This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16198.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19698.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8598.30 6291.90 4599.85 1895.61 8899.68 499.54 33
MVSMamba_pp96.06 6795.92 6796.50 8997.00 16791.81 11097.33 14697.77 12492.49 12696.78 6497.19 13988.50 10399.07 15196.54 4699.67 698.60 126
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1199.56 29
IU-MVS99.42 795.39 1197.94 10490.40 20098.94 897.41 2999.66 1199.74 8
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1399.74 8
iter_conf05_1196.17 6596.16 6496.21 11497.48 14390.74 16098.14 4997.80 12292.80 11997.34 4897.29 13188.54 10099.10 14196.40 5099.64 1498.80 115
mamv496.02 7095.84 7196.53 8197.05 16291.97 10597.30 14997.79 12392.32 13096.58 7997.14 14488.51 10299.06 15496.27 5299.64 1498.57 128
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3499.64 1499.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19696.77 6598.35 5190.21 7599.53 9194.80 10999.63 1799.38 58
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1899.65 15
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17096.40 8697.99 8490.99 6599.58 7795.61 8899.61 1999.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9499.59 2099.56 29
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4299.83 2695.63 8699.59 2099.54 33
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5299.87 795.46 9399.59 2099.64 16
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5799.86 895.63 8699.59 2099.62 18
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2499.59 22
PC_three_145290.77 18198.89 1498.28 6596.24 198.35 22395.76 7999.58 2499.59 22
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10598.33 5791.04 6499.88 495.20 9699.57 2699.60 21
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8798.18 7091.61 5099.88 495.59 9199.55 2799.57 26
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 18098.06 8290.67 18795.55 11898.78 2591.07 6399.86 896.58 4499.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 12098.34 5490.59 7299.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5598.01 8392.52 3599.69 5296.03 7099.53 3099.36 60
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4899.52 3199.51 37
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5499.52 3199.67 13
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 5999.64 6695.16 9799.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3499.84 2395.95 7299.51 3499.40 54
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15598.01 3198.32 5992.33 3899.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30596.98 17898.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3699.72 11
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32397.56 11897.51 15893.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3699.51 37
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15598.08 7495.07 2796.11 9798.59 3090.88 6899.90 296.18 6599.50 3699.58 25
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3999.57 26
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28296.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 4099.45 47
9.1496.75 4198.93 4797.73 9698.23 5091.28 16597.88 3598.44 4493.00 2699.65 5895.76 7999.47 41
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14492.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4299.69 12
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11198.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4298.08 172
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10398.49 1994.66 4897.24 5098.41 4792.31 4098.94 16596.61 4399.46 4298.96 94
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13397.14 5398.44 4491.17 6299.85 1894.35 11899.46 4299.57 26
CDPH-MVS95.97 7495.38 8397.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4499.47 10292.26 15299.46 4299.39 56
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25798.18 5795.23 1995.87 10697.65 11191.45 5399.70 5195.87 7399.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030497.04 2896.73 4297.96 2397.60 13594.36 3698.01 5994.09 35197.33 296.29 8998.79 2489.73 8299.86 899.36 299.42 4999.67 13
CPTT-MVS95.57 8595.19 8896.70 7399.27 2691.48 12598.33 2798.11 7087.79 27995.17 12698.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10797.74 10492.33 3899.38 11396.04 6999.42 4999.28 65
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24392.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5299.59 22
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4899.80 3095.66 8199.40 5399.62 18
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4899.80 3095.66 8199.40 5399.62 18
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16898.07 7993.54 8596.08 9997.69 10693.86 1699.71 4696.50 4799.39 5599.55 32
test9_res94.81 10899.38 5699.45 47
agg_prior293.94 12599.38 5699.50 40
test_prior296.35 23392.80 11996.03 10097.59 11892.01 4395.01 10299.38 56
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
train_agg96.30 6295.83 7297.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 10097.56 12192.73 3199.59 7495.04 10099.37 5999.39 56
CS-MVS-test96.89 3597.04 2396.45 9498.29 8291.66 11799.03 497.85 11695.84 796.90 6097.97 8691.24 5998.75 18596.92 3599.33 6198.94 97
3Dnovator91.36 595.19 9694.44 11197.44 4996.56 19593.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5898.10 7392.52 3599.65 5894.58 11699.31 63
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5799.86 894.83 10699.28 6499.47 46
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5799.27 6599.54 33
CSCG96.05 6995.91 6896.46 9399.24 2890.47 16898.30 2998.57 1889.01 23693.97 15097.57 11992.62 3399.76 3894.66 11299.27 6599.15 75
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6799.26 6799.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6799.26 6799.43 51
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6699.55 8796.06 6699.25 6999.51 37
test1297.65 4298.46 7094.26 3997.66 13795.52 12190.89 6799.46 10399.25 6999.22 70
DeepC-MVS93.07 396.06 6795.66 7397.29 5597.96 10993.17 7097.30 14998.06 8293.92 7193.38 16398.66 2786.83 13299.73 4295.60 9099.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CANet96.39 5996.02 6597.50 4797.62 13293.38 6397.02 17397.96 10295.42 1594.86 13097.81 9987.38 12699.82 2896.88 3699.20 7499.29 63
MVS_111021_LR96.24 6496.19 6396.39 9998.23 9191.35 13196.24 24498.79 693.99 6995.80 10997.65 11189.92 8099.24 12495.87 7399.20 7498.58 127
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4698.71 19197.10 3199.17 7698.90 104
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7799.17 7699.56 29
test22298.24 8792.21 9695.33 28897.60 14579.22 37995.25 12397.84 9888.80 9399.15 7898.72 119
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11897.46 13297.96 10277.99 38393.00 17197.57 11986.14 14499.33 11589.22 22199.15 7898.94 97
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8099.50 40
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11197.85 9690.04 7799.67 5686.50 27399.13 8098.69 122
原ACMM196.38 10098.59 6691.09 14597.89 10787.41 29095.22 12597.68 10790.25 7499.54 8987.95 24199.12 8298.49 137
EC-MVSNet96.42 5796.47 5396.26 11097.01 16691.52 12398.89 597.75 12694.42 5696.64 7397.68 10789.32 8498.60 20197.45 2699.11 8398.67 124
test_fmvsmconf0.01_n96.15 6695.85 7097.03 6992.66 36091.83 10997.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8499.48 44
test_fmvsmvis_n_192096.70 4796.84 3396.31 10496.62 18891.73 11197.98 6398.30 3296.19 596.10 9898.95 889.42 8399.76 3898.90 1099.08 8497.43 204
test_cas_vis1_n_192094.48 11394.55 10694.28 22196.78 18086.45 28697.63 11297.64 14193.32 9597.68 3898.36 5073.75 32099.08 14796.73 3999.05 8697.31 211
MVSFormer95.37 8895.16 8995.99 12996.34 21391.21 13698.22 4197.57 15091.42 15996.22 9397.32 12986.20 14297.92 28294.07 12199.05 8698.85 110
lupinMVS94.99 10294.56 10396.29 10896.34 21391.21 13695.83 26496.27 26788.93 24196.22 9396.88 15886.20 14298.85 17495.27 9599.05 8698.82 113
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4199.01 8999.16 73
bld_raw_dy_0_6494.33 11693.90 11995.62 14897.64 12990.95 14995.17 29897.47 16482.34 35991.28 21996.84 16089.10 8899.04 15996.27 5299.00 9096.85 225
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5898.07 7690.06 7698.85 17489.67 20898.98 9198.64 125
3Dnovator+91.43 495.40 8794.48 10998.16 1696.90 17195.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9299.44 49
DPM-MVS95.69 8094.92 9398.01 1998.08 10495.71 995.27 29397.62 14490.43 19995.55 11897.07 14891.72 4699.50 9989.62 21098.94 9398.82 113
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18687.27 26390.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21593.25 13998.94 9397.35 209
jason94.84 10794.39 11296.18 11795.52 24990.93 15196.09 25096.52 25689.28 22796.01 10397.32 12984.70 15998.77 18395.15 9898.91 9598.85 110
jason: jason.
test_vis1_n_192094.17 12094.58 10292.91 28397.42 14582.02 34497.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1598.82 9697.40 206
QAPM93.45 15292.27 17896.98 7196.77 18292.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9798.51 134
MG-MVS95.61 8395.38 8396.31 10498.42 7390.53 16696.04 25297.48 16193.47 8995.67 11598.10 7389.17 8699.25 12391.27 17998.77 9899.13 77
API-MVS94.84 10794.49 10895.90 13197.90 11592.00 10497.80 9097.48 16189.19 23094.81 13196.71 16488.84 9299.17 13288.91 22998.76 9996.53 232
CHOSEN 1792x268894.15 12293.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15497.11 14583.15 18599.61 6991.33 17798.72 10099.19 71
EIA-MVS95.53 8695.47 7795.71 14397.06 16089.63 18997.82 8797.87 11193.57 8193.92 15195.04 25390.61 7198.95 16494.62 11498.68 10198.54 130
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9795.34 26292.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10296.73 229
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 6998.76 894.93 3098.84 1699.06 488.80 9399.65 5899.06 798.63 10398.18 161
EPNet95.20 9594.56 10397.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 17997.80 10186.23 13999.65 5893.72 13198.62 10499.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18790.25 17497.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10598.15 165
DP-MVS Recon95.68 8195.12 9197.37 5199.19 3194.19 4297.03 17198.08 7488.35 26295.09 12897.65 11189.97 7999.48 10192.08 16198.59 10698.44 145
Vis-MVSNetpermissive95.23 9394.81 9596.51 8697.18 15191.58 12198.26 3598.12 6794.38 6094.90 12998.15 7282.28 20898.92 16791.45 17698.58 10799.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs193.21 15993.53 13092.25 30296.55 19781.20 35197.40 13796.96 22090.68 18696.80 6298.04 7969.25 34598.40 21697.58 2198.50 10897.16 216
test250691.60 22490.78 23094.04 23197.66 12783.81 32698.27 3375.53 40993.43 9095.23 12498.21 6767.21 35999.07 15193.01 14898.49 10999.25 68
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12785.41 30398.21 4388.23 39493.43 9094.70 13398.21 6772.57 32499.07 15193.05 14598.49 10999.25 68
test111193.19 16192.82 15594.30 22097.58 14084.56 31898.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15693.06 14498.48 11199.28 65
UGNet94.04 13093.28 14396.31 10496.85 17391.19 13997.88 7997.68 13694.40 5893.00 17196.18 19773.39 32299.61 6991.72 16898.46 11298.13 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet_DTU94.37 11493.65 12596.55 8096.46 20792.13 10096.21 24596.67 24794.38 6093.53 15997.03 15079.34 25799.71 4690.76 18798.45 11397.82 186
test_fmvs1_n92.73 18492.88 15392.29 30096.08 23081.05 35297.98 6397.08 20790.72 18496.79 6398.18 7063.07 37698.45 21397.62 2098.42 11497.36 207
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 12990.72 16198.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11598.25 156
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 13787.94 11198.91 16971.31 38498.37 11598.17 164
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25190.69 16297.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11798.18 161
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18497.73 12994.74 4496.49 8198.49 3890.88 6899.58 7796.44 4998.32 11799.13 77
PS-MVSNAJ95.37 8895.33 8595.49 15797.35 14690.66 16495.31 29097.48 16193.85 7496.51 8095.70 22788.65 9699.65 5894.80 10998.27 11996.17 243
LS3D93.57 14892.61 16696.47 9197.59 13691.61 11897.67 10397.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 11998.06 173
test_vis1_n92.37 19492.26 17992.72 29094.75 30182.64 33698.02 5896.80 23791.18 16997.77 3797.93 8858.02 38498.29 22897.63 1998.21 12197.23 215
ETV-MVS96.02 7095.89 6996.40 9797.16 15292.44 8897.47 13097.77 12494.55 5096.48 8294.51 27891.23 6198.92 16795.65 8498.19 12297.82 186
PVSNet_Blended94.87 10694.56 10395.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 13996.09 20788.02 10999.58 7793.44 13598.18 12398.40 148
MAR-MVS94.22 11893.46 13596.51 8698.00 10892.19 9997.67 10397.47 16488.13 26993.00 17195.84 21584.86 15899.51 9687.99 24098.17 12497.83 185
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MS-PatchMatch90.27 28089.77 27591.78 31594.33 31884.72 31795.55 27896.73 23986.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12592.81 362
AdaColmapbinary94.34 11593.68 12496.31 10498.59 6691.68 11696.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12697.70 191
MVP-Stereo90.74 26790.08 26192.71 29193.19 35188.20 24295.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12792.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNet (Re-imp)94.15 12293.88 12094.95 18397.61 13387.92 25098.10 5195.80 28692.22 13393.02 17097.45 12484.53 16297.91 28588.24 23797.97 12899.02 86
EI-MVSNet-UG-set96.34 6196.30 6096.47 9198.20 9390.93 15196.86 18697.72 13194.67 4796.16 9698.46 4290.43 7399.58 7796.23 5697.96 12998.90 104
IS-MVSNet94.90 10494.52 10796.05 12397.67 12590.56 16598.44 2296.22 27093.21 9793.99 14897.74 10485.55 15098.45 21389.98 19997.86 13099.14 76
CNLPA94.28 11793.53 13096.52 8398.38 7892.55 8596.59 21696.88 23190.13 20591.91 19797.24 13685.21 15399.09 14587.64 25397.83 13197.92 178
xiu_mvs_v2_base95.32 9095.29 8695.40 16297.22 14890.50 16795.44 28497.44 17693.70 7996.46 8496.18 19788.59 9999.53 9194.79 11197.81 13296.17 243
PAPM_NR95.01 9894.59 10196.26 11098.89 5190.68 16397.24 15597.73 12991.80 14792.93 17696.62 17889.13 8799.14 13789.21 22297.78 13398.97 93
PVSNet_Blended_VisFu95.27 9194.91 9496.38 10098.20 9390.86 15397.27 15298.25 4590.21 20194.18 14497.27 13487.48 12399.73 4293.53 13297.77 13498.55 129
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24094.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13599.08 83
ACMMPcopyleft96.27 6395.93 6697.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9099.85 1894.57 11797.63 13699.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15287.99 24896.15 24895.60 29790.62 19291.87 19997.15 14378.41 27598.57 20583.16 31597.60 13798.36 152
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19787.96 27191.86 20095.68 22880.44 23798.99 16284.01 30897.54 13896.89 224
xiu_mvs_v1_base_debu95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base_debi95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
MVS91.71 21890.44 24495.51 15595.20 27591.59 12096.04 25297.45 17273.44 39287.36 31595.60 23285.42 15199.10 14185.97 28497.46 13995.83 257
PVSNet86.66 1892.24 20291.74 19593.73 25097.77 12183.69 33092.88 36396.72 24087.91 27393.00 17194.86 26178.51 27399.05 15686.53 27197.45 14398.47 140
PAPR94.18 11993.42 14096.48 9097.64 12991.42 12995.55 27897.71 13588.99 23792.34 18695.82 21789.19 8599.11 14086.14 27997.38 14498.90 104
LCM-MVSNet-Re92.50 18792.52 17192.44 29596.82 17881.89 34596.92 18293.71 36192.41 12884.30 34894.60 27485.08 15597.03 34191.51 17397.36 14598.40 148
UA-Net95.95 7595.53 7597.20 6397.67 12592.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9199.51 9690.36 19497.35 14699.11 81
casdiffmvspermissive95.64 8295.49 7696.08 12096.76 18590.45 16997.29 15197.44 17694.00 6895.46 12297.98 8587.52 12298.73 18795.64 8597.33 14799.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive95.81 7995.57 7496.51 8696.87 17291.49 12497.50 12497.56 15493.99 6995.13 12797.92 8987.89 11298.78 18095.97 7197.33 14799.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS89.48 1191.56 22889.95 26796.36 10296.60 19092.52 8692.51 36897.26 19479.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 14997.01 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned92.94 17492.62 16593.92 24397.22 14886.16 29496.40 22996.25 26990.06 20689.79 25496.17 19983.19 18398.35 22387.19 26397.27 15097.24 214
baseline95.58 8495.42 8196.08 12096.78 18090.41 17197.16 16597.45 17293.69 8095.65 11697.85 9687.29 12798.68 19395.66 8197.25 15199.13 77
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15296.51 233
diffmvspermissive95.25 9295.13 9095.63 14696.43 20989.34 20595.99 25697.35 18892.83 11796.31 8897.37 12886.44 13798.67 19496.26 5497.19 15398.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test94.89 10594.62 10095.68 14496.83 17689.55 19496.70 20197.17 19991.17 17095.60 11796.11 20687.87 11398.76 18493.01 14897.17 15498.72 119
PLCcopyleft91.00 694.11 12693.43 13896.13 11998.58 6891.15 14496.69 20397.39 18287.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15597.73 189
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131492.81 18292.03 18495.14 17095.33 26589.52 19796.04 25297.44 17687.72 28386.25 33295.33 24283.84 17298.79 17989.26 21997.05 15697.11 217
FE-MVS92.05 20991.05 21995.08 17396.83 17687.93 24993.91 33995.70 29086.30 30994.15 14594.97 25476.59 29399.21 12684.10 30696.86 15798.09 171
EPNet_dtu91.71 21891.28 21192.99 28093.76 33483.71 32996.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15897.88 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+94.93 10394.45 11096.36 10296.61 18991.47 12696.41 22597.41 18191.02 17694.50 13795.92 21187.53 12198.78 18093.89 12796.81 15998.84 112
OMC-MVS95.09 9794.70 9996.25 11398.46 7091.28 13296.43 22397.57 15092.04 14294.77 13297.96 8787.01 13199.09 14591.31 17896.77 16098.36 152
test-LLR91.42 23591.19 21692.12 30494.59 30880.66 35594.29 32692.98 36691.11 17290.76 22892.37 34679.02 26498.07 25588.81 23096.74 16197.63 193
test-mter90.19 28589.54 28392.12 30494.59 30880.66 35594.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16197.63 193
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16397.29 19387.75 28290.49 23197.10 14685.21 15399.50 9986.70 27096.72 16397.63 193
mvs_anonymous93.82 14093.74 12294.06 22996.44 20885.41 30395.81 26597.05 21289.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16499.02 86
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14096.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16498.89 107
TESTMET0.1,190.06 28789.42 28691.97 30794.41 31680.62 35794.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16697.61 197
GeoE93.89 13693.28 14395.72 14296.96 17089.75 18898.24 3996.92 22789.47 22292.12 19397.21 13884.42 16398.39 22087.71 24796.50 16799.01 89
EPP-MVSNet95.22 9495.04 9295.76 13697.49 14289.56 19398.67 1097.00 21890.69 18594.24 14297.62 11689.79 8198.81 17893.39 13896.49 16898.92 100
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27894.53 31396.38 26384.78 33594.27 14195.12 25283.13 18698.40 21691.47 17596.49 16898.12 167
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18290.03 17796.81 19197.13 20188.19 26591.30 21594.27 29486.21 14198.63 19887.66 25296.46 17098.12 167
BH-w/o92.14 20791.75 19393.31 26996.99 16985.73 29895.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17196.13 247
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18288.54 23094.82 30596.21 27289.61 21794.20 14395.25 24683.24 18299.14 13790.01 19896.16 17298.25 156
sss94.51 11293.80 12196.64 7497.07 15791.97 10596.32 23698.06 8288.94 24094.50 13796.78 16184.60 16099.27 12291.90 16296.02 17398.68 123
SCA91.84 21591.18 21793.83 24595.59 24584.95 31494.72 30795.58 29990.82 17992.25 18993.69 31775.80 30198.10 24686.20 27795.98 17498.45 142
CDS-MVSNet94.14 12593.54 12995.93 13096.18 22091.46 12796.33 23597.04 21488.97 23993.56 15696.51 18287.55 11997.89 28689.80 20495.95 17598.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM91.52 23190.30 25095.20 16795.30 26889.83 18693.38 35496.85 23486.26 31188.59 28795.80 21884.88 15798.15 23975.67 36795.93 17697.63 193
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7393.39 36490.57 19696.29 8998.31 6069.00 34699.16 13494.18 12095.87 17799.12 80
thisisatest051592.29 19991.30 21095.25 16696.60 19088.90 22194.36 32192.32 37487.92 27293.43 16294.57 27577.28 28999.00 16189.42 21495.86 17897.86 182
CVMVSNet91.23 24691.75 19389.67 35095.77 23974.69 38596.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17898.74 118
TAMVS94.01 13193.46 13595.64 14596.16 22290.45 16996.71 20096.89 23089.27 22893.46 16196.92 15687.29 12797.94 27988.70 23395.74 18098.53 131
Effi-MVS+-dtu93.08 16693.21 14592.68 29396.02 23183.25 33397.14 16796.72 24093.85 7491.20 22493.44 32983.08 18798.30 22791.69 17195.73 18196.50 234
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15395.78 22282.86 19498.67 19491.77 16795.71 18299.07 85
thisisatest053093.03 16992.21 18095.49 15797.07 15789.11 21797.49 12992.19 37590.16 20394.09 14696.41 18776.43 29799.05 15690.38 19395.68 18398.31 154
mvsany_test193.93 13593.98 11793.78 24994.94 29086.80 27594.62 30992.55 37388.77 25096.85 6198.49 3888.98 8998.08 25195.03 10195.62 18496.46 237
UWE-MVS89.91 28989.48 28591.21 32795.88 23378.23 37994.91 30490.26 38889.11 23292.35 18594.52 27768.76 34897.96 27483.95 31095.59 18597.42 205
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25769.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18692.18 373
tttt051792.96 17292.33 17794.87 18797.11 15587.16 26997.97 6992.09 37690.63 19193.88 15297.01 15176.50 29499.06 15490.29 19695.45 18798.38 150
GG-mvs-BLEND93.62 25693.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18894.80 322
PatchmatchNetpermissive91.91 21291.35 20693.59 25895.38 25784.11 32393.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24184.81 29895.32 18998.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet95.89 7795.45 7897.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7895.27 19099.16 73
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19196.62 231
test_yl94.78 10994.23 11396.43 9597.74 12291.22 13496.85 18797.10 20491.23 16795.71 11296.93 15384.30 16599.31 11993.10 14195.12 19298.75 116
DCV-MVSNet94.78 10994.23 11396.43 9597.74 12291.22 13496.85 18797.10 20491.23 16795.71 11296.93 15384.30 16599.31 11993.10 14195.12 19298.75 116
alignmvs95.87 7895.23 8797.78 3197.56 14195.19 2197.86 8097.17 19994.39 5996.47 8396.40 18885.89 14599.20 12796.21 6195.11 19498.95 96
MSDG91.42 23590.24 25494.96 18297.15 15488.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16380.57 33995.05 19596.98 219
VDD-MVS93.82 14093.08 14696.02 12697.88 11689.96 18497.72 9995.85 28492.43 12795.86 10798.44 4468.42 35399.39 11196.31 5194.85 19698.71 121
VDDNet93.05 16892.07 18296.02 12696.84 17490.39 17298.08 5395.85 28486.22 31295.79 11098.46 4267.59 35699.19 12894.92 10494.85 19698.47 140
sasdasda96.02 7095.45 7897.75 3597.59 13695.15 2398.28 3197.60 14594.52 5296.27 9196.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
canonicalmvs96.02 7095.45 7897.75 3597.59 13695.15 2398.28 3197.60 14594.52 5296.27 9196.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
Patchmatch-test89.42 29987.99 30693.70 25395.27 26985.11 31088.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20098.48 139
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14879.90 37689.40 26692.92 33775.36 30598.36 22292.14 15794.75 20196.23 239
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27495.27 26985.52 30197.03 17196.63 25192.09 14089.11 27795.14 25080.33 24098.08 25187.54 25694.74 20296.03 251
MGCFI-Net95.94 7695.40 8297.56 4697.59 13694.62 3098.21 4397.57 15094.41 5796.17 9596.16 20087.54 12099.17 13296.19 6494.73 20398.91 101
WTY-MVS94.71 11194.02 11596.79 7297.71 12492.05 10296.59 21697.35 18890.61 19394.64 13496.93 15386.41 13899.39 11191.20 18194.71 20498.94 97
baseline291.63 22290.86 22593.94 24194.33 31886.32 28895.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19288.64 23494.57 20596.81 227
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15692.49 8795.64 27696.64 24889.05 23593.00 17195.79 22185.77 14899.45 10589.16 22594.35 20697.96 176
MDTV_nov1_ep1390.76 23195.22 27380.33 36193.03 36195.28 31188.14 26892.84 17793.83 31181.34 22398.08 25182.86 31894.34 207
testing1191.68 22190.75 23294.47 20896.53 20086.56 28495.76 26994.51 34291.10 17491.24 22293.59 32368.59 35098.86 17291.10 18294.29 20898.00 175
ETVMVS90.52 27489.14 29394.67 19996.81 17987.85 25495.91 26093.97 35589.71 21592.34 18692.48 34465.41 37197.96 27481.37 33594.27 20998.21 159
WB-MVSnew89.88 29289.56 28290.82 33494.57 31183.06 33495.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21092.54 367
thres20092.23 20391.39 20594.75 19797.61 13389.03 21896.60 21595.09 32192.08 14193.28 16694.00 30778.39 27699.04 15981.26 33794.18 21196.19 242
Syy-MVS87.13 32387.02 31887.47 36195.16 27673.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21295.20 297
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27679.53 36995.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21295.20 297
testing387.67 31886.88 31990.05 34696.14 22580.71 35497.10 16992.85 36890.15 20487.54 31094.55 27655.70 38994.10 38173.77 37694.10 21495.35 286
testing22290.31 27888.96 29594.35 21496.54 19887.29 26195.50 28193.84 35990.97 17791.75 20392.96 33662.18 38098.00 26582.86 31894.08 21597.76 188
thres100view90092.43 19091.58 19994.98 18097.92 11389.37 20497.71 10194.66 33792.20 13593.31 16594.90 25978.06 28299.08 14781.40 33294.08 21596.48 235
tfpn200view992.38 19391.52 20294.95 18397.85 11789.29 20897.41 13394.88 33192.19 13793.27 16794.46 28378.17 27899.08 14781.40 33294.08 21596.48 235
thres40092.42 19191.52 20295.12 17297.85 11789.29 20897.41 13394.88 33192.19 13793.27 16794.46 28378.17 27899.08 14781.40 33294.08 21596.98 219
thres600view792.49 18991.60 19895.18 16897.91 11489.47 19897.65 10694.66 33792.18 13993.33 16494.91 25878.06 28299.10 14181.61 32994.06 21996.98 219
CR-MVSNet90.82 26489.77 27593.95 23994.45 31487.19 26790.23 38395.68 29486.89 30092.40 18092.36 34980.91 22997.05 34081.09 33893.95 22097.60 198
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26790.23 38398.03 9177.87 38592.40 18087.55 38880.17 24399.51 9668.84 38993.95 22097.60 198
testing9191.90 21391.02 22094.53 20796.54 19886.55 28595.86 26295.64 29691.77 14891.89 19893.47 32869.94 34298.86 17290.23 19793.86 22298.18 161
testing9991.62 22390.72 23594.32 21796.48 20586.11 29595.81 26594.76 33591.55 15391.75 20393.44 32968.55 35198.82 17690.43 19193.69 22398.04 174
1112_ss93.37 15492.42 17596.21 11497.05 16290.99 14696.31 23796.72 24086.87 30189.83 25396.69 16886.51 13699.14 13788.12 23893.67 22498.50 135
PatchT88.87 30687.42 31093.22 27394.08 32585.10 31189.51 38894.64 33981.92 36292.36 18388.15 38480.05 24597.01 34372.43 38093.65 22597.54 201
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24897.95 11087.13 27096.92 18295.89 28382.83 35586.88 32897.18 14073.77 31999.29 12178.44 35393.62 22694.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25894.34 32296.19 27390.73 18390.35 23493.83 31171.84 32797.96 27487.22 26293.61 22798.21 159
TR-MVS91.48 23390.59 24094.16 22596.40 21087.33 26095.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22382.85 32093.61 22796.79 228
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16489.97 18395.53 28096.64 24885.38 32389.65 25995.18 24885.86 14699.10 14187.70 24893.58 22998.49 137
ab-mvs93.57 14892.55 16896.64 7497.28 14791.96 10795.40 28597.45 17289.81 21393.22 16996.28 19379.62 25499.46 10390.74 18893.11 23098.50 135
AllTest90.23 28288.98 29493.98 23597.94 11186.64 27996.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
TestCases93.98 23597.94 11186.64 27995.54 30085.38 32385.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
SDMVSNet94.17 12093.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20197.28 13279.13 26098.93 16694.61 11592.84 23397.28 212
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18497.64 14193.18 10191.79 20197.28 13275.35 30698.65 19688.99 22792.84 23397.28 212
MIMVSNet88.50 31086.76 32093.72 25294.84 29787.77 25691.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23397.57 200
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11695.00 32486.00 31593.64 15597.45 12466.24 36799.53 9190.68 19092.71 23699.01 89
EPMVS90.70 26989.81 27393.37 26794.73 30384.21 32193.67 34788.02 39589.50 22192.38 18293.49 32677.82 28697.78 29586.03 28392.68 23798.11 170
XVG-OURS93.72 14493.35 14194.80 19397.07 15788.61 22694.79 30697.46 16791.97 14593.99 14897.86 9581.74 21998.88 17192.64 15192.67 23896.92 223
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16088.53 23195.28 29197.45 17291.68 15194.08 14797.68 10782.41 20698.90 17093.84 12992.47 23996.98 219
CLD-MVS92.98 17192.53 17094.32 21796.12 22789.20 21395.28 29197.47 16492.66 12289.90 25095.62 23180.58 23498.40 21692.73 15092.40 24095.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19793.72 7791.68 20597.26 13579.33 25898.63 19892.13 15892.28 24195.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS93.78 14293.43 13894.82 18896.21 21789.99 18097.74 9497.51 15894.85 3491.34 21296.64 17181.32 22498.60 20193.02 14692.23 24295.86 253
plane_prior597.51 15898.60 20193.02 14692.23 24295.86 253
RPSCF90.75 26690.86 22590.42 34296.84 17476.29 38395.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18087.16 26592.23 24296.20 241
CostFormer91.18 25190.70 23692.62 29494.84 29781.76 34694.09 33294.43 34384.15 34192.72 17893.77 31579.43 25698.20 23490.70 18992.18 24597.90 179
plane_prior89.99 18097.24 15594.06 6792.16 246
HQP3-MVS97.39 18292.10 247
HQP-MVS93.19 16192.74 16094.54 20695.86 23489.33 20696.65 20797.39 18293.55 8290.14 23795.87 21380.95 22798.50 20992.13 15892.10 24795.78 261
tpm289.96 28889.21 29092.23 30394.91 29381.25 34993.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 24997.49 202
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22288.26 23997.65 10697.46 16791.29 16290.12 24397.16 14179.05 26298.73 18792.25 15491.89 25095.31 289
LGP-MVS_train94.10 22796.16 22288.26 23997.46 16791.29 16290.12 24397.16 14179.05 26298.73 18792.25 15491.89 25095.31 289
iter_conf0594.01 13194.00 11694.04 23195.06 28388.46 23497.27 15296.57 25592.32 13092.26 18897.10 14688.54 10098.10 24695.10 9991.82 25295.57 272
ACMM89.79 892.96 17292.50 17294.35 21496.30 21588.71 22497.58 11697.36 18791.40 16190.53 23096.65 17079.77 25098.75 18591.24 18091.64 25395.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
JIA-IIPM88.26 31387.04 31791.91 30893.52 34181.42 34889.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 238
test_djsdf93.07 16792.76 15794.00 23493.49 34388.70 22598.22 4197.57 15091.42 15990.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
jajsoiax92.42 19191.89 19094.03 23393.33 34988.50 23297.73 9697.53 15692.00 14488.85 28196.50 18375.62 30498.11 24593.88 12891.56 25695.48 274
mvs_tets92.31 19791.76 19293.94 24193.41 34688.29 23797.63 11297.53 15692.04 14288.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21088.20 24297.36 14197.25 19691.52 15488.30 29496.64 17178.46 27498.72 19091.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet289.45 29888.59 30092.03 30695.86 23482.26 34290.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 183
ADS-MVSNet89.89 29188.68 29993.53 26195.86 23484.89 31590.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 183
anonymousdsp92.16 20591.55 20093.97 23792.58 36289.55 19497.51 12397.42 18089.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23773.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24095.56 9291.17 26395.78 261
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38297.64 11095.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6297.72 13179.63 37793.54 15897.41 12769.94 34299.56 8591.04 18491.11 26598.22 158
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27794.31 32085.89 29695.33 28897.26 19491.06 17589.38 26795.44 24068.61 34998.60 20189.46 21391.05 26694.79 324
ACMMP++91.02 267
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25397.23 15997.46 16787.99 27089.90 25096.92 15666.35 36598.23 23190.30 19590.99 26897.96 176
D2MVS91.30 24490.95 22292.35 29794.71 30485.52 30196.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9397.56 15492.50 12589.94 24996.54 18188.65 9698.18 23793.83 13090.90 27095.86 253
EG-PatchMatch MVS87.02 32585.44 32991.76 31792.67 35985.00 31296.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
PVSNet_BlendedMVS94.06 12893.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20294.36 13995.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35996.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
EI-MVSNet93.03 16992.88 15393.48 26395.77 23986.98 27296.44 22197.12 20290.66 18991.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
MVSTER93.20 16092.81 15694.37 21396.56 19589.59 19297.06 17097.12 20291.24 16691.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
FIs94.09 12793.70 12395.27 16595.70 24192.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 256
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25191.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 257
ACMMP++_ref90.30 278
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22089.55 19496.31 23797.09 20687.88 27485.67 33695.91 21278.79 27098.57 20581.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 29589.15 29291.89 30994.92 29180.30 36293.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20881.47 33189.92 28096.84 226
ITE_SJBPF92.43 29695.34 26285.37 30695.92 27991.47 15687.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21091.57 12295.34 28793.48 36390.60 19575.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
USDC88.94 30387.83 30892.27 30194.66 30584.96 31393.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23682.64 32589.67 28393.66 351
dmvs_re90.21 28389.50 28492.35 29795.47 25485.15 30995.70 27194.37 34690.94 17888.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 240
ACMH87.59 1690.53 27389.42 28693.87 24496.21 21787.92 25097.24 15596.94 22288.45 25983.91 35696.27 19471.92 32698.62 20084.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst91.44 23491.32 20891.79 31495.15 27879.20 37493.42 35395.37 30688.55 25693.49 16093.67 32082.49 20498.27 22990.41 19289.34 28697.90 179
test0.0.03 189.37 30088.70 29891.41 32492.47 36485.63 29995.22 29692.70 37191.11 17286.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33390.06 37984.05 32595.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
GBi-Net91.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet391.78 21690.69 23795.03 17696.53 20092.27 9597.02 17396.93 22389.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
tpm cat188.36 31187.21 31491.81 31395.13 28080.55 35892.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23880.39 34188.74 29296.72 230
test_040286.46 32884.79 33791.45 32295.02 28585.55 30096.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
FMVSNet291.31 24390.08 26194.99 17896.51 20292.21 9697.41 13396.95 22188.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
tt080591.09 25290.07 26494.16 22595.61 24488.31 23697.56 11896.51 25789.56 21889.17 27595.64 23067.08 36398.38 22191.07 18388.44 29595.80 259
testgi87.97 31487.21 31490.24 34492.86 35580.76 35396.67 20694.97 32691.74 14985.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
ACMH+87.92 1490.20 28489.18 29193.25 27196.48 20586.45 28696.99 17796.68 24588.83 24584.79 34596.22 19670.16 33998.53 20784.42 30488.04 29794.77 327
tpm90.25 28189.74 27891.76 31793.92 32879.73 36893.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 167
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13097.43 17989.14 23188.90 27896.43 18679.71 25198.24 23089.56 21187.68 30095.67 270
pmmvs589.86 29488.87 29792.82 28792.86 35586.23 29196.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36694.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
FMVSNet189.88 29288.31 30394.59 20095.41 25591.18 14097.50 12496.93 22386.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
dp88.90 30588.26 30590.81 33594.58 31076.62 38192.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24480.53 34087.42 30497.71 190
OurMVSNet-221017-090.51 27590.19 25991.44 32393.41 34681.25 34996.98 17896.28 26691.68 15186.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
TinyColmap86.82 32685.35 33291.21 32794.91 29382.99 33593.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24175.78 36587.35 30692.52 368
cl2291.21 24790.56 24293.14 27696.09 22986.80 27594.41 31996.58 25487.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
miper_ehance_all_eth91.59 22591.13 21892.97 28195.55 24886.57 28394.47 31596.88 23187.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
miper_enhance_ethall91.54 23091.01 22193.15 27595.35 26187.07 27193.97 33496.90 22886.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
IterMVS90.15 28689.67 27991.61 31995.48 25183.72 32894.33 32396.12 27589.99 20787.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.31 27889.81 27391.82 31295.52 24984.20 32294.30 32596.15 27490.61 19387.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
our_test_388.78 30787.98 30791.20 32992.45 36582.53 33893.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38696.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 36096.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
IterMVS-LS92.29 19991.94 18893.34 26896.25 21686.97 27396.57 21997.05 21290.67 18789.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24192.39 8997.86 8098.66 1692.30 13292.09 19595.37 24180.49 23698.40 21693.95 12485.86 31695.75 266
nrg03094.05 12993.31 14296.27 10995.22 27394.59 3198.34 2697.46 16792.93 11591.21 22396.64 17187.23 12998.22 23294.99 10385.80 31795.98 252
cl____90.96 26090.32 24892.89 28495.37 25986.21 29294.46 31796.64 24887.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
DIV-MVS_self_test90.97 25990.33 24792.88 28595.36 26086.19 29394.46 31796.63 25187.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
v119291.07 25390.23 25593.58 25993.70 33587.82 25596.73 19797.07 20987.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
v124090.70 26989.85 27193.23 27293.51 34286.80 27596.61 21397.02 21787.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
v114491.37 23990.60 23993.68 25593.89 33088.23 24196.84 18997.03 21688.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36796.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
FMVSNet587.29 32185.79 32791.78 31594.80 29987.28 26295.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
WR-MVS92.34 19591.53 20194.77 19595.13 28090.83 15596.40 22997.98 10091.88 14689.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 269
v192192090.85 26390.03 26693.29 27093.55 33986.96 27496.74 19697.04 21487.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24189.70 20785.14 32795.49 273
Patchmtry88.64 30987.25 31292.78 28994.09 32486.64 27989.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
V4291.58 22790.87 22493.73 25094.05 32688.50 23297.32 14796.97 21988.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
SixPastTwentyTwo89.15 30188.54 30190.98 33193.49 34380.28 36396.70 20194.70 33690.78 18084.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
v2v48291.59 22590.85 22793.80 24793.87 33188.17 24496.94 18196.88 23189.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
ppachtmachnet_test88.35 31287.29 31191.53 32092.45 36583.57 33193.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
v14419291.06 25490.28 25193.39 26693.66 33887.23 26696.83 19097.07 20987.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
CP-MVSNet91.89 21491.24 21393.82 24695.05 28488.57 22897.82 8798.19 5591.70 15088.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
c3_l91.38 23790.89 22392.88 28595.58 24686.30 28994.68 30896.84 23588.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
miper_lstm_enhance90.50 27690.06 26591.83 31195.33 26583.74 32793.86 34096.70 24487.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
tfpnnormal89.70 29788.40 30293.60 25795.15 27890.10 17697.56 11898.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34393.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
PS-CasMVS91.55 22990.84 22893.69 25494.96 28788.28 23897.84 8498.24 4791.46 15788.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
eth_miper_zixun_eth91.02 25690.59 24092.34 29995.33 26584.35 31994.10 33196.90 22888.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
WR-MVS_H92.00 21091.35 20693.95 23995.09 28289.47 19898.04 5798.68 1391.46 15788.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
v1091.04 25590.23 25593.49 26294.12 32388.16 24597.32 14797.08 20788.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25693.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26292.83 7697.17 16498.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 268
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16598.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 261
v891.29 24590.53 24393.57 26094.15 32288.12 24697.34 14397.06 21188.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
baseline192.82 18191.90 18995.55 15397.20 15090.77 15897.19 16294.58 34092.20 13592.36 18396.34 19184.16 16998.21 23389.20 22383.90 34897.68 192
v7n90.76 26589.86 27093.45 26593.54 34087.60 25997.70 10297.37 18588.85 24387.65 30894.08 30581.08 22698.10 24684.68 30083.79 34994.66 331
VPNet92.23 20391.31 20994.99 17895.56 24790.96 14897.22 16097.86 11592.96 11490.96 22596.62 17875.06 30798.20 23491.90 16283.65 35095.80 259
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 261
v14890.99 25790.38 24692.81 28893.83 33285.80 29796.78 19496.68 24589.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
Baseline_NR-MVSNet91.20 24890.62 23892.95 28293.83 33288.03 24797.01 17695.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 266
PEN-MVS91.20 24890.44 24493.48 26394.49 31287.91 25297.76 9298.18 5791.29 16287.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36491.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
MIMVSNet184.93 34283.05 34490.56 34089.56 38384.84 31695.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
pm-mvs190.72 26889.65 28193.96 23894.29 32189.63 18997.79 9196.82 23689.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
DTE-MVSNet90.56 27289.75 27793.01 27993.95 32787.25 26497.64 11097.65 13990.74 18287.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27287.70 25795.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36595.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37296.61 21392.08 37790.66 18980.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33792.38 36782.57 33793.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
h-mvs3394.15 12293.52 13296.04 12497.81 11990.22 17597.62 11497.58 14995.19 2096.74 6697.45 12483.67 17599.61 6995.85 7579.73 36898.29 155
YYNet185.87 33784.23 34190.78 33892.38 36782.46 34093.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
pmmvs687.81 31786.19 32492.69 29291.32 37286.30 28997.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
AUN-MVS91.76 21790.75 23294.81 19097.00 16788.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 20990.83 18579.18 37197.36 207
hse-mvs293.45 15292.99 14894.81 19097.02 16588.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21295.85 7579.13 37297.35 209
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38866.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 33093.13 35383.33 33294.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
Patchmatch-RL test87.38 32086.24 32390.81 33588.74 38978.40 37888.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
lessismore_v090.45 34191.96 37079.09 37687.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38793.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
pmmvs-eth3d86.22 33284.45 33991.53 32088.34 39087.25 26494.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 38093.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
TDRefinement86.53 32784.76 33891.85 31082.23 40284.25 32096.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22684.60 30274.52 38292.97 359
TransMVSNet (Re)88.94 30387.56 30993.08 27894.35 31788.45 23597.73 9695.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37595.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34793.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33989.97 38082.40 34193.62 34997.37 18589.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38493.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37392.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33990.89 38096.62 25378.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
KD-MVS_2432*160084.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
PVSNet_082.17 1985.46 34083.64 34390.92 33295.27 26979.49 37190.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1430.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 960.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36975.56 368
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
save fliter98.91 4994.28 3897.02 17398.02 9495.35 16
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 142
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
MTGPAbinary98.08 74
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21898.08 251
patchmatchnet-post90.45 36782.65 20198.10 246
MTMP97.86 8082.03 406
gm-plane-assit93.22 35078.89 37784.82 33493.52 32598.64 19787.72 245
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 10097.56 12192.74 3099.59 74
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10497.55 12392.73 3199.58 77
agg_prior98.67 5893.79 5498.00 9895.68 11499.57 84
test_prior493.66 5796.42 224
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
旧先验295.94 25881.66 36597.34 4898.82 17692.26 152
新几何295.79 267
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
原ACMM295.67 272
testdata299.67 5685.96 285
segment_acmp92.89 27
testdata195.26 29593.10 106
plane_prior796.21 21789.98 182
plane_prior696.10 22890.00 17881.32 224
plane_prior496.64 171
plane_prior390.00 17894.46 5591.34 212
plane_prior297.74 9494.85 34
plane_prior196.14 225
n20.00 420
nn0.00 420
door-mid91.06 384
test1197.88 109
door91.13 383
HQP5-MVS89.33 206
HQP-NCC95.86 23496.65 20793.55 8290.14 237
ACMP_Plane95.86 23496.65 20793.55 8290.14 237
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 20995.78 261
HQP2-MVS80.95 227
NP-MVS95.99 23289.81 18795.87 213
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15782.47 20586.25 27698.38 150
Test By Simon88.73 95