This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 795.09 188.55 576.83 694.16 186.57 190.85 587.07 186.18 186.36 785.08 1288.67 2098.21 3
DVP-MVScopyleft88.07 290.73 284.97 491.98 1095.01 287.86 1076.88 593.90 285.15 290.11 786.90 279.46 1286.26 1084.67 1888.50 2798.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS87.87 490.57 384.73 589.38 2791.60 1788.24 874.15 1293.55 382.28 494.99 183.21 1285.96 387.67 484.67 1888.32 3198.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft87.60 590.44 484.29 792.09 993.44 688.69 475.11 993.06 580.80 694.23 286.70 381.44 784.84 1883.52 2787.64 4897.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++87.98 389.76 585.89 292.57 694.57 388.34 676.61 792.40 683.40 389.26 1085.57 586.04 286.24 1184.89 1588.39 3095.42 20
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1179.75 983.52 2682.72 3288.75 1995.37 23
HPM-MVS++copyleft85.64 1088.43 782.39 1292.65 490.24 2685.83 1774.21 1190.68 975.63 1786.77 1384.15 878.68 1686.33 885.26 987.32 5795.60 17
APDe-MVS86.37 788.41 884.00 991.43 1591.83 1588.34 674.67 1091.19 781.76 591.13 481.94 1980.07 883.38 2782.58 3487.69 4696.78 10
SMA-MVScopyleft85.24 1288.27 981.72 1591.74 1290.71 2086.71 1373.16 1990.56 1074.33 1983.07 1885.88 477.16 2086.28 985.58 687.23 6195.77 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepPCF-MVS76.94 183.08 1987.77 1077.60 3390.11 2090.96 1978.48 5572.63 2293.10 465.84 4180.67 2481.55 2074.80 2985.94 1385.39 883.75 14496.77 11
CNVR-MVS85.96 887.58 1184.06 892.58 592.40 1187.62 1177.77 488.44 1475.93 1679.49 2681.97 1881.65 687.04 686.58 488.79 1797.18 7
APD-MVScopyleft84.83 1387.00 1282.30 1389.61 2589.21 3586.51 1573.64 1690.98 877.99 1289.89 880.04 2479.18 1482.00 4881.37 4986.88 7095.49 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MCST-MVS85.75 986.99 1384.31 694.07 392.80 888.15 979.10 285.66 2170.72 2976.50 3380.45 2282.17 588.35 287.49 391.63 297.65 4
SD-MVS84.31 1586.96 1481.22 1688.98 3188.68 3985.65 1873.85 1589.09 1379.63 887.34 1284.84 673.71 3482.66 3581.60 4685.48 10794.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg83.35 1886.93 1579.17 2689.70 2488.41 4285.60 2072.89 2186.31 1966.58 4090.48 682.24 1673.06 4083.10 3182.64 3387.21 6595.30 24
DPM-MVS85.41 1186.72 1683.89 1091.66 1391.92 1490.49 278.09 386.90 1773.95 2074.52 3582.01 1779.29 1390.24 190.65 189.86 690.78 72
TSAR-MVS + MP.84.39 1486.58 1781.83 1488.09 3886.47 6785.63 1973.62 1790.13 1179.24 989.67 982.99 1377.72 1881.22 5380.92 5886.68 7494.66 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP83.54 1786.37 1880.25 2189.57 2690.10 2885.27 2171.66 2387.38 1573.08 2284.23 1780.16 2375.31 2584.85 1783.64 2486.57 7594.21 35
TSAR-MVS + GP.82.27 2385.98 1977.94 3180.72 7088.25 4581.12 4367.71 4387.10 1673.31 2185.23 1583.68 976.64 2280.43 6181.47 4888.15 3795.66 16
TSAR-MVS + ACMM81.59 2585.84 2076.63 3789.82 2386.53 6686.32 1666.72 5085.96 2065.43 4288.98 1182.29 1567.57 8182.06 4681.33 5083.93 14293.75 41
NCCC84.16 1685.46 2182.64 1192.34 890.57 2386.57 1476.51 886.85 1872.91 2377.20 3278.69 2679.09 1584.64 2084.88 1688.44 2895.41 21
SteuartSystems-ACMMP82.51 2185.35 2279.20 2590.25 1889.39 3384.79 2270.95 2582.86 2768.32 3786.44 1477.19 2773.07 3983.63 2583.64 2487.82 4294.34 31
Skip Steuart: Steuart Systems R&D Blog.
CSCG82.90 2084.52 2381.02 1891.85 1193.43 787.14 1274.01 1481.96 3176.14 1470.84 3782.49 1469.71 6382.32 4185.18 1187.26 6095.40 22
HFP-MVS82.48 2284.12 2480.56 1990.15 1987.55 5384.28 2469.67 3285.22 2277.95 1384.69 1675.94 3075.04 2781.85 4981.17 5386.30 8292.40 55
PHI-MVS79.43 3284.06 2574.04 5586.15 4791.57 1880.85 4668.90 3882.22 3051.81 9378.10 2874.28 3370.39 6084.01 2484.00 2286.14 8694.24 33
MP-MVScopyleft80.94 2683.49 2677.96 3088.48 3288.16 4682.82 3269.34 3480.79 3769.67 3382.35 2177.13 2871.60 5280.97 5880.96 5785.87 9394.06 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR80.62 2882.98 2777.87 3288.41 3387.05 5883.02 2969.18 3583.91 2468.35 3682.89 1973.64 3572.16 4780.78 5981.13 5486.10 8791.43 62
CANet80.90 2782.93 2878.53 2986.83 4492.26 1281.19 4266.95 4781.60 3469.90 3266.93 4574.80 3276.79 2184.68 1984.77 1789.50 1095.50 18
EPNet79.28 3682.25 2975.83 4388.31 3690.14 2779.43 5368.07 4181.76 3361.26 6077.26 3170.08 5070.06 6182.43 3982.00 3887.82 4292.09 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030479.43 3282.20 3076.20 4084.22 5291.79 1681.82 3763.81 6976.83 4961.71 5766.37 4875.52 3176.38 2385.54 1485.03 1389.28 1294.32 32
CDPH-MVS79.39 3582.13 3176.19 4189.22 3088.34 4384.20 2571.00 2479.67 4156.97 7777.77 2972.24 4268.50 7581.33 5282.74 3087.23 6192.84 51
DeepC-MVS_fast75.41 281.69 2482.10 3281.20 1791.04 1787.81 5283.42 2774.04 1383.77 2571.09 2766.88 4672.44 3879.48 1185.08 1584.97 1488.12 3893.78 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS79.42 3481.84 3376.60 3888.38 3586.69 6282.97 3165.75 5680.39 3864.94 4381.95 2372.11 4371.41 5480.45 6080.55 6386.18 8490.76 75
CP-MVS79.44 3181.51 3477.02 3686.95 4285.96 7682.00 3468.44 4081.82 3267.39 3877.43 3073.68 3471.62 5179.56 7079.58 7085.73 9792.51 54
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 4088.50 4183.23 2873.27 1882.78 2871.01 2862.86 5869.93 5174.80 2984.30 2184.20 2186.79 7394.77 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HQP-MVS78.26 3980.91 3675.17 4885.67 4984.33 8883.01 3069.38 3379.88 4055.83 7879.85 2564.90 6670.81 5682.46 3781.78 4186.30 8293.18 47
X-MVS78.16 4080.55 3775.38 4687.99 3986.27 7181.05 4468.98 3678.33 4361.07 6275.25 3472.27 3967.52 8280.03 6380.52 6485.66 10491.20 66
ETV-MVS76.25 5180.22 3871.63 7178.23 8787.95 5172.75 9360.27 11077.50 4857.73 7371.53 3666.60 5973.16 3880.99 5781.23 5287.63 4995.73 14
MVSTER76.92 4879.92 3973.42 5874.98 11682.97 9678.15 5863.41 7378.02 4464.41 4567.54 4372.80 3771.05 5583.29 3083.73 2388.53 2691.12 67
DELS-MVS79.49 3079.84 4079.08 2788.26 3792.49 984.12 2670.63 2765.27 8169.60 3561.29 6366.50 6072.75 4388.07 388.03 289.13 1397.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
canonicalmvs77.65 4279.59 4175.39 4581.52 6389.83 3281.32 4160.74 10580.05 3966.72 3968.43 4165.09 6374.72 3178.87 7482.73 3187.32 5792.16 56
ACMMPcopyleft77.61 4379.59 4175.30 4785.87 4885.58 7781.42 3967.38 4679.38 4262.61 5278.53 2765.79 6268.80 7478.56 7778.50 8185.75 9490.80 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet76.05 5378.87 4372.77 6278.87 8386.63 6377.50 6357.04 13575.34 5261.68 5864.20 5369.56 5273.96 3382.12 4480.65 6187.57 5093.57 43
CS-MVS75.84 5478.61 4472.61 6579.03 8086.74 6174.43 8960.27 11074.15 5762.78 5166.26 4964.25 6872.81 4283.36 2881.69 4586.32 8093.85 39
PVSNet_BlendedMVS76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 5974.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3597.10 8
PVSNet_Blended76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 5974.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3597.10 8
MVS_111021_HR77.42 4578.40 4776.28 3986.95 4290.68 2177.41 6470.56 3066.21 7562.48 5466.17 5063.98 6972.08 4882.87 3383.15 2888.24 3495.71 15
MAR-MVS77.19 4778.37 4875.81 4489.87 2290.58 2279.33 5465.56 5877.62 4758.33 7159.24 7167.98 5574.83 2882.37 4083.12 2986.95 6887.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS-test75.09 6077.84 4971.87 7079.27 7886.92 5970.53 11960.36 10875.13 5363.13 4967.92 4265.08 6471.43 5378.15 8278.51 8086.53 7793.16 48
GG-mvs-BLEND54.54 18277.58 5027.67 2100.03 22590.09 2977.20 660.02 22166.83 730.05 22659.90 6873.33 360.04 22178.40 7979.30 7388.65 2195.20 25
QAPM77.50 4477.43 5177.59 3491.52 1492.00 1381.41 4070.63 2766.22 7458.05 7254.70 8171.79 4474.49 3282.46 3782.04 3689.46 1192.79 53
MSLP-MVS++78.57 3777.33 5280.02 2288.39 3484.79 8284.62 2366.17 5475.96 5178.40 1061.59 6171.47 4573.54 3778.43 7878.88 7688.97 1590.18 82
3Dnovator+70.16 677.87 4177.29 5378.55 2889.25 2988.32 4480.09 4967.95 4274.89 5671.83 2552.05 9370.68 4876.27 2482.27 4282.04 3685.92 9090.77 74
CLD-MVS77.36 4677.29 5377.45 3582.21 5988.11 4781.92 3568.96 3777.97 4569.62 3462.08 5959.44 9273.57 3681.75 5081.27 5188.41 2990.39 79
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CPTT-MVS75.43 5777.13 5573.44 5781.43 6482.55 10080.96 4564.35 6477.95 4661.39 5969.20 4070.94 4769.38 7073.89 12373.32 13783.14 15492.06 58
TSAR-MVS + COLMAP73.09 6776.86 5668.71 8774.97 11782.49 10174.51 8661.83 9283.16 2649.31 10582.22 2251.62 13068.94 7378.76 7675.52 11282.67 15984.23 136
3Dnovator70.49 578.42 3876.77 5780.35 2091.43 1590.27 2581.84 3670.79 2672.10 5871.95 2450.02 10067.86 5777.47 1982.89 3284.24 2088.61 2389.99 83
MVS_Test75.22 5876.69 5873.51 5679.30 7788.82 3880.06 5058.74 11469.77 6557.50 7659.78 7061.35 8075.31 2582.07 4583.60 2690.13 591.41 64
CANet_DTU72.84 6976.63 5968.43 9276.81 10286.62 6575.54 7454.71 16072.06 5943.54 12867.11 4458.46 9672.40 4581.13 5680.82 6087.57 5090.21 81
PCF-MVS70.85 475.73 5576.55 6074.78 5383.67 5388.04 5081.47 3870.62 2969.24 6957.52 7560.59 6769.18 5370.65 5877.11 9077.65 8884.75 12794.01 37
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EIA-MVS73.48 6676.05 6170.47 7778.12 8887.21 5671.78 10160.63 10669.66 6655.56 8264.86 5260.69 8469.53 6677.35 8978.59 7787.22 6394.01 37
casdiffmvs_mvgpermissive75.57 5676.04 6275.02 4980.48 7289.31 3480.79 4764.04 6766.95 7263.87 4657.52 7361.33 8272.90 4182.01 4781.99 3988.03 3993.16 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR74.26 6375.95 6372.27 6679.43 7685.04 8072.71 9465.27 6170.92 6163.58 4869.32 3960.31 8869.43 6877.01 9177.15 9183.22 15191.93 60
OMC-MVS74.03 6475.82 6471.95 6879.56 7480.98 11475.35 7763.21 7484.48 2361.83 5661.54 6266.89 5869.41 6976.60 9474.07 12782.34 16486.15 119
casdiffmvspermissive75.20 5975.69 6574.63 5479.26 7989.07 3678.47 5663.59 7267.05 7163.79 4755.72 7860.32 8773.58 3582.16 4381.78 4189.08 1493.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive74.32 6275.42 6673.04 6075.60 11387.27 5578.20 5762.96 7868.66 7061.89 5559.79 6959.84 9071.80 4978.30 8179.87 6687.80 4494.23 34
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS70.37 8475.06 6764.90 11371.46 13281.88 10264.10 15355.64 14771.31 6046.69 11270.69 3858.56 9369.53 6679.03 7375.63 10881.96 16888.32 103
DI_MVS_plusplus_trai73.94 6574.85 6872.88 6176.57 10586.80 6080.41 4861.47 9662.35 8759.44 6947.91 10768.12 5472.24 4682.84 3481.50 4787.15 6794.42 30
ET-MVSNet_ETH3D71.38 7874.70 6967.51 9851.61 20888.06 4977.29 6560.95 10463.61 8348.36 10866.60 4760.67 8579.55 1073.56 12780.58 6287.30 5989.80 85
baseline72.89 6874.46 7071.07 7275.99 10987.50 5474.57 8160.49 10770.72 6257.60 7460.63 6660.97 8370.79 5775.27 10776.33 10086.94 6989.79 86
OpenMVScopyleft67.62 874.92 6173.91 7176.09 4290.10 2190.38 2478.01 5966.35 5266.09 7662.80 5046.33 12464.55 6771.77 5079.92 6580.88 5987.52 5289.20 92
CostFormer72.18 7273.90 7270.18 7979.47 7586.19 7476.94 6748.62 18066.07 7760.40 6754.14 8765.82 6167.98 7675.84 10276.41 9987.67 4792.83 52
AdaColmapbinary76.23 5273.55 7379.35 2489.38 2785.00 8179.99 5173.04 2076.60 5071.17 2655.18 8057.99 10177.87 1776.82 9376.82 9484.67 12986.45 115
PVSNet_Blended_VisFu71.76 7573.54 7469.69 8079.01 8187.16 5772.05 9861.80 9356.46 11159.66 6853.88 8962.48 7259.08 12781.17 5478.90 7586.53 7794.74 27
TAPA-MVS67.10 971.45 7773.47 7569.10 8577.04 10080.78 11773.81 9062.10 8880.80 3651.28 9460.91 6463.80 7167.98 7674.59 11372.42 14982.37 16380.97 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LGP-MVS_train72.02 7473.18 7670.67 7682.13 6080.26 12279.58 5263.04 7670.09 6351.98 9165.06 5155.62 11362.49 10575.97 10176.32 10184.80 12688.93 95
baseline271.22 8073.01 7769.13 8475.76 11186.34 7071.23 10962.78 8462.62 8552.85 8957.32 7454.31 12063.27 10079.74 6879.31 7288.89 1691.43 62
ACMP68.86 772.15 7372.25 7872.03 6780.96 6680.87 11677.93 6064.13 6669.29 6760.79 6564.04 5453.54 12563.91 9573.74 12675.27 11384.45 13488.98 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline171.47 7672.02 7970.82 7480.56 7184.51 8476.61 6866.93 4856.22 11348.66 10655.40 7960.43 8662.55 10483.35 2980.99 5589.60 883.28 144
CHOSEN 1792x268872.55 7171.98 8073.22 5986.57 4592.41 1075.63 7166.77 4962.08 8852.32 9030.27 19350.74 13366.14 8586.22 1285.41 791.90 196.75 12
IS_MVSNet67.29 10771.98 8061.82 14076.92 10184.32 8965.90 14958.22 11755.75 11739.22 15154.51 8462.47 7345.99 17678.83 7578.52 7984.70 12889.47 89
FMVSNet370.41 8371.89 8268.68 8870.89 13879.42 12975.63 7160.97 10165.32 7851.06 9547.37 11262.05 7464.90 9082.49 3682.27 3588.64 2284.34 135
FA-MVS(training)70.24 8671.77 8368.45 9177.52 9686.03 7573.33 9249.12 17963.55 8455.77 7948.91 10456.26 10767.78 7877.60 8479.62 6987.19 6690.40 78
UGNet67.57 10471.69 8462.76 13369.88 14182.58 9966.43 14658.64 11554.71 12651.87 9261.74 6062.01 7745.46 17874.78 11274.99 11484.24 13791.02 68
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test-LLR68.23 9871.61 8564.28 12071.37 13381.32 11163.98 15661.03 9958.62 10042.96 13352.74 9061.65 7857.74 13875.64 10478.09 8688.61 2393.21 45
TESTMET0.1,167.38 10671.61 8562.45 13666.05 16681.32 11163.98 15655.36 15258.62 10042.96 13352.74 9061.65 7857.74 13875.64 10478.09 8688.61 2393.21 45
Effi-MVS+70.42 8171.23 8769.47 8178.04 8985.24 7975.57 7358.88 11359.56 9748.47 10752.73 9254.94 11669.69 6478.34 8077.06 9286.18 8490.73 76
EPP-MVSNet67.58 10371.10 8863.48 12675.71 11283.35 9466.85 14257.83 12553.02 13041.15 14255.82 7667.89 5656.01 14474.40 11672.92 14583.33 14990.30 80
thisisatest053068.38 9770.98 8965.35 10972.61 12684.42 8568.21 13257.98 12059.77 9650.80 9854.63 8258.48 9557.92 13576.99 9277.47 8984.60 13085.07 129
OPM-MVS72.74 7070.93 9074.85 5285.30 5084.34 8782.82 3269.79 3149.96 13855.39 8454.09 8860.14 8970.04 6280.38 6279.43 7185.74 9688.20 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test250669.26 8770.79 9167.48 9978.64 8486.40 6872.22 9662.75 8558.05 10345.24 11850.76 9654.93 11758.05 13379.82 6679.70 6787.96 4085.90 123
tttt051767.99 10070.61 9264.94 11271.94 13183.96 9167.62 13657.98 12059.30 9849.90 10354.50 8557.98 10257.92 13576.48 9577.47 8984.24 13784.58 132
GBi-Net69.21 8870.40 9367.81 9569.49 14378.65 13474.54 8260.97 10165.32 7851.06 9547.37 11262.05 7463.43 9777.49 8578.22 8387.37 5483.73 138
test169.21 8870.40 9367.81 9569.49 14378.65 13474.54 8260.97 10165.32 7851.06 9547.37 11262.05 7463.43 9777.49 8578.22 8387.37 5483.73 138
CNLPA71.37 7970.27 9572.66 6480.79 6981.33 11071.07 11465.75 5682.36 2964.80 4442.46 13656.49 10672.70 4473.00 13470.52 16880.84 17785.76 125
EPNet_dtu66.17 11270.13 9661.54 14281.04 6577.39 14868.87 12962.50 8769.78 6433.51 17963.77 5556.22 10837.65 19272.20 14272.18 15285.69 10079.38 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive65.53 11769.83 9760.52 14670.80 13984.59 8366.37 14855.47 15148.40 14540.62 14657.67 7258.43 9745.37 17977.49 8576.24 10284.47 13385.99 122
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE68.96 9269.32 9868.54 8976.61 10483.12 9571.78 10156.87 13760.21 9554.86 8645.95 12554.79 11964.27 9374.59 11375.54 11186.84 7291.01 69
test-mter64.06 12869.24 9958.01 16159.07 19577.40 14759.13 17848.11 18355.64 11839.18 15251.56 9558.54 9455.38 14773.52 12876.00 10487.22 6392.05 59
DCV-MVSNet69.13 9069.07 10069.21 8377.65 9377.52 14674.68 8057.85 12454.92 12355.34 8555.74 7755.56 11466.35 8475.05 10876.56 9783.35 14888.13 105
MS-PatchMatch70.34 8569.00 10171.91 6985.20 5185.35 7877.84 6161.77 9458.01 10555.40 8341.26 14358.34 9861.69 10881.70 5178.29 8289.56 980.02 161
IB-MVS64.48 1169.02 9168.97 10269.09 8681.75 6289.01 3764.50 15164.91 6256.65 10962.59 5347.89 10845.23 14651.99 15569.18 17081.88 4088.77 1892.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Vis-MVSNet (Re-imp)62.25 14268.74 10354.68 17873.70 12078.74 13356.51 18457.49 12955.22 12026.86 19254.56 8361.35 8031.06 19473.10 13174.90 11582.49 16183.31 142
FMVSNet268.06 9968.57 10467.45 10069.49 14378.65 13474.54 8260.23 11256.29 11249.64 10442.13 13957.08 10463.43 9781.15 5580.99 5587.37 5483.73 138
ECVR-MVScopyleft67.93 10168.49 10567.28 10278.64 8486.40 6872.22 9662.75 8558.05 10344.06 12640.92 14748.20 13858.05 13379.82 6679.70 6787.96 4086.32 118
ACMM66.70 1070.42 8168.49 10572.67 6382.85 5477.76 14477.70 6264.76 6364.61 8260.74 6649.29 10153.97 12365.86 8674.97 10975.57 11084.13 14183.29 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train68.83 9368.29 10769.47 8178.35 8679.94 12364.72 15066.38 5154.96 12254.51 8756.75 7547.91 14066.91 8375.57 10675.75 10685.92 9087.12 110
HyFIR lowres test68.39 9668.28 10868.52 9080.85 6788.11 4771.08 11358.09 11954.87 12547.80 11127.55 19955.80 11164.97 8979.11 7279.14 7488.31 3293.35 44
UA-Net64.62 12268.23 10960.42 14777.53 9581.38 10960.08 17557.47 13047.01 14944.75 12260.68 6571.32 4641.84 18673.27 12972.25 15180.83 17871.68 188
tpmrst67.15 10868.12 11066.03 10676.21 10780.98 11471.27 10845.05 19160.69 9350.63 9946.95 12054.15 12265.30 8771.80 14771.77 15387.72 4590.48 77
test111166.72 11067.80 11165.45 10877.42 9886.63 6369.69 12362.98 7755.29 11939.47 14840.12 15247.11 14155.70 14579.96 6480.00 6587.47 5385.49 128
PatchmatchNetpermissive65.43 11867.71 11262.78 13273.49 12382.83 9766.42 14745.40 19060.40 9445.27 11749.22 10257.60 10360.01 11970.61 15671.38 16086.08 8881.91 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+67.59 10267.56 11367.62 9773.67 12181.14 11371.12 11254.79 15958.88 9950.61 10046.70 12247.05 14269.12 7276.06 10076.44 9886.43 7986.65 113
EPMVS66.21 11167.49 11464.73 11475.81 11084.20 9068.94 12844.37 19561.55 8948.07 11049.21 10354.87 11862.88 10171.82 14671.40 15988.28 3379.37 164
MDTV_nov1_ep1365.21 11967.28 11562.79 13170.91 13781.72 10369.28 12749.50 17858.08 10243.94 12750.50 9956.02 10958.86 12870.72 15573.37 13584.24 13780.52 160
tpm cat167.47 10567.05 11667.98 9476.63 10381.51 10874.49 8747.65 18561.18 9061.12 6142.51 13553.02 12864.74 9270.11 16471.50 15583.22 15189.49 88
SCA63.90 12966.67 11760.66 14573.75 11971.78 18059.87 17643.66 19661.13 9145.03 12051.64 9459.45 9157.92 13570.96 15370.80 16483.71 14580.92 159
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7374.88 16572.64 9563.70 7169.26 6855.71 8047.24 11555.31 11570.42 5972.05 14570.67 16681.66 17177.19 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42062.23 14466.57 11957.17 16959.88 19268.92 18961.20 17242.28 20254.17 12739.57 14747.78 10964.97 6562.68 10273.85 12469.52 17377.43 19386.75 112
IterMVS-LS66.08 11366.56 12065.51 10773.67 12174.88 16570.89 11653.55 16650.42 13648.32 10950.59 9855.66 11261.83 10773.93 12274.42 12384.82 12586.01 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023121168.44 9566.37 12170.86 7377.58 9483.49 9375.15 7861.89 9152.54 13158.50 7028.89 19556.78 10569.29 7174.96 11176.61 9582.73 15791.36 65
Anonymous20240521166.35 12278.00 9084.41 8674.85 7963.18 7551.00 13431.37 19053.73 12469.67 6576.28 9676.84 9383.21 15390.85 70
gg-mvs-nofinetune62.34 13966.19 12357.86 16376.15 10888.61 4071.18 11141.24 20825.74 21113.16 21422.91 20663.97 7054.52 15085.06 1685.25 1090.92 391.78 61
thres100view90067.14 10966.09 12468.38 9377.70 9183.84 9274.52 8566.33 5349.16 14243.40 13043.24 12841.34 15362.59 10379.31 7175.92 10585.73 9789.81 84
tpm64.85 12166.02 12563.48 12674.52 11878.38 13770.98 11544.99 19351.61 13343.28 13247.66 11053.18 12660.57 11470.58 15871.30 16286.54 7689.45 90
CDS-MVSNet64.22 12665.89 12662.28 13870.05 14080.59 11869.91 12257.98 12043.53 16446.58 11348.22 10650.76 13246.45 17375.68 10376.08 10382.70 15886.34 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GA-MVS64.55 12465.76 12763.12 12869.68 14281.56 10769.59 12458.16 11845.23 15935.58 17147.01 11941.82 15259.41 12379.62 6978.54 7886.32 8086.56 114
tfpn200view965.90 11464.96 12867.00 10377.70 9181.58 10671.71 10462.94 8149.16 14243.40 13043.24 12841.34 15361.42 11076.24 9774.63 11984.84 12288.52 101
CR-MVSNet62.31 14064.75 12959.47 15368.63 14971.29 18367.53 13743.18 19855.83 11541.40 13941.04 14555.85 11057.29 14172.76 13773.27 13978.77 18983.23 145
thres20065.58 11564.74 13066.56 10477.52 9681.61 10473.44 9162.95 7946.23 15442.45 13742.76 13041.18 15558.12 13176.24 9775.59 10984.89 12089.58 87
Fast-Effi-MVS+-dtu63.05 13564.72 13161.11 14371.21 13676.81 15270.72 11743.13 20052.51 13235.34 17246.55 12346.36 14361.40 11171.57 15071.44 15784.84 12287.79 107
thres40065.18 12064.44 13266.04 10576.40 10682.63 9871.52 10664.27 6544.93 16040.69 14541.86 14040.79 15958.12 13177.67 8374.64 11885.26 11088.56 100
Effi-MVS+-dtu64.58 12364.08 13365.16 11073.04 12575.17 16470.68 11856.23 14154.12 12844.71 12347.42 11151.10 13163.82 9668.08 17366.32 18482.47 16286.38 116
PatchT60.46 15663.85 13456.51 17265.95 16875.68 16147.34 19841.39 20553.89 12941.40 13937.84 16350.30 13457.29 14172.76 13773.27 13985.67 10183.23 145
IterMVS61.87 14863.55 13559.90 14967.29 15972.20 17767.34 14048.56 18147.48 14837.86 16047.07 11748.27 13654.08 15172.12 14373.71 13084.30 13683.99 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet62.30 14163.51 13660.89 14469.48 14677.83 14264.07 15463.94 6850.03 13731.17 18444.82 12641.12 15651.37 15871.02 15274.81 11785.30 10984.95 130
dps64.08 12763.22 13765.08 11175.27 11579.65 12666.68 14446.63 18956.94 10755.67 8143.96 12743.63 15064.00 9469.50 16969.82 17082.25 16579.02 165
thres600view763.77 13063.14 13864.51 11675.49 11481.61 10469.59 12462.95 7943.96 16338.90 15341.09 14440.24 16455.25 14876.24 9771.54 15484.89 12087.30 109
FMVSNet163.48 13263.07 13963.97 12265.31 17176.37 15571.77 10357.90 12343.32 16545.66 11535.06 18149.43 13558.57 12977.49 8578.22 8384.59 13181.60 157
IterMVS-SCA-FT60.21 15862.97 14057.00 17066.64 16371.84 17867.53 13746.93 18847.56 14736.77 16546.85 12148.21 13752.51 15470.36 16172.40 15071.63 20783.53 141
V4262.86 13862.97 14062.74 13460.84 18978.99 13271.46 10757.13 13446.85 15044.28 12538.87 15640.73 16157.63 14072.60 14074.14 12585.09 11588.63 99
UniMVSNet (Re)60.62 15562.93 14257.92 16267.64 15677.90 14161.75 16961.24 9849.83 13929.80 18842.57 13340.62 16243.36 18270.49 16073.27 13983.76 14385.81 124
v2v48263.68 13162.85 14364.65 11568.01 15280.46 12071.90 9957.60 12744.26 16142.82 13539.80 15438.62 16961.56 10973.06 13274.86 11686.03 8988.90 97
RPMNet58.63 16862.80 14453.76 18367.59 15771.29 18354.60 18738.13 21055.83 11535.70 17041.58 14253.04 12747.89 16766.10 17767.38 17778.65 19184.40 134
v863.44 13362.58 14564.43 11768.28 15178.07 13971.82 10054.85 15746.70 15245.20 11939.40 15540.91 15860.54 11572.85 13674.39 12485.92 9085.76 125
pmmvs463.14 13462.46 14663.94 12366.03 16776.40 15466.82 14357.60 12756.74 10850.26 10240.81 14837.51 17259.26 12571.75 14871.48 15683.68 14682.53 149
v114463.00 13662.39 14763.70 12567.72 15580.27 12171.23 10956.40 13842.51 16640.81 14438.12 16237.73 17060.42 11774.46 11574.55 12185.64 10589.12 93
v1063.00 13662.22 14863.90 12467.88 15477.78 14371.59 10554.34 16145.37 15842.76 13638.53 15738.93 16761.05 11374.39 11774.52 12285.75 9486.04 120
LS3D64.54 12562.14 14967.34 10180.85 6775.79 15969.99 12065.87 5560.77 9244.35 12442.43 13745.95 14565.01 8869.88 16568.69 17577.97 19271.43 190
NR-MVSNet61.08 15362.09 15059.90 14971.96 13075.87 15763.60 16061.96 8949.31 14027.95 18942.76 13033.85 19348.82 16574.35 11874.05 12885.13 11284.45 133
DU-MVS60.87 15461.82 15159.76 15166.69 16175.87 15764.07 15461.96 8949.31 14031.17 18442.76 13036.95 17551.37 15869.67 16773.20 14283.30 15084.95 130
v119262.25 14261.64 15262.96 12966.88 16079.72 12569.96 12155.77 14541.58 17139.42 14937.05 16735.96 18360.50 11674.30 12074.09 12685.24 11188.76 98
MSDG65.57 11661.57 15370.24 7882.02 6176.47 15374.46 8868.73 3956.52 11050.33 10138.47 15841.10 15762.42 10672.12 14372.94 14483.47 14773.37 183
v14419262.05 14661.46 15462.73 13566.59 16479.87 12469.30 12655.88 14341.50 17339.41 15037.23 16536.45 17859.62 12172.69 13973.51 13285.61 10688.93 95
TranMVSNet+NR-MVSNet60.38 15761.30 15559.30 15568.34 15075.57 16363.38 16363.78 7046.74 15127.73 19042.56 13436.84 17647.66 16870.36 16174.59 12084.91 11982.46 150
v14862.00 14761.19 15662.96 12967.46 15879.49 12867.87 13357.66 12642.30 16745.02 12138.20 16138.89 16854.77 14969.83 16672.60 14884.96 11687.01 111
v192192061.66 14961.10 15762.31 13766.32 16579.57 12768.41 13155.49 15041.03 17438.69 15436.64 17335.27 18659.60 12273.23 13073.41 13485.37 10888.51 102
TAMVS58.86 16560.91 15856.47 17362.38 18577.57 14558.97 17952.98 16938.76 18336.17 16742.26 13847.94 13946.45 17370.23 16370.79 16581.86 16978.82 166
PatchMatch-RL62.22 14560.69 15964.01 12168.74 14875.75 16059.27 17760.35 10956.09 11453.80 8847.06 11836.45 17864.80 9168.22 17267.22 17977.10 19474.02 178
thisisatest051559.37 16260.68 16057.84 16464.39 17575.65 16258.56 18053.86 16441.55 17242.12 13840.40 15039.59 16547.09 17171.69 14973.79 12981.02 17682.08 154
v124061.09 15260.55 16161.72 14165.92 16979.28 13067.16 14154.91 15639.79 18038.10 15736.08 17534.64 18859.15 12672.86 13573.36 13685.10 11387.84 106
Baseline_NR-MVSNet59.47 16160.28 16258.54 16066.69 16173.90 17161.63 17062.90 8249.15 14426.87 19135.18 18037.62 17148.20 16669.67 16773.61 13184.92 11782.82 148
pmmvs559.72 15960.24 16359.11 15762.77 18377.33 14963.17 16454.00 16340.21 17837.23 16140.41 14935.99 18251.75 15672.55 14172.74 14785.72 9982.45 151
FMVSNet558.86 16560.24 16357.25 16852.66 20766.25 19563.77 15952.86 17157.85 10637.92 15936.12 17452.22 12951.37 15870.88 15471.43 15884.92 11766.91 199
USDC59.69 16060.03 16559.28 15664.04 17671.84 17863.15 16555.36 15254.90 12435.02 17348.34 10529.79 20558.16 13070.60 15771.33 16179.99 18273.42 182
test0.0.03 157.35 17459.89 16654.38 18171.37 13373.45 17352.71 19061.03 9946.11 15526.33 19341.73 14144.08 14829.72 19671.43 15170.90 16385.10 11371.56 189
MIMVSNet57.78 17259.71 16755.53 17554.79 20377.10 15063.89 15845.02 19246.59 15336.79 16428.36 19740.77 16045.84 17774.97 10976.58 9686.87 7173.60 181
pm-mvs159.21 16359.58 16858.77 15967.97 15377.07 15164.12 15257.20 13234.73 19636.86 16235.34 17840.54 16343.34 18374.32 11973.30 13883.13 15581.77 156
ACMH59.42 1461.59 15059.22 16964.36 11978.92 8278.26 13867.65 13567.48 4539.81 17930.98 18638.25 16034.59 18961.37 11270.55 15973.47 13379.74 18479.59 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ADS-MVSNet58.40 16959.16 17057.52 16665.80 17074.57 16960.26 17340.17 20950.51 13538.01 15840.11 15344.72 14759.36 12464.91 18266.55 18281.53 17272.72 186
ACMH+60.36 1361.16 15158.38 17164.42 11877.37 9974.35 17068.45 13062.81 8345.86 15638.48 15535.71 17637.35 17359.81 12067.24 17569.80 17279.58 18578.32 167
CVMVSNet54.92 18158.16 17251.13 18862.61 18468.44 19055.45 18652.38 17242.28 16821.45 20047.10 11646.10 14437.96 19164.42 18763.81 19176.92 19575.01 175
RPSCF55.07 17858.06 17351.57 18548.87 21158.95 20853.68 18941.26 20762.42 8645.88 11454.38 8654.26 12153.75 15257.15 19953.53 20966.01 20965.75 201
EG-PatchMatch MVS58.73 16758.03 17459.55 15272.32 12780.49 11963.44 16255.55 14932.49 20038.31 15628.87 19637.22 17442.84 18474.30 12075.70 10784.84 12277.14 170
gm-plane-assit54.99 17957.99 17551.49 18769.27 14754.42 21232.32 21542.59 20121.18 21513.71 21223.61 20343.84 14960.21 11887.09 586.55 590.81 489.28 91
anonymousdsp54.99 17957.24 17652.36 18453.82 20571.75 18151.49 19148.14 18233.74 19733.66 17838.34 15936.13 18147.54 16964.53 18670.60 16779.53 18685.59 127
TransMVSNet (Re)57.83 17056.90 17758.91 15872.26 12874.69 16863.57 16161.42 9732.30 20132.65 18033.97 18335.96 18339.17 19073.84 12572.84 14684.37 13574.69 176
v7n57.04 17556.64 17857.52 16662.85 18274.75 16761.76 16851.80 17435.58 19536.02 16932.33 18733.61 19450.16 16367.73 17470.34 16982.51 16082.12 153
tfpnnormal58.97 16456.48 17961.89 13971.27 13576.21 15666.65 14561.76 9532.90 19936.41 16627.83 19829.14 20650.64 16273.06 13273.05 14384.58 13283.15 147
UniMVSNet_ETH3D57.83 17056.46 18059.43 15463.24 18073.22 17467.70 13455.58 14836.17 19136.84 16332.64 18535.14 18751.50 15765.81 17869.81 17181.73 17082.44 152
CMPMVSbinary43.63 1757.67 17355.43 18160.28 14872.01 12979.00 13162.77 16653.23 16841.77 17045.42 11630.74 19239.03 16653.01 15364.81 18464.65 19075.26 19968.03 197
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view54.47 18354.61 18254.30 18260.50 19073.82 17257.92 18143.38 19739.43 18232.51 18133.23 18434.05 19147.26 17062.36 19066.21 18584.24 13773.19 184
WR-MVS51.02 19154.56 18346.90 19763.84 17769.23 18844.78 20556.38 13938.19 18414.19 21037.38 16436.82 17722.39 20660.14 19466.20 18679.81 18373.95 180
FC-MVSNet-test47.24 20154.37 18438.93 20659.49 19458.25 21034.48 21453.36 16745.66 1576.66 22050.62 9742.02 15116.62 21458.39 19561.21 19962.99 21164.40 203
pmmvs-eth3d55.20 17653.95 18556.65 17157.34 20167.77 19157.54 18253.74 16540.93 17541.09 14331.19 19129.10 20749.07 16465.54 17967.28 17881.14 17475.81 171
pmmvs654.20 18453.54 18654.97 17663.22 18172.98 17560.17 17452.32 17326.77 21034.30 17623.29 20536.23 18040.33 18968.77 17168.76 17479.47 18778.00 168
pmnet_mix0253.92 18553.30 18754.65 18061.89 18671.33 18254.54 18854.17 16240.38 17634.65 17434.76 18230.68 20440.44 18860.97 19263.71 19282.19 16671.24 191
MVS-HIRNet53.86 18653.02 18854.85 17760.30 19172.36 17644.63 20642.20 20339.45 18143.47 12921.66 20934.00 19255.47 14665.42 18067.16 18083.02 15671.08 192
PEN-MVS51.04 19052.94 18948.82 19161.45 18866.00 19648.68 19557.20 13236.87 18615.36 20836.98 16832.72 19528.77 20057.63 19866.37 18381.44 17374.00 179
COLMAP_ROBcopyleft51.17 1555.13 17752.90 19057.73 16573.47 12467.21 19362.13 16755.82 14447.83 14634.39 17531.60 18934.24 19044.90 18063.88 18962.52 19775.67 19763.02 206
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2023120652.23 18952.80 19151.56 18664.70 17469.41 18751.01 19258.60 11636.63 18822.44 19921.80 20831.42 20030.52 19566.79 17667.83 17682.10 16775.73 172
WR-MVS_H49.62 19652.63 19246.11 20058.80 19667.58 19246.14 20354.94 15436.51 18913.63 21336.75 17135.67 18522.10 20756.43 20262.76 19681.06 17572.73 185
CP-MVSNet50.57 19252.60 19348.21 19458.77 19765.82 19748.17 19656.29 14037.41 18516.59 20537.14 16631.95 19729.21 19756.60 20163.71 19280.22 18075.56 173
PS-CasMVS50.17 19352.02 19448.02 19558.60 19865.54 19848.04 19756.19 14236.42 19016.42 20735.68 17731.33 20128.85 19956.42 20363.54 19480.01 18175.18 174
DTE-MVSNet49.82 19551.92 19547.37 19661.75 18764.38 20145.89 20457.33 13136.11 19212.79 21536.87 16931.93 19825.73 20358.01 19665.22 18880.75 17970.93 193
TDRefinement52.70 18751.02 19654.66 17957.41 20065.06 19961.47 17154.94 15444.03 16233.93 17730.13 19427.57 20846.17 17561.86 19162.48 19874.01 20366.06 200
testgi48.51 19950.53 19746.16 19964.78 17267.15 19441.54 20854.81 15829.12 20617.03 20432.07 18831.98 19620.15 21065.26 18167.00 18178.67 19061.10 210
PM-MVS50.11 19450.38 19849.80 18947.23 21362.08 20650.91 19344.84 19441.90 16936.10 16835.22 17926.05 21246.83 17257.64 19755.42 20872.90 20474.32 177
TinyColmap52.66 18850.09 19955.65 17459.72 19364.02 20357.15 18352.96 17040.28 17732.51 18132.42 18620.97 21656.65 14363.95 18865.15 18974.91 20063.87 204
LTVRE_ROB47.26 1649.41 19749.91 20048.82 19164.76 17369.79 18649.05 19447.12 18720.36 21716.52 20636.65 17226.96 20950.76 16160.47 19363.16 19564.73 21072.00 187
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo49.11 19849.22 20148.99 19058.54 19964.14 20247.18 19947.75 18431.15 20324.42 19541.01 14626.55 21044.04 18154.76 20658.70 20371.99 20668.21 195
test20.0347.23 20248.69 20245.53 20163.28 17964.39 20041.01 20956.93 13629.16 20515.21 20923.90 20230.76 20317.51 21364.63 18565.26 18779.21 18862.71 207
EU-MVSNet44.84 20347.85 20341.32 20549.26 21056.59 21143.07 20747.64 18633.03 19813.82 21136.78 17030.99 20224.37 20453.80 20755.57 20769.78 20868.21 195
N_pmnet47.67 20047.00 20448.45 19354.72 20462.78 20446.95 20051.25 17536.01 19326.09 19426.59 20125.93 21335.50 19355.67 20559.01 20176.22 19663.04 205
MIMVSNet140.84 20743.46 20537.79 20732.14 21658.92 20939.24 21150.83 17627.00 20911.29 21716.76 21526.53 21117.75 21257.14 20061.12 20075.46 19856.78 211
new-patchmatchnet42.21 20542.97 20641.33 20453.05 20659.89 20739.38 21049.61 17728.26 20812.10 21622.17 20721.54 21519.22 21150.96 20856.04 20674.61 20261.92 208
ambc42.30 20750.36 20949.51 21435.47 21332.04 20223.53 19617.36 2128.95 22329.06 19864.88 18356.26 20561.29 21267.12 198
pmmvs341.86 20642.29 20841.36 20339.80 21452.66 21338.93 21235.85 21423.40 21420.22 20219.30 21020.84 21740.56 18755.98 20458.79 20272.80 20565.03 202
MDA-MVSNet-bldmvs44.15 20442.27 20946.34 19838.34 21562.31 20546.28 20155.74 14629.83 20420.98 20127.11 20016.45 22141.98 18541.11 21357.47 20474.72 20161.65 209
FPMVS39.11 20836.39 21042.28 20255.97 20245.94 21546.23 20241.57 20435.73 19422.61 19723.46 20419.82 21828.32 20143.57 21040.67 21258.96 21345.54 213
new_pmnet33.19 20935.52 21130.47 20927.55 22045.31 21629.29 21630.92 21529.00 2079.88 21918.77 21117.64 22026.77 20244.07 20945.98 21158.41 21447.87 212
test_method28.15 21134.48 21220.76 2126.76 22421.18 22021.03 21818.41 21836.77 18717.52 20315.67 21631.63 19924.05 20541.03 21426.69 21636.82 21868.38 194
PMVScopyleft27.44 1832.08 21029.07 21335.60 20848.33 21224.79 21826.97 21741.34 20620.45 21622.50 19817.11 21418.64 21920.44 20941.99 21238.06 21354.02 21542.44 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft24.91 21224.61 21425.26 21131.47 21721.59 21918.06 21937.53 21125.43 21210.03 2184.18 2214.25 22514.85 21543.20 21147.03 21039.62 21726.55 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS220.45 21322.31 21518.27 21520.52 22126.73 21714.85 22128.43 21713.69 2180.79 22510.35 2179.10 2223.83 22027.64 21632.87 21441.17 21635.81 215
MVEpermissive15.98 1914.37 21616.36 21612.04 2177.72 22320.24 2215.90 22529.05 2168.28 2213.92 2224.72 2202.42 2269.57 21818.89 21831.46 21516.07 22328.53 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN15.08 21411.65 21719.08 21328.73 21812.31 2236.95 22436.87 21310.71 2203.63 2235.13 2182.22 22813.81 21711.34 21918.50 21824.49 22021.32 219
EMVS14.40 21510.71 21818.70 21428.15 21912.09 2247.06 22336.89 21211.00 2193.56 2244.95 2192.27 22713.91 21610.13 22016.06 21922.63 22118.51 220
testmvs0.05 2170.08 2190.01 2180.00 2260.01 2260.03 2270.01 2220.05 2220.00 2270.14 2230.01 2290.03 2230.05 2210.05 2200.01 2240.24 222
test1230.05 2170.08 2190.01 2180.00 2260.01 2260.01 2280.00 2230.05 2220.00 2270.16 2220.00 2300.04 2210.02 2220.05 2200.00 2250.26 221
uanet_test0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
sosnet-low-res0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
sosnet0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
TPM-MVS94.34 293.91 589.34 375.49 1882.52 2083.34 1083.53 489.62 790.78 72
RE-MVS-def31.47 183
9.1484.47 7
SR-MVS86.33 4667.54 4480.78 21
our_test_363.32 17871.07 18555.90 185
MTAPA78.32 1179.42 25
MTMP76.04 1576.65 29
Patchmatch-RL test2.17 226
tmp_tt16.09 21613.07 2228.12 22513.61 2222.08 22055.09 12130.10 18740.26 15122.83 2145.35 21929.91 21525.25 21732.33 219
XVS82.43 5586.27 7175.70 6961.07 6272.27 3985.67 101
X-MVStestdata82.43 5586.27 7175.70 6961.07 6272.27 3985.67 101
mPP-MVS86.96 4170.61 49
NP-MVS81.60 34
Patchmtry78.06 14067.53 13743.18 19841.40 139
DeepMVS_CXcopyleft19.81 22217.01 22010.02 21923.61 2135.85 22117.21 2138.03 22421.13 20822.60 21721.42 22230.01 216