This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 7098.75 5599.99 499.97 199.96 1499.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7998.75 5599.99 499.97 199.97 899.94 11
MM99.40 5299.28 5999.74 6199.67 11499.31 11199.52 14898.87 34499.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 899.94 11
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 22099.37 10399.58 11099.62 4199.41 999.87 2799.92 1598.81 44100.00 199.97 199.93 2799.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 11099.69 1899.43 799.98 699.91 2298.62 70100.00 199.97 199.95 2099.90 17
MVS_030499.42 4499.32 4399.72 6599.70 10299.27 11899.52 14897.57 39099.51 299.82 3999.78 12498.09 10199.96 3099.97 199.97 899.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1799.92 1598.62 7099.99 499.96 799.99 199.96 7
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1596.60 15199.96 3099.95 899.96 1499.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20299.65 5799.50 16399.61 4899.45 599.87 2799.92 1597.31 12699.97 2199.95 899.99 199.97 4
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1597.35 12599.96 3099.94 1099.92 2999.95 9
test_fmvsmconf0.01_n99.22 8099.03 9299.79 4998.42 36899.48 9199.55 13599.51 11999.39 1099.78 5199.93 1094.80 21799.95 5999.93 1199.95 2099.94 11
test_vis1_n_192098.63 16498.40 17099.31 15099.86 2097.94 25099.67 6699.62 4199.43 799.99 299.91 2287.29 368100.00 199.92 1299.92 2999.98 2
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10299.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
fmvsm_s_conf0.1_n_a99.26 7399.06 8799.85 2899.52 17299.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2999.98 2
test_vis1_n97.92 23497.44 26999.34 14399.53 16798.08 23899.74 4599.49 14799.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11599.97 4
test_fmvs1_n98.41 17598.14 18699.21 17099.82 4297.71 26399.74 4599.49 14799.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8299.96 7
test_fmvs198.88 13198.79 13399.16 17599.69 10797.61 26699.55 13599.49 14799.32 1499.98 699.91 2291.41 32399.96 3099.82 1699.92 2999.90 17
mvsany_test199.50 2099.46 2099.62 8699.61 14599.09 14198.94 34199.48 15999.10 2799.96 1499.91 2298.85 3999.96 3099.72 1899.58 14399.82 54
mamv499.33 6199.42 2299.07 18399.67 11497.73 25899.42 20699.60 5498.15 13599.94 1699.91 2298.42 8599.94 6999.72 1899.96 1499.54 164
patch_mono-299.26 7399.62 598.16 29999.81 4694.59 36299.52 14899.64 3699.33 1399.73 6699.90 2999.00 2299.99 499.69 2099.98 499.89 20
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11499.89 299.58 6298.56 8999.73 6699.69 16998.55 7599.82 17999.69 2099.85 7499.48 184
SDMVSNet99.11 10498.90 11699.75 5899.81 4699.59 7199.81 1999.65 3398.78 7399.64 9899.88 3894.56 23599.93 8799.67 2298.26 23299.72 103
dcpmvs_299.23 7999.58 798.16 29999.83 3994.68 36099.76 3699.52 10499.07 3599.98 699.88 3898.56 7499.93 8799.67 2299.98 499.87 31
MVSMamba_PlusPlus99.46 3299.41 2699.64 7999.68 11199.50 8899.75 4099.50 13898.27 11799.87 2799.92 1598.09 10199.94 6999.65 2499.95 2099.47 190
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 9999.90 199.55 7998.56 8999.78 5199.70 15998.65 6899.79 19399.65 2499.78 10999.41 204
iter_conf0599.48 2699.40 2799.71 6799.68 11199.61 6799.49 17499.58 6298.27 11799.95 1599.92 1598.09 10199.94 6999.65 2499.96 1499.58 154
EC-MVSNet99.44 3999.39 3099.58 9499.56 16099.49 8999.88 399.58 6298.38 10499.73 6699.69 16998.20 9699.70 23199.64 2799.82 9599.54 164
CANet99.25 7799.14 7699.59 9199.41 21099.16 13199.35 23899.57 6698.82 6599.51 13199.61 20896.46 15899.95 5999.59 2899.98 499.65 129
EI-MVSNet-UG-set99.58 999.57 899.64 7999.78 5699.14 13699.60 9699.45 19999.01 4099.90 2099.83 7098.98 2399.93 8799.59 2899.95 2099.86 33
bld_raw_dy_0_6499.22 8099.09 8399.60 9099.74 8099.31 11199.42 20699.55 7996.02 33999.59 11499.94 698.03 10699.92 9899.58 3099.98 499.56 160
DELS-MVS99.48 2699.42 2299.65 7499.72 9299.40 10299.05 31399.66 2899.14 2199.57 11999.80 10698.46 8199.94 6999.57 3199.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
iter_conf05_1199.40 5299.32 4399.63 8599.53 16799.47 9399.75 4099.52 10498.11 14299.87 2799.85 5597.72 11599.89 13299.56 3299.97 899.53 170
EI-MVSNet-Vis-set99.58 999.56 1099.64 7999.78 5699.15 13599.61 9599.45 19999.01 4099.89 2199.82 7999.01 1899.92 9899.56 3299.95 2099.85 36
test_cas_vis1_n_192099.16 8899.01 10099.61 8799.81 4698.86 17899.65 7799.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3499.91 3699.99 1
sd_testset98.75 15398.57 16099.29 15899.81 4698.26 22999.56 12399.62 4198.78 7399.64 9899.88 3892.02 30799.88 13899.54 3598.26 23299.72 103
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10099.66 12499.09 14199.64 8099.56 7198.26 12099.45 14099.87 4696.03 17199.81 18499.54 3599.15 17499.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis1_rt95.81 33595.65 33596.32 36199.67 11491.35 38899.49 17496.74 39798.25 12195.24 37798.10 38274.96 39799.90 12199.53 3798.85 19997.70 382
HyFIR lowres test99.11 10498.92 11399.65 7499.90 499.37 10399.02 32199.91 397.67 19799.59 11499.75 13995.90 17999.73 21599.53 3799.02 18899.86 33
VNet99.11 10498.90 11699.73 6499.52 17299.56 7699.41 21099.39 22699.01 4099.74 6499.78 12495.56 19099.92 9899.52 3998.18 23999.72 103
baseline99.15 9099.02 9699.53 10999.66 12499.14 13699.72 5099.48 15998.35 10999.42 14999.84 6696.07 16999.79 19399.51 4099.14 17599.67 122
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14399.63 13598.97 15899.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16399.08 237
xiu_mvs_v1_base99.29 6799.27 6299.34 14399.63 13598.97 15899.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16399.08 237
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14399.63 13598.97 15899.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16399.08 237
CHOSEN 1792x268899.19 8299.10 8099.45 12999.89 898.52 21299.39 22299.94 198.73 7699.11 22199.89 3395.50 19299.94 6999.50 4199.97 899.89 20
VDD-MVS97.73 26597.35 28198.88 21699.47 19497.12 28299.34 24198.85 34698.19 13099.67 8299.85 5582.98 38799.92 9899.49 4598.32 23099.60 146
h-mvs3397.70 27197.28 29298.97 19799.70 10297.27 27499.36 23399.45 19998.94 5499.66 8799.64 19394.93 20999.99 499.48 4684.36 39599.65 129
hse-mvs297.50 29097.14 29898.59 25099.49 18697.05 28999.28 25999.22 29498.94 5499.66 8799.42 26694.93 20999.65 24799.48 4683.80 39799.08 237
PVSNet_Blended_VisFu99.36 5899.28 5999.61 8799.86 2099.07 14699.47 18599.93 297.66 19899.71 7299.86 5097.73 11499.96 3099.47 4899.82 9599.79 74
CHOSEN 280x42099.12 10099.13 7799.08 18299.66 12497.89 25198.43 38199.71 1398.88 5999.62 10599.76 13696.63 15099.70 23199.46 4999.99 199.66 125
casdiffmvspermissive99.13 9498.98 10599.56 9899.65 13099.16 13199.56 12399.50 13898.33 11299.41 15399.86 5095.92 17799.83 17299.45 5099.16 17199.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 11095.40 40399.12 2599.65 9399.93 1090.73 33299.84 15999.43 5199.38 15599.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10294.98 40499.13 2299.66 8799.93 1090.67 33399.84 15999.40 5299.38 15599.80 70
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9685.06 41699.13 2299.77 5599.93 1087.82 36699.85 15299.38 5399.38 15599.80 70
DeepC-MVS98.35 299.30 6599.19 7299.64 7999.82 4299.23 12499.62 8999.55 7998.94 5499.63 10199.95 395.82 18299.94 6999.37 5499.97 899.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs98.81 14698.56 16299.58 9499.43 20399.42 9999.51 15698.96 32898.61 8599.35 17098.92 35094.78 21999.77 20099.35 5598.11 24499.54 164
PS-MVSNAJ99.32 6399.32 4399.30 15599.57 15698.94 16898.97 33599.46 18898.92 5799.71 7299.24 31399.01 1899.98 1399.35 5599.66 13398.97 252
VPA-MVSNet98.29 18697.95 21099.30 15599.16 28099.54 8099.50 16399.58 6298.27 11799.35 17099.37 28292.53 29699.65 24799.35 5594.46 34998.72 275
mvs_anonymous99.03 11798.99 10299.16 17599.38 22098.52 21299.51 15699.38 23497.79 18199.38 16299.81 9397.30 12799.45 26999.35 5598.99 18999.51 178
xiu_mvs_v2_base99.26 7399.25 6699.29 15899.53 16798.91 17299.02 32199.45 19998.80 6999.71 7299.26 31198.94 2999.98 1399.34 5999.23 16798.98 251
nrg03098.64 16398.42 16899.28 16299.05 30399.69 4799.81 1999.46 18898.04 15799.01 24099.82 7996.69 14999.38 28299.34 5994.59 34898.78 263
UGNet98.87 13298.69 14199.40 13699.22 26198.72 19299.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5999.94 2699.53 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_tets98.40 17898.23 18098.91 20998.67 35398.51 21499.66 7199.53 9998.19 13098.65 29699.81 9392.75 28499.44 27499.31 6297.48 27998.77 266
VDDNet97.55 28597.02 30499.16 17599.49 18698.12 23799.38 22799.30 27895.35 34699.68 7899.90 2982.62 38999.93 8799.31 6298.13 24399.42 202
diffmvspermissive99.14 9299.02 9699.51 11799.61 14598.96 16299.28 25999.49 14798.46 9799.72 7199.71 15596.50 15699.88 13899.31 6299.11 17799.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net99.01 12298.85 12599.50 12299.42 20599.26 12099.82 1599.48 15998.60 8699.28 18398.81 35597.04 13799.76 20499.29 6597.87 25399.47 190
LFMVS97.90 23797.35 28199.54 10199.52 17299.01 15399.39 22298.24 37897.10 25799.65 9399.79 11884.79 38099.91 11099.28 6698.38 22399.69 115
MSLP-MVS++99.46 3299.47 1799.44 13399.60 15099.16 13199.41 21099.71 1398.98 4899.45 14099.78 12499.19 999.54 26499.28 6699.84 8299.63 140
sasdasda99.02 11898.86 12399.51 11799.42 20599.32 10799.80 2499.48 15998.63 8299.31 17698.81 35597.09 13399.75 20799.27 6897.90 25099.47 190
canonicalmvs99.02 11898.86 12399.51 11799.42 20599.32 10799.80 2499.48 15998.63 8299.31 17698.81 35597.09 13399.75 20799.27 6897.90 25099.47 190
Anonymous2024052998.09 20497.68 24099.34 14399.66 12498.44 22199.40 21899.43 21393.67 37099.22 19999.89 3390.23 33999.93 8799.26 7098.33 22699.66 125
EPNet98.86 13598.71 13999.30 15597.20 38898.18 23299.62 8998.91 33799.28 1698.63 29899.81 9395.96 17399.99 499.24 7199.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
jajsoiax98.43 17298.28 17898.88 21698.60 36098.43 22299.82 1599.53 9998.19 13098.63 29899.80 10693.22 27599.44 27499.22 7297.50 27598.77 266
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4099.56 7199.02 3899.88 2299.85 5599.18 1099.96 3099.22 7299.92 2999.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPNet97.84 24697.44 26999.01 19199.21 26298.94 16899.48 17999.57 6698.38 10499.28 18399.73 15088.89 35099.39 28199.19 7493.27 36798.71 277
mvsmamba99.06 11298.96 11099.36 14199.47 19498.64 19999.70 5399.05 31897.61 20299.65 9399.83 7096.54 15499.92 9899.19 7499.62 13999.51 178
sss99.17 8699.05 8899.53 10999.62 14198.97 15899.36 23399.62 4197.83 17699.67 8299.65 18797.37 12499.95 5999.19 7499.19 17099.68 119
Vis-MVSNetpermissive99.12 10098.97 10699.56 9899.78 5699.10 14099.68 6399.66 2898.49 9599.86 3199.87 4694.77 22299.84 15999.19 7499.41 15499.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ab-mvs98.86 13598.63 14899.54 10199.64 13299.19 12699.44 19599.54 8897.77 18499.30 17999.81 9394.20 24999.93 8799.17 7898.82 20299.49 183
Anonymous20240521198.30 18597.98 20699.26 16499.57 15698.16 23399.41 21098.55 37196.03 33799.19 20899.74 14491.87 31099.92 9899.16 7998.29 23199.70 113
PS-MVSNAJss98.92 12998.92 11398.90 21198.78 33798.53 20899.78 3199.54 8898.07 15199.00 24499.76 13699.01 1899.37 28599.13 8097.23 29198.81 261
EPP-MVSNet99.13 9498.99 10299.53 10999.65 13099.06 14799.81 1999.33 26097.43 22599.60 11199.88 3897.14 13199.84 15999.13 8098.94 19199.69 115
Effi-MVS+98.81 14698.59 15999.48 12399.46 19699.12 13998.08 39499.50 13897.50 21799.38 16299.41 27096.37 16299.81 18499.11 8298.54 21899.51 178
ETV-MVS99.26 7399.21 7099.40 13699.46 19699.30 11499.56 12399.52 10498.52 9399.44 14599.27 30998.41 8799.86 14699.10 8399.59 14299.04 244
TSAR-MVS + GP.99.36 5899.36 3599.36 14199.67 11498.61 20399.07 30899.33 26099.00 4399.82 3999.81 9399.06 1699.84 15999.09 8499.42 15399.65 129
FIs98.78 15098.63 14899.23 16999.18 27099.54 8099.83 1499.59 5898.28 11598.79 27499.81 9396.75 14799.37 28599.08 8596.38 30798.78 263
FC-MVSNet-test98.75 15398.62 15399.15 17999.08 29799.45 9699.86 1099.60 5498.23 12598.70 28799.82 7996.80 14499.22 31399.07 8696.38 30798.79 262
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3699.56 7197.72 18999.76 6099.75 13999.13 1299.92 9899.07 8699.92 2999.85 36
MVSFormer99.17 8699.12 7899.29 15899.51 17598.94 16899.88 399.46 18897.55 20999.80 4499.65 18797.39 12199.28 30299.03 8899.85 7499.65 129
test_djsdf98.67 16098.57 16098.98 19598.70 35098.91 17299.88 399.46 18897.55 20999.22 19999.88 3895.73 18599.28 30299.03 8897.62 26498.75 270
jason99.13 9499.03 9299.45 12999.46 19698.87 17599.12 29899.26 28798.03 15999.79 4699.65 18797.02 13899.85 15299.02 9099.90 4499.65 129
jason: jason.
DeepPCF-MVS98.18 398.81 14699.37 3397.12 34699.60 15091.75 38698.61 37199.44 20799.35 1299.83 3899.85 5598.70 6399.81 18499.02 9099.91 3699.81 61
CSCG99.32 6399.32 4399.32 14999.85 2698.29 22799.71 5299.66 2898.11 14299.41 15399.80 10698.37 8999.96 3098.99 9299.96 1499.72 103
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18799.53 16798.82 18498.84 35197.51 39197.63 20084.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 204
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18799.28 25999.91 397.42 22799.67 8299.37 28297.53 11899.88 13898.98 9397.29 28998.42 347
PVSNet_Blended99.08 11098.97 10699.42 13499.76 6598.79 18798.78 35799.91 396.74 28299.67 8299.49 24897.53 11899.88 13898.98 9399.85 7499.60 146
3Dnovator97.25 999.24 7899.05 8899.81 4499.12 28699.66 5399.84 1199.74 1099.09 3298.92 25499.90 2995.94 17699.98 1398.95 9699.92 2999.79 74
EIA-MVS99.18 8499.09 8399.45 12999.49 18699.18 12899.67 6699.53 9997.66 19899.40 15899.44 26298.10 10099.81 18498.94 9799.62 13999.35 213
lupinMVS99.13 9499.01 10099.46 12899.51 17598.94 16899.05 31399.16 30397.86 17099.80 4499.56 22497.39 12199.86 14698.94 9799.85 7499.58 154
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 24299.10 2799.81 4199.80 10698.94 2999.96 3098.93 9999.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11999.96 3098.93 9999.86 6799.88 26
UA-Net99.42 4499.29 5799.80 4699.62 14199.55 7899.50 16399.70 1598.79 7099.77 5599.96 197.45 12099.96 3098.92 10199.90 4499.89 20
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 15999.08 3399.91 1899.81 9399.20 799.96 3098.91 10299.85 7499.79 74
test_241102_TWO99.48 15999.08 3399.88 2299.81 9398.94 2999.96 3098.91 10299.84 8299.88 26
MVS_111021_HR99.41 4999.32 4399.66 7099.72 9299.47 9398.95 33999.85 698.82 6599.54 12599.73 15098.51 7899.74 20998.91 10299.88 5699.77 82
MTAPA99.52 1799.39 3099.89 499.90 499.86 1399.66 7199.47 17998.79 7099.68 7899.81 9398.43 8399.97 2198.88 10599.90 4499.83 49
XXY-MVS98.38 17998.09 19499.24 16799.26 25199.32 10799.56 12399.55 7997.45 22298.71 28199.83 7093.23 27399.63 25598.88 10596.32 30998.76 268
ACMH97.28 898.10 20397.99 20598.44 27599.41 21096.96 30099.60 9699.56 7198.09 14698.15 33099.91 2290.87 33199.70 23198.88 10597.45 28098.67 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSC_two_6792asdad99.87 1199.51 17599.76 3799.33 26099.96 3098.87 10899.84 8299.89 20
No_MVS99.87 1199.51 17599.76 3799.33 26099.96 3098.87 10899.84 8299.89 20
MVS_Test99.10 10898.97 10699.48 12399.49 18699.14 13699.67 6699.34 25397.31 23699.58 11699.76 13697.65 11799.82 17998.87 10899.07 18399.46 195
MVSTER98.49 16798.32 17599.00 19399.35 22799.02 15199.54 13999.38 23497.41 22899.20 20599.73 15093.86 26399.36 28998.87 10897.56 26998.62 318
1112_ss98.98 12498.77 13499.59 9199.68 11199.02 15199.25 27599.48 15997.23 24499.13 21799.58 21796.93 14299.90 12198.87 10898.78 20599.84 40
IU-MVS99.84 3299.88 899.32 27098.30 11499.84 3398.86 11399.85 7499.89 20
3Dnovator+97.12 1399.18 8498.97 10699.82 4199.17 27899.68 4899.81 1999.51 11999.20 1898.72 28099.89 3395.68 18799.97 2198.86 11399.86 6799.81 61
DVP-MVS++99.59 899.50 1399.88 599.51 17599.88 899.87 799.51 11998.99 4599.88 2299.81 9399.27 599.96 3098.85 11599.80 10299.81 61
test_0728_THIRD98.99 4599.81 4199.80 10699.09 1499.96 3098.85 11599.90 4499.88 26
WTY-MVS99.06 11298.88 12099.61 8799.62 14199.16 13199.37 22999.56 7198.04 15799.53 12799.62 20496.84 14399.94 6998.85 11598.49 22199.72 103
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8499.39 22698.91 5899.78 5199.85 5599.36 299.94 6998.84 11899.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023121197.88 23897.54 25498.90 21199.71 9798.53 20899.48 17999.57 6694.16 36698.81 27099.68 17593.23 27399.42 27998.84 11894.42 35198.76 268
114514_t98.93 12898.67 14399.72 6599.85 2699.53 8399.62 8999.59 5892.65 38199.71 7299.78 12498.06 10599.90 12198.84 11899.91 3699.74 92
tttt051798.42 17398.14 18699.28 16299.66 12498.38 22599.74 4596.85 39497.68 19599.79 4699.74 14491.39 32499.89 13298.83 12199.56 14499.57 158
MP-MVS-pluss99.37 5799.20 7199.88 599.90 499.87 1299.30 24999.52 10497.18 24799.60 11199.79 11898.79 4799.95 5998.83 12199.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10798.95 16599.03 31899.47 17996.98 26799.15 21599.23 31496.77 14699.89 13298.83 12198.78 20599.86 33
MVS_111021_LR99.41 4999.33 4199.65 7499.77 6299.51 8798.94 34199.85 698.82 6599.65 9399.74 14498.51 7899.80 19098.83 12199.89 5399.64 136
ACMMP_NAP99.47 3099.34 3999.88 599.87 1599.86 1399.47 18599.48 15998.05 15699.76 6099.86 5098.82 4399.93 8798.82 12599.91 3699.84 40
SMA-MVScopyleft99.44 3999.30 5399.85 2899.73 8899.83 1699.56 12399.47 17997.45 22299.78 5199.82 7999.18 1099.91 11098.79 12699.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6799.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6799.84 40
CVMVSNet98.57 16698.67 14398.30 28999.35 22795.59 34099.50 16399.55 7998.60 8699.39 16099.83 7094.48 24099.45 26998.75 12998.56 21699.85 36
CP-MVS99.45 3599.32 4399.85 2899.83 3999.75 3999.69 5799.52 10498.07 15199.53 12799.63 19998.93 3399.97 2198.74 13099.91 3699.83 49
ACMM97.58 598.37 18098.34 17398.48 26599.41 21097.10 28399.56 12399.45 19998.53 9299.04 23799.85 5593.00 27899.71 22598.74 13097.45 28098.64 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu98.78 15098.89 11998.47 27099.33 23296.91 30299.57 11799.30 27898.47 9699.41 15398.99 34096.78 14599.74 20998.73 13299.38 15598.74 273
ZNCC-MVS99.47 3099.33 4199.87 1199.87 1599.81 2599.64 8099.67 2398.08 15099.55 12499.64 19398.91 3499.96 3098.72 13399.90 4499.82 54
SD-MVS99.41 4999.52 1199.05 18799.74 8099.68 4899.46 18899.52 10499.11 2699.88 2299.91 2299.43 197.70 38898.72 13399.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
D2MVS98.41 17598.50 16598.15 30299.26 25196.62 31599.40 21899.61 4897.71 19098.98 24699.36 28596.04 17099.67 23998.70 13597.41 28598.15 363
CDS-MVSNet99.09 10999.03 9299.25 16599.42 20598.73 19199.45 18999.46 18898.11 14299.46 13999.77 13298.01 10799.37 28598.70 13598.92 19499.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 10099.08 8599.24 16799.46 19698.55 20699.51 15699.46 18898.09 14699.45 14099.82 7998.34 9099.51 26598.70 13598.93 19299.67 122
HFP-MVS99.49 2299.37 3399.86 2199.87 1599.80 2799.66 7199.67 2398.15 13599.68 7899.69 16999.06 1699.96 3098.69 13899.87 5999.84 40
ACMMPR99.49 2299.36 3599.86 2199.87 1599.79 3099.66 7199.67 2398.15 13599.67 8299.69 16998.95 2799.96 3098.69 13899.87 5999.84 40
UniMVSNet_ETH3D97.32 30296.81 31098.87 22099.40 21597.46 26999.51 15699.53 9995.86 34198.54 30799.77 13282.44 39099.66 24298.68 14097.52 27299.50 182
DeepC-MVS_fast98.69 199.49 2299.39 3099.77 5599.63 13599.59 7199.36 23399.46 18899.07 3599.79 4699.82 7998.85 3999.92 9898.68 14099.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp98.44 17198.28 17898.94 20198.50 36598.96 16299.77 3399.50 13897.07 25998.87 26399.77 13294.76 22399.28 30298.66 14297.60 26598.57 333
DP-MVS99.16 8898.95 11199.78 5299.77 6299.53 8399.41 21099.50 13897.03 26599.04 23799.88 3897.39 12199.92 9898.66 14299.90 4499.87 31
MCST-MVS99.43 4299.30 5399.82 4199.79 5499.74 4199.29 25499.40 22398.79 7099.52 12999.62 20498.91 3499.90 12198.64 14499.75 11799.82 54
CP-MVSNet98.09 20497.78 22799.01 19198.97 31699.24 12399.67 6699.46 18897.25 24198.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 273
thisisatest053098.35 18198.03 20199.31 15099.63 13598.56 20599.54 13996.75 39697.53 21399.73 6699.65 18791.25 32799.89 13298.62 14699.56 14499.48 184
region2R99.48 2699.35 3799.87 1199.88 1199.80 2799.65 7799.66 2898.13 13999.66 8799.68 17598.96 2499.96 3098.62 14699.87 5999.84 40
APD-MVS_3200maxsize99.48 2699.35 3799.85 2899.76 6599.83 1699.63 8499.54 8898.36 10899.79 4699.82 7998.86 3899.95 5998.62 14699.81 9899.78 80
SR-MVS-dyc-post99.45 3599.31 5199.85 2899.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.53 7699.95 5998.61 14999.81 9899.77 82
RE-MVS-def99.34 3999.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.75 5598.61 14999.81 9899.77 82
PHI-MVS99.30 6599.17 7499.70 6899.56 16099.52 8699.58 11099.80 897.12 25399.62 10599.73 15098.58 7299.90 12198.61 14999.91 3699.68 119
test_yl98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31598.22 12699.61 10899.51 24295.37 19699.84 15998.60 15298.33 22699.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31598.22 12699.61 10899.51 24295.37 19699.84 15998.60 15298.33 22699.59 150
CNVR-MVS99.42 4499.30 5399.78 5299.62 14199.71 4499.26 27399.52 10498.82 6599.39 16099.71 15598.96 2499.85 15298.59 15499.80 10299.77 82
tt080597.97 22897.77 22998.57 25499.59 15296.61 31699.45 18999.08 31298.21 12898.88 26099.80 10688.66 35499.70 23198.58 15597.72 25999.39 207
WR-MVS98.06 20897.73 23699.06 18598.86 32999.25 12299.19 28599.35 24997.30 23798.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 277
HPM-MVScopyleft99.42 4499.28 5999.83 4099.90 499.72 4299.81 1999.54 8897.59 20399.68 7899.63 19998.91 3499.94 6998.58 15599.91 3699.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32098.98 15599.48 17999.53 9997.76 18598.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 285
DU-MVS98.08 20697.79 22498.96 19898.87 32698.98 15599.41 21099.45 19997.87 16998.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 290
mPP-MVS99.44 3999.30 5399.86 2199.88 1199.79 3099.69 5799.48 15998.12 14099.50 13299.75 13998.78 4899.97 2198.57 15899.89 5399.83 49
CANet_DTU98.97 12698.87 12199.25 16599.33 23298.42 22499.08 30799.30 27899.16 1999.43 14699.75 13995.27 20099.97 2198.56 16199.95 2099.36 212
PMMVS98.80 14998.62 15399.34 14399.27 24998.70 19398.76 35999.31 27497.34 23399.21 20299.07 33097.20 13099.82 17998.56 16198.87 19799.52 172
PVSNet96.02 1798.85 14298.84 12798.89 21499.73 8897.28 27398.32 38799.60 5497.86 17099.50 13299.57 22196.75 14799.86 14698.56 16199.70 12799.54 164
ACMMPcopyleft99.45 3599.32 4399.82 4199.89 899.67 5199.62 8999.69 1898.12 14099.63 10199.84 6698.73 6099.96 3098.55 16499.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21499.71 9797.74 25799.12 29899.54 8898.44 10199.42 14999.71 15594.20 24999.92 9898.54 16598.90 19699.00 248
PS-CasMVS97.93 23197.59 25098.95 20098.99 31199.06 14799.68 6399.52 10497.13 25198.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 270
CostFormer97.72 26797.73 23697.71 32999.15 28494.02 36999.54 13999.02 32194.67 36199.04 23799.35 28892.35 30499.77 20098.50 16797.94 24999.34 216
baseline198.31 18397.95 21099.38 14099.50 18498.74 19099.59 10298.93 33098.41 10299.14 21699.60 21194.59 23399.79 19398.48 16893.29 36699.61 144
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11998.62 8499.79 4699.83 7099.28 499.97 2198.48 16899.90 4499.84 40
Skip Steuart: Steuart Systems R&D Blog.
tpmrst98.33 18298.48 16697.90 31799.16 28094.78 35899.31 24799.11 30897.27 23999.45 14099.59 21395.33 19899.84 15998.48 16898.61 21099.09 236
IB-MVS95.67 1896.22 32695.44 33998.57 25499.21 26296.70 31098.65 36997.74 38896.71 28497.27 35698.54 36686.03 37199.92 9898.47 17186.30 39399.10 232
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSP-MVS99.42 4499.27 6299.88 599.89 899.80 2799.67 6699.50 13898.70 7899.77 5599.49 24898.21 9599.95 5998.46 17299.77 11299.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testing1197.50 29097.10 30198.71 24299.20 26496.91 30299.29 25498.82 34997.89 16898.21 32798.40 37085.63 37499.83 17298.45 17398.04 24699.37 211
SR-MVS99.43 4299.29 5799.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6699.79 11898.68 6499.96 3098.44 17499.77 11299.79 74
HPM-MVS++copyleft99.39 5599.23 6999.87 1199.75 7399.84 1599.43 19999.51 11998.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10299.79 74
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28099.23 25796.80 30899.70 5399.60 5497.12 25398.18 32999.70 15991.73 31599.72 21998.39 17697.45 28098.68 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GST-MVS99.40 5299.24 6799.85 2899.86 2099.79 3099.60 9699.67 2397.97 16299.63 10199.68 17598.52 7799.95 5998.38 17799.86 6799.81 61
EI-MVSNet98.67 16098.67 14398.68 24599.35 22797.97 24499.50 16399.38 23496.93 27499.20 20599.83 7097.87 10999.36 28998.38 17797.56 26998.71 277
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20599.08 14499.62 8999.36 24397.39 23099.28 18399.68 17596.44 16099.92 9898.37 17998.22 23499.40 206
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28296.68 36799.88 3888.65 35599.71 22598.37 17982.74 39898.09 365
UniMVSNet (Re)98.29 18698.00 20499.13 18099.00 30899.36 10599.49 17499.51 11997.95 16398.97 24899.13 32596.30 16499.38 28298.36 18193.34 36598.66 305
WR-MVS_H98.13 20097.87 22098.90 21199.02 30698.84 18099.70 5399.59 5897.27 23998.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 327
PGM-MVS99.45 3599.31 5199.86 2199.87 1599.78 3699.58 11099.65 3397.84 17599.71 7299.80 10699.12 1399.97 2198.33 18399.87 5999.83 49
LS3D99.27 7199.12 7899.74 6199.18 27099.75 3999.56 12399.57 6698.45 9899.49 13599.85 5597.77 11399.94 6998.33 18399.84 8299.52 172
IterMVS-LS98.46 17098.42 16898.58 25399.59 15298.00 24299.37 22999.43 21396.94 27399.07 22999.59 21397.87 10999.03 34198.32 18595.62 32798.71 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS98.16 19798.10 19198.33 28599.29 24496.82 30798.75 36099.44 20797.83 17699.13 21799.55 22792.92 28099.67 23998.32 18597.69 26098.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PC_three_145298.18 13399.84 3399.70 15999.31 398.52 37198.30 18799.80 10299.81 61
NCCC99.34 6099.19 7299.79 4999.61 14599.65 5799.30 24999.48 15998.86 6099.21 20299.63 19998.72 6199.90 12198.25 18899.63 13899.80 70
OPU-MVS99.64 7999.56 16099.72 4299.60 9699.70 15999.27 599.42 27998.24 18999.80 10299.79 74
GeoE98.85 14298.62 15399.53 10999.61 14599.08 14499.80 2499.51 11997.10 25799.31 17699.78 12495.23 20499.77 20098.21 19099.03 18699.75 88
cl2297.85 24397.64 24698.48 26599.09 29497.87 25298.60 37399.33 26097.11 25698.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
SF-MVS99.38 5699.24 6799.79 4999.79 5499.68 4899.57 11799.54 8897.82 18099.71 7299.80 10698.95 2799.93 8798.19 19299.84 8299.74 92
旧先验298.96 33696.70 28599.47 13799.94 6998.19 192
F-COLMAP99.19 8299.04 9099.64 7999.78 5699.27 11899.42 20699.54 8897.29 23899.41 15399.59 21398.42 8599.93 8798.19 19299.69 12899.73 97
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 24092.25 38499.59 10298.26 37697.43 22596.20 37199.13 32596.27 16598.73 36798.17 19598.99 18999.64 136
DPE-MVScopyleft99.46 3299.32 4399.91 299.78 5699.88 899.36 23399.51 11998.73 7699.88 2299.84 6698.72 6199.96 3098.16 19699.87 5999.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
cascas97.69 27297.43 27398.48 26598.60 36097.30 27298.18 39299.39 22692.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 21098.86 258
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17499.88 1198.53 20899.34 24199.59 5897.55 20998.70 28799.89 3395.83 18199.90 12198.10 19899.90 4499.08 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS97.76 25897.44 26998.72 24098.77 34298.54 20799.78 3199.51 11997.06 26198.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 275
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23297.05 28999.58 11099.55 7997.46 21999.24 19499.83 7092.58 29499.72 21998.09 19997.51 27398.68 290
LGP-MVS_train98.49 26399.33 23297.05 28999.55 7997.46 21999.24 19499.83 7092.58 29499.72 21998.09 19997.51 27398.68 290
IS-MVSNet99.05 11498.87 12199.57 9699.73 8899.32 10799.75 4099.20 29898.02 16099.56 12099.86 5096.54 15499.67 23998.09 19999.13 17699.73 97
thisisatest051598.14 19997.79 22499.19 17299.50 18498.50 21598.61 37196.82 39596.95 27199.54 12599.43 26491.66 31999.86 14698.08 20399.51 14899.22 226
OPM-MVS98.19 19398.10 19198.45 27298.88 32397.07 28799.28 25999.38 23498.57 8899.22 19999.81 9392.12 30599.66 24298.08 20397.54 27198.61 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS98.73 15698.68 14298.88 21699.70 10297.73 25898.92 34399.55 7998.52 9399.45 14099.84 6695.27 20099.91 11098.08 20398.84 20099.00 248
Baseline_NR-MVSNet97.76 25897.45 26498.68 24599.09 29498.29 22799.41 21098.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 309
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19696.68 31399.56 12399.54 8898.41 10297.79 34699.87 4690.18 34099.66 24298.05 20797.18 29498.62 318
testing9997.36 30096.94 30798.63 24799.18 27096.70 31099.30 24998.93 33097.71 19098.23 32498.26 37684.92 37999.84 15998.04 20897.85 25599.35 213
testing9197.44 29797.02 30498.71 24299.18 27096.89 30499.19 28599.04 31997.78 18398.31 31998.29 37585.41 37699.85 15298.01 20997.95 24899.39 207
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33798.62 20199.65 7799.49 14797.76 18598.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 281
DP-MVS Recon99.12 10098.95 11199.65 7499.74 8099.70 4699.27 26499.57 6696.40 31299.42 14999.68 17598.75 5599.80 19097.98 21199.72 12399.44 200
test_prior298.96 33698.34 11099.01 24099.52 23998.68 6497.96 21299.74 120
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 24999.41 21096.99 29699.52 14899.49 14798.11 14299.24 19499.34 29296.96 14199.79 19397.95 21399.45 15199.02 247
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7199.46 18898.09 14699.48 13699.74 14498.29 9299.96 3097.93 21499.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 15099.71 9798.88 17499.80 2499.44 20797.91 16799.36 16799.78 12495.49 19399.43 27897.91 21599.11 17799.62 142
ACMP97.20 1198.06 20897.94 21298.45 27299.37 22397.01 29499.44 19599.49 14797.54 21298.45 31299.79 11891.95 30999.72 21997.91 21597.49 27898.62 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvs297.25 30597.30 28997.09 34799.43 20393.31 37899.73 4898.87 34498.83 6499.28 18399.80 10684.45 38299.66 24297.88 21797.45 28098.30 355
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17599.28 11699.52 14899.47 17996.11 33299.01 24099.34 29296.20 16799.84 15997.88 21798.82 20299.39 207
EPMVS97.82 25197.65 24398.35 28498.88 32395.98 33399.49 17494.71 40697.57 20699.26 19299.48 25392.46 30199.71 22597.87 21999.08 18299.35 213
ETVMVS97.50 29096.90 30899.29 15899.23 25798.78 18999.32 24498.90 33997.52 21598.56 30598.09 38384.72 38199.69 23697.86 22097.88 25299.39 207
miper_enhance_ethall98.16 19798.08 19598.41 27898.96 31797.72 26098.45 38099.32 27096.95 27198.97 24899.17 32097.06 13699.22 31397.86 22095.99 31698.29 356
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5585.77 37296.15 39997.86 22043.89 40995.39 399
NR-MVSNet97.97 22897.61 24899.02 19098.87 32699.26 12099.47 18599.42 21597.63 20097.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 290
v14897.79 25697.55 25198.50 26298.74 34497.72 26099.54 13999.33 26096.26 31998.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 316
CPTT-MVS99.11 10498.90 11699.74 6199.80 5299.46 9599.59 10299.49 14797.03 26599.63 10199.69 16997.27 12999.96 3097.82 22599.84 8299.81 61
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27899.58 11695.19 20597.82 22599.46 195
OMC-MVS99.08 11099.04 9099.20 17199.67 11498.22 23199.28 25999.52 10498.07 15199.66 8799.81 9397.79 11299.78 19897.79 22799.81 9899.60 146
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16499.05 14999.80 2499.01 32296.59 29899.58 11699.59 21395.39 19599.90 12197.78 22899.49 14999.28 221
HQP_MVS98.27 18898.22 18198.44 27599.29 24496.97 29899.39 22299.47 17998.97 5199.11 22199.61 20892.71 28999.69 23697.78 22897.63 26298.67 297
plane_prior599.47 17999.69 23697.78 22897.63 26298.67 297
dmvs_re98.08 20698.16 18397.85 31999.55 16494.67 36199.70 5398.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
testdata99.54 10199.75 7398.95 16599.51 11997.07 25999.43 14699.70 15998.87 3799.94 6997.76 23299.64 13699.72 103
PLCcopyleft97.94 499.02 11898.85 12599.53 10999.66 12499.01 15399.24 27799.52 10496.85 27799.27 18899.48 25398.25 9499.91 11097.76 23299.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30899.12 21999.34 29291.83 31299.60 25897.75 23496.46 30599.48 184
131498.68 15998.54 16399.11 18198.89 32298.65 19799.27 26499.49 14796.89 27597.99 33799.56 22497.72 11599.83 17297.74 23599.27 16698.84 260
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28896.33 32599.41 21099.52 10498.06 15599.05 23699.50 24589.64 34599.73 21597.73 23697.38 28798.53 335
CNLPA99.14 9298.99 10299.59 9199.58 15499.41 10199.16 28999.44 20798.45 9899.19 20899.49 24898.08 10499.89 13297.73 23699.75 11799.48 184
v2v48298.06 20897.77 22998.92 20598.90 32198.82 18499.57 11799.36 24396.65 28999.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 285
AUN-MVS96.88 31596.31 32198.59 25099.48 19397.04 29299.27 26499.22 29497.44 22498.51 30899.41 27091.97 30899.66 24297.71 23983.83 39699.07 242
baseline297.87 24097.55 25198.82 22999.18 27098.02 24199.41 21096.58 40096.97 26896.51 36899.17 32093.43 27099.57 26097.71 23999.03 18698.86 258
原ACMM199.65 7499.73 8899.33 10699.47 17997.46 21999.12 21999.66 18698.67 6699.91 11097.70 24199.69 12899.71 112
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23994.34 36797.81 39699.70 1597.12 25397.46 35098.75 36089.71 34399.79 19397.69 24281.69 39999.68 119
MAR-MVS98.86 13598.63 14899.54 10199.37 22399.66 5399.45 18999.54 8896.61 29499.01 24099.40 27397.09 13399.86 14697.68 24399.53 14799.10 232
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
9.1499.10 8099.72 9299.40 21899.51 11997.53 21399.64 9899.78 12498.84 4199.91 11097.63 24499.82 95
train_agg99.02 11898.77 13499.77 5599.67 11499.65 5799.05 31399.41 21796.28 31698.95 25099.49 24898.76 5299.91 11097.63 24499.72 12399.75 88
miper_ehance_all_eth98.18 19598.10 19198.41 27899.23 25797.72 26098.72 36399.31 27496.60 29698.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
MDTV_nov1_ep1398.32 17599.11 28894.44 36499.27 26498.74 35897.51 21699.40 15899.62 20494.78 21999.76 20497.59 24798.81 204
c3_l98.12 20298.04 20098.38 28299.30 24097.69 26498.81 35499.33 26096.67 28798.83 26899.34 29297.11 13298.99 34797.58 24895.34 33398.48 339
test_post199.23 27865.14 41194.18 25299.71 22597.58 248
SCA98.19 19398.16 18398.27 29499.30 24095.55 34199.07 30898.97 32697.57 20699.43 14699.57 22192.72 28799.74 20997.58 24899.20 16999.52 172
JIA-IIPM97.50 29097.02 30498.93 20398.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22597.58 24897.98 24799.28 221
V4298.06 20897.79 22498.86 22398.98 31498.84 18099.69 5799.34 25396.53 30099.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 25097.56 253
APD-MVScopyleft99.27 7199.08 8599.84 3999.75 7399.79 3099.50 16399.50 13897.16 24999.77 5599.82 7998.78 4899.94 6997.56 25399.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pm-mvs197.68 27497.28 29298.88 21699.06 30098.62 20199.50 16399.45 19996.32 31497.87 34299.79 11892.47 29899.35 29297.54 25593.54 36498.67 297
无先验98.99 32999.51 11996.89 27599.93 8797.53 25699.72 103
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33098.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 316
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 8098.25 37798.28 11594.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
test9_res97.49 25999.72 12399.75 88
CDPH-MVS99.13 9498.91 11599.80 4699.75 7399.71 4499.15 29299.41 21796.60 29699.60 11199.55 22798.83 4299.90 12197.48 26099.83 9199.78 80
AdaColmapbinary99.01 12298.80 13099.66 7099.56 16099.54 8099.18 28799.70 1598.18 13399.35 17099.63 19996.32 16399.90 12197.48 26099.77 11299.55 162
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30499.53 8399.82 1599.72 1194.56 36398.08 33299.88 3894.73 22599.98 1397.47 26299.76 11599.06 243
IterMVS97.83 24897.77 22998.02 30899.58 15496.27 32799.02 32199.48 15997.22 24598.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5099.44 20796.61 29499.66 8799.89 3395.92 17799.82 17997.46 26399.10 18099.57 158
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15696.36 32499.02 32199.49 14797.18 24798.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 297
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 28095.32 34999.27 26498.92 33397.37 23199.37 16499.58 21794.90 21299.70 23197.43 26699.21 16899.54 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7199.66 2898.09 14698.35 31799.82 7995.25 20398.01 38197.41 26795.30 33498.78 263
eth_miper_zixun_eth98.05 21397.96 20898.33 28599.26 25197.38 27198.56 37699.31 27496.65 28998.88 26099.52 23996.58 15299.12 33197.39 26895.53 33098.47 341
UWE-MVS97.58 28497.29 29198.48 26599.09 29496.25 32899.01 32696.61 39997.86 17099.19 20899.01 33888.72 35199.90 12197.38 26998.69 20899.28 221
testing22297.16 30896.50 31699.16 17599.16 28098.47 22099.27 26498.66 36797.71 19098.23 32498.15 37882.28 39299.84 15997.36 27097.66 26199.18 228
FE-MVS98.48 16898.17 18299.40 13699.54 16698.96 16299.68 6398.81 35195.54 34499.62 10599.70 15993.82 26499.93 8797.35 27199.46 15099.32 218
tpm297.44 29797.34 28497.74 32899.15 28494.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25997.31 27298.07 24599.29 220
TESTMET0.1,197.55 28597.27 29598.40 28098.93 31996.53 31898.67 36697.61 38996.96 26998.64 29799.28 30688.63 35699.45 26997.30 27399.38 15599.21 227
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 23197.43 27098.88 34799.36 24396.48 30598.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
test-LLR98.06 20897.90 21598.55 25998.79 33497.10 28398.67 36697.75 38697.34 23398.61 30198.85 35294.45 24299.45 26997.25 27599.38 15599.10 232
test-mter97.49 29597.13 30098.55 25998.79 33497.10 28398.67 36697.75 38696.65 28998.61 30198.85 35288.23 36099.45 26997.25 27599.38 15599.10 232
cl____98.01 22197.84 22298.55 25999.25 25597.97 24498.71 36499.34 25396.47 30798.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25697.95 24898.71 36499.35 24996.50 30198.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
agg_prior297.21 27799.73 12299.75 88
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18198.78 27599.94 691.68 31699.35 29297.21 27796.99 29898.69 285
BP-MVS97.19 281
HQP-MVS98.02 21897.90 21598.37 28399.19 26796.83 30598.98 33299.39 22698.24 12298.66 29099.40 27392.47 29899.64 25097.19 28197.58 26798.64 309
pmmvs498.13 20097.90 21598.81 23298.61 35998.87 17598.99 32999.21 29796.44 30899.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9799.28 11699.06 31199.77 997.74 18899.50 13299.53 23695.41 19499.84 15997.17 28499.64 13699.44 200
GBi-Net97.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 15996.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
test197.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 15996.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
FMVSNet398.03 21697.76 23398.84 22799.39 21898.98 15599.40 21899.38 23496.67 28799.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 334
BH-untuned98.42 17398.36 17198.59 25099.49 18696.70 31099.27 26499.13 30797.24 24398.80 27299.38 27995.75 18499.74 20997.07 28899.16 17199.33 217
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25498.82 34998.07 15198.66 29099.64 19389.97 34199.61 25797.01 28996.68 29997.94 376
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3398.68 36697.14 25097.90 34099.93 1090.45 33499.18 32197.00 29096.43 30698.67 297
MG-MVS99.13 9499.02 9699.45 12999.57 15698.63 20099.07 30899.34 25398.99 4599.61 10899.82 7997.98 10899.87 14397.00 29099.80 10299.85 36
API-MVS99.04 11599.03 9299.06 18599.40 21599.31 11199.55 13599.56 7198.54 9199.33 17499.39 27798.76 5299.78 19896.98 29299.78 10998.07 366
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24799.20 29896.10 33698.76 27799.42 26694.94 20899.81 18496.97 29398.45 22298.97 252
QAPM98.67 16098.30 17799.80 4699.20 26499.67 5199.77 3399.72 1194.74 36098.73 27999.90 2995.78 18399.98 1396.96 29499.88 5699.76 87
PAPM_NR99.04 11598.84 12799.66 7099.74 8099.44 9799.39 22299.38 23497.70 19399.28 18399.28 30698.34 9099.85 15296.96 29499.45 15199.69 115
v897.95 23097.63 24798.93 20398.95 31898.81 18699.80 2499.41 21796.03 33799.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 305
ZD-MVS99.71 9799.79 3099.61 4896.84 27899.56 12099.54 23298.58 7299.96 3096.93 29799.75 117
MSDG98.98 12498.80 13099.53 10999.76 6599.19 12698.75 36099.55 7997.25 24199.47 13799.77 13297.82 11199.87 14396.93 29799.90 4499.54 164
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22999.47 17993.46 37497.41 35199.78 12487.06 36999.33 29596.92 29992.70 37498.65 307
新几何199.75 5899.75 7399.59 7199.54 8896.76 28199.29 18299.64 19398.43 8399.94 6996.92 29999.66 13399.72 103
DTE-MVSNet97.51 28997.19 29798.46 27198.63 35698.13 23699.84 1199.48 15996.68 28697.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 281
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23295.19 35299.23 27899.08 31296.24 32099.10 22499.67 18194.11 25398.93 35896.81 30299.05 18499.48 184
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23296.48 32099.23 27899.15 30496.24 32099.10 22499.67 18194.11 25399.71 22596.81 30299.05 18499.48 184
gg-mvs-nofinetune96.17 32995.32 34098.73 23998.79 33498.14 23599.38 22794.09 40791.07 38898.07 33591.04 40589.62 34699.35 29296.75 30499.09 18198.68 290
v114497.98 22597.69 23998.85 22698.87 32698.66 19699.54 13999.35 24996.27 31899.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 290
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11997.13 25196.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
GA-MVS97.85 24397.47 26199.00 19399.38 22097.99 24398.57 37499.15 30497.04 26498.90 25799.30 30289.83 34299.38 28296.70 30798.33 22699.62 142
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 797.05 39397.59 20396.16 37299.80 10688.71 35299.04 33996.69 30896.55 30498.65 307
testdata299.95 5996.67 309
AllTest98.87 13298.72 13799.31 15099.86 2098.48 21899.56 12399.61 4897.85 17399.36 16799.85 5595.95 17499.85 15296.66 31099.83 9199.59 150
TestCases99.31 15099.86 2098.48 21899.61 4897.85 17399.36 16799.85 5595.95 17499.85 15296.66 31099.83 9199.59 150
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1598.62 36996.65 28995.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
dp97.75 26297.80 22397.59 33499.10 29193.71 37399.32 24498.88 34296.48 30599.08 22899.55 22792.67 29299.82 17996.52 31398.58 21399.24 225
BH-RMVSNet98.41 17598.08 19599.40 13699.41 21098.83 18399.30 24998.77 35497.70 19398.94 25299.65 18792.91 28299.74 20996.52 31399.55 14699.64 136
FMVSNet297.72 26797.36 27998.80 23499.51 17598.84 18099.45 18999.42 21596.49 30298.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 332
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
tpm cat197.39 29997.36 27997.50 33799.17 27893.73 37299.43 19999.31 27491.27 38598.71 28199.08 32994.31 24799.77 20096.41 31798.50 22099.00 248
v14419297.92 23497.60 24998.87 22098.83 33298.65 19799.55 13599.34 25396.20 32399.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 281
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 178
Patchmtry97.75 26297.40 27698.81 23299.10 29198.87 17599.11 30499.33 26094.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
BH-w/o98.00 22397.89 21998.32 28799.35 22796.20 33099.01 32698.90 33996.42 31098.38 31599.00 33995.26 20299.72 21996.06 32198.61 21099.03 245
testing397.28 30396.76 31298.82 22999.37 22398.07 23999.45 18999.36 24397.56 20897.89 34198.95 34583.70 38598.82 36296.03 32298.56 21699.58 154
v7n97.87 24097.52 25598.92 20598.76 34398.58 20499.84 1199.46 18896.20 32398.91 25599.70 15994.89 21399.44 27496.03 32293.89 36098.75 270
v1097.85 24397.52 25598.86 22398.99 31198.67 19599.75 4099.41 21795.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 297
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4688.69 35399.32 29795.89 32594.93 34398.62 318
ITE_SJBPF98.08 30499.29 24496.37 32398.92 33398.34 11098.83 26899.75 13991.09 32899.62 25695.82 32697.40 28698.25 359
FMVSNet196.84 31696.36 32098.29 29099.32 23897.26 27699.43 19999.48 15995.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 318
DPM-MVS98.95 12798.71 13999.66 7099.63 13599.55 7898.64 37099.10 30997.93 16599.42 14999.55 22798.67 6699.80 19095.80 32899.68 13199.61 144
MIMVSNet97.73 26597.45 26498.57 25499.45 20197.50 26899.02 32198.98 32596.11 33299.41 15399.14 32490.28 33598.74 36695.74 32998.93 19299.47 190
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5798.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
tfpnnormal97.84 24697.47 26198.98 19599.20 26499.22 12599.64 8099.61 4896.32 31498.27 32399.70 15993.35 27299.44 27495.69 33195.40 33298.27 357
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27097.41 22898.13 33199.30 30288.99 34999.56 26195.68 33299.80 10297.90 379
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32794.08 38599.22 31582.72 38899.47 26795.67 33397.50 27598.17 362
USDC97.34 30197.20 29697.75 32799.07 29895.20 35198.51 37899.04 31997.99 16198.31 31999.86 5089.02 34899.55 26395.67 33397.36 28898.49 338
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24597.23 35799.36 28595.28 19999.46 26895.51 33599.78 10997.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WAC-MVS97.16 28095.47 336
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 15989.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND98.45 27298.55 36398.16 23399.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23497.98 374
v192192097.80 25597.45 26498.84 22798.80 33398.53 20899.52 14899.34 25396.15 32999.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 285
TR-MVS97.76 25897.41 27598.82 22999.06 30097.87 25298.87 34998.56 37096.63 29398.68 28999.22 31592.49 29799.65 24795.40 33997.79 25798.95 256
v119297.81 25397.44 26998.91 20998.88 32398.68 19499.51 15699.34 25396.18 32599.20 20599.34 29294.03 25699.36 28995.32 34195.18 33698.69 285
myMVS_eth3d96.89 31496.37 31998.43 27799.00 30897.16 28099.29 25499.39 22697.06 26197.41 35198.15 37883.46 38698.68 36895.27 34298.34 22499.45 198
PAPR98.63 16498.34 17399.51 11799.40 21599.03 15098.80 35599.36 24396.33 31399.00 24499.12 32898.46 8199.84 15995.23 34399.37 16299.66 125
TinyColmap97.12 31096.89 30997.83 32299.07 29895.52 34498.57 37498.74 35897.58 20597.81 34599.79 11888.16 36199.56 26195.10 34497.21 29298.39 351
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11796.63 39896.13 33198.87 26398.61 36594.59 23397.70 38895.08 34598.86 19899.55 162
test0.0.03 197.71 27097.42 27498.56 25798.41 36997.82 25598.78 35798.63 36897.34 23398.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 257
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27896.83 28098.19 32899.34 29297.01 13999.02 34395.00 34796.01 31498.64 309
MVS-HIRNet95.75 33695.16 34197.51 33699.30 24093.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28594.85 34899.85 7499.46 195
CR-MVSNet98.17 19697.93 21398.87 22099.18 27098.49 21699.22 28299.33 26096.96 26999.56 12099.38 27994.33 24599.00 34694.83 34998.58 21399.14 229
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 30995.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
testgi97.65 27997.50 25898.13 30399.36 22696.45 32199.42 20699.48 15997.76 18597.87 34299.45 26191.09 32898.81 36394.53 35198.52 21999.13 231
v124097.69 27297.32 28798.79 23598.85 33098.43 22299.48 17999.36 24396.11 33299.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 281
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28399.10 30699.23 29293.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 309
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22998.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3690.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
MVS97.28 30396.55 31599.48 12398.78 33798.95 16599.27 26499.39 22683.53 39998.08 33299.54 23296.97 14099.87 14394.23 35699.16 17199.63 140
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27999.11 30499.24 29193.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 309
TransMVSNet (Re)97.15 30996.58 31498.86 22399.12 28698.85 17999.49 17498.91 33795.48 34597.16 36099.80 10693.38 27199.11 33294.16 35891.73 37798.62 318
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 15991.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18896.11 33298.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 327
thres600view797.86 24297.51 25798.92 20599.72 9297.95 24899.59 10298.74 35897.94 16499.27 18898.62 36391.75 31399.86 14693.73 36198.19 23898.96 254
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 28968.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
DeepMVS_CXcopyleft93.34 37199.29 24482.27 40099.22 29485.15 39796.33 37099.05 33390.97 33099.73 21593.57 36397.77 25898.01 370
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27499.15 29299.33 26093.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 318
Patchmatch-test97.93 23197.65 24398.77 23799.18 27097.07 28799.03 31899.14 30696.16 32798.74 27899.57 22194.56 23599.72 21993.36 36599.11 17799.52 172
thres100view90097.76 25897.45 26498.69 24499.72 9297.86 25499.59 10298.74 35897.93 16599.26 19298.62 36391.75 31399.83 17293.22 36698.18 23998.37 353
tfpn200view997.72 26797.38 27798.72 24099.69 10797.96 24699.50 16398.73 36397.83 17699.17 21398.45 36891.67 31799.83 17293.22 36698.18 23998.37 353
thres40097.77 25797.38 27798.92 20599.69 10797.96 24699.50 16398.73 36397.83 17699.17 21398.45 36891.67 31799.83 17293.22 36698.18 23998.96 254
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26693.04 36999.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26599.13 29598.33 37597.36 23299.07 22998.94 34695.64 18999.15 32392.95 37098.68 20996.12 397
thres20097.61 28297.28 29298.62 24899.64 13298.03 24099.26 27398.74 35897.68 19599.09 22798.32 37491.66 31999.81 18492.88 37198.22 23498.03 369
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29895.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29895.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14599.09 14198.04 39599.25 28991.24 38698.51 30899.70 15994.55 23799.91 11092.76 37499.85 7499.42 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FMVSNet596.43 32496.19 32397.15 34399.11 28895.89 33599.32 24499.52 10494.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28793.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27597.93 377
APD_test195.87 33396.49 31794.00 36899.53 16784.01 39799.54 13999.32 27095.91 34097.99 33799.85 5585.49 37599.88 13891.96 37798.84 20098.12 364
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25499.39 22697.06 26197.41 35198.15 37893.92 26198.68 36891.71 37898.34 22499.45 198
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28494.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 331
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3099.29 28293.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29893.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12399.44 20795.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
PAPM97.59 28397.09 30299.07 18399.06 30098.26 22998.30 38899.10 30994.88 35698.08 33299.34 29296.27 16599.64 25089.87 38598.92 19499.31 219
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2848.40 41325.05 41499.27 30984.11 38399.33 29589.20 38798.22 23497.42 387
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25396.76 390
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23495.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
PatchT97.03 31396.44 31898.79 23598.99 31198.34 22699.16 28999.07 31592.13 38299.52 12997.31 39294.54 23898.98 34888.54 39098.73 20799.03 245
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14899.50 13893.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 330
dmvs_testset95.02 34296.12 32491.72 37799.10 29180.43 40599.58 11097.87 38597.47 21895.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 160
TAPA-MVS97.07 1597.74 26497.34 28498.94 20199.70 10297.53 26799.25 27599.51 11991.90 38399.30 17999.63 19998.78 4899.64 25088.09 39299.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 19979.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15699.38 23496.55 29996.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8499.08 31296.17 32697.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
RPMNet96.72 31895.90 33099.19 17299.18 27098.49 21699.22 28299.52 10488.72 39599.56 12097.38 38994.08 25599.95 5986.87 39798.58 21399.14 229
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai93.26 35592.93 35994.25 36799.39 21885.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25699.58 154
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4899.27 28695.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3699.23 29294.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 224
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1190.00 4140.00 41599.56 22496.58 1520.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
FOURS199.91 199.93 199.87 799.56 7199.10 2799.81 41
test_one_060199.81 4699.88 899.49 14798.97 5199.65 9399.81 9399.09 14
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.84 3299.90 299.48 15999.07 3599.91 1899.74 14499.20 799.76 204
save fliter99.76 6599.59 7199.14 29499.40 22399.00 43
test072699.85 2699.89 499.62 8999.50 13899.10 2799.86 3199.82 7998.94 29
GSMVS99.52 172
test_part299.81 4699.83 1699.77 55
sam_mvs194.86 21499.52 172
sam_mvs94.72 226
MTGPAbinary99.47 179
test_post65.99 41094.65 23299.73 215
patchmatchnet-post98.70 36194.79 21899.74 209
MTMP99.54 13998.88 342
TEST999.67 11499.65 5799.05 31399.41 21796.22 32298.95 25099.49 24898.77 5199.91 110
test_899.67 11499.61 6799.03 31899.41 21796.28 31698.93 25399.48 25398.76 5299.91 110
agg_prior99.67 11499.62 6599.40 22398.87 26399.91 110
test_prior499.56 7698.99 329
test_prior99.68 6999.67 11499.48 9199.56 7199.83 17299.74 92
新几何299.01 326
旧先验199.74 8099.59 7199.54 8899.69 16998.47 8099.68 13199.73 97
原ACMM298.95 339
test22299.75 7399.49 8998.91 34599.49 14796.42 31099.34 17399.65 18798.28 9399.69 12899.72 103
segment_acmp98.96 24
testdata198.85 35098.32 113
test1299.75 5899.64 13299.61 6799.29 28299.21 20298.38 8899.89 13299.74 12099.74 92
plane_prior799.29 24497.03 293
plane_prior699.27 24996.98 29792.71 289
plane_prior499.61 208
plane_prior397.00 29598.69 7999.11 221
plane_prior299.39 22298.97 51
plane_prior199.26 251
plane_prior96.97 29899.21 28498.45 9897.60 265
n20.00 420
nn0.00 420
door-mid98.05 382
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
HQP-NCC99.19 26798.98 33298.24 12298.66 290
ACMP_Plane99.19 26798.98 33298.24 12298.66 290
HQP4-MVS98.66 29099.64 25098.64 309
HQP3-MVS99.39 22697.58 267
HQP2-MVS92.47 298
NP-MVS99.23 25796.92 30199.40 273
ACMMP++_ref97.19 293
ACMMP++97.43 284
Test By Simon98.75 55