75 9277.28 27393.41 16095.02 191
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet92.24 7591.91 7693.24 7196.59 8283.43 11294.84 13396.44 9689.19 6194.08 4395.90 9977.85 14598.17 13988.90 11593.38 16198.13 62
test-LLR85.87 25085.41 24187.25 29890.95 30071.67 34189.55 31489.88 34783.41 20884.54 23987.95 33367.25 27295.11 32181.82 21493.37 16294.97 192
test-mter84.54 27483.64 27387.25 29890.95 30071.67 34189.55 31489.88 34779.17 28484.54 23987.95 33355.56 34995.11 32181.82 21493.37 16294.97 192
EPP-MVSNet91.70 8391.56 8092.13 12795.88 11180.50 19997.33 795.25 18886.15 14789.76 12995.60 11283.42 7598.32 13187.37 13693.25 16497.56 95
CDS-MVSNet89.45 13488.51 14592.29 12393.62 21283.61 10993.01 23694.68 22381.95 24087.82 15993.24 20378.69 13296.99 24180.34 24093.23 16596.28 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM86.68 23385.39 24290.53 19693.05 22879.33 23789.79 31194.77 21978.82 29081.95 28993.24 20376.81 15097.30 21666.94 34493.16 16694.95 198
alignmvs93.08 6392.50 7094.81 3195.62 12287.61 1395.99 6996.07 12689.77 4594.12 4194.87 13780.56 10998.66 9692.42 5693.10 16798.15 61
thisisatest051587.33 20885.99 22491.37 16493.49 21579.55 22790.63 29389.56 35280.17 27287.56 16490.86 28267.07 27698.28 13381.50 22193.02 16896.29 144
TAMVS89.21 14388.29 15491.96 13493.71 20882.62 14693.30 22394.19 23982.22 23387.78 16093.94 17878.83 12996.95 24377.70 26992.98 16996.32 142
OMC-MVS91.23 9090.62 9593.08 7996.27 9384.07 9493.52 21295.93 13686.95 12889.51 13196.13 9178.50 13698.35 12685.84 15692.90 17096.83 128
canonicalmvs93.27 5892.75 6694.85 2595.70 11987.66 1296.33 4296.41 9890.00 3794.09 4294.60 15282.33 9098.62 10192.40 5792.86 17198.27 52
TESTMET0.1,183.74 28482.85 28386.42 31789.96 33071.21 34589.55 31487.88 35777.41 30883.37 27287.31 34156.71 34593.65 34280.62 23692.85 17294.40 226
thisisatest053088.67 16187.61 16991.86 14294.87 15480.07 21194.63 14689.90 34684.00 19288.46 14793.78 18766.88 27998.46 11383.30 18692.65 17397.06 113
VDD-MVS90.74 9889.92 11093.20 7396.27 9383.02 12995.73 8293.86 25288.42 8792.53 7996.84 5862.09 31598.64 9890.95 9392.62 17497.93 76
test_yl90.69 10090.02 10892.71 10095.72 11782.41 15194.11 17995.12 19485.63 15991.49 10694.70 14674.75 17798.42 12286.13 15192.53 17597.31 101
DCV-MVSNet90.69 10090.02 10892.71 10095.72 11782.41 15194.11 17995.12 19485.63 15991.49 10694.70 14674.75 17798.42 12286.13 15192.53 17597.31 101
VDDNet89.56 13088.49 14892.76 9795.07 14282.09 15596.30 4393.19 26581.05 26691.88 9696.86 5761.16 32798.33 12988.43 12192.49 17797.84 82
DP-MVS87.25 21285.36 24492.90 9097.65 5583.24 11794.81 13592.00 29774.99 33281.92 29095.00 13372.66 21099.05 5566.92 34692.33 17896.40 140
GG-mvs-BLEND87.94 28489.73 33577.91 26587.80 33978.23 38780.58 30583.86 36259.88 33495.33 31871.20 31692.22 17990.60 347
tttt051788.61 16387.78 16691.11 17694.96 14877.81 27095.35 9789.69 34985.09 17388.05 15494.59 15366.93 27798.48 10983.27 18792.13 18097.03 116
HyFIR lowres test88.09 17786.81 18991.93 13696.00 10580.63 19590.01 30895.79 14873.42 34887.68 16292.10 24373.86 19497.96 16380.75 23391.70 18197.19 107
sss88.93 15488.26 15690.94 18794.05 19180.78 19291.71 27495.38 18281.55 25588.63 14493.91 18275.04 17495.47 31682.47 20091.61 18296.57 136
cascas86.43 24384.98 25190.80 19092.10 25680.92 18890.24 30195.91 13973.10 35183.57 26888.39 32665.15 29697.46 19784.90 16691.43 18394.03 244
Effi-MVS+-dtu88.65 16288.35 15089.54 24393.33 22076.39 29494.47 15694.36 23387.70 11285.43 21989.56 31173.45 20097.26 22285.57 15991.28 18494.97 192
thres100view90087.63 19286.71 19490.38 20996.12 9778.55 24895.03 12291.58 30987.15 12288.06 15392.29 23468.91 26098.10 14470.13 32591.10 18594.48 223
tfpn200view987.58 19786.64 19790.41 20695.99 10878.64 24694.58 14891.98 29986.94 12988.09 15091.77 25369.18 25798.10 14470.13 32591.10 18594.48 223
thres600view787.65 18986.67 19690.59 19396.08 10178.72 24494.88 13091.58 30987.06 12588.08 15292.30 23368.91 26098.10 14470.05 32891.10 18594.96 195
thres40087.62 19486.64 19790.57 19495.99 10878.64 24694.58 14891.98 29986.94 12988.09 15091.77 25369.18 25798.10 14470.13 32591.10 18594.96 195
F-COLMAP87.95 18086.80 19091.40 16296.35 9280.88 18994.73 14095.45 17679.65 27982.04 28894.61 15171.13 22498.50 10876.24 28591.05 18994.80 204
thres20087.21 21686.24 21590.12 21995.36 13078.53 24993.26 22692.10 29386.42 14088.00 15591.11 27769.24 25698.00 16069.58 32991.04 19093.83 254
WTY-MVS89.60 12888.92 13291.67 15195.47 12781.15 18192.38 25494.78 21883.11 21589.06 13994.32 16078.67 13396.61 26081.57 22090.89 19197.24 104
HY-MVS83.01 1289.03 15187.94 16392.29 12394.86 15582.77 13692.08 26894.49 22681.52 25686.93 17692.79 22078.32 13998.23 13579.93 24590.55 19295.88 162
CLD-MVS89.47 13388.90 13491.18 17194.22 18682.07 15692.13 26596.09 12487.90 10585.37 22592.45 22874.38 18397.56 18887.15 13990.43 19393.93 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CVMVSNet84.69 27384.79 25784.37 33591.84 26564.92 37193.70 20791.47 31466.19 37386.16 19795.28 12067.18 27493.33 34580.89 23190.42 19494.88 200
SCA86.32 24485.18 24789.73 23892.15 25276.60 29091.12 28691.69 30683.53 20585.50 21288.81 31966.79 28096.48 27076.65 27990.35 19596.12 151
Fast-Effi-MVS+-dtu87.44 20386.72 19389.63 24192.04 25777.68 27694.03 18893.94 24785.81 15282.42 28291.32 26870.33 23997.06 23780.33 24190.23 19694.14 236
OPM-MVS90.12 11289.56 11591.82 14593.14 22483.90 9894.16 17695.74 15288.96 7187.86 15695.43 11772.48 21397.91 16788.10 12690.18 19793.65 267
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 10690.19 10091.82 14594.70 16382.73 14095.85 7596.22 11390.81 1786.91 17894.86 13874.23 18598.12 14288.15 12289.99 19894.63 207
plane_prior596.22 11398.12 14288.15 12289.99 19894.63 207
XVG-OURS89.40 13988.70 13891.52 15694.06 19081.46 17291.27 28396.07 12686.14 14888.89 14195.77 10668.73 26397.26 22287.39 13589.96 20095.83 165
baseline286.50 24085.39 24289.84 23191.12 29476.70 28991.88 26988.58 35582.35 23279.95 31590.95 28173.42 20197.63 18480.27 24289.95 20195.19 186
Anonymous20240521187.68 18786.13 21792.31 12196.66 7980.74 19394.87 13191.49 31380.47 27089.46 13395.44 11554.72 35498.23 13582.19 20689.89 20297.97 72
plane_prior82.73 14095.21 10989.66 4889.88 203
SDMVSNet90.19 11189.61 11491.93 13696.00 10583.09 12692.89 24095.98 13288.73 7686.85 18295.20 12672.09 21797.08 23488.90 11589.85 20495.63 174
sd_testset88.59 16587.85 16590.83 18896.00 10580.42 20192.35 25694.71 22188.73 7686.85 18295.20 12667.31 27096.43 27579.64 24989.85 20495.63 174
TR-MVS86.78 22985.76 23589.82 23294.37 18178.41 25392.47 25192.83 27281.11 26586.36 19292.40 22968.73 26397.48 19573.75 30689.85 20493.57 269
HQP3-MVS96.04 12989.77 207
HQP-MVS89.80 12489.28 12591.34 16594.17 18781.56 16694.39 16396.04 12988.81 7285.43 21993.97 17773.83 19597.96 16387.11 14189.77 20794.50 220
XVG-OURS-SEG-HR89.95 11989.45 11791.47 16094.00 19681.21 18091.87 27096.06 12885.78 15388.55 14595.73 10874.67 18197.27 22088.71 11889.64 20995.91 160
GA-MVS86.61 23485.27 24690.66 19291.33 28678.71 24590.40 29693.81 25585.34 16685.12 22989.57 31061.25 32397.11 23380.99 22989.59 21096.15 148
1112_ss88.42 16787.33 17691.72 14994.92 15180.98 18592.97 23894.54 22578.16 30483.82 26093.88 18378.78 13197.91 16779.45 25189.41 21196.26 146
ab-mvs89.41 13788.35 15092.60 10695.15 14082.65 14592.20 26395.60 16583.97 19388.55 14593.70 19174.16 18998.21 13882.46 20189.37 21296.94 121
CR-MVSNet85.35 26083.76 27190.12 21990.58 31779.34 23485.24 36291.96 30178.27 30185.55 20687.87 33671.03 22695.61 30873.96 30489.36 21395.40 180
RPMNet83.95 28181.53 29091.21 16990.58 31779.34 23485.24 36296.76 7571.44 36285.55 20682.97 36970.87 22998.91 8061.01 36589.36 21395.40 180
DSMNet-mixed76.94 33476.29 33378.89 35483.10 37556.11 39087.78 34079.77 38260.65 37975.64 34788.71 32261.56 32088.34 37760.07 36889.29 21592.21 317
LPG-MVS_test89.45 13488.90 13491.12 17394.47 17581.49 17095.30 10196.14 11886.73 13585.45 21695.16 12869.89 24398.10 14487.70 13089.23 21693.77 260
LGP-MVS_train91.12 17394.47 17581.49 17096.14 11886.73 13585.45 21695.16 12869.89 24398.10 14487.70 13089.23 21693.77 260
Test_1112_low_res87.65 18986.51 20491.08 17794.94 15079.28 23891.77 27294.30 23576.04 32283.51 26992.37 23077.86 14497.73 17678.69 25989.13 21896.22 147
PatchmatchNetpermissive85.85 25184.70 25889.29 24991.76 26975.54 30388.49 33291.30 31781.63 25385.05 23088.70 32371.71 21896.24 28474.61 30089.05 21996.08 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
iter_conf_final89.42 13688.69 13991.60 15395.12 14182.93 13395.75 8192.14 29287.32 12087.12 17394.07 16867.09 27597.55 18990.61 9989.01 22094.32 229
iter_conf0588.85 15588.08 15991.17 17294.27 18581.64 16595.18 11192.15 29186.23 14587.28 17094.07 16863.89 30697.55 18990.63 9889.00 22194.32 229
MDTV_nov1_ep1383.56 27491.69 27469.93 35587.75 34291.54 31178.60 29584.86 23388.90 31869.54 24896.03 29170.25 32288.93 222
MIMVSNet82.59 29180.53 29688.76 26191.51 27778.32 25686.57 35390.13 33979.32 28180.70 30388.69 32452.98 36193.07 35066.03 34988.86 22394.90 199
ACMM84.12 989.14 14488.48 14991.12 17394.65 16681.22 17995.31 9996.12 12185.31 16785.92 19994.34 15870.19 24198.06 15685.65 15788.86 22394.08 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba89.96 11889.50 11691.33 16692.90 23681.82 16196.68 3392.37 28389.03 6787.00 17494.85 14073.05 20597.65 18091.03 8988.63 22594.51 217
ACMP84.23 889.01 15388.35 15090.99 18494.73 16081.27 17695.07 11995.89 14286.48 13883.67 26494.30 16169.33 25297.99 16187.10 14388.55 22693.72 264
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf89.03 15188.64 14090.21 21390.74 31279.28 23895.96 7195.90 14084.66 18385.33 22792.94 21374.02 19197.30 21689.64 10788.53 22794.05 243
jajsoiax88.24 17387.50 17190.48 20290.89 30680.14 20895.31 9995.65 16284.97 17584.24 25394.02 17365.31 29597.42 20288.56 11988.52 22893.89 247
PatchT82.68 29081.27 29286.89 31090.09 32770.94 34984.06 36990.15 33874.91 33385.63 20583.57 36469.37 25094.87 32565.19 35188.50 22994.84 201
MSDG84.86 27083.09 27990.14 21893.80 20480.05 21389.18 32393.09 26678.89 28878.19 32991.91 25065.86 29397.27 22068.47 33488.45 23093.11 288
MVS-HIRNet73.70 33972.20 34278.18 35791.81 26856.42 38982.94 37582.58 37655.24 38168.88 37166.48 38555.32 35195.13 32058.12 37288.42 23183.01 374
mvs_tets88.06 17987.28 17890.38 20990.94 30279.88 22095.22 10895.66 16085.10 17284.21 25493.94 17863.53 30797.40 20988.50 12088.40 23293.87 250
ET-MVSNet_ETH3D87.51 20085.91 22992.32 12093.70 21083.93 9792.33 25890.94 32684.16 18872.09 36392.52 22669.90 24295.85 30089.20 11288.36 23397.17 108
FIs90.51 10790.35 9790.99 18493.99 19780.98 18595.73 8297.54 489.15 6286.72 18594.68 14881.83 10297.24 22485.18 16188.31 23494.76 205
PS-MVSNAJss89.97 11789.62 11391.02 18191.90 26380.85 19095.26 10695.98 13286.26 14386.21 19594.29 16279.70 11997.65 18088.87 11788.10 23594.57 212
CMPMVSbinary59.16 2180.52 31279.20 31684.48 33483.98 37267.63 36489.95 31093.84 25464.79 37566.81 37491.14 27657.93 34295.17 31976.25 28488.10 23590.65 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FC-MVSNet-test90.27 10990.18 10190.53 19693.71 20879.85 22295.77 8097.59 389.31 5686.27 19494.67 14981.93 10197.01 24084.26 17488.09 23794.71 206
ACMMP++88.01 238
D2MVS85.90 24985.09 24988.35 27290.79 30977.42 27991.83 27195.70 15680.77 26880.08 31390.02 30166.74 28296.37 27881.88 21387.97 23991.26 335
UniMVSNet_ETH3D87.53 19986.37 20891.00 18392.44 24678.96 24394.74 13995.61 16484.07 19185.36 22694.52 15559.78 33597.34 21482.93 19187.88 24096.71 132
PVSNet_BlendedMVS89.98 11689.70 11290.82 18996.12 9781.25 17793.92 19796.83 6683.49 20689.10 13792.26 23581.04 10798.85 8686.72 14687.86 24192.35 313
Syy-MVS80.07 31779.78 30680.94 35091.92 26159.93 38189.75 31287.40 36281.72 24978.82 32587.20 34366.29 28891.29 36447.06 38287.84 24291.60 327
myMVS_eth3d79.67 32278.79 32182.32 34891.92 26164.08 37389.75 31287.40 36281.72 24978.82 32587.20 34345.33 37591.29 36459.09 37187.84 24291.60 327
bld_raw_dy_0_6487.60 19686.73 19290.21 21391.72 27080.26 20595.09 11888.61 35485.68 15785.55 20694.38 15763.93 30596.66 25487.73 12987.84 24293.72 264
anonymousdsp87.84 18287.09 18190.12 21989.13 33980.54 19894.67 14495.55 16782.05 23683.82 26092.12 24071.47 22297.15 22987.15 13987.80 24592.67 301
testing380.46 31379.59 31183.06 34393.44 21864.64 37293.33 21885.47 36784.34 18779.93 31690.84 28444.35 37792.39 35457.06 37587.56 24692.16 318
Anonymous2024052988.09 17786.59 20192.58 10896.53 8681.92 16095.99 6995.84 14574.11 34189.06 13995.21 12561.44 32198.81 8983.67 18487.47 24797.01 117
ACMMP++_ref87.47 247
XVG-ACMP-BASELINE86.00 24784.84 25689.45 24791.20 28878.00 26391.70 27595.55 16785.05 17482.97 27792.25 23654.49 35597.48 19582.93 19187.45 24992.89 296
EI-MVSNet89.10 14588.86 13689.80 23591.84 26578.30 25793.70 20795.01 19985.73 15587.15 17195.28 12079.87 11697.21 22783.81 18187.36 25093.88 249
MVSTER88.84 15688.29 15490.51 19992.95 23480.44 20093.73 20495.01 19984.66 18387.15 17193.12 20872.79 20997.21 22787.86 12787.36 25093.87 250
EG-PatchMatch MVS82.37 29380.34 29988.46 26990.27 32379.35 23392.80 24494.33 23477.14 31273.26 36090.18 29747.47 37296.72 25170.25 32287.32 25289.30 356
EPMVS83.90 28382.70 28587.51 29090.23 32572.67 32888.62 33181.96 37881.37 25885.01 23188.34 32766.31 28794.45 32675.30 29287.12 25395.43 179
tpm284.08 27882.94 28187.48 29391.39 28271.27 34389.23 32290.37 33471.95 36084.64 23689.33 31267.30 27196.55 26775.17 29387.09 25494.63 207
CostFormer85.77 25384.94 25388.26 27591.16 29272.58 33389.47 31891.04 32476.26 32086.45 19089.97 30370.74 23196.86 24982.35 20387.07 25595.34 183
Patchmatch-test81.37 30579.30 31387.58 28990.92 30474.16 31580.99 37887.68 36070.52 36676.63 34188.81 31971.21 22392.76 35260.01 36986.93 25695.83 165
RRT_MVS89.09 14788.62 14390.49 20092.85 23779.65 22696.41 3994.41 23088.22 9485.50 21294.77 14469.36 25197.31 21589.33 11086.73 25794.51 217
mvsany_test185.42 25885.30 24585.77 32487.95 35575.41 30587.61 34680.97 38076.82 31488.68 14395.83 10277.44 14690.82 36885.90 15486.51 25891.08 342
test_fmvs283.98 27984.03 26683.83 34087.16 35867.53 36593.93 19692.89 27077.62 30686.89 18193.53 19347.18 37392.02 35890.54 10086.51 25891.93 321
LTVRE_ROB82.13 1386.26 24584.90 25490.34 21194.44 17981.50 16892.31 26094.89 20883.03 21779.63 32092.67 22169.69 24697.79 17071.20 31686.26 26091.72 324
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft80.39 1683.96 28082.04 28789.74 23695.28 13279.75 22394.25 17192.28 28775.17 33078.02 33293.77 18858.60 34097.84 16965.06 35485.92 26191.63 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF85.07 26684.27 26387.48 29392.91 23570.62 35191.69 27692.46 28176.20 32182.67 28195.22 12363.94 30397.29 21977.51 27285.80 26294.53 214
USDC82.76 28881.26 29387.26 29791.17 29074.55 30989.27 32093.39 26278.26 30275.30 34992.08 24454.43 35696.63 25671.64 31385.79 26390.61 345
dmvs_re84.20 27783.22 27887.14 30491.83 26777.81 27090.04 30790.19 33784.70 18281.49 29289.17 31464.37 30191.13 36671.58 31485.65 26492.46 308
GBi-Net87.26 21085.98 22591.08 17794.01 19383.10 12395.14 11594.94 20283.57 20284.37 24591.64 25666.59 28496.34 28178.23 26485.36 26593.79 255
test187.26 21085.98 22591.08 17794.01 19383.10 12395.14 11594.94 20283.57 20284.37 24591.64 25666.59 28496.34 28178.23 26485.36 26593.79 255
FMVSNet387.40 20586.11 21991.30 16793.79 20683.64 10694.20 17594.81 21683.89 19584.37 24591.87 25268.45 26696.56 26578.23 26485.36 26593.70 266
FMVSNet287.19 21885.82 23191.30 16794.01 19383.67 10494.79 13694.94 20283.57 20283.88 25992.05 24766.59 28496.51 26877.56 27185.01 26893.73 263
ACMH80.38 1785.36 25983.68 27290.39 20794.45 17880.63 19594.73 14094.85 21282.09 23577.24 33692.65 22260.01 33397.58 18672.25 31284.87 26992.96 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF88.24 27691.88 26477.05 28492.92 26985.54 16280.13 31293.30 20057.29 34496.20 28572.46 31184.71 27091.49 330
JIA-IIPM81.04 30878.98 32087.25 29888.64 34373.48 32081.75 37789.61 35173.19 35082.05 28773.71 38166.07 29295.87 29971.18 31884.60 27192.41 310
tt080586.92 22585.74 23790.48 20292.22 25079.98 21895.63 9094.88 21083.83 19784.74 23592.80 21957.61 34397.67 17785.48 16084.42 27293.79 255
OpenMVS_ROBcopyleft74.94 1979.51 32377.03 33086.93 30787.00 35976.23 29792.33 25890.74 33168.93 36974.52 35488.23 33049.58 36796.62 25757.64 37384.29 27387.94 368
AllTest83.42 28581.39 29189.52 24495.01 14477.79 27293.12 23090.89 32877.41 30876.12 34493.34 19654.08 35797.51 19368.31 33684.27 27493.26 279
TestCases89.52 24495.01 14477.79 27290.89 32877.41 30876.12 34493.34 19654.08 35797.51 19368.31 33684.27 27493.26 279
tpm84.73 27184.02 26786.87 31190.33 32268.90 35889.06 32589.94 34480.85 26785.75 20189.86 30568.54 26595.97 29477.76 26884.05 27695.75 168
FMVSNet185.85 25184.11 26591.08 17792.81 23883.10 12395.14 11594.94 20281.64 25282.68 28091.64 25659.01 33996.34 28175.37 29183.78 27793.79 255
ADS-MVSNet281.66 30079.71 30987.50 29191.35 28474.19 31483.33 37288.48 35672.90 35382.24 28585.77 35564.98 29793.20 34864.57 35583.74 27895.12 188
ADS-MVSNet81.56 30279.78 30686.90 30991.35 28471.82 33883.33 37289.16 35372.90 35382.24 28585.77 35564.98 29793.76 33964.57 35583.74 27895.12 188
XXY-MVS87.65 18986.85 18890.03 22392.14 25380.60 19793.76 20395.23 18982.94 22084.60 23794.02 17374.27 18495.49 31581.04 22683.68 28094.01 245
test_040281.30 30779.17 31787.67 28793.19 22378.17 26092.98 23791.71 30475.25 32976.02 34690.31 29559.23 33796.37 27850.22 38083.63 28188.47 365
tpmvs83.35 28782.07 28687.20 30291.07 29671.00 34888.31 33591.70 30578.91 28780.49 30787.18 34569.30 25597.08 23468.12 33983.56 28293.51 273
pmmvs584.21 27682.84 28488.34 27388.95 34176.94 28592.41 25291.91 30375.63 32580.28 30891.18 27364.59 29995.57 30977.09 27783.47 28392.53 305
pmmvs485.43 25783.86 27090.16 21690.02 32982.97 13290.27 29792.67 27875.93 32380.73 30291.74 25571.05 22595.73 30778.85 25883.46 28491.78 323
test0.0.03 182.41 29281.69 28884.59 33388.23 35072.89 32490.24 30187.83 35883.41 20879.86 31789.78 30767.25 27288.99 37665.18 35283.42 28591.90 322
tpmrst85.35 26084.99 25086.43 31690.88 30767.88 36288.71 32991.43 31580.13 27386.08 19888.80 32173.05 20596.02 29282.48 19983.40 28695.40 180
nrg03091.08 9490.39 9693.17 7493.07 22786.91 2196.41 3996.26 10888.30 9088.37 14994.85 14082.19 9597.64 18391.09 8782.95 28794.96 195
cl2286.78 22985.98 22589.18 25292.34 24877.62 27790.84 29094.13 24381.33 25983.97 25890.15 29873.96 19296.60 26284.19 17582.94 28893.33 277
miper_ehance_all_eth87.22 21586.62 20089.02 25792.13 25477.40 28090.91 28994.81 21681.28 26084.32 25090.08 30079.26 12596.62 25783.81 18182.94 28893.04 291
miper_enhance_ethall86.90 22686.18 21689.06 25591.66 27577.58 27890.22 30394.82 21579.16 28584.48 24189.10 31579.19 12796.66 25484.06 17682.94 28892.94 294
ACMH+81.04 1485.05 26783.46 27589.82 23294.66 16579.37 23294.44 15894.12 24482.19 23478.04 33192.82 21758.23 34197.54 19173.77 30582.90 29192.54 304
VPA-MVSNet89.62 12788.96 13091.60 15393.86 20182.89 13595.46 9497.33 2587.91 10488.43 14893.31 19974.17 18897.40 20987.32 13782.86 29294.52 215
IterMVS-LS88.36 17087.91 16489.70 23993.80 20478.29 25893.73 20495.08 19885.73 15584.75 23491.90 25179.88 11596.92 24583.83 18082.51 29393.89 247
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi80.94 31180.20 30283.18 34187.96 35466.29 36691.28 28290.70 33283.70 19978.12 33092.84 21551.37 36390.82 36863.34 35882.46 29492.43 309
test_vis1_rt77.96 33176.46 33182.48 34685.89 36571.74 34090.25 29978.89 38471.03 36571.30 36781.35 37342.49 37991.05 36784.55 17182.37 29584.65 371
WR-MVS88.38 16887.67 16890.52 19893.30 22180.18 20693.26 22695.96 13588.57 8385.47 21592.81 21876.12 15796.91 24681.24 22482.29 29694.47 225
tpm cat181.96 29480.27 30087.01 30591.09 29571.02 34787.38 34791.53 31266.25 37280.17 30986.35 35168.22 26896.15 28869.16 33082.29 29693.86 252
v119287.25 21286.33 21090.00 22790.76 31179.04 24293.80 20195.48 17282.57 22785.48 21491.18 27373.38 20397.42 20282.30 20482.06 29893.53 270
v114487.61 19586.79 19190.06 22291.01 29779.34 23493.95 19495.42 18183.36 21085.66 20491.31 26974.98 17597.42 20283.37 18582.06 29893.42 276
v124086.78 22985.85 23089.56 24290.45 32177.79 27293.61 20995.37 18481.65 25185.43 21991.15 27571.50 22197.43 20181.47 22282.05 30093.47 274
Anonymous2023120681.03 30979.77 30884.82 33287.85 35670.26 35391.42 28092.08 29473.67 34577.75 33389.25 31362.43 31493.08 34961.50 36482.00 30191.12 339
V4287.68 18786.86 18790.15 21790.58 31780.14 20894.24 17395.28 18783.66 20085.67 20391.33 26674.73 17997.41 20784.43 17381.83 30292.89 296
v192192086.97 22486.06 22289.69 24090.53 32078.11 26293.80 20195.43 17981.90 24385.33 22791.05 27972.66 21097.41 20782.05 20981.80 30393.53 270
v2v48287.84 18287.06 18290.17 21590.99 29879.23 24194.00 19295.13 19384.87 17685.53 20992.07 24674.45 18297.45 19884.71 16981.75 30493.85 253
Anonymous2023121186.59 23685.13 24890.98 18696.52 8781.50 16896.14 5796.16 11773.78 34483.65 26592.15 23863.26 31097.37 21382.82 19581.74 30594.06 242
v14419287.19 21886.35 20989.74 23690.64 31578.24 25993.92 19795.43 17981.93 24185.51 21191.05 27974.21 18797.45 19882.86 19381.56 30693.53 270
cl____86.52 23985.78 23288.75 26292.03 25876.46 29290.74 29194.30 23581.83 24783.34 27390.78 28775.74 16796.57 26381.74 21781.54 30793.22 283
DIV-MVS_self_test86.53 23885.78 23288.75 26292.02 25976.45 29390.74 29194.30 23581.83 24783.34 27390.82 28575.75 16596.57 26381.73 21881.52 30893.24 282
Anonymous2024052180.44 31479.21 31584.11 33885.75 36767.89 36192.86 24293.23 26475.61 32675.59 34887.47 34050.03 36594.33 33071.14 31981.21 30990.12 350
OurMVSNet-221017-085.35 26084.64 26087.49 29290.77 31072.59 33294.01 19094.40 23184.72 18179.62 32193.17 20561.91 31796.72 25181.99 21081.16 31093.16 286
FMVSNet581.52 30379.60 31087.27 29691.17 29077.95 26491.49 27992.26 28876.87 31376.16 34387.91 33551.67 36292.34 35567.74 34081.16 31091.52 329
CP-MVSNet87.63 19287.26 18088.74 26493.12 22576.59 29195.29 10396.58 9188.43 8683.49 27092.98 21275.28 17195.83 30178.97 25781.15 31293.79 255
c3_l87.14 22086.50 20589.04 25692.20 25177.26 28191.22 28594.70 22282.01 23984.34 24990.43 29378.81 13096.61 26083.70 18381.09 31393.25 281
IterMVS-SCA-FT85.45 25684.53 26288.18 27891.71 27276.87 28690.19 30492.65 27985.40 16581.44 29490.54 29066.79 28095.00 32481.04 22681.05 31492.66 302
TinyColmap79.76 32177.69 32485.97 32091.71 27273.12 32289.55 31490.36 33575.03 33172.03 36490.19 29646.22 37496.19 28763.11 35981.03 31588.59 364
UniMVSNet_NR-MVSNet89.92 12189.29 12491.81 14793.39 21983.72 10294.43 15997.12 4189.80 4186.46 18893.32 19883.16 7797.23 22584.92 16481.02 31694.49 222
DU-MVS89.34 14288.50 14691.85 14493.04 22983.72 10294.47 15696.59 9089.50 5086.46 18893.29 20177.25 14797.23 22584.92 16481.02 31694.59 210
PS-CasMVS87.32 20986.88 18688.63 26792.99 23276.33 29695.33 9896.61 8988.22 9483.30 27593.07 21073.03 20795.79 30478.36 26181.00 31893.75 262
IterMVS84.88 26983.98 26987.60 28891.44 27876.03 29890.18 30592.41 28283.24 21381.06 30090.42 29466.60 28394.28 33279.46 25080.98 31992.48 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)89.80 12489.07 12892.01 12893.60 21384.52 8194.78 13797.47 1189.26 5886.44 19192.32 23282.10 9697.39 21284.81 16780.84 32094.12 237
LF4IMVS80.37 31579.07 31984.27 33786.64 36069.87 35689.39 31991.05 32376.38 31774.97 35190.00 30247.85 37194.25 33374.55 30180.82 32188.69 363
v1087.25 21286.38 20789.85 23091.19 28979.50 22894.48 15395.45 17683.79 19883.62 26691.19 27175.13 17297.42 20281.94 21180.60 32292.63 303
tfpnnormal84.72 27283.23 27789.20 25192.79 23980.05 21394.48 15395.81 14682.38 23081.08 29991.21 27069.01 25996.95 24361.69 36380.59 32390.58 348
WR-MVS_H87.80 18487.37 17589.10 25493.23 22278.12 26195.61 9197.30 2987.90 10583.72 26292.01 24879.65 12396.01 29376.36 28280.54 32493.16 286
VPNet88.20 17487.47 17390.39 20793.56 21479.46 22994.04 18795.54 16988.67 7986.96 17594.58 15469.33 25297.15 22984.05 17780.53 32594.56 213
v7n86.81 22785.76 23589.95 22890.72 31379.25 24095.07 11995.92 13784.45 18682.29 28390.86 28272.60 21297.53 19279.42 25480.52 32693.08 290
v887.50 20286.71 19489.89 22991.37 28379.40 23194.50 15295.38 18284.81 17983.60 26791.33 26676.05 15897.42 20282.84 19480.51 32792.84 298
EU-MVSNet81.32 30680.95 29482.42 34788.50 34663.67 37593.32 21991.33 31664.02 37680.57 30692.83 21661.21 32592.27 35676.34 28380.38 32891.32 333
Patchmtry82.71 28980.93 29588.06 28090.05 32876.37 29584.74 36791.96 30172.28 35981.32 29787.87 33671.03 22695.50 31468.97 33180.15 32992.32 314
NR-MVSNet88.58 16687.47 17391.93 13693.04 22984.16 9394.77 13896.25 11089.05 6580.04 31493.29 20179.02 12897.05 23881.71 21980.05 33094.59 210
Baseline_NR-MVSNet87.07 22186.63 19988.40 27091.44 27877.87 26894.23 17492.57 28084.12 19085.74 20292.08 24477.25 14796.04 29082.29 20579.94 33191.30 334
dp81.47 30480.23 30185.17 33089.92 33165.49 36986.74 35190.10 34076.30 31981.10 29887.12 34662.81 31295.92 29668.13 33879.88 33294.09 240
TranMVSNet+NR-MVSNet88.84 15687.95 16291.49 15892.68 24183.01 13094.92 12896.31 10389.88 3985.53 20993.85 18576.63 15596.96 24281.91 21279.87 33394.50 220
miper_lstm_enhance85.27 26384.59 26187.31 29591.28 28774.63 30887.69 34394.09 24581.20 26481.36 29689.85 30674.97 17694.30 33181.03 22879.84 33493.01 292
v14887.04 22286.32 21189.21 25090.94 30277.26 28193.71 20694.43 22884.84 17884.36 24890.80 28676.04 15997.05 23882.12 20779.60 33593.31 278
IB-MVS80.51 1585.24 26483.26 27691.19 17092.13 25479.86 22191.75 27391.29 31883.28 21280.66 30488.49 32561.28 32298.46 11380.99 22979.46 33695.25 185
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
eth_miper_zixun_eth86.50 24085.77 23488.68 26591.94 26075.81 30190.47 29594.89 20882.05 23684.05 25590.46 29275.96 16096.77 25082.76 19779.36 33793.46 275
baseline188.10 17687.28 17890.57 19494.96 14880.07 21194.27 17091.29 31886.74 13487.41 16694.00 17576.77 15296.20 28580.77 23279.31 33895.44 178
our_test_381.93 29580.46 29886.33 31888.46 34773.48 32088.46 33391.11 32076.46 31576.69 34088.25 32966.89 27894.36 32968.75 33279.08 33991.14 338
PEN-MVS86.80 22886.27 21488.40 27092.32 24975.71 30295.18 11196.38 10087.97 10282.82 27993.15 20673.39 20295.92 29676.15 28679.03 34093.59 268
pm-mvs186.61 23485.54 23889.82 23291.44 27880.18 20695.28 10594.85 21283.84 19681.66 29192.62 22372.45 21596.48 27079.67 24878.06 34192.82 299
h-mvs3390.80 9690.15 10292.75 9896.01 10482.66 14495.43 9595.53 17089.80 4193.08 6195.64 11175.77 16299.00 6892.07 6878.05 34296.60 134
SixPastTwentyTwo83.91 28282.90 28286.92 30890.99 29870.67 35093.48 21391.99 29885.54 16277.62 33592.11 24260.59 32996.87 24876.05 28777.75 34393.20 284
ppachtmachnet_test81.84 29680.07 30487.15 30388.46 34774.43 31289.04 32692.16 29075.33 32877.75 33388.99 31666.20 28995.37 31765.12 35377.60 34491.65 325
MIMVSNet179.38 32477.28 32685.69 32586.35 36173.67 31791.61 27892.75 27578.11 30572.64 36288.12 33148.16 37091.97 36060.32 36677.49 34591.43 332
DTE-MVSNet86.11 24685.48 24087.98 28291.65 27674.92 30794.93 12795.75 15187.36 11982.26 28493.04 21172.85 20895.82 30274.04 30277.46 34693.20 284
N_pmnet68.89 34468.44 34670.23 36589.07 34028.79 40288.06 33619.50 40269.47 36871.86 36584.93 35861.24 32491.75 36154.70 37777.15 34790.15 349
AUN-MVS87.78 18586.54 20391.48 15994.82 15881.05 18393.91 19993.93 24883.00 21886.93 17693.53 19369.50 24997.67 17786.14 14977.12 34895.73 171
hse-mvs289.88 12389.34 12291.51 15794.83 15781.12 18293.94 19593.91 25189.80 4193.08 6193.60 19275.77 16297.66 17992.07 6877.07 34995.74 169
dmvs_testset74.57 33875.81 33770.86 36487.72 35740.47 39787.05 35077.90 38982.75 22471.15 36885.47 35767.98 26984.12 38645.26 38376.98 35088.00 367
test20.0379.95 31979.08 31882.55 34585.79 36667.74 36391.09 28791.08 32181.23 26374.48 35589.96 30461.63 31890.15 37060.08 36776.38 35189.76 351
FPMVS64.63 34962.55 35170.88 36370.80 38956.71 38584.42 36884.42 37151.78 38449.57 38481.61 37223.49 38981.48 38940.61 38976.25 35274.46 382
test_fmvs377.67 33277.16 32979.22 35379.52 38261.14 37992.34 25791.64 30873.98 34278.86 32486.59 34727.38 38787.03 37888.12 12575.97 35389.50 353
EGC-MVSNET61.97 35056.37 35478.77 35589.63 33673.50 31989.12 32482.79 3750.21 3991.24 40084.80 35939.48 38090.04 37144.13 38475.94 35472.79 383
pmmvs683.42 28581.60 28988.87 25988.01 35377.87 26894.96 12594.24 23874.67 33678.80 32791.09 27860.17 33296.49 26977.06 27875.40 35592.23 316
new_pmnet72.15 34070.13 34478.20 35682.95 37665.68 36783.91 37082.40 37762.94 37864.47 37579.82 37542.85 37886.26 38257.41 37474.44 35682.65 376
MDA-MVSNet_test_wron79.21 32677.19 32885.29 32888.22 35172.77 32685.87 35690.06 34174.34 33862.62 37887.56 33966.14 29091.99 35966.90 34773.01 35791.10 341
YYNet179.22 32577.20 32785.28 32988.20 35272.66 32985.87 35690.05 34374.33 33962.70 37687.61 33866.09 29192.03 35766.94 34472.97 35891.15 337
Patchmatch-RL test81.67 29979.96 30586.81 31285.42 36971.23 34482.17 37687.50 36178.47 29677.19 33782.50 37170.81 23093.48 34382.66 19872.89 35995.71 172
pmmvs-eth3d80.97 31078.72 32287.74 28584.99 37179.97 21990.11 30691.65 30775.36 32773.51 35886.03 35259.45 33693.96 33775.17 29372.21 36089.29 357
PM-MVS78.11 33076.12 33484.09 33983.54 37470.08 35488.97 32785.27 36979.93 27574.73 35386.43 34934.70 38393.48 34379.43 25372.06 36188.72 362
test_f71.95 34170.87 34375.21 36074.21 38759.37 38385.07 36485.82 36565.25 37470.42 36983.13 36623.62 38882.93 38878.32 26271.94 36283.33 373
Gipumacopyleft57.99 35554.91 35767.24 37188.51 34465.59 36852.21 39090.33 33643.58 38742.84 39051.18 39120.29 39385.07 38334.77 39070.45 36351.05 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test169.04 34366.26 34977.36 35980.51 38062.79 37885.46 36183.51 37454.11 38359.14 38184.79 36023.40 39089.61 37255.22 37670.24 36479.68 380
K. test v381.59 30180.15 30385.91 32389.89 33269.42 35792.57 24987.71 35985.56 16173.44 35989.71 30855.58 34895.52 31177.17 27569.76 36592.78 300
KD-MVS_self_test80.20 31679.24 31483.07 34285.64 36865.29 37091.01 28893.93 24878.71 29476.32 34286.40 35059.20 33892.93 35172.59 31069.35 36691.00 343
CL-MVSNet_self_test81.74 29880.53 29685.36 32785.96 36472.45 33490.25 29993.07 26781.24 26279.85 31887.29 34270.93 22892.52 35366.95 34369.23 36791.11 340
TDRefinement79.81 32077.34 32587.22 30179.24 38375.48 30493.12 23092.03 29676.45 31675.01 35091.58 26249.19 36896.44 27470.22 32469.18 36889.75 352
MDA-MVSNet-bldmvs78.85 32776.31 33286.46 31589.76 33373.88 31688.79 32890.42 33379.16 28559.18 38088.33 32860.20 33194.04 33462.00 36268.96 36991.48 331
ambc83.06 34379.99 38163.51 37677.47 38392.86 27174.34 35684.45 36128.74 38495.06 32373.06 30968.89 37090.61 345
TransMVSNet (Re)84.43 27583.06 28088.54 26891.72 27078.44 25295.18 11192.82 27382.73 22579.67 31992.12 24073.49 19995.96 29571.10 32068.73 37191.21 336
mvsany_test374.95 33773.26 34180.02 35274.61 38563.16 37785.53 36078.42 38574.16 34074.89 35286.46 34836.02 38289.09 37582.39 20266.91 37287.82 369
PMVScopyleft47.18 2252.22 35648.46 36063.48 37245.72 40046.20 39573.41 38678.31 38641.03 39030.06 39365.68 3866.05 40083.43 38730.04 39165.86 37360.80 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt65.12 34862.60 35072.69 36271.44 38860.71 38087.17 34865.55 39563.80 37753.22 38365.65 38714.54 39789.44 37476.65 27965.38 37467.91 386
lessismore_v086.04 31988.46 34768.78 35980.59 38173.01 36190.11 29955.39 35096.43 27575.06 29565.06 37592.90 295
new-patchmatchnet76.41 33575.17 33880.13 35182.65 37759.61 38287.66 34491.08 32178.23 30369.85 37083.22 36554.76 35391.63 36364.14 35764.89 37689.16 359
pmmvs371.81 34268.71 34581.11 34975.86 38470.42 35286.74 35183.66 37358.95 38068.64 37380.89 37436.93 38189.52 37363.10 36063.59 37783.39 372
UnsupCasMVSNet_eth80.07 31778.27 32385.46 32685.24 37072.63 33188.45 33494.87 21182.99 21971.64 36688.07 33256.34 34691.75 36173.48 30763.36 37892.01 320
LCM-MVSNet66.00 34762.16 35277.51 35864.51 39558.29 38483.87 37190.90 32748.17 38554.69 38273.31 38216.83 39686.75 37965.47 35061.67 37987.48 370
UnsupCasMVSNet_bld76.23 33673.27 34085.09 33183.79 37372.92 32385.65 35993.47 26171.52 36168.84 37279.08 37649.77 36693.21 34766.81 34860.52 38089.13 361
testf159.54 35256.11 35569.85 36669.28 39056.61 38780.37 38076.55 39242.58 38845.68 38775.61 37711.26 39884.18 38443.20 38660.44 38168.75 384
APD_test259.54 35256.11 35569.85 36669.28 39056.61 38780.37 38076.55 39242.58 38845.68 38775.61 37711.26 39884.18 38443.20 38660.44 38168.75 384
KD-MVS_2432*160078.50 32876.02 33585.93 32186.22 36274.47 31084.80 36592.33 28479.29 28276.98 33885.92 35353.81 35993.97 33567.39 34157.42 38389.36 354
miper_refine_blended78.50 32876.02 33585.93 32186.22 36274.47 31084.80 36592.33 28479.29 28276.98 33885.92 35353.81 35993.97 33567.39 34157.42 38389.36 354
DeepMVS_CXcopyleft56.31 37574.23 38651.81 39256.67 40044.85 38648.54 38675.16 37927.87 38658.74 39640.92 38852.22 38558.39 389
WB-MVS67.92 34567.49 34769.21 36881.09 37841.17 39688.03 33778.00 38873.50 34762.63 37783.11 36863.94 30386.52 38025.66 39351.45 38679.94 379
PVSNet_073.20 2077.22 33374.83 33984.37 33590.70 31471.10 34683.09 37489.67 35072.81 35573.93 35783.13 36660.79 32893.70 34168.54 33350.84 38788.30 366
test_method50.52 35748.47 35956.66 37452.26 39918.98 40441.51 39281.40 37910.10 39444.59 38975.01 38028.51 38568.16 39253.54 37849.31 38882.83 375
SSC-MVS67.06 34666.56 34868.56 37080.54 37940.06 39887.77 34177.37 39172.38 35761.75 37982.66 37063.37 30886.45 38124.48 39448.69 38979.16 381
PMMVS259.60 35156.40 35369.21 36868.83 39246.58 39473.02 38777.48 39055.07 38249.21 38572.95 38317.43 39580.04 39049.32 38144.33 39080.99 378
MVEpermissive39.65 2343.39 35838.59 36457.77 37356.52 39748.77 39355.38 38958.64 39929.33 39328.96 39452.65 3904.68 40164.62 39528.11 39233.07 39159.93 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 35942.29 36146.03 37665.58 39437.41 39973.51 38564.62 39633.99 39128.47 39547.87 39219.90 39467.91 39322.23 39524.45 39232.77 391
ANet_high58.88 35454.22 35872.86 36156.50 39856.67 38680.75 37986.00 36473.09 35237.39 39164.63 38822.17 39179.49 39143.51 38523.96 39382.43 377
EMVS42.07 36041.12 36244.92 37763.45 39635.56 40173.65 38463.48 39733.05 39226.88 39645.45 39321.27 39267.14 39419.80 39623.02 39432.06 392
tmp_tt35.64 36139.24 36324.84 37814.87 40123.90 40362.71 38851.51 4016.58 39636.66 39262.08 38944.37 37630.34 39852.40 37922.00 39520.27 393
wuyk23d21.27 36320.48 36623.63 37968.59 39336.41 40049.57 3916.85 4039.37 3957.89 3974.46 3994.03 40231.37 39717.47 39716.07 3963.12 394
testmvs8.92 36411.52 3671.12 3811.06 4020.46 40686.02 3550.65 4040.62 3972.74 3989.52 3970.31 4040.45 4002.38 3980.39 3972.46 396
test1238.76 36511.22 3681.39 3800.85 4030.97 40585.76 3580.35 4050.54 3982.45 3998.14 3980.60 4030.48 3992.16 3990.17 3982.71 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k22.14 36229.52 3650.00 3820.00 4040.00 4070.00 39395.76 1500.00 4000.00 40194.29 16275.66 1680.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.64 3678.86 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40079.70 1190.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.82 36610.43 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40193.88 1830.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS64.08 37359.14 370
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 16
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1498.06 1191.45 11
eth-test20.00 404
eth-test0.00 404
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
save fliter97.85 4685.63 6495.21 10996.82 6889.44 51
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 151
test_part298.55 1287.22 1896.40 15
sam_mvs171.70 21996.12 151
sam_mvs70.60 232
MTGPAbinary96.97 50
test_post188.00 3389.81 39669.31 25495.53 31076.65 279
test_post10.29 39570.57 23695.91 298
patchmatchnet-post83.76 36371.53 22096.48 270
MTMP96.16 5360.64 398
gm-plane-assit89.60 33768.00 36077.28 31188.99 31697.57 18779.44 252
TEST997.53 5886.49 3694.07 18496.78 7281.61 25492.77 7296.20 8587.71 2899.12 51
test_897.49 6086.30 4494.02 18996.76 7581.86 24592.70 7696.20 8587.63 2999.02 61
agg_prior97.38 6385.92 5696.72 8192.16 8798.97 75
test_prior485.96 5394.11 179
test_prior93.82 6097.29 6784.49 8296.88 6198.87 8298.11 65
旧先验293.36 21771.25 36394.37 3797.13 23286.74 144
新几何293.11 232
无先验93.28 22596.26 10873.95 34399.05 5580.56 23796.59 135
原ACMM292.94 239
testdata298.75 9278.30 263
segment_acmp87.16 34
testdata192.15 26487.94 103
plane_prior794.70 16382.74 139
plane_prior694.52 17382.75 13774.23 185
plane_prior494.86 138
plane_prior382.75 13790.26 3386.91 178
plane_prior295.85 7590.81 17
plane_prior194.59 168
n20.00 406
nn0.00 406
door-mid85.49 366
test1196.57 92
door85.33 368
HQP5-MVS81.56 166
HQP-NCC94.17 18794.39 16388.81 7285.43 219
ACMP_Plane94.17 18794.39 16388.81 7285.43 219
BP-MVS87.11 141
HQP4-MVS85.43 21997.96 16394.51 217
HQP2-MVS73.83 195
NP-MVS94.37 18182.42 14993.98 176
MDTV_nov1_ep13_2view55.91 39187.62 34573.32 34984.59 23870.33 23974.65 29995.50 177
Test By Simon80.02 114