This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 6196.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7690.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
IU-MVS98.77 486.00 5496.84 6281.26 24297.26 695.50 799.13 399.03 4
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8896.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13697.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7697.51 489.13 5897.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8796.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23794.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 12097.17 3886.26 13092.83 6397.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 21094.00 18097.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6997.34 1988.28 8195.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9495.47 16989.44 4795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9695.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13696.70 8091.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7898.16 55
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10897.12 4087.13 10992.51 7596.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10696.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15696.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8594.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13696.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7898.15 56
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 4096.84 6288.33 7894.19 3097.43 1884.24 6999.01 7093.26 2797.98 6798.52 20
9.1494.47 1797.79 5296.08 5097.44 1286.13 13495.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 12896.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
CANet93.54 5193.20 5794.55 4495.65 12185.73 6794.94 11196.69 8291.89 590.69 10795.88 9381.99 9799.54 1693.14 3097.95 6998.39 36
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12295.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
CS-MVS93.01 6393.28 5392.21 12594.70 16081.67 16196.60 2996.65 8789.58 4492.34 7795.10 11683.39 7798.15 13693.11 3197.99 6596.82 120
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 12895.83 14291.27 1293.60 4696.71 5685.75 5098.86 9192.87 3396.65 9497.96 71
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7196.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3498.40 5398.62 16
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7287.46 10393.75 4097.43 1884.24 6999.01 7092.73 3597.80 7397.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7287.46 10393.75 4097.43 1882.94 8092.73 3597.80 7397.88 77
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14893.93 23989.77 4094.21 2995.59 10387.35 3098.61 10792.72 3796.15 10397.83 81
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11393.92 3797.47 1683.88 7498.96 8392.71 3897.87 7198.26 49
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15893.56 4996.28 7685.60 5199.31 3892.45 3998.79 1998.12 59
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11792.62 7296.80 5584.85 6399.17 5092.43 4098.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
alignmvs93.08 6292.50 6994.81 3295.62 12387.61 1295.99 5496.07 12289.77 4094.12 3294.87 12380.56 10698.66 10292.42 4193.10 15398.15 56
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8293.15 5597.04 4286.17 4499.62 192.40 4298.81 1898.52 20
canonicalmvs93.27 5892.75 6594.85 2795.70 12087.66 1196.33 3596.41 9990.00 3494.09 3394.60 13682.33 8898.62 10692.40 4292.86 15898.27 47
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 7093.65 4397.21 3286.10 4599.49 2392.35 4498.77 2498.30 41
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 7093.53 5097.26 2985.04 5999.54 1692.35 4498.78 2198.50 22
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4698.99 1098.84 8
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7293.58 4797.27 2785.22 5699.54 1692.21 4798.74 2998.56 19
DeepC-MVS88.79 393.31 5692.99 6194.26 5596.07 10585.83 6494.89 11596.99 4789.02 6289.56 11797.37 2382.51 8599.38 2992.20 4898.30 5797.57 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6497.33 2290.03 3393.58 4796.96 4684.87 6297.76 16492.19 4998.66 4096.76 121
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7492.73 6897.23 3085.20 5799.32 3792.15 5098.83 1798.25 50
train_agg93.44 5393.08 5894.52 4597.53 5886.49 3994.07 17396.78 6981.86 22892.77 6596.20 8087.63 2799.12 5592.14 5198.69 3397.94 72
diffmvs91.37 8791.23 8391.77 14693.09 21780.27 19892.36 24195.52 16687.03 11291.40 10094.93 12080.08 11197.44 19092.13 5294.56 12797.61 88
hse-mvs390.80 9590.15 10192.75 9796.01 10782.66 14195.43 7995.53 16589.80 3793.08 5895.64 10175.77 15899.00 7592.07 5378.05 32096.60 126
hse-mvs289.88 12189.34 11991.51 15394.83 15481.12 17893.94 18393.91 24289.80 3793.08 5893.60 17575.77 15897.66 17192.07 5377.07 32795.74 160
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 6091.98 8597.19 3485.43 5499.56 792.06 5598.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZD-MVS98.15 3586.62 3597.07 4483.63 18594.19 3096.91 4887.57 2999.26 4391.99 5698.44 51
EI-MVSNet-Vis-set93.01 6392.92 6393.29 7495.01 14183.51 11494.48 14095.77 14690.87 1592.52 7496.67 6084.50 6699.00 7591.99 5694.44 13197.36 97
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6197.16 3785.02 6099.49 2391.99 5698.56 4798.47 28
X-MVStestdata88.31 16386.13 20594.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6123.41 36285.02 6099.49 2391.99 5698.56 4798.47 28
agg_prior193.29 5792.97 6294.26 5597.38 6485.92 6093.92 18496.72 7881.96 22292.16 8196.23 7887.85 2298.97 8091.95 6098.55 4997.90 76
test9_res91.91 6198.71 3098.07 63
abl_693.18 6193.05 5993.57 7397.52 6084.27 9595.53 7796.67 8387.85 9393.20 5497.22 3180.35 10799.18 4991.91 6197.21 8397.26 100
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21497.24 3088.76 6791.60 9695.85 9486.07 4798.66 10291.91 6198.16 6098.03 67
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11397.21 3484.33 17293.89 3897.09 3987.20 3399.29 4191.90 6498.44 5198.12 59
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14295.05 2397.18 3587.31 3199.07 5891.90 6498.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10984.43 9293.08 21996.09 12088.20 8591.12 10495.72 9981.33 10297.76 16491.74 6697.37 8296.75 122
ETV-MVS92.74 6792.66 6692.97 8895.20 13684.04 10095.07 10396.51 9490.73 2192.96 6091.19 25284.06 7198.34 12591.72 6796.54 9796.54 130
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3297.34 1987.51 10293.65 4397.21 3286.10 4599.49 2391.68 6898.77 2498.30 41
EI-MVSNet-UG-set92.74 6792.62 6793.12 8094.86 15283.20 12194.40 14895.74 14990.71 2292.05 8496.60 6484.00 7298.99 7791.55 6993.63 13997.17 105
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10794.85 2497.04 4286.99 3799.52 2091.54 7098.33 5698.71 12
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16696.88 5987.67 9992.63 7096.39 7286.62 3998.87 8891.50 7198.67 3798.11 61
test_prior294.12 16687.67 9992.63 7096.39 7286.62 3991.50 7198.67 37
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6891.83 9197.17 3683.96 7399.55 1291.44 7398.64 4398.43 34
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3197.19 3588.24 8293.26 5196.83 5185.48 5399.59 491.43 7498.40 5398.30 41
DELS-MVS93.43 5493.25 5493.97 5995.42 12785.04 7493.06 22197.13 3990.74 2091.84 8995.09 11786.32 4399.21 4791.22 7598.45 5097.65 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
nrg03091.08 9390.39 9593.17 7993.07 21886.91 2096.41 3396.26 10788.30 8088.37 13494.85 12682.19 9297.64 17591.09 7682.95 26494.96 183
baseline92.39 7392.29 7292.69 10294.46 17181.77 15894.14 16596.27 10689.22 5491.88 8796.00 8882.35 8797.99 15391.05 7795.27 11898.30 41
xiu_mvs_v1_base_debu90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
xiu_mvs_v1_base90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
xiu_mvs_v1_base_debi90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
VDD-MVS90.74 9789.92 10993.20 7796.27 9683.02 12795.73 6693.86 24388.42 7792.53 7396.84 5062.09 30098.64 10490.95 8192.62 16197.93 74
casdiffmvs92.51 7092.43 7092.74 9894.41 17481.98 15494.54 13896.23 11189.57 4591.96 8696.17 8482.58 8498.01 15190.95 8195.45 11398.23 51
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7396.89 5889.40 5092.81 6496.97 4585.37 5599.24 4490.87 8398.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft93.24 5992.88 6494.30 5498.09 4085.33 7296.86 2297.45 1188.33 7890.15 11397.03 4481.44 10099.51 2190.85 8495.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8697.78 187.45 10593.26 5197.33 2484.62 6599.51 2190.75 8598.57 4698.32 40
agg_prior290.54 8698.68 3598.27 47
HPM-MVS_fast93.40 5593.22 5593.94 6198.36 2584.83 7697.15 896.80 6885.77 13992.47 7697.13 3882.38 8699.07 5890.51 8798.40 5397.92 75
lupinMVS90.92 9490.21 9893.03 8593.86 19483.88 10392.81 22893.86 24379.84 25891.76 9294.29 14577.92 13998.04 14990.48 8897.11 8497.17 105
jason90.80 9590.10 10292.90 9193.04 22083.53 11393.08 21994.15 23380.22 25291.41 9994.91 12176.87 14597.93 15890.28 8996.90 8897.24 101
jason: jason.
CSCG93.23 6093.05 5993.76 6998.04 4284.07 9896.22 4297.37 1884.15 17490.05 11495.66 10087.77 2399.15 5389.91 9098.27 5898.07 63
ETH3 D test640093.64 4993.22 5594.92 2097.79 5286.84 2295.31 8397.26 2982.67 20993.81 3996.29 7587.29 3299.27 4289.87 9198.67 3798.65 15
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22790.24 11196.44 7178.59 13198.61 10789.68 9297.85 7297.06 109
MVSFormer91.68 8391.30 8192.80 9493.86 19483.88 10395.96 5795.90 13684.66 16891.76 9294.91 12177.92 13997.30 20589.64 9397.11 8497.24 101
test_djsdf89.03 14488.64 13590.21 20390.74 29579.28 22895.96 5795.90 13684.66 16885.33 20892.94 19574.02 18697.30 20589.64 9388.53 20994.05 227
bset_n11_16_dypcd86.83 21485.55 22490.65 18488.22 33081.70 15988.88 30690.42 31885.26 15485.49 19490.69 26967.11 26797.02 23089.51 9584.39 24993.23 266
EIA-MVS91.95 7691.94 7491.98 13295.16 13780.01 20995.36 8096.73 7688.44 7589.34 12192.16 21983.82 7598.45 11889.35 9697.06 8697.48 94
Effi-MVS+91.59 8491.11 8593.01 8694.35 17883.39 11894.60 13395.10 19387.10 11090.57 10893.10 19181.43 10198.07 14789.29 9794.48 12997.59 90
ET-MVSNet_ETH3D87.51 19185.91 21692.32 11993.70 20283.93 10192.33 24290.94 31184.16 17372.09 34092.52 20869.90 23795.85 28989.20 9888.36 21597.17 105
PS-MVSNAJ91.18 9190.92 8991.96 13495.26 13482.60 14492.09 25195.70 15186.27 12991.84 8992.46 20979.70 11798.99 7789.08 9995.86 10594.29 215
xiu_mvs_v2_base91.13 9290.89 9191.86 14094.97 14482.42 14592.24 24595.64 15886.11 13591.74 9493.14 18979.67 12098.89 8789.06 10095.46 11294.28 216
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11996.44 9689.19 5694.08 3495.90 9277.85 14298.17 13588.90 10193.38 14798.13 58
PS-MVSNAJss89.97 11689.62 11191.02 17491.90 24880.85 18695.26 9195.98 12886.26 13086.21 17694.29 14579.70 11797.65 17388.87 10288.10 21894.57 202
RRT_MVS88.86 14987.68 15992.39 11692.02 24586.09 5394.38 15494.94 19985.45 14987.14 15793.84 16765.88 28497.11 22288.73 10386.77 23693.98 230
XVG-OURS-SEG-HR89.95 11789.45 11491.47 15694.00 18981.21 17691.87 25496.06 12485.78 13888.55 13095.73 9874.67 17697.27 20988.71 10489.64 19495.91 151
jajsoiax88.24 16587.50 16290.48 19390.89 28980.14 20195.31 8395.65 15784.97 16284.24 23494.02 15465.31 28697.42 19288.56 10588.52 21093.89 232
mvs_tets88.06 17187.28 16990.38 19890.94 28579.88 21295.22 9395.66 15585.10 15984.21 23593.94 15963.53 29497.40 19988.50 10688.40 21493.87 235
VDDNet89.56 12788.49 14092.76 9695.07 14082.09 15196.30 3693.19 25581.05 24791.88 8796.86 4961.16 31098.33 12788.43 10792.49 16497.84 80
RRT_test8_iter0586.90 21286.36 19788.52 25793.00 22373.27 30694.32 15795.96 13085.50 14884.26 23392.86 19660.76 31297.70 16988.32 10882.29 27294.60 199
HQP_MVS90.60 10590.19 9991.82 14394.70 16082.73 13795.85 6196.22 11290.81 1786.91 16294.86 12474.23 18098.12 13788.15 10989.99 18594.63 196
plane_prior596.22 11298.12 13788.15 10989.99 18594.63 196
EPNet91.79 7891.02 8894.10 5890.10 30985.25 7396.03 5392.05 28092.83 187.39 15495.78 9679.39 12299.01 7088.13 11197.48 8098.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS90.12 11189.56 11291.82 14393.14 21583.90 10294.16 16495.74 14988.96 6387.86 14195.43 10672.48 20897.91 15988.10 11290.18 18493.65 250
MVSTER88.84 15088.29 14690.51 19192.95 22580.44 19693.73 19195.01 19684.66 16887.15 15593.12 19072.79 20497.21 21687.86 11387.36 22993.87 235
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12288.73 497.07 1396.77 7190.84 1684.02 23796.62 6375.95 15799.34 3387.77 11497.68 7698.59 18
LPG-MVS_test89.45 13188.90 13191.12 16694.47 16981.49 16695.30 8696.14 11786.73 12085.45 19795.16 11369.89 23898.10 13987.70 11589.23 20193.77 244
LGP-MVS_train91.12 16694.47 16981.49 16696.14 11786.73 12085.45 19795.16 11369.89 23898.10 13987.70 11589.23 20193.77 244
MVS_Test91.31 8891.11 8591.93 13694.37 17580.14 20193.46 20295.80 14486.46 12591.35 10193.77 17082.21 9198.09 14587.57 11794.95 12097.55 93
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11796.66 8483.29 19589.27 12294.46 14080.29 10999.17 5087.57 11795.37 11496.05 148
CDPH-MVS92.83 6592.30 7194.44 4897.79 5286.11 5294.06 17596.66 8480.09 25592.77 6596.63 6286.62 3999.04 6387.40 11998.66 4098.17 54
XVG-OURS89.40 13688.70 13491.52 15294.06 18381.46 16891.27 26796.07 12286.14 13388.89 12895.77 9768.73 25797.26 21187.39 12089.96 18795.83 156
EPP-MVSNet91.70 8291.56 7992.13 12795.88 11380.50 19597.33 395.25 18586.15 13289.76 11695.60 10283.42 7698.32 12887.37 12193.25 15097.56 92
VPA-MVSNet89.62 12488.96 12891.60 15193.86 19482.89 13295.46 7897.33 2287.91 9088.43 13393.31 18174.17 18397.40 19987.32 12282.86 26994.52 205
LFMVS90.08 11289.13 12592.95 8996.71 8282.32 14996.08 5089.91 33086.79 11892.15 8396.81 5362.60 29798.34 12587.18 12393.90 13598.19 53
anonymousdsp87.84 17487.09 17290.12 20889.13 31980.54 19494.67 13095.55 16282.05 21883.82 24292.12 22271.47 21797.15 21887.15 12487.80 22592.67 285
CLD-MVS89.47 13088.90 13191.18 16594.22 17982.07 15292.13 24996.09 12087.90 9185.37 20692.45 21074.38 17897.56 18087.15 12490.43 18093.93 231
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BP-MVS87.11 126
HQP-MVS89.80 12289.28 12291.34 16094.17 18081.56 16294.39 15096.04 12688.81 6485.43 20093.97 15873.83 19097.96 15587.11 12689.77 19294.50 207
ACMP84.23 889.01 14688.35 14290.99 17794.73 15781.27 17295.07 10395.89 13886.48 12483.67 24694.30 14469.33 24697.99 15387.10 12888.55 20893.72 248
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
旧先验293.36 20371.25 33694.37 2697.13 22186.74 129
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16586.37 4397.18 797.02 4689.20 5584.31 23296.66 6173.74 19299.17 5086.74 12997.96 6897.79 83
PVSNet_BlendedMVS89.98 11589.70 11090.82 18196.12 10081.25 17393.92 18496.83 6483.49 19089.10 12492.26 21781.04 10498.85 9486.72 13187.86 22492.35 296
PVSNet_Blended90.73 9890.32 9791.98 13296.12 10081.25 17392.55 23696.83 6482.04 22089.10 12492.56 20781.04 10498.85 9486.72 13195.91 10495.84 155
mvs_anonymous89.37 13789.32 12089.51 23493.47 20774.22 29891.65 26294.83 21082.91 20485.45 19793.79 16881.23 10396.36 26986.47 13394.09 13397.94 72
AUN-MVS87.78 17786.54 19291.48 15594.82 15581.05 17993.91 18793.93 23983.00 20186.93 16093.53 17669.50 24497.67 17086.14 13477.12 32695.73 161
test_yl90.69 9990.02 10792.71 9995.72 11882.41 14794.11 16895.12 19185.63 14391.49 9794.70 13074.75 17398.42 12086.13 13592.53 16297.31 98
DCV-MVSNet90.69 9990.02 10792.71 9995.72 11882.41 14794.11 16895.12 19185.63 14391.49 9794.70 13074.75 17398.42 12086.13 13592.53 16297.31 98
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19995.93 13286.95 11489.51 11896.13 8678.50 13398.35 12485.84 13792.90 15796.83 119
test_part189.00 14787.99 15292.04 12895.94 11283.81 10596.14 4696.05 12586.44 12685.69 18493.73 17371.57 21497.66 17185.80 13880.54 30194.66 195
ACMM84.12 989.14 14088.48 14191.12 16694.65 16481.22 17595.31 8396.12 11985.31 15385.92 18094.34 14170.19 23698.06 14885.65 13988.86 20694.08 225
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 23196.56 9383.44 19191.68 9595.04 11886.60 4298.99 7785.60 14097.92 7096.93 116
Effi-MVS+-dtu88.65 15588.35 14289.54 23193.33 21076.39 28294.47 14394.36 22487.70 9785.43 20089.56 29273.45 19597.26 21185.57 14191.28 17194.97 180
mvs-test189.45 13189.14 12490.38 19893.33 21077.63 26594.95 11094.36 22487.70 9787.10 15892.81 20173.45 19598.03 15085.57 14193.04 15495.48 166
FIs90.51 10690.35 9690.99 17793.99 19080.98 18195.73 6697.54 389.15 5786.72 16694.68 13281.83 9997.24 21385.18 14388.31 21694.76 193
MG-MVS91.77 7991.70 7892.00 13197.08 7580.03 20893.60 19795.18 18987.85 9390.89 10696.47 7082.06 9598.36 12285.07 14497.04 8797.62 87
CANet_DTU90.26 11089.41 11792.81 9393.46 20883.01 12893.48 20094.47 22189.43 4987.76 14694.23 14970.54 23299.03 6484.97 14596.39 10196.38 132
UniMVSNet_NR-MVSNet89.92 11989.29 12191.81 14593.39 20983.72 10794.43 14697.12 4089.80 3786.46 16993.32 18083.16 7897.23 21484.92 14681.02 29394.49 209
DU-MVS89.34 13888.50 13891.85 14293.04 22083.72 10794.47 14396.59 9089.50 4686.46 16993.29 18377.25 14397.23 21484.92 14681.02 29394.59 200
cascas86.43 23084.98 23790.80 18292.10 24280.92 18490.24 28395.91 13573.10 32583.57 25088.39 30665.15 28797.46 18784.90 14891.43 17094.03 228
UniMVSNet (Re)89.80 12289.07 12692.01 12993.60 20484.52 8494.78 12397.47 889.26 5386.44 17292.32 21482.10 9397.39 20284.81 14980.84 29794.12 221
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13183.78 10696.14 4695.98 12889.89 3590.45 10996.58 6575.09 16998.31 12984.75 15096.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v2v48287.84 17487.06 17390.17 20490.99 28179.23 23194.00 18095.13 19084.87 16385.53 19092.07 22874.45 17797.45 18884.71 15181.75 28193.85 238
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 13196.66 8482.69 20890.03 11595.82 9582.30 8999.03 6484.57 15296.48 10096.91 117
UA-Net92.83 6592.54 6893.68 7096.10 10384.71 7895.66 7196.39 10191.92 493.22 5396.49 6983.16 7898.87 8884.47 15395.47 11197.45 96
V4287.68 17986.86 17790.15 20690.58 30080.14 20194.24 16195.28 18483.66 18485.67 18591.33 24774.73 17597.41 19784.43 15481.83 27992.89 280
FC-MVSNet-test90.27 10990.18 10090.53 18893.71 20079.85 21495.77 6597.59 289.31 5286.27 17594.67 13381.93 9897.01 23184.26 15588.09 22094.71 194
cl-mvsnet286.78 21785.98 21289.18 24092.34 23577.62 26690.84 27494.13 23581.33 24083.97 23990.15 27973.96 18796.60 25284.19 15682.94 26593.33 260
miper_enhance_ethall86.90 21286.18 20489.06 24391.66 25877.58 26790.22 28594.82 21179.16 26684.48 22189.10 29579.19 12496.66 24584.06 15782.94 26592.94 278
VPNet88.20 16687.47 16490.39 19693.56 20579.46 21994.04 17695.54 16488.67 6986.96 15994.58 13869.33 24697.15 21884.05 15880.53 30394.56 203
UGNet89.95 11788.95 12992.95 8994.51 16883.31 11995.70 6895.23 18689.37 5187.58 14893.94 15964.00 29298.78 9983.92 15996.31 10296.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS88.36 16287.91 15689.70 22793.80 19778.29 24793.73 19195.08 19585.73 14084.75 21591.90 23379.88 11396.92 23683.83 16082.51 27093.89 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth87.22 20486.62 18989.02 24592.13 24077.40 27090.91 27394.81 21281.28 24184.32 23090.08 28179.26 12396.62 24783.81 16182.94 26593.04 275
EI-MVSNet89.10 14188.86 13389.80 22391.84 25078.30 24693.70 19495.01 19685.73 14087.15 15595.28 10879.87 11497.21 21683.81 16187.36 22993.88 234
cl_fuxian87.14 20886.50 19489.04 24492.20 23777.26 27191.22 26994.70 21682.01 22184.34 22990.43 27478.81 12796.61 25083.70 16381.09 29093.25 264
Anonymous2024052988.09 16986.59 19092.58 10696.53 8981.92 15695.99 5495.84 14174.11 31789.06 12695.21 11261.44 30598.81 9783.67 16487.47 22697.01 112
v114487.61 18786.79 18190.06 21191.01 28079.34 22493.95 18295.42 17883.36 19485.66 18691.31 25074.98 17197.42 19283.37 16582.06 27593.42 259
thisisatest053088.67 15487.61 16191.86 14094.87 15180.07 20494.63 13289.90 33184.00 17788.46 13293.78 16966.88 27198.46 11583.30 16692.65 16097.06 109
tttt051788.61 15687.78 15791.11 16994.96 14577.81 25995.35 8189.69 33485.09 16088.05 13994.59 13766.93 26998.48 11383.27 16792.13 16797.03 111
testdata90.49 19296.40 9277.89 25695.37 18172.51 33093.63 4596.69 5882.08 9497.65 17383.08 16897.39 8195.94 150
LCM-MVSNet-Re88.30 16488.32 14588.27 26394.71 15972.41 31893.15 21590.98 30987.77 9579.25 30491.96 23178.35 13595.75 29483.04 16995.62 10796.65 125
IS-MVSNet91.43 8591.09 8792.46 11195.87 11581.38 17196.95 1493.69 24889.72 4289.50 11995.98 8978.57 13297.77 16383.02 17096.50 9998.22 52
UniMVSNet_ETH3D87.53 19086.37 19691.00 17692.44 23378.96 23394.74 12595.61 15984.07 17685.36 20794.52 13959.78 31997.34 20482.93 17187.88 22396.71 124
XVG-ACMP-BASELINE86.00 23484.84 24289.45 23591.20 27278.00 25291.70 26095.55 16285.05 16182.97 25992.25 21854.49 33697.48 18582.93 17187.45 22892.89 280
v14419287.19 20686.35 19889.74 22490.64 29878.24 24893.92 18495.43 17681.93 22485.51 19291.05 26074.21 18297.45 18882.86 17381.56 28393.53 253
v887.50 19386.71 18389.89 21791.37 26779.40 22194.50 13995.38 17984.81 16583.60 24991.33 24776.05 15497.42 19282.84 17480.51 30592.84 282
Anonymous2023121186.59 22485.13 23490.98 17996.52 9081.50 16496.14 4696.16 11673.78 31983.65 24792.15 22063.26 29597.37 20382.82 17581.74 28294.06 226
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16894.37 15596.24 11086.39 12887.41 15194.80 12882.06 9598.48 11382.80 17695.37 11497.61 88
eth_miper_zixun_eth86.50 22785.77 22188.68 25391.94 24775.81 28890.47 27994.89 20582.05 21884.05 23690.46 27375.96 15696.77 24182.76 17779.36 31593.46 258
Patchmatch-RL test81.67 28579.96 29186.81 29985.42 34571.23 32482.17 34787.50 34578.47 27777.19 31582.50 34370.81 22593.48 32982.66 17872.89 33495.71 162
tpmrst85.35 24684.99 23686.43 30190.88 29067.88 34288.71 30891.43 29980.13 25486.08 17988.80 30173.05 20196.02 28182.48 17983.40 26395.40 170
sss88.93 14888.26 14890.94 18094.05 18480.78 18891.71 25995.38 17981.55 23688.63 12993.91 16375.04 17095.47 30582.47 18091.61 16996.57 128
ab-mvs89.41 13488.35 14292.60 10495.15 13982.65 14292.20 24795.60 16083.97 17888.55 13093.70 17474.16 18498.21 13482.46 18189.37 19796.94 115
CostFormer85.77 24084.94 23988.26 26491.16 27672.58 31689.47 29791.04 30876.26 29786.45 17189.97 28470.74 22696.86 24082.35 18287.07 23495.34 173
v119287.25 20186.33 19990.00 21590.76 29479.04 23293.80 18895.48 16882.57 21085.48 19591.18 25473.38 19997.42 19282.30 18382.06 27593.53 253
Baseline_NR-MVSNet87.07 20986.63 18888.40 25991.44 26177.87 25794.23 16292.57 26884.12 17585.74 18392.08 22677.25 14396.04 27982.29 18479.94 30991.30 313
Anonymous20240521187.68 17986.13 20592.31 12096.66 8380.74 18994.87 11791.49 29780.47 25189.46 12095.44 10454.72 33598.23 13182.19 18589.89 18997.97 70
v14887.04 21086.32 20089.21 23890.94 28577.26 27193.71 19394.43 22284.84 16484.36 22890.80 26676.04 15597.05 22882.12 18679.60 31393.31 261
114514_t89.51 12888.50 13892.54 10898.11 3781.99 15395.16 9996.36 10370.19 34085.81 18195.25 11076.70 14998.63 10582.07 18796.86 9097.00 113
v192192086.97 21186.06 21089.69 22890.53 30378.11 25193.80 18895.43 17681.90 22685.33 20891.05 26072.66 20597.41 19782.05 18881.80 28093.53 253
OurMVSNet-221017-085.35 24684.64 24687.49 28190.77 29372.59 31594.01 17994.40 22384.72 16779.62 30293.17 18761.91 30296.72 24281.99 18981.16 28793.16 270
v1087.25 20186.38 19589.85 21891.19 27379.50 21894.48 14095.45 17383.79 18283.62 24891.19 25275.13 16897.42 19281.94 19080.60 29992.63 287
TranMVSNet+NR-MVSNet88.84 15087.95 15491.49 15492.68 23083.01 12894.92 11396.31 10489.88 3685.53 19093.85 16676.63 15196.96 23381.91 19179.87 31194.50 207
D2MVS85.90 23685.09 23588.35 26190.79 29277.42 26991.83 25595.70 15180.77 24980.08 29590.02 28266.74 27496.37 26781.88 19287.97 22291.26 314
test-LLR85.87 23785.41 22887.25 28790.95 28371.67 32189.55 29389.88 33283.41 19284.54 21987.95 31367.25 26495.11 31081.82 19393.37 14894.97 180
test-mter84.54 26183.64 25987.25 28790.95 28371.67 32189.55 29389.88 33279.17 26584.54 21987.95 31355.56 33195.11 31081.82 19393.37 14894.97 180
PMMVS85.71 24184.96 23887.95 27288.90 32277.09 27388.68 30990.06 32672.32 33186.47 16890.76 26872.15 21194.40 31681.78 19593.49 14392.36 295
cl-mvsnet____86.52 22685.78 21988.75 25092.03 24476.46 28090.74 27594.30 22781.83 23083.34 25590.78 26775.74 16396.57 25381.74 19681.54 28493.22 267
cl-mvsnet186.53 22585.78 21988.75 25092.02 24576.45 28190.74 27594.30 22781.83 23083.34 25590.82 26575.75 16196.57 25381.73 19781.52 28593.24 265
NR-MVSNet88.58 15887.47 16491.93 13693.04 22084.16 9794.77 12496.25 10989.05 5980.04 29693.29 18379.02 12597.05 22881.71 19880.05 30894.59 200
WTY-MVS89.60 12588.92 13091.67 14995.47 12681.15 17792.38 24094.78 21483.11 19889.06 12694.32 14378.67 13096.61 25081.57 19990.89 17897.24 101
thisisatest051587.33 19785.99 21191.37 15993.49 20679.55 21790.63 27789.56 33780.17 25387.56 14990.86 26367.07 26898.28 13081.50 20093.02 15596.29 134
v124086.78 21785.85 21789.56 23090.45 30477.79 26093.61 19695.37 18181.65 23285.43 20091.15 25671.50 21697.43 19181.47 20182.05 27793.47 257
GeoE90.05 11389.43 11691.90 13995.16 13780.37 19795.80 6394.65 21883.90 17987.55 15094.75 12978.18 13797.62 17781.28 20293.63 13997.71 85
WR-MVS88.38 16087.67 16090.52 19093.30 21280.18 19993.26 21195.96 13088.57 7385.47 19692.81 20176.12 15396.91 23781.24 20382.29 27294.47 212
131487.51 19186.57 19190.34 20192.42 23479.74 21692.63 23295.35 18378.35 27980.14 29391.62 24274.05 18597.15 21881.05 20493.53 14294.12 221
IterMVS-SCA-FT85.45 24384.53 24888.18 26791.71 25576.87 27690.19 28692.65 26785.40 15181.44 27590.54 27166.79 27295.00 31381.04 20581.05 29192.66 286
XXY-MVS87.65 18186.85 17890.03 21292.14 23980.60 19393.76 19095.23 18682.94 20384.60 21794.02 15474.27 17995.49 30481.04 20583.68 25794.01 229
miper_lstm_enhance85.27 24984.59 24787.31 28491.28 27174.63 29387.69 32094.09 23781.20 24581.36 27789.85 28774.97 17294.30 31981.03 20779.84 31293.01 276
GA-MVS86.61 22285.27 23290.66 18391.33 27078.71 23590.40 28093.81 24685.34 15285.12 21089.57 29161.25 30797.11 22280.99 20889.59 19596.15 138
IB-MVS80.51 1585.24 25083.26 26291.19 16492.13 24079.86 21391.75 25791.29 30283.28 19680.66 28588.49 30561.28 30698.46 11580.99 20879.46 31495.25 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet84.69 26084.79 24384.37 31991.84 25064.92 35093.70 19491.47 29866.19 34686.16 17895.28 10867.18 26693.33 33180.89 21090.42 18194.88 188
baseline188.10 16887.28 16990.57 18694.96 14580.07 20494.27 15991.29 30286.74 11987.41 15194.00 15676.77 14896.20 27480.77 21179.31 31695.44 168
HyFIR lowres test88.09 16986.81 17991.93 13696.00 10880.63 19190.01 28995.79 14573.42 32287.68 14792.10 22573.86 18997.96 15580.75 21291.70 16897.19 104
AdaColmapbinary89.89 12089.07 12692.37 11797.41 6383.03 12694.42 14795.92 13382.81 20686.34 17494.65 13473.89 18899.02 6880.69 21395.51 10995.05 178
原ACMM192.01 12997.34 6681.05 17996.81 6778.89 26990.45 10995.92 9182.65 8398.84 9680.68 21498.26 5996.14 139
TESTMET0.1,183.74 26982.85 26886.42 30289.96 31371.21 32589.55 29387.88 34177.41 28683.37 25487.31 32256.71 32893.65 32880.62 21592.85 15994.40 213
无先验93.28 21096.26 10773.95 31899.05 6080.56 21696.59 127
112190.42 10789.49 11393.20 7797.27 7184.46 8892.63 23295.51 16771.01 33891.20 10396.21 7982.92 8199.05 6080.56 21698.07 6396.10 144
Fast-Effi-MVS+89.41 13488.64 13591.71 14894.74 15680.81 18793.54 19895.10 19383.11 19886.82 16590.67 27079.74 11697.75 16780.51 21893.55 14196.57 128
CHOSEN 1792x268888.84 15087.69 15892.30 12196.14 9981.42 17090.01 28995.86 14074.52 31487.41 15193.94 15975.46 16698.36 12280.36 21995.53 10897.12 108
CDS-MVSNet89.45 13188.51 13792.29 12293.62 20383.61 11293.01 22294.68 21781.95 22387.82 14493.24 18578.69 12996.99 23280.34 22093.23 15196.28 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu87.44 19486.72 18289.63 22992.04 24377.68 26494.03 17793.94 23885.81 13782.42 26491.32 24970.33 23497.06 22780.33 22190.23 18394.14 220
baseline286.50 22785.39 22989.84 21991.12 27776.70 27791.88 25388.58 33982.35 21479.95 29790.95 26273.42 19797.63 17680.27 22289.95 18895.19 175
API-MVS90.66 10190.07 10392.45 11296.36 9484.57 8196.06 5295.22 18882.39 21189.13 12394.27 14880.32 10898.46 11580.16 22396.71 9294.33 214
MAR-MVS90.30 10889.37 11893.07 8496.61 8584.48 8795.68 6995.67 15382.36 21387.85 14292.85 19776.63 15198.80 9880.01 22496.68 9395.91 151
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS83.01 1289.03 14487.94 15592.29 12294.86 15282.77 13392.08 25294.49 22081.52 23786.93 16092.79 20378.32 13698.23 13179.93 22590.55 17995.88 153
CHOSEN 280x42085.15 25183.99 25388.65 25492.47 23278.40 24479.68 35192.76 26374.90 31181.41 27689.59 29069.85 24095.51 30179.92 22695.29 11692.03 301
MVS87.44 19486.10 20891.44 15792.61 23183.62 11192.63 23295.66 15567.26 34481.47 27492.15 22077.95 13898.22 13379.71 22795.48 11092.47 291
pm-mvs186.61 22285.54 22589.82 22091.44 26180.18 19995.28 9094.85 20883.84 18181.66 27392.62 20672.45 21096.48 26079.67 22878.06 31992.82 283
IterMVS84.88 25683.98 25487.60 27791.44 26176.03 28690.18 28792.41 27083.24 19781.06 28190.42 27566.60 27594.28 32079.46 22980.98 29692.48 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
1112_ss88.42 15987.33 16791.72 14794.92 14880.98 18192.97 22494.54 21978.16 28383.82 24293.88 16478.78 12897.91 15979.45 23089.41 19696.26 136
gm-plane-assit89.60 31868.00 34077.28 28988.99 29697.57 17979.44 231
PM-MVS78.11 31376.12 31584.09 32383.54 35070.08 33488.97 30585.27 34979.93 25774.73 33086.43 32734.70 35793.48 32979.43 23272.06 33688.72 340
v7n86.81 21585.76 22289.95 21690.72 29679.25 23095.07 10395.92 13384.45 17182.29 26590.86 26372.60 20797.53 18279.42 23380.52 30493.08 274
PAPR90.02 11489.27 12392.29 12295.78 11680.95 18392.68 23096.22 11281.91 22586.66 16793.75 17282.23 9098.44 11979.40 23494.79 12197.48 94
新几何193.10 8197.30 6884.35 9495.56 16171.09 33791.26 10296.24 7782.87 8298.86 9179.19 23598.10 6296.07 146
CP-MVSNet87.63 18487.26 17188.74 25293.12 21676.59 27995.29 8896.58 9188.43 7683.49 25292.98 19475.28 16795.83 29078.97 23681.15 28993.79 240
pmmvs485.43 24483.86 25590.16 20590.02 31282.97 13090.27 28192.67 26675.93 30080.73 28391.74 23771.05 22095.73 29578.85 23783.46 26191.78 304
DWT-MVSNet_test84.95 25583.68 25788.77 24891.43 26473.75 30291.74 25890.98 30980.66 25083.84 24187.36 32162.44 29897.11 22278.84 23885.81 23995.46 167
Test_1112_low_res87.65 18186.51 19391.08 17094.94 14779.28 22891.77 25694.30 22776.04 29983.51 25192.37 21277.86 14197.73 16878.69 23989.13 20396.22 137
Vis-MVSNet (Re-imp)89.59 12689.44 11590.03 21295.74 11775.85 28795.61 7490.80 31587.66 10187.83 14395.40 10776.79 14796.46 26378.37 24096.73 9197.80 82
PS-CasMVS87.32 19886.88 17688.63 25592.99 22476.33 28495.33 8296.61 8988.22 8483.30 25793.07 19273.03 20295.79 29378.36 24181.00 29593.75 246
testdata298.75 10078.30 242
GBi-Net87.26 19985.98 21291.08 17094.01 18683.10 12395.14 10094.94 19983.57 18684.37 22591.64 23866.59 27696.34 27078.23 24385.36 24293.79 240
test187.26 19985.98 21291.08 17094.01 18683.10 12395.14 10094.94 19983.57 18684.37 22591.64 23866.59 27696.34 27078.23 24385.36 24293.79 240
FMVSNet387.40 19686.11 20791.30 16193.79 19983.64 11094.20 16394.81 21283.89 18084.37 22591.87 23468.45 26096.56 25578.23 24385.36 24293.70 249
OpenMVScopyleft83.78 1188.74 15387.29 16893.08 8292.70 22985.39 7196.57 3096.43 9878.74 27480.85 28296.07 8769.64 24299.01 7078.01 24696.65 9494.83 190
tpm84.73 25884.02 25286.87 29890.33 30568.90 33889.06 30389.94 32980.85 24885.75 18289.86 28668.54 25995.97 28377.76 24784.05 25395.75 159
TAMVS89.21 13988.29 14691.96 13493.71 20082.62 14393.30 20894.19 23182.22 21587.78 14593.94 15978.83 12696.95 23477.70 24892.98 15696.32 133
BH-untuned88.60 15788.13 15090.01 21495.24 13578.50 24193.29 20994.15 23384.75 16684.46 22293.40 17775.76 16097.40 19977.59 24994.52 12894.12 221
FMVSNet287.19 20685.82 21891.30 16194.01 18683.67 10994.79 12294.94 19983.57 18683.88 24092.05 22966.59 27696.51 25877.56 25085.01 24593.73 247
RPSCF85.07 25284.27 24987.48 28292.91 22670.62 33191.69 26192.46 26976.20 29882.67 26395.22 11163.94 29397.29 20877.51 25185.80 24094.53 204
PLCcopyleft84.53 789.06 14388.03 15192.15 12697.27 7182.69 14094.29 15895.44 17579.71 26084.01 23894.18 15076.68 15098.75 10077.28 25293.41 14695.02 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA89.07 14287.98 15392.34 11896.87 7884.78 7794.08 17293.24 25381.41 23884.46 22295.13 11575.57 16596.62 24777.21 25393.84 13795.61 164
K. test v381.59 28780.15 28985.91 30889.89 31569.42 33792.57 23587.71 34385.56 14573.44 33689.71 28955.58 33095.52 30077.17 25469.76 33892.78 284
QAPM89.51 12888.15 14993.59 7294.92 14884.58 8096.82 2496.70 8078.43 27883.41 25396.19 8373.18 20099.30 3977.11 25596.54 9796.89 118
pmmvs584.21 26382.84 26988.34 26288.95 32176.94 27592.41 23891.91 28875.63 30280.28 29091.18 25464.59 29095.57 29777.09 25683.47 26092.53 289
pmmvs683.42 27181.60 27588.87 24788.01 33377.87 25794.96 10994.24 23074.67 31378.80 30591.09 25960.17 31696.49 25977.06 25775.40 33092.23 299
test_post188.00 3169.81 36469.31 24895.53 29976.65 258
SCA86.32 23185.18 23389.73 22692.15 23876.60 27891.12 27091.69 29183.53 18985.50 19388.81 29966.79 27296.48 26076.65 25890.35 18296.12 141
WR-MVS_H87.80 17687.37 16689.10 24293.23 21378.12 25095.61 7497.30 2687.90 9183.72 24492.01 23079.65 12196.01 28276.36 26080.54 30193.16 270
EU-MVSNet81.32 29280.95 28082.42 32888.50 32563.67 35193.32 20491.33 30064.02 34880.57 28792.83 19961.21 30992.27 34076.34 26180.38 30691.32 312
CMPMVSbinary59.16 2180.52 29879.20 30084.48 31883.98 34867.63 34489.95 29193.84 24564.79 34766.81 34891.14 25757.93 32695.17 30876.25 26288.10 21890.65 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
F-COLMAP87.95 17286.80 18091.40 15896.35 9580.88 18594.73 12695.45 17379.65 26182.04 27094.61 13571.13 21998.50 11276.24 26391.05 17694.80 192
PEN-MVS86.80 21686.27 20288.40 25992.32 23675.71 28995.18 9796.38 10287.97 8882.82 26193.15 18873.39 19895.92 28576.15 26479.03 31893.59 251
SixPastTwentyTwo83.91 26782.90 26786.92 29590.99 28170.67 33093.48 20091.99 28385.54 14677.62 31392.11 22460.59 31396.87 23976.05 26577.75 32193.20 268
MVS_030483.46 27081.92 27388.10 26990.63 29977.49 26893.26 21193.75 24780.04 25680.44 28987.24 32447.94 35095.55 29875.79 26688.16 21791.26 314
MS-PatchMatch85.05 25384.16 25087.73 27591.42 26578.51 24091.25 26893.53 24977.50 28580.15 29291.58 24361.99 30195.51 30175.69 26794.35 13289.16 337
BH-w/o87.57 18987.05 17489.12 24194.90 15077.90 25592.41 23893.51 25082.89 20583.70 24591.34 24675.75 16197.07 22675.49 26893.49 14392.39 294
gg-mvs-nofinetune81.77 28379.37 29688.99 24690.85 29177.73 26386.29 32879.63 35874.88 31283.19 25869.05 35360.34 31496.11 27875.46 26994.64 12593.11 272
FMVSNet185.85 23884.11 25191.08 17092.81 22783.10 12395.14 10094.94 19981.64 23382.68 26291.64 23859.01 32396.34 27075.37 27083.78 25493.79 240
EPMVS83.90 26882.70 27087.51 27990.23 30872.67 31288.62 31081.96 35481.37 23985.01 21288.34 30766.31 27994.45 31575.30 27187.12 23295.43 169
pmmvs-eth3d80.97 29678.72 30587.74 27484.99 34779.97 21190.11 28891.65 29275.36 30473.51 33586.03 33059.45 32093.96 32575.17 27272.21 33589.29 335
tpm284.08 26482.94 26687.48 28291.39 26671.27 32389.23 30190.37 32071.95 33384.64 21689.33 29367.30 26396.55 25775.17 27287.09 23394.63 196
lessismore_v086.04 30488.46 32668.78 33980.59 35673.01 33890.11 28055.39 33296.43 26575.06 27465.06 34692.90 279
MVP-Stereo85.97 23584.86 24189.32 23690.92 28782.19 15092.11 25094.19 23178.76 27378.77 30691.63 24168.38 26196.56 25575.01 27593.95 13489.20 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PVSNet78.82 1885.55 24284.65 24588.23 26694.72 15871.93 31987.12 32492.75 26478.80 27284.95 21390.53 27264.43 29196.71 24474.74 27693.86 13696.06 147
MDTV_nov1_ep13_2view55.91 35987.62 32273.32 32384.59 21870.33 23474.65 27795.50 165
PatchmatchNetpermissive85.85 23884.70 24489.29 23791.76 25375.54 29088.49 31191.30 30181.63 23485.05 21188.70 30371.71 21296.24 27374.61 27889.05 20496.08 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
LF4IMVS80.37 30079.07 30384.27 32186.64 33769.87 33689.39 29891.05 30776.38 29474.97 32990.00 28347.85 35194.25 32174.55 27980.82 29888.69 341
DTE-MVSNet86.11 23385.48 22787.98 27191.65 25974.92 29294.93 11295.75 14887.36 10682.26 26693.04 19372.85 20395.82 29174.04 28077.46 32493.20 268
BH-RMVSNet88.37 16187.48 16391.02 17495.28 13279.45 22092.89 22693.07 25785.45 14986.91 16294.84 12770.35 23397.76 16473.97 28194.59 12695.85 154
CR-MVSNet85.35 24683.76 25690.12 20890.58 30079.34 22485.24 33491.96 28678.27 28085.55 18887.87 31671.03 22195.61 29673.96 28289.36 19895.40 170
ACMH+81.04 1485.05 25383.46 26189.82 22094.66 16379.37 22294.44 14594.12 23682.19 21678.04 30992.82 20058.23 32597.54 18173.77 28382.90 26892.54 288
TR-MVS86.78 21785.76 22289.82 22094.37 17578.41 24392.47 23792.83 26181.11 24686.36 17392.40 21168.73 25797.48 18573.75 28489.85 19193.57 252
UnsupCasMVSNet_eth80.07 30278.27 30685.46 31085.24 34672.63 31488.45 31394.87 20782.99 20271.64 34388.07 31256.34 32991.75 34473.48 28563.36 34992.01 302
PatchMatch-RL86.77 22085.54 22590.47 19495.88 11382.71 13990.54 27892.31 27379.82 25984.32 23091.57 24568.77 25696.39 26673.16 28693.48 14592.32 297
ambc83.06 32679.99 35463.51 35277.47 35292.86 26074.34 33384.45 33628.74 35895.06 31273.06 28768.89 34390.61 324
DIV-MVS_2432*160080.20 30179.24 29883.07 32585.64 34465.29 34991.01 27293.93 23978.71 27576.32 32086.40 32859.20 32292.93 33672.59 28869.35 33991.00 322
ITE_SJBPF88.24 26591.88 24977.05 27492.92 25985.54 14680.13 29493.30 18257.29 32796.20 27472.46 28984.71 24791.49 309
ACMH80.38 1785.36 24583.68 25790.39 19694.45 17280.63 19194.73 12694.85 20882.09 21777.24 31492.65 20560.01 31797.58 17872.25 29084.87 24692.96 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
USDC82.76 27481.26 27987.26 28691.17 27474.55 29489.27 29993.39 25278.26 28175.30 32792.08 22654.43 33796.63 24671.64 29185.79 24190.61 324
EPNet_dtu86.49 22985.94 21588.14 26890.24 30772.82 31094.11 16892.20 27686.66 12379.42 30392.36 21373.52 19395.81 29271.26 29293.66 13895.80 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND87.94 27389.73 31777.91 25487.80 31778.23 36080.58 28683.86 33759.88 31895.33 30771.20 29392.22 16690.60 326
LTVRE_ROB82.13 1386.26 23284.90 24090.34 20194.44 17381.50 16492.31 24494.89 20583.03 20079.63 30192.67 20469.69 24197.79 16271.20 29386.26 23791.72 305
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM81.04 29478.98 30487.25 28788.64 32373.48 30481.75 34889.61 33673.19 32482.05 26973.71 35066.07 28395.87 28871.18 29584.60 24892.41 293
Anonymous2024052180.44 29979.21 29984.11 32285.75 34367.89 34192.86 22793.23 25475.61 30375.59 32687.47 32050.03 34594.33 31871.14 29681.21 28690.12 329
TransMVSNet (Re)84.43 26283.06 26588.54 25691.72 25478.44 24295.18 9792.82 26282.73 20779.67 30092.12 22273.49 19495.96 28471.10 29768.73 34491.21 316
PCF-MVS84.11 1087.74 17886.08 20992.70 10194.02 18584.43 9289.27 29995.87 13973.62 32184.43 22494.33 14278.48 13498.86 9170.27 29894.45 13094.81 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EG-PatchMatch MVS82.37 27980.34 28588.46 25890.27 30679.35 22392.80 22994.33 22677.14 29073.26 33790.18 27847.47 35296.72 24270.25 29987.32 23189.30 334
MDTV_nov1_ep1383.56 26091.69 25769.93 33587.75 31991.54 29578.60 27684.86 21488.90 29869.54 24396.03 28070.25 29988.93 205
TDRefinement79.81 30477.34 30887.22 29079.24 35575.48 29193.12 21692.03 28176.45 29375.01 32891.58 24349.19 34896.44 26470.22 30169.18 34189.75 331
thres100view90087.63 18486.71 18390.38 19896.12 10078.55 23895.03 10791.58 29387.15 10888.06 13892.29 21668.91 25498.10 13970.13 30291.10 17294.48 210
tfpn200view987.58 18886.64 18690.41 19595.99 10978.64 23694.58 13491.98 28486.94 11588.09 13591.77 23569.18 25198.10 13970.13 30291.10 17294.48 210
thres40087.62 18686.64 18690.57 18695.99 10978.64 23694.58 13491.98 28486.94 11588.09 13591.77 23569.18 25198.10 13970.13 30291.10 17294.96 183
thres600view787.65 18186.67 18590.59 18596.08 10478.72 23494.88 11691.58 29387.06 11188.08 13792.30 21568.91 25498.10 13970.05 30591.10 17294.96 183
thres20087.21 20586.24 20390.12 20895.36 12878.53 23993.26 21192.10 27886.42 12788.00 14091.11 25869.24 25098.00 15269.58 30691.04 17793.83 239
tpm cat181.96 28080.27 28687.01 29391.09 27871.02 32787.38 32391.53 29666.25 34580.17 29186.35 32968.22 26296.15 27769.16 30782.29 27293.86 237
Patchmtry82.71 27580.93 28188.06 27090.05 31176.37 28384.74 33891.96 28672.28 33281.32 27887.87 31671.03 22195.50 30368.97 30880.15 30792.32 297
our_test_381.93 28180.46 28486.33 30388.46 32673.48 30488.46 31291.11 30476.46 29276.69 31888.25 30966.89 27094.36 31768.75 30979.08 31791.14 318
PVSNet_073.20 2077.22 31474.83 31984.37 31990.70 29771.10 32683.09 34589.67 33572.81 32973.93 33483.13 34160.79 31193.70 32768.54 31050.84 35588.30 344
MSDG84.86 25783.09 26490.14 20793.80 19780.05 20689.18 30293.09 25678.89 26978.19 30791.91 23265.86 28597.27 20968.47 31188.45 21293.11 272
LS3D87.89 17386.32 20092.59 10596.07 10582.92 13195.23 9294.92 20475.66 30182.89 26095.98 8972.48 20899.21 4768.43 31295.23 11995.64 163
AllTest83.42 27181.39 27789.52 23295.01 14177.79 26093.12 21690.89 31377.41 28676.12 32293.34 17854.08 33897.51 18368.31 31384.27 25193.26 262
TestCases89.52 23295.01 14177.79 26090.89 31377.41 28676.12 32293.34 17854.08 33897.51 18368.31 31384.27 25193.26 262
dp81.47 29080.23 28785.17 31489.92 31465.49 34886.74 32590.10 32576.30 29681.10 27987.12 32662.81 29695.92 28568.13 31579.88 31094.09 224
tpmvs83.35 27382.07 27187.20 29191.07 27971.00 32888.31 31491.70 29078.91 26880.49 28887.18 32569.30 24997.08 22568.12 31683.56 25993.51 256
FMVSNet581.52 28979.60 29587.27 28591.17 27477.95 25391.49 26492.26 27576.87 29176.16 32187.91 31551.67 34392.34 33967.74 31781.16 28791.52 308
KD-MVS_2432*160078.50 31176.02 31685.93 30686.22 33974.47 29584.80 33692.33 27179.29 26376.98 31685.92 33153.81 34093.97 32367.39 31857.42 35289.36 332
miper_refine_blended78.50 31176.02 31685.93 30686.22 33974.47 29584.80 33692.33 27179.29 26376.98 31685.92 33153.81 34093.97 32367.39 31857.42 35289.36 332
CL-MVSNet_2432*160081.74 28480.53 28285.36 31185.96 34172.45 31790.25 28293.07 25781.24 24379.85 29987.29 32370.93 22392.52 33866.95 32069.23 34091.11 320
YYNet179.22 30877.20 31085.28 31388.20 33272.66 31385.87 33090.05 32874.33 31662.70 35087.61 31866.09 28292.03 34166.94 32172.97 33391.15 317
PAPM86.68 22185.39 22990.53 18893.05 21979.33 22789.79 29294.77 21578.82 27181.95 27193.24 18576.81 14697.30 20566.94 32193.16 15294.95 186
DP-MVS87.25 20185.36 23192.90 9197.65 5683.24 12094.81 12192.00 28274.99 30981.92 27295.00 11972.66 20599.05 6066.92 32392.33 16596.40 131
MDA-MVSNet_test_wron79.21 30977.19 31185.29 31288.22 33072.77 31185.87 33090.06 32674.34 31562.62 35187.56 31966.14 28191.99 34266.90 32473.01 33291.10 321
UnsupCasMVSNet_bld76.23 31773.27 32085.09 31583.79 34972.92 30885.65 33393.47 25171.52 33468.84 34679.08 34749.77 34693.21 33266.81 32560.52 35189.13 339
MIMVSNet82.59 27780.53 28288.76 24991.51 26078.32 24586.57 32790.13 32479.32 26280.70 28488.69 30452.98 34293.07 33566.03 32688.86 20694.90 187
LCM-MVSNet66.00 32262.16 32677.51 33464.51 36258.29 35483.87 34290.90 31248.17 35554.69 35373.31 35116.83 36786.75 35265.47 32761.67 35087.48 346
PatchT82.68 27681.27 27886.89 29790.09 31070.94 32984.06 34090.15 32374.91 31085.63 18783.57 33969.37 24594.87 31465.19 32888.50 21194.84 189
test0.0.03 182.41 27881.69 27484.59 31788.23 32972.89 30990.24 28387.83 34283.41 19279.86 29889.78 28867.25 26488.99 35065.18 32983.42 26291.90 303
ppachtmachnet_test81.84 28280.07 29087.15 29288.46 32674.43 29789.04 30492.16 27775.33 30577.75 31188.99 29666.20 28095.37 30665.12 33077.60 32291.65 306
COLMAP_ROBcopyleft80.39 1683.96 26582.04 27289.74 22495.28 13279.75 21594.25 16092.28 27475.17 30778.02 31093.77 17058.60 32497.84 16165.06 33185.92 23891.63 307
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ADS-MVSNet281.66 28679.71 29487.50 28091.35 26874.19 29983.33 34388.48 34072.90 32782.24 26785.77 33364.98 28893.20 33364.57 33283.74 25595.12 176
ADS-MVSNet81.56 28879.78 29286.90 29691.35 26871.82 32083.33 34389.16 33872.90 32782.24 26785.77 33364.98 28893.76 32664.57 33283.74 25595.12 176
new-patchmatchnet76.41 31675.17 31880.13 33082.65 35359.61 35387.66 32191.08 30578.23 28269.85 34483.22 34054.76 33491.63 34664.14 33464.89 34789.16 337
testgi80.94 29780.20 28883.18 32487.96 33466.29 34591.28 26690.70 31783.70 18378.12 30892.84 19851.37 34490.82 34763.34 33582.46 27192.43 292
TinyColmap79.76 30577.69 30785.97 30591.71 25573.12 30789.55 29390.36 32175.03 30872.03 34190.19 27746.22 35396.19 27663.11 33681.03 29288.59 342
pmmvs371.81 32068.71 32381.11 32975.86 35670.42 33286.74 32583.66 35158.95 35168.64 34780.89 34536.93 35689.52 34963.10 33763.59 34883.39 347
TAPA-MVS84.62 688.16 16787.01 17591.62 15096.64 8480.65 19094.39 15096.21 11576.38 29486.19 17795.44 10479.75 11598.08 14662.75 33895.29 11696.13 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MDA-MVSNet-bldmvs78.85 31076.31 31386.46 30089.76 31673.88 30188.79 30790.42 31879.16 26659.18 35288.33 30860.20 31594.04 32262.00 33968.96 34291.48 310
tfpnnormal84.72 25983.23 26389.20 23992.79 22880.05 20694.48 14095.81 14382.38 21281.08 28091.21 25169.01 25396.95 23461.69 34080.59 30090.58 327
Anonymous2023120681.03 29579.77 29384.82 31687.85 33570.26 33391.42 26592.08 27973.67 32077.75 31189.25 29462.43 29993.08 33461.50 34182.00 27891.12 319
RPMNet83.95 26681.53 27691.21 16390.58 30079.34 22485.24 33496.76 7271.44 33585.55 18882.97 34270.87 22498.91 8661.01 34289.36 19895.40 170
MIMVSNet179.38 30777.28 30985.69 30986.35 33873.67 30391.61 26392.75 26478.11 28472.64 33988.12 31148.16 34991.97 34360.32 34377.49 32391.43 311
test20.0379.95 30379.08 30282.55 32785.79 34267.74 34391.09 27191.08 30581.23 24474.48 33289.96 28561.63 30390.15 34860.08 34476.38 32889.76 330
DSMNet-mixed76.94 31576.29 31478.89 33183.10 35156.11 35887.78 31879.77 35760.65 35075.64 32588.71 30261.56 30488.34 35160.07 34589.29 20092.21 300
Patchmatch-test81.37 29179.30 29787.58 27890.92 28774.16 30080.99 34987.68 34470.52 33976.63 31988.81 29971.21 21892.76 33760.01 34686.93 23595.83 156
MVS-HIRNet73.70 31872.20 32178.18 33391.81 25256.42 35782.94 34682.58 35255.24 35268.88 34566.48 35455.32 33395.13 30958.12 34788.42 21383.01 348
OpenMVS_ROBcopyleft74.94 1979.51 30677.03 31286.93 29487.00 33676.23 28592.33 24290.74 31668.93 34274.52 33188.23 31049.58 34796.62 24757.64 34884.29 25087.94 345
new_pmnet72.15 31970.13 32278.20 33282.95 35265.68 34683.91 34182.40 35362.94 34964.47 34979.82 34642.85 35586.26 35357.41 34974.44 33182.65 350
N_pmnet68.89 32168.44 32470.23 33789.07 32028.79 36788.06 31519.50 36869.47 34171.86 34284.93 33561.24 30891.75 34454.70 35077.15 32590.15 328
test_method50.52 32848.47 33056.66 34252.26 36618.98 36941.51 36181.40 35510.10 36244.59 35775.01 34928.51 35968.16 35953.54 35149.31 35682.83 349
tmp_tt35.64 33239.24 33424.84 34614.87 36823.90 36862.71 35751.51 3676.58 36436.66 36062.08 35744.37 35430.34 36552.40 35222.00 36220.27 360
test_040281.30 29379.17 30187.67 27693.19 21478.17 24992.98 22391.71 28975.25 30676.02 32490.31 27659.23 32196.37 26750.22 35383.63 25888.47 343
PMMVS259.60 32456.40 32769.21 33868.83 35946.58 36273.02 35677.48 36155.07 35349.21 35572.95 35217.43 36680.04 35749.32 35444.33 35780.99 352
ANet_high58.88 32554.22 32972.86 33556.50 36556.67 35680.75 35086.00 34673.09 32637.39 35964.63 35622.17 36279.49 35843.51 35523.96 36082.43 351
DeepMVS_CXcopyleft56.31 34374.23 35751.81 36056.67 36644.85 35648.54 35675.16 34827.87 36058.74 36340.92 35652.22 35458.39 356
FPMVS64.63 32362.55 32570.88 33670.80 35856.71 35584.42 33984.42 35051.78 35449.57 35481.61 34423.49 36181.48 35640.61 35776.25 32974.46 353
Gipumacopyleft57.99 32654.91 32867.24 33988.51 32465.59 34752.21 35990.33 32243.58 35742.84 35851.18 35920.29 36485.07 35434.77 35870.45 33751.05 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 32748.46 33163.48 34045.72 36746.20 36373.41 35578.31 35941.03 35830.06 36165.68 3556.05 36883.43 35530.04 35965.86 34560.80 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 32938.59 33557.77 34156.52 36448.77 36155.38 35858.64 36529.33 36128.96 36252.65 3584.68 36964.62 36228.11 36033.07 35859.93 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 33042.29 33246.03 34465.58 36137.41 36473.51 35464.62 36233.99 35928.47 36347.87 36019.90 36567.91 36022.23 36124.45 35932.77 358
EMVS42.07 33141.12 33344.92 34563.45 36335.56 36673.65 35363.48 36333.05 36026.88 36445.45 36121.27 36367.14 36119.80 36223.02 36132.06 359
wuyk23d21.27 33420.48 33723.63 34768.59 36036.41 36549.57 3606.85 3699.37 3637.89 3654.46 3674.03 37031.37 36417.47 36316.07 3633.12 361
testmvs8.92 33511.52 3381.12 3491.06 3690.46 37186.02 3290.65 3700.62 3652.74 3669.52 3650.31 3720.45 3672.38 3640.39 3642.46 363
test1238.76 33611.22 3391.39 3480.85 3700.97 37085.76 3320.35 3710.54 3662.45 3678.14 3660.60 3710.48 3662.16 3650.17 3652.71 362
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k22.14 33329.52 3360.00 3500.00 3710.00 3720.00 36295.76 1470.00 3670.00 36894.29 14575.66 1640.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.64 3388.86 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36879.70 1170.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.82 33710.43 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36893.88 1640.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
save fliter97.85 4885.63 6895.21 9496.82 6689.44 47
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
GSMVS96.12 141
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 21396.12 141
sam_mvs70.60 227
MTGPAbinary96.97 49
test_post10.29 36370.57 23195.91 287
patchmatchnet-post83.76 33871.53 21596.48 260
MTMP96.16 4460.64 364
TEST997.53 5886.49 3994.07 17396.78 6981.61 23592.77 6596.20 8087.71 2699.12 55
test_897.49 6186.30 4894.02 17896.76 7281.86 22892.70 6996.20 8087.63 2799.02 68
agg_prior97.38 6485.92 6096.72 7892.16 8198.97 80
test_prior485.96 5794.11 168
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
新几何293.11 218
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7796.97 114
原ACMM292.94 225
test22296.55 8881.70 15992.22 24695.01 19668.36 34390.20 11296.14 8580.26 11097.80 7396.05 148
segment_acmp87.16 35
testdata192.15 24887.94 89
test1294.34 5397.13 7486.15 5196.29 10591.04 10585.08 5899.01 7098.13 6197.86 79
plane_prior794.70 16082.74 136
plane_prior694.52 16782.75 13474.23 180
plane_prior494.86 124
plane_prior382.75 13490.26 3086.91 162
plane_prior295.85 6190.81 17
plane_prior194.59 165
plane_prior82.73 13795.21 9489.66 4389.88 190
n20.00 372
nn0.00 372
door-mid85.49 347
test1196.57 92
door85.33 348
HQP5-MVS81.56 162
HQP-NCC94.17 18094.39 15088.81 6485.43 200
ACMP_Plane94.17 18094.39 15088.81 6485.43 200
HQP4-MVS85.43 20097.96 15594.51 206
HQP3-MVS96.04 12689.77 192
HQP2-MVS73.83 190
NP-MVS94.37 17582.42 14593.98 157
ACMMP++_ref87.47 226
ACMMP++88.01 221
Test By Simon80.02 112