This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
MVS_030494.60 1894.38 2595.23 1195.41 13087.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
test_fmvsmconf_n94.60 1894.81 1693.98 5394.62 17084.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5792.46 25484.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
test_fmvsmconf0.01_n93.19 6493.02 6493.71 6589.25 34884.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6395.28 13485.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
test_fmvsm_n_192094.71 1795.11 1093.50 6995.79 11584.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6795.29 13384.98 7195.61 9296.28 10886.31 14496.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9495.62 12383.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9593.75 21583.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8695.02 14683.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
test_fmvsmvis_n_192093.44 5593.55 5593.10 7993.67 21984.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 147
fmvsm_s_conf0.1_n_a93.19 6493.26 5892.97 8892.49 25283.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
IU-MVS98.77 586.00 4996.84 6581.26 26897.26 795.50 2399.13 399.03 8
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15597.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.85 1494.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.96 1395.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25194.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3094.82 13697.17 3986.26 14692.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
patch_mono-293.74 4794.32 2692.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
EC-MVSNet93.44 5593.71 5192.63 10795.21 13982.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
CS-MVS94.12 3794.44 2293.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
dcpmvs_293.49 5294.19 3691.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
test_vis1_n_192089.39 14389.84 11488.04 28892.97 24272.64 33794.71 14496.03 13386.18 14991.94 9796.56 7861.63 32195.74 31393.42 4195.11 12995.74 176
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
SR-MVS94.23 3194.17 3794.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
9.1494.47 2097.79 4996.08 6197.44 1586.13 15395.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
test_vis1_n86.56 24286.49 20986.78 32088.51 35472.69 33494.68 14593.78 25879.55 28890.70 11795.31 12148.75 37893.28 35593.15 4593.99 14894.38 235
CANet93.54 5193.20 6194.55 4295.65 12185.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
CS-MVS-test94.02 3994.29 2993.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
test_fmvs1_n87.03 22787.04 18786.97 31389.74 34471.86 34494.55 15294.43 23078.47 30591.95 9695.50 11651.16 37393.81 34793.02 4894.56 13995.26 192
test_fmvs187.34 21087.56 17386.68 32190.59 32671.80 34694.01 19294.04 24878.30 30991.97 9495.22 12556.28 35493.71 34992.89 4994.71 13394.52 223
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
SR-MVS-dyc-post93.82 4493.82 4593.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
RE-MVS-def93.68 5297.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
TSAR-MVS + GP.93.66 4993.41 5694.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
APD-MVS_3200maxsize93.78 4593.77 4893.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
PC_three_145282.47 23597.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
PHI-MVS93.89 4393.65 5494.62 4096.84 7586.43 3896.69 3297.49 685.15 17593.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
HPM-MVScopyleft94.02 3993.88 4494.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
alignmvs93.08 6692.50 7394.81 3195.62 12387.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
region2R94.43 2494.27 3294.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
DeepC-MVS88.79 393.31 6092.99 6594.26 5196.07 10385.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++93.72 4894.08 3892.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 132
CP-MVS94.34 2794.21 3494.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
train_agg93.44 5593.08 6294.52 4397.53 5886.49 3694.07 18696.78 7281.86 25292.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
diffmvspermissive91.37 9191.23 8791.77 15093.09 23480.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20592.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3390.80 9990.15 10592.75 10096.01 10582.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 35196.60 138
hse-mvs289.88 12689.34 12591.51 15994.83 16081.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35895.74 176
casdiffmvs_mvgpermissive92.96 6892.83 6893.35 7094.59 17183.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft94.25 2994.07 3994.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZD-MVS98.15 3486.62 3297.07 4583.63 20794.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
EI-MVSNet-Vis-set93.01 6792.92 6693.29 7195.01 14783.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
XVS94.45 2294.32 2694.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
X-MVStestdata88.31 17486.13 22194.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 40385.02 5999.49 2691.99 7498.56 4898.47 33
test9_res91.91 7898.71 3298.07 66
MVS_111021_HR93.45 5493.31 5793.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
APD-MVScopyleft94.24 3094.07 3994.75 3598.06 3986.90 2295.88 7496.94 5585.68 16195.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR92.47 7592.29 7692.98 8795.99 10984.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 133
ETV-MVS92.74 7192.66 7092.97 8895.20 14084.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 143
test_cas_vis1_n_192088.83 16288.85 14088.78 26791.15 30376.72 29093.85 20294.93 20883.23 22192.81 7296.00 9661.17 33094.45 33491.67 8394.84 13195.17 195
EI-MVSNet-UG-set92.74 7192.62 7193.12 7894.86 15883.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
mPP-MVS93.99 4193.78 4794.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
DELS-MVS93.43 5893.25 5993.97 5495.42 12985.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
nrg03091.08 9790.39 9993.17 7693.07 23586.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 29694.96 203
baseline92.39 7792.29 7692.69 10594.46 18081.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
mvsmamba89.96 12189.50 11991.33 16892.90 24581.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 23494.51 225
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
xiu_mvs_v1_base90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
VDD-MVS90.74 10189.92 11393.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31898.64 10090.95 9592.62 17697.93 76
casdiffmvspermissive92.51 7492.43 7492.74 10194.41 18481.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft93.24 6292.88 6794.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS93.96 4293.72 5094.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
iter_conf0588.85 15888.08 16291.17 17494.27 19181.64 16795.18 11392.15 29486.23 14887.28 17294.07 17063.89 30997.55 19190.63 10089.00 23094.32 237
iter_conf_final89.42 13988.69 14291.60 15595.12 14482.93 13595.75 8192.14 29587.32 12087.12 17594.07 17067.09 27897.55 19190.61 10189.01 22994.32 237
test_fmvs283.98 28784.03 27283.83 34987.16 36867.53 37393.93 19892.89 27277.62 31586.89 18393.53 19547.18 38292.02 36790.54 10286.51 26791.93 329
agg_prior290.54 10298.68 3798.27 52
HPM-MVS_fast93.40 5993.22 6093.94 5698.36 2584.83 7497.15 1396.80 7185.77 15892.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
lupinMVS90.92 9890.21 10293.03 8493.86 20983.88 10192.81 24593.86 25479.84 28491.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
jason90.80 9990.10 10692.90 9293.04 23883.53 11293.08 23594.15 24380.22 27891.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
CSCG93.23 6393.05 6393.76 6498.04 4084.07 9696.22 4997.37 2184.15 19590.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
CPTT-MVS91.99 7991.80 8092.55 11198.24 3181.98 16096.76 3096.49 9581.89 25190.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
MVSFormer91.68 8791.30 8592.80 9793.86 20983.88 10195.96 7195.90 14284.66 18991.76 10394.91 13777.92 14497.30 22189.64 10997.11 8597.24 104
test_djsdf89.03 15488.64 14390.21 21590.74 32279.28 24095.96 7195.90 14284.66 18985.33 23492.94 21574.02 19397.30 22189.64 10988.53 23694.05 251
EIA-MVS91.95 8091.94 7891.98 13495.16 14180.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
RRT_MVS89.09 15088.62 14690.49 20292.85 24679.65 22896.41 3994.41 23288.22 9485.50 21994.77 14669.36 25397.31 22089.33 11286.73 26694.51 225
Effi-MVS+91.59 8891.11 8993.01 8594.35 18983.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
ET-MVSNet_ETH3D87.51 20385.91 23392.32 12293.70 21883.93 9992.33 26090.94 33084.16 19472.09 37292.52 22869.90 24495.85 30689.20 11488.36 24297.17 108
PS-MVSNAJ91.18 9590.92 9391.96 13695.26 13782.60 14992.09 26995.70 15886.27 14591.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 239
xiu_mvs_v2_base91.13 9690.89 9591.86 14494.97 15082.42 15192.24 26395.64 16586.11 15491.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 240
SDMVSNet90.19 11489.61 11791.93 13896.00 10683.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23988.90 11789.85 21395.63 181
VNet92.24 7891.91 7993.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
PS-MVSNAJss89.97 12089.62 11691.02 18391.90 27280.85 19295.26 10895.98 13486.26 14686.21 20094.29 16479.70 12197.65 18288.87 11988.10 24494.57 220
XVG-OURS-SEG-HR89.95 12289.45 12091.47 16294.00 20481.21 18291.87 27396.06 13085.78 15788.55 14795.73 11074.67 18397.27 22588.71 12089.64 21895.91 167
jajsoiax88.24 17687.50 17490.48 20490.89 31680.14 21095.31 10195.65 16484.97 17984.24 26294.02 17565.31 29897.42 20788.56 12188.52 23793.89 255
mvs_tets88.06 18287.28 18190.38 21190.94 31279.88 22295.22 11095.66 16285.10 17684.21 26393.94 18063.53 31097.40 21488.50 12288.40 24193.87 258
VDDNet89.56 13388.49 15192.76 9995.07 14582.09 15796.30 4393.19 26781.05 27391.88 9896.86 5961.16 33198.33 13188.43 12392.49 18097.84 82
HQP_MVS90.60 10990.19 10391.82 14794.70 16682.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20794.63 215
plane_prior596.22 11598.12 14488.15 12489.99 20794.63 215
EPNet91.79 8291.02 9294.10 5290.10 33685.25 6996.03 6692.05 29892.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs377.67 34277.16 33979.22 36279.52 39261.14 38892.34 25991.64 31173.98 35178.86 33386.59 35627.38 39687.03 38788.12 12775.97 36289.50 362
OPM-MVS90.12 11589.56 11891.82 14793.14 23283.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 20693.65 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSTER88.84 15988.29 15790.51 20192.95 24380.44 20293.73 20695.01 20184.66 18987.15 17393.12 21072.79 21197.21 23287.86 12987.36 25993.87 258
3Dnovator+87.14 492.42 7691.37 8495.55 795.63 12288.73 697.07 1896.77 7490.84 1684.02 26596.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
bld_raw_dy_0_6487.60 19986.73 19590.21 21591.72 27980.26 20795.09 12088.61 36085.68 16185.55 21394.38 15963.93 30896.66 25987.73 13187.84 25193.72 272
LPG-MVS_test89.45 13788.90 13791.12 17594.47 17881.49 17295.30 10396.14 12086.73 13585.45 22395.16 13069.89 24598.10 14687.70 13289.23 22593.77 268
LGP-MVS_train91.12 17594.47 17881.49 17296.14 12086.73 13585.45 22395.16 13069.89 24598.10 14687.70 13289.23 22593.77 268
MVS_Test91.31 9291.11 8991.93 13894.37 18580.14 21093.46 21795.80 14986.46 14191.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9796.39 9083.17 12294.87 13396.66 8583.29 21889.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 164
CDPH-MVS92.83 6992.30 7594.44 4497.79 4986.11 4894.06 18896.66 8580.09 28192.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
XVG-OURS89.40 14288.70 14191.52 15894.06 19881.46 17491.27 28996.07 12886.14 15188.89 14395.77 10868.73 26697.26 22787.39 13789.96 20995.83 172
EPP-MVSNet91.70 8691.56 8392.13 12995.88 11280.50 20197.33 795.25 19086.15 15089.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
VPA-MVSNet89.62 13088.96 13391.60 15593.86 20982.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21487.32 13982.86 30194.52 223
LFMVS90.08 11689.13 13092.95 9096.71 7782.32 15596.08 6189.91 35086.79 13292.15 9096.81 6362.60 31698.34 12987.18 14093.90 15098.19 58
anonymousdsp87.84 18587.09 18490.12 22189.13 34980.54 20094.67 14695.55 16982.05 24383.82 26992.12 24271.47 22497.15 23487.15 14187.80 25492.67 309
CLD-MVS89.47 13688.90 13791.18 17394.22 19382.07 15892.13 26796.09 12687.90 10585.37 23292.45 23074.38 18597.56 19087.15 14190.43 20293.93 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BP-MVS87.11 143
HQP-MVS89.80 12789.28 12891.34 16794.17 19481.56 16894.39 16596.04 13188.81 7285.43 22693.97 17973.83 19797.96 16587.11 14389.77 21694.50 228
ACMP84.23 889.01 15688.35 15390.99 18694.73 16381.27 17895.07 12195.89 14486.48 13983.67 27394.30 16369.33 25497.99 16387.10 14588.55 23593.72 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
旧先验293.36 21971.25 37294.37 3997.13 23786.74 146
3Dnovator86.66 591.73 8590.82 9694.44 4494.59 17186.37 4097.18 1297.02 4789.20 6084.31 26196.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
PVSNet_BlendedMVS89.98 11989.70 11590.82 19196.12 9781.25 17993.92 19996.83 6683.49 21289.10 13992.26 23781.04 10998.85 8686.72 14887.86 25092.35 321
PVSNet_Blended90.73 10290.32 10191.98 13496.12 9781.25 17992.55 25296.83 6682.04 24589.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 171
mvs_anonymous89.37 14489.32 12689.51 25193.47 22474.22 32091.65 28094.83 21682.91 22885.45 22393.79 18881.23 10896.36 28586.47 15094.09 14797.94 74
test111189.10 14888.64 14390.48 20495.53 12774.97 31196.08 6184.89 37988.13 9990.16 12696.65 7063.29 31298.10 14686.14 15196.90 9298.39 39
AUN-MVS87.78 18886.54 20691.48 16194.82 16181.05 18593.91 20193.93 25083.00 22586.93 17893.53 19569.50 25197.67 17986.14 15177.12 35795.73 178
test_yl90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16391.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
DCV-MVSNet90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16391.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
test250687.21 21986.28 21690.02 22795.62 12373.64 32596.25 4871.38 40387.89 10790.45 12096.65 7055.29 36098.09 15486.03 15596.94 9098.33 43
mvsany_test185.42 26485.30 25185.77 33187.95 36575.41 30887.61 35580.97 38976.82 32388.68 14595.83 10477.44 14890.82 37785.90 15686.51 26791.08 350
ECVR-MVScopyleft89.09 15088.53 14790.77 19395.62 12375.89 30296.16 5384.22 38187.89 10790.20 12496.65 7063.19 31498.10 14685.90 15696.94 9098.33 43
OMC-MVS91.23 9390.62 9893.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 131
ACMM84.12 989.14 14788.48 15291.12 17594.65 16981.22 18195.31 10196.12 12385.31 17185.92 20594.34 16070.19 24398.06 15885.65 15988.86 23294.08 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS92.58 7391.74 8195.08 1596.19 9589.31 592.66 24896.56 9383.44 21391.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
Effi-MVS+-dtu88.65 16588.35 15389.54 24893.33 22876.39 29694.47 15894.36 23587.70 11285.43 22689.56 31873.45 20297.26 22785.57 16191.28 18994.97 200
tt080586.92 22985.74 24190.48 20492.22 25979.98 22095.63 9194.88 21283.83 20384.74 24492.80 22157.61 34997.67 17985.48 16284.42 28193.79 263
FIs90.51 11090.35 10090.99 18693.99 20580.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22985.18 16388.31 24394.76 213
MG-MVS91.77 8391.70 8292.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
CANet_DTU90.26 11389.41 12392.81 9693.46 22583.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 146
UniMVSNet_NR-MVSNet89.92 12489.29 12791.81 14993.39 22783.72 10494.43 16197.12 4189.80 4186.46 19193.32 20083.16 7997.23 23084.92 16681.02 32594.49 230
DU-MVS89.34 14588.50 14991.85 14693.04 23883.72 10494.47 15896.59 9089.50 5086.46 19193.29 20377.25 14997.23 23084.92 16681.02 32594.59 218
cascas86.43 24984.98 25790.80 19292.10 26580.92 19090.24 31095.91 14173.10 36083.57 27788.39 33565.15 29997.46 20184.90 16891.43 18794.03 252
UniMVSNet (Re)89.80 12789.07 13192.01 13093.60 22184.52 8394.78 13997.47 1189.26 5886.44 19492.32 23482.10 9897.39 21784.81 16980.84 32994.12 245
Vis-MVSNetpermissive91.75 8491.23 8793.29 7195.32 13283.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v2v48287.84 18587.06 18590.17 21790.99 30879.23 24394.00 19495.13 19584.87 18185.53 21692.07 24874.45 18497.45 20284.71 17181.75 31393.85 261
DP-MVS Recon91.95 8091.28 8693.96 5598.33 2785.92 5694.66 14796.66 8582.69 23390.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
test_vis1_rt77.96 34176.46 34182.48 35585.89 37571.74 34790.25 30878.89 39371.03 37471.30 37681.35 38242.49 38891.05 37684.55 17382.37 30484.65 380
UA-Net92.83 6992.54 7293.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
V4287.68 19086.86 19090.15 21990.58 32780.14 21094.24 17595.28 18983.66 20685.67 21091.33 26874.73 18197.41 21284.43 17581.83 31192.89 304
FC-MVSNet-test90.27 11290.18 10490.53 19893.71 21679.85 22495.77 8097.59 389.31 5686.27 19894.67 15181.93 10397.01 24584.26 17688.09 24694.71 214
cl2286.78 23385.98 22989.18 25892.34 25777.62 27990.84 29994.13 24581.33 26683.97 26790.15 30473.96 19496.60 26784.19 17782.94 29793.33 285
miper_enhance_ethall86.90 23086.18 21989.06 26191.66 28477.58 28090.22 31294.82 21779.16 29384.48 25089.10 32379.19 12996.66 25984.06 17882.94 29792.94 302
VPNet88.20 17787.47 17690.39 20993.56 22279.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23484.05 17980.53 33494.56 221
FA-MVS(test-final)89.66 12988.91 13691.93 13894.57 17480.27 20591.36 28594.74 22284.87 18189.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
UGNet89.95 12288.95 13492.95 9094.51 17783.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30598.78 9183.92 18196.31 10696.74 134
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS88.36 17387.91 16789.70 24293.80 21278.29 26093.73 20695.08 20085.73 15984.75 24391.90 25379.88 11796.92 25083.83 18282.51 30293.89 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth87.22 21886.62 20389.02 26392.13 26377.40 28290.91 29894.81 21881.28 26784.32 25990.08 30779.26 12796.62 26283.81 18382.94 29793.04 299
EI-MVSNet89.10 14888.86 13989.80 23891.84 27478.30 25993.70 20995.01 20185.73 15987.15 17395.28 12279.87 11897.21 23283.81 18387.36 25993.88 257
c3_l87.14 22386.50 20889.04 26292.20 26077.26 28391.22 29294.70 22482.01 24684.34 25890.43 29678.81 13296.61 26583.70 18581.09 32293.25 289
Anonymous2024052988.09 18086.59 20492.58 11096.53 8681.92 16295.99 6995.84 14774.11 35089.06 14195.21 12761.44 32498.81 8983.67 18687.47 25697.01 119
v114487.61 19886.79 19490.06 22491.01 30779.34 23693.95 19695.42 18383.36 21785.66 21191.31 27174.98 17797.42 20783.37 18782.06 30793.42 284
thisisatest053088.67 16487.61 17291.86 14494.87 15780.07 21394.63 14889.90 35184.00 19888.46 14993.78 18966.88 28298.46 11583.30 18892.65 17597.06 115
tttt051788.61 16687.78 16991.11 17894.96 15177.81 27295.35 9989.69 35485.09 17788.05 15694.59 15566.93 28098.48 11183.27 18992.13 18397.03 118
testdata90.49 20296.40 8977.89 26995.37 18672.51 36593.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 166
LCM-MVSNet-Re88.30 17588.32 15688.27 28194.71 16572.41 34293.15 23190.98 32887.77 11079.25 33291.96 25178.35 14095.75 31283.04 19195.62 11496.65 137
IS-MVSNet91.43 8991.09 9192.46 11595.87 11481.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
UniMVSNet_ETH3D87.53 20286.37 21191.00 18592.44 25578.96 24594.74 14195.61 16684.07 19785.36 23394.52 15759.78 33997.34 21982.93 19387.88 24996.71 135
XVG-ACMP-BASELINE86.00 25384.84 26289.45 25291.20 29878.00 26591.70 27895.55 16985.05 17882.97 28692.25 23854.49 36397.48 19882.93 19387.45 25892.89 304
v14419287.19 22186.35 21289.74 23990.64 32578.24 26193.92 19995.43 18181.93 24885.51 21891.05 28174.21 18997.45 20282.86 19581.56 31593.53 278
v887.50 20586.71 19789.89 23291.37 29379.40 23394.50 15495.38 18484.81 18483.60 27691.33 26876.05 16097.42 20782.84 19680.51 33692.84 306
Anonymous2023121186.59 24185.13 25490.98 18896.52 8781.50 17096.14 5796.16 11973.78 35383.65 27492.15 24063.26 31397.37 21882.82 19781.74 31494.06 250
PAPM_NR91.22 9490.78 9792.52 11397.60 5681.46 17494.37 16996.24 11386.39 14387.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
eth_miper_zixun_eth86.50 24585.77 23888.68 27291.94 26975.81 30490.47 30494.89 21082.05 24384.05 26490.46 29575.96 16296.77 25582.76 19979.36 34693.46 283
Patchmatch-RL test81.67 30979.96 31586.81 31985.42 37971.23 35182.17 38587.50 36978.47 30577.19 34682.50 38070.81 23293.48 35282.66 20072.89 36895.71 179
tpmrst85.35 26684.99 25686.43 32390.88 31767.88 37088.71 33891.43 31880.13 28086.08 20388.80 33073.05 20796.02 29882.48 20183.40 29595.40 187
sss88.93 15788.26 15990.94 18994.05 19980.78 19491.71 27795.38 18481.55 26288.63 14693.91 18475.04 17695.47 32482.47 20291.61 18596.57 141
ab-mvs89.41 14088.35 15392.60 10895.15 14382.65 14792.20 26595.60 16783.97 19988.55 14793.70 19374.16 19198.21 14082.46 20389.37 22196.94 123
mvsany_test374.95 34773.26 35180.02 36174.61 39563.16 38685.53 36978.42 39474.16 34974.89 36186.46 35736.02 39189.09 38482.39 20466.91 38187.82 378
CostFormer85.77 25984.94 25988.26 28291.16 30272.58 34089.47 32791.04 32776.26 32986.45 19389.97 31070.74 23396.86 25482.35 20587.07 26495.34 191
v119287.25 21586.33 21390.00 22990.76 32179.04 24493.80 20395.48 17482.57 23485.48 22191.18 27573.38 20597.42 20782.30 20682.06 30793.53 278
Baseline_NR-MVSNet87.07 22586.63 20288.40 27791.44 28877.87 27094.23 17692.57 28284.12 19685.74 20992.08 24677.25 14996.04 29682.29 20779.94 34091.30 342
testing9986.72 23785.73 24289.69 24394.23 19274.91 31391.35 28690.97 32986.14 15186.36 19590.22 30059.41 34197.48 19882.24 20890.66 19996.69 136
Anonymous20240521187.68 19086.13 22192.31 12396.66 7980.74 19594.87 13391.49 31680.47 27789.46 13595.44 11754.72 36298.23 13782.19 20989.89 21197.97 72
v14887.04 22686.32 21489.21 25690.94 31277.26 28393.71 20894.43 23084.84 18384.36 25790.80 28876.04 16197.05 24382.12 21079.60 34493.31 286
testing9187.11 22486.18 21989.92 23194.43 18375.38 31091.53 28292.27 29086.48 13986.50 18990.24 29961.19 32997.53 19482.10 21190.88 19896.84 130
testing1186.44 24885.35 25089.69 24394.29 19075.40 30991.30 28790.53 33784.76 18585.06 23790.13 30558.95 34597.45 20282.08 21291.09 19496.21 153
114514_t89.51 13488.50 14992.54 11298.11 3681.99 15995.16 11696.36 10270.19 37685.81 20695.25 12476.70 15598.63 10282.07 21396.86 9597.00 120
v192192086.97 22886.06 22689.69 24390.53 33078.11 26493.80 20395.43 18181.90 25085.33 23491.05 28172.66 21297.41 21282.05 21481.80 31293.53 278
OurMVSNet-221017-085.35 26684.64 26687.49 29990.77 32072.59 33994.01 19294.40 23384.72 18779.62 33093.17 20761.91 32096.72 25681.99 21581.16 31993.16 294
v1087.25 21586.38 21089.85 23391.19 29979.50 23094.48 15595.45 17883.79 20483.62 27591.19 27375.13 17497.42 20781.94 21680.60 33192.63 311
TranMVSNet+NR-MVSNet88.84 15987.95 16591.49 16092.68 25083.01 13294.92 13096.31 10489.88 3985.53 21693.85 18776.63 15796.96 24781.91 21779.87 34294.50 228
D2MVS85.90 25585.09 25588.35 27990.79 31977.42 28191.83 27495.70 15880.77 27580.08 32290.02 30866.74 28596.37 28381.88 21887.97 24891.26 343
test-LLR85.87 25685.41 24687.25 30590.95 31071.67 34889.55 32389.88 35283.41 21484.54 24887.95 34267.25 27595.11 32981.82 21993.37 16494.97 200
test-mter84.54 28183.64 27987.25 30590.95 31071.67 34889.55 32389.88 35279.17 29284.54 24887.95 34255.56 35695.11 32981.82 21993.37 16494.97 200
PMMVS85.71 26084.96 25887.95 29088.90 35277.09 28588.68 33990.06 34672.32 36786.47 19090.76 29072.15 21894.40 33681.78 22193.49 15992.36 320
cl____86.52 24485.78 23688.75 26992.03 26776.46 29490.74 30094.30 23781.83 25483.34 28290.78 28975.74 16996.57 26881.74 22281.54 31693.22 291
DIV-MVS_self_test86.53 24385.78 23688.75 26992.02 26876.45 29590.74 30094.30 23781.83 25483.34 28290.82 28775.75 16796.57 26881.73 22381.52 31793.24 290
NR-MVSNet88.58 16987.47 17691.93 13893.04 23884.16 9594.77 14096.25 11289.05 6580.04 32393.29 20379.02 13097.05 24381.71 22480.05 33994.59 218
WTY-MVS89.60 13188.92 13591.67 15395.47 12881.15 18392.38 25694.78 22083.11 22289.06 14194.32 16278.67 13596.61 26581.57 22590.89 19797.24 104
thisisatest051587.33 21185.99 22891.37 16693.49 22379.55 22990.63 30289.56 35780.17 27987.56 16690.86 28467.07 27998.28 13581.50 22693.02 17096.29 149
v124086.78 23385.85 23489.56 24790.45 33177.79 27493.61 21195.37 18681.65 25885.43 22691.15 27771.50 22397.43 20681.47 22782.05 30993.47 282
GeoE90.05 11789.43 12291.90 14395.16 14180.37 20495.80 7894.65 22683.90 20087.55 16794.75 14778.18 14297.62 18781.28 22893.63 15497.71 88
WR-MVS88.38 17187.67 17190.52 20093.30 22980.18 20893.26 22895.96 13788.57 8385.47 22292.81 22076.12 15996.91 25181.24 22982.29 30594.47 233
131487.51 20386.57 20590.34 21392.42 25679.74 22692.63 24995.35 18878.35 30880.14 32091.62 26274.05 19297.15 23481.05 23093.53 15794.12 245
IterMVS-SCA-FT85.45 26284.53 26888.18 28591.71 28176.87 28890.19 31392.65 28185.40 16981.44 30390.54 29366.79 28395.00 33281.04 23181.05 32392.66 310
XXY-MVS87.65 19286.85 19190.03 22592.14 26280.60 19993.76 20595.23 19182.94 22784.60 24694.02 17574.27 18695.49 32381.04 23183.68 28994.01 253
miper_lstm_enhance85.27 26984.59 26787.31 30291.28 29774.63 31587.69 35294.09 24781.20 27181.36 30589.85 31374.97 17894.30 33981.03 23379.84 34393.01 300
GA-MVS86.61 23985.27 25290.66 19491.33 29678.71 24790.40 30593.81 25785.34 17085.12 23689.57 31761.25 32697.11 23880.99 23489.59 21996.15 154
IB-MVS80.51 1585.24 27083.26 28491.19 17292.13 26379.86 22391.75 27691.29 32183.28 21980.66 31388.49 33461.28 32598.46 11580.99 23479.46 34595.25 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet84.69 28084.79 26384.37 34491.84 27464.92 38093.70 20991.47 31766.19 38286.16 20295.28 12267.18 27793.33 35480.89 23690.42 20394.88 208
baseline188.10 17987.28 18190.57 19694.96 15180.07 21394.27 17291.29 32186.74 13487.41 16894.00 17776.77 15496.20 29180.77 23779.31 34795.44 185
HyFIR lowres test88.09 18086.81 19291.93 13896.00 10680.63 19790.01 31795.79 15073.42 35787.68 16492.10 24573.86 19697.96 16580.75 23891.70 18497.19 107
AdaColmapbinary89.89 12589.07 13192.37 12097.41 6283.03 13094.42 16295.92 13982.81 23086.34 19794.65 15273.89 19599.02 6180.69 23995.51 11695.05 198
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29790.45 12095.92 10082.65 8798.84 8880.68 24098.26 5796.14 155
TESTMET0.1,183.74 29382.85 29386.42 32489.96 34071.21 35289.55 32387.88 36577.41 31783.37 28187.31 35056.71 35293.65 35180.62 24192.85 17494.40 234
无先验93.28 22796.26 11073.95 35299.05 5580.56 24296.59 139
Fast-Effi-MVS+89.41 14088.64 14391.71 15294.74 16280.81 19393.54 21395.10 19883.11 22286.82 18690.67 29279.74 12097.75 17780.51 24393.55 15696.57 141
CHOSEN 1792x268888.84 15987.69 17092.30 12496.14 9681.42 17690.01 31795.86 14674.52 34687.41 16893.94 18075.46 17298.36 12680.36 24495.53 11597.12 113
CDS-MVSNet89.45 13788.51 14892.29 12593.62 22083.61 11193.01 23894.68 22581.95 24787.82 16193.24 20578.69 13496.99 24680.34 24593.23 16796.28 150
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu87.44 20686.72 19689.63 24692.04 26677.68 27894.03 19093.94 24985.81 15682.42 29191.32 27070.33 24197.06 24280.33 24690.23 20594.14 244
baseline286.50 24585.39 24789.84 23491.12 30476.70 29191.88 27288.58 36182.35 23979.95 32490.95 28373.42 20397.63 18680.27 24789.95 21095.19 194
API-MVS90.66 10590.07 10792.45 11696.36 9184.57 8096.06 6495.22 19382.39 23689.13 13894.27 16780.32 11298.46 11580.16 24896.71 9894.33 236
MAR-MVS90.30 11189.37 12493.07 8396.61 8184.48 8595.68 8595.67 16082.36 23887.85 15992.85 21676.63 15798.80 9080.01 24996.68 9995.91 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS83.01 1289.03 15487.94 16692.29 12594.86 15882.77 13892.08 27094.49 22881.52 26386.93 17892.79 22278.32 14198.23 13779.93 25090.55 20095.88 169
CHOSEN 280x42085.15 27183.99 27488.65 27392.47 25378.40 25679.68 39192.76 27674.90 34381.41 30489.59 31669.85 24795.51 32079.92 25195.29 12592.03 327
MVS87.44 20686.10 22491.44 16392.61 25183.62 10992.63 24995.66 16267.26 38081.47 30292.15 24077.95 14398.22 13979.71 25295.48 11892.47 315
pm-mvs186.61 23985.54 24389.82 23591.44 28880.18 20895.28 10794.85 21483.84 20281.66 30092.62 22572.45 21796.48 27579.67 25378.06 35092.82 307
sd_testset88.59 16887.85 16890.83 19096.00 10680.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27396.43 28079.64 25489.85 21395.63 181
IterMVS84.88 27583.98 27587.60 29591.44 28876.03 30090.18 31492.41 28483.24 22081.06 30990.42 29766.60 28694.28 34079.46 25580.98 32892.48 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
1112_ss88.42 17087.33 17991.72 15194.92 15480.98 18792.97 24094.54 22778.16 31383.82 26993.88 18578.78 13397.91 16979.45 25689.41 22096.26 151
gm-plane-assit89.60 34768.00 36877.28 32088.99 32597.57 18979.44 257
PM-MVS78.11 34076.12 34484.09 34883.54 38470.08 36288.97 33685.27 37879.93 28274.73 36286.43 35834.70 39293.48 35279.43 25872.06 37088.72 371
v7n86.81 23185.76 23989.95 23090.72 32379.25 24295.07 12195.92 13984.45 19282.29 29290.86 28472.60 21497.53 19479.42 25980.52 33593.08 298
PAPR90.02 11889.27 12992.29 12595.78 11680.95 18992.68 24796.22 11581.91 24986.66 18893.75 19282.23 9598.44 12179.40 26094.79 13297.48 97
新几何193.10 7997.30 6684.35 9295.56 16871.09 37391.26 11396.24 8582.87 8598.86 8479.19 26198.10 6296.07 161
CP-MVSNet87.63 19587.26 18388.74 27193.12 23376.59 29395.29 10596.58 9188.43 8683.49 27992.98 21475.28 17395.83 30778.97 26281.15 32193.79 263
pmmvs485.43 26383.86 27690.16 21890.02 33982.97 13490.27 30692.67 28075.93 33280.73 31191.74 25771.05 22795.73 31478.85 26383.46 29391.78 331
Test_1112_low_res87.65 19286.51 20791.08 17994.94 15379.28 24091.77 27594.30 23776.04 33183.51 27892.37 23277.86 14697.73 17878.69 26489.13 22796.22 152
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22595.74 11775.85 30395.61 9290.80 33487.66 11587.83 16095.40 12076.79 15396.46 27878.37 26596.73 9797.80 84
PS-CasMVS87.32 21286.88 18988.63 27492.99 24176.33 29895.33 10096.61 8988.22 9483.30 28493.07 21273.03 20995.79 31178.36 26681.00 32793.75 270
test_f71.95 35170.87 35375.21 36974.21 39759.37 39285.07 37385.82 37465.25 38370.42 37883.13 37523.62 39782.93 39778.32 26771.94 37183.33 382
testdata298.75 9378.30 268
GBi-Net87.26 21385.98 22991.08 17994.01 20183.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28796.34 28678.23 26985.36 27493.79 263
test187.26 21385.98 22991.08 17994.01 20183.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28796.34 28678.23 26985.36 27493.79 263
FMVSNet387.40 20886.11 22391.30 16993.79 21483.64 10894.20 17794.81 21883.89 20184.37 25491.87 25468.45 26996.56 27078.23 26985.36 27493.70 274
OpenMVScopyleft83.78 1188.74 16387.29 18093.08 8192.70 24985.39 6796.57 3696.43 9778.74 30280.85 31096.07 9469.64 24999.01 6378.01 27296.65 10094.83 210
tpm84.73 27884.02 27386.87 31890.33 33268.90 36689.06 33489.94 34980.85 27485.75 20889.86 31268.54 26895.97 30077.76 27384.05 28595.75 175
TAMVS89.21 14688.29 15791.96 13693.71 21682.62 14893.30 22594.19 24182.22 24087.78 16293.94 18078.83 13196.95 24877.70 27492.98 17196.32 147
BH-untuned88.60 16788.13 16190.01 22895.24 13878.50 25393.29 22694.15 24384.75 18684.46 25193.40 19775.76 16697.40 21477.59 27594.52 14194.12 245
FMVSNet287.19 22185.82 23591.30 16994.01 20183.67 10694.79 13894.94 20483.57 20883.88 26892.05 24966.59 28796.51 27377.56 27685.01 27793.73 271
RPSCF85.07 27284.27 26987.48 30092.91 24470.62 35991.69 27992.46 28376.20 33082.67 29095.22 12563.94 30697.29 22477.51 27785.80 27194.53 222
PLCcopyleft84.53 789.06 15388.03 16392.15 12897.27 6882.69 14594.29 17195.44 18079.71 28684.01 26694.18 16976.68 15698.75 9377.28 27893.41 16295.02 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA89.07 15287.98 16492.34 12196.87 7484.78 7694.08 18593.24 26581.41 26484.46 25195.13 13275.57 17196.62 26277.21 27993.84 15295.61 183
K. test v381.59 31180.15 31385.91 33089.89 34269.42 36592.57 25187.71 36785.56 16573.44 36889.71 31555.58 35595.52 31977.17 28069.76 37492.78 308
QAPM89.51 13488.15 16093.59 6894.92 15484.58 7996.82 2996.70 8378.43 30783.41 28096.19 9073.18 20699.30 4077.11 28196.54 10196.89 127
pmmvs584.21 28482.84 29488.34 28088.95 35176.94 28792.41 25491.91 30675.63 33480.28 31791.18 27564.59 30295.57 31777.09 28283.47 29292.53 313
pmmvs683.42 29581.60 29988.87 26688.01 36377.87 27094.96 12794.24 24074.67 34578.80 33691.09 28060.17 33696.49 27477.06 28375.40 36492.23 324
test_vis3_rt65.12 35862.60 36072.69 37171.44 39860.71 38987.17 35765.55 40463.80 38653.22 39265.65 39614.54 40689.44 38376.65 28465.38 38367.91 395
test_post188.00 3479.81 40569.31 25695.53 31876.65 284
SCA86.32 25085.18 25389.73 24192.15 26176.60 29291.12 29391.69 30983.53 21185.50 21988.81 32866.79 28396.48 27576.65 28490.35 20496.12 157
WR-MVS_H87.80 18787.37 17889.10 26093.23 23078.12 26395.61 9297.30 2987.90 10583.72 27192.01 25079.65 12596.01 29976.36 28780.54 33393.16 294
EU-MVSNet81.32 31680.95 30482.42 35688.50 35663.67 38493.32 22191.33 31964.02 38580.57 31592.83 21861.21 32892.27 36576.34 28880.38 33791.32 341
CMPMVSbinary59.16 2180.52 32279.20 32684.48 34383.98 38267.63 37289.95 31993.84 25664.79 38466.81 38391.14 27857.93 34895.17 32776.25 28988.10 24490.65 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
F-COLMAP87.95 18386.80 19391.40 16496.35 9280.88 19194.73 14295.45 17879.65 28782.04 29794.61 15371.13 22698.50 11076.24 29091.05 19594.80 212
PEN-MVS86.80 23286.27 21788.40 27792.32 25875.71 30595.18 11396.38 10187.97 10282.82 28893.15 20873.39 20495.92 30276.15 29179.03 34993.59 276
SixPastTwentyTwo83.91 29082.90 29286.92 31590.99 30870.67 35893.48 21591.99 30185.54 16677.62 34492.11 24460.59 33396.87 25376.05 29277.75 35293.20 292
MS-PatchMatch85.05 27384.16 27087.73 29391.42 29178.51 25291.25 29093.53 26177.50 31680.15 31991.58 26461.99 31995.51 32075.69 29394.35 14589.16 368
BH-w/o87.57 20187.05 18689.12 25994.90 15677.90 26892.41 25493.51 26282.89 22983.70 27291.34 26775.75 16797.07 24175.49 29493.49 15992.39 319
gg-mvs-nofinetune81.77 30779.37 32288.99 26490.85 31877.73 27786.29 36379.63 39274.88 34483.19 28569.05 39360.34 33496.11 29575.46 29594.64 13793.11 296
FMVSNet185.85 25784.11 27191.08 17992.81 24783.10 12595.14 11794.94 20481.64 25982.68 28991.64 25859.01 34496.34 28675.37 29683.78 28693.79 263
EPMVS83.90 29182.70 29587.51 29790.23 33572.67 33588.62 34081.96 38781.37 26585.01 23988.34 33666.31 29094.45 33475.30 29787.12 26295.43 186
pmmvs-eth3d80.97 32078.72 33287.74 29284.99 38179.97 22190.11 31591.65 31075.36 33673.51 36786.03 36159.45 34093.96 34675.17 29872.21 36989.29 366
tpm284.08 28682.94 29087.48 30091.39 29271.27 35089.23 33190.37 33971.95 36984.64 24589.33 32067.30 27496.55 27275.17 29887.09 26394.63 215
lessismore_v086.04 32688.46 35768.78 36780.59 39073.01 37090.11 30655.39 35796.43 28075.06 30065.06 38492.90 303
MVP-Stereo85.97 25484.86 26189.32 25490.92 31482.19 15692.11 26894.19 24178.76 30178.77 33791.63 26168.38 27096.56 27075.01 30193.95 14989.20 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FE-MVS87.40 20886.02 22791.57 15794.56 17579.69 22790.27 30693.72 25980.57 27688.80 14491.62 26265.32 29798.59 10674.97 30294.33 14696.44 144
PVSNet78.82 1885.55 26184.65 26588.23 28494.72 16471.93 34387.12 35892.75 27778.80 30084.95 24090.53 29464.43 30396.71 25874.74 30393.86 15196.06 163
MDTV_nov1_ep13_2view55.91 40087.62 35473.32 35884.59 24770.33 24174.65 30495.50 184
PatchmatchNetpermissive85.85 25784.70 26489.29 25591.76 27875.54 30688.49 34191.30 32081.63 26085.05 23888.70 33271.71 22096.24 29074.61 30589.05 22896.08 160
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
LF4IMVS80.37 32579.07 32984.27 34686.64 37069.87 36489.39 32891.05 32676.38 32674.97 36090.00 30947.85 38094.25 34174.55 30680.82 33088.69 372
DTE-MVSNet86.11 25285.48 24587.98 28991.65 28574.92 31294.93 12995.75 15387.36 11982.26 29393.04 21372.85 21095.82 30874.04 30777.46 35593.20 292
BH-RMVSNet88.37 17287.48 17591.02 18395.28 13479.45 23292.89 24293.07 26985.45 16886.91 18094.84 14470.35 24097.76 17473.97 30894.59 13895.85 170
CR-MVSNet85.35 26683.76 27790.12 22190.58 32779.34 23685.24 37191.96 30478.27 31085.55 21387.87 34571.03 22895.61 31673.96 30989.36 22295.40 187
ACMH+81.04 1485.05 27383.46 28189.82 23594.66 16879.37 23494.44 16094.12 24682.19 24178.04 34092.82 21958.23 34797.54 19373.77 31082.90 30092.54 312
TR-MVS86.78 23385.76 23989.82 23594.37 18578.41 25592.47 25392.83 27481.11 27286.36 19592.40 23168.73 26697.48 19873.75 31189.85 21393.57 277
UnsupCasMVSNet_eth80.07 32778.27 33385.46 33485.24 38072.63 33888.45 34394.87 21382.99 22671.64 37588.07 34156.34 35391.75 37073.48 31263.36 38792.01 328
PatchMatch-RL86.77 23685.54 24390.47 20795.88 11282.71 14490.54 30392.31 28879.82 28584.32 25991.57 26668.77 26596.39 28273.16 31393.48 16192.32 322
ambc83.06 35279.99 39163.51 38577.47 39292.86 27374.34 36584.45 37028.74 39395.06 33173.06 31468.89 37990.61 354
KD-MVS_self_test80.20 32679.24 32483.07 35185.64 37865.29 37891.01 29693.93 25078.71 30376.32 35186.40 35959.20 34392.93 36072.59 31569.35 37591.00 351
ITE_SJBPF88.24 28391.88 27377.05 28692.92 27185.54 16680.13 32193.30 20257.29 35096.20 29172.46 31684.71 27991.49 338
ACMH80.38 1785.36 26583.68 27890.39 20994.45 18180.63 19794.73 14294.85 21482.09 24277.24 34592.65 22460.01 33797.58 18872.25 31784.87 27892.96 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
USDC82.76 29881.26 30387.26 30491.17 30074.55 31689.27 32993.39 26478.26 31175.30 35892.08 24654.43 36496.63 26171.64 31885.79 27290.61 354
dmvs_re84.20 28583.22 28687.14 31191.83 27677.81 27290.04 31690.19 34284.70 18881.49 30189.17 32264.37 30491.13 37571.58 31985.65 27392.46 316
EPNet_dtu86.49 24785.94 23288.14 28690.24 33472.82 33294.11 18192.20 29286.66 13779.42 33192.36 23373.52 20095.81 30971.26 32093.66 15395.80 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND87.94 29189.73 34577.91 26787.80 34878.23 39680.58 31483.86 37159.88 33895.33 32671.20 32192.22 18290.60 356
LTVRE_ROB82.13 1386.26 25184.90 26090.34 21394.44 18281.50 17092.31 26294.89 21083.03 22479.63 32992.67 22369.69 24897.79 17271.20 32186.26 26991.72 332
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM81.04 31878.98 33087.25 30588.64 35373.48 32781.75 38689.61 35673.19 35982.05 29673.71 39066.07 29595.87 30571.18 32384.60 28092.41 318
Anonymous2024052180.44 32479.21 32584.11 34785.75 37767.89 36992.86 24493.23 26675.61 33575.59 35787.47 34950.03 37494.33 33871.14 32481.21 31890.12 359
TransMVSNet (Re)84.43 28283.06 28988.54 27591.72 27978.44 25495.18 11392.82 27582.73 23279.67 32892.12 24273.49 20195.96 30171.10 32568.73 38091.21 344
UWE-MVS83.69 29483.09 28785.48 33393.06 23665.27 37990.92 29786.14 37279.90 28386.26 19990.72 29157.17 35195.81 30971.03 32692.62 17695.35 190
testing22284.84 27783.32 28289.43 25394.15 19775.94 30191.09 29489.41 35884.90 18085.78 20789.44 31952.70 37096.28 28970.80 32791.57 18696.07 161
PCF-MVS84.11 1087.74 18986.08 22592.70 10494.02 20084.43 8989.27 32995.87 14573.62 35584.43 25394.33 16178.48 13998.86 8470.27 32894.45 14394.81 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EG-PatchMatch MVS82.37 30380.34 30988.46 27690.27 33379.35 23592.80 24694.33 23677.14 32173.26 36990.18 30347.47 38196.72 25670.25 32987.32 26189.30 365
MDTV_nov1_ep1383.56 28091.69 28369.93 36387.75 35191.54 31478.60 30484.86 24188.90 32769.54 25096.03 29770.25 32988.93 231
TDRefinement79.81 33077.34 33587.22 30879.24 39375.48 30793.12 23292.03 29976.45 32575.01 35991.58 26449.19 37796.44 27970.22 33169.18 37789.75 361
thres100view90087.63 19586.71 19790.38 21196.12 9778.55 25095.03 12491.58 31287.15 12288.06 15592.29 23668.91 26398.10 14670.13 33291.10 19094.48 231
tfpn200view987.58 20086.64 20090.41 20895.99 10978.64 24894.58 15091.98 30286.94 12988.09 15291.77 25569.18 25998.10 14670.13 33291.10 19094.48 231
thres40087.62 19786.64 20090.57 19695.99 10978.64 24894.58 15091.98 30286.94 12988.09 15291.77 25569.18 25998.10 14670.13 33291.10 19094.96 203
thres600view787.65 19286.67 19990.59 19596.08 10278.72 24694.88 13291.58 31287.06 12588.08 15492.30 23568.91 26398.10 14670.05 33591.10 19094.96 203
thres20087.21 21986.24 21890.12 22195.36 13178.53 25193.26 22892.10 29686.42 14288.00 15791.11 27969.24 25898.00 16269.58 33691.04 19693.83 262
tpm cat181.96 30480.27 31087.01 31291.09 30571.02 35587.38 35691.53 31566.25 38180.17 31886.35 36068.22 27196.15 29469.16 33782.29 30593.86 260
Patchmtry82.71 29980.93 30588.06 28790.05 33876.37 29784.74 37691.96 30472.28 36881.32 30687.87 34571.03 22895.50 32268.97 33880.15 33892.32 322
our_test_381.93 30580.46 30886.33 32588.46 35773.48 32788.46 34291.11 32376.46 32476.69 34988.25 33866.89 28194.36 33768.75 33979.08 34891.14 346
PVSNet_073.20 2077.22 34374.83 34984.37 34490.70 32471.10 35383.09 38389.67 35572.81 36473.93 36683.13 37560.79 33293.70 35068.54 34050.84 39688.30 375
MSDG84.86 27683.09 28790.14 22093.80 21280.05 21589.18 33293.09 26878.89 29778.19 33891.91 25265.86 29697.27 22568.47 34188.45 23993.11 296
LS3D87.89 18486.32 21492.59 10996.07 10382.92 13695.23 10994.92 20975.66 33382.89 28795.98 9872.48 21599.21 4568.43 34295.23 12895.64 180
AllTest83.42 29581.39 30189.52 24995.01 14777.79 27493.12 23290.89 33277.41 31776.12 35393.34 19854.08 36597.51 19668.31 34384.27 28393.26 287
TestCases89.52 24995.01 14777.79 27490.89 33277.41 31776.12 35393.34 19854.08 36597.51 19668.31 34384.27 28393.26 287
dp81.47 31480.23 31185.17 33989.92 34165.49 37786.74 36090.10 34576.30 32881.10 30787.12 35562.81 31595.92 30268.13 34579.88 34194.09 248
tpmvs83.35 29782.07 29687.20 30991.07 30671.00 35688.31 34491.70 30878.91 29580.49 31687.18 35469.30 25797.08 23968.12 34683.56 29193.51 281
FMVSNet581.52 31379.60 32087.27 30391.17 30077.95 26691.49 28392.26 29176.87 32276.16 35287.91 34451.67 37192.34 36467.74 34781.16 31991.52 337
KD-MVS_2432*160078.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28679.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
miper_refine_blended78.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28679.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
ETVMVS84.43 28282.92 29188.97 26594.37 18574.67 31491.23 29188.35 36383.37 21686.06 20489.04 32455.38 35895.67 31567.12 35091.34 18896.58 140
CL-MVSNet_self_test81.74 30880.53 30685.36 33585.96 37472.45 34190.25 30893.07 26981.24 26979.85 32787.29 35170.93 23092.52 36266.95 35169.23 37691.11 348
YYNet179.22 33577.20 33785.28 33788.20 36272.66 33685.87 36590.05 34874.33 34862.70 38587.61 34766.09 29492.03 36666.94 35272.97 36791.15 345
PAPM86.68 23885.39 24790.53 19893.05 23779.33 23989.79 32094.77 22178.82 29981.95 29893.24 20576.81 15297.30 22166.94 35293.16 16894.95 206
DP-MVS87.25 21585.36 24992.90 9297.65 5583.24 11994.81 13792.00 30074.99 34181.92 29995.00 13572.66 21299.05 5566.92 35492.33 18196.40 145
MDA-MVSNet_test_wron79.21 33677.19 33885.29 33688.22 36172.77 33385.87 36590.06 34674.34 34762.62 38787.56 34866.14 29391.99 36866.90 35573.01 36691.10 349
UnsupCasMVSNet_bld76.23 34673.27 35085.09 34083.79 38372.92 33085.65 36893.47 26371.52 37068.84 38179.08 38549.77 37593.21 35666.81 35660.52 38989.13 370
MIMVSNet82.59 30180.53 30688.76 26891.51 28678.32 25886.57 36290.13 34479.32 28980.70 31288.69 33352.98 36993.07 35966.03 35788.86 23294.90 207
LCM-MVSNet66.00 35762.16 36277.51 36764.51 40558.29 39383.87 38090.90 33148.17 39454.69 39173.31 39116.83 40586.75 38865.47 35861.67 38887.48 379
PatchT82.68 30081.27 30286.89 31790.09 33770.94 35784.06 37890.15 34374.91 34285.63 21283.57 37369.37 25294.87 33365.19 35988.50 23894.84 209
test0.0.03 182.41 30281.69 29884.59 34288.23 36072.89 33190.24 31087.83 36683.41 21479.86 32689.78 31467.25 27588.99 38565.18 36083.42 29491.90 330
ppachtmachnet_test81.84 30680.07 31487.15 31088.46 35774.43 31989.04 33592.16 29375.33 33777.75 34288.99 32566.20 29295.37 32565.12 36177.60 35391.65 333
COLMAP_ROBcopyleft80.39 1683.96 28882.04 29789.74 23995.28 13479.75 22594.25 17392.28 28975.17 33978.02 34193.77 19058.60 34697.84 17165.06 36285.92 27091.63 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVSnew83.77 29283.28 28385.26 33891.48 28771.03 35491.89 27187.98 36478.91 29584.78 24290.22 30069.11 26194.02 34364.70 36390.44 20190.71 352
ADS-MVSNet281.66 31079.71 31987.50 29891.35 29474.19 32183.33 38188.48 36272.90 36282.24 29485.77 36464.98 30093.20 35764.57 36483.74 28795.12 196
ADS-MVSNet81.56 31279.78 31686.90 31691.35 29471.82 34583.33 38189.16 35972.90 36282.24 29485.77 36464.98 30093.76 34864.57 36483.74 28795.12 196
new-patchmatchnet76.41 34575.17 34880.13 36082.65 38759.61 39187.66 35391.08 32478.23 31269.85 37983.22 37454.76 36191.63 37264.14 36664.89 38589.16 368
testgi80.94 32180.20 31283.18 35087.96 36466.29 37491.28 28890.70 33683.70 20578.12 33992.84 21751.37 37290.82 37763.34 36782.46 30392.43 317
TinyColmap79.76 33177.69 33485.97 32791.71 28173.12 32989.55 32390.36 34075.03 34072.03 37390.19 30246.22 38396.19 29363.11 36881.03 32488.59 373
pmmvs371.81 35268.71 35581.11 35875.86 39470.42 36086.74 36083.66 38258.95 38968.64 38280.89 38336.93 39089.52 38263.10 36963.59 38683.39 381
TAPA-MVS84.62 688.16 17887.01 18891.62 15496.64 8080.65 19694.39 16596.21 11876.38 32686.19 20195.44 11779.75 11998.08 15662.75 37095.29 12596.13 156
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MDA-MVSNet-bldmvs78.85 33776.31 34286.46 32289.76 34373.88 32388.79 33790.42 33879.16 29359.18 38988.33 33760.20 33594.04 34262.00 37168.96 37891.48 339
tfpnnormal84.72 27983.23 28589.20 25792.79 24880.05 21594.48 15595.81 14882.38 23781.08 30891.21 27269.01 26296.95 24861.69 37280.59 33290.58 357
Anonymous2023120681.03 31979.77 31884.82 34187.85 36670.26 36191.42 28492.08 29773.67 35477.75 34289.25 32162.43 31793.08 35861.50 37382.00 31091.12 347
RPMNet83.95 28981.53 30091.21 17190.58 32779.34 23685.24 37196.76 7571.44 37185.55 21382.97 37870.87 23198.91 8061.01 37489.36 22295.40 187
MIMVSNet179.38 33477.28 33685.69 33286.35 37173.67 32491.61 28192.75 27778.11 31472.64 37188.12 34048.16 37991.97 36960.32 37577.49 35491.43 340
test20.0379.95 32979.08 32882.55 35485.79 37667.74 37191.09 29491.08 32481.23 27074.48 36489.96 31161.63 32190.15 37960.08 37676.38 36089.76 360
DSMNet-mixed76.94 34476.29 34378.89 36383.10 38556.11 39987.78 34979.77 39160.65 38875.64 35688.71 33161.56 32388.34 38660.07 37789.29 22492.21 325
Patchmatch-test81.37 31579.30 32387.58 29690.92 31474.16 32280.99 38787.68 36870.52 37576.63 35088.81 32871.21 22592.76 36160.01 37886.93 26595.83 172
WAC-MVS64.08 38259.14 379
myMVS_eth3d79.67 33278.79 33182.32 35791.92 27064.08 38289.75 32187.40 37081.72 25678.82 33487.20 35245.33 38491.29 37359.09 38087.84 25191.60 335
MVS-HIRNet73.70 34972.20 35278.18 36691.81 27756.42 39882.94 38482.58 38555.24 39068.88 38066.48 39455.32 35995.13 32858.12 38188.42 24083.01 383
OpenMVS_ROBcopyleft74.94 1979.51 33377.03 34086.93 31487.00 36976.23 29992.33 26090.74 33568.93 37874.52 36388.23 33949.58 37696.62 26257.64 38284.29 28287.94 377
new_pmnet72.15 35070.13 35478.20 36582.95 38665.68 37583.91 37982.40 38662.94 38764.47 38479.82 38442.85 38786.26 39157.41 38374.44 36582.65 385
testing380.46 32379.59 32183.06 35293.44 22664.64 38193.33 22085.47 37684.34 19379.93 32590.84 28644.35 38692.39 36357.06 38487.56 25592.16 326
APD_test169.04 35366.26 35977.36 36880.51 39062.79 38785.46 37083.51 38354.11 39259.14 39084.79 36923.40 39989.61 38155.22 38570.24 37379.68 389
N_pmnet68.89 35468.44 35670.23 37489.07 35028.79 41188.06 34519.50 41169.47 37771.86 37484.93 36761.24 32791.75 37054.70 38677.15 35690.15 358
test_method50.52 36748.47 36956.66 38352.26 40918.98 41341.51 40181.40 38810.10 40344.59 39875.01 38928.51 39468.16 40153.54 38749.31 39782.83 384
tmp_tt35.64 37139.24 37324.84 38714.87 41123.90 41262.71 39751.51 4106.58 40536.66 40162.08 39844.37 38530.34 40752.40 38822.00 40420.27 402
test_040281.30 31779.17 32787.67 29493.19 23178.17 26292.98 23991.71 30775.25 33876.02 35590.31 29859.23 34296.37 28350.22 38983.63 29088.47 374
PMMVS259.60 36156.40 36369.21 37768.83 40246.58 40373.02 39677.48 39955.07 39149.21 39472.95 39217.43 40480.04 39949.32 39044.33 39980.99 387
Syy-MVS80.07 32779.78 31680.94 35991.92 27059.93 39089.75 32187.40 37081.72 25678.82 33487.20 35266.29 29191.29 37347.06 39187.84 25191.60 335
dmvs_testset74.57 34875.81 34770.86 37387.72 36740.47 40687.05 35977.90 39882.75 23171.15 37785.47 36667.98 27284.12 39545.26 39276.98 35988.00 376
EGC-MVSNET61.97 36056.37 36478.77 36489.63 34673.50 32689.12 33382.79 3840.21 4081.24 40984.80 36839.48 38990.04 38044.13 39375.94 36372.79 392
ANet_high58.88 36454.22 36872.86 37056.50 40856.67 39580.75 38886.00 37373.09 36137.39 40064.63 39722.17 40079.49 40043.51 39423.96 40282.43 386
testf159.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
APD_test259.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
DeepMVS_CXcopyleft56.31 38474.23 39651.81 40156.67 40944.85 39548.54 39575.16 38827.87 39558.74 40540.92 39752.22 39458.39 398
FPMVS64.63 35962.55 36170.88 37270.80 39956.71 39484.42 37784.42 38051.78 39349.57 39381.61 38123.49 39881.48 39840.61 39876.25 36174.46 391
Gipumacopyleft57.99 36554.91 36767.24 38088.51 35465.59 37652.21 39990.33 34143.58 39642.84 39951.18 40020.29 40285.07 39234.77 39970.45 37251.05 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36648.46 37063.48 38145.72 41046.20 40473.41 39578.31 39541.03 39930.06 40265.68 3956.05 40983.43 39630.04 40065.86 38260.80 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 36838.59 37457.77 38256.52 40748.77 40255.38 39858.64 40829.33 40228.96 40352.65 3994.68 41064.62 40428.11 40133.07 40059.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS67.92 35567.49 35769.21 37781.09 38841.17 40588.03 34678.00 39773.50 35662.63 38683.11 37763.94 30686.52 38925.66 40251.45 39579.94 388
SSC-MVS67.06 35666.56 35868.56 37980.54 38940.06 40787.77 35077.37 40072.38 36661.75 38882.66 37963.37 31186.45 39024.48 40348.69 39879.16 390
E-PMN43.23 36942.29 37146.03 38565.58 40437.41 40873.51 39464.62 40533.99 40028.47 40447.87 40119.90 40367.91 40222.23 40424.45 40132.77 400
EMVS42.07 37041.12 37244.92 38663.45 40635.56 41073.65 39363.48 40633.05 40126.88 40545.45 40221.27 40167.14 40319.80 40523.02 40332.06 401
wuyk23d21.27 37320.48 37623.63 38868.59 40336.41 40949.57 4006.85 4129.37 4047.89 4064.46 4084.03 41131.37 40617.47 40616.07 4053.12 403
testmvs8.92 37411.52 3771.12 3901.06 4120.46 41586.02 3640.65 4130.62 4062.74 4079.52 4060.31 4130.45 4092.38 4070.39 4062.46 405
test1238.76 37511.22 3781.39 3890.85 4130.97 41485.76 3670.35 4140.54 4072.45 4088.14 4070.60 4120.48 4082.16 4080.17 4072.71 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k22.14 37229.52 3750.00 3910.00 4140.00 4160.00 40295.76 1520.00 4090.00 41094.29 16475.66 1700.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.64 3778.86 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40979.70 1210.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.82 37610.43 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41093.88 1850.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 414
eth-test0.00 414
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 157
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 157
sam_mvs70.60 234
MTGPAbinary96.97 50
test_post10.29 40470.57 23895.91 304
patchmatchnet-post83.76 37271.53 22296.48 275
MTMP96.16 5360.64 407
TEST997.53 5886.49 3694.07 18696.78 7281.61 26192.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19196.76 7581.86 25292.70 7896.20 8787.63 2999.02 61
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
test_prior485.96 5394.11 181
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
新几何293.11 234
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
原ACMM292.94 241
test22296.55 8481.70 16692.22 26495.01 20168.36 37990.20 12496.14 9280.26 11497.80 7496.05 164
segment_acmp87.16 36
testdata192.15 26687.94 103
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
plane_prior794.70 16682.74 141
plane_prior694.52 17682.75 13974.23 187
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 171
plane_prior82.73 14295.21 11189.66 4889.88 212
n20.00 415
nn0.00 415
door-mid85.49 375
test1196.57 92
door85.33 377
HQP5-MVS81.56 168
HQP-NCC94.17 19494.39 16588.81 7285.43 226
ACMP_Plane94.17 19494.39 16588.81 7285.43 226
HQP4-MVS85.43 22697.96 16594.51 225
HQP3-MVS96.04 13189.77 216
HQP2-MVS73.83 197
NP-MVS94.37 18582.42 15193.98 178
ACMMP++_ref87.47 256
ACMMP++88.01 247
Test By Simon80.02 116