This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32598.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1999.86 199.82 16
dcpmvs_298.08 6298.59 1496.56 24499.57 3390.34 33299.15 5098.38 19996.82 7399.29 3499.49 1795.78 4499.57 14498.94 2299.86 199.77 27
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 4399.86 199.85 10
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1698.87 6995.96 10898.60 8399.13 8296.05 3499.94 897.77 8199.86 199.77 27
iter_conf05_1198.04 6597.94 6798.34 10798.60 16096.38 13399.24 3098.57 15295.90 11198.99 5298.79 13492.97 11099.47 17098.58 3199.85 599.17 151
CHOSEN 280x42097.18 11797.18 10297.20 19198.81 13893.27 27795.78 37699.15 2895.25 14596.79 18098.11 20392.29 12199.07 21798.56 3499.85 599.25 134
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 10098.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5999.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2499.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast98.38 4798.13 5599.12 5099.75 397.86 6499.44 998.82 8194.46 19098.94 5599.20 6795.16 7199.74 11197.58 9699.85 599.77 27
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 6098.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8199.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
MVSMamba_PlusPlus98.31 5698.19 5498.67 7698.96 12297.36 8399.24 3098.57 15294.81 17198.99 5298.90 11895.22 6899.59 14099.15 1799.84 1199.07 169
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1199.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0598.16 6198.02 6398.59 8298.96 12297.07 9898.90 10098.57 15294.81 17197.84 12898.90 11895.22 6899.59 14099.15 1799.84 1199.12 157
HPM-MVScopyleft98.36 5098.10 5999.13 4899.74 797.82 6899.53 698.80 9394.63 18098.61 8298.97 10595.13 7399.77 10697.65 9199.83 1499.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7598.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4799.81 1599.70 53
IU-MVS99.71 1999.23 798.64 13795.28 14399.63 1898.35 5299.81 1599.83 13
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 11798.31 10199.10 8695.46 5299.93 2597.57 9999.81 1599.74 37
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8598.58 15097.62 2499.45 2599.46 2497.42 999.94 898.47 4399.81 1599.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8598.88 6299.94 898.47 4399.81 1599.84 12
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9198.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 6499.81 1599.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2498.81 8696.24 9898.35 9899.23 6295.46 5299.94 897.42 10799.81 1599.77 27
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 11099.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2299.89 5
test_fmvsmconf_n98.92 798.87 699.04 5598.88 13097.25 9198.82 12799.34 1098.75 399.80 599.61 495.16 7199.95 799.70 699.80 2299.93 1
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13999.94 898.53 3599.80 2299.86 8
No_MVS99.62 699.17 9499.08 1198.63 13999.94 898.53 3599.80 2299.86 8
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4799.80 2299.83 13
MP-MVS-pluss98.31 5697.92 6899.49 1299.72 1298.88 1898.43 20398.78 10094.10 19997.69 14099.42 2995.25 6599.92 3198.09 6399.80 2299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23897.15 9698.84 12398.97 4298.75 399.43 2799.54 893.29 10699.93 2599.64 999.79 2899.89 5
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 10098.74 10897.27 4998.02 11499.39 3294.81 8099.96 497.91 7299.79 2899.77 27
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10298.94 5599.17 7495.91 4099.94 897.55 10099.79 2899.78 21
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10598.93 5999.19 7295.70 4699.94 897.62 9399.79 2899.78 21
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10598.94 5599.17 7496.06 3399.92 3197.62 9399.78 3299.75 35
MP-MVScopyleft98.33 5598.01 6499.28 3299.75 398.18 5199.22 3798.79 9896.13 10397.92 12599.23 6294.54 8399.94 896.74 14099.78 3299.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8299.49 595.43 13399.03 4799.32 4995.56 4999.94 896.80 13799.77 3499.78 21
APD-MVScopyleft98.35 5298.00 6599.42 1699.51 3998.72 2198.80 13698.82 8194.52 18799.23 3799.25 6195.54 5199.80 8896.52 14499.77 3499.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
114514_t96.93 12896.27 14398.92 6499.50 4197.63 7298.85 11998.90 5784.80 38397.77 13199.11 8492.84 11199.66 12894.85 19799.77 3499.47 100
CPTT-MVS97.72 7997.32 9598.92 6499.64 2897.10 9799.12 5698.81 8692.34 28698.09 10799.08 9493.01 10999.92 3196.06 15899.77 3499.75 35
DeepPCF-MVS96.37 297.93 7098.48 2396.30 26999.00 11489.54 34497.43 30798.87 6998.16 1199.26 3699.38 3796.12 3299.64 13198.30 5499.77 3499.72 45
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6199.28 5495.27 6399.82 7697.55 10099.77 3499.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mamv497.13 12098.11 5794.17 34298.97 12183.70 38398.66 16898.71 11694.63 18097.83 12998.90 11896.25 2699.55 15499.27 1599.76 4099.27 129
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28598.89 5997.71 1998.33 9998.97 10594.97 7799.88 5698.42 4999.76 4099.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8497.91 26699.58 397.20 5398.33 9999.00 10395.99 3799.64 13198.05 6699.76 4099.69 56
PHI-MVS98.34 5398.06 6099.18 4299.15 10098.12 5799.04 6999.09 3193.32 24798.83 6699.10 8696.54 2199.83 6997.70 8899.76 4099.59 79
DeepC-MVS95.98 397.88 7197.58 7798.77 7199.25 8196.93 10398.83 12598.75 10696.96 6796.89 17499.50 1590.46 17099.87 5897.84 7899.76 4099.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 13098.96 9099.36 998.63 599.86 299.51 1395.91 4099.97 199.72 599.75 4598.94 181
bld_raw_dy_0_6497.09 12396.76 12598.08 13398.89 12896.54 12598.17 23798.52 16688.80 36295.67 21698.83 12893.32 10499.48 16798.86 2499.75 4598.21 232
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12798.81 8695.80 11699.16 4499.47 2095.37 5799.92 3197.89 7499.75 4599.79 19
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26199.58 397.14 5898.44 9399.01 10295.03 7699.62 13797.91 7299.75 4599.50 91
3Dnovator94.51 597.46 9796.93 11399.07 5397.78 23297.64 7199.35 1599.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4599.64 71
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10599.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 5099.90 3
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2298.88 6297.40 3698.46 8899.20 6795.90 4299.89 4797.85 7699.74 5099.78 21
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2298.88 6297.40 3698.46 8843.50 40895.90 4299.89 4797.85 7699.74 5099.78 21
OPU-MVS99.37 2099.24 8799.05 1499.02 7599.16 7797.81 399.37 18097.24 11299.73 5399.70 53
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6998.81 8695.12 15199.32 3399.39 3296.22 2799.84 6797.72 8499.73 5399.67 65
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5298.66 13296.84 7199.56 2099.31 5196.34 2599.70 11998.32 5399.73 5399.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 4399.72 5699.74 37
PC_three_145295.08 15699.60 1999.16 7797.86 298.47 28597.52 10399.72 5699.74 37
9.1498.06 6099.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3499.81 8197.00 11899.71 58
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 11095.32 37798.86 298.53 8699.44 2794.38 9099.94 899.86 199.70 5999.90 3
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6499.28 5496.47 2399.40 17698.52 4199.70 5999.47 100
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9697.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6199.91 2
test_vis1_n_192096.71 13796.84 11796.31 26899.11 10489.74 33999.05 6698.58 15098.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6199.27 129
CDPH-MVS97.94 6997.49 8499.28 3299.47 4798.44 3197.91 26698.67 12992.57 27898.77 6998.85 12595.93 3999.72 11395.56 17799.69 6199.68 61
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13297.51 3098.15 10298.83 12895.70 4699.92 3197.53 10299.67 6499.66 68
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 5098.81 8696.24 9899.20 3899.37 3895.30 6199.80 8897.73 8399.67 6499.72 45
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18596.15 14598.97 8599.15 2898.55 798.45 9199.55 694.26 9499.97 199.65 799.66 6698.57 215
test_cas_vis1_n_192097.38 10697.36 9397.45 17898.95 12493.25 27999.00 7998.53 16397.70 2099.77 799.35 4484.71 29299.85 6398.57 3299.66 6699.26 132
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7099.16 7797.05 1399.78 10198.06 6499.66 6699.69 56
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5798.80 9396.49 8899.17 4199.35 4495.34 5999.82 7697.72 8499.65 6999.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5798.80 9396.49 8899.17 4199.35 4495.29 6297.72 8499.65 6999.71 49
CANet98.05 6497.76 7198.90 6798.73 14297.27 8698.35 20898.78 10097.37 4197.72 13898.96 11091.53 14899.92 3198.79 2799.65 6999.51 89
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12798.30 21798.69 12197.21 5298.84 6499.36 4295.41 5499.78 10198.62 3099.65 6999.80 18
CSCG97.85 7497.74 7298.20 12199.67 2595.16 19599.22 3799.32 1193.04 26197.02 16798.92 11695.36 5899.91 3997.43 10699.64 7399.52 86
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6198.82 8196.58 8599.10 4699.32 4995.39 5599.82 7697.70 8899.63 7499.72 45
GST-MVS98.43 4398.12 5699.34 2399.72 1298.38 3599.09 6198.82 8195.71 12198.73 7399.06 9695.27 6399.93 2597.07 11799.63 7499.72 45
QAPM96.29 15495.40 17598.96 6297.85 22897.60 7499.23 3398.93 5089.76 34893.11 30699.02 9889.11 19899.93 2591.99 28699.62 7699.34 116
test_fmvsmconf0.01_n97.86 7297.54 8298.83 6995.48 35996.83 10898.95 9198.60 14298.58 698.93 5999.55 688.57 21299.91 3999.54 1199.61 7799.77 27
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12497.04 6398.52 8798.80 13296.78 1699.83 6997.93 7099.61 7799.74 37
test_prior297.80 28196.12 10497.89 12798.69 14595.96 3896.89 12799.60 79
jason97.32 10997.08 10698.06 13697.45 26395.59 17197.87 27497.91 27594.79 17398.55 8598.83 12891.12 15899.23 19397.58 9699.60 7999.34 116
jason: jason.
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2798.88 6297.52 2999.41 2898.78 13596.00 3699.79 9897.79 8099.59 8199.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVSFormer97.57 9397.49 8497.84 14798.07 20995.76 16899.47 798.40 19394.98 16198.79 6798.83 12892.34 11998.41 29896.91 12399.59 8199.34 116
lupinMVS97.44 10197.22 10098.12 13098.07 20995.76 16897.68 29097.76 28194.50 18898.79 6798.61 15192.34 11999.30 18697.58 9699.59 8199.31 122
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7598.97 10595.70 4699.83 6996.07 15599.58 84
test_fmvs196.42 14896.67 12995.66 29498.82 13788.53 36298.80 13698.20 22996.39 9499.64 1799.20 6780.35 33599.67 12699.04 2099.57 8598.78 194
test9_res96.39 14999.57 8599.69 56
train_agg97.97 6697.52 8399.33 2699.31 6498.50 2997.92 26498.73 11192.98 26397.74 13598.68 14696.20 2999.80 8896.59 14199.57 8599.68 61
agg_prior295.87 16599.57 8599.68 61
3Dnovator+94.38 697.43 10296.78 12199.38 1897.83 22998.52 2899.37 1298.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8599.71 49
LS3D97.16 11896.66 13098.68 7598.53 16697.19 9498.93 9698.90 5792.83 27095.99 20999.37 3892.12 12999.87 5893.67 23999.57 8598.97 177
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17497.45 3598.88 6299.14 8195.25 6599.15 20398.83 2699.56 9199.20 141
test1299.18 4299.16 9898.19 5098.53 16398.07 10895.13 7399.72 11399.56 9199.63 73
CHOSEN 1792x268897.12 12196.80 11898.08 13399.30 6894.56 22998.05 25199.71 193.57 23797.09 16198.91 11788.17 22299.89 4796.87 13299.56 9199.81 17
fmvsm_s_conf0.1_n98.18 6098.21 5198.11 13198.54 16595.24 19298.87 11499.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9499.21 140
EI-MVSNet-UG-set98.41 4598.34 3598.61 8099.45 5296.32 13898.28 22098.68 12497.17 5598.74 7199.37 3895.25 6599.79 9898.57 3299.54 9499.73 42
test22299.23 8897.17 9597.40 30898.66 13288.68 36398.05 10998.96 11094.14 9699.53 9699.61 75
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19198.85 11999.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9799.25 134
MG-MVS97.81 7597.60 7698.44 9999.12 10295.97 15497.75 28598.78 10096.89 7098.46 8899.22 6493.90 10099.68 12594.81 20099.52 9799.67 65
test_fmvs1_n95.90 17295.99 15495.63 29598.67 15288.32 36699.26 2798.22 22696.40 9399.67 1499.26 5773.91 37799.70 11999.02 2199.50 9998.87 185
EC-MVSNet98.21 5998.11 5798.49 9398.34 18297.26 9099.61 598.43 18996.78 7498.87 6398.84 12693.72 10199.01 22798.91 2399.50 9999.19 145
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 18097.17 5598.94 5599.10 8695.73 4599.13 20698.71 2899.49 10199.09 161
UGNet96.78 13596.30 14298.19 12398.24 19195.89 16498.88 11098.93 5097.39 3896.81 17897.84 22782.60 31999.90 4596.53 14399.49 10198.79 191
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS97.41 10497.25 9797.91 14498.70 14796.80 10998.82 12798.69 12194.53 18598.11 10598.28 18894.50 8799.57 14494.12 22499.49 10197.37 258
新几何199.16 4599.34 5798.01 6198.69 12190.06 34398.13 10498.95 11294.60 8299.89 4791.97 28899.47 10499.59 79
旧先验199.29 7397.48 7898.70 12099.09 9295.56 4999.47 10499.61 75
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28497.32 8499.21 4098.97 4289.96 34491.14 34299.05 9786.64 25499.92 3193.38 24599.47 10497.73 245
原ACMM198.65 7899.32 6296.62 11698.67 12993.27 25197.81 13098.97 10595.18 7099.83 6993.84 23399.46 10799.50 91
testdata98.26 11599.20 9295.36 18498.68 12491.89 30098.60 8399.10 8694.44 8999.82 7694.27 21999.44 10899.58 83
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18198.86 11799.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10999.49 96
DP-MVS Recon97.86 7297.46 8799.06 5499.53 3698.35 4298.33 21098.89 5992.62 27598.05 10998.94 11395.34 5999.65 12996.04 15999.42 11099.19 145
fmvsm_s_conf0.1_n_a98.08 6298.04 6298.21 11997.66 24495.39 18298.89 10599.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11199.35 115
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9198.93 11496.65 1999.83 6997.38 10999.41 11199.71 49
TAPA-MVS93.98 795.35 20494.56 21997.74 15899.13 10194.83 21498.33 21098.64 13786.62 37196.29 20198.61 15194.00 9999.29 18780.00 38599.41 11199.09 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_vis1_n95.47 19295.13 19296.49 25297.77 23390.41 33099.27 2698.11 24996.58 8599.66 1599.18 7367.00 39099.62 13799.21 1699.40 11499.44 107
PVSNet_Blended97.38 10697.12 10398.14 12499.25 8195.35 18697.28 32199.26 1593.13 25797.94 12298.21 19692.74 11399.81 8196.88 12999.40 11499.27 129
MS-PatchMatch93.84 29693.63 28294.46 33796.18 33489.45 34597.76 28498.27 21992.23 29192.13 33297.49 25779.50 33998.69 26589.75 32699.38 11695.25 363
CANet_DTU96.96 12796.55 13398.21 11998.17 20496.07 14897.98 25998.21 22797.24 5097.13 16098.93 11486.88 25199.91 3995.00 19499.37 11798.66 206
DPM-MVS97.55 9596.99 11099.23 3899.04 10998.55 2797.17 33198.35 20494.85 17097.93 12498.58 15695.07 7599.71 11892.60 26799.34 11899.43 109
MVP-Stereo94.28 27593.92 25995.35 30694.95 36992.60 29197.97 26097.65 28691.61 30890.68 34797.09 28786.32 26198.42 29189.70 32899.34 11895.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA97.45 10097.03 10898.73 7299.05 10897.44 8298.07 24998.53 16395.32 14196.80 17998.53 16193.32 10499.72 11394.31 21899.31 12099.02 172
AdaColmapbinary97.15 11996.70 12698.48 9499.16 9896.69 11598.01 25598.89 5994.44 19196.83 17598.68 14690.69 16799.76 10794.36 21499.29 12198.98 176
Vis-MVSNetpermissive97.42 10397.11 10498.34 10798.66 15396.23 14199.22 3799.00 3996.63 8498.04 11199.21 6588.05 22899.35 18196.01 16199.21 12299.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS97.75 7797.58 7798.27 11298.38 17496.44 12999.01 7798.60 14295.88 11397.26 15697.53 25694.97 7799.33 18397.38 10999.20 12399.05 170
EPNet97.28 11096.87 11698.51 9094.98 36896.14 14698.90 10097.02 34098.28 1095.99 20999.11 8491.36 15099.89 4796.98 11999.19 12499.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ97.73 7897.77 7097.62 17198.68 15195.58 17297.34 31698.51 16997.29 4498.66 7997.88 22394.51 8499.90 4597.87 7599.17 12597.39 256
PVSNet_Blended_VisFu97.70 8197.46 8798.44 9999.27 7895.91 16298.63 17499.16 2794.48 18997.67 14198.88 12292.80 11299.91 3997.11 11599.12 12699.50 91
BH-RMVSNet95.92 17195.32 18497.69 16398.32 18894.64 22198.19 23197.45 31294.56 18396.03 20798.61 15185.02 28399.12 20890.68 31299.06 12799.30 125
test250694.44 26493.91 26196.04 27799.02 11188.99 35499.06 6479.47 41396.96 6798.36 9699.26 5777.21 35899.52 15996.78 13899.04 12899.59 79
test111195.94 16995.78 16096.41 26198.99 11890.12 33499.04 6992.45 39996.99 6698.03 11299.27 5681.40 32499.48 16796.87 13299.04 12899.63 73
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32099.03 7291.80 40096.96 6798.10 10699.26 5781.31 32599.51 16096.90 12699.04 12899.59 79
mvsmamba97.25 11296.99 11098.02 13898.34 18295.54 17699.18 4797.47 30795.04 15798.15 10298.57 15989.46 18799.31 18597.68 9099.01 13199.22 138
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 29996.08 36998.68 12493.69 22897.75 13497.80 23388.86 20799.69 12494.26 22099.01 13199.15 153
PatchMatch-RL96.59 14196.03 15298.27 11299.31 6496.51 12697.91 26699.06 3493.72 22496.92 17298.06 20688.50 21799.65 12991.77 29299.00 13398.66 206
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15896.77 11195.48 38098.20 22984.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13498.68 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS96.91 12996.40 13998.45 9798.69 15096.90 10598.66 16898.68 12492.40 28597.07 16497.96 21691.54 14799.75 10993.68 23798.92 13598.69 201
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
F-COLMAP97.09 12396.80 11897.97 14199.45 5294.95 20898.55 18798.62 14193.02 26296.17 20498.58 15694.01 9899.81 8193.95 22998.90 13699.14 155
ETV-MVS97.96 6797.81 6998.40 10498.42 17197.27 8698.73 15198.55 15996.84 7198.38 9597.44 26295.39 5599.35 18197.62 9398.89 13798.58 214
DP-MVS96.59 14195.93 15698.57 8399.34 5796.19 14498.70 16098.39 19589.45 35494.52 24099.35 4491.85 13799.85 6392.89 26398.88 13899.68 61
OMC-MVS97.55 9597.34 9498.20 12199.33 5995.92 16198.28 22098.59 14595.52 12997.97 11999.10 8693.28 10799.49 16295.09 19198.88 13899.19 145
PAPM_NR97.46 9797.11 10498.50 9199.50 4196.41 13298.63 17498.60 14295.18 14897.06 16598.06 20694.26 9499.57 14493.80 23598.87 14099.52 86
ACMMPcopyleft98.23 5897.95 6699.09 5299.74 797.62 7399.03 7299.41 695.98 10797.60 14999.36 4294.45 8899.93 2597.14 11498.85 14199.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.96 6797.62 7598.98 5998.86 13397.47 8098.89 10599.08 3296.67 8298.72 7499.54 893.15 10899.81 8194.87 19698.83 14299.65 69
MSDG95.93 17095.30 18697.83 14898.90 12795.36 18496.83 35698.37 20191.32 31894.43 24798.73 14390.27 17499.60 13990.05 32198.82 14398.52 216
EPNet_dtu95.21 21294.95 20395.99 27996.17 33590.45 32998.16 23897.27 32396.77 7593.14 30598.33 18490.34 17298.42 29185.57 36398.81 14499.09 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft95.07 497.20 11696.78 12198.44 9999.29 7396.31 14098.14 23998.76 10492.41 28496.39 19998.31 18694.92 7999.78 10194.06 22798.77 14599.23 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
xiu_mvs_v1_base97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
xiu_mvs_v1_base_debi97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24982.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14697.43 253
xiu_mvs_v2_base97.66 8597.70 7397.56 17598.61 15995.46 17997.44 30598.46 18197.15 5798.65 8098.15 20094.33 9199.80 8897.84 7898.66 15097.41 254
mvsany_test197.69 8297.70 7397.66 16998.24 19194.18 24497.53 30197.53 30195.52 12999.66 1599.51 1394.30 9299.56 14798.38 5098.62 15199.23 136
Vis-MVSNet (Re-imp)96.87 13196.55 13397.83 14898.73 14295.46 17999.20 4298.30 21694.96 16396.60 18798.87 12390.05 17698.59 27593.67 23998.60 15299.46 104
IS-MVSNet97.22 11396.88 11598.25 11698.85 13596.36 13699.19 4497.97 26995.39 13597.23 15798.99 10491.11 15998.93 23994.60 20798.59 15399.47 100
PAPR96.84 13396.24 14598.65 7898.72 14696.92 10497.36 31498.57 15293.33 24696.67 18297.57 25394.30 9299.56 14791.05 30798.59 15399.47 100
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9198.11 24498.29 21897.19 5498.99 5299.02 9896.22 2799.67 12698.52 4198.56 15599.51 89
diffmvspermissive97.58 9297.40 9198.13 12798.32 18895.81 16798.06 25098.37 20196.20 10098.74 7198.89 12191.31 15499.25 19098.16 6098.52 15699.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned95.95 16795.72 16396.65 23098.55 16492.26 29498.23 22497.79 28093.73 22294.62 23798.01 21188.97 20599.00 22893.04 25698.51 15798.68 202
test-LLR95.10 21894.87 20795.80 28996.77 30789.70 34096.91 34695.21 37895.11 15294.83 23395.72 35887.71 23598.97 22993.06 25498.50 15898.72 197
TESTMET0.1,194.18 28293.69 28095.63 29596.92 29889.12 35096.91 34694.78 38393.17 25494.88 23096.45 33378.52 34598.92 24093.09 25398.50 15898.85 186
test-mter94.08 29093.51 28895.80 28996.77 30789.70 34096.91 34695.21 37892.89 26794.83 23395.72 35877.69 35398.97 22993.06 25498.50 15898.72 197
131496.25 15895.73 16297.79 15297.13 28795.55 17598.19 23198.59 14593.47 24192.03 33497.82 23191.33 15299.49 16294.62 20698.44 16198.32 227
LCM-MVSNet-Re95.22 21195.32 18494.91 31898.18 20187.85 37298.75 14495.66 37495.11 15288.96 36096.85 31690.26 17597.65 35195.65 17598.44 16199.22 138
EPP-MVSNet97.46 9797.28 9697.99 14098.64 15695.38 18399.33 2098.31 21093.61 23697.19 15899.07 9594.05 9799.23 19396.89 12798.43 16399.37 114
casdiffmvs_mvgpermissive97.72 7997.48 8698.44 9998.42 17196.59 12198.92 9898.44 18596.20 10097.76 13299.20 6791.66 14299.23 19398.27 5898.41 16499.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive97.63 8797.41 9098.28 11198.33 18596.14 14698.82 12798.32 20896.38 9597.95 12099.21 6591.23 15699.23 19398.12 6198.37 16599.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PatchmatchNetpermissive95.71 18195.52 17396.29 27097.58 24990.72 32496.84 35597.52 30294.06 20097.08 16296.96 30789.24 19498.90 24592.03 28598.37 16599.26 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS94.67 24593.54 28798.08 13396.88 30296.56 12398.19 23198.50 17478.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16798.04 236
FE-MVS95.62 18794.90 20597.78 15398.37 17694.92 20997.17 33197.38 31890.95 32997.73 13797.70 23985.32 28099.63 13491.18 30098.33 16898.79 191
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 31095.09 19995.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16897.88 239
SCA95.46 19395.13 19296.46 25897.67 24291.29 31397.33 31797.60 29094.68 17796.92 17297.10 28383.97 30998.89 24692.59 26998.32 17099.20 141
baseline97.64 8697.44 8998.25 11698.35 17796.20 14299.00 7998.32 20896.33 9798.03 11299.17 7491.35 15199.16 20098.10 6298.29 17199.39 112
MVS_Test97.28 11097.00 10998.13 12798.33 18595.97 15498.74 14798.07 25994.27 19598.44 9398.07 20592.48 11699.26 18996.43 14798.19 17299.16 152
sss97.39 10596.98 11298.61 8098.60 16096.61 11898.22 22598.93 5093.97 20798.01 11798.48 16691.98 13499.85 6396.45 14698.15 17399.39 112
Patchmatch-test94.42 26593.68 28196.63 23497.60 24891.76 30394.83 38697.49 30689.45 35494.14 26397.10 28388.99 20198.83 25585.37 36698.13 17499.29 127
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28098.58 18098.11 24989.92 34593.57 28699.10 8686.37 26099.79 9890.78 31098.10 17597.09 263
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE96.58 14396.07 14998.10 13298.35 17795.89 16499.34 1698.12 24693.12 25896.09 20598.87 12389.71 18298.97 22992.95 25998.08 17699.43 109
FA-MVS(test-final)96.41 15195.94 15597.82 15098.21 19595.20 19497.80 28197.58 29193.21 25297.36 15497.70 23989.47 18699.56 14794.12 22497.99 17798.71 200
Effi-MVS+-dtu96.29 15496.56 13295.51 29997.89 22790.22 33398.80 13698.10 25296.57 8796.45 19796.66 32490.81 16398.91 24295.72 17197.99 17797.40 255
Fast-Effi-MVS+96.28 15695.70 16898.03 13798.29 19095.97 15498.58 18098.25 22491.74 30395.29 22497.23 27791.03 16299.15 20392.90 26197.96 17998.97 177
mvs_anonymous96.70 13896.53 13597.18 19498.19 19993.78 25398.31 21598.19 23194.01 20494.47 24298.27 19192.08 13298.46 28697.39 10897.91 18099.31 122
PMMVS96.60 14096.33 14197.41 18297.90 22693.93 24997.35 31598.41 19192.84 26997.76 13297.45 26191.10 16099.20 19796.26 15197.91 18099.11 159
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28198.59 17898.18 23491.36 31493.52 28898.77 13784.67 29399.72 11389.70 32897.87 18298.02 237
TestCases96.99 20699.25 8193.21 28198.18 23491.36 31493.52 28898.77 13784.67 29399.72 11389.70 32897.87 18298.02 237
TAMVS97.02 12596.79 12097.70 16298.06 21295.31 18998.52 18998.31 21093.95 20897.05 16698.61 15193.49 10398.52 28095.33 18397.81 18499.29 127
Effi-MVS+97.12 12196.69 12798.39 10598.19 19996.72 11497.37 31298.43 18993.71 22597.65 14598.02 20992.20 12799.25 19096.87 13297.79 18599.19 145
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28497.74 23791.74 30598.69 16298.15 24295.56 12794.92 22997.68 24488.98 20498.79 25993.19 25197.78 18697.20 262
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 35992.65 31895.73 35685.01 28495.76 38486.24 35897.76 18798.59 212
CDS-MVSNet96.99 12696.69 12797.90 14598.05 21395.98 14998.20 22898.33 20793.67 23296.95 16898.49 16593.54 10298.42 29195.24 18997.74 18899.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest051595.61 19094.89 20697.76 15698.15 20595.15 19796.77 35794.41 38692.95 26597.18 15997.43 26384.78 28999.45 17394.63 20497.73 18998.68 202
thisisatest053096.01 16495.36 18097.97 14198.38 17495.52 17798.88 11094.19 39094.04 20197.64 14698.31 18683.82 31499.46 17295.29 18697.70 19098.93 182
BH-w/o95.38 20095.08 19696.26 27198.34 18291.79 30297.70 28997.43 31492.87 26894.24 25897.22 27888.66 21098.84 25291.55 29697.70 19098.16 234
PAPM94.95 23094.00 25497.78 15397.04 29195.65 17096.03 37298.25 22491.23 32394.19 26197.80 23391.27 15598.86 25182.61 37997.61 19298.84 188
tttt051796.07 16295.51 17497.78 15398.41 17394.84 21299.28 2494.33 38894.26 19697.64 14698.64 15084.05 30799.47 17095.34 18297.60 19399.03 171
HyFIR lowres test96.90 13096.49 13698.14 12499.33 5995.56 17397.38 31099.65 292.34 28697.61 14898.20 19789.29 19299.10 21496.97 12097.60 19399.77 27
UWE-MVS94.30 27193.89 26495.53 29897.83 22988.95 35597.52 30393.25 39494.44 19196.63 18497.07 29078.70 34499.28 18891.99 28697.56 19598.36 224
CVMVSNet95.43 19696.04 15193.57 34697.93 22483.62 38498.12 24298.59 14595.68 12296.56 18899.02 9887.51 23997.51 35893.56 24397.44 19699.60 77
MDTV_nov1_ep1395.40 17597.48 25888.34 36596.85 35497.29 32193.74 22197.48 15397.26 27389.18 19599.05 21891.92 28997.43 197
baseline295.11 21794.52 22196.87 21796.65 31693.56 26298.27 22294.10 39293.45 24292.02 33597.43 26387.45 24399.19 19893.88 23297.41 19897.87 240
EPMVS94.99 22594.48 22396.52 25097.22 27891.75 30497.23 32391.66 40194.11 19897.28 15596.81 31885.70 27198.84 25293.04 25697.28 19998.97 177
LFMVS95.86 17494.98 20198.47 9598.87 13296.32 13898.84 12396.02 36793.40 24498.62 8199.20 6774.99 37199.63 13497.72 8497.20 20099.46 104
testing393.19 31092.48 31295.30 30898.07 20992.27 29398.64 17197.17 32893.94 21093.98 27197.04 29767.97 38796.01 38288.40 34497.14 20197.63 249
ADS-MVSNet294.58 25194.40 23195.11 31398.00 21588.74 35896.04 37097.30 32090.15 34196.47 19596.64 32787.89 23197.56 35690.08 31997.06 20299.02 172
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21591.91 30196.04 37097.74 28390.15 34196.47 19596.64 32787.89 23198.96 23390.08 31997.06 20299.02 172
Syy-MVS92.55 31892.61 30992.38 35997.39 26983.41 38597.91 26697.46 30893.16 25593.42 29495.37 36484.75 29096.12 38077.00 39396.99 20497.60 250
myMVS_eth3d92.73 31692.01 31894.89 32097.39 26990.94 31897.91 26697.46 30893.16 25593.42 29495.37 36468.09 38696.12 38088.34 34596.99 20497.60 250
GG-mvs-BLEND96.59 24096.34 32994.98 20596.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20496.74 294
cascas94.63 24793.86 26696.93 21296.91 30094.27 24096.00 37398.51 16985.55 38094.54 23996.23 33984.20 30598.87 24995.80 16896.98 20797.66 248
WB-MVSnew94.19 27994.04 24994.66 32996.82 30692.14 29597.86 27595.96 37093.50 23995.64 21796.77 32088.06 22797.99 33584.87 36896.86 20893.85 385
WTY-MVS97.37 10896.92 11498.72 7398.86 13396.89 10798.31 21598.71 11695.26 14497.67 14198.56 16092.21 12699.78 10195.89 16396.85 20999.48 98
VDD-MVS95.82 17795.23 18897.61 17298.84 13693.98 24898.68 16397.40 31695.02 15997.95 12099.34 4874.37 37699.78 10198.64 2996.80 21099.08 165
test_yl97.22 11396.78 12198.54 8798.73 14296.60 11998.45 19898.31 21094.70 17498.02 11498.42 17190.80 16499.70 11996.81 13596.79 21199.34 116
DCV-MVSNet97.22 11396.78 12198.54 8798.73 14296.60 11998.45 19898.31 21094.70 17498.02 11498.42 17190.80 16499.70 11996.81 13596.79 21199.34 116
PatchT93.06 31391.97 31996.35 26596.69 31392.67 29094.48 39297.08 33286.62 37197.08 16292.23 39287.94 23097.90 34178.89 38996.69 21398.49 218
VNet97.79 7697.40 9198.96 6298.88 13097.55 7598.63 17498.93 5096.74 7899.02 4898.84 12690.33 17399.83 6998.53 3596.66 21499.50 91
CR-MVSNet94.76 23994.15 24396.59 24097.00 29293.43 26894.96 38297.56 29492.46 27996.93 17096.24 33788.15 22397.88 34587.38 35296.65 21598.46 219
RPMNet92.81 31591.34 32497.24 18997.00 29293.43 26894.96 38298.80 9382.27 38996.93 17092.12 39386.98 24999.82 7676.32 39496.65 21598.46 219
VDDNet95.36 20394.53 22097.86 14698.10 20895.13 19898.85 11997.75 28290.46 33598.36 9699.39 3273.27 37999.64 13197.98 6796.58 21798.81 190
alignmvs97.56 9497.07 10799.01 5698.66 15398.37 4098.83 12598.06 26496.74 7898.00 11897.65 24590.80 16499.48 16798.37 5196.56 21899.19 145
HY-MVS93.96 896.82 13496.23 14698.57 8398.46 17097.00 10098.14 23998.21 22793.95 20896.72 18197.99 21391.58 14399.76 10794.51 21196.54 21998.95 180
1112_ss96.63 13996.00 15398.50 9198.56 16296.37 13598.18 23698.10 25292.92 26694.84 23198.43 16992.14 12899.58 14394.35 21596.51 22099.56 85
thres20095.25 20994.57 21897.28 18898.81 13894.92 20998.20 22897.11 33095.24 14796.54 19296.22 34184.58 29699.53 15687.93 35096.50 22197.39 256
Test_1112_low_res96.34 15395.66 17198.36 10698.56 16295.94 15797.71 28898.07 25992.10 29594.79 23597.29 27291.75 13999.56 14794.17 22296.50 22199.58 83
tpmrst95.63 18695.69 16995.44 30397.54 25488.54 36196.97 34197.56 29493.50 23997.52 15296.93 31189.49 18499.16 20095.25 18896.42 22398.64 208
ab-mvs96.42 14895.71 16698.55 8598.63 15796.75 11297.88 27398.74 10893.84 21496.54 19298.18 19985.34 27899.75 10995.93 16296.35 22499.15 153
thres600view795.49 19194.77 20997.67 16698.98 11995.02 20198.85 11996.90 34795.38 13696.63 18496.90 31284.29 29999.59 14088.65 34396.33 22598.40 221
RPSCF94.87 23495.40 17593.26 35298.89 12882.06 39098.33 21098.06 26490.30 34096.56 18899.26 5787.09 24699.49 16293.82 23496.32 22698.24 228
ETVMVS94.50 25893.44 29197.68 16598.18 20195.35 18698.19 23197.11 33093.73 22296.40 19895.39 36374.53 37398.84 25291.10 30296.31 22798.84 188
testing1195.00 22394.28 23497.16 19697.96 22193.36 27598.09 24797.06 33694.94 16695.33 22396.15 34376.89 36299.40 17695.77 17096.30 22898.72 197
thres100view90095.38 20094.70 21397.41 18298.98 11994.92 20998.87 11496.90 34795.38 13696.61 18696.88 31384.29 29999.56 14788.11 34696.29 22997.76 242
tfpn200view995.32 20794.62 21697.43 18098.94 12594.98 20598.68 16396.93 34595.33 13996.55 19096.53 33084.23 30399.56 14788.11 34696.29 22997.76 242
thres40095.38 20094.62 21697.65 17098.94 12594.98 20598.68 16396.93 34595.33 13996.55 19096.53 33084.23 30399.56 14788.11 34696.29 22998.40 221
sasdasda97.67 8397.23 9898.98 5998.70 14798.38 3599.34 1698.39 19596.76 7697.67 14197.40 26692.26 12299.49 16298.28 5596.28 23299.08 165
canonicalmvs97.67 8397.23 9898.98 5998.70 14798.38 3599.34 1698.39 19596.76 7697.67 14197.40 26692.26 12299.49 16298.28 5596.28 23299.08 165
XVG-OURS96.55 14496.41 13896.99 20698.75 14193.76 25497.50 30498.52 16695.67 12396.83 17599.30 5288.95 20699.53 15695.88 16496.26 23497.69 247
MGCFI-Net97.62 8897.19 10198.92 6498.66 15398.20 4999.32 2198.38 19996.69 8197.58 15097.42 26592.10 13099.50 16198.28 5596.25 23599.08 165
GA-MVS94.81 23694.03 25097.14 19797.15 28693.86 25196.76 35897.58 29194.00 20594.76 23697.04 29780.91 32998.48 28291.79 29196.25 23599.09 161
tpm294.19 27993.76 27595.46 30297.23 27789.04 35297.31 31996.85 35387.08 37096.21 20396.79 31983.75 31598.74 26292.43 27796.23 23798.59 212
MIMVSNet93.26 30792.21 31696.41 26197.73 23893.13 28395.65 37797.03 33891.27 32294.04 26896.06 34675.33 36997.19 36386.56 35696.23 23798.92 183
TR-MVS94.94 23294.20 23897.17 19597.75 23494.14 24597.59 29897.02 34092.28 29095.75 21597.64 24783.88 31198.96 23389.77 32596.15 23998.40 221
CostFormer94.95 23094.73 21295.60 29797.28 27489.06 35197.53 30196.89 34989.66 35096.82 17796.72 32286.05 26598.95 23895.53 17996.13 24098.79 191
tpmvs94.60 24894.36 23295.33 30797.46 26088.60 36096.88 35297.68 28491.29 32093.80 28096.42 33488.58 21199.24 19291.06 30596.04 24198.17 233
testing9194.98 22794.25 23697.20 19197.94 22293.41 27098.00 25797.58 29194.99 16095.45 21996.04 34777.20 35999.42 17594.97 19596.02 24298.78 194
testing9994.83 23594.08 24797.07 20397.94 22293.13 28398.10 24697.17 32894.86 16895.34 22096.00 35076.31 36599.40 17695.08 19295.90 24398.68 202
testing22294.12 28693.03 30097.37 18798.02 21494.66 21997.94 26396.65 36094.63 18095.78 21495.76 35371.49 38198.92 24091.17 30195.88 24498.52 216
tpm cat193.36 30292.80 30495.07 31597.58 24987.97 37096.76 35897.86 27782.17 39093.53 28796.04 34786.13 26399.13 20689.24 33695.87 24598.10 235
XVG-OURS-SEG-HR96.51 14596.34 14097.02 20598.77 14093.76 25497.79 28398.50 17495.45 13296.94 16999.09 9287.87 23399.55 15496.76 13995.83 24697.74 244
SDMVSNet96.85 13296.42 13798.14 12499.30 6896.38 13399.21 4099.23 2095.92 10995.96 21198.76 14185.88 26899.44 17497.93 7095.59 24798.60 210
sd_testset96.17 15995.76 16197.42 18199.30 6894.34 23898.82 12799.08 3295.92 10995.96 21198.76 14182.83 31899.32 18495.56 17795.59 24798.60 210
test_vis1_rt91.29 32890.65 32893.19 35497.45 26386.25 37898.57 18590.90 40493.30 24986.94 37393.59 38262.07 39699.11 21097.48 10595.58 24994.22 377
JIA-IIPM93.35 30392.49 31195.92 28396.48 32490.65 32695.01 38196.96 34385.93 37796.08 20687.33 39887.70 23798.78 26091.35 29895.58 24998.34 225
Anonymous20240521195.28 20894.49 22297.67 16699.00 11493.75 25698.70 16097.04 33790.66 33196.49 19498.80 13278.13 35099.83 6996.21 15495.36 25199.44 107
Anonymous2024052995.10 21894.22 23797.75 15799.01 11394.26 24198.87 11498.83 8085.79 37996.64 18398.97 10578.73 34399.85 6396.27 15094.89 25299.12 157
CLD-MVS95.62 18795.34 18196.46 25897.52 25793.75 25697.27 32298.46 18195.53 12894.42 24898.00 21286.21 26298.97 22996.25 15394.37 25396.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dp94.15 28393.90 26294.90 31997.31 27386.82 37796.97 34197.19 32791.22 32496.02 20896.61 32985.51 27499.02 22590.00 32394.30 25498.85 186
HQP_MVS96.14 16195.90 15796.85 21897.42 26594.60 22798.80 13698.56 15797.28 4595.34 22098.28 18887.09 24699.03 22296.07 15594.27 25596.92 272
plane_prior598.56 15799.03 22296.07 15594.27 25596.92 272
plane_prior94.60 22798.44 20196.74 7894.22 257
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22298.43 20398.39 19596.64 8395.02 22898.78 13585.15 28299.05 21895.21 19094.20 25896.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP3-MVS98.46 18194.18 259
HQP-MVS95.72 18095.40 17596.69 22897.20 28094.25 24298.05 25198.46 18196.43 9094.45 24397.73 23686.75 25298.96 23395.30 18494.18 25996.86 285
LPG-MVS_test95.62 18795.34 18196.47 25597.46 26093.54 26398.99 8298.54 16194.67 17894.36 25198.77 13785.39 27599.11 21095.71 17294.15 26196.76 292
LGP-MVS_train96.47 25597.46 26093.54 26398.54 16194.67 17894.36 25198.77 13785.39 27599.11 21095.71 17294.15 26196.76 292
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17899.47 798.40 19394.98 16194.58 23897.86 22489.16 19698.41 29896.91 12394.12 26396.88 281
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22299.14 5298.52 16695.74 11893.22 30098.36 17883.87 31298.65 27096.95 12294.04 26496.91 277
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16399.14 5298.41 19193.75 21993.16 30297.46 25987.50 24198.41 29895.63 17694.03 26596.50 331
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23399.00 7998.55 15995.73 12093.21 30198.38 17683.45 31698.63 27197.09 11694.00 26696.91 277
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24293.48 26798.73 15198.44 18594.94 16692.53 32298.53 16184.50 29899.14 20595.48 18194.00 26696.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 18495.38 17996.61 23797.61 24793.84 25298.91 9998.44 18595.25 14594.28 25598.47 16786.04 26799.12 20895.50 18093.95 26896.87 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28393.38 27398.74 14798.57 15291.21 32593.81 27998.58 15672.85 38098.77 26195.05 19393.93 26998.77 196
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29296.55 31991.65 30798.11 24498.44 18594.96 16394.22 25997.90 22079.18 34299.11 21094.05 22893.85 27096.48 334
EG-PatchMatch MVS91.13 33190.12 33494.17 34294.73 37489.00 35398.13 24197.81 27989.22 35885.32 38496.46 33267.71 38898.42 29187.89 35193.82 27195.08 368
test_fmvs293.43 30193.58 28492.95 35696.97 29583.91 38299.19 4497.24 32595.74 11895.20 22598.27 19169.65 38398.72 26496.26 15193.73 27296.24 344
testgi93.06 31392.45 31394.88 32196.43 32689.90 33698.75 14497.54 30095.60 12591.63 33997.91 21974.46 37597.02 36586.10 35993.67 27397.72 246
test0.0.03 194.08 29093.51 28895.80 28995.53 35792.89 28997.38 31095.97 36995.11 15292.51 32496.66 32487.71 23596.94 36787.03 35493.67 27397.57 252
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20480.97 39181.57 39097.75 23574.75 37298.61 27289.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMMP++93.61 276
D2MVS95.18 21495.08 19695.48 30097.10 28992.07 29898.30 21799.13 3094.02 20392.90 31096.73 32189.48 18598.73 26394.48 21293.60 27795.65 359
EI-MVSNet95.96 16695.83 15996.36 26497.93 22493.70 26098.12 24298.27 21993.70 22795.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 286
MVSTER96.06 16395.72 16397.08 20298.23 19395.93 16098.73 15198.27 21994.86 16895.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 289
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 20099.16 4998.50 17495.87 11493.84 27898.34 18394.51 8498.61 27296.88 12993.45 28097.06 264
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26894.42 23398.52 18998.59 14591.69 30691.21 34198.35 17984.87 28699.04 22191.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF95.44 30397.42 26591.32 31297.50 30495.09 15593.59 28498.35 17981.70 32298.88 24889.71 32793.39 28296.12 348
PVSNet_BlendedMVS96.73 13696.60 13197.12 19999.25 8195.35 18698.26 22399.26 1594.28 19497.94 12297.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
ACMH92.88 1694.55 25293.95 25896.34 26697.63 24693.26 27898.81 13598.49 17993.43 24389.74 35498.53 16181.91 32199.08 21693.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34697.91 26696.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
USDC93.33 30592.71 30695.21 30996.83 30590.83 32296.91 34697.50 30493.84 21490.72 34698.14 20177.69 35398.82 25689.51 33293.21 28695.97 352
ACMMP++_ref92.97 287
test_040291.32 32790.27 33394.48 33596.60 31791.12 31598.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
tt080594.54 25393.85 26796.63 23497.98 21993.06 28798.77 14397.84 27893.67 23293.80 28098.04 20876.88 36398.96 23394.79 20192.86 28997.86 241
dmvs_re94.48 26194.18 24195.37 30597.68 24190.11 33598.54 18897.08 33294.56 18394.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 228
FIs96.51 14596.12 14897.67 16697.13 28797.54 7699.36 1399.22 2395.89 11294.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 266
FC-MVSNet-test96.42 14896.05 15097.53 17696.95 29697.27 8699.36 1399.23 2095.83 11593.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 267
TinyColmap92.31 32191.53 32294.65 33096.92 29889.75 33896.92 34496.68 35790.45 33689.62 35597.85 22676.06 36798.81 25786.74 35592.51 29395.41 361
ACMH+92.99 1494.30 27193.77 27395.88 28797.81 23192.04 30098.71 15698.37 20193.99 20690.60 34898.47 16780.86 33199.05 21892.75 26592.40 29496.55 320
GBi-Net94.49 25993.80 27096.56 24498.21 19595.00 20298.82 12798.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19595.00 20298.82 12798.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet394.97 22994.26 23597.11 20098.18 20196.62 11698.56 18698.26 22393.67 23294.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
FMVSNet294.47 26293.61 28397.04 20498.21 19596.43 13098.79 14198.27 21992.46 27993.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
LF4IMVS93.14 31292.79 30594.20 34095.88 34788.67 35997.66 29297.07 33493.81 21791.71 33797.65 24577.96 35298.81 25791.47 29791.92 29995.12 366
OurMVSNet-221017-094.21 27794.00 25494.85 32295.60 35489.22 34998.89 10597.43 31495.29 14292.18 33198.52 16482.86 31798.59 27593.46 24491.76 30096.74 294
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34397.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15797.40 30897.67 28590.42 33793.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
tpm94.13 28493.80 27095.12 31296.50 32287.91 37197.44 30595.89 37392.62 27596.37 20096.30 33684.13 30698.30 31193.24 24991.66 30399.14 155
our_test_393.65 29993.30 29594.69 32795.45 36189.68 34296.91 34697.65 28691.97 29891.66 33896.88 31389.67 18397.93 34088.02 34991.49 30496.48 334
IterMVS94.09 28993.85 26794.80 32597.99 21790.35 33197.18 32998.12 24693.68 23092.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 28793.87 26594.85 32297.98 21990.56 32897.18 32998.11 24993.75 21992.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
FMVSNet193.19 31092.07 31796.56 24497.54 25495.00 20298.82 12798.18 23490.38 33892.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
XXY-MVS95.20 21394.45 22797.46 17796.75 31096.56 12398.86 11798.65 13693.30 24993.27 29998.27 19184.85 28798.87 24994.82 19991.26 30896.96 269
cl2294.68 24294.19 23996.13 27598.11 20793.60 26196.94 34398.31 21092.43 28393.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
miper_ehance_all_eth95.01 22294.69 21495.97 28197.70 24093.31 27697.02 33998.07 25992.23 29193.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
miper_enhance_ethall95.10 21894.75 21196.12 27697.53 25693.73 25896.61 36398.08 25792.20 29493.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
pmmvs593.65 29992.97 30295.68 29395.49 35892.37 29298.20 22897.28 32289.66 35092.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17398.22 19496.20 14297.31 31995.37 37694.53 18579.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 172
SixPastTwentyTwo93.34 30492.86 30394.75 32695.67 35289.41 34798.75 14496.67 35893.89 21190.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
ppachtmachnet_test93.22 30892.63 30894.97 31795.45 36190.84 32196.88 35297.88 27690.60 33292.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
DIV-MVS_self_test94.52 25694.03 25095.99 27997.57 25393.38 27397.05 33797.94 27291.74 30392.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
cl____94.51 25794.01 25396.02 27897.58 24993.40 27297.05 33797.96 27191.73 30592.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
IterMVS-LS95.46 19395.21 18996.22 27298.12 20693.72 25998.32 21498.13 24593.71 22594.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry93.22 30892.35 31495.84 28896.77 30793.09 28694.66 38997.56 29487.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24694.69 17692.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 268
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37498.58 18097.26 32490.48 33490.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
eth_miper_zixun_eth94.68 24294.41 23095.47 30197.64 24591.71 30696.73 36098.07 25992.71 27393.64 28397.21 27990.54 16998.17 32093.38 24589.76 32496.54 321
FMVSNet591.81 32390.92 32694.49 33497.21 27992.09 29798.00 25797.55 29989.31 35790.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
miper_lstm_enhance94.33 26994.07 24895.11 31397.75 23490.97 31797.22 32498.03 26691.67 30792.76 31496.97 30590.03 17797.78 34892.51 27489.64 32696.56 318
v119294.32 27093.58 28496.53 24996.10 33894.45 23198.50 19498.17 23991.54 30994.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
v114494.59 25093.92 25996.60 23996.21 33294.78 21898.59 17898.14 24491.86 30294.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36398.94 9497.56 29488.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
VPA-MVSNet95.75 17995.11 19597.69 16397.24 27697.27 8698.94 9499.23 2095.13 15095.51 21897.32 27085.73 27098.91 24297.33 11189.55 32996.89 280
v124094.06 29293.29 29696.34 26696.03 34293.90 25098.44 20198.17 23991.18 32694.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
K. test v392.55 31891.91 32194.48 33595.64 35389.24 34899.07 6394.88 38294.04 20186.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
v192192094.20 27893.47 29096.40 26395.98 34394.08 24698.52 18998.15 24291.33 31794.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36696.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
c3_l94.79 23794.43 22995.89 28697.75 23493.12 28597.16 33398.03 26692.23 29193.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
v14419294.39 26793.70 27996.48 25496.06 34094.35 23798.58 18098.16 24191.45 31194.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
nrg03096.28 15695.72 16397.96 14396.90 30198.15 5499.39 1098.31 21095.47 13194.42 24898.35 17992.09 13198.69 26597.50 10489.05 33797.04 265
DeepMVS_CXcopyleft86.78 37297.09 29072.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390
tfpnnormal93.66 29792.70 30796.55 24896.94 29795.94 15798.97 8599.19 2491.04 32791.38 34097.34 26884.94 28598.61 27285.45 36589.02 33995.11 367
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23999.01 7798.88 6286.43 37392.81 31297.57 25381.66 32398.68 26894.83 19889.02 33996.88 281
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21798.67 16698.08 25792.72 27294.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
V4294.78 23894.14 24496.70 22796.33 33095.22 19398.97 8598.09 25692.32 28894.31 25497.06 29488.39 21898.55 27792.90 26188.87 34196.34 340
WR-MVS95.15 21594.46 22597.22 19096.67 31596.45 12898.21 22698.81 8694.15 19793.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 279
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
v1094.29 27393.55 28696.51 25196.39 32794.80 21698.99 8298.19 23191.35 31693.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
CP-MVSNet94.94 23294.30 23396.83 21996.72 31295.56 17399.11 5798.95 4693.89 21192.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 288
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31698.01 25597.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
PS-CasMVS94.67 24593.99 25696.71 22596.68 31495.26 19099.13 5599.03 3793.68 23092.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 289
WR-MVS_H95.05 22194.46 22596.81 22196.86 30395.82 16699.24 3099.24 1793.87 21392.53 32296.84 31790.37 17198.24 31793.24 24987.93 34996.38 339
v894.47 26293.77 27396.57 24396.36 32894.83 21499.05 6698.19 23191.92 29993.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
v7n94.19 27993.43 29296.47 25595.90 34694.38 23699.26 2798.34 20691.99 29792.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
UniMVSNet (Re)95.78 17895.19 19097.58 17396.99 29497.47 8098.79 14199.18 2595.60 12593.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 289
baseline195.84 17595.12 19498.01 13998.49 16995.98 14998.73 15197.03 33895.37 13896.22 20298.19 19889.96 17899.16 20094.60 20787.48 35398.90 184
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet94.98 22794.16 24297.44 17996.53 32097.22 9398.74 14798.95 4694.96 16389.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 272
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 25985.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
VPNet94.99 22594.19 23997.40 18497.16 28596.57 12298.71 15698.97 4295.67 12394.84 23198.24 19580.36 33498.67 26996.46 14587.32 35796.96 269
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18496.84 30496.97 10198.74 14799.24 1795.16 14993.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 272
DU-MVS95.42 19794.76 21097.40 18496.53 32096.97 10198.66 16898.99 4195.43 13393.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 272
v14894.29 27393.76 27595.91 28496.10 33892.93 28898.58 18097.97 26992.59 27793.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
Baseline_NR-MVSNet94.35 26893.81 26995.96 28296.20 33394.05 24798.61 17796.67 35891.44 31293.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21299.17 4899.00 3993.51 23892.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13699.03 7299.03 3795.04 15793.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 271
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32894.83 37190.78 32397.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
YYNet190.70 33689.39 33994.62 33194.79 37390.65 32697.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32495.21 36591.34 31197.64 29497.51 30388.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
test20.0390.89 33490.38 33292.43 35893.48 38388.14 36998.33 21097.56 29493.40 24487.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
DTE-MVSNet93.98 29493.26 29796.14 27496.06 34094.39 23599.20 4298.86 7593.06 26091.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19598.95 9198.03 26692.32 28891.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
lessismore_v094.45 33894.93 37088.44 36491.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6696.61 36192.79 27188.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
pmmvs691.77 32490.63 32995.17 31194.69 37591.24 31498.67 16697.92 27486.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28796.33 36589.41 35685.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 28095.49 37593.81 21787.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25993.41 27097.09 33695.99 36893.32 24792.47 32595.73 35678.06 35199.53 15694.59 20982.98 37698.62 209
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38092.81 39695.93 37291.87 30187.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32186.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
pmmvs-eth3d90.36 33889.05 34394.32 33991.10 39392.12 29697.63 29796.95 34488.86 36184.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
h-mvs3396.17 15995.62 17297.81 15199.03 11094.45 23198.64 17198.75 10697.48 3298.67 7598.72 14489.76 18099.86 6297.95 6881.59 38199.11 159
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
TransMVSNet (Re)92.67 31791.51 32396.15 27396.58 31894.65 22098.90 10096.73 35490.86 33089.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
AUN-MVS94.53 25593.73 27796.92 21598.50 16793.52 26698.34 20998.10 25293.83 21695.94 21397.98 21585.59 27399.03 22294.35 21580.94 38598.22 230
hse-mvs295.71 18195.30 18696.93 21298.50 16793.53 26598.36 20798.10 25297.48 3298.67 7597.99 21389.76 18099.02 22597.95 6880.91 38698.22 230
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35281.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24896.30 36689.04 36081.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34194.08 37889.83 33797.13 33598.67 12993.69 22885.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
TDRefinement91.06 33289.68 33795.21 30985.35 40691.49 31098.51 19397.07 33491.47 31088.83 36497.84 22777.31 35799.09 21592.79 26477.98 39495.04 369
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 37997.16 33397.33 31989.47 35383.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35697.95 26197.94 27290.35 33990.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37696.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36896.51 36698.07 25990.49 33390.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35794.92 38498.30 21684.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
PVSNet_088.72 1991.28 32990.03 33595.00 31697.99 21787.29 37594.84 38598.50 17492.06 29689.86 35395.19 36679.81 33899.39 17992.27 27869.79 40198.33 226
KD-MVS_2432*160089.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28889.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28889.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1450.00 4140.00 41598.61 15190.60 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 840.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.94 31888.66 342
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
test072699.72 1299.25 299.06 6498.88 6297.62 2499.56 2099.50 1597.42 9
GSMVS99.20 141
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18899.20 141
sam_mvs88.99 201
MTGPAbinary98.74 108
test_post196.68 36130.43 41287.85 23498.69 26592.59 269
test_post31.83 41188.83 20898.91 242
patchmatchnet-post95.10 36889.42 18998.89 246
MTMP98.89 10594.14 391
gm-plane-assit95.88 34787.47 37389.74 34996.94 31099.19 19893.32 248
TEST999.31 6498.50 2997.92 26498.73 11192.63 27497.74 13598.68 14696.20 2999.80 88
test_899.29 7398.44 3197.89 27298.72 11392.98 26397.70 13998.66 14996.20 2999.80 88
agg_prior99.30 6898.38 3598.72 11397.57 15199.81 81
test_prior498.01 6197.86 275
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
旧先验297.57 30091.30 31998.67 7599.80 8895.70 174
新几何297.64 294
无先验97.58 29998.72 11391.38 31399.87 5893.36 24799.60 77
原ACMM297.67 291
testdata299.89 4791.65 295
segment_acmp96.85 14
testdata197.32 31896.34 96
plane_prior797.42 26594.63 222
plane_prior697.35 27294.61 22587.09 246
plane_prior498.28 188
plane_prior394.61 22597.02 6495.34 220
plane_prior298.80 13697.28 45
plane_prior197.37 271
n20.00 420
nn0.00 420
door-mid94.37 387
test1198.66 132
door94.64 385
HQP5-MVS94.25 242
HQP-NCC97.20 28098.05 25196.43 9094.45 243
ACMP_Plane97.20 28098.05 25196.43 9094.45 243
BP-MVS95.30 184
HQP4-MVS94.45 24398.96 23396.87 283
HQP2-MVS86.75 252
NP-MVS97.28 27494.51 23097.73 236
MDTV_nov1_ep13_2view84.26 38196.89 35190.97 32897.90 12689.89 17993.91 23199.18 150
Test By Simon94.64 81