This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19498.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS97.02 2996.81 3797.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
IU-MVS99.42 795.39 1197.94 10490.40 19898.94 897.41 2999.66 1099.74 8
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 32596.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast96.51 5596.27 6197.22 5999.32 2292.74 7798.74 998.06 8290.57 19496.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVScopyleft96.69 4996.45 5797.40 4899.36 1893.11 6998.87 698.06 8291.17 16896.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
region2R97.07 2696.84 3397.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
PC_three_145290.77 17998.89 1498.28 6596.24 198.35 21795.76 7399.58 2199.59 22
mPP-MVS96.86 3796.60 4797.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2896.96 17898.06 8290.67 18595.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4496.45 5797.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4496.46 5697.71 3998.40 7594.07 4698.21 4398.45 2289.86 20797.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2697.72 9898.10 7291.50 15398.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-296.83 4197.44 1395.01 17299.05 3985.39 30296.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
dcpmvs_296.37 6097.05 2294.31 21698.96 4684.11 32097.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16398.09 10186.63 27996.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
9.1496.75 4198.93 4797.73 9598.23 5091.28 16397.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 14092.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 167
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++96.94 3397.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
PGM-MVS96.81 4296.53 5097.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
CDPH-MVS95.97 7095.38 7897.77 3398.93 4794.44 3296.35 23197.88 10986.98 29696.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
DELS-MVS96.61 5296.38 5997.30 5297.79 12093.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3498.01 5794.09 34797.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
CPTT-MVS95.57 8095.19 8396.70 7199.27 2691.48 12198.33 2898.11 7087.79 27795.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
MVS_111021_HR96.68 5196.58 4996.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6295.67 23992.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
XVS97.18 2196.96 2897.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
X-MVStestdata91.71 21589.67 27697.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 40391.70 4899.80 3095.66 7599.40 5099.62 18
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
test9_res94.81 10399.38 5399.45 47
agg_prior293.94 12199.38 5399.50 40
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
MM97.29 1996.98 2698.23 1198.01 10795.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
train_agg96.30 6295.83 6997.72 3798.70 5694.19 4096.41 22398.02 9488.58 25196.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
CS-MVS-test96.89 3597.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17996.92 3599.33 5898.94 97
3Dnovator91.36 595.19 9194.44 10697.44 4796.56 19193.36 6398.65 1198.36 2494.12 6389.25 27198.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
ZD-MVS99.05 3994.59 2998.08 7489.22 22797.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
SR-MVS97.01 3096.86 3197.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
CSCG96.05 6795.91 6696.46 8999.24 2890.47 16498.30 3098.57 1889.01 23493.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
SR-MVS-dyc-post96.88 3696.80 3897.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
RE-MVS-def96.72 4399.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
APD-MVS_3200maxsize96.81 4296.71 4497.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
DeepC-MVS93.07 396.06 6695.66 7097.29 5397.96 10993.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CANet96.39 5996.02 6497.50 4597.62 13193.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
MVS_111021_LR96.24 6496.19 6396.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
CS-MVS96.86 3797.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18597.10 3199.17 7398.90 102
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
test22298.24 8792.21 9495.33 28697.60 14279.22 37695.25 11897.84 9888.80 9299.15 7598.72 116
114514_t93.95 12693.06 14196.63 7499.07 3791.61 11497.46 13397.96 10277.99 38093.00 16697.57 11986.14 13799.33 11589.22 21899.15 7598.94 97
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
新几何197.32 5198.60 6593.59 5697.75 12381.58 36395.75 10697.85 9690.04 7799.67 5686.50 27099.13 7798.69 119
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28895.22 12097.68 10790.25 7499.54 8987.95 23899.12 7998.49 132
EC-MVSNet96.42 5796.47 5396.26 10697.01 16291.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19597.45 2699.11 8098.67 121
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6792.66 35791.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
test_fmvsmvis_n_192096.70 4796.84 3396.31 10096.62 18491.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 199
test_cas_vis1_n_192094.48 10894.55 10194.28 21896.78 17586.45 28397.63 11297.64 13893.32 9497.68 3898.36 5073.75 31799.08 14496.73 3999.05 8397.31 206
MVSFormer95.37 8395.16 8495.99 12496.34 20991.21 13398.22 4197.57 14691.42 15796.22 8997.32 12986.20 13597.92 27994.07 11799.05 8398.85 108
lupinMVS94.99 9794.56 9896.29 10496.34 20991.21 13395.83 26296.27 26188.93 23996.22 8996.88 15586.20 13598.85 16895.27 9199.05 8398.82 111
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
testdata95.46 15598.18 9788.90 21897.66 13482.73 35497.03 5798.07 7690.06 7698.85 16889.67 20598.98 8798.64 122
3Dnovator+91.43 495.40 8294.48 10498.16 1696.90 16695.34 1698.48 2197.87 11194.65 4988.53 28698.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
DPM-MVS95.69 7594.92 8898.01 1998.08 10495.71 995.27 29197.62 14190.43 19795.55 11397.07 14491.72 4699.50 9989.62 20798.94 8998.82 111
CHOSEN 280x42093.12 15992.72 15794.34 21396.71 18187.27 26090.29 37997.72 12886.61 30391.34 20895.29 24084.29 16098.41 20993.25 13598.94 8997.35 204
jason94.84 10294.39 10796.18 11295.52 24590.93 14796.09 24896.52 25089.28 22596.01 9897.32 12984.70 15298.77 17795.15 9498.91 9198.85 108
jason: jason.
test_vis1_n_192094.17 11494.58 9792.91 28097.42 14182.02 34197.83 8497.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9297.40 201
QAPM93.45 14692.27 17496.98 6996.77 17792.62 8098.39 2698.12 6784.50 33688.27 29397.77 10282.39 20099.81 2985.40 28998.81 9398.51 129
MG-MVS95.61 7895.38 7896.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
API-MVS94.84 10294.49 10395.90 12697.90 11592.00 10297.80 8997.48 15689.19 22894.81 12696.71 16088.84 9199.17 13188.91 22698.76 9596.53 226
CHOSEN 1792x268894.15 11693.51 12696.06 11798.27 8389.38 20095.18 29598.48 2185.60 31893.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
EIA-MVS95.53 8195.47 7495.71 13897.06 15789.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
OpenMVScopyleft89.19 1292.86 17491.68 19396.40 9395.34 25892.73 7898.27 3398.12 6784.86 33185.78 33297.75 10378.89 26499.74 4187.50 25498.65 9896.73 223
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 156
EPNet95.20 9094.56 9897.14 6392.80 35492.68 7997.85 8294.87 33096.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12396.67 18290.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 160
DP-MVS Recon95.68 7695.12 8697.37 4999.19 3194.19 4097.03 16998.08 7488.35 26095.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
Vis-MVSNetpermissive95.23 8894.81 9096.51 8397.18 14791.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs193.21 15393.53 12392.25 29996.55 19381.20 34897.40 13896.96 21490.68 18496.80 6198.04 7969.25 34298.40 21097.58 2198.50 10497.16 211
test250691.60 22190.78 22794.04 22897.66 12783.81 32398.27 3375.53 40693.43 8995.23 11998.21 6767.21 35699.07 14893.01 14498.49 10599.25 68
ECVR-MVScopyleft93.19 15592.73 15694.57 20197.66 12785.41 30098.21 4388.23 39193.43 8994.70 12898.21 6772.57 32199.07 14893.05 14198.49 10599.25 68
test111193.19 15592.82 15094.30 21797.58 13784.56 31598.21 4389.02 38993.53 8494.58 13098.21 6772.69 32099.05 15193.06 14098.48 10799.28 65
UGNet94.04 12493.28 13696.31 10096.85 16891.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31999.61 6991.72 16598.46 10898.13 161
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet_DTU94.37 10993.65 11896.55 7896.46 20392.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25199.71 4690.76 18498.45 10997.82 181
test_fmvs1_n92.73 18092.88 14792.29 29796.08 22681.05 34997.98 6197.08 20190.72 18296.79 6298.18 7063.07 37398.45 20797.62 2098.42 11097.36 202
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11197.64 12990.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
TAPA-MVS90.10 792.30 19591.22 21295.56 14598.33 8089.60 18896.79 19097.65 13681.83 36091.52 20397.23 13687.94 10698.91 16371.31 38198.37 11198.17 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11395.48 24790.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 156
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
PS-MVSNAJ95.37 8395.33 8095.49 15197.35 14290.66 16095.31 28897.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 237
LS3D93.57 14292.61 16296.47 8797.59 13591.61 11497.67 10397.72 12885.17 32690.29 23198.34 5484.60 15399.73 4283.85 31098.27 11598.06 168
test_vis1_n92.37 19092.26 17592.72 28794.75 29782.64 33398.02 5696.80 23191.18 16797.77 3797.93 8858.02 38198.29 22297.63 1998.21 11797.23 210
ETV-MVS96.02 6895.89 6796.40 9397.16 14892.44 8697.47 13197.77 12294.55 5096.48 7994.51 27591.23 6198.92 16195.65 7898.19 11897.82 181
PVSNet_Blended94.87 10194.56 9895.81 13098.27 8389.46 19795.47 28198.36 2488.84 24294.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
MAR-MVS94.22 11293.46 12896.51 8398.00 10892.19 9797.67 10397.47 15988.13 26793.00 16695.84 21284.86 15199.51 9687.99 23798.17 12097.83 180
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MS-PatchMatch90.27 27789.77 27291.78 31294.33 31484.72 31495.55 27696.73 23386.17 31186.36 32895.28 24271.28 32897.80 29084.09 30498.14 12192.81 359
AdaColmapbinary94.34 11093.68 11796.31 10098.59 6691.68 11296.59 21497.81 12189.87 20692.15 18597.06 14583.62 17099.54 8989.34 21398.07 12297.70 186
MVP-Stereo90.74 26490.08 25892.71 28893.19 34888.20 23895.86 26096.27 26186.07 31284.86 34194.76 26377.84 28097.75 29583.88 30998.01 12392.17 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNet (Re-imp)94.15 11693.88 11394.95 17897.61 13287.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 28288.24 23497.97 12499.02 86
EI-MVSNet-UG-set96.34 6196.30 6096.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
IS-MVSNet94.90 9994.52 10296.05 11897.67 12590.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20789.98 19697.86 12699.14 76
CNLPA94.28 11193.53 12396.52 8098.38 7892.55 8396.59 21496.88 22590.13 20391.91 19197.24 13585.21 14699.09 14287.64 25097.83 12797.92 173
xiu_mvs_v2_base95.32 8595.29 8195.40 15697.22 14490.50 16395.44 28297.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 237
PAPM_NR95.01 9394.59 9696.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21997.78 12998.97 93
PVSNet_Blended_VisFu95.27 8694.91 8996.38 9698.20 9390.86 14997.27 15198.25 4590.21 19994.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
TSAR-MVS + GP.96.69 4996.49 5297.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
ACMMPcopyleft96.27 6395.93 6597.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet92.72 18191.97 18394.97 17697.16 14887.99 24596.15 24695.60 29290.62 19091.87 19397.15 14178.41 27098.57 19983.16 31297.60 13398.36 147
PatchMatch-RL92.90 17292.02 18195.56 14598.19 9590.80 15295.27 29197.18 19187.96 26991.86 19495.68 22580.44 23198.99 15684.01 30597.54 13496.89 219
xiu_mvs_v1_base_debu95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
xiu_mvs_v1_base95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
xiu_mvs_v1_base_debi95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
MVS91.71 21590.44 24195.51 14995.20 27191.59 11696.04 25097.45 16673.44 38887.36 31295.60 22985.42 14499.10 13985.97 28197.46 13595.83 251
PVSNet86.66 1892.24 19991.74 19193.73 24797.77 12183.69 32792.88 36096.72 23487.91 27193.00 16694.86 25878.51 26899.05 15186.53 26897.45 13998.47 135
PAPR94.18 11393.42 13396.48 8697.64 12991.42 12595.55 27697.71 13288.99 23592.34 18195.82 21489.19 8599.11 13886.14 27697.38 14098.90 102
LCM-MVSNet-Re92.50 18392.52 16792.44 29296.82 17381.89 34296.92 18093.71 35792.41 12884.30 34594.60 27185.08 14897.03 33891.51 17097.36 14198.40 143
UA-Net95.95 7195.53 7297.20 6197.67 12592.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19197.35 14299.11 81
casdiffmvspermissive95.64 7795.49 7396.08 11596.76 18090.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 18195.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive95.81 7495.57 7196.51 8396.87 16791.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17495.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS89.48 1191.56 22589.95 26496.36 9896.60 18692.52 8492.51 36597.26 18879.41 37588.90 27596.56 17984.04 16499.55 8777.01 35997.30 14597.01 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned92.94 17092.62 16193.92 24097.22 14486.16 29196.40 22796.25 26390.06 20489.79 25196.17 19883.19 17698.35 21787.19 26097.27 14697.24 209
baseline95.58 7995.42 7796.08 11596.78 17590.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18795.66 7597.25 14799.13 77
gg-mvs-nofinetune87.82 31385.61 32594.44 20694.46 30989.27 20891.21 37484.61 40080.88 36689.89 24974.98 39471.50 32697.53 31485.75 28597.21 14896.51 227
diffmvspermissive95.25 8795.13 8595.63 14196.43 20589.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18896.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test94.89 10094.62 9595.68 13996.83 17189.55 19196.70 19997.17 19391.17 16895.60 11296.11 20387.87 10898.76 17893.01 14497.17 15098.72 116
PLCcopyleft91.00 694.11 12093.43 13196.13 11498.58 6891.15 14196.69 20197.39 17687.29 29191.37 20796.71 16088.39 9999.52 9587.33 25797.13 15197.73 184
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131492.81 17892.03 18095.14 16495.33 26189.52 19496.04 25097.44 17087.72 28186.25 32995.33 23983.84 16598.79 17389.26 21697.05 15297.11 212
FE-MVS92.05 20691.05 21695.08 16796.83 17187.93 24693.91 33695.70 28486.30 30794.15 14094.97 25176.59 28899.21 12684.10 30396.86 15398.09 166
EPNet_dtu91.71 21591.28 20892.99 27793.76 33183.71 32696.69 20195.28 30793.15 10287.02 31995.95 20783.37 17497.38 32779.46 34596.84 15497.88 176
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+94.93 9894.45 10596.36 9896.61 18591.47 12296.41 22397.41 17591.02 17494.50 13295.92 20887.53 11498.78 17493.89 12396.81 15598.84 110
OMC-MVS95.09 9294.70 9496.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
test-LLR91.42 23291.19 21392.12 30194.59 30480.66 35294.29 32392.98 36391.11 17090.76 22392.37 34379.02 25998.07 25088.81 22796.74 15797.63 188
test-mter90.19 28289.54 28092.12 30194.59 30480.66 35294.29 32392.98 36387.68 28290.76 22392.37 34367.67 35298.07 25088.81 22796.74 15797.63 188
F-COLMAP93.58 14192.98 14395.37 15798.40 7588.98 21697.18 16197.29 18787.75 28090.49 22697.10 14385.21 14699.50 9986.70 26796.72 15997.63 188
mvs_anonymous93.82 13393.74 11594.06 22696.44 20485.41 30095.81 26397.05 20689.85 20990.09 24296.36 18987.44 11797.75 29593.97 11996.69 16099.02 86
DP-MVS92.76 17991.51 20196.52 8098.77 5390.99 14397.38 14196.08 27082.38 35689.29 26897.87 9383.77 16699.69 5281.37 33296.69 16098.89 105
TESTMET0.1,190.06 28489.42 28391.97 30494.41 31280.62 35494.29 32391.97 37587.28 29290.44 22892.47 34268.79 34497.67 30088.50 23396.60 16297.61 192
GeoE93.89 12993.28 13695.72 13796.96 16589.75 18498.24 3996.92 22189.47 22092.12 18797.21 13784.42 15698.39 21487.71 24496.50 16399.01 89
EPP-MVSNet95.22 8995.04 8795.76 13197.49 13989.56 19098.67 1097.00 21290.69 18394.24 13797.62 11689.79 8198.81 17293.39 13496.49 16498.92 100
PMMVS92.86 17492.34 17294.42 20894.92 28686.73 27594.53 31096.38 25784.78 33394.27 13695.12 24983.13 17998.40 21091.47 17296.49 16498.12 162
Fast-Effi-MVS+93.46 14592.75 15495.59 14496.77 17790.03 17396.81 18997.13 19588.19 26391.30 21194.27 29186.21 13498.63 19287.66 24996.46 16698.12 162
BH-w/o92.14 20491.75 18993.31 26696.99 16485.73 29595.67 27095.69 28688.73 24989.26 27094.82 26182.97 18598.07 25085.26 29196.32 16796.13 241
FA-MVS(test-final)93.52 14492.92 14595.31 15896.77 17788.54 22794.82 30296.21 26689.61 21594.20 13895.25 24383.24 17599.14 13590.01 19596.16 16898.25 151
sss94.51 10793.80 11496.64 7297.07 15491.97 10396.32 23498.06 8288.94 23894.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
SCA91.84 21291.18 21493.83 24295.59 24184.95 31194.72 30495.58 29490.82 17792.25 18393.69 31475.80 29898.10 24286.20 27495.98 17098.45 137
CDS-MVSNet94.14 11993.54 12295.93 12596.18 21691.46 12396.33 23397.04 20888.97 23793.56 15196.51 18187.55 11397.89 28389.80 20195.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM91.52 22890.30 24795.20 16195.30 26489.83 18293.38 35196.85 22886.26 30988.59 28495.80 21584.88 15098.15 23375.67 36495.93 17297.63 188
LFMVS93.60 13992.63 15996.52 8098.13 10091.27 13097.94 7193.39 36190.57 19496.29 8698.31 6069.00 34399.16 13294.18 11695.87 17399.12 80
thisisatest051592.29 19691.30 20795.25 16096.60 18688.90 21894.36 31892.32 37187.92 27093.43 15794.57 27277.28 28499.00 15589.42 21195.86 17497.86 177
CVMVSNet91.23 24391.75 18989.67 34795.77 23574.69 38296.44 21994.88 32785.81 31592.18 18497.64 11479.07 25695.58 36688.06 23695.86 17498.74 115
TAMVS94.01 12593.46 12895.64 14096.16 21890.45 16596.71 19896.89 22489.27 22693.46 15696.92 15387.29 12097.94 27588.70 23095.74 17698.53 126
Effi-MVS+-dtu93.08 16293.21 13892.68 29096.02 22783.25 33097.14 16596.72 23493.85 7291.20 21993.44 32683.08 18098.30 22191.69 16895.73 17796.50 228
HyFIR lowres test93.66 13892.92 14595.87 12798.24 8789.88 18194.58 30898.49 1985.06 32893.78 14895.78 21982.86 18798.67 18891.77 16495.71 17899.07 85
thisisatest053093.03 16592.21 17695.49 15197.07 15489.11 21497.49 13092.19 37290.16 20194.09 14196.41 18676.43 29299.05 15190.38 19095.68 17998.31 149
mvsany_test193.93 12893.98 11193.78 24694.94 28586.80 27294.62 30692.55 37088.77 24896.85 6098.49 3888.98 8898.08 24695.03 9695.62 18096.46 231
UWE-MVS89.91 28689.48 28291.21 32495.88 22978.23 37694.91 30190.26 38589.11 23092.35 18094.52 27468.76 34597.96 27083.95 30795.59 18197.42 200
MVS-HIRNet82.47 34881.21 35186.26 36495.38 25369.21 39188.96 38789.49 38766.28 39180.79 36674.08 39668.48 34997.39 32671.93 37995.47 18292.18 370
tttt051792.96 16892.33 17394.87 18297.11 15287.16 26697.97 6792.09 37390.63 18993.88 14797.01 14876.50 28999.06 15090.29 19395.45 18398.38 145
GG-mvs-BLEND93.62 25393.69 33389.20 21092.39 36783.33 40287.98 30189.84 37071.00 33096.87 34582.08 32595.40 18494.80 319
PatchmatchNetpermissive91.91 20991.35 20393.59 25595.38 25384.11 32093.15 35595.39 30089.54 21792.10 18893.68 31682.82 18998.13 23584.81 29595.32 18598.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet95.89 7295.45 7597.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18699.16 73
DSMNet-mixed86.34 32786.12 32387.00 36289.88 37870.43 38894.93 30090.08 38677.97 38185.42 33792.78 33574.44 31093.96 38174.43 36995.14 18796.62 225
test_yl94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16595.71 10796.93 15084.30 15899.31 11993.10 13795.12 18898.75 113
DCV-MVSNet94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16595.71 10796.93 15084.30 15899.31 11993.10 13795.12 18898.75 113
alignmvs95.87 7395.23 8297.78 3197.56 13895.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 19098.95 96
MSDG91.42 23290.24 25194.96 17797.15 15088.91 21793.69 34396.32 25985.72 31786.93 32396.47 18380.24 23598.98 15780.57 33695.05 19196.98 214
VDD-MVS93.82 13393.08 14096.02 12197.88 11689.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 35099.39 11196.31 4994.85 19298.71 118
VDDNet93.05 16492.07 17896.02 12196.84 16990.39 16898.08 5195.85 27886.22 31095.79 10598.46 4267.59 35399.19 12894.92 9994.85 19298.47 135
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19498.91 101
Patchmatch-test89.42 29687.99 30393.70 25095.27 26585.11 30788.98 38694.37 34281.11 36487.10 31793.69 31482.28 20197.50 31774.37 37094.76 19598.48 134
cascas91.20 24590.08 25894.58 20094.97 28189.16 21393.65 34597.59 14479.90 37389.40 26392.92 33475.36 30298.36 21692.14 15494.75 19696.23 233
Fast-Effi-MVS+-dtu92.29 19691.99 18293.21 27195.27 26585.52 29897.03 16996.63 24592.09 13889.11 27495.14 24780.33 23498.08 24687.54 25394.74 19796.03 245
WTY-MVS94.71 10694.02 11096.79 7097.71 12492.05 10096.59 21497.35 18290.61 19194.64 12996.93 15086.41 13199.39 11191.20 17894.71 19898.94 97
baseline291.63 21990.86 22293.94 23794.33 31486.32 28595.92 25791.64 37789.37 22386.94 32294.69 26681.62 21498.69 18688.64 23194.57 19996.81 221
HY-MVS89.66 993.87 13092.95 14496.63 7497.10 15392.49 8595.64 27496.64 24289.05 23393.00 16695.79 21885.77 14199.45 10589.16 22294.35 20097.96 171
MDTV_nov1_ep1390.76 22895.22 26980.33 35893.03 35895.28 30788.14 26692.84 17293.83 30881.34 21698.08 24682.86 31594.34 201
testing1191.68 21890.75 22994.47 20496.53 19686.56 28195.76 26794.51 33891.10 17291.24 21793.59 32068.59 34798.86 16691.10 17994.29 20298.00 170
ETVMVS90.52 27189.14 29094.67 19596.81 17487.85 25195.91 25893.97 35189.71 21392.34 18192.48 34165.41 36897.96 27081.37 33294.27 20398.21 154
WB-MVSnew89.88 28989.56 27990.82 33194.57 30783.06 33195.65 27392.85 36587.86 27390.83 22294.10 30079.66 24796.88 34476.34 36094.19 20492.54 364
thres20092.23 20091.39 20294.75 19397.61 13289.03 21596.60 21395.09 31792.08 13993.28 16194.00 30478.39 27199.04 15481.26 33494.18 20596.19 236
Syy-MVS87.13 32087.02 31587.47 35895.16 27273.21 38695.00 29893.93 35388.55 25486.96 32091.99 35175.90 29594.00 37961.59 39294.11 20695.20 294
myMVS_eth3d87.18 31986.38 31989.58 34895.16 27279.53 36695.00 29893.93 35388.55 25486.96 32091.99 35156.23 38594.00 37975.47 36694.11 20695.20 294
testing387.67 31586.88 31690.05 34396.14 22180.71 35197.10 16792.85 36590.15 20287.54 30794.55 27355.70 38694.10 37873.77 37394.10 20895.35 283
testing22290.31 27588.96 29294.35 21196.54 19487.29 25895.50 27993.84 35590.97 17591.75 19792.96 33362.18 37798.00 26082.86 31594.08 20997.76 183
thres100view90092.43 18691.58 19694.98 17597.92 11389.37 20197.71 10094.66 33392.20 13393.31 16094.90 25678.06 27799.08 14481.40 32994.08 20996.48 229
tfpn200view992.38 18991.52 19994.95 17897.85 11789.29 20597.41 13494.88 32792.19 13593.27 16294.46 28078.17 27399.08 14481.40 32994.08 20996.48 229
thres40092.42 18791.52 19995.12 16697.85 11789.29 20597.41 13494.88 32792.19 13593.27 16294.46 28078.17 27399.08 14481.40 32994.08 20996.98 214
thres600view792.49 18591.60 19595.18 16297.91 11489.47 19597.65 10694.66 33392.18 13793.33 15994.91 25578.06 27799.10 13981.61 32694.06 21396.98 214
CR-MVSNet90.82 26189.77 27293.95 23594.45 31087.19 26490.23 38095.68 28886.89 29892.40 17592.36 34680.91 22297.05 33781.09 33593.95 21497.60 193
RPMNet88.98 29987.05 31394.77 19194.45 31087.19 26490.23 38098.03 9177.87 38292.40 17587.55 38580.17 23799.51 9668.84 38693.95 21497.60 193
testing9191.90 21091.02 21794.53 20396.54 19486.55 28295.86 26095.64 29191.77 14691.89 19293.47 32569.94 33998.86 16690.23 19493.86 21698.18 156
testing9991.62 22090.72 23294.32 21496.48 20186.11 29295.81 26394.76 33191.55 15191.75 19793.44 32668.55 34898.82 17090.43 18893.69 21798.04 169
1112_ss93.37 14892.42 17196.21 11097.05 15990.99 14396.31 23596.72 23486.87 29989.83 25096.69 16486.51 12999.14 13588.12 23593.67 21898.50 130
PatchT88.87 30387.42 30793.22 27094.08 32285.10 30889.51 38494.64 33581.92 35992.36 17888.15 38180.05 23997.01 34072.43 37793.65 21997.54 196
COLMAP_ROBcopyleft87.81 1590.40 27489.28 28693.79 24597.95 11087.13 26796.92 18095.89 27782.83 35386.88 32597.18 13873.77 31699.29 12178.44 35093.62 22094.95 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GA-MVS91.38 23490.31 24694.59 19694.65 30287.62 25594.34 31996.19 26790.73 18190.35 23093.83 30871.84 32497.96 27087.22 25993.61 22198.21 154
TR-MVS91.48 23090.59 23794.16 22296.40 20687.33 25795.67 27095.34 30687.68 28291.46 20595.52 23476.77 28798.35 21782.85 31793.61 22196.79 222
Test_1112_low_res92.84 17691.84 18795.85 12997.04 16089.97 17995.53 27896.64 24285.38 32189.65 25695.18 24585.86 13999.10 13987.70 24593.58 22398.49 132
ab-mvs93.57 14292.55 16496.64 7297.28 14391.96 10495.40 28397.45 16689.81 21193.22 16496.28 19279.62 24899.46 10390.74 18593.11 22498.50 130
AllTest90.23 27988.98 29193.98 23197.94 11186.64 27696.51 21895.54 29585.38 32185.49 33596.77 15870.28 33499.15 13380.02 34092.87 22596.15 239
TestCases93.98 23197.94 11186.64 27695.54 29585.38 32185.49 33596.77 15870.28 33499.15 13380.02 34092.87 22596.15 239
SDMVSNet94.17 11493.61 11995.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19597.28 13179.13 25598.93 16094.61 11092.84 22797.28 207
sd_testset93.10 16092.45 17095.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19597.28 13175.35 30398.65 19088.99 22492.84 22797.28 207
MIMVSNet88.50 30786.76 31793.72 24994.84 29287.77 25391.39 37094.05 34886.41 30687.99 30092.59 33963.27 37295.82 36077.44 35392.84 22797.57 195
Anonymous20240521192.07 20590.83 22695.76 13198.19 9588.75 22097.58 11795.00 32086.00 31393.64 15097.45 12466.24 36499.53 9190.68 18792.71 23099.01 89
EPMVS90.70 26689.81 27093.37 26494.73 29984.21 31893.67 34488.02 39289.50 21992.38 17793.49 32377.82 28197.78 29286.03 28092.68 23198.11 165
XVG-OURS93.72 13793.35 13494.80 18997.07 15488.61 22394.79 30397.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 23296.92 218
XVG-OURS-SEG-HR93.86 13193.55 12194.81 18697.06 15788.53 22895.28 28997.45 16691.68 14994.08 14297.68 10782.41 19998.90 16493.84 12592.47 23396.98 214
CLD-MVS92.98 16792.53 16694.32 21496.12 22389.20 21095.28 28997.47 15992.66 12289.90 24795.62 22880.58 22898.40 21092.73 14792.40 23495.38 281
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.28 15192.76 15294.82 18494.63 30390.77 15496.65 20597.18 19193.72 7591.68 19997.26 13479.33 25298.63 19292.13 15592.28 23595.07 299
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS93.78 13593.43 13194.82 18496.21 21389.99 17697.74 9397.51 15394.85 3491.34 20896.64 16881.32 21798.60 19593.02 14292.23 23695.86 247
plane_prior597.51 15398.60 19593.02 14292.23 23695.86 247
RPSCF90.75 26390.86 22290.42 33996.84 16976.29 38095.61 27596.34 25883.89 34291.38 20697.87 9376.45 29098.78 17487.16 26292.23 23696.20 235
CostFormer91.18 24890.70 23392.62 29194.84 29281.76 34394.09 32994.43 33984.15 33992.72 17393.77 31279.43 25098.20 22890.70 18692.18 23997.90 174
plane_prior89.99 17697.24 15394.06 6592.16 240
HQP3-MVS97.39 17692.10 241
HQP-MVS93.19 15592.74 15594.54 20295.86 23089.33 20396.65 20597.39 17693.55 8090.14 23395.87 21080.95 22098.50 20392.13 15592.10 24195.78 256
tpm289.96 28589.21 28792.23 30094.91 28881.25 34693.78 33994.42 34080.62 37091.56 20293.44 32676.44 29197.94 27585.60 28692.08 24397.49 197
LPG-MVS_test92.94 17092.56 16394.10 22496.16 21888.26 23597.65 10697.46 16191.29 16090.12 23997.16 13979.05 25798.73 18192.25 15191.89 24495.31 286
LGP-MVS_train94.10 22496.16 21888.26 23597.46 16191.29 16090.12 23997.16 13979.05 25798.73 18192.25 15191.89 24495.31 286
ACMM89.79 892.96 16892.50 16894.35 21196.30 21188.71 22197.58 11797.36 18191.40 15990.53 22596.65 16779.77 24498.75 17991.24 17791.64 24695.59 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
JIA-IIPM88.26 31087.04 31491.91 30593.52 33881.42 34589.38 38594.38 34180.84 36790.93 22180.74 39279.22 25497.92 27982.76 31991.62 24796.38 232
test_djsdf93.07 16392.76 15294.00 23093.49 34088.70 22298.22 4197.57 14691.42 15790.08 24395.55 23282.85 18897.92 27994.07 11791.58 24895.40 279
jajsoiax92.42 18791.89 18694.03 22993.33 34688.50 22997.73 9597.53 15192.00 14288.85 27896.50 18275.62 30198.11 24193.88 12491.56 24995.48 270
iter_conf_final93.60 13993.11 13995.04 16997.13 15191.30 12897.92 7395.65 29092.98 11291.60 20096.64 16879.28 25398.13 23595.34 9091.49 25095.70 264
mvs_tets92.31 19491.76 18893.94 23793.41 34388.29 23397.63 11297.53 15192.04 14088.76 28196.45 18474.62 30998.09 24593.91 12291.48 25195.45 275
ACMP89.59 1092.62 18292.14 17794.05 22796.40 20688.20 23897.36 14297.25 19091.52 15288.30 29196.64 16878.46 26998.72 18491.86 16291.48 25195.23 293
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
iter_conf0593.18 15892.63 15994.83 18396.64 18390.69 15797.60 11595.53 29792.52 12591.58 20196.64 16876.35 29398.13 23595.43 8891.42 25395.68 266
ADS-MVSNet289.45 29588.59 29792.03 30395.86 23082.26 33990.93 37594.32 34583.23 35191.28 21591.81 35579.01 26195.99 35579.52 34291.39 25497.84 178
ADS-MVSNet89.89 28888.68 29693.53 25895.86 23084.89 31290.93 37595.07 31883.23 35191.28 21591.81 35579.01 26197.85 28579.52 34291.39 25497.84 178
anonymousdsp92.16 20291.55 19793.97 23392.58 35989.55 19197.51 12497.42 17489.42 22288.40 28894.84 25980.66 22697.88 28491.87 16191.28 25694.48 331
CMPMVSbinary62.92 2185.62 33684.92 33387.74 35789.14 38273.12 38794.17 32696.80 23173.98 38673.65 38594.93 25466.36 36197.61 30783.95 30791.28 25692.48 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsmamba93.83 13293.46 12894.93 18194.88 29090.85 15098.55 1495.49 29894.24 6191.29 21496.97 14983.04 18298.14 23495.56 8691.17 25895.78 256
test_fmvs289.77 29389.93 26589.31 35193.68 33476.37 37997.64 11095.90 27589.84 21091.49 20496.26 19458.77 38097.10 33594.65 10891.13 25994.46 332
Anonymous2024052991.98 20890.73 23195.73 13698.14 9989.40 19997.99 6097.72 12879.63 37493.54 15397.41 12769.94 33999.56 8591.04 18191.11 26098.22 153
XVG-ACMP-BASELINE90.93 25890.21 25593.09 27494.31 31685.89 29395.33 28697.26 18891.06 17389.38 26495.44 23768.61 34698.60 19589.46 21091.05 26194.79 321
ACMMP++91.02 262
UniMVSNet_ETH3D91.34 23990.22 25494.68 19494.86 29187.86 25097.23 15797.46 16187.99 26889.90 24796.92 15366.35 36298.23 22590.30 19290.99 26397.96 171
D2MVS91.30 24190.95 21992.35 29494.71 30085.52 29896.18 24598.21 5188.89 24086.60 32693.82 31079.92 24297.95 27489.29 21590.95 26493.56 349
PS-MVSNAJss93.74 13693.51 12694.44 20693.91 32689.28 20797.75 9297.56 14992.50 12689.94 24696.54 18088.65 9598.18 23193.83 12690.90 26595.86 247
bld_raw_dy_0_6492.37 19091.69 19294.39 20994.28 31889.73 18597.71 10093.65 35892.78 12090.46 22796.67 16675.88 29697.97 26592.92 14690.89 26695.48 270
EG-PatchMatch MVS87.02 32285.44 32691.76 31492.67 35685.00 30996.08 24996.45 25483.41 35079.52 37393.49 32357.10 38397.72 29779.34 34790.87 26792.56 363
PVSNet_BlendedMVS94.06 12293.92 11294.47 20498.27 8389.46 19796.73 19598.36 2490.17 20094.36 13495.24 24488.02 10499.58 7793.44 13190.72 26894.36 336
test_vis1_rt86.16 33085.06 33189.46 34993.47 34280.46 35696.41 22386.61 39785.22 32479.15 37588.64 37652.41 38997.06 33693.08 13990.57 26990.87 380
EI-MVSNet93.03 16592.88 14793.48 26095.77 23586.98 26996.44 21997.12 19690.66 18791.30 21197.64 11486.56 12798.05 25389.91 19890.55 27095.41 276
MVSTER93.20 15492.81 15194.37 21096.56 19189.59 18997.06 16897.12 19691.24 16491.30 21195.96 20682.02 20698.05 25393.48 13090.55 27095.47 273
FIs94.09 12193.70 11695.27 15995.70 23792.03 10198.10 4998.68 1393.36 9390.39 22996.70 16287.63 11297.94 27592.25 15190.50 27295.84 250
FC-MVSNet-test93.94 12793.57 12095.04 16995.48 24791.45 12498.12 4898.71 1193.37 9190.23 23296.70 16287.66 11097.85 28591.49 17190.39 27395.83 251
ACMMP++_ref90.30 274
RRT_MVS93.10 16092.83 14993.93 23994.76 29588.04 24398.47 2296.55 24993.44 8890.01 24597.04 14680.64 22797.93 27894.33 11490.21 27595.83 251
LTVRE_ROB88.41 1390.99 25489.92 26694.19 22096.18 21689.55 19196.31 23597.09 20087.88 27285.67 33395.91 20978.79 26598.57 19981.50 32789.98 27694.44 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 29289.15 28991.89 30694.92 28680.30 35993.11 35695.46 29986.28 30888.08 29892.65 33680.44 23198.52 20281.47 32889.92 27796.84 220
ITE_SJBPF92.43 29395.34 25885.37 30395.92 27391.47 15487.75 30496.39 18871.00 33097.96 27082.36 32389.86 27893.97 345
ET-MVSNet_ETH3D91.49 22990.11 25795.63 14196.40 20691.57 11895.34 28593.48 36090.60 19375.58 38295.49 23580.08 23896.79 34794.25 11589.76 27998.52 127
USDC88.94 30087.83 30592.27 29894.66 30184.96 31093.86 33795.90 27587.34 29083.40 35595.56 23167.43 35498.19 23082.64 32289.67 28093.66 348
dmvs_re90.21 28089.50 28192.35 29495.47 25085.15 30695.70 26994.37 34290.94 17688.42 28793.57 32174.63 30895.67 36382.80 31889.57 28196.22 234
ACMH87.59 1690.53 27089.42 28393.87 24196.21 21387.92 24797.24 15396.94 21688.45 25783.91 35396.27 19371.92 32398.62 19484.43 30089.43 28295.05 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst91.44 23191.32 20591.79 31195.15 27479.20 37193.42 35095.37 30288.55 25493.49 15593.67 31782.49 19798.27 22390.41 18989.34 28397.90 174
test0.0.03 189.37 29788.70 29591.41 32192.47 36185.63 29695.22 29492.70 36891.11 17086.91 32493.65 31879.02 25993.19 38678.00 35289.18 28495.41 276
OpenMVS_ROBcopyleft81.14 2084.42 34282.28 34890.83 33090.06 37684.05 32295.73 26894.04 34973.89 38780.17 37291.53 35859.15 37997.64 30366.92 38889.05 28590.80 381
GBi-Net91.35 23790.27 24994.59 19696.51 19891.18 13797.50 12596.93 21788.82 24489.35 26594.51 27573.87 31397.29 33186.12 27788.82 28695.31 286
test191.35 23790.27 24994.59 19696.51 19891.18 13797.50 12596.93 21788.82 24489.35 26594.51 27573.87 31397.29 33186.12 27788.82 28695.31 286
FMVSNet391.78 21390.69 23495.03 17196.53 19692.27 9397.02 17196.93 21789.79 21289.35 26594.65 26977.01 28597.47 31986.12 27788.82 28695.35 283
tpm cat188.36 30887.21 31191.81 31095.13 27680.55 35592.58 36495.70 28474.97 38587.45 30891.96 35378.01 27998.17 23280.39 33888.74 28996.72 224
test_040286.46 32584.79 33491.45 31995.02 28085.55 29796.29 23794.89 32680.90 36582.21 36193.97 30668.21 35197.29 33162.98 39088.68 29091.51 375
FMVSNet291.31 24090.08 25894.99 17396.51 19892.21 9497.41 13496.95 21588.82 24488.62 28394.75 26473.87 31397.42 32485.20 29288.55 29195.35 283
tt080591.09 24990.07 26194.16 22295.61 24088.31 23297.56 11996.51 25189.56 21689.17 27295.64 22767.08 36098.38 21591.07 18088.44 29295.80 254
testgi87.97 31187.21 31190.24 34192.86 35280.76 35096.67 20494.97 32291.74 14785.52 33495.83 21362.66 37594.47 37576.25 36188.36 29395.48 270
ACMH+87.92 1490.20 28189.18 28893.25 26896.48 20186.45 28396.99 17596.68 23988.83 24384.79 34296.22 19570.16 33698.53 20184.42 30188.04 29494.77 324
tpm90.25 27889.74 27591.76 31493.92 32579.73 36593.98 33093.54 35988.28 26191.99 19093.25 33077.51 28397.44 32287.30 25887.94 29598.12 162
pmmvs490.93 25889.85 26894.17 22193.34 34590.79 15394.60 30796.02 27184.62 33487.45 30895.15 24681.88 21097.45 32187.70 24587.87 29694.27 341
XXY-MVS92.16 20291.23 21194.95 17894.75 29790.94 14697.47 13197.43 17389.14 22988.90 27596.43 18579.71 24598.24 22489.56 20887.68 29795.67 267
pmmvs589.86 29188.87 29492.82 28492.86 35286.23 28896.26 23895.39 30084.24 33887.12 31594.51 27574.27 31197.36 32887.61 25287.57 29894.86 312
LF4IMVS87.94 31287.25 30989.98 34492.38 36480.05 36394.38 31795.25 31087.59 28484.34 34494.74 26564.31 37097.66 30284.83 29487.45 29992.23 368
FMVSNet189.88 28988.31 30094.59 19695.41 25191.18 13797.50 12596.93 21786.62 30287.41 31094.51 27565.94 36697.29 33183.04 31487.43 30095.31 286
dp88.90 30288.26 30290.81 33294.58 30676.62 37892.85 36194.93 32485.12 32790.07 24493.07 33175.81 29798.12 24080.53 33787.42 30197.71 185
OurMVSNet-221017-090.51 27290.19 25691.44 32093.41 34381.25 34696.98 17696.28 26091.68 14986.55 32796.30 19174.20 31297.98 26288.96 22587.40 30295.09 298
TinyColmap86.82 32385.35 32991.21 32494.91 28882.99 33293.94 33394.02 35083.58 34781.56 36394.68 26762.34 37698.13 23575.78 36287.35 30392.52 365
cl2291.21 24490.56 23993.14 27396.09 22586.80 27294.41 31696.58 24887.80 27688.58 28593.99 30580.85 22597.62 30689.87 20086.93 30494.99 302
miper_ehance_all_eth91.59 22291.13 21592.97 27895.55 24486.57 28094.47 31296.88 22587.77 27888.88 27794.01 30386.22 13397.54 31289.49 20986.93 30494.79 321
miper_enhance_ethall91.54 22791.01 21893.15 27295.35 25787.07 26893.97 33196.90 22286.79 30089.17 27293.43 32986.55 12897.64 30389.97 19786.93 30494.74 325
IterMVS90.15 28389.67 27691.61 31695.48 24783.72 32594.33 32096.12 26989.99 20587.31 31494.15 29975.78 30096.27 35386.97 26586.89 30794.83 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.31 27589.81 27091.82 30995.52 24584.20 31994.30 32296.15 26890.61 19187.39 31194.27 29175.80 29896.44 35087.34 25686.88 30894.82 316
our_test_388.78 30487.98 30491.20 32692.45 36282.53 33593.61 34795.69 28685.77 31684.88 34093.71 31379.99 24096.78 34879.47 34486.24 30994.28 340
EU-MVSNet88.72 30588.90 29388.20 35593.15 34974.21 38396.63 21094.22 34685.18 32587.32 31395.97 20576.16 29494.98 37185.27 29086.17 31095.41 276
Anonymous2023120687.09 32186.14 32289.93 34591.22 37080.35 35796.11 24795.35 30383.57 34884.16 34793.02 33273.54 31895.61 36472.16 37886.14 31193.84 347
IterMVS-LS92.29 19691.94 18493.34 26596.25 21286.97 27096.57 21797.05 20690.67 18589.50 26294.80 26286.59 12697.64 30389.91 19886.11 31295.40 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet93.24 15292.48 16995.51 14995.70 23792.39 8797.86 7998.66 1692.30 13092.09 18995.37 23880.49 23098.40 21093.95 12085.86 31395.75 261
nrg03094.05 12393.31 13596.27 10595.22 26994.59 2998.34 2797.46 16192.93 11591.21 21896.64 16887.23 12298.22 22694.99 9885.80 31495.98 246
cl____90.96 25790.32 24592.89 28195.37 25586.21 28994.46 31496.64 24287.82 27488.15 29794.18 29782.98 18497.54 31287.70 24585.59 31594.92 309
DIV-MVS_self_test90.97 25690.33 24492.88 28295.36 25686.19 29094.46 31496.63 24587.82 27488.18 29694.23 29482.99 18397.53 31487.72 24285.57 31694.93 307
v119291.07 25090.23 25293.58 25693.70 33287.82 25296.73 19597.07 20387.77 27889.58 25794.32 28880.90 22497.97 26586.52 26985.48 31794.95 303
v124090.70 26689.85 26893.23 26993.51 33986.80 27296.61 21197.02 21187.16 29489.58 25794.31 28979.55 24997.98 26285.52 28785.44 31894.90 310
v114491.37 23690.60 23693.68 25293.89 32788.23 23796.84 18797.03 21088.37 25989.69 25494.39 28282.04 20597.98 26287.80 24185.37 31994.84 313
Anonymous2024052186.42 32685.44 32689.34 35090.33 37479.79 36496.73 19595.92 27383.71 34683.25 35691.36 35963.92 37196.01 35478.39 35185.36 32092.22 369
FMVSNet587.29 31885.79 32491.78 31294.80 29487.28 25995.49 28095.28 30784.09 34083.85 35491.82 35462.95 37494.17 37778.48 34985.34 32193.91 346
WR-MVS92.34 19291.53 19894.77 19195.13 27690.83 15196.40 22797.98 10091.88 14489.29 26895.54 23382.50 19697.80 29089.79 20285.27 32295.69 265
v192192090.85 26090.03 26393.29 26793.55 33686.96 27196.74 19497.04 20887.36 28989.52 26194.34 28580.23 23697.97 26586.27 27285.21 32394.94 305
Anonymous2023121190.63 26889.42 28394.27 21998.24 8789.19 21298.05 5497.89 10779.95 37288.25 29494.96 25272.56 32298.13 23589.70 20485.14 32495.49 269
Patchmtry88.64 30687.25 30992.78 28694.09 32186.64 27689.82 38395.68 28880.81 36887.63 30692.36 34680.91 22297.03 33878.86 34885.12 32594.67 327
V4291.58 22490.87 22193.73 24794.05 32388.50 22997.32 14796.97 21388.80 24789.71 25294.33 28682.54 19598.05 25389.01 22385.07 32694.64 329
SixPastTwentyTwo89.15 29888.54 29890.98 32893.49 34080.28 36096.70 19994.70 33290.78 17884.15 34895.57 23071.78 32597.71 29884.63 29885.07 32694.94 305
v2v48291.59 22290.85 22493.80 24493.87 32888.17 24096.94 17996.88 22589.54 21789.53 26094.90 25681.70 21398.02 25889.25 21785.04 32895.20 294
ppachtmachnet_test88.35 30987.29 30891.53 31792.45 36283.57 32893.75 34095.97 27284.28 33785.32 33894.18 29779.00 26396.93 34275.71 36384.99 32994.10 342
v14419291.06 25190.28 24893.39 26393.66 33587.23 26396.83 18897.07 20387.43 28789.69 25494.28 29081.48 21598.00 26087.18 26184.92 33094.93 307
CP-MVSNet91.89 21191.24 21093.82 24395.05 27988.57 22597.82 8698.19 5591.70 14888.21 29595.76 22081.96 20797.52 31687.86 23984.65 33195.37 282
c3_l91.38 23490.89 22092.88 28295.58 24286.30 28694.68 30596.84 22988.17 26488.83 28094.23 29485.65 14297.47 31989.36 21284.63 33294.89 311
miper_lstm_enhance90.50 27390.06 26291.83 30895.33 26183.74 32493.86 33796.70 23887.56 28587.79 30293.81 31183.45 17396.92 34387.39 25584.62 33394.82 316
tfpnnormal89.70 29488.40 29993.60 25495.15 27490.10 17297.56 11998.16 6187.28 29286.16 33094.63 27077.57 28298.05 25374.48 36884.59 33492.65 362
EGC-MVSNET68.77 36363.01 36886.07 36592.49 36082.24 34093.96 33290.96 3820.71 4082.62 40990.89 36153.66 38793.46 38357.25 39584.55 33582.51 391
PS-CasMVS91.55 22690.84 22593.69 25194.96 28288.28 23497.84 8398.24 4791.46 15588.04 29995.80 21579.67 24697.48 31887.02 26484.54 33695.31 286
N_pmnet78.73 35478.71 35578.79 37292.80 35446.50 40994.14 32743.71 41178.61 37880.83 36591.66 35774.94 30696.36 35167.24 38784.45 33793.50 350
eth_miper_zixun_eth91.02 25390.59 23792.34 29695.33 26184.35 31694.10 32896.90 22288.56 25388.84 27994.33 28684.08 16397.60 30888.77 22984.37 33895.06 300
WR-MVS_H92.00 20791.35 20393.95 23595.09 27889.47 19598.04 5598.68 1391.46 15588.34 28994.68 26785.86 13997.56 31085.77 28484.24 33994.82 316
v1091.04 25290.23 25293.49 25994.12 32088.16 24197.32 14797.08 20188.26 26288.29 29294.22 29682.17 20497.97 26586.45 27184.12 34094.33 337
UniMVSNet (Re)93.31 15092.55 16495.61 14395.39 25293.34 6497.39 13998.71 1193.14 10390.10 24194.83 26087.71 10998.03 25791.67 16983.99 34195.46 274
UniMVSNet_NR-MVSNet93.37 14892.67 15895.47 15495.34 25892.83 7497.17 16298.58 1792.98 11290.13 23795.80 21588.37 10097.85 28591.71 16683.93 34295.73 263
DU-MVS92.90 17292.04 17995.49 15194.95 28392.83 7497.16 16398.24 4793.02 10690.13 23795.71 22283.47 17197.85 28591.71 16683.93 34295.78 256
v891.29 24290.53 24093.57 25794.15 31988.12 24297.34 14497.06 20588.99 23588.32 29094.26 29383.08 18098.01 25987.62 25183.92 34494.57 330
baseline192.82 17791.90 18595.55 14797.20 14690.77 15497.19 16094.58 33692.20 13392.36 17896.34 19084.16 16298.21 22789.20 22083.90 34597.68 187
v7n90.76 26289.86 26793.45 26293.54 33787.60 25697.70 10297.37 17988.85 24187.65 30594.08 30281.08 21998.10 24284.68 29783.79 34694.66 328
VPNet92.23 20091.31 20694.99 17395.56 24390.96 14597.22 15897.86 11592.96 11490.96 22096.62 17775.06 30498.20 22891.90 15983.65 34795.80 254
NR-MVSNet92.34 19291.27 20995.53 14894.95 28393.05 7097.39 13998.07 7992.65 12384.46 34395.71 22285.00 14997.77 29489.71 20383.52 34895.78 256
v14890.99 25490.38 24392.81 28593.83 32985.80 29496.78 19296.68 23989.45 22188.75 28293.93 30782.96 18697.82 28987.83 24083.25 34994.80 319
Baseline_NR-MVSNet91.20 24590.62 23592.95 27993.83 32988.03 24497.01 17495.12 31688.42 25889.70 25395.13 24883.47 17197.44 32289.66 20683.24 35093.37 353
TranMVSNet+NR-MVSNet92.50 18391.63 19495.14 16494.76 29592.07 9997.53 12398.11 7092.90 11689.56 25996.12 20083.16 17797.60 30889.30 21483.20 35195.75 261
PEN-MVS91.20 24590.44 24193.48 26094.49 30887.91 24997.76 9198.18 5791.29 16087.78 30395.74 22180.35 23397.33 32985.46 28882.96 35295.19 297
new_pmnet82.89 34781.12 35288.18 35689.63 37980.18 36191.77 36992.57 36976.79 38475.56 38388.23 38061.22 37894.48 37471.43 38082.92 35389.87 384
FPMVS71.27 35969.85 36175.50 37974.64 40259.03 40291.30 37191.50 37858.80 39457.92 39888.28 37929.98 40185.53 39953.43 39782.84 35481.95 392
MIMVSNet184.93 33983.05 34190.56 33789.56 38084.84 31395.40 28395.35 30383.91 34180.38 36992.21 35057.23 38293.34 38570.69 38482.75 35593.50 350
dmvs_testset81.38 35082.60 34677.73 37391.74 36851.49 40693.03 35884.21 40189.07 23178.28 37891.25 36076.97 28688.53 39656.57 39682.24 35693.16 354
pm-mvs190.72 26589.65 27893.96 23494.29 31789.63 18697.79 9096.82 23089.07 23186.12 33195.48 23678.61 26797.78 29286.97 26581.67 35794.46 332
DTE-MVSNet90.56 26989.75 27493.01 27693.95 32487.25 26197.64 11097.65 13690.74 18087.12 31595.68 22579.97 24197.00 34183.33 31181.66 35894.78 323
IB-MVS87.33 1789.91 28688.28 30194.79 19095.26 26887.70 25495.12 29793.95 35289.35 22487.03 31892.49 34070.74 33299.19 12889.18 22181.37 35997.49 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test20.0386.14 33185.40 32888.35 35390.12 37580.06 36295.90 25995.20 31288.59 25081.29 36493.62 31971.43 32792.65 38771.26 38281.17 36092.34 367
K. test v387.64 31686.75 31890.32 34093.02 35179.48 36996.61 21192.08 37490.66 18780.25 37194.09 30167.21 35696.65 34985.96 28280.83 36194.83 314
test_fmvs383.21 34583.02 34283.78 36786.77 39068.34 39396.76 19394.91 32586.49 30484.14 34989.48 37236.04 39791.73 38991.86 16280.77 36291.26 379
APD_test179.31 35377.70 35684.14 36689.11 38369.07 39292.36 36891.50 37869.07 39073.87 38492.63 33839.93 39594.32 37670.54 38580.25 36389.02 386
MDA-MVSNet_test_wron85.87 33484.23 33890.80 33492.38 36482.57 33493.17 35395.15 31482.15 35767.65 38992.33 34978.20 27295.51 36777.33 35479.74 36494.31 339
h-mvs3394.15 11693.52 12596.04 11997.81 11990.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 36598.29 150
YYNet185.87 33484.23 33890.78 33592.38 36482.46 33793.17 35395.14 31582.12 35867.69 38892.36 34678.16 27595.50 36877.31 35579.73 36594.39 335
pmmvs687.81 31486.19 32192.69 28991.32 36986.30 28697.34 14496.41 25680.59 37184.05 35294.37 28467.37 35597.67 30084.75 29679.51 36794.09 344
AUN-MVS91.76 21490.75 22994.81 18697.00 16388.57 22596.65 20596.49 25289.63 21492.15 18596.12 20078.66 26698.50 20390.83 18279.18 36897.36 202
hse-mvs293.45 14692.99 14294.81 18697.02 16188.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20695.85 6979.13 36997.35 204
test_f80.57 35179.62 35383.41 36883.38 39567.80 39593.57 34893.72 35680.80 36977.91 37987.63 38433.40 39892.08 38887.14 26379.04 37090.34 383
Gipumacopyleft67.86 36465.41 36675.18 38092.66 35773.45 38566.50 39994.52 33753.33 39857.80 39966.07 39930.81 39989.20 39348.15 39978.88 37162.90 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet-bldmvs85.00 33882.95 34391.17 32793.13 35083.33 32994.56 30995.00 32084.57 33565.13 39392.65 33670.45 33395.85 35873.57 37477.49 37294.33 337
Patchmatch-RL test87.38 31786.24 32090.81 33288.74 38578.40 37588.12 39093.17 36287.11 29582.17 36289.29 37381.95 20895.60 36588.64 23177.02 37398.41 142
lessismore_v090.45 33891.96 36779.09 37387.19 39580.32 37094.39 28266.31 36397.55 31184.00 30676.84 37494.70 326
mvsany_test383.59 34382.44 34787.03 36183.80 39373.82 38493.70 34190.92 38386.42 30582.51 36090.26 36546.76 39295.71 36190.82 18376.76 37591.57 374
pmmvs-eth3d86.22 32984.45 33691.53 31788.34 38687.25 26194.47 31295.01 31983.47 34979.51 37489.61 37169.75 34195.71 36183.13 31376.73 37691.64 372
PM-MVS83.48 34481.86 35088.31 35487.83 38877.59 37793.43 34991.75 37686.91 29780.63 36789.91 36944.42 39395.84 35985.17 29376.73 37691.50 376
ambc86.56 36383.60 39470.00 39085.69 39294.97 32280.60 36888.45 37737.42 39696.84 34682.69 32175.44 37892.86 358
TDRefinement86.53 32484.76 33591.85 30782.23 39784.25 31796.38 22995.35 30384.97 33084.09 35094.94 25365.76 36798.34 22084.60 29974.52 37992.97 356
TransMVSNet (Re)88.94 30087.56 30693.08 27594.35 31388.45 23197.73 9595.23 31187.47 28684.26 34695.29 24079.86 24397.33 32979.44 34674.44 38093.45 352
PMVScopyleft53.92 2258.58 36755.40 37068.12 38351.00 41048.64 40778.86 39687.10 39646.77 39935.84 40574.28 3958.76 40986.34 39842.07 40073.91 38169.38 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft74.68 38190.84 37364.34 39981.61 40465.34 39267.47 39088.01 38348.60 39180.13 40262.33 39173.68 38279.58 393
KD-MVS_self_test85.95 33384.95 33288.96 35289.55 38179.11 37295.13 29696.42 25585.91 31484.07 35190.48 36370.03 33894.82 37280.04 33972.94 38392.94 357
test_vis3_rt72.73 35770.55 36079.27 37180.02 39868.13 39493.92 33574.30 40876.90 38358.99 39773.58 39720.29 40695.37 36984.16 30272.80 38474.31 396
CL-MVSNet_self_test86.31 32885.15 33089.80 34688.83 38481.74 34493.93 33496.22 26486.67 30185.03 33990.80 36278.09 27694.50 37374.92 36771.86 38593.15 355
UnsupCasMVSNet_eth85.99 33284.45 33690.62 33689.97 37782.40 33893.62 34697.37 17989.86 20778.59 37792.37 34365.25 36995.35 37082.27 32470.75 38694.10 342
new-patchmatchnet83.18 34681.87 34987.11 36086.88 38975.99 38193.70 34195.18 31385.02 32977.30 38088.40 37865.99 36593.88 38274.19 37270.18 38791.47 377
pmmvs379.97 35277.50 35787.39 35982.80 39679.38 37092.70 36390.75 38470.69 38978.66 37687.47 38651.34 39093.40 38473.39 37569.65 38889.38 385
testf169.31 36166.76 36476.94 37678.61 39961.93 40088.27 38886.11 39855.62 39559.69 39585.31 38820.19 40789.32 39157.62 39369.44 38979.58 393
APD_test269.31 36166.76 36476.94 37678.61 39961.93 40088.27 38886.11 39855.62 39559.69 39585.31 38820.19 40789.32 39157.62 39369.44 38979.58 393
LCM-MVSNet72.55 35869.39 36282.03 36970.81 40765.42 39890.12 38294.36 34455.02 39765.88 39181.72 39124.16 40589.96 39074.32 37168.10 39190.71 382
WB-MVS76.77 35576.63 35877.18 37485.32 39156.82 40494.53 31089.39 38882.66 35571.35 38689.18 37475.03 30588.88 39435.42 40266.79 39285.84 388
UnsupCasMVSNet_bld82.13 34979.46 35490.14 34288.00 38782.47 33690.89 37796.62 24778.94 37775.61 38184.40 39056.63 38496.31 35277.30 35666.77 39391.63 373
SSC-MVS76.05 35675.83 35976.72 37884.77 39256.22 40594.32 32188.96 39081.82 36170.52 38788.91 37574.79 30788.71 39533.69 40364.71 39485.23 389
test_method66.11 36564.89 36769.79 38272.62 40535.23 41365.19 40092.83 36720.35 40365.20 39288.08 38243.14 39482.70 40073.12 37663.46 39591.45 378
KD-MVS_2432*160084.81 34082.64 34491.31 32291.07 37185.34 30491.22 37295.75 28285.56 31983.09 35790.21 36667.21 35695.89 35677.18 35762.48 39692.69 360
miper_refine_blended84.81 34082.64 34491.31 32291.07 37185.34 30491.22 37295.75 28285.56 31983.09 35790.21 36667.21 35695.89 35677.18 35762.48 39692.69 360
PVSNet_082.17 1985.46 33783.64 34090.92 32995.27 26579.49 36890.55 37895.60 29283.76 34583.00 35989.95 36871.09 32997.97 26582.75 32060.79 39895.31 286
PMMVS270.19 36066.92 36380.01 37076.35 40165.67 39786.22 39187.58 39464.83 39362.38 39480.29 39326.78 40388.49 39763.79 38954.07 39985.88 387
MVEpermissive50.73 2353.25 36948.81 37466.58 38465.34 40857.50 40372.49 39870.94 40940.15 40239.28 40463.51 4006.89 41173.48 40538.29 40142.38 40068.76 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 36852.56 37255.43 38574.43 40347.13 40883.63 39576.30 40542.23 40042.59 40262.22 40128.57 40274.40 40331.53 40431.51 40144.78 400
ANet_high63.94 36659.58 36977.02 37561.24 40966.06 39685.66 39387.93 39378.53 37942.94 40171.04 39825.42 40480.71 40152.60 39830.83 40284.28 390
EMVS52.08 37051.31 37354.39 38672.62 40545.39 41083.84 39475.51 40741.13 40140.77 40359.65 40230.08 40073.60 40428.31 40529.90 40344.18 401
tmp_tt51.94 37153.82 37146.29 38733.73 41145.30 41178.32 39767.24 41018.02 40450.93 40087.05 38752.99 38853.11 40670.76 38325.29 40440.46 402
wuyk23d25.11 37224.57 37626.74 38873.98 40439.89 41257.88 4019.80 41212.27 40510.39 4066.97 4087.03 41036.44 40725.43 40617.39 4053.89 405
testmvs13.36 37416.33 3774.48 3905.04 4122.26 41593.18 3523.28 4132.70 4068.24 40721.66 4042.29 4132.19 4087.58 4072.96 4069.00 404
test12313.04 37515.66 3785.18 3894.51 4133.45 41492.50 3661.81 4142.50 4077.58 40820.15 4053.67 4122.18 4097.13 4081.07 4079.90 403
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.24 37330.99 3750.00 3910.00 4140.00 4160.00 40297.63 1400.00 4090.00 41096.88 15584.38 1570.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.39 3779.85 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40988.65 950.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.06 37610.74 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41096.69 1640.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.53 36675.56 365
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 414
eth-test0.00 414
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 137
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
MTGPAbinary98.08 74
test_post192.81 36216.58 40780.53 22997.68 29986.20 274
test_post17.58 40681.76 21198.08 246
patchmatchnet-post90.45 36482.65 19498.10 242
MTMP97.86 7982.03 403
gm-plane-assit93.22 34778.89 37484.82 33293.52 32298.64 19187.72 242
TEST998.70 5694.19 4096.41 22398.02 9488.17 26496.03 9597.56 12192.74 3099.59 74
test_898.67 5894.06 4796.37 23098.01 9788.58 25195.98 9997.55 12392.73 3199.58 77
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
test_prior493.66 5596.42 222
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
旧先验295.94 25681.66 36297.34 4898.82 17092.26 149
新几何295.79 265
无先验95.79 26597.87 11183.87 34499.65 5887.68 24898.89 105
原ACMM295.67 270
testdata299.67 5685.96 282
segment_acmp92.89 27
testdata195.26 29393.10 105
plane_prior796.21 21389.98 178
plane_prior696.10 22490.00 17481.32 217
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 208
plane_prior297.74 9394.85 34
plane_prior196.14 221
n20.00 415
nn0.00 415
door-mid91.06 381
test1197.88 109
door91.13 380
HQP5-MVS89.33 203
HQP-NCC95.86 23096.65 20593.55 8090.14 233
ACMP_Plane95.86 23096.65 20593.55 8090.14 233
BP-MVS92.13 155
HQP4-MVS90.14 23398.50 20395.78 256
HQP2-MVS80.95 220
NP-MVS95.99 22889.81 18395.87 210
MDTV_nov1_ep13_2view70.35 38993.10 35783.88 34393.55 15282.47 19886.25 27398.38 145
Test By Simon88.73 94