This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3498.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2998.27 2895.13 1799.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_TWO98.27 2895.13 1798.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3697.85 11194.92 2498.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 299.45 295.93 398.21 3698.28 2699.86 897.52 299.67 699.75 3
test_0728_THIRD94.78 3398.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
IU-MVS99.42 695.39 997.94 10290.40 17298.94 597.41 799.66 899.74 5
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4497.85 11193.72 6098.57 1198.35 3893.69 1599.40 10997.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS96.12 6296.17 5895.97 12196.69 16991.17 13998.49 1497.72 12193.80 5796.17 7697.13 12589.42 8598.60 17997.05 999.03 8398.15 150
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12398.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 1099.49 3499.57 19
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5798.14 5394.82 3099.01 398.55 1994.18 1197.41 30096.94 1199.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15398.01 9195.12 1997.14 4198.42 3191.82 4699.61 6296.90 1299.13 7599.50 37
CANet96.39 5596.02 6097.50 5097.62 12993.38 6797.02 14597.96 10095.42 794.86 11297.81 8287.38 11499.82 2596.88 1399.20 7099.29 62
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16996.72 22694.17 4797.44 2997.66 9392.76 2399.33 11496.86 1497.76 11899.08 80
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15397.76 11595.01 2397.08 4698.42 3191.71 4999.54 8696.80 1599.13 7599.48 41
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16598.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1599.29 5799.56 22
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16597.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1799.29 5799.55 26
DeepPCF-MVS93.97 196.61 4897.09 1295.15 16098.09 10586.63 26496.00 23498.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1899.48 3599.45 45
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5598.18 4690.57 16898.85 798.94 193.33 1799.83 2296.72 1999.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13298.35 1995.16 1698.71 1098.80 995.05 799.89 396.70 2099.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2199.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8298.49 1294.66 3797.24 3698.41 3492.31 3798.94 15096.61 2299.46 3898.96 92
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15398.06 7390.67 15995.55 10298.78 1091.07 6599.86 896.58 2399.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1898.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2499.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 14098.07 7093.54 6896.08 8097.69 9093.86 1399.71 3896.50 2599.39 4799.55 26
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14597.22 18395.35 898.27 1498.65 1393.33 1799.72 3596.49 2699.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3398.27 2892.37 10898.27 1498.65 1393.33 1799.72 3596.49 2699.52 2599.51 34
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 16097.73 11894.74 3596.49 6498.49 2490.88 7099.58 7196.44 2898.32 10299.13 74
VDD-MVS93.82 12593.08 13196.02 11897.88 11689.96 17497.72 7795.85 26792.43 10695.86 8998.44 2868.42 32699.39 11096.31 2994.85 17598.71 115
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5498.04 8193.79 5897.35 3398.53 2191.40 5799.56 8196.30 3099.30 5699.55 26
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9298.19 4492.82 9697.93 2098.74 1191.60 5399.86 896.26 3199.52 2599.67 8
diffmvs95.25 8395.13 8195.63 13896.43 18589.34 19595.99 23597.35 17492.83 9596.31 7197.37 11386.44 12598.67 17396.26 3197.19 13598.87 103
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 16197.72 12194.67 3696.16 7798.46 2690.43 7699.58 7196.23 3397.96 11298.90 99
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4998.07 7093.75 5997.45 2898.48 2591.43 5699.59 6896.22 3499.27 6199.54 29
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
xiu_mvs_v1_base95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
alignmvs95.87 7095.23 7897.78 3397.56 13495.19 1897.86 6097.17 18694.39 4396.47 6696.40 16785.89 13399.20 12396.21 3895.11 17398.95 94
canonicalmvs96.02 6595.45 7197.75 3797.59 13295.15 2198.28 2697.60 13594.52 4096.27 7396.12 17987.65 10799.18 12696.20 3994.82 17798.91 98
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13898.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4099.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12598.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4099.50 3299.58 17
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4998.06 7393.11 8397.44 2998.55 1990.93 6899.55 8496.06 4299.25 6599.51 34
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2291.40 5799.56 8196.05 4399.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2290.71 7396.05 4399.26 6399.43 49
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22498.90 294.30 4695.86 8997.74 8792.33 3599.38 11296.04 4599.42 4399.28 65
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3698.45 1589.86 18097.11 4498.01 6892.52 3299.69 4496.03 4699.53 2499.36 58
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9697.97 9995.59 496.61 5897.89 7292.57 3099.84 1995.95 4799.51 2999.40 53
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23698.18 4695.23 1295.87 8897.65 9491.45 5599.70 4395.87 4899.44 4299.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 22298.79 493.99 5195.80 9197.65 9489.92 8399.24 12195.87 4899.20 7098.58 119
hse-mvs394.15 11093.52 11896.04 11797.81 11990.22 16597.62 9197.58 13895.19 1496.74 5097.45 10983.67 16299.61 6295.85 5079.73 33098.29 146
hse-mvs293.45 13792.99 13394.81 17797.02 15488.59 21696.69 17996.47 24495.19 1496.74 5096.16 17883.67 16298.48 19195.85 5079.13 33497.35 186
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11598.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5299.17 7299.56 22
VNet95.89 6995.45 7197.21 6598.07 10792.94 7997.50 9998.15 5193.87 5397.52 2597.61 10085.29 14099.53 8995.81 5395.27 16999.16 70
9.1496.75 3398.93 4797.73 7498.23 3891.28 14497.88 2298.44 2893.00 2199.65 5395.76 5499.47 36
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2696.59 6098.29 5091.70 5099.80 2795.66 5599.40 4599.62 13
X-MVStestdata91.71 19789.67 25697.81 3099.38 1494.03 5098.59 798.20 4294.85 2696.59 6032.69 36291.70 5099.80 2795.66 5599.40 4599.62 13
baseline95.58 7595.42 7396.08 11396.78 16490.41 16297.16 13697.45 15893.69 6395.65 10097.85 7887.29 11598.68 17295.66 5597.25 13399.13 74
ETV-MVS96.02 6595.89 6396.40 9697.16 14292.44 9297.47 10497.77 11494.55 3996.48 6594.51 25391.23 6298.92 15195.65 5898.19 10597.82 168
casdiffmvs95.64 7395.49 6996.08 11396.76 16790.45 16097.29 12297.44 16294.00 5095.46 10697.98 7087.52 11198.73 16795.64 5997.33 13099.08 80
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7797.18 3898.29 5092.08 3999.83 2295.63 6099.59 1599.54 29
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7797.15 4098.33 4491.35 5999.86 895.63 6099.59 1599.62 13
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14896.40 6997.99 6990.99 6799.58 7195.61 6299.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8696.45 6898.30 4991.90 4599.85 1495.61 6299.68 499.54 29
DeepC-MVS93.07 396.06 6395.66 6697.29 5897.96 10993.17 7397.30 12198.06 7393.92 5293.38 14198.66 1286.83 12099.73 3295.60 6499.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10396.39 7098.18 5891.61 5299.88 495.59 6599.55 2199.57 19
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8198.24 3491.57 13097.90 2198.37 3692.61 2999.66 5295.59 6599.51 2999.43 49
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 8097.14 4198.34 4191.59 5499.87 795.46 6799.59 1599.64 10
OPU-MVS98.55 198.82 5696.86 198.25 2998.26 5396.04 199.24 12195.36 6899.59 1599.56 22
lupinMVS94.99 9394.56 9396.29 10696.34 18991.21 13295.83 24296.27 25288.93 20896.22 7496.88 13786.20 13098.85 15795.27 6999.05 8198.82 107
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7695.95 8798.33 4491.04 6699.88 495.20 7099.57 2099.60 16
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10798.04 8194.81 3196.59 6098.37 3691.24 6199.64 6195.16 7199.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jason94.84 9894.39 10196.18 11195.52 22290.93 14696.09 22896.52 24289.28 19696.01 8597.32 11484.70 14798.77 16495.15 7298.91 8998.85 104
jason: jason.
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3998.32 2092.57 10497.18 3898.29 5092.08 3999.83 2295.12 7399.59 1599.54 29
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5898.03 8493.34 7597.22 3798.42 3187.93 10399.72 3595.10 7499.07 8099.02 83
train_agg96.30 5795.83 6497.72 3998.70 6094.19 4096.41 20198.02 8888.58 22096.03 8197.56 10592.73 2599.59 6895.04 7599.37 5299.39 54
agg_prior196.22 6095.77 6597.56 4898.67 6293.79 5596.28 21798.00 9388.76 21795.68 9697.55 10792.70 2799.57 7995.01 7699.32 5399.32 60
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20998.00 9392.80 9796.03 8197.59 10192.01 4199.41 10795.01 7699.38 4899.29 62
test_prior296.35 20992.80 9796.03 8197.59 10192.01 4195.01 7699.38 48
nrg03094.05 11793.31 12796.27 10795.22 24494.59 2898.34 2197.46 15292.93 9391.21 19196.64 14987.23 11798.22 20694.99 7985.80 28295.98 222
VDDNet93.05 15092.07 16296.02 11896.84 16090.39 16398.08 4395.85 26786.22 27695.79 9298.46 2667.59 32999.19 12494.92 8094.85 17598.47 131
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7798.10 6191.50 13298.01 1898.32 4692.33 3599.58 7194.85 8199.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.56 5096.06 5998.05 1798.26 9295.19 1896.99 15098.05 8089.85 18297.26 3598.22 5691.80 4799.69 4494.84 8299.28 5999.27 66
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2598.13 5492.72 10096.70 5298.06 6491.35 5999.86 894.83 8399.28 5999.47 44
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1998.06 7393.37 7295.54 10498.34 4190.59 7599.88 494.83 8399.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test9_res94.81 8599.38 4899.45 45
PS-MVSNAJ95.37 7995.33 7695.49 14997.35 13690.66 15595.31 26397.48 14793.85 5496.51 6395.70 20588.65 9499.65 5394.80 8698.27 10396.17 213
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16896.77 4998.35 3890.21 7999.53 8994.80 8699.63 1299.38 56
xiu_mvs_v2_base95.32 8195.29 7795.40 15497.22 13890.50 15895.44 25797.44 16293.70 6296.46 6796.18 17588.59 9799.53 8994.79 8897.81 11596.17 213
CSCG96.05 6495.91 6296.46 9399.24 2890.47 15998.30 2498.57 1189.01 20393.97 12897.57 10392.62 2899.76 3094.66 8999.27 6199.15 72
EIA-MVS95.53 7795.47 7095.71 13597.06 15089.63 17997.82 6597.87 10793.57 6493.92 12995.04 23090.61 7498.95 14994.62 9098.68 9498.54 121
ZD-MVS99.05 4194.59 2898.08 6489.22 19897.03 4798.10 6092.52 3299.65 5394.58 9199.31 55
ACMMPcopyleft96.27 5895.93 6197.28 5999.24 2892.62 8798.25 2998.81 392.99 8694.56 11698.39 3588.96 8999.85 1494.57 9297.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8598.98 192.22 11197.14 4198.44 2891.17 6499.85 1494.35 9399.46 3899.57 19
ET-MVSNet_ETH3D91.49 20990.11 23895.63 13896.40 18691.57 12195.34 26093.48 33390.60 16775.58 34795.49 21680.08 23096.79 32094.25 9489.76 24798.52 123
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6998.22 3992.74 9997.59 2498.20 5791.96 4499.86 894.21 9599.25 6599.63 11
bset_n11_16_dypcd91.55 20590.59 21794.44 19391.51 33490.25 16492.70 32593.42 33492.27 11090.22 20594.74 24478.42 26097.80 26494.19 9687.86 26395.29 265
LFMVS93.60 13292.63 14596.52 8598.13 10491.27 12997.94 5593.39 33590.57 16896.29 7298.31 4769.00 32299.16 12894.18 9795.87 15899.12 77
MVSFormer95.37 7995.16 8095.99 12096.34 18991.21 13298.22 3497.57 13991.42 13696.22 7497.32 11486.20 13097.92 25394.07 9899.05 8198.85 104
test_djsdf93.07 14992.76 13994.00 21093.49 30988.70 21498.22 3497.57 13991.42 13690.08 21695.55 21382.85 18197.92 25394.07 9891.58 22195.40 252
mvs_anonymous93.82 12593.74 10994.06 20796.44 18485.41 28295.81 24397.05 19989.85 18290.09 21596.36 16987.44 11397.75 27093.97 10096.69 14599.02 83
VPA-MVSNet93.24 14392.48 15495.51 14695.70 21692.39 9397.86 6098.66 992.30 10992.09 17195.37 21980.49 22298.40 19493.95 10185.86 28195.75 235
agg_prior293.94 10299.38 4899.50 37
mvs_tets92.31 17791.76 17293.94 21793.41 31188.29 22397.63 9097.53 14392.04 12088.76 25496.45 16374.62 29298.09 22593.91 10391.48 22395.45 248
Effi-MVS+94.93 9494.45 9996.36 10196.61 17091.47 12396.41 20197.41 16791.02 15394.50 11795.92 18887.53 11098.78 16293.89 10496.81 14098.84 106
jajsoiax92.42 17291.89 17094.03 20993.33 31488.50 22097.73 7497.53 14392.00 12288.85 25096.50 16175.62 28898.11 22093.88 10591.56 22295.48 243
XVG-OURS-SEG-HR93.86 12493.55 11594.81 17797.06 15088.53 21995.28 26497.45 15891.68 12894.08 12597.68 9182.41 19298.90 15493.84 10692.47 20696.98 191
PS-MVSNAJss93.74 12893.51 11994.44 19393.91 29689.28 20097.75 7197.56 14292.50 10589.94 21896.54 15988.65 9498.18 21293.83 10790.90 23495.86 224
EPNet95.20 8694.56 9397.14 6892.80 32292.68 8497.85 6394.87 31296.64 192.46 15797.80 8486.23 12799.65 5393.72 10898.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RRT_test8_iter0591.19 22890.78 20992.41 27395.76 21583.14 30997.32 11897.46 15291.37 14089.07 24695.57 21070.33 31598.21 20793.56 10986.62 27695.89 223
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12398.25 3390.21 17394.18 12397.27 11687.48 11299.73 3293.53 11097.77 11798.55 120
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2298.11 5987.79 24595.17 10998.03 6687.09 11899.61 6293.51 11199.42 4399.02 83
MVSTER93.20 14592.81 13894.37 19796.56 17689.59 18297.06 14197.12 19091.24 14591.30 18595.96 18682.02 19998.05 23293.48 11290.55 23895.47 245
PVSNet_BlendedMVS94.06 11693.92 10594.47 19298.27 8989.46 19096.73 17398.36 1690.17 17494.36 11995.24 22488.02 10099.58 7193.44 11390.72 23694.36 306
PVSNet_Blended94.87 9794.56 9395.81 12798.27 8989.46 19095.47 25698.36 1688.84 21194.36 11996.09 18388.02 10099.58 7193.44 11398.18 10698.40 139
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17693.36 6998.65 698.36 1694.12 4889.25 24398.06 6482.20 19699.77 2993.41 11599.32 5399.18 69
EPP-MVSNet95.22 8595.04 8395.76 12897.49 13589.56 18398.67 597.00 20590.69 15894.24 12297.62 9989.79 8498.81 16093.39 11696.49 15098.92 97
RRT_MVS93.21 14492.32 15895.91 12394.92 25994.15 4396.92 15796.86 22091.42 13691.28 18896.43 16479.66 23998.10 22193.29 11790.06 24395.46 246
CHOSEN 280x42093.12 14792.72 14394.34 19996.71 16887.27 24690.29 34197.72 12186.61 27191.34 18295.29 22184.29 15598.41 19393.25 11898.94 8797.35 186
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15895.34 1398.48 1697.87 10794.65 3888.53 25998.02 6783.69 16199.71 3893.18 11998.96 8699.44 47
test_yl94.78 10094.23 10296.43 9497.74 12391.22 13096.85 16297.10 19291.23 14695.71 9496.93 13284.30 15399.31 11693.10 12095.12 17198.75 109
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12391.22 13096.85 16297.10 19291.23 14695.71 9496.93 13284.30 15399.31 11693.10 12095.12 17198.75 109
HQP_MVS93.78 12793.43 12394.82 17596.21 19389.99 17097.74 7297.51 14594.85 2691.34 18296.64 14981.32 21098.60 17993.02 12292.23 20995.86 224
plane_prior597.51 14598.60 17993.02 12292.23 20995.86 224
MVS_Test94.89 9694.62 9195.68 13696.83 16289.55 18496.70 17797.17 18691.17 14895.60 10196.11 18287.87 10498.76 16593.01 12497.17 13698.72 113
CLD-MVS92.98 15392.53 15194.32 20096.12 20289.20 20295.28 26497.47 15092.66 10189.90 21995.62 20880.58 22098.40 19492.73 12592.40 20795.38 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-OURS93.72 12993.35 12694.80 18097.07 14788.61 21594.79 27497.46 15291.97 12393.99 12697.86 7781.74 20598.88 15692.64 12692.67 20496.92 195
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14298.21 4088.16 23496.64 5797.70 8991.18 6399.67 4992.44 12799.47 3699.48 41
旧先验295.94 23781.66 32597.34 3498.82 15992.26 128
CDPH-MVS95.97 6795.38 7497.77 3598.93 4794.44 3196.35 20997.88 10586.98 26496.65 5697.89 7291.99 4399.47 10092.26 12899.46 3899.39 54
FIs94.09 11593.70 11095.27 15695.70 21692.03 10798.10 4198.68 793.36 7490.39 20196.70 14487.63 10897.94 25092.25 13090.50 24095.84 227
LPG-MVS_test92.94 15692.56 14894.10 20596.16 19888.26 22597.65 8597.46 15291.29 14190.12 21297.16 12279.05 24798.73 16792.25 13091.89 21795.31 258
LGP-MVS_train94.10 20596.16 19888.26 22597.46 15291.29 14190.12 21297.16 12279.05 24798.73 16792.25 13091.89 21795.31 258
cascas91.20 22590.08 23994.58 19094.97 25589.16 20593.65 30997.59 13779.90 33689.40 23592.92 30675.36 28998.36 19892.14 13394.75 17996.23 210
OPM-MVS93.28 14292.76 13994.82 17594.63 27590.77 15296.65 18397.18 18493.72 6091.68 17697.26 11779.33 24498.63 17692.13 13492.28 20895.07 270
BP-MVS92.13 134
HQP-MVS93.19 14692.74 14294.54 19195.86 20889.33 19696.65 18397.39 16893.55 6590.14 20695.87 19080.95 21398.50 18792.13 13492.10 21495.78 231
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14298.08 6488.35 22795.09 11097.65 9489.97 8299.48 9992.08 13798.59 9798.44 136
VPNet92.23 18391.31 18994.99 16695.56 22090.96 14497.22 13197.86 11092.96 9290.96 19396.62 15675.06 29098.20 20991.90 13883.65 31595.80 230
sss94.51 10493.80 10896.64 7897.07 14791.97 11096.32 21398.06 7388.94 20794.50 11796.78 13984.60 14899.27 11991.90 13896.02 15498.68 117
anonymousdsp92.16 18691.55 18093.97 21392.58 32689.55 18497.51 9897.42 16689.42 19388.40 26094.84 23880.66 21997.88 25891.87 14091.28 22794.48 302
ACMP89.59 1092.62 16792.14 16194.05 20896.40 18688.20 22897.36 11497.25 18291.52 13188.30 26396.64 14978.46 25998.72 17091.86 14191.48 22395.23 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HyFIR lowres test93.66 13092.92 13695.87 12598.24 9389.88 17594.58 27898.49 1285.06 29393.78 13195.78 19982.86 18098.67 17391.77 14295.71 16399.07 82
UGNet94.04 11893.28 12896.31 10396.85 15991.19 13597.88 5997.68 12794.40 4293.00 14996.18 17573.39 30299.61 6291.72 14398.46 9998.13 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet93.37 13992.67 14495.47 15295.34 23392.83 8097.17 13598.58 1092.98 9190.13 21095.80 19588.37 9997.85 25991.71 14483.93 31095.73 237
DU-MVS92.90 15892.04 16395.49 14994.95 25792.83 8097.16 13698.24 3493.02 8590.13 21095.71 20383.47 16597.85 25991.71 14483.93 31095.78 231
Effi-MVS+-dtu93.08 14893.21 13092.68 26896.02 20583.25 30897.14 13996.72 22693.85 5491.20 19293.44 30083.08 17398.30 20291.69 14695.73 16296.50 206
mvs-test193.63 13193.69 11193.46 24096.02 20584.61 29497.24 12596.72 22693.85 5492.30 16495.76 20083.08 17398.89 15591.69 14696.54 14896.87 197
UniMVSNet (Re)93.31 14192.55 14995.61 14095.39 22793.34 7097.39 11198.71 593.14 8290.10 21494.83 23987.71 10598.03 23691.67 14883.99 30995.46 246
LCM-MVSNet-Re92.50 16892.52 15292.44 27196.82 16381.89 31796.92 15793.71 33192.41 10784.30 31594.60 25185.08 14397.03 31191.51 14997.36 12898.40 139
FC-MVSNet-test93.94 12193.57 11495.04 16495.48 22491.45 12598.12 4098.71 593.37 7290.23 20496.70 14487.66 10697.85 25991.49 15090.39 24195.83 228
PMMVS92.86 16092.34 15694.42 19694.92 25986.73 26094.53 28096.38 24884.78 29894.27 12195.12 22983.13 17298.40 19491.47 15196.49 15098.12 152
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14191.58 12098.26 2898.12 5694.38 4494.90 11198.15 5982.28 19498.92 15191.45 15298.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268894.15 11093.51 11996.06 11598.27 8989.38 19395.18 27098.48 1485.60 28493.76 13297.11 12683.15 17199.61 6291.33 15398.72 9399.19 68
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19997.57 13992.04 12094.77 11497.96 7187.01 11999.09 13791.31 15496.77 14198.36 143
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 23097.48 14793.47 7195.67 9998.10 6089.17 8799.25 12091.27 15598.77 9199.13 74
ACMM89.79 892.96 15492.50 15394.35 19896.30 19188.71 21397.58 9397.36 17391.40 13990.53 19796.65 14879.77 23698.75 16691.24 15691.64 21995.59 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WTY-MVS94.71 10294.02 10496.79 7697.71 12592.05 10696.59 19297.35 17490.61 16594.64 11596.93 13286.41 12699.39 11091.20 15794.71 18198.94 95
Anonymous2024052991.98 19190.73 21295.73 13398.14 10389.40 19297.99 4897.72 12179.63 33793.54 13697.41 11269.94 32099.56 8191.04 15891.11 22998.22 147
test_part192.21 18591.10 19995.51 14697.80 12092.66 8598.02 4797.68 12789.79 18588.80 25396.02 18476.85 27798.18 21290.86 15984.11 30895.69 238
AUN-MVS91.76 19690.75 21194.81 17797.00 15588.57 21796.65 18396.49 24389.63 18792.15 16796.12 17978.66 25698.50 18790.83 16079.18 33397.36 185
CANet_DTU94.37 10593.65 11396.55 8496.46 18392.13 10496.21 22396.67 23494.38 4493.53 13797.03 13079.34 24399.71 3890.76 16198.45 10097.82 168
ab-mvs93.57 13492.55 14996.64 7897.28 13791.96 11195.40 25897.45 15889.81 18493.22 14796.28 17279.62 24099.46 10190.74 16293.11 19898.50 126
CostFormer91.18 22990.70 21392.62 26994.84 26581.76 31894.09 29794.43 31984.15 30492.72 15693.77 28979.43 24298.20 20990.70 16392.18 21297.90 161
Anonymous20240521192.07 18990.83 20895.76 12898.19 10088.75 21297.58 9395.00 30386.00 27993.64 13397.45 10966.24 33899.53 8990.68 16492.71 20299.01 87
tpmrst91.44 21191.32 18891.79 28895.15 24779.20 34093.42 31395.37 28588.55 22393.49 13893.67 29482.49 19098.27 20390.41 16589.34 25097.90 161
thisisatest053093.03 15192.21 16095.49 14997.07 14789.11 20697.49 10392.19 34390.16 17594.09 12496.41 16676.43 28299.05 14390.38 16695.68 16498.31 145
UA-Net95.95 6895.53 6797.20 6697.67 12692.98 7897.65 8598.13 5494.81 3196.61 5898.35 3888.87 9099.51 9490.36 16797.35 12999.11 78
UniMVSNet_ETH3D91.34 21990.22 23594.68 18594.86 26487.86 23897.23 13097.46 15287.99 23789.90 21996.92 13566.35 33698.23 20590.30 16890.99 23297.96 157
tttt051792.96 15492.33 15794.87 17497.11 14587.16 25297.97 5392.09 34490.63 16393.88 13097.01 13176.50 27999.06 14290.29 16995.45 16698.38 141
IS-MVSNet94.90 9594.52 9696.05 11697.67 12690.56 15698.44 1796.22 25593.21 7793.99 12697.74 8785.55 13898.45 19289.98 17097.86 11399.14 73
miper_enhance_ethall91.54 20791.01 20093.15 25295.35 23287.07 25493.97 29996.90 21486.79 26889.17 24493.43 30286.55 12397.64 27889.97 17186.93 27194.74 296
EI-MVSNet93.03 15192.88 13793.48 23895.77 21386.98 25596.44 19797.12 19090.66 16191.30 18597.64 9786.56 12298.05 23289.91 17290.55 23895.41 249
IterMVS-LS92.29 17991.94 16893.34 24596.25 19286.97 25696.57 19597.05 19990.67 15989.50 23494.80 24186.59 12197.64 27889.91 17286.11 28095.40 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet291.21 22490.56 22093.14 25396.09 20486.80 25894.41 28596.58 24187.80 24488.58 25893.99 28280.85 21897.62 28189.87 17486.93 27194.99 273
CDS-MVSNet94.14 11393.54 11695.93 12296.18 19691.46 12496.33 21297.04 20188.97 20693.56 13496.51 16087.55 10997.89 25789.80 17595.95 15698.44 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WR-MVS92.34 17591.53 18194.77 18295.13 24990.83 14996.40 20497.98 9891.88 12489.29 24095.54 21482.50 18997.80 26489.79 17685.27 29095.69 238
NR-MVSNet92.34 17591.27 19295.53 14594.95 25793.05 7597.39 11198.07 7092.65 10284.46 31395.71 20385.00 14497.77 26989.71 17783.52 31695.78 231
Anonymous2023121190.63 24989.42 26094.27 20198.24 9389.19 20498.05 4597.89 10379.95 33588.25 26694.96 23172.56 30398.13 21689.70 17885.14 29295.49 242
testdata95.46 15398.18 10288.90 21097.66 12982.73 31997.03 4798.07 6390.06 8098.85 15789.67 17998.98 8598.64 118
Baseline_NR-MVSNet91.20 22590.62 21592.95 25993.83 29988.03 23397.01 14995.12 29988.42 22589.70 22595.13 22883.47 16597.44 29789.66 18083.24 31893.37 324
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26697.62 13490.43 17195.55 10297.07 12891.72 4899.50 9789.62 18198.94 8798.82 107
XXY-MVS92.16 18691.23 19494.95 17194.75 26990.94 14597.47 10497.43 16589.14 20088.90 24796.43 16479.71 23798.24 20489.56 18287.68 26495.67 240
miper_ehance_all_eth91.59 20191.13 19892.97 25895.55 22186.57 26594.47 28196.88 21787.77 24688.88 24994.01 28086.22 12897.54 28789.49 18386.93 27194.79 292
XVG-ACMP-BASELINE90.93 23890.21 23693.09 25494.31 28785.89 27595.33 26197.26 18091.06 15289.38 23695.44 21868.61 32498.60 17989.46 18491.05 23094.79 292
thisisatest051592.29 17991.30 19095.25 15796.60 17188.90 21094.36 28792.32 34287.92 23993.43 14094.57 25277.28 27599.00 14689.42 18595.86 15997.86 164
cl_fuxian91.38 21490.89 20292.88 26195.58 21986.30 26894.68 27696.84 22288.17 23288.83 25294.23 27285.65 13797.47 29489.36 18684.63 30094.89 282
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 19297.81 11389.87 17992.15 16797.06 12983.62 16499.54 8689.34 18798.07 10997.70 172
TranMVSNet+NR-MVSNet92.50 16891.63 17795.14 16194.76 26892.07 10597.53 9798.11 5992.90 9489.56 23196.12 17983.16 17097.60 28389.30 18883.20 31995.75 235
D2MVS91.30 22190.95 20192.35 27494.71 27185.52 28096.18 22598.21 4088.89 20986.60 29693.82 28779.92 23497.95 24989.29 18990.95 23393.56 320
131492.81 16492.03 16495.14 16195.33 23689.52 18796.04 23097.44 16287.72 24986.25 29995.33 22083.84 15998.79 16189.26 19097.05 13897.11 189
v2v48291.59 20190.85 20693.80 22393.87 29888.17 23096.94 15696.88 21789.54 18889.53 23294.90 23581.70 20698.02 23789.25 19185.04 29695.20 267
114514_t93.95 12093.06 13296.63 8099.07 3991.61 11797.46 10697.96 10077.99 34393.00 14997.57 10386.14 13299.33 11489.22 19299.15 7398.94 95
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12597.73 11891.80 12592.93 15496.62 15689.13 8899.14 13189.21 19397.78 11698.97 91
baseline192.82 16391.90 16995.55 14497.20 14090.77 15297.19 13394.58 31792.20 11392.36 16196.34 17084.16 15698.21 20789.20 19483.90 31397.68 173
IB-MVS87.33 1789.91 26488.28 27694.79 18195.26 24387.70 24195.12 27293.95 33089.35 19587.03 29092.49 31270.74 31399.19 12489.18 19581.37 32697.49 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS89.66 993.87 12392.95 13596.63 8097.10 14692.49 9195.64 25096.64 23589.05 20293.00 14995.79 19885.77 13699.45 10389.16 19694.35 18397.96 157
V4291.58 20390.87 20393.73 22594.05 29388.50 22097.32 11896.97 20688.80 21689.71 22494.33 26482.54 18898.05 23289.01 19785.07 29494.64 300
OurMVSNet-221017-090.51 25290.19 23791.44 29793.41 31181.25 32196.98 15296.28 25191.68 12886.55 29796.30 17174.20 29597.98 24088.96 19887.40 26995.09 269
API-MVS94.84 9894.49 9795.90 12497.90 11592.00 10997.80 6797.48 14789.19 19994.81 11396.71 14288.84 9199.17 12788.91 19998.76 9296.53 204
test-LLR91.42 21291.19 19692.12 27894.59 27680.66 32494.29 29192.98 33791.11 15090.76 19592.37 31479.02 24998.07 22988.81 20096.74 14297.63 174
test-mter90.19 26089.54 25992.12 27894.59 27680.66 32494.29 29192.98 33787.68 25090.76 19592.37 31467.67 32898.07 22988.81 20096.74 14297.63 174
eth_miper_zixun_eth91.02 23390.59 21792.34 27595.33 23684.35 29594.10 29696.90 21488.56 22288.84 25194.33 26484.08 15797.60 28388.77 20284.37 30595.06 271
TAMVS94.01 11993.46 12195.64 13796.16 19890.45 16096.71 17696.89 21689.27 19793.46 13996.92 13587.29 11597.94 25088.70 20395.74 16198.53 122
Patchmatch-RL test87.38 29286.24 29390.81 30788.74 35078.40 34488.12 35093.17 33687.11 26382.17 33089.29 33981.95 20195.60 33688.64 20477.02 33798.41 138
baseline291.63 20090.86 20493.94 21794.33 28586.32 26795.92 23891.64 34889.37 19486.94 29294.69 24681.62 20798.69 17188.64 20494.57 18296.81 199
TESTMET0.1,190.06 26289.42 26091.97 28194.41 28380.62 32694.29 29191.97 34687.28 26090.44 20092.47 31368.79 32397.67 27588.50 20696.60 14797.61 178
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 17197.61 13087.92 23598.10 4195.80 26992.22 11193.02 14897.45 10984.53 15097.91 25688.24 20797.97 11199.02 83
DWT-MVSNet_test90.76 24289.89 24693.38 24395.04 25383.70 30495.85 24194.30 32588.19 23090.46 19992.80 30773.61 30098.50 18788.16 20890.58 23797.95 159
1112_ss93.37 13992.42 15596.21 11097.05 15290.99 14296.31 21496.72 22686.87 26789.83 22296.69 14686.51 12499.14 13188.12 20993.67 19298.50 126
CVMVSNet91.23 22391.75 17389.67 32195.77 21374.69 34996.44 19794.88 30985.81 28192.18 16697.64 9779.07 24695.58 33788.06 21095.86 15998.74 111
MAR-MVS94.22 10893.46 12196.51 8898.00 10892.19 10397.67 8297.47 15088.13 23693.00 14995.84 19284.86 14699.51 9487.99 21198.17 10797.83 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM196.38 9998.59 6991.09 14197.89 10387.41 25695.22 10897.68 9190.25 7799.54 8687.95 21299.12 7898.49 128
CP-MVSNet91.89 19391.24 19393.82 22295.05 25288.57 21797.82 6598.19 4491.70 12788.21 26795.76 20081.96 20097.52 29187.86 21384.65 29995.37 255
v14890.99 23490.38 22492.81 26493.83 29985.80 27696.78 17196.68 23289.45 19288.75 25593.93 28482.96 17997.82 26387.83 21483.25 31794.80 290
v114491.37 21690.60 21693.68 23093.89 29788.23 22796.84 16497.03 20388.37 22689.69 22694.39 26082.04 19897.98 24087.80 21585.37 28794.84 284
cl-mvsnet190.97 23690.33 22592.88 26195.36 23186.19 27294.46 28396.63 23887.82 24288.18 26894.23 27282.99 17697.53 28987.72 21685.57 28494.93 278
gm-plane-assit93.22 31578.89 34384.82 29793.52 29798.64 17587.72 216
GeoE93.89 12293.28 12895.72 13496.96 15789.75 17898.24 3296.92 21389.47 19192.12 16997.21 12084.42 15198.39 19787.71 21896.50 14999.01 87
cl-mvsnet____90.96 23790.32 22692.89 26095.37 23086.21 27194.46 28396.64 23587.82 24288.15 26994.18 27582.98 17797.54 28787.70 21985.59 28394.92 280
pmmvs490.93 23889.85 24894.17 20393.34 31390.79 15194.60 27796.02 26184.62 29987.45 28095.15 22681.88 20397.45 29687.70 21987.87 26294.27 311
Test_1112_low_res92.84 16291.84 17195.85 12697.04 15389.97 17395.53 25496.64 23585.38 28789.65 22895.18 22585.86 13499.10 13487.70 21993.58 19798.49 128
无先验95.79 24497.87 10783.87 30999.65 5387.68 22298.89 101
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 23097.73 11881.56 32795.68 9697.85 7890.23 7899.65 5387.68 22299.12 7898.73 112
Fast-Effi-MVS+93.46 13692.75 14195.59 14196.77 16590.03 16796.81 16897.13 18988.19 23091.30 18594.27 26986.21 12998.63 17687.66 22496.46 15298.12 152
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 19296.88 21790.13 17691.91 17397.24 11885.21 14199.09 13787.64 22597.83 11497.92 160
v891.29 22290.53 22193.57 23594.15 28988.12 23297.34 11597.06 19888.99 20488.32 26294.26 27183.08 17398.01 23887.62 22683.92 31294.57 301
pmmvs589.86 26788.87 26992.82 26392.86 32086.23 27096.26 21895.39 28384.24 30387.12 28794.51 25374.27 29497.36 30387.61 22787.57 26594.86 283
Fast-Effi-MVS+-dtu92.29 17991.99 16693.21 25195.27 24085.52 28097.03 14296.63 23892.09 11889.11 24595.14 22780.33 22698.08 22687.54 22894.74 18096.03 221
OpenMVScopyleft89.19 1292.86 16091.68 17696.40 9695.34 23392.73 8398.27 2798.12 5684.86 29685.78 30297.75 8678.89 25499.74 3187.50 22998.65 9596.73 201
miper_lstm_enhance90.50 25390.06 24291.83 28595.33 23683.74 30193.86 30296.70 23187.56 25387.79 27593.81 28883.45 16796.92 31787.39 23084.62 30194.82 287
IterMVS-SCA-FT90.31 25589.81 25091.82 28695.52 22284.20 29894.30 29096.15 25890.61 16587.39 28394.27 26975.80 28596.44 32387.34 23186.88 27594.82 287
PLCcopyleft91.00 694.11 11493.43 12396.13 11298.58 7191.15 14096.69 17997.39 16887.29 25991.37 18196.71 14288.39 9899.52 9387.33 23297.13 13797.73 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm90.25 25789.74 25591.76 29193.92 29579.73 33693.98 29893.54 33288.28 22891.99 17293.25 30377.51 27497.44 29787.30 23387.94 26198.12 152
GA-MVS91.38 21490.31 22794.59 18694.65 27387.62 24294.34 28896.19 25790.73 15790.35 20293.83 28571.84 30597.96 24787.22 23493.61 19598.21 148
BH-untuned92.94 15692.62 14693.92 21997.22 13886.16 27396.40 20496.25 25490.06 17789.79 22396.17 17783.19 16998.35 19987.19 23597.27 13297.24 188
v14419291.06 23190.28 22993.39 24293.66 30487.23 24996.83 16597.07 19687.43 25589.69 22694.28 26881.48 20898.00 23987.18 23684.92 29894.93 278
RPSCF90.75 24490.86 20490.42 31496.84 16076.29 34795.61 25196.34 24983.89 30791.38 18097.87 7576.45 28098.78 16287.16 23792.23 20996.20 211
PS-CasMVS91.55 20590.84 20793.69 22994.96 25688.28 22497.84 6498.24 3491.46 13488.04 27195.80 19579.67 23897.48 29387.02 23884.54 30395.31 258
pm-mvs190.72 24689.65 25893.96 21494.29 28889.63 17997.79 6896.82 22389.07 20186.12 30195.48 21778.61 25797.78 26786.97 23981.67 32494.46 303
IterMVS90.15 26189.67 25691.61 29395.48 22483.72 30294.33 28996.12 25989.99 17887.31 28694.15 27775.78 28796.27 32686.97 23986.89 27494.83 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP93.58 13392.98 13495.37 15598.40 7888.98 20897.18 13497.29 17987.75 24890.49 19897.10 12785.21 14199.50 9786.70 24196.72 14497.63 174
PVSNet86.66 1892.24 18291.74 17593.73 22597.77 12283.69 30592.88 32296.72 22687.91 24093.00 14994.86 23778.51 25899.05 14386.53 24297.45 12698.47 131
v119291.07 23090.23 23393.58 23493.70 30287.82 23996.73 17397.07 19687.77 24689.58 22994.32 26680.90 21797.97 24386.52 24385.48 28594.95 274
新几何197.32 5698.60 6893.59 6197.75 11681.58 32695.75 9397.85 7890.04 8199.67 4986.50 24499.13 7598.69 116
v1091.04 23290.23 23393.49 23794.12 29088.16 23197.32 11897.08 19588.26 22988.29 26494.22 27482.17 19797.97 24386.45 24584.12 30794.33 307
v192192090.85 24090.03 24393.29 24793.55 30586.96 25796.74 17297.04 20187.36 25789.52 23394.34 26380.23 22897.97 24386.27 24685.21 29194.94 276
MDTV_nov1_ep13_2view70.35 35493.10 32083.88 30893.55 13582.47 19186.25 24798.38 141
test_post192.81 32416.58 36680.53 22197.68 27486.20 248
SCA91.84 19491.18 19793.83 22195.59 21884.95 29094.72 27595.58 27990.82 15492.25 16593.69 29175.80 28598.10 22186.20 24895.98 15598.45 133
PAPR94.18 10993.42 12596.48 9097.64 12891.42 12695.55 25297.71 12688.99 20492.34 16395.82 19489.19 8699.11 13386.14 25097.38 12798.90 99
GBi-Net91.35 21790.27 23094.59 18696.51 17991.18 13697.50 9996.93 20988.82 21389.35 23794.51 25373.87 29697.29 30686.12 25188.82 25395.31 258
test191.35 21790.27 23094.59 18696.51 17991.18 13697.50 9996.93 20988.82 21389.35 23794.51 25373.87 29697.29 30686.12 25188.82 25395.31 258
FMVSNet391.78 19590.69 21495.03 16596.53 17892.27 9997.02 14596.93 20989.79 18589.35 23794.65 24977.01 27697.47 29486.12 25188.82 25395.35 256
EPMVS90.70 24789.81 25093.37 24494.73 27084.21 29793.67 30888.02 35589.50 19092.38 16093.49 29877.82 27297.78 26786.03 25492.68 20398.11 155
MVS91.71 19790.44 22295.51 14695.20 24691.59 11996.04 23097.45 15873.44 35087.36 28495.60 20985.42 13999.10 13485.97 25597.46 12295.83 228
testdata299.67 4985.96 256
K. test v387.64 29186.75 29290.32 31593.02 31979.48 33896.61 18992.08 34590.66 16180.25 33994.09 27867.21 33296.65 32285.96 25680.83 32894.83 285
WR-MVS_H92.00 19091.35 18693.95 21595.09 25189.47 18898.04 4698.68 791.46 13488.34 26194.68 24785.86 13497.56 28585.77 25884.24 30694.82 287
gg-mvs-nofinetune87.82 28985.61 29894.44 19394.46 28089.27 20191.21 33684.61 36080.88 33089.89 22174.98 35471.50 30797.53 28985.75 25997.21 13496.51 205
tpm289.96 26389.21 26492.23 27794.91 26281.25 32193.78 30494.42 32080.62 33391.56 17793.44 30076.44 28197.94 25085.60 26092.08 21697.49 183
v124090.70 24789.85 24893.23 24993.51 30886.80 25896.61 18997.02 20487.16 26289.58 22994.31 26779.55 24197.98 24085.52 26185.44 28694.90 281
PEN-MVS91.20 22590.44 22293.48 23894.49 27987.91 23797.76 7098.18 4691.29 14187.78 27695.74 20280.35 22597.33 30485.46 26282.96 32095.19 268
QAPM93.45 13792.27 15996.98 7496.77 16592.62 8798.39 2098.12 5684.50 30188.27 26597.77 8582.39 19399.81 2685.40 26398.81 9098.51 125
EU-MVSNet88.72 28188.90 26888.20 32693.15 31774.21 35096.63 18894.22 32685.18 29087.32 28595.97 18576.16 28394.98 34185.27 26486.17 27895.41 249
BH-w/o92.14 18891.75 17393.31 24696.99 15685.73 27795.67 24795.69 27388.73 21889.26 24294.82 24082.97 17898.07 22985.26 26596.32 15396.13 217
FMVSNet291.31 22090.08 23994.99 16696.51 17992.21 10097.41 10796.95 20788.82 21388.62 25694.75 24373.87 29697.42 29985.20 26688.55 25895.35 256
PM-MVS83.48 31581.86 31988.31 32587.83 35377.59 34593.43 31291.75 34786.91 26580.63 33589.91 33644.42 35895.84 33285.17 26776.73 33991.50 344
LF4IMVS87.94 28887.25 28589.98 31892.38 33080.05 33494.38 28695.25 29387.59 25284.34 31494.74 24464.31 34397.66 27784.83 26887.45 26692.23 337
PatchmatchNetpermissive91.91 19291.35 18693.59 23395.38 22884.11 29993.15 31895.39 28389.54 18892.10 17093.68 29382.82 18298.13 21684.81 26995.32 16898.52 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs687.81 29086.19 29492.69 26791.32 33586.30 26897.34 11596.41 24780.59 33484.05 32194.37 26267.37 33197.67 27584.75 27079.51 33294.09 315
v7n90.76 24289.86 24793.45 24193.54 30687.60 24397.70 8097.37 17188.85 21087.65 27894.08 27981.08 21298.10 22184.68 27183.79 31494.66 299
SixPastTwentyTwo89.15 27388.54 27390.98 30493.49 30980.28 33196.70 17794.70 31390.78 15584.15 31895.57 21071.78 30697.71 27384.63 27285.07 29494.94 276
TDRefinement86.53 29784.76 30791.85 28482.23 35784.25 29696.38 20795.35 28684.97 29584.09 31994.94 23265.76 34198.34 20184.60 27374.52 34292.97 326
MVS_030488.79 27987.57 28192.46 27094.65 27386.15 27496.40 20497.17 18686.44 27288.02 27291.71 32656.68 35397.03 31184.47 27492.58 20594.19 312
ACMH87.59 1690.53 25189.42 26093.87 22096.21 19387.92 23597.24 12596.94 20888.45 22483.91 32296.27 17371.92 30498.62 17884.43 27589.43 24995.05 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+87.92 1490.20 25989.18 26593.25 24896.48 18286.45 26696.99 15096.68 23288.83 21284.79 31296.22 17470.16 31898.53 18584.42 27688.04 26094.77 295
MS-PatchMatch90.27 25689.77 25291.78 28994.33 28584.72 29395.55 25296.73 22586.17 27786.36 29895.28 22371.28 30997.80 26484.09 27798.14 10892.81 329
PatchMatch-RL92.90 15892.02 16595.56 14298.19 10090.80 15095.27 26697.18 18487.96 23891.86 17595.68 20680.44 22398.99 14784.01 27897.54 12196.89 196
lessismore_v090.45 31391.96 33379.09 34287.19 35880.32 33894.39 26066.31 33797.55 28684.00 27976.84 33894.70 297
CMPMVSbinary62.92 2185.62 30884.92 30587.74 32889.14 34873.12 35294.17 29496.80 22473.98 34873.65 34994.93 23366.36 33597.61 28283.95 28091.28 22792.48 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVP-Stereo90.74 24590.08 23992.71 26693.19 31688.20 22895.86 24096.27 25286.07 27884.86 31194.76 24277.84 27197.75 27083.88 28198.01 11092.17 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D93.57 13492.61 14796.47 9197.59 13291.61 11797.67 8297.72 12185.17 29190.29 20398.34 4184.60 14899.73 3283.85 28298.27 10398.06 156
DTE-MVSNet90.56 25089.75 25493.01 25693.95 29487.25 24797.64 8997.65 13190.74 15687.12 28795.68 20679.97 23397.00 31583.33 28381.66 32594.78 294
BH-RMVSNet92.72 16691.97 16794.97 16997.16 14287.99 23496.15 22695.60 27790.62 16491.87 17497.15 12478.41 26198.57 18383.16 28497.60 12098.36 143
pmmvs-eth3d86.22 30284.45 30891.53 29488.34 35187.25 24794.47 28195.01 30283.47 31479.51 34289.61 33869.75 32195.71 33483.13 28576.73 33991.64 341
FMVSNet189.88 26688.31 27594.59 18695.41 22691.18 13697.50 9996.93 20986.62 27087.41 28294.51 25365.94 34097.29 30683.04 28687.43 26795.31 258
MDTV_nov1_ep1390.76 21095.22 24480.33 32993.03 32195.28 29088.14 23592.84 15593.83 28581.34 20998.08 22682.86 28794.34 184
TR-MVS91.48 21090.59 21794.16 20496.40 18687.33 24495.67 24795.34 28987.68 25091.46 17995.52 21576.77 27898.35 19982.85 28893.61 19596.79 200
JIA-IIPM88.26 28687.04 29091.91 28293.52 30781.42 32089.38 34794.38 32180.84 33190.93 19480.74 35279.22 24597.92 25382.76 28991.62 22096.38 209
PVSNet_082.17 1985.46 30983.64 31290.92 30595.27 24079.49 33790.55 34095.60 27783.76 31083.00 32889.95 33571.09 31097.97 24382.75 29060.79 35695.31 258
ambc86.56 33283.60 35570.00 35585.69 35294.97 30580.60 33688.45 34037.42 36096.84 31982.69 29175.44 34192.86 328
USDC88.94 27587.83 28092.27 27694.66 27284.96 28993.86 30295.90 26587.34 25883.40 32495.56 21267.43 33098.19 21182.64 29289.67 24893.66 319
ITE_SJBPF92.43 27295.34 23385.37 28395.92 26391.47 13387.75 27796.39 16871.00 31197.96 24782.36 29389.86 24693.97 316
UnsupCasMVSNet_eth85.99 30484.45 30890.62 31189.97 34382.40 31593.62 31097.37 17189.86 18078.59 34492.37 31465.25 34295.35 34082.27 29470.75 34894.10 313
GG-mvs-BLEND93.62 23193.69 30389.20 20292.39 33083.33 36187.98 27489.84 33771.00 31196.87 31882.08 29595.40 16794.80 290
thres600view792.49 17091.60 17895.18 15997.91 11489.47 18897.65 8594.66 31492.18 11793.33 14294.91 23478.06 26899.10 13481.61 29694.06 18996.98 191
LTVRE_ROB88.41 1390.99 23489.92 24594.19 20296.18 19689.55 18496.31 21497.09 19487.88 24185.67 30395.91 18978.79 25598.57 18381.50 29789.98 24494.44 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 26889.15 26691.89 28394.92 25980.30 33093.11 31995.46 28286.28 27488.08 27092.65 30980.44 22398.52 18681.47 29889.92 24596.84 198
thres100view90092.43 17191.58 17994.98 16897.92 11389.37 19497.71 7994.66 31492.20 11393.31 14394.90 23578.06 26899.08 13981.40 29994.08 18696.48 207
tfpn200view992.38 17491.52 18294.95 17197.85 11789.29 19897.41 10794.88 30992.19 11593.27 14594.46 25878.17 26499.08 13981.40 29994.08 18696.48 207
thres40092.42 17291.52 18295.12 16397.85 11789.29 19897.41 10794.88 30992.19 11593.27 14594.46 25878.17 26499.08 13981.40 29994.08 18696.98 191
DP-MVS92.76 16591.51 18496.52 8598.77 5790.99 14297.38 11396.08 26082.38 32089.29 24097.87 7583.77 16099.69 4481.37 30296.69 14598.89 101
thres20092.23 18391.39 18594.75 18497.61 13089.03 20796.60 19195.09 30092.08 11993.28 14494.00 28178.39 26299.04 14581.26 30394.18 18596.19 212
CR-MVSNet90.82 24189.77 25293.95 21594.45 28187.19 25090.23 34295.68 27586.89 26692.40 15892.36 31780.91 21597.05 31081.09 30493.95 19097.60 179
MSDG91.42 21290.24 23294.96 17097.15 14488.91 20993.69 30796.32 25085.72 28386.93 29396.47 16280.24 22798.98 14880.57 30595.05 17496.98 191
dp88.90 27788.26 27790.81 30794.58 27876.62 34692.85 32394.93 30785.12 29290.07 21793.07 30475.81 28498.12 21980.53 30687.42 26897.71 171
tpm cat188.36 28487.21 28791.81 28795.13 24980.55 32792.58 32795.70 27274.97 34787.45 28091.96 32278.01 27098.17 21480.39 30788.74 25696.72 202
DIV-MVS_2432*160085.95 30584.95 30488.96 32389.55 34779.11 34195.13 27196.42 24685.91 28084.07 32090.48 33170.03 31994.82 34280.04 30872.94 34692.94 327
AllTest90.23 25888.98 26793.98 21197.94 11186.64 26196.51 19695.54 28085.38 28785.49 30596.77 14070.28 31699.15 12980.02 30992.87 19996.15 215
TestCases93.98 21197.94 11186.64 26195.54 28085.38 28785.49 30596.77 14070.28 31699.15 12980.02 30992.87 19996.15 215
ADS-MVSNet289.45 27088.59 27292.03 28095.86 20882.26 31690.93 33794.32 32483.23 31691.28 18891.81 32479.01 25195.99 32879.52 31191.39 22597.84 165
ADS-MVSNet89.89 26588.68 27193.53 23695.86 20884.89 29190.93 33795.07 30183.23 31691.28 18891.81 32479.01 25197.85 25979.52 31191.39 22597.84 165
our_test_388.78 28087.98 27991.20 30292.45 32882.53 31293.61 31195.69 27385.77 28284.88 31093.71 29079.99 23296.78 32179.47 31386.24 27794.28 310
EPNet_dtu91.71 19791.28 19192.99 25793.76 30183.71 30396.69 17995.28 29093.15 8187.02 29195.95 18783.37 16897.38 30279.46 31496.84 13997.88 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)88.94 27587.56 28293.08 25594.35 28488.45 22297.73 7495.23 29487.47 25484.26 31695.29 22179.86 23597.33 30479.44 31574.44 34393.45 323
EG-PatchMatch MVS87.02 29585.44 29991.76 29192.67 32485.00 28896.08 22996.45 24583.41 31579.52 34193.49 29857.10 35297.72 27279.34 31690.87 23592.56 333
Patchmtry88.64 28287.25 28592.78 26594.09 29186.64 26189.82 34595.68 27580.81 33287.63 27992.36 31780.91 21597.03 31178.86 31785.12 29394.67 298
FMVSNet587.29 29385.79 29791.78 28994.80 26787.28 24595.49 25595.28 29084.09 30583.85 32391.82 32362.95 34694.17 34678.48 31885.34 28993.91 317
COLMAP_ROBcopyleft87.81 1590.40 25489.28 26393.79 22497.95 11087.13 25396.92 15795.89 26682.83 31886.88 29597.18 12173.77 29999.29 11878.44 31993.62 19494.95 274
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052186.42 29985.44 29989.34 32290.33 34079.79 33596.73 17395.92 26383.71 31183.25 32591.36 32963.92 34496.01 32778.39 32085.36 28892.22 338
test0.0.03 189.37 27288.70 27091.41 29892.47 32785.63 27895.22 26992.70 34091.11 15086.91 29493.65 29579.02 24993.19 35178.00 32189.18 25195.41 249
MIMVSNet88.50 28386.76 29193.72 22794.84 26587.77 24091.39 33294.05 32786.41 27387.99 27392.59 31163.27 34595.82 33377.44 32292.84 20197.57 181
MDA-MVSNet_test_wron85.87 30684.23 31090.80 30992.38 33082.57 31193.17 31695.15 29782.15 32167.65 35192.33 32078.20 26395.51 33877.33 32379.74 32994.31 309
YYNet185.87 30684.23 31090.78 31092.38 33082.46 31493.17 31695.14 29882.12 32267.69 35092.36 31778.16 26695.50 33977.31 32479.73 33094.39 305
UnsupCasMVSNet_bld82.13 31979.46 32290.14 31788.00 35282.47 31390.89 33996.62 24078.94 34075.61 34684.40 35056.63 35496.31 32577.30 32566.77 35291.63 342
KD-MVS_2432*160084.81 31282.64 31591.31 29991.07 33785.34 28491.22 33495.75 27085.56 28583.09 32690.21 33367.21 33295.89 32977.18 32662.48 35492.69 330
miper_refine_blended84.81 31282.64 31591.31 29991.07 33785.34 28491.22 33495.75 27085.56 28583.09 32690.21 33367.21 33295.89 32977.18 32662.48 35492.69 330
PCF-MVS89.48 1191.56 20489.95 24496.36 10196.60 17192.52 9092.51 32897.26 18079.41 33888.90 24796.56 15884.04 15899.55 8477.01 32897.30 13197.01 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testgi87.97 28787.21 28790.24 31692.86 32080.76 32396.67 18294.97 30591.74 12685.52 30495.83 19362.66 34794.47 34576.25 32988.36 25995.48 243
TinyColmap86.82 29685.35 30291.21 30194.91 26282.99 31093.94 30094.02 32983.58 31281.56 33194.68 24762.34 34898.13 21675.78 33087.35 27092.52 334
ppachtmachnet_test88.35 28587.29 28491.53 29492.45 32883.57 30693.75 30595.97 26284.28 30285.32 30894.18 27579.00 25396.93 31675.71 33184.99 29794.10 313
PAPM91.52 20890.30 22895.20 15895.30 23989.83 17693.38 31496.85 22186.26 27588.59 25795.80 19584.88 14598.15 21575.67 33295.93 15797.63 174
CL-MVSNet_2432*160086.31 30185.15 30389.80 32088.83 34981.74 31993.93 30196.22 25586.67 26985.03 30990.80 33078.09 26794.50 34374.92 33371.86 34793.15 325
tfpnnormal89.70 26988.40 27493.60 23295.15 24790.10 16697.56 9598.16 5087.28 26086.16 30094.63 25077.57 27398.05 23274.48 33484.59 30292.65 332
DSMNet-mixed86.34 30086.12 29687.00 33189.88 34470.43 35394.93 27390.08 35377.97 34485.42 30792.78 30874.44 29393.96 34774.43 33595.14 17096.62 203
Patchmatch-test89.42 27187.99 27893.70 22895.27 24085.11 28688.98 34894.37 32281.11 32887.10 28993.69 29182.28 19497.50 29274.37 33694.76 17898.48 130
LCM-MVSNet72.55 32269.39 32682.03 33470.81 36465.42 35990.12 34494.36 32355.02 35665.88 35381.72 35124.16 36789.96 35374.32 33768.10 35190.71 348
new-patchmatchnet83.18 31681.87 31887.11 33086.88 35475.99 34893.70 30695.18 29685.02 29477.30 34588.40 34165.99 33993.88 34874.19 33870.18 34991.47 345
MDA-MVSNet-bldmvs85.00 31082.95 31491.17 30393.13 31883.33 30794.56 27995.00 30384.57 30065.13 35592.65 30970.45 31495.85 33173.57 33977.49 33694.33 307
pmmvs379.97 32077.50 32487.39 32982.80 35679.38 33992.70 32590.75 35270.69 35178.66 34387.47 34851.34 35693.40 34973.39 34069.65 35089.38 350
test_method66.11 32664.89 32969.79 34172.62 36235.23 36965.19 36092.83 33920.35 36265.20 35488.08 34543.14 35982.70 35873.12 34163.46 35391.45 346
PatchT88.87 27887.42 28393.22 25094.08 29285.10 28789.51 34694.64 31681.92 32392.36 16188.15 34480.05 23197.01 31472.43 34293.65 19397.54 182
Anonymous2023120687.09 29486.14 29589.93 31991.22 33680.35 32896.11 22795.35 28683.57 31384.16 31793.02 30573.54 30195.61 33572.16 34386.14 27993.84 318
MVS-HIRNet82.47 31881.21 32086.26 33395.38 22869.21 35688.96 34989.49 35466.28 35280.79 33474.08 35668.48 32597.39 30171.93 34495.47 16592.18 339
new_pmnet82.89 31781.12 32188.18 32789.63 34580.18 33291.77 33192.57 34176.79 34675.56 34888.23 34361.22 34994.48 34471.43 34582.92 32189.87 349
TAPA-MVS90.10 792.30 17891.22 19595.56 14298.33 8589.60 18196.79 16997.65 13181.83 32491.52 17897.23 11987.94 10298.91 15371.31 34698.37 10198.17 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0386.14 30385.40 30188.35 32490.12 34180.06 33395.90 23995.20 29588.59 21981.29 33293.62 29671.43 30892.65 35271.26 34781.17 32792.34 336
tmp_tt51.94 33253.82 33246.29 34633.73 36845.30 36778.32 35767.24 36718.02 36350.93 35987.05 34952.99 35553.11 36470.76 34825.29 36240.46 360
MIMVSNet184.93 31183.05 31390.56 31289.56 34684.84 29295.40 25895.35 28683.91 30680.38 33792.21 32157.23 35193.34 35070.69 34982.75 32393.50 321
RPMNet88.98 27487.05 28994.77 18294.45 28187.19 25090.23 34298.03 8477.87 34592.40 15887.55 34780.17 22999.51 9468.84 35093.95 19097.60 179
N_pmnet78.73 32178.71 32378.79 33692.80 32246.50 36594.14 29543.71 36878.61 34180.83 33391.66 32774.94 29196.36 32467.24 35184.45 30493.50 321
OpenMVS_ROBcopyleft81.14 2084.42 31482.28 31790.83 30690.06 34284.05 30095.73 24694.04 32873.89 34980.17 34091.53 32859.15 35097.64 27866.92 35289.05 25290.80 347
PMMVS270.19 32466.92 32780.01 33576.35 35865.67 35886.22 35187.58 35764.83 35462.38 35680.29 35326.78 36588.49 35563.79 35354.07 35785.88 351
test_040286.46 29884.79 30691.45 29695.02 25485.55 27996.29 21694.89 30880.90 32982.21 32993.97 28368.21 32797.29 30662.98 35488.68 25791.51 343
DeepMVS_CXcopyleft74.68 34090.84 33964.34 36081.61 36365.34 35367.47 35288.01 34648.60 35780.13 36062.33 35573.68 34579.58 354
FPMVS71.27 32369.85 32575.50 33874.64 35959.03 36191.30 33391.50 34958.80 35557.92 35788.28 34229.98 36385.53 35753.43 35682.84 32281.95 353
ANet_high63.94 32759.58 33077.02 33761.24 36666.06 35785.66 35387.93 35678.53 34242.94 36071.04 35725.42 36680.71 35952.60 35730.83 36084.28 352
Gipumacopyleft67.86 32565.41 32875.18 33992.66 32573.45 35166.50 35994.52 31853.33 35757.80 35866.07 35830.81 36189.20 35448.15 35878.88 33562.90 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 32855.40 33168.12 34251.00 36748.64 36378.86 35687.10 35946.77 35835.84 36474.28 3558.76 36886.34 35642.07 35973.91 34469.38 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 33048.81 33566.58 34365.34 36557.50 36272.49 35870.94 36640.15 36139.28 36363.51 3596.89 37073.48 36338.29 36042.38 35868.76 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 32952.56 33355.43 34474.43 36047.13 36483.63 35576.30 36442.23 35942.59 36162.22 36028.57 36474.40 36131.53 36131.51 35944.78 358
EMVS52.08 33151.31 33454.39 34572.62 36245.39 36683.84 35475.51 36541.13 36040.77 36259.65 36130.08 36273.60 36228.31 36229.90 36144.18 359
wuyk23d25.11 33324.57 33726.74 34773.98 36139.89 36857.88 3619.80 36912.27 36410.39 3656.97 3677.03 36936.44 36525.43 36317.39 3633.89 363
testmvs13.36 33516.33 3384.48 3495.04 3692.26 37193.18 3153.28 3702.70 3658.24 36621.66 3632.29 3722.19 3667.58 3642.96 3649.00 362
test12313.04 33615.66 3395.18 3484.51 3703.45 37092.50 3291.81 3712.50 3667.58 36720.15 3643.67 3712.18 3677.13 3651.07 3659.90 361
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.24 33430.99 3360.00 3500.00 3710.00 3720.00 36297.63 1330.00 3670.00 36896.88 13784.38 1520.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.39 3389.85 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36888.65 940.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.06 33710.74 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36896.69 1460.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_ONE99.42 695.30 1598.27 2895.09 2099.19 198.81 895.54 399.65 53
save fliter98.91 4994.28 3597.02 14598.02 8895.35 8
test072699.45 295.36 1098.31 2398.29 2494.92 2498.99 498.92 295.08 5
GSMVS98.45 133
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18398.45 133
sam_mvs81.94 202
MTGPAbinary98.08 64
test_post17.58 36581.76 20498.08 226
patchmatchnet-post90.45 33282.65 18798.10 221
MTMP97.86 6082.03 362
TEST998.70 6094.19 4096.41 20198.02 8888.17 23296.03 8197.56 10592.74 2499.59 68
test_898.67 6294.06 4996.37 20898.01 9188.58 22095.98 8697.55 10792.73 2599.58 71
agg_prior98.67 6293.79 5598.00 9395.68 9699.57 79
test_prior493.66 5996.42 200
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
新几何295.79 244
旧先验198.38 8193.38 6797.75 11698.09 6292.30 3899.01 8499.16 70
原ACMM295.67 247
test22298.24 9392.21 10095.33 26197.60 13579.22 33995.25 10797.84 8188.80 9299.15 7398.72 113
segment_acmp92.89 22
testdata195.26 26893.10 84
test1297.65 4498.46 7494.26 3797.66 12995.52 10590.89 6999.46 10199.25 6599.22 67
plane_prior796.21 19389.98 172
plane_prior696.10 20390.00 16881.32 210
plane_prior496.64 149
plane_prior390.00 16894.46 4191.34 182
plane_prior297.74 7294.85 26
plane_prior196.14 201
plane_prior89.99 17097.24 12594.06 4992.16 213
n20.00 372
nn0.00 372
door-mid91.06 351
test1197.88 105
door91.13 350
HQP5-MVS89.33 196
HQP-NCC95.86 20896.65 18393.55 6590.14 206
ACMP_Plane95.86 20896.65 18393.55 6590.14 206
HQP4-MVS90.14 20698.50 18795.78 231
HQP3-MVS97.39 16892.10 214
HQP2-MVS80.95 213
NP-MVS95.99 20789.81 17795.87 190
ACMMP++_ref90.30 242
ACMMP++91.02 231
Test By Simon88.73 93