MG-MVS | | | 87.11 32 | 86.27 41 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 40 | 78.74 63 | 83.87 66 | 92.94 115 | 64.34 82 | 96.94 102 | 75.19 138 | 94.09 40 | 95.66 46 |
|
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 44 | 96.26 27 | 72.84 25 | 99.38 1 | 92.64 5 | 95.93 10 | 97.08 9 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 13 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
DVP-MVS++. | | | 90.53 3 | 91.09 4 | 88.87 14 | 97.31 4 | 69.91 38 | 93.96 67 | 94.37 49 | 72.48 161 | 92.07 6 | 96.85 12 | 83.82 2 | 99.15 2 | 91.53 15 | 97.42 4 | 97.55 4 |
|
MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 20 | | | | | 99.07 13 | 92.01 11 | 94.77 25 | 96.51 20 |
|
No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 20 | | | | | 99.07 13 | 92.01 11 | 94.77 25 | 96.51 20 |
|
DP-MVS Recon | | | 82.73 101 | 81.65 108 | 85.98 83 | 97.31 4 | 67.06 107 | 95.15 35 | 91.99 141 | 69.08 238 | 76.50 139 | 93.89 98 | 54.48 192 | 98.20 36 | 70.76 175 | 85.66 132 | 92.69 154 |
|
testtj | | | 86.62 42 | 86.66 40 | 86.50 67 | 96.95 8 | 65.70 143 | 94.41 50 | 93.45 83 | 67.74 247 | 86.19 38 | 96.39 23 | 64.38 81 | 97.91 46 | 87.33 48 | 93.14 58 | 95.90 42 |
|
ETH3 D test6400 | | | 90.27 6 | 90.44 7 | 89.75 6 | 96.82 9 | 74.33 7 | 95.89 17 | 94.80 28 | 77.13 84 | 89.13 21 | 97.38 2 | 74.49 17 | 98.48 28 | 92.32 10 | 95.98 8 | 96.46 25 |
|
CNVR-MVS | | | 90.32 5 | 90.89 5 | 88.61 19 | 96.76 10 | 70.65 25 | 96.47 12 | 94.83 25 | 84.83 8 | 89.07 22 | 96.80 15 | 70.86 32 | 99.06 15 | 92.64 5 | 95.71 11 | 96.12 34 |
|
ZD-MVS | | | | | | 96.63 11 | 65.50 150 | | 93.50 81 | 70.74 217 | 85.26 52 | 95.19 56 | 64.92 77 | 97.29 77 | 87.51 44 | 93.01 59 | |
|
NCCC | | | 89.07 13 | 89.46 13 | 87.91 24 | 96.60 12 | 69.05 55 | 96.38 13 | 94.64 35 | 84.42 9 | 86.74 33 | 96.20 28 | 66.56 59 | 98.76 22 | 89.03 33 | 94.56 33 | 95.92 41 |
|
IU-MVS | | | | | | 96.46 13 | 69.91 38 | | 95.18 13 | 80.75 37 | 95.28 1 | | | | 92.34 7 | 95.36 14 | 96.47 24 |
|
SED-MVS | | | 89.94 8 | 90.36 8 | 88.70 16 | 96.45 14 | 69.38 48 | 96.89 4 | 94.44 42 | 71.65 192 | 92.11 4 | 97.21 5 | 76.79 9 | 99.11 6 | 92.34 7 | 95.36 14 | 97.62 2 |
|
test_241102_ONE | | | | | | 96.45 14 | 69.38 48 | | 94.44 42 | 71.65 192 | 92.11 4 | 97.05 8 | 76.79 9 | 99.11 6 | | | |
|
test_0728_SECOND | | | | | 88.70 16 | 96.45 14 | 70.43 28 | 96.64 8 | 94.37 49 | | | | | 99.15 2 | 91.91 13 | 94.90 21 | 96.51 20 |
|
DVP-MVS |  | | 89.41 11 | 89.73 12 | 88.45 21 | 96.40 17 | 69.99 34 | 96.64 8 | 94.52 38 | 71.92 178 | 90.55 15 | 96.93 10 | 73.77 20 | 99.08 11 | 91.91 13 | 94.90 21 | 96.29 30 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 96.40 17 | 69.99 34 | 96.76 6 | 94.33 51 | 71.92 178 | 91.89 8 | 97.11 7 | 73.77 20 | | | | |
|
AdaColmap |  | | 78.94 165 | 77.00 182 | 84.76 123 | 96.34 19 | 65.86 139 | 92.66 124 | 87.97 285 | 62.18 291 | 70.56 197 | 92.37 131 | 43.53 278 | 97.35 73 | 64.50 233 | 82.86 151 | 91.05 190 |
|
test_one_0601 | | | | | | 96.32 20 | 69.74 43 | | 94.18 55 | 71.42 204 | 90.67 14 | 96.85 12 | 74.45 18 | | | | |
|
test_part2 | | | | | | 96.29 21 | 68.16 77 | | | | 90.78 12 | | | | | | |
|
DPE-MVS |  | | 88.77 14 | 89.21 14 | 87.45 36 | 96.26 22 | 67.56 91 | 94.17 54 | 94.15 57 | 68.77 241 | 90.74 13 | 97.27 3 | 76.09 12 | 98.49 27 | 90.58 21 | 94.91 20 | 96.30 29 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MAR-MVS | | | 84.18 78 | 83.43 78 | 86.44 69 | 96.25 23 | 65.93 138 | 94.28 53 | 94.27 53 | 74.41 117 | 79.16 110 | 95.61 40 | 53.99 197 | 98.88 20 | 69.62 184 | 93.26 56 | 94.50 95 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
API-MVS | | | 82.28 108 | 80.53 124 | 87.54 34 | 96.13 24 | 70.59 26 | 93.63 86 | 91.04 186 | 65.72 265 | 75.45 149 | 92.83 121 | 56.11 173 | 98.89 19 | 64.10 235 | 89.75 101 | 93.15 142 |
|
APDe-MVS | | | 87.54 24 | 87.84 21 | 86.65 60 | 96.07 25 | 66.30 129 | 94.84 45 | 93.78 64 | 69.35 232 | 88.39 24 | 96.34 25 | 67.74 48 | 97.66 58 | 90.62 20 | 93.44 54 | 96.01 38 |
|
PAPR | | | 85.15 60 | 84.47 65 | 87.18 42 | 96.02 26 | 68.29 72 | 91.85 155 | 93.00 105 | 76.59 92 | 79.03 111 | 95.00 60 | 61.59 111 | 97.61 62 | 78.16 122 | 89.00 103 | 95.63 47 |
|
APD-MVS |  | | 85.93 50 | 85.99 46 | 85.76 92 | 95.98 27 | 65.21 156 | 93.59 88 | 92.58 121 | 66.54 258 | 86.17 39 | 95.88 33 | 63.83 88 | 97.00 94 | 86.39 56 | 92.94 60 | 95.06 72 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS_fast | | 79.48 2 | 87.95 19 | 88.00 19 | 87.79 27 | 95.86 28 | 68.32 71 | 95.74 21 | 94.11 59 | 83.82 11 | 83.49 68 | 96.19 29 | 64.53 80 | 98.44 30 | 83.42 78 | 94.88 24 | 96.61 14 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DP-MVS | | | 69.90 268 | 66.48 274 | 80.14 237 | 95.36 29 | 62.93 216 | 89.56 230 | 76.11 343 | 50.27 341 | 57.69 310 | 85.23 220 | 39.68 290 | 95.73 143 | 33.35 352 | 71.05 234 | 81.78 318 |
|
114514_t | | | 79.17 161 | 77.67 168 | 83.68 153 | 95.32 30 | 65.53 149 | 92.85 115 | 91.60 159 | 63.49 278 | 67.92 234 | 90.63 155 | 46.65 260 | 95.72 147 | 67.01 207 | 83.54 149 | 89.79 202 |
|
Regformer-1 | | | 87.24 29 | 87.60 27 | 86.15 80 | 95.14 31 | 65.83 141 | 93.95 70 | 95.12 15 | 82.11 21 | 84.25 59 | 95.73 36 | 67.88 46 | 98.35 33 | 85.60 60 | 88.64 107 | 94.26 100 |
|
Regformer-2 | | | 87.00 36 | 87.43 29 | 85.71 95 | 95.14 31 | 64.73 171 | 93.95 70 | 94.95 22 | 81.69 26 | 84.03 64 | 95.73 36 | 67.35 50 | 98.19 37 | 85.40 62 | 88.64 107 | 94.20 102 |
|
HPM-MVS++ |  | | 89.37 12 | 89.95 11 | 87.64 29 | 95.10 33 | 68.23 76 | 95.24 32 | 94.49 40 | 82.43 17 | 88.90 23 | 96.35 24 | 71.89 31 | 98.63 24 | 88.76 35 | 96.40 6 | 96.06 35 |
|
CSCG | | | 86.87 37 | 86.26 42 | 88.72 15 | 95.05 34 | 70.79 24 | 93.83 81 | 95.33 11 | 68.48 245 | 77.63 126 | 94.35 84 | 73.04 23 | 98.45 29 | 84.92 67 | 93.71 50 | 96.92 11 |
|
LFMVS | | | 84.34 73 | 82.73 94 | 89.18 13 | 94.76 35 | 73.25 10 | 94.99 42 | 91.89 146 | 71.90 180 | 82.16 77 | 93.49 105 | 47.98 252 | 97.05 89 | 82.55 87 | 84.82 137 | 97.25 7 |
|
CDPH-MVS | | | 85.71 53 | 85.46 55 | 86.46 68 | 94.75 36 | 67.19 103 | 93.89 75 | 92.83 110 | 70.90 212 | 83.09 71 | 95.28 48 | 63.62 92 | 97.36 72 | 80.63 102 | 94.18 39 | 94.84 80 |
|
test_prior3 | | | 87.38 27 | 87.70 24 | 86.42 70 | 94.71 37 | 67.35 98 | 95.10 37 | 93.10 101 | 75.40 105 | 85.25 53 | 95.61 40 | 67.94 43 | 96.84 106 | 87.47 45 | 94.77 25 | 95.05 73 |
|
test_prior | | | | | 86.42 70 | 94.71 37 | 67.35 98 | | 93.10 101 | | | | | 96.84 106 | | | 95.05 73 |
|
test12 | | | | | 87.09 45 | 94.60 39 | 68.86 59 | | 92.91 107 | | 82.67 75 | | 65.44 70 | 97.55 63 | | 93.69 51 | 94.84 80 |
|
test_yl | | | 84.28 74 | 83.16 85 | 87.64 29 | 94.52 40 | 69.24 51 | 95.78 18 | 95.09 18 | 69.19 235 | 81.09 86 | 92.88 119 | 57.00 159 | 97.44 67 | 81.11 100 | 81.76 159 | 96.23 32 |
|
DCV-MVSNet | | | 84.28 74 | 83.16 85 | 87.64 29 | 94.52 40 | 69.24 51 | 95.78 18 | 95.09 18 | 69.19 235 | 81.09 86 | 92.88 119 | 57.00 159 | 97.44 67 | 81.11 100 | 81.76 159 | 96.23 32 |
|
CANet | | | 89.61 10 | 89.99 10 | 88.46 20 | 94.39 42 | 69.71 44 | 96.53 11 | 93.78 64 | 86.89 4 | 89.68 18 | 95.78 34 | 65.94 63 | 99.10 9 | 92.99 3 | 93.91 44 | 96.58 17 |
|
test_8 | | | | | | 94.19 43 | 67.19 103 | 94.15 57 | 93.42 86 | 71.87 183 | 85.38 50 | 95.35 44 | 68.19 39 | 96.95 101 | | | |
|
TEST9 | | | | | | 94.18 44 | 67.28 100 | 94.16 55 | 93.51 79 | 71.75 190 | 85.52 48 | 95.33 45 | 68.01 42 | 97.27 81 | | | |
|
train_agg | | | 87.21 30 | 87.42 30 | 86.60 61 | 94.18 44 | 67.28 100 | 94.16 55 | 93.51 79 | 71.87 183 | 85.52 48 | 95.33 45 | 68.19 39 | 97.27 81 | 89.09 29 | 94.90 21 | 95.25 66 |
|
Regformer-3 | | | 85.80 52 | 85.92 47 | 85.46 102 | 94.17 46 | 65.09 164 | 92.95 111 | 95.11 16 | 81.13 33 | 81.68 80 | 95.04 58 | 65.82 65 | 98.32 34 | 83.02 80 | 84.36 141 | 92.97 149 |
|
Regformer-4 | | | 85.45 55 | 85.69 52 | 84.73 125 | 94.17 46 | 63.23 209 | 92.95 111 | 94.83 25 | 80.66 38 | 81.29 83 | 95.04 58 | 65.12 72 | 98.08 40 | 82.74 82 | 84.36 141 | 92.88 153 |
|
agg_prior1 | | | 87.02 35 | 87.26 32 | 86.28 77 | 94.16 48 | 66.97 111 | 94.08 61 | 93.31 89 | 71.85 185 | 84.49 57 | 95.39 43 | 68.91 36 | 96.75 110 | 88.84 34 | 94.32 38 | 95.13 69 |
|
agg_prior | | | | | | 94.16 48 | 66.97 111 | | 93.31 89 | | 84.49 57 | | | 96.75 110 | | | |
|
PAPM_NR | | | 82.97 98 | 81.84 105 | 86.37 73 | 94.10 50 | 66.76 118 | 87.66 265 | 92.84 109 | 69.96 225 | 74.07 160 | 93.57 103 | 63.10 101 | 97.50 65 | 70.66 177 | 90.58 94 | 94.85 79 |
|
FOURS1 | | | | | | 93.95 51 | 61.77 236 | 93.96 67 | 91.92 144 | 62.14 292 | 86.57 34 | | | | | | |
|
VNet | | | 86.20 46 | 85.65 53 | 87.84 26 | 93.92 52 | 69.99 34 | 95.73 23 | 95.94 6 | 78.43 65 | 86.00 42 | 93.07 112 | 58.22 145 | 97.00 94 | 85.22 64 | 84.33 144 | 96.52 19 |
|
9.14 | | | | 87.63 25 | | 93.86 53 | | 94.41 50 | 94.18 55 | 72.76 155 | 86.21 37 | 96.51 19 | 66.64 57 | 97.88 49 | 90.08 23 | 94.04 41 | |
|
xxxxxxxxxxxxxcwj | | | 87.14 31 | 87.19 33 | 86.99 48 | 93.84 54 | 67.89 83 | 95.05 39 | 84.72 314 | 78.19 67 | 86.25 35 | 96.44 21 | 66.98 52 | 97.79 51 | 88.68 36 | 94.56 33 | 95.28 61 |
|
save fliter | | | | | | 93.84 54 | 67.89 83 | 95.05 39 | 92.66 116 | 78.19 67 | | | | | | | |
|
PVSNet_BlendedMVS | | | 83.38 92 | 83.43 78 | 83.22 164 | 93.76 56 | 67.53 93 | 94.06 62 | 93.61 75 | 79.13 55 | 81.00 89 | 85.14 221 | 63.19 99 | 97.29 77 | 87.08 51 | 73.91 213 | 84.83 282 |
|
PVSNet_Blended | | | 86.73 41 | 86.86 38 | 86.31 76 | 93.76 56 | 67.53 93 | 96.33 15 | 93.61 75 | 82.34 18 | 81.00 89 | 93.08 110 | 63.19 99 | 97.29 77 | 87.08 51 | 91.38 83 | 94.13 108 |
|
HFP-MVS | | | 84.73 66 | 84.40 68 | 85.72 93 | 93.75 58 | 65.01 165 | 93.50 92 | 93.19 95 | 72.19 172 | 79.22 108 | 94.93 64 | 59.04 139 | 97.67 55 | 81.55 93 | 92.21 69 | 94.49 96 |
|
#test# | | | 84.98 63 | 84.74 64 | 85.72 93 | 93.75 58 | 65.01 165 | 94.09 60 | 93.19 95 | 73.55 140 | 79.22 108 | 94.93 64 | 59.04 139 | 97.67 55 | 82.66 84 | 92.21 69 | 94.49 96 |
|
Anonymous202405211 | | | 77.96 186 | 75.33 202 | 85.87 87 | 93.73 60 | 64.52 173 | 94.85 44 | 85.36 309 | 62.52 289 | 76.11 140 | 90.18 164 | 29.43 337 | 97.29 77 | 68.51 195 | 77.24 198 | 95.81 44 |
|
SD-MVS | | | 87.49 26 | 87.49 28 | 87.50 35 | 93.60 61 | 68.82 61 | 93.90 74 | 92.63 119 | 76.86 88 | 87.90 26 | 95.76 35 | 66.17 60 | 97.63 60 | 89.06 31 | 91.48 81 | 96.05 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ETH3D-3000-0.1 | | | 87.61 23 | 87.89 20 | 86.75 55 | 93.58 62 | 67.21 102 | 94.31 52 | 94.14 58 | 72.92 152 | 87.13 29 | 96.62 17 | 67.81 47 | 97.94 43 | 90.13 22 | 94.42 36 | 95.09 71 |
|
ACMMPR | | | 84.37 71 | 84.06 70 | 85.28 109 | 93.56 63 | 64.37 183 | 93.50 92 | 93.15 98 | 72.19 172 | 78.85 117 | 94.86 68 | 56.69 166 | 97.45 66 | 81.55 93 | 92.20 71 | 94.02 116 |
|
region2R | | | 84.36 72 | 84.03 71 | 85.36 107 | 93.54 64 | 64.31 185 | 93.43 95 | 92.95 106 | 72.16 175 | 78.86 116 | 94.84 69 | 56.97 161 | 97.53 64 | 81.38 97 | 92.11 73 | 94.24 101 |
|
TSAR-MVS + GP. | | | 87.96 18 | 88.37 17 | 86.70 59 | 93.51 65 | 65.32 152 | 95.15 35 | 93.84 63 | 78.17 69 | 85.93 43 | 94.80 70 | 75.80 13 | 98.21 35 | 89.38 25 | 88.78 104 | 96.59 15 |
|
PHI-MVS | | | 86.83 39 | 86.85 39 | 86.78 54 | 93.47 66 | 65.55 148 | 95.39 29 | 95.10 17 | 71.77 189 | 85.69 47 | 96.52 18 | 62.07 108 | 98.77 21 | 86.06 58 | 95.60 12 | 96.03 37 |
|
SR-MVS | | | 82.81 100 | 82.58 96 | 83.50 159 | 93.35 67 | 61.16 247 | 92.23 137 | 91.28 173 | 64.48 271 | 81.27 84 | 95.28 48 | 53.71 201 | 95.86 137 | 82.87 81 | 88.77 105 | 93.49 132 |
|
EPNet | | | 87.84 21 | 88.38 16 | 86.23 78 | 93.30 68 | 66.05 133 | 95.26 31 | 94.84 24 | 87.09 3 | 88.06 25 | 94.53 75 | 66.79 56 | 97.34 74 | 83.89 75 | 91.68 77 | 95.29 59 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test1172 | | | 81.90 116 | 81.83 106 | 82.13 192 | 93.23 69 | 57.52 297 | 91.61 167 | 90.98 188 | 64.32 273 | 80.20 97 | 95.00 60 | 51.26 222 | 95.61 151 | 81.73 92 | 88.13 111 | 93.26 138 |
|
XVS | | | 83.87 85 | 83.47 76 | 85.05 114 | 93.22 70 | 63.78 195 | 92.92 113 | 92.66 116 | 73.99 126 | 78.18 120 | 94.31 88 | 55.25 180 | 97.41 69 | 79.16 111 | 91.58 79 | 93.95 118 |
|
X-MVStestdata | | | 76.86 200 | 74.13 220 | 85.05 114 | 93.22 70 | 63.78 195 | 92.92 113 | 92.66 116 | 73.99 126 | 78.18 120 | 10.19 370 | 55.25 180 | 97.41 69 | 79.16 111 | 91.58 79 | 93.95 118 |
|
SMA-MVS |  | | 88.14 15 | 88.29 18 | 87.67 28 | 93.21 72 | 68.72 63 | 93.85 77 | 94.03 60 | 74.18 123 | 91.74 9 | 96.67 16 | 65.61 68 | 98.42 32 | 89.24 28 | 96.08 7 | 95.88 43 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
原ACMM1 | | | | | 84.42 136 | 93.21 72 | 64.27 188 | | 93.40 88 | 65.39 266 | 79.51 105 | 92.50 125 | 58.11 147 | 96.69 112 | 65.27 229 | 93.96 42 | 92.32 164 |
|
MVS_111021_HR | | | 86.19 47 | 85.80 50 | 87.37 38 | 93.17 74 | 69.79 41 | 93.99 66 | 93.76 67 | 79.08 57 | 78.88 115 | 93.99 96 | 62.25 107 | 98.15 38 | 85.93 59 | 91.15 87 | 94.15 107 |
|
CP-MVS | | | 83.71 89 | 83.40 81 | 84.65 129 | 93.14 75 | 63.84 193 | 94.59 47 | 92.28 128 | 71.03 210 | 77.41 129 | 94.92 66 | 55.21 183 | 96.19 123 | 81.32 98 | 90.70 92 | 93.91 120 |
|
DELS-MVS | | | 90.05 7 | 90.09 9 | 89.94 4 | 93.14 75 | 73.88 8 | 97.01 3 | 94.40 47 | 88.32 2 | 85.71 46 | 94.91 67 | 74.11 19 | 98.91 17 | 87.26 50 | 95.94 9 | 97.03 10 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ZNCC-MVS | | | 85.33 58 | 85.08 59 | 86.06 81 | 93.09 77 | 65.65 145 | 93.89 75 | 93.41 87 | 73.75 134 | 79.94 99 | 94.68 73 | 60.61 120 | 98.03 41 | 82.63 86 | 93.72 49 | 94.52 93 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 127 | 93.00 78 | 58.16 289 | 96.72 7 | 94.41 45 | 86.50 5 | 90.25 17 | 97.83 1 | 75.46 14 | 98.67 23 | 92.78 4 | 95.49 13 | 97.32 6 |
|
PLC |  | 68.80 14 | 75.23 227 | 73.68 226 | 79.86 245 | 92.93 79 | 58.68 284 | 90.64 205 | 88.30 276 | 60.90 300 | 64.43 269 | 90.53 156 | 42.38 282 | 94.57 185 | 56.52 273 | 76.54 202 | 86.33 251 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DWT-MVSNet_test | | | 83.95 83 | 82.80 92 | 87.41 37 | 92.90 80 | 70.07 33 | 89.12 243 | 94.42 44 | 82.15 20 | 77.64 125 | 91.77 140 | 70.81 33 | 96.22 122 | 65.03 230 | 81.36 163 | 95.94 39 |
|
MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 86 | 92.83 81 | 64.03 192 | 93.06 104 | 94.33 51 | 82.19 19 | 93.65 3 | 96.15 30 | 85.89 1 | 97.19 83 | 91.02 19 | 97.75 1 | 96.43 26 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
mPP-MVS | | | 82.96 99 | 82.44 99 | 84.52 133 | 92.83 81 | 62.92 218 | 92.76 116 | 91.85 148 | 71.52 200 | 75.61 147 | 94.24 90 | 53.48 205 | 96.99 97 | 78.97 114 | 90.73 91 | 93.64 129 |
|
GST-MVS | | | 84.63 69 | 84.29 69 | 85.66 97 | 92.82 83 | 65.27 154 | 93.04 106 | 93.13 99 | 73.20 144 | 78.89 112 | 94.18 92 | 59.41 135 | 97.85 50 | 81.45 95 | 92.48 68 | 93.86 123 |
|
WTY-MVS | | | 86.32 44 | 85.81 49 | 87.85 25 | 92.82 83 | 69.37 50 | 95.20 33 | 95.25 12 | 82.71 15 | 81.91 78 | 94.73 71 | 67.93 45 | 97.63 60 | 79.55 108 | 82.25 155 | 96.54 18 |
|
PGM-MVS | | | 83.25 93 | 82.70 95 | 84.92 118 | 92.81 85 | 64.07 191 | 90.44 208 | 92.20 135 | 71.28 205 | 77.23 132 | 94.43 78 | 55.17 184 | 97.31 76 | 79.33 110 | 91.38 83 | 93.37 133 |
|
EI-MVSNet-Vis-set | | | 83.77 87 | 83.67 73 | 84.06 144 | 92.79 86 | 63.56 205 | 91.76 160 | 94.81 27 | 79.65 47 | 77.87 122 | 94.09 93 | 63.35 97 | 97.90 47 | 79.35 109 | 79.36 174 | 90.74 192 |
|
SF-MVS | | | 87.03 34 | 87.09 35 | 86.84 50 | 92.70 87 | 67.45 97 | 93.64 85 | 93.76 67 | 70.78 216 | 86.25 35 | 96.44 21 | 66.98 52 | 97.79 51 | 88.68 36 | 94.56 33 | 95.28 61 |
|
MVSTER | | | 82.47 105 | 82.05 102 | 83.74 149 | 92.68 88 | 69.01 56 | 91.90 152 | 93.21 92 | 79.83 42 | 72.14 182 | 85.71 217 | 74.72 15 | 94.72 180 | 75.72 135 | 72.49 223 | 87.50 229 |
|
MP-MVS |  | | 85.02 61 | 84.97 61 | 85.17 113 | 92.60 89 | 64.27 188 | 93.24 99 | 92.27 129 | 73.13 146 | 79.63 104 | 94.43 78 | 61.90 109 | 97.17 84 | 85.00 65 | 92.56 65 | 94.06 113 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
thres200 | | | 79.66 152 | 78.33 156 | 83.66 155 | 92.54 90 | 65.82 142 | 93.06 104 | 96.31 3 | 74.90 114 | 73.30 165 | 88.66 178 | 59.67 131 | 95.61 151 | 47.84 306 | 78.67 181 | 89.56 207 |
|
test_part1 | | | 79.63 153 | 77.86 167 | 84.93 117 | 92.50 91 | 71.43 17 | 94.15 57 | 91.08 183 | 72.51 160 | 70.66 196 | 84.98 223 | 59.84 128 | 95.07 169 | 72.07 165 | 62.94 287 | 88.30 223 |
|
APD-MVS_3200maxsize | | | 81.64 119 | 81.32 111 | 82.59 177 | 92.36 92 | 58.74 283 | 91.39 175 | 91.01 187 | 63.35 279 | 79.72 103 | 94.62 74 | 51.82 215 | 96.14 125 | 79.71 106 | 87.93 113 | 92.89 152 |
|
新几何1 | | | | | 84.73 125 | 92.32 93 | 64.28 187 | | 91.46 166 | 59.56 310 | 79.77 102 | 92.90 117 | 56.95 162 | 96.57 115 | 63.40 239 | 92.91 61 | 93.34 134 |
|
1121 | | | 81.25 123 | 80.05 128 | 84.87 121 | 92.30 94 | 64.31 185 | 87.91 261 | 91.39 168 | 59.44 311 | 79.94 99 | 92.91 116 | 57.09 155 | 97.01 92 | 66.63 209 | 92.81 63 | 93.29 137 |
|
EI-MVSNet-UG-set | | | 83.14 95 | 82.96 88 | 83.67 154 | 92.28 95 | 63.19 211 | 91.38 177 | 94.68 33 | 79.22 52 | 76.60 137 | 93.75 99 | 62.64 103 | 97.76 53 | 78.07 123 | 78.01 185 | 90.05 200 |
|
HPM-MVS |  | | 83.25 93 | 82.95 89 | 84.17 142 | 92.25 96 | 62.88 220 | 90.91 194 | 91.86 147 | 70.30 221 | 77.12 133 | 93.96 97 | 56.75 164 | 96.28 120 | 82.04 89 | 91.34 85 | 93.34 134 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HY-MVS | | 76.49 5 | 84.28 74 | 83.36 83 | 87.02 47 | 92.22 97 | 67.74 87 | 84.65 284 | 94.50 39 | 79.15 54 | 82.23 76 | 87.93 192 | 66.88 54 | 96.94 102 | 80.53 103 | 82.20 156 | 96.39 28 |
|
tfpn200view9 | | | 78.79 170 | 77.43 173 | 82.88 169 | 92.21 98 | 64.49 174 | 92.05 145 | 96.28 4 | 73.48 141 | 71.75 188 | 88.26 186 | 60.07 126 | 95.32 164 | 45.16 316 | 77.58 190 | 88.83 210 |
|
thres400 | | | 78.68 173 | 77.43 173 | 82.43 179 | 92.21 98 | 64.49 174 | 92.05 145 | 96.28 4 | 73.48 141 | 71.75 188 | 88.26 186 | 60.07 126 | 95.32 164 | 45.16 316 | 77.58 190 | 87.48 230 |
|
PS-MVSNAJ | | | 88.14 15 | 87.61 26 | 89.71 7 | 92.06 100 | 76.72 1 | 95.75 20 | 93.26 91 | 83.86 10 | 89.55 19 | 96.06 31 | 53.55 202 | 97.89 48 | 91.10 17 | 93.31 55 | 94.54 91 |
|
SR-MVS-dyc-post | | | 81.06 128 | 80.70 120 | 82.15 190 | 92.02 101 | 58.56 285 | 90.90 195 | 90.45 198 | 62.76 285 | 78.89 112 | 94.46 76 | 51.26 222 | 95.61 151 | 78.77 117 | 86.77 123 | 92.28 166 |
|
RE-MVS-def | | | | 80.48 125 | | 92.02 101 | 58.56 285 | 90.90 195 | 90.45 198 | 62.76 285 | 78.89 112 | 94.46 76 | 49.30 239 | | 78.77 117 | 86.77 123 | 92.28 166 |
|
MSLP-MVS++ | | | 86.27 45 | 85.91 48 | 87.35 39 | 92.01 103 | 68.97 58 | 95.04 41 | 92.70 113 | 79.04 58 | 81.50 82 | 96.50 20 | 58.98 141 | 96.78 108 | 83.49 77 | 93.93 43 | 96.29 30 |
|
ETH3D cwj APD-0.16 | | | 87.06 33 | 87.18 34 | 86.71 57 | 91.99 104 | 67.48 96 | 92.97 109 | 94.21 54 | 71.48 203 | 85.72 45 | 96.32 26 | 68.13 41 | 98.00 42 | 89.06 31 | 94.70 31 | 94.65 87 |
|
旧先验1 | | | | | | 91.94 105 | 60.74 257 | | 91.50 164 | | | 94.36 80 | 65.23 71 | | | 91.84 74 | 94.55 89 |
|
thres600view7 | | | 78.00 184 | 76.66 186 | 82.03 198 | 91.93 106 | 63.69 200 | 91.30 182 | 96.33 1 | 72.43 164 | 70.46 199 | 87.89 193 | 60.31 121 | 94.92 175 | 42.64 328 | 76.64 201 | 87.48 230 |
|
LS3D | | | 69.17 272 | 66.40 275 | 77.50 276 | 91.92 107 | 56.12 308 | 85.12 281 | 80.37 337 | 46.96 348 | 56.50 314 | 87.51 198 | 37.25 307 | 93.71 222 | 32.52 357 | 79.40 173 | 82.68 308 |
|
GG-mvs-BLEND | | | | | 86.53 66 | 91.91 108 | 69.67 46 | 75.02 336 | 94.75 30 | | 78.67 119 | 90.85 151 | 77.91 7 | 94.56 187 | 72.25 161 | 93.74 48 | 95.36 54 |
|
thres100view900 | | | 78.37 179 | 77.01 181 | 82.46 178 | 91.89 109 | 63.21 210 | 91.19 188 | 96.33 1 | 72.28 169 | 70.45 200 | 87.89 193 | 60.31 121 | 95.32 164 | 45.16 316 | 77.58 190 | 88.83 210 |
|
zzz-MVS | | | 84.73 66 | 84.47 65 | 85.50 100 | 91.89 109 | 65.16 158 | 91.55 168 | 92.23 130 | 75.32 107 | 80.53 93 | 95.21 54 | 56.06 174 | 97.16 85 | 84.86 68 | 92.55 66 | 94.18 103 |
|
MTAPA | | | 83.91 84 | 83.38 82 | 85.50 100 | 91.89 109 | 65.16 158 | 81.75 304 | 92.23 130 | 75.32 107 | 80.53 93 | 95.21 54 | 56.06 174 | 97.16 85 | 84.86 68 | 92.55 66 | 94.18 103 |
|
RRT_test8_iter05 | | | 80.61 134 | 79.62 137 | 83.60 156 | 91.87 112 | 66.90 113 | 93.42 97 | 93.68 72 | 77.09 86 | 68.83 223 | 85.63 218 | 66.82 55 | 95.42 160 | 76.46 133 | 62.74 289 | 88.48 217 |
|
canonicalmvs | | | 86.85 38 | 86.25 43 | 88.66 18 | 91.80 113 | 71.92 15 | 93.54 90 | 91.71 154 | 80.26 41 | 87.55 27 | 95.25 52 | 63.59 94 | 96.93 104 | 88.18 38 | 84.34 143 | 97.11 8 |
|
TSAR-MVS + MP. | | | 88.11 17 | 88.64 15 | 86.54 65 | 91.73 114 | 68.04 79 | 90.36 212 | 93.55 78 | 82.89 13 | 91.29 11 | 92.89 118 | 72.27 28 | 96.03 132 | 87.99 39 | 94.77 25 | 95.54 50 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP |  | | 81.49 120 | 80.67 121 | 83.93 146 | 91.71 115 | 62.90 219 | 92.13 139 | 92.22 134 | 71.79 188 | 71.68 190 | 93.49 105 | 50.32 228 | 96.96 100 | 78.47 119 | 84.22 148 | 91.93 173 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
BH-RMVSNet | | | 79.46 158 | 77.65 169 | 84.89 119 | 91.68 116 | 65.66 144 | 93.55 89 | 88.09 282 | 72.93 151 | 73.37 164 | 91.12 148 | 46.20 266 | 96.12 126 | 56.28 275 | 85.61 133 | 92.91 151 |
|
baseline1 | | | 81.84 117 | 81.03 117 | 84.28 141 | 91.60 117 | 66.62 121 | 91.08 191 | 91.66 157 | 81.87 24 | 74.86 152 | 91.67 144 | 69.98 35 | 94.92 175 | 71.76 168 | 64.75 275 | 91.29 187 |
|
ACMMP_NAP | | | 86.05 48 | 85.80 50 | 86.80 53 | 91.58 118 | 67.53 93 | 91.79 157 | 93.49 82 | 74.93 113 | 84.61 55 | 95.30 47 | 59.42 134 | 97.92 45 | 86.13 57 | 94.92 19 | 94.94 78 |
|
MVS_Test | | | 84.16 79 | 83.20 84 | 87.05 46 | 91.56 119 | 69.82 40 | 89.99 225 | 92.05 138 | 77.77 76 | 82.84 72 | 86.57 207 | 63.93 87 | 96.09 127 | 74.91 144 | 89.18 102 | 95.25 66 |
|
HPM-MVS_fast | | | 80.25 141 | 79.55 141 | 82.33 183 | 91.55 120 | 59.95 269 | 91.32 181 | 89.16 250 | 65.23 269 | 74.71 153 | 93.07 112 | 47.81 254 | 95.74 142 | 74.87 146 | 88.23 109 | 91.31 186 |
|
CPTT-MVS | | | 79.59 154 | 79.16 149 | 80.89 227 | 91.54 121 | 59.80 271 | 92.10 141 | 88.54 273 | 60.42 303 | 72.96 167 | 93.28 107 | 48.27 248 | 92.80 245 | 78.89 116 | 86.50 128 | 90.06 199 |
|
CNLPA | | | 74.31 235 | 72.30 241 | 80.32 232 | 91.49 122 | 61.66 239 | 90.85 198 | 80.72 336 | 56.67 325 | 63.85 273 | 90.64 153 | 46.75 259 | 90.84 289 | 53.79 283 | 75.99 205 | 88.47 219 |
|
MP-MVS-pluss | | | 85.24 59 | 85.13 58 | 85.56 99 | 91.42 123 | 65.59 147 | 91.54 169 | 92.51 123 | 74.56 116 | 80.62 92 | 95.64 39 | 59.15 138 | 97.00 94 | 86.94 53 | 93.80 46 | 94.07 112 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
gg-mvs-nofinetune | | | 77.18 198 | 74.31 215 | 85.80 90 | 91.42 123 | 68.36 70 | 71.78 338 | 94.72 31 | 49.61 342 | 77.12 133 | 45.92 358 | 77.41 8 | 93.98 214 | 67.62 202 | 93.16 57 | 95.05 73 |
|
xiu_mvs_v2_base | | | 87.92 20 | 87.38 31 | 89.55 12 | 91.41 125 | 76.43 3 | 95.74 21 | 93.12 100 | 83.53 12 | 89.55 19 | 95.95 32 | 53.45 206 | 97.68 54 | 91.07 18 | 92.62 64 | 94.54 91 |
|
EIA-MVS | | | 84.84 65 | 84.88 62 | 84.69 128 | 91.30 126 | 62.36 227 | 93.85 77 | 92.04 139 | 79.45 48 | 79.33 107 | 94.28 89 | 62.42 106 | 96.35 119 | 80.05 105 | 91.25 86 | 95.38 53 |
|
alignmvs | | | 87.28 28 | 86.97 36 | 88.24 23 | 91.30 126 | 71.14 22 | 95.61 25 | 93.56 77 | 79.30 50 | 87.07 32 | 95.25 52 | 68.43 37 | 96.93 104 | 87.87 40 | 84.33 144 | 96.65 13 |
|
EPMVS | | | 78.49 178 | 75.98 195 | 86.02 82 | 91.21 128 | 69.68 45 | 80.23 317 | 91.20 174 | 75.25 109 | 72.48 177 | 78.11 301 | 54.65 188 | 93.69 223 | 57.66 271 | 83.04 150 | 94.69 83 |
|
FMVSNet3 | | | 77.73 190 | 76.04 194 | 82.80 170 | 91.20 129 | 68.99 57 | 91.87 153 | 91.99 141 | 73.35 143 | 67.04 247 | 83.19 243 | 56.62 167 | 92.14 268 | 59.80 263 | 69.34 241 | 87.28 236 |
|
Anonymous20240529 | | | 76.84 202 | 74.15 219 | 84.88 120 | 91.02 130 | 64.95 168 | 93.84 80 | 91.09 181 | 53.57 332 | 73.00 166 | 87.42 199 | 35.91 316 | 97.32 75 | 69.14 190 | 72.41 225 | 92.36 162 |
|
tpmvs | | | 72.88 249 | 69.76 261 | 82.22 188 | 90.98 131 | 67.05 108 | 78.22 329 | 88.30 276 | 63.10 283 | 64.35 270 | 74.98 323 | 55.09 185 | 94.27 198 | 43.25 322 | 69.57 240 | 85.34 277 |
|
MVS | | | 84.66 68 | 82.86 91 | 90.06 2 | 90.93 132 | 74.56 6 | 87.91 261 | 95.54 9 | 68.55 243 | 72.35 181 | 94.71 72 | 59.78 130 | 98.90 18 | 81.29 99 | 94.69 32 | 96.74 12 |
|
PVSNet | | 73.49 8 | 80.05 145 | 78.63 153 | 84.31 139 | 90.92 133 | 64.97 167 | 92.47 131 | 91.05 185 | 79.18 53 | 72.43 179 | 90.51 157 | 37.05 312 | 94.06 207 | 68.06 197 | 86.00 130 | 93.90 122 |
|
RRT_MVS | | | 77.38 195 | 76.59 187 | 79.77 248 | 90.91 134 | 63.61 204 | 91.15 189 | 90.91 189 | 72.28 169 | 72.06 184 | 87.28 202 | 43.92 276 | 89.04 308 | 73.32 149 | 67.47 256 | 86.67 244 |
|
3Dnovator+ | | 73.60 7 | 82.10 113 | 80.60 123 | 86.60 61 | 90.89 135 | 66.80 117 | 95.20 33 | 93.44 85 | 74.05 125 | 67.42 242 | 92.49 127 | 49.46 237 | 97.65 59 | 70.80 174 | 91.68 77 | 95.33 55 |
|
VDD-MVS | | | 83.06 96 | 81.81 107 | 86.81 52 | 90.86 136 | 67.70 88 | 95.40 28 | 91.50 164 | 75.46 102 | 81.78 79 | 92.34 132 | 40.09 289 | 97.13 87 | 86.85 54 | 82.04 157 | 95.60 48 |
|
BH-w/o | | | 80.49 138 | 79.30 146 | 84.05 145 | 90.83 137 | 64.36 184 | 93.60 87 | 89.42 240 | 74.35 119 | 69.09 216 | 90.15 165 | 55.23 182 | 95.61 151 | 64.61 232 | 86.43 129 | 92.17 171 |
|
ET-MVSNet_ETH3D | | | 84.01 81 | 83.15 87 | 86.58 63 | 90.78 138 | 70.89 23 | 94.74 46 | 94.62 36 | 81.44 29 | 58.19 304 | 93.64 101 | 73.64 22 | 92.35 265 | 82.66 84 | 78.66 182 | 96.50 23 |
|
CS-MVS-test | | | 85.35 57 | 85.55 54 | 84.75 124 | 90.77 139 | 65.29 153 | 95.38 30 | 91.54 160 | 78.03 71 | 83.67 67 | 94.32 87 | 62.47 105 | 95.81 138 | 82.73 83 | 91.00 89 | 93.15 142 |
|
Anonymous20231211 | | | 73.08 244 | 70.39 255 | 81.13 217 | 90.62 140 | 63.33 207 | 91.40 173 | 90.06 220 | 51.84 336 | 64.46 268 | 80.67 278 | 36.49 314 | 94.07 206 | 63.83 237 | 64.17 280 | 85.98 263 |
|
TR-MVS | | | 78.77 171 | 77.37 178 | 82.95 168 | 90.49 141 | 60.88 251 | 93.67 84 | 90.07 217 | 70.08 224 | 74.51 154 | 91.37 146 | 45.69 267 | 95.70 148 | 60.12 261 | 80.32 169 | 92.29 165 |
|
CS-MVS | | | 87.54 24 | 87.81 22 | 86.74 56 | 90.46 142 | 70.23 31 | 96.34 14 | 92.31 127 | 81.40 30 | 86.14 40 | 95.17 57 | 65.49 69 | 95.92 135 | 89.09 29 | 93.91 44 | 94.06 113 |
|
SteuartSystems-ACMMP | | | 86.82 40 | 86.90 37 | 86.58 63 | 90.42 143 | 66.38 126 | 96.09 16 | 93.87 62 | 77.73 77 | 84.01 65 | 95.66 38 | 63.39 96 | 97.94 43 | 87.40 47 | 93.55 53 | 95.42 51 |
Skip Steuart: Steuart Systems R&D Blog. |
TAPA-MVS | | 70.22 12 | 74.94 231 | 73.53 227 | 79.17 259 | 90.40 144 | 52.07 327 | 89.19 241 | 89.61 235 | 62.69 287 | 70.07 205 | 92.67 123 | 48.89 246 | 94.32 195 | 38.26 342 | 79.97 170 | 91.12 189 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
mvs_anonymous | | | 81.36 122 | 79.99 131 | 85.46 102 | 90.39 145 | 68.40 69 | 86.88 275 | 90.61 197 | 74.41 117 | 70.31 203 | 84.67 227 | 63.79 89 | 92.32 266 | 73.13 150 | 85.70 131 | 95.67 45 |
|
CANet_DTU | | | 84.09 80 | 83.52 74 | 85.81 89 | 90.30 146 | 66.82 115 | 91.87 153 | 89.01 258 | 85.27 6 | 86.09 41 | 93.74 100 | 47.71 255 | 96.98 98 | 77.90 125 | 89.78 100 | 93.65 128 |
|
Fast-Effi-MVS+ | | | 81.14 125 | 80.01 130 | 84.51 134 | 90.24 147 | 65.86 139 | 94.12 59 | 89.15 251 | 73.81 133 | 75.37 150 | 88.26 186 | 57.26 153 | 94.53 190 | 66.97 208 | 84.92 136 | 93.15 142 |
|
ETV-MVS | | | 86.01 49 | 86.11 45 | 85.70 96 | 90.21 148 | 67.02 110 | 93.43 95 | 91.92 144 | 81.21 32 | 84.13 63 | 94.07 95 | 60.93 117 | 95.63 149 | 89.28 27 | 89.81 98 | 94.46 98 |
|
tpmrst | | | 80.57 135 | 79.14 150 | 84.84 122 | 90.10 149 | 68.28 73 | 81.70 305 | 89.72 233 | 77.63 79 | 75.96 141 | 79.54 293 | 64.94 76 | 92.71 248 | 75.43 136 | 77.28 197 | 93.55 130 |
|
PVSNet_Blended_VisFu | | | 83.97 82 | 83.50 75 | 85.39 106 | 90.02 150 | 66.59 123 | 93.77 82 | 91.73 152 | 77.43 83 | 77.08 135 | 89.81 170 | 63.77 90 | 96.97 99 | 79.67 107 | 88.21 110 | 92.60 157 |
|
UGNet | | | 79.87 149 | 78.68 152 | 83.45 161 | 89.96 151 | 61.51 241 | 92.13 139 | 90.79 191 | 76.83 89 | 78.85 117 | 86.33 210 | 38.16 298 | 96.17 124 | 67.93 199 | 87.17 118 | 92.67 155 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CHOSEN 1792x2688 | | | 84.98 63 | 83.45 77 | 89.57 11 | 89.94 152 | 75.14 5 | 92.07 144 | 92.32 126 | 81.87 24 | 75.68 144 | 88.27 185 | 60.18 123 | 98.60 25 | 80.46 104 | 90.27 97 | 94.96 77 |
|
abl_6 | | | 79.82 150 | 79.20 148 | 81.70 204 | 89.85 153 | 58.34 287 | 88.47 254 | 90.07 217 | 62.56 288 | 77.71 124 | 93.08 110 | 47.65 256 | 96.78 108 | 77.94 124 | 85.45 134 | 89.99 201 |
|
BH-untuned | | | 78.68 173 | 77.08 179 | 83.48 160 | 89.84 154 | 63.74 197 | 92.70 120 | 88.59 271 | 71.57 198 | 66.83 250 | 88.65 179 | 51.75 217 | 95.39 162 | 59.03 266 | 84.77 138 | 91.32 185 |
|
test222 | | | | | | 89.77 155 | 61.60 240 | 89.55 231 | 89.42 240 | 56.83 324 | 77.28 131 | 92.43 129 | 52.76 209 | | | 91.14 88 | 93.09 145 |
|
PMMVS | | | 81.98 115 | 82.04 103 | 81.78 200 | 89.76 156 | 56.17 307 | 91.13 190 | 90.69 193 | 77.96 72 | 80.09 98 | 93.57 103 | 46.33 264 | 94.99 171 | 81.41 96 | 87.46 116 | 94.17 105 |
|
DPM-MVS | | | 90.70 2 | 90.52 6 | 91.24 1 | 89.68 157 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 10 | 97.22 4 | 79.93 5 | 99.10 9 | 83.12 79 | 97.64 2 | 97.94 1 |
|
QAPM | | | 79.95 148 | 77.39 177 | 87.64 29 | 89.63 158 | 71.41 18 | 93.30 98 | 93.70 71 | 65.34 268 | 67.39 244 | 91.75 142 | 47.83 253 | 98.96 16 | 57.71 270 | 89.81 98 | 92.54 159 |
|
3Dnovator | | 73.91 6 | 82.69 104 | 80.82 118 | 88.31 22 | 89.57 159 | 71.26 19 | 92.60 126 | 94.39 48 | 78.84 60 | 67.89 236 | 92.48 128 | 48.42 247 | 98.52 26 | 68.80 194 | 94.40 37 | 95.15 68 |
|
Effi-MVS+ | | | 83.82 86 | 82.76 93 | 86.99 48 | 89.56 160 | 69.40 47 | 91.35 179 | 86.12 303 | 72.59 157 | 83.22 70 | 92.81 122 | 59.60 132 | 96.01 134 | 81.76 91 | 87.80 114 | 95.56 49 |
|
PatchmatchNet |  | | 77.46 193 | 74.63 208 | 85.96 84 | 89.55 161 | 70.35 29 | 79.97 321 | 89.55 236 | 72.23 171 | 70.94 194 | 76.91 312 | 57.03 157 | 92.79 246 | 54.27 281 | 81.17 164 | 94.74 82 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PatchMatch-RL | | | 72.06 255 | 69.98 256 | 78.28 268 | 89.51 162 | 55.70 311 | 83.49 291 | 83.39 328 | 61.24 299 | 63.72 274 | 82.76 245 | 34.77 319 | 93.03 234 | 53.37 286 | 77.59 189 | 86.12 260 |
|
thisisatest0515 | | | 83.41 91 | 82.49 98 | 86.16 79 | 89.46 163 | 68.26 74 | 93.54 90 | 94.70 32 | 74.31 120 | 75.75 142 | 90.92 149 | 72.62 26 | 96.52 117 | 69.64 182 | 81.50 161 | 93.71 126 |
|
h-mvs33 | | | 83.01 97 | 82.56 97 | 84.35 138 | 89.34 164 | 62.02 232 | 92.72 118 | 93.76 67 | 81.45 27 | 82.73 73 | 92.25 134 | 60.11 124 | 97.13 87 | 87.69 42 | 62.96 286 | 93.91 120 |
|
DROMVSNet | | | 84.53 70 | 85.04 60 | 83.01 167 | 89.34 164 | 61.37 244 | 94.42 49 | 91.09 181 | 77.91 74 | 83.24 69 | 94.20 91 | 58.37 144 | 95.40 161 | 85.35 63 | 91.41 82 | 92.27 169 |
|
UA-Net | | | 80.02 146 | 79.65 136 | 81.11 218 | 89.33 166 | 57.72 293 | 86.33 278 | 89.00 259 | 77.44 82 | 81.01 88 | 89.15 175 | 59.33 136 | 95.90 136 | 61.01 255 | 84.28 146 | 89.73 204 |
|
dp | | | 75.01 230 | 72.09 243 | 83.76 148 | 89.28 167 | 66.22 132 | 79.96 322 | 89.75 228 | 71.16 207 | 67.80 238 | 77.19 309 | 51.81 216 | 92.54 256 | 50.39 292 | 71.44 232 | 92.51 160 |
|
sss | | | 82.71 103 | 82.38 100 | 83.73 151 | 89.25 168 | 59.58 274 | 92.24 136 | 94.89 23 | 77.96 72 | 79.86 101 | 92.38 130 | 56.70 165 | 97.05 89 | 77.26 128 | 80.86 167 | 94.55 89 |
|
MVSFormer | | | 83.75 88 | 82.88 90 | 86.37 73 | 89.24 169 | 71.18 20 | 89.07 244 | 90.69 193 | 65.80 263 | 87.13 29 | 94.34 85 | 64.99 74 | 92.67 251 | 72.83 153 | 91.80 75 | 95.27 63 |
|
lupinMVS | | | 87.74 22 | 87.77 23 | 87.63 33 | 89.24 169 | 71.18 20 | 96.57 10 | 92.90 108 | 82.70 16 | 87.13 29 | 95.27 50 | 64.99 74 | 95.80 139 | 89.34 26 | 91.80 75 | 95.93 40 |
|
IB-MVS | | 77.80 4 | 82.18 109 | 80.46 126 | 87.35 39 | 89.14 171 | 70.28 30 | 95.59 26 | 95.17 14 | 78.85 59 | 70.19 204 | 85.82 215 | 70.66 34 | 97.67 55 | 72.19 164 | 66.52 262 | 94.09 110 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13 | | | | 72.61 237 | | 89.06 172 | 68.48 67 | 80.33 315 | 90.11 216 | 71.84 186 | 71.81 187 | 75.92 320 | 53.01 208 | 93.92 217 | 48.04 303 | 73.38 215 | |
|
testdata | | | | | 81.34 210 | 89.02 173 | 57.72 293 | | 89.84 226 | 58.65 315 | 85.32 51 | 94.09 93 | 57.03 157 | 93.28 230 | 69.34 187 | 90.56 95 | 93.03 147 |
|
CostFormer | | | 82.33 107 | 81.15 112 | 85.86 88 | 89.01 174 | 68.46 68 | 82.39 302 | 93.01 103 | 75.59 100 | 80.25 96 | 81.57 262 | 72.03 30 | 94.96 172 | 79.06 113 | 77.48 194 | 94.16 106 |
|
GeoE | | | 78.90 166 | 77.43 173 | 83.29 163 | 88.95 175 | 62.02 232 | 92.31 133 | 86.23 301 | 70.24 222 | 71.34 193 | 89.27 173 | 54.43 193 | 94.04 210 | 63.31 240 | 80.81 168 | 93.81 125 |
|
GBi-Net | | | 75.65 221 | 73.83 224 | 81.10 219 | 88.85 176 | 65.11 161 | 90.01 222 | 90.32 204 | 70.84 213 | 67.04 247 | 80.25 285 | 48.03 249 | 91.54 282 | 59.80 263 | 69.34 241 | 86.64 245 |
|
test1 | | | 75.65 221 | 73.83 224 | 81.10 219 | 88.85 176 | 65.11 161 | 90.01 222 | 90.32 204 | 70.84 213 | 67.04 247 | 80.25 285 | 48.03 249 | 91.54 282 | 59.80 263 | 69.34 241 | 86.64 245 |
|
FMVSNet2 | | | 76.07 210 | 74.01 222 | 82.26 187 | 88.85 176 | 67.66 89 | 91.33 180 | 91.61 158 | 70.84 213 | 65.98 254 | 82.25 251 | 48.03 249 | 92.00 273 | 58.46 268 | 68.73 247 | 87.10 238 |
|
DeepC-MVS | | 77.85 3 | 85.52 54 | 85.24 57 | 86.37 73 | 88.80 179 | 66.64 120 | 92.15 138 | 93.68 72 | 81.07 34 | 76.91 136 | 93.64 101 | 62.59 104 | 98.44 30 | 85.50 61 | 92.84 62 | 94.03 115 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EPP-MVSNet | | | 81.79 118 | 81.52 109 | 82.61 176 | 88.77 180 | 60.21 266 | 93.02 108 | 93.66 74 | 68.52 244 | 72.90 169 | 90.39 160 | 72.19 29 | 94.96 172 | 74.93 143 | 79.29 176 | 92.67 155 |
|
1112_ss | | | 80.56 136 | 79.83 134 | 82.77 171 | 88.65 181 | 60.78 253 | 92.29 134 | 88.36 275 | 72.58 158 | 72.46 178 | 94.95 62 | 65.09 73 | 93.42 229 | 66.38 215 | 77.71 187 | 94.10 109 |
|
tpm cat1 | | | 75.30 226 | 72.21 242 | 84.58 132 | 88.52 182 | 67.77 86 | 78.16 330 | 88.02 283 | 61.88 296 | 68.45 230 | 76.37 316 | 60.65 118 | 94.03 212 | 53.77 284 | 74.11 210 | 91.93 173 |
|
LCM-MVSNet-Re | | | 72.93 247 | 71.84 245 | 76.18 292 | 88.49 183 | 48.02 344 | 80.07 320 | 70.17 356 | 73.96 129 | 52.25 326 | 80.09 288 | 49.98 232 | 88.24 314 | 67.35 203 | 84.23 147 | 92.28 166 |
|
Vis-MVSNet |  | | 80.92 131 | 79.98 132 | 83.74 149 | 88.48 184 | 61.80 235 | 93.44 94 | 88.26 280 | 73.96 129 | 77.73 123 | 91.76 141 | 49.94 233 | 94.76 177 | 65.84 221 | 90.37 96 | 94.65 87 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Vis-MVSNet (Re-imp) | | | 79.24 160 | 79.57 138 | 78.24 270 | 88.46 185 | 52.29 326 | 90.41 210 | 89.12 253 | 74.24 122 | 69.13 215 | 91.91 138 | 65.77 66 | 90.09 301 | 59.00 267 | 88.09 112 | 92.33 163 |
|
ab-mvs | | | 80.18 142 | 78.31 157 | 85.80 90 | 88.44 186 | 65.49 151 | 83.00 299 | 92.67 115 | 71.82 187 | 77.36 130 | 85.01 222 | 54.50 189 | 96.59 113 | 76.35 134 | 75.63 206 | 95.32 57 |
|
gm-plane-assit | | | | | | 88.42 187 | 67.04 109 | | | 78.62 64 | | 91.83 139 | | 97.37 71 | 76.57 131 | | |
|
MVS_111021_LR | | | 82.02 114 | 81.52 109 | 83.51 158 | 88.42 187 | 62.88 220 | 89.77 228 | 88.93 260 | 76.78 90 | 75.55 148 | 93.10 108 | 50.31 229 | 95.38 163 | 83.82 76 | 87.02 119 | 92.26 170 |
|
baseline | | | 85.01 62 | 84.44 67 | 86.71 57 | 88.33 189 | 68.73 62 | 90.24 216 | 91.82 150 | 81.05 35 | 81.18 85 | 92.50 125 | 63.69 91 | 96.08 129 | 84.45 70 | 86.71 125 | 95.32 57 |
|
tpm2 | | | 79.80 151 | 77.95 164 | 85.34 108 | 88.28 190 | 68.26 74 | 81.56 307 | 91.42 167 | 70.11 223 | 77.59 128 | 80.50 280 | 67.40 49 | 94.26 200 | 67.34 204 | 77.35 195 | 93.51 131 |
|
thisisatest0530 | | | 81.15 124 | 80.07 127 | 84.39 137 | 88.26 191 | 65.63 146 | 91.40 173 | 94.62 36 | 71.27 206 | 70.93 195 | 89.18 174 | 72.47 27 | 96.04 131 | 65.62 224 | 76.89 200 | 91.49 178 |
|
casdiffmvs | | | 85.37 56 | 84.87 63 | 86.84 50 | 88.25 192 | 69.07 54 | 93.04 106 | 91.76 151 | 81.27 31 | 80.84 91 | 92.07 136 | 64.23 83 | 96.06 130 | 84.98 66 | 87.43 117 | 95.39 52 |
|
Test_1112_low_res | | | 79.56 155 | 78.60 154 | 82.43 179 | 88.24 193 | 60.39 263 | 92.09 142 | 87.99 284 | 72.10 176 | 71.84 186 | 87.42 199 | 64.62 79 | 93.04 233 | 65.80 222 | 77.30 196 | 93.85 124 |
|
PAPM | | | 85.89 51 | 85.46 55 | 87.18 42 | 88.20 194 | 72.42 14 | 92.41 132 | 92.77 111 | 82.11 21 | 80.34 95 | 93.07 112 | 68.27 38 | 95.02 170 | 78.39 120 | 93.59 52 | 94.09 110 |
|
TESTMET0.1,1 | | | 82.41 106 | 81.98 104 | 83.72 152 | 88.08 195 | 63.74 197 | 92.70 120 | 93.77 66 | 79.30 50 | 77.61 127 | 87.57 197 | 58.19 146 | 94.08 205 | 73.91 148 | 86.68 126 | 93.33 136 |
|
ADS-MVSNet2 | | | 66.90 291 | 63.44 296 | 77.26 282 | 88.06 196 | 60.70 258 | 68.01 347 | 75.56 346 | 57.57 317 | 64.48 266 | 69.87 340 | 38.68 292 | 84.10 335 | 40.87 333 | 67.89 253 | 86.97 239 |
|
ADS-MVSNet | | | 68.54 279 | 64.38 292 | 81.03 223 | 88.06 196 | 66.90 113 | 68.01 347 | 84.02 321 | 57.57 317 | 64.48 266 | 69.87 340 | 38.68 292 | 89.21 307 | 40.87 333 | 67.89 253 | 86.97 239 |
|
EPNet_dtu | | | 78.80 169 | 79.26 147 | 77.43 278 | 88.06 196 | 49.71 339 | 91.96 151 | 91.95 143 | 77.67 78 | 76.56 138 | 91.28 147 | 58.51 143 | 90.20 299 | 56.37 274 | 80.95 166 | 92.39 161 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_enhance_ethall | | | 78.86 167 | 77.97 163 | 81.54 206 | 88.00 199 | 65.17 157 | 91.41 171 | 89.15 251 | 75.19 110 | 68.79 224 | 83.98 234 | 67.17 51 | 92.82 243 | 72.73 156 | 65.30 266 | 86.62 249 |
|
IS-MVSNet | | | 80.14 143 | 79.41 143 | 82.33 183 | 87.91 200 | 60.08 268 | 91.97 150 | 88.27 278 | 72.90 153 | 71.44 192 | 91.73 143 | 61.44 112 | 93.66 224 | 62.47 248 | 86.53 127 | 93.24 139 |
|
CLD-MVS | | | 82.73 101 | 82.35 101 | 83.86 147 | 87.90 201 | 67.65 90 | 95.45 27 | 92.18 137 | 85.06 7 | 72.58 174 | 92.27 133 | 52.46 212 | 95.78 140 | 84.18 71 | 79.06 177 | 88.16 224 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ECVR-MVS | | | 80.84 132 | 80.02 129 | 83.33 162 | 87.87 202 | 60.76 255 | 92.62 125 | 86.86 295 | 77.86 75 | 75.73 143 | 91.39 145 | 46.35 263 | 94.70 183 | 72.79 155 | 88.68 106 | 94.52 93 |
|
HyFIR lowres test | | | 81.03 129 | 79.56 139 | 85.43 104 | 87.81 203 | 68.11 78 | 90.18 217 | 90.01 222 | 70.65 218 | 72.95 168 | 86.06 213 | 63.61 93 | 94.50 192 | 75.01 142 | 79.75 172 | 93.67 127 |
|
1314 | | | 80.70 133 | 78.95 151 | 85.94 85 | 87.77 204 | 67.56 91 | 87.91 261 | 92.55 122 | 72.17 174 | 67.44 241 | 93.09 109 | 50.27 230 | 97.04 91 | 71.68 170 | 87.64 115 | 93.23 140 |
|
cl22 | | | 77.94 187 | 76.78 184 | 81.42 208 | 87.57 205 | 64.93 169 | 90.67 203 | 88.86 263 | 72.45 163 | 67.63 240 | 82.68 247 | 64.07 84 | 92.91 241 | 71.79 166 | 65.30 266 | 86.44 250 |
|
HQP-NCC | | | | | | 87.54 206 | | 94.06 62 | | 79.80 43 | 74.18 156 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 206 | | 94.06 62 | | 79.80 43 | 74.18 156 | | | | | | |
|
HQP-MVS | | | 81.14 125 | 80.64 122 | 82.64 175 | 87.54 206 | 63.66 202 | 94.06 62 | 91.70 155 | 79.80 43 | 74.18 156 | 90.30 162 | 51.63 219 | 95.61 151 | 77.63 126 | 78.90 178 | 88.63 214 |
|
NP-MVS | | | | | | 87.41 209 | 63.04 212 | | | | | 90.30 162 | | | | | |
|
diffmvs | | | 84.28 74 | 83.83 72 | 85.61 98 | 87.40 210 | 68.02 80 | 90.88 197 | 89.24 245 | 80.54 39 | 81.64 81 | 92.52 124 | 59.83 129 | 94.52 191 | 87.32 49 | 85.11 135 | 94.29 99 |
|
baseline2 | | | 83.68 90 | 83.42 80 | 84.48 135 | 87.37 211 | 66.00 135 | 90.06 220 | 95.93 7 | 79.71 46 | 69.08 217 | 90.39 160 | 77.92 6 | 96.28 120 | 78.91 115 | 81.38 162 | 91.16 188 |
|
plane_prior6 | | | | | | 87.23 212 | 62.32 228 | | | | | | 50.66 226 | | | | |
|
tttt0517 | | | 79.50 156 | 78.53 155 | 82.41 182 | 87.22 213 | 61.43 243 | 89.75 229 | 94.76 29 | 69.29 233 | 67.91 235 | 88.06 191 | 72.92 24 | 95.63 149 | 62.91 244 | 73.90 214 | 90.16 198 |
|
plane_prior1 | | | | | | 87.15 214 | | | | | | | | | | | |
|
cascas | | | 78.18 182 | 75.77 198 | 85.41 105 | 87.14 215 | 69.11 53 | 92.96 110 | 91.15 178 | 66.71 257 | 70.47 198 | 86.07 212 | 37.49 306 | 96.48 118 | 70.15 180 | 79.80 171 | 90.65 193 |
|
CHOSEN 280x420 | | | 77.35 196 | 76.95 183 | 78.55 265 | 87.07 216 | 62.68 224 | 69.71 343 | 82.95 330 | 68.80 240 | 71.48 191 | 87.27 203 | 66.03 62 | 84.00 338 | 76.47 132 | 82.81 153 | 88.95 209 |
|
HQP_MVS | | | 80.34 140 | 79.75 135 | 82.12 193 | 86.94 217 | 62.42 225 | 93.13 102 | 91.31 170 | 78.81 61 | 72.53 175 | 89.14 176 | 50.66 226 | 95.55 157 | 76.74 129 | 78.53 183 | 88.39 220 |
|
plane_prior7 | | | | | | 86.94 217 | 61.51 241 | | | | | | | | | | |
|
test-LLR | | | 80.10 144 | 79.56 139 | 81.72 202 | 86.93 219 | 61.17 245 | 92.70 120 | 91.54 160 | 71.51 201 | 75.62 145 | 86.94 204 | 53.83 198 | 92.38 262 | 72.21 162 | 84.76 139 | 91.60 176 |
|
test-mter | | | 79.96 147 | 79.38 145 | 81.72 202 | 86.93 219 | 61.17 245 | 92.70 120 | 91.54 160 | 73.85 131 | 75.62 145 | 86.94 204 | 49.84 235 | 92.38 262 | 72.21 162 | 84.76 139 | 91.60 176 |
|
SCA | | | 75.82 219 | 72.76 234 | 85.01 116 | 86.63 221 | 70.08 32 | 81.06 311 | 89.19 248 | 71.60 197 | 70.01 206 | 77.09 310 | 45.53 268 | 90.25 294 | 60.43 258 | 73.27 216 | 94.68 84 |
|
AUN-MVS | | | 78.37 179 | 77.43 173 | 81.17 214 | 86.60 222 | 57.45 299 | 89.46 235 | 91.16 176 | 74.11 124 | 74.40 155 | 90.49 158 | 55.52 179 | 94.57 185 | 74.73 147 | 60.43 312 | 91.48 179 |
|
hse-mvs2 | | | 81.12 127 | 81.11 116 | 81.16 215 | 86.52 223 | 57.48 298 | 89.40 236 | 91.16 176 | 81.45 27 | 82.73 73 | 90.49 158 | 60.11 124 | 94.58 184 | 87.69 42 | 60.41 313 | 91.41 181 |
|
xiu_mvs_v1_base_debu | | | 82.16 110 | 81.12 113 | 85.26 110 | 86.42 224 | 68.72 63 | 92.59 128 | 90.44 201 | 73.12 147 | 84.20 60 | 94.36 80 | 38.04 300 | 95.73 143 | 84.12 72 | 86.81 120 | 91.33 182 |
|
xiu_mvs_v1_base | | | 82.16 110 | 81.12 113 | 85.26 110 | 86.42 224 | 68.72 63 | 92.59 128 | 90.44 201 | 73.12 147 | 84.20 60 | 94.36 80 | 38.04 300 | 95.73 143 | 84.12 72 | 86.81 120 | 91.33 182 |
|
xiu_mvs_v1_base_debi | | | 82.16 110 | 81.12 113 | 85.26 110 | 86.42 224 | 68.72 63 | 92.59 128 | 90.44 201 | 73.12 147 | 84.20 60 | 94.36 80 | 38.04 300 | 95.73 143 | 84.12 72 | 86.81 120 | 91.33 182 |
|
F-COLMAP | | | 70.66 261 | 68.44 266 | 77.32 280 | 86.37 227 | 55.91 309 | 88.00 259 | 86.32 298 | 56.94 323 | 57.28 312 | 88.07 190 | 33.58 322 | 92.49 258 | 51.02 290 | 68.37 249 | 83.55 291 |
|
CDS-MVSNet | | | 81.43 121 | 80.74 119 | 83.52 157 | 86.26 228 | 64.45 177 | 92.09 142 | 90.65 196 | 75.83 99 | 73.95 162 | 89.81 170 | 63.97 86 | 92.91 241 | 71.27 171 | 82.82 152 | 93.20 141 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
VDDNet | | | 80.50 137 | 78.26 158 | 87.21 41 | 86.19 229 | 69.79 41 | 94.48 48 | 91.31 170 | 60.42 303 | 79.34 106 | 90.91 150 | 38.48 296 | 96.56 116 | 82.16 88 | 81.05 165 | 95.27 63 |
|
jason | | | 86.40 43 | 86.17 44 | 87.11 44 | 86.16 230 | 70.54 27 | 95.71 24 | 92.19 136 | 82.00 23 | 84.58 56 | 94.34 85 | 61.86 110 | 95.53 159 | 87.76 41 | 90.89 90 | 95.27 63 |
jason: jason. |
PCF-MVS | | 73.15 9 | 79.29 159 | 77.63 170 | 84.29 140 | 86.06 231 | 65.96 137 | 87.03 271 | 91.10 180 | 69.86 227 | 69.79 212 | 90.64 153 | 57.54 152 | 96.59 113 | 64.37 234 | 82.29 154 | 90.32 196 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MS-PatchMatch | | | 77.90 189 | 76.50 188 | 82.12 193 | 85.99 232 | 69.95 37 | 91.75 162 | 92.70 113 | 73.97 128 | 62.58 284 | 84.44 230 | 41.11 286 | 95.78 140 | 63.76 238 | 92.17 72 | 80.62 326 |
|
FIs | | | 79.47 157 | 79.41 143 | 79.67 250 | 85.95 233 | 59.40 276 | 91.68 164 | 93.94 61 | 78.06 70 | 68.96 220 | 88.28 184 | 66.61 58 | 91.77 277 | 66.20 218 | 74.99 207 | 87.82 226 |
|
VPA-MVSNet | | | 79.03 162 | 78.00 162 | 82.11 196 | 85.95 233 | 64.48 176 | 93.22 101 | 94.66 34 | 75.05 112 | 74.04 161 | 84.95 224 | 52.17 214 | 93.52 226 | 74.90 145 | 67.04 258 | 88.32 222 |
|
tpm | | | 78.58 176 | 77.03 180 | 83.22 164 | 85.94 235 | 64.56 172 | 83.21 297 | 91.14 179 | 78.31 66 | 73.67 163 | 79.68 291 | 64.01 85 | 92.09 271 | 66.07 219 | 71.26 233 | 93.03 147 |
|
OpenMVS |  | 70.45 11 | 78.54 177 | 75.92 196 | 86.41 72 | 85.93 236 | 71.68 16 | 92.74 117 | 92.51 123 | 66.49 259 | 64.56 265 | 91.96 137 | 43.88 277 | 98.10 39 | 54.61 279 | 90.65 93 | 89.44 208 |
|
OMC-MVS | | | 78.67 175 | 77.91 166 | 80.95 225 | 85.76 237 | 57.40 300 | 88.49 253 | 88.67 268 | 73.85 131 | 72.43 179 | 92.10 135 | 49.29 240 | 94.55 188 | 72.73 156 | 77.89 186 | 90.91 191 |
|
miper_ehance_all_eth | | | 77.60 191 | 76.44 189 | 81.09 222 | 85.70 238 | 64.41 181 | 90.65 204 | 88.64 270 | 72.31 167 | 67.37 245 | 82.52 248 | 64.77 78 | 92.64 254 | 70.67 176 | 65.30 266 | 86.24 255 |
|
KD-MVS_2432*1600 | | | 69.03 274 | 66.37 276 | 77.01 284 | 85.56 239 | 61.06 248 | 81.44 308 | 90.25 210 | 67.27 253 | 58.00 307 | 76.53 314 | 54.49 190 | 87.63 321 | 48.04 303 | 35.77 357 | 82.34 311 |
|
miper_refine_blended | | | 69.03 274 | 66.37 276 | 77.01 284 | 85.56 239 | 61.06 248 | 81.44 308 | 90.25 210 | 67.27 253 | 58.00 307 | 76.53 314 | 54.49 190 | 87.63 321 | 48.04 303 | 35.77 357 | 82.34 311 |
|
EI-MVSNet | | | 78.97 164 | 78.22 159 | 81.25 212 | 85.33 241 | 62.73 223 | 89.53 233 | 93.21 92 | 72.39 166 | 72.14 182 | 90.13 166 | 60.99 115 | 94.72 180 | 67.73 201 | 72.49 223 | 86.29 253 |
|
CVMVSNet | | | 74.04 237 | 74.27 216 | 73.33 309 | 85.33 241 | 43.94 354 | 89.53 233 | 88.39 274 | 54.33 331 | 70.37 201 | 90.13 166 | 49.17 242 | 84.05 336 | 61.83 252 | 79.36 174 | 91.99 172 |
|
ACMH | | 63.93 17 | 68.62 277 | 64.81 285 | 80.03 240 | 85.22 243 | 63.25 208 | 87.72 264 | 84.66 316 | 60.83 301 | 51.57 329 | 79.43 294 | 27.29 342 | 94.96 172 | 41.76 329 | 64.84 273 | 81.88 316 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
cl____ | | | 76.07 210 | 74.67 206 | 80.28 234 | 85.15 244 | 61.76 237 | 90.12 218 | 88.73 266 | 71.16 207 | 65.43 257 | 81.57 262 | 61.15 113 | 92.95 236 | 66.54 212 | 62.17 294 | 86.13 259 |
|
DIV-MVS_self_test | | | 76.07 210 | 74.67 206 | 80.28 234 | 85.14 245 | 61.75 238 | 90.12 218 | 88.73 266 | 71.16 207 | 65.42 258 | 81.60 261 | 61.15 113 | 92.94 240 | 66.54 212 | 62.16 296 | 86.14 257 |
|
TAMVS | | | 80.37 139 | 79.45 142 | 83.13 166 | 85.14 245 | 63.37 206 | 91.23 184 | 90.76 192 | 74.81 115 | 72.65 172 | 88.49 180 | 60.63 119 | 92.95 236 | 69.41 186 | 81.95 158 | 93.08 146 |
|
MSDG | | | 69.54 270 | 65.73 279 | 80.96 224 | 85.11 247 | 63.71 199 | 84.19 286 | 83.28 329 | 56.95 322 | 54.50 317 | 84.03 232 | 31.50 330 | 96.03 132 | 42.87 326 | 69.13 244 | 83.14 301 |
|
c3_l | | | 76.83 203 | 75.47 201 | 80.93 226 | 85.02 248 | 64.18 190 | 90.39 211 | 88.11 281 | 71.66 191 | 66.65 252 | 81.64 260 | 63.58 95 | 92.56 255 | 69.31 188 | 62.86 288 | 86.04 261 |
|
ACMP | | 71.68 10 | 75.58 224 | 74.23 217 | 79.62 252 | 84.97 249 | 59.64 272 | 90.80 200 | 89.07 256 | 70.39 220 | 62.95 280 | 87.30 201 | 38.28 297 | 93.87 219 | 72.89 152 | 71.45 231 | 85.36 276 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
FC-MVSNet-test | | | 77.99 185 | 78.08 161 | 77.70 273 | 84.89 250 | 55.51 312 | 90.27 214 | 93.75 70 | 76.87 87 | 66.80 251 | 87.59 196 | 65.71 67 | 90.23 298 | 62.89 245 | 73.94 212 | 87.37 233 |
|
PVSNet_0 | | 68.08 15 | 71.81 256 | 68.32 268 | 82.27 185 | 84.68 251 | 62.31 229 | 88.68 250 | 90.31 207 | 75.84 98 | 57.93 309 | 80.65 279 | 37.85 303 | 94.19 201 | 69.94 181 | 29.05 362 | 90.31 197 |
|
eth_miper_zixun_eth | | | 75.96 216 | 74.40 214 | 80.66 228 | 84.66 252 | 63.02 213 | 89.28 238 | 88.27 278 | 71.88 182 | 65.73 255 | 81.65 259 | 59.45 133 | 92.81 244 | 68.13 196 | 60.53 310 | 86.14 257 |
|
WR-MVS | | | 76.76 204 | 75.74 199 | 79.82 246 | 84.60 253 | 62.27 230 | 92.60 126 | 92.51 123 | 76.06 96 | 67.87 237 | 85.34 219 | 56.76 163 | 90.24 297 | 62.20 249 | 63.69 285 | 86.94 241 |
|
ACMH+ | | 65.35 16 | 67.65 286 | 64.55 288 | 76.96 286 | 84.59 254 | 57.10 303 | 88.08 258 | 80.79 335 | 58.59 316 | 53.00 323 | 81.09 274 | 26.63 344 | 92.95 236 | 46.51 310 | 61.69 303 | 80.82 323 |
|
VPNet | | | 78.82 168 | 77.53 172 | 82.70 173 | 84.52 255 | 66.44 125 | 93.93 72 | 92.23 130 | 80.46 40 | 72.60 173 | 88.38 183 | 49.18 241 | 93.13 232 | 72.47 160 | 63.97 283 | 88.55 216 |
|
IterMVS-LS | | | 76.49 206 | 75.18 204 | 80.43 231 | 84.49 256 | 62.74 222 | 90.64 205 | 88.80 264 | 72.40 165 | 65.16 260 | 81.72 258 | 60.98 116 | 92.27 267 | 67.74 200 | 64.65 277 | 86.29 253 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet_NR-MVSNet | | | 78.15 183 | 77.55 171 | 79.98 241 | 84.46 257 | 60.26 264 | 92.25 135 | 93.20 94 | 77.50 81 | 68.88 221 | 86.61 206 | 66.10 61 | 92.13 269 | 66.38 215 | 62.55 290 | 87.54 228 |
|
FMVSNet5 | | | 68.04 283 | 65.66 281 | 75.18 297 | 84.43 258 | 57.89 290 | 83.54 290 | 86.26 300 | 61.83 297 | 53.64 322 | 73.30 328 | 37.15 310 | 85.08 332 | 48.99 298 | 61.77 299 | 82.56 310 |
|
MVS-HIRNet | | | 60.25 316 | 55.55 322 | 74.35 302 | 84.37 259 | 56.57 306 | 71.64 339 | 74.11 349 | 34.44 359 | 45.54 348 | 42.24 361 | 31.11 333 | 89.81 302 | 40.36 336 | 76.10 204 | 76.67 347 |
|
LPG-MVS_test | | | 75.82 219 | 74.58 210 | 79.56 254 | 84.31 260 | 59.37 277 | 90.44 208 | 89.73 231 | 69.49 230 | 64.86 261 | 88.42 181 | 38.65 294 | 94.30 196 | 72.56 158 | 72.76 220 | 85.01 280 |
|
LGP-MVS_train | | | | | 79.56 254 | 84.31 260 | 59.37 277 | | 89.73 231 | 69.49 230 | 64.86 261 | 88.42 181 | 38.65 294 | 94.30 196 | 72.56 158 | 72.76 220 | 85.01 280 |
|
ACMM | | 69.62 13 | 74.34 234 | 72.73 235 | 79.17 259 | 84.25 262 | 57.87 291 | 90.36 212 | 89.93 223 | 63.17 282 | 65.64 256 | 86.04 214 | 37.79 304 | 94.10 203 | 65.89 220 | 71.52 230 | 85.55 273 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet (Re) | | | 77.58 192 | 76.78 184 | 79.98 241 | 84.11 263 | 60.80 252 | 91.76 160 | 93.17 97 | 76.56 93 | 69.93 210 | 84.78 226 | 63.32 98 | 92.36 264 | 64.89 231 | 62.51 292 | 86.78 243 |
|
test_0402 | | | 64.54 301 | 61.09 307 | 74.92 298 | 84.10 264 | 60.75 256 | 87.95 260 | 79.71 339 | 52.03 335 | 52.41 325 | 77.20 308 | 32.21 328 | 91.64 279 | 23.14 361 | 61.03 306 | 72.36 353 |
|
LTVRE_ROB | | 59.60 19 | 66.27 294 | 63.54 295 | 74.45 301 | 84.00 265 | 51.55 329 | 67.08 350 | 83.53 325 | 58.78 314 | 54.94 316 | 80.31 283 | 34.54 320 | 93.23 231 | 40.64 335 | 68.03 251 | 78.58 342 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
miper_lstm_enhance | | | 73.05 245 | 71.73 247 | 77.03 283 | 83.80 266 | 58.32 288 | 81.76 303 | 88.88 261 | 69.80 228 | 61.01 289 | 78.23 300 | 57.19 154 | 87.51 323 | 65.34 228 | 59.53 315 | 85.27 279 |
|
Patchmatch-test | | | 65.86 296 | 60.94 308 | 80.62 229 | 83.75 267 | 58.83 282 | 58.91 357 | 75.26 348 | 44.50 354 | 50.95 333 | 77.09 310 | 58.81 142 | 87.90 317 | 35.13 348 | 64.03 281 | 95.12 70 |
|
nrg030 | | | 80.93 130 | 79.86 133 | 84.13 143 | 83.69 268 | 68.83 60 | 93.23 100 | 91.20 174 | 75.55 101 | 75.06 151 | 88.22 189 | 63.04 102 | 94.74 179 | 81.88 90 | 66.88 259 | 88.82 212 |
|
GA-MVS | | | 78.33 181 | 76.23 192 | 84.65 129 | 83.65 269 | 66.30 129 | 91.44 170 | 90.14 215 | 76.01 97 | 70.32 202 | 84.02 233 | 42.50 281 | 94.72 180 | 70.98 172 | 77.00 199 | 92.94 150 |
|
FMVSNet1 | | | 72.71 252 | 69.91 259 | 81.10 219 | 83.60 270 | 65.11 161 | 90.01 222 | 90.32 204 | 63.92 275 | 63.56 275 | 80.25 285 | 36.35 315 | 91.54 282 | 54.46 280 | 66.75 260 | 86.64 245 |
|
OPM-MVS | | | 79.00 163 | 78.09 160 | 81.73 201 | 83.52 271 | 63.83 194 | 91.64 166 | 90.30 208 | 76.36 95 | 71.97 185 | 89.93 169 | 46.30 265 | 95.17 168 | 75.10 139 | 77.70 188 | 86.19 256 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
tfpnnormal | | | 70.10 265 | 67.36 271 | 78.32 267 | 83.45 272 | 60.97 250 | 88.85 247 | 92.77 111 | 64.85 270 | 60.83 291 | 78.53 297 | 43.52 279 | 93.48 227 | 31.73 358 | 61.70 302 | 80.52 327 |
|
Effi-MVS+-dtu | | | 76.14 209 | 75.28 203 | 78.72 264 | 83.22 273 | 55.17 314 | 89.87 226 | 87.78 286 | 75.42 103 | 67.98 233 | 81.43 264 | 45.08 271 | 92.52 257 | 75.08 140 | 71.63 228 | 88.48 217 |
|
mvs-test1 | | | 78.74 172 | 77.95 164 | 81.14 216 | 83.22 273 | 57.13 302 | 93.96 67 | 87.78 286 | 75.42 103 | 72.68 171 | 90.80 152 | 45.08 271 | 94.54 189 | 75.08 140 | 77.49 193 | 91.74 175 |
|
CR-MVSNet | | | 73.79 241 | 70.82 253 | 82.70 173 | 83.15 275 | 67.96 81 | 70.25 340 | 84.00 322 | 73.67 138 | 69.97 208 | 72.41 331 | 57.82 149 | 89.48 305 | 52.99 287 | 73.13 217 | 90.64 194 |
|
RPMNet | | | 70.42 264 | 65.68 280 | 84.63 131 | 83.15 275 | 67.96 81 | 70.25 340 | 90.45 198 | 46.83 350 | 69.97 208 | 65.10 348 | 56.48 170 | 95.30 167 | 35.79 347 | 73.13 217 | 90.64 194 |
|
DU-MVS | | | 76.86 200 | 75.84 197 | 79.91 243 | 82.96 277 | 60.26 264 | 91.26 183 | 91.54 160 | 76.46 94 | 68.88 221 | 86.35 208 | 56.16 171 | 92.13 269 | 66.38 215 | 62.55 290 | 87.35 234 |
|
NR-MVSNet | | | 76.05 213 | 74.59 209 | 80.44 230 | 82.96 277 | 62.18 231 | 90.83 199 | 91.73 152 | 77.12 85 | 60.96 290 | 86.35 208 | 59.28 137 | 91.80 276 | 60.74 256 | 61.34 305 | 87.35 234 |
|
XXY-MVS | | | 77.94 187 | 76.44 189 | 82.43 179 | 82.60 279 | 64.44 178 | 92.01 147 | 91.83 149 | 73.59 139 | 70.00 207 | 85.82 215 | 54.43 193 | 94.76 177 | 69.63 183 | 68.02 252 | 88.10 225 |
|
TranMVSNet+NR-MVSNet | | | 75.86 218 | 74.52 212 | 79.89 244 | 82.44 280 | 60.64 260 | 91.37 178 | 91.37 169 | 76.63 91 | 67.65 239 | 86.21 211 | 52.37 213 | 91.55 281 | 61.84 251 | 60.81 308 | 87.48 230 |
|
IterMVS | | | 72.65 254 | 70.83 252 | 78.09 271 | 82.17 281 | 62.96 215 | 87.64 266 | 86.28 299 | 71.56 199 | 60.44 292 | 78.85 296 | 45.42 270 | 86.66 327 | 63.30 241 | 61.83 298 | 84.65 284 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Patchmtry | | | 67.53 288 | 63.93 293 | 78.34 266 | 82.12 282 | 64.38 182 | 68.72 344 | 84.00 322 | 48.23 347 | 59.24 297 | 72.41 331 | 57.82 149 | 89.27 306 | 46.10 313 | 56.68 325 | 81.36 319 |
|
PatchT | | | 69.11 273 | 65.37 284 | 80.32 232 | 82.07 283 | 63.68 201 | 67.96 349 | 87.62 288 | 50.86 339 | 69.37 213 | 65.18 347 | 57.09 155 | 88.53 312 | 41.59 331 | 66.60 261 | 88.74 213 |
|
MIMVSNet | | | 71.64 257 | 68.44 266 | 81.23 213 | 81.97 284 | 64.44 178 | 73.05 337 | 88.80 264 | 69.67 229 | 64.59 264 | 74.79 324 | 32.79 324 | 87.82 318 | 53.99 282 | 76.35 203 | 91.42 180 |
|
MVP-Stereo | | | 77.12 199 | 76.23 192 | 79.79 247 | 81.72 285 | 66.34 128 | 89.29 237 | 90.88 190 | 70.56 219 | 62.01 287 | 82.88 244 | 49.34 238 | 94.13 202 | 65.55 226 | 93.80 46 | 78.88 339 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IterMVS-SCA-FT | | | 71.55 258 | 69.97 257 | 76.32 290 | 81.48 286 | 60.67 259 | 87.64 266 | 85.99 304 | 66.17 261 | 59.50 296 | 78.88 295 | 45.53 268 | 83.65 340 | 62.58 247 | 61.93 297 | 84.63 285 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 309 | 59.65 311 | 72.98 312 | 81.44 287 | 53.00 323 | 83.75 289 | 75.53 347 | 48.34 346 | 48.81 339 | 81.40 266 | 24.14 347 | 90.30 293 | 32.95 354 | 60.52 311 | 75.65 349 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
JIA-IIPM | | | 66.06 295 | 62.45 302 | 76.88 287 | 81.42 288 | 54.45 318 | 57.49 358 | 88.67 268 | 49.36 343 | 63.86 272 | 46.86 357 | 56.06 174 | 90.25 294 | 49.53 296 | 68.83 245 | 85.95 264 |
|
WR-MVS_H | | | 70.59 262 | 69.94 258 | 72.53 315 | 81.03 289 | 51.43 330 | 87.35 269 | 92.03 140 | 67.38 252 | 60.23 293 | 80.70 276 | 55.84 178 | 83.45 342 | 46.33 312 | 58.58 320 | 82.72 305 |
|
Fast-Effi-MVS+-dtu | | | 75.04 229 | 73.37 229 | 80.07 239 | 80.86 290 | 59.52 275 | 91.20 187 | 85.38 308 | 71.90 180 | 65.20 259 | 84.84 225 | 41.46 285 | 92.97 235 | 66.50 214 | 72.96 219 | 87.73 227 |
|
Baseline_NR-MVSNet | | | 73.99 238 | 72.83 233 | 77.48 277 | 80.78 291 | 59.29 279 | 91.79 157 | 84.55 317 | 68.85 239 | 68.99 219 | 80.70 276 | 56.16 171 | 92.04 272 | 62.67 246 | 60.98 307 | 81.11 320 |
|
CP-MVSNet | | | 70.50 263 | 69.91 259 | 72.26 318 | 80.71 292 | 51.00 333 | 87.23 270 | 90.30 208 | 67.84 246 | 59.64 295 | 82.69 246 | 50.23 231 | 82.30 350 | 51.28 289 | 59.28 316 | 83.46 295 |
|
v8 | | | 75.35 225 | 73.26 230 | 81.61 205 | 80.67 293 | 66.82 115 | 89.54 232 | 89.27 244 | 71.65 192 | 63.30 278 | 80.30 284 | 54.99 186 | 94.06 207 | 67.33 205 | 62.33 293 | 83.94 288 |
|
PS-MVSNAJss | | | 77.26 197 | 76.31 191 | 80.13 238 | 80.64 294 | 59.16 280 | 90.63 207 | 91.06 184 | 72.80 154 | 68.58 228 | 84.57 229 | 53.55 202 | 93.96 215 | 72.97 151 | 71.96 227 | 87.27 237 |
|
TransMVSNet (Re) | | | 70.07 266 | 67.66 270 | 77.31 281 | 80.62 295 | 59.13 281 | 91.78 159 | 84.94 313 | 65.97 262 | 60.08 294 | 80.44 281 | 50.78 225 | 91.87 274 | 48.84 299 | 45.46 346 | 80.94 322 |
|
v2v482 | | | 77.42 194 | 75.65 200 | 82.73 172 | 80.38 296 | 67.13 106 | 91.85 155 | 90.23 212 | 75.09 111 | 69.37 213 | 83.39 241 | 53.79 200 | 94.44 193 | 71.77 167 | 65.00 272 | 86.63 248 |
|
MVS_0304 | | | 68.99 276 | 67.23 273 | 74.28 304 | 80.36 297 | 52.54 324 | 87.01 273 | 86.36 297 | 59.89 309 | 66.22 253 | 73.56 327 | 24.25 346 | 88.03 316 | 57.34 272 | 70.11 236 | 82.27 313 |
|
PS-CasMVS | | | 69.86 269 | 69.13 263 | 72.07 321 | 80.35 298 | 50.57 335 | 87.02 272 | 89.75 228 | 67.27 253 | 59.19 299 | 82.28 250 | 46.58 261 | 82.24 351 | 50.69 291 | 59.02 317 | 83.39 297 |
|
v10 | | | 74.77 232 | 72.54 239 | 81.46 207 | 80.33 299 | 66.71 119 | 89.15 242 | 89.08 255 | 70.94 211 | 63.08 279 | 79.86 289 | 52.52 211 | 94.04 210 | 65.70 223 | 62.17 294 | 83.64 290 |
|
test0.0.03 1 | | | 72.76 250 | 72.71 236 | 72.88 313 | 80.25 300 | 47.99 345 | 91.22 185 | 89.45 238 | 71.51 201 | 62.51 285 | 87.66 195 | 53.83 198 | 85.06 333 | 50.16 293 | 67.84 255 | 85.58 271 |
|
v1144 | | | 76.73 205 | 74.88 205 | 82.27 185 | 80.23 301 | 66.60 122 | 91.68 164 | 90.21 214 | 73.69 136 | 69.06 218 | 81.89 255 | 52.73 210 | 94.40 194 | 69.21 189 | 65.23 269 | 85.80 267 |
|
v148 | | | 76.19 208 | 74.47 213 | 81.36 209 | 80.05 302 | 64.44 178 | 91.75 162 | 90.23 212 | 73.68 137 | 67.13 246 | 80.84 275 | 55.92 177 | 93.86 221 | 68.95 192 | 61.73 301 | 85.76 270 |
|
v1192 | | | 75.98 215 | 73.92 223 | 82.15 190 | 79.73 303 | 66.24 131 | 91.22 185 | 89.75 228 | 72.67 156 | 68.49 229 | 81.42 265 | 49.86 234 | 94.27 198 | 67.08 206 | 65.02 271 | 85.95 264 |
|
AllTest | | | 61.66 311 | 58.06 315 | 72.46 316 | 79.57 304 | 51.42 331 | 80.17 318 | 68.61 358 | 51.25 337 | 45.88 344 | 81.23 268 | 19.86 356 | 86.58 328 | 38.98 339 | 57.01 323 | 79.39 335 |
|
TestCases | | | | | 72.46 316 | 79.57 304 | 51.42 331 | | 68.61 358 | 51.25 337 | 45.88 344 | 81.23 268 | 19.86 356 | 86.58 328 | 38.98 339 | 57.01 323 | 79.39 335 |
|
MDA-MVSNet-bldmvs | | | 61.54 313 | 57.70 317 | 73.05 311 | 79.53 306 | 57.00 304 | 83.08 298 | 81.23 333 | 57.57 317 | 34.91 359 | 72.45 330 | 32.79 324 | 86.26 330 | 35.81 346 | 41.95 350 | 75.89 348 |
|
v144192 | | | 76.05 213 | 74.03 221 | 82.12 193 | 79.50 307 | 66.55 124 | 91.39 175 | 89.71 234 | 72.30 168 | 68.17 231 | 81.33 267 | 51.75 217 | 94.03 212 | 67.94 198 | 64.19 279 | 85.77 268 |
|
v1921920 | | | 75.63 223 | 73.49 228 | 82.06 197 | 79.38 308 | 66.35 127 | 91.07 193 | 89.48 237 | 71.98 177 | 67.99 232 | 81.22 270 | 49.16 243 | 93.90 218 | 66.56 211 | 64.56 278 | 85.92 266 |
|
PEN-MVS | | | 69.46 271 | 68.56 265 | 72.17 320 | 79.27 309 | 49.71 339 | 86.90 274 | 89.24 245 | 67.24 256 | 59.08 300 | 82.51 249 | 47.23 258 | 83.54 341 | 48.42 301 | 57.12 321 | 83.25 298 |
|
v1240 | | | 75.21 228 | 72.98 232 | 81.88 199 | 79.20 310 | 66.00 135 | 90.75 202 | 89.11 254 | 71.63 196 | 67.41 243 | 81.22 270 | 47.36 257 | 93.87 219 | 65.46 227 | 64.72 276 | 85.77 268 |
|
pmmvs4 | | | 73.92 239 | 71.81 246 | 80.25 236 | 79.17 311 | 65.24 155 | 87.43 268 | 87.26 293 | 67.64 251 | 63.46 276 | 83.91 235 | 48.96 245 | 91.53 285 | 62.94 243 | 65.49 265 | 83.96 287 |
|
D2MVS | | | 73.80 240 | 72.02 244 | 79.15 261 | 79.15 312 | 62.97 214 | 88.58 252 | 90.07 217 | 72.94 150 | 59.22 298 | 78.30 298 | 42.31 283 | 92.70 250 | 65.59 225 | 72.00 226 | 81.79 317 |
|
V42 | | | 76.46 207 | 74.55 211 | 82.19 189 | 79.14 313 | 67.82 85 | 90.26 215 | 89.42 240 | 73.75 134 | 68.63 227 | 81.89 255 | 51.31 221 | 94.09 204 | 71.69 169 | 64.84 273 | 84.66 283 |
|
pm-mvs1 | | | 72.89 248 | 71.09 251 | 78.26 269 | 79.10 314 | 57.62 295 | 90.80 200 | 89.30 243 | 67.66 249 | 62.91 281 | 81.78 257 | 49.11 244 | 92.95 236 | 60.29 260 | 58.89 318 | 84.22 286 |
|
our_test_3 | | | 68.29 281 | 64.69 287 | 79.11 262 | 78.92 315 | 64.85 170 | 88.40 256 | 85.06 311 | 60.32 305 | 52.68 324 | 76.12 318 | 40.81 287 | 89.80 304 | 44.25 321 | 55.65 326 | 82.67 309 |
|
ppachtmachnet_test | | | 67.72 285 | 63.70 294 | 79.77 248 | 78.92 315 | 66.04 134 | 88.68 250 | 82.90 331 | 60.11 307 | 55.45 315 | 75.96 319 | 39.19 291 | 90.55 290 | 39.53 337 | 52.55 335 | 82.71 306 |
|
TinyColmap | | | 60.32 315 | 56.42 321 | 72.00 322 | 78.78 317 | 53.18 322 | 78.36 328 | 75.64 345 | 52.30 334 | 41.59 355 | 75.82 321 | 14.76 361 | 88.35 313 | 35.84 345 | 54.71 331 | 74.46 350 |
|
SixPastTwentyTwo | | | 64.92 299 | 61.78 306 | 74.34 303 | 78.74 318 | 49.76 338 | 83.42 294 | 79.51 340 | 62.86 284 | 50.27 334 | 77.35 305 | 30.92 334 | 90.49 292 | 45.89 314 | 47.06 344 | 82.78 302 |
|
EG-PatchMatch MVS | | | 68.55 278 | 65.41 283 | 77.96 272 | 78.69 319 | 62.93 216 | 89.86 227 | 89.17 249 | 60.55 302 | 50.27 334 | 77.73 304 | 22.60 351 | 94.06 207 | 47.18 309 | 72.65 222 | 76.88 346 |
|
pmmvs5 | | | 73.35 243 | 71.52 248 | 78.86 263 | 78.64 320 | 60.61 261 | 91.08 191 | 86.90 294 | 67.69 248 | 63.32 277 | 83.64 236 | 44.33 275 | 90.53 291 | 62.04 250 | 66.02 264 | 85.46 274 |
|
UniMVSNet_ETH3D | | | 72.74 251 | 70.53 254 | 79.36 256 | 78.62 321 | 56.64 305 | 85.01 282 | 89.20 247 | 63.77 277 | 64.84 263 | 84.44 230 | 34.05 321 | 91.86 275 | 63.94 236 | 70.89 235 | 89.57 206 |
|
XVG-OURS | | | 74.25 236 | 72.46 240 | 79.63 251 | 78.45 322 | 57.59 296 | 80.33 315 | 87.39 290 | 63.86 276 | 68.76 225 | 89.62 172 | 40.50 288 | 91.72 278 | 69.00 191 | 74.25 209 | 89.58 205 |
|
XVG-OURS-SEG-HR | | | 74.70 233 | 73.08 231 | 79.57 253 | 78.25 323 | 57.33 301 | 80.49 313 | 87.32 291 | 63.22 281 | 68.76 225 | 90.12 168 | 44.89 273 | 91.59 280 | 70.55 178 | 74.09 211 | 89.79 202 |
|
MDA-MVSNet_test_wron | | | 63.78 306 | 60.16 309 | 74.64 299 | 78.15 324 | 60.41 262 | 83.49 291 | 84.03 320 | 56.17 328 | 39.17 357 | 71.59 337 | 37.22 308 | 83.24 345 | 42.87 326 | 48.73 341 | 80.26 330 |
|
YYNet1 | | | 63.76 307 | 60.14 310 | 74.62 300 | 78.06 325 | 60.19 267 | 83.46 293 | 83.99 324 | 56.18 327 | 39.25 356 | 71.56 338 | 37.18 309 | 83.34 343 | 42.90 325 | 48.70 342 | 80.32 329 |
|
DTE-MVSNet | | | 68.46 280 | 67.33 272 | 71.87 323 | 77.94 326 | 49.00 342 | 86.16 279 | 88.58 272 | 66.36 260 | 58.19 304 | 82.21 252 | 46.36 262 | 83.87 339 | 44.97 319 | 55.17 328 | 82.73 304 |
|
USDC | | | 67.43 290 | 64.51 289 | 76.19 291 | 77.94 326 | 55.29 313 | 78.38 327 | 85.00 312 | 73.17 145 | 48.36 340 | 80.37 282 | 21.23 353 | 92.48 259 | 52.15 288 | 64.02 282 | 80.81 324 |
|
jajsoiax | | | 73.05 245 | 71.51 249 | 77.67 274 | 77.46 328 | 54.83 315 | 88.81 248 | 90.04 221 | 69.13 237 | 62.85 282 | 83.51 238 | 31.16 332 | 92.75 247 | 70.83 173 | 69.80 237 | 85.43 275 |
|
mvs_tets | | | 72.71 252 | 71.11 250 | 77.52 275 | 77.41 329 | 54.52 317 | 88.45 255 | 89.76 227 | 68.76 242 | 62.70 283 | 83.26 242 | 29.49 336 | 92.71 248 | 70.51 179 | 69.62 239 | 85.34 277 |
|
N_pmnet | | | 50.55 324 | 49.11 327 | 54.88 341 | 77.17 330 | 4.02 377 | 84.36 285 | 2.00 376 | 48.59 344 | 45.86 346 | 68.82 342 | 32.22 327 | 82.80 347 | 31.58 359 | 51.38 337 | 77.81 344 |
|
test_djsdf | | | 73.76 242 | 72.56 238 | 77.39 279 | 77.00 331 | 53.93 319 | 89.07 244 | 90.69 193 | 65.80 263 | 63.92 271 | 82.03 254 | 43.14 280 | 92.67 251 | 72.83 153 | 68.53 248 | 85.57 272 |
|
bset_n11_16_dypcd | | | 75.95 217 | 74.16 218 | 81.30 211 | 76.91 332 | 65.14 160 | 88.89 246 | 87.48 289 | 74.30 121 | 69.90 211 | 83.40 240 | 42.16 284 | 92.42 260 | 78.39 120 | 66.03 263 | 86.32 252 |
|
OpenMVS_ROB |  | 61.12 18 | 66.39 293 | 62.92 299 | 76.80 288 | 76.51 333 | 57.77 292 | 89.22 239 | 83.41 327 | 55.48 329 | 53.86 321 | 77.84 303 | 26.28 345 | 93.95 216 | 34.90 349 | 68.76 246 | 78.68 341 |
|
v7n | | | 71.31 259 | 68.65 264 | 79.28 257 | 76.40 334 | 60.77 254 | 86.71 276 | 89.45 238 | 64.17 274 | 58.77 303 | 78.24 299 | 44.59 274 | 93.54 225 | 57.76 269 | 61.75 300 | 83.52 293 |
|
K. test v3 | | | 63.09 308 | 59.61 312 | 73.53 308 | 76.26 335 | 49.38 341 | 83.27 295 | 77.15 342 | 64.35 272 | 47.77 342 | 72.32 333 | 28.73 338 | 87.79 319 | 49.93 295 | 36.69 356 | 83.41 296 |
|
RPSCF | | | 64.24 303 | 61.98 305 | 71.01 325 | 76.10 336 | 45.00 351 | 75.83 334 | 75.94 344 | 46.94 349 | 58.96 301 | 84.59 228 | 31.40 331 | 82.00 352 | 47.76 307 | 60.33 314 | 86.04 261 |
|
OurMVSNet-221017-0 | | | 64.68 300 | 62.17 304 | 72.21 319 | 76.08 337 | 47.35 348 | 80.67 312 | 81.02 334 | 56.19 326 | 51.60 328 | 79.66 292 | 27.05 343 | 88.56 311 | 53.60 285 | 53.63 333 | 80.71 325 |
|
Anonymous20231206 | | | 67.53 288 | 65.78 278 | 72.79 314 | 74.95 338 | 47.59 347 | 88.23 257 | 87.32 291 | 61.75 298 | 58.07 306 | 77.29 307 | 37.79 304 | 87.29 325 | 42.91 324 | 63.71 284 | 83.48 294 |
|
ITE_SJBPF | | | | | 70.43 326 | 74.44 339 | 47.06 349 | | 77.32 341 | 60.16 306 | 54.04 320 | 83.53 237 | 23.30 350 | 84.01 337 | 43.07 323 | 61.58 304 | 80.21 332 |
|
EU-MVSNet | | | 64.01 304 | 63.01 298 | 67.02 335 | 74.40 340 | 38.86 363 | 83.27 295 | 86.19 302 | 45.11 352 | 54.27 318 | 81.15 273 | 36.91 313 | 80.01 355 | 48.79 300 | 57.02 322 | 82.19 315 |
|
XVG-ACMP-BASELINE | | | 68.04 283 | 65.53 282 | 75.56 294 | 74.06 341 | 52.37 325 | 78.43 326 | 85.88 305 | 62.03 293 | 58.91 302 | 81.21 272 | 20.38 355 | 91.15 288 | 60.69 257 | 68.18 250 | 83.16 300 |
|
CL-MVSNet_self_test | | | 69.92 267 | 68.09 269 | 75.41 295 | 73.25 342 | 55.90 310 | 90.05 221 | 89.90 224 | 69.96 225 | 61.96 288 | 76.54 313 | 51.05 224 | 87.64 320 | 49.51 297 | 50.59 339 | 82.70 307 |
|
anonymousdsp | | | 71.14 260 | 69.37 262 | 76.45 289 | 72.95 343 | 54.71 316 | 84.19 286 | 88.88 261 | 61.92 295 | 62.15 286 | 79.77 290 | 38.14 299 | 91.44 287 | 68.90 193 | 67.45 257 | 83.21 299 |
|
lessismore_v0 | | | | | 73.72 307 | 72.93 344 | 47.83 346 | | 61.72 366 | | 45.86 346 | 73.76 326 | 28.63 340 | 89.81 302 | 47.75 308 | 31.37 361 | 83.53 292 |
|
pmmvs6 | | | 67.57 287 | 64.76 286 | 76.00 293 | 72.82 345 | 53.37 321 | 88.71 249 | 86.78 296 | 53.19 333 | 57.58 311 | 78.03 302 | 35.33 318 | 92.41 261 | 55.56 277 | 54.88 330 | 82.21 314 |
|
testgi | | | 64.48 302 | 62.87 300 | 69.31 328 | 71.24 346 | 40.62 358 | 85.49 280 | 79.92 338 | 65.36 267 | 54.18 319 | 83.49 239 | 23.74 349 | 84.55 334 | 41.60 330 | 60.79 309 | 82.77 303 |
|
Patchmatch-RL test | | | 68.17 282 | 64.49 290 | 79.19 258 | 71.22 347 | 53.93 319 | 70.07 342 | 71.54 355 | 69.22 234 | 56.79 313 | 62.89 350 | 56.58 168 | 88.61 309 | 69.53 185 | 52.61 334 | 95.03 76 |
|
Gipuma |  | | 34.91 331 | 31.44 334 | 45.30 346 | 70.99 348 | 39.64 362 | 19.85 366 | 72.56 352 | 20.10 365 | 16.16 367 | 21.47 367 | 5.08 371 | 71.16 359 | 13.07 365 | 43.70 349 | 25.08 364 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
UnsupCasMVSNet_eth | | | 65.79 297 | 63.10 297 | 73.88 305 | 70.71 349 | 50.29 337 | 81.09 310 | 89.88 225 | 72.58 158 | 49.25 338 | 74.77 325 | 32.57 326 | 87.43 324 | 55.96 276 | 41.04 352 | 83.90 289 |
|
CMPMVS |  | 48.56 21 | 66.77 292 | 64.41 291 | 73.84 306 | 70.65 350 | 50.31 336 | 77.79 331 | 85.73 307 | 45.54 351 | 44.76 349 | 82.14 253 | 35.40 317 | 90.14 300 | 63.18 242 | 74.54 208 | 81.07 321 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test20.03 | | | 63.83 305 | 62.65 301 | 67.38 334 | 70.58 351 | 39.94 359 | 86.57 277 | 84.17 319 | 63.29 280 | 51.86 327 | 77.30 306 | 37.09 311 | 82.47 348 | 38.87 341 | 54.13 332 | 79.73 333 |
|
MIMVSNet1 | | | 60.16 317 | 57.33 318 | 68.67 329 | 69.71 352 | 44.13 353 | 78.92 324 | 84.21 318 | 55.05 330 | 44.63 350 | 71.85 335 | 23.91 348 | 81.54 354 | 32.63 356 | 55.03 329 | 80.35 328 |
|
pmmvs-eth3d | | | 65.53 298 | 62.32 303 | 75.19 296 | 69.39 353 | 59.59 273 | 82.80 300 | 83.43 326 | 62.52 289 | 51.30 331 | 72.49 329 | 32.86 323 | 87.16 326 | 55.32 278 | 50.73 338 | 78.83 340 |
|
UnsupCasMVSNet_bld | | | 61.60 312 | 57.71 316 | 73.29 310 | 68.73 354 | 51.64 328 | 78.61 325 | 89.05 257 | 57.20 321 | 46.11 343 | 61.96 351 | 28.70 339 | 88.60 310 | 50.08 294 | 38.90 354 | 79.63 334 |
|
Anonymous20240521 | | | 62.09 310 | 59.08 313 | 71.10 324 | 67.19 355 | 48.72 343 | 83.91 288 | 85.23 310 | 50.38 340 | 47.84 341 | 71.22 339 | 20.74 354 | 85.51 331 | 46.47 311 | 58.75 319 | 79.06 338 |
|
KD-MVS_self_test | | | 60.87 314 | 58.60 314 | 67.68 332 | 66.13 356 | 39.93 360 | 75.63 335 | 84.70 315 | 57.32 320 | 49.57 337 | 68.45 343 | 29.55 335 | 82.87 346 | 48.09 302 | 47.94 343 | 80.25 331 |
|
new-patchmatchnet | | | 59.30 319 | 56.48 320 | 67.79 331 | 65.86 357 | 44.19 352 | 82.47 301 | 81.77 332 | 59.94 308 | 43.65 353 | 66.20 346 | 27.67 341 | 81.68 353 | 39.34 338 | 41.40 351 | 77.50 345 |
|
PM-MVS | | | 59.40 318 | 56.59 319 | 67.84 330 | 63.63 358 | 41.86 355 | 76.76 332 | 63.22 364 | 59.01 313 | 51.07 332 | 72.27 334 | 11.72 363 | 83.25 344 | 61.34 253 | 50.28 340 | 78.39 343 |
|
DSMNet-mixed | | | 56.78 320 | 54.44 323 | 63.79 337 | 63.21 359 | 29.44 367 | 64.43 352 | 64.10 363 | 42.12 356 | 51.32 330 | 71.60 336 | 31.76 329 | 75.04 357 | 36.23 344 | 65.20 270 | 86.87 242 |
|
new_pmnet | | | 49.31 325 | 46.44 328 | 57.93 339 | 62.84 360 | 40.74 357 | 68.47 346 | 62.96 365 | 36.48 358 | 35.09 358 | 57.81 353 | 14.97 360 | 72.18 358 | 32.86 355 | 46.44 345 | 60.88 359 |
|
LF4IMVS | | | 54.01 323 | 52.12 324 | 59.69 338 | 62.41 361 | 39.91 361 | 68.59 345 | 68.28 360 | 42.96 355 | 44.55 351 | 75.18 322 | 14.09 362 | 68.39 360 | 41.36 332 | 51.68 336 | 70.78 354 |
|
ambc | | | | | 69.61 327 | 61.38 362 | 41.35 356 | 49.07 361 | 85.86 306 | | 50.18 336 | 66.40 345 | 10.16 364 | 88.14 315 | 45.73 315 | 44.20 347 | 79.32 337 |
|
TDRefinement | | | 55.28 322 | 51.58 325 | 66.39 336 | 59.53 363 | 46.15 350 | 76.23 333 | 72.80 351 | 44.60 353 | 42.49 354 | 76.28 317 | 15.29 359 | 82.39 349 | 33.20 353 | 43.75 348 | 70.62 355 |
|
pmmvs3 | | | 55.51 321 | 51.50 326 | 67.53 333 | 57.90 364 | 50.93 334 | 80.37 314 | 73.66 350 | 40.63 357 | 44.15 352 | 64.75 349 | 16.30 358 | 78.97 356 | 44.77 320 | 40.98 353 | 72.69 351 |
|
test_method | | | 38.59 329 | 35.16 332 | 48.89 345 | 54.33 365 | 21.35 372 | 45.32 362 | 53.71 367 | 7.41 369 | 28.74 360 | 51.62 355 | 8.70 367 | 52.87 366 | 33.73 350 | 32.89 360 | 72.47 352 |
|
DeepMVS_CX |  | | | | 34.71 349 | 51.45 366 | 24.73 371 | | 28.48 375 | 31.46 360 | 17.49 366 | 52.75 354 | 5.80 370 | 42.60 370 | 18.18 363 | 19.42 363 | 36.81 362 |
|
FPMVS | | | 45.64 326 | 43.10 329 | 53.23 343 | 51.42 367 | 36.46 364 | 64.97 351 | 71.91 353 | 29.13 361 | 27.53 361 | 61.55 352 | 9.83 365 | 65.01 364 | 16.00 364 | 55.58 327 | 58.22 360 |
|
wuyk23d | | | 11.30 338 | 10.95 341 | 12.33 353 | 48.05 368 | 19.89 373 | 25.89 365 | 1.92 377 | 3.58 370 | 3.12 372 | 1.37 371 | 0.64 376 | 15.77 372 | 6.23 370 | 7.77 370 | 1.35 368 |
|
PMMVS2 | | | 37.93 330 | 33.61 333 | 50.92 344 | 46.31 369 | 24.76 370 | 60.55 356 | 50.05 368 | 28.94 362 | 20.93 363 | 47.59 356 | 4.41 373 | 65.13 363 | 25.14 360 | 18.55 364 | 62.87 358 |
|
E-PMN | | | 24.61 333 | 24.00 337 | 26.45 350 | 43.74 370 | 18.44 374 | 60.86 354 | 39.66 370 | 15.11 366 | 9.53 370 | 22.10 366 | 6.52 369 | 46.94 368 | 8.31 368 | 10.14 366 | 13.98 366 |
|
EMVS | | | 23.76 335 | 23.20 339 | 25.46 351 | 41.52 371 | 16.90 375 | 60.56 355 | 38.79 373 | 14.62 367 | 8.99 371 | 20.24 369 | 7.35 368 | 45.82 369 | 7.25 369 | 9.46 367 | 13.64 367 |
|
LCM-MVSNet | | | 40.54 327 | 35.79 330 | 54.76 342 | 36.92 372 | 30.81 366 | 51.41 359 | 69.02 357 | 22.07 363 | 24.63 362 | 45.37 359 | 4.56 372 | 65.81 362 | 33.67 351 | 34.50 359 | 67.67 356 |
|
ANet_high | | | 40.27 328 | 35.20 331 | 55.47 340 | 34.74 373 | 34.47 365 | 63.84 353 | 71.56 354 | 48.42 345 | 18.80 365 | 41.08 362 | 9.52 366 | 64.45 365 | 20.18 362 | 8.66 369 | 67.49 357 |
|
MVE |  | 24.84 23 | 24.35 334 | 19.77 340 | 38.09 348 | 34.56 374 | 26.92 369 | 26.57 364 | 38.87 372 | 11.73 368 | 11.37 369 | 27.44 364 | 1.37 375 | 50.42 367 | 11.41 366 | 14.60 365 | 36.93 361 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 26.43 22 | 31.84 332 | 28.16 335 | 42.89 347 | 25.87 375 | 27.58 368 | 50.92 360 | 49.78 369 | 21.37 364 | 14.17 368 | 40.81 363 | 2.01 374 | 66.62 361 | 9.61 367 | 38.88 355 | 34.49 363 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 22.26 336 | 23.75 338 | 17.80 352 | 5.23 376 | 12.06 376 | 35.26 363 | 39.48 371 | 2.82 371 | 18.94 364 | 44.20 360 | 22.23 352 | 24.64 371 | 36.30 343 | 9.31 368 | 16.69 365 |
|
testmvs | | | 7.23 340 | 9.62 343 | 0.06 355 | 0.04 377 | 0.02 379 | 84.98 283 | 0.02 378 | 0.03 372 | 0.18 373 | 1.21 372 | 0.01 378 | 0.02 373 | 0.14 371 | 0.01 371 | 0.13 370 |
|
test123 | | | 6.92 341 | 9.21 344 | 0.08 354 | 0.03 378 | 0.05 378 | 81.65 306 | 0.01 379 | 0.02 373 | 0.14 374 | 0.85 373 | 0.03 377 | 0.02 373 | 0.12 372 | 0.00 372 | 0.16 369 |
|
test_blank | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 372 | 0.00 371 |
|
eth-test2 | | | | | | 0.00 379 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 379 | | | | | | | | | | | |
|
uanet_test | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 372 | 0.00 371 |
|
cdsmvs_eth3d_5k | | | 19.86 337 | 26.47 336 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 93.45 83 | 0.00 374 | 0.00 375 | 95.27 50 | 49.56 236 | 0.00 375 | 0.00 373 | 0.00 372 | 0.00 371 |
|
pcd_1.5k_mvsjas | | | 4.46 342 | 5.95 345 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 53.55 202 | 0.00 375 | 0.00 373 | 0.00 372 | 0.00 371 |
|
sosnet-low-res | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 372 | 0.00 371 |
|
sosnet | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 372 | 0.00 371 |
|
uncertanet | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 372 | 0.00 371 |
|
Regformer | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 372 | 0.00 371 |
|
ab-mvs-re | | | 7.91 339 | 10.55 342 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 94.95 62 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 372 | 0.00 371 |
|
uanet | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 372 | 0.00 371 |
|
PC_three_1452 | | | | | | | | | | 80.91 36 | 94.07 2 | 96.83 14 | 83.57 4 | 99.12 5 | 95.70 2 | 97.42 4 | 97.55 4 |
|
test_241102_TWO | | | | | | | | | 94.41 45 | 71.65 192 | 92.07 6 | 97.21 5 | 74.58 16 | 99.11 6 | 92.34 7 | 95.36 14 | 96.59 15 |
|
test_0728_THIRD | | | | | | | | | | 72.48 161 | 90.55 15 | 96.93 10 | 76.24 11 | 99.08 11 | 91.53 15 | 94.99 17 | 96.43 26 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 84 |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 148 | | | | 94.68 84 |
|
sam_mvs | | | | | | | | | | | | | 54.91 187 | | | | |
|
MTGPA |  | | | | | | | | 92.23 130 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 323 | | | | 20.70 368 | 53.05 207 | 91.50 286 | 60.43 258 | | |
|
test_post | | | | | | | | | | | | 23.01 365 | 56.49 169 | 92.67 251 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 344 | 57.62 151 | 90.25 294 | | | |
|
MTMP | | | | | | | | 93.77 82 | 32.52 374 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 24 | 94.96 18 | 95.29 59 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 55 | 94.75 30 | 95.33 55 |
|
test_prior4 | | | | | | | 67.18 105 | 93.92 73 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 37 | | 75.40 105 | 85.25 53 | 95.61 40 | 67.94 43 | | 87.47 45 | 94.77 25 | |
|
旧先验2 | | | | | | | | 92.00 149 | | 59.37 312 | 87.54 28 | | | 93.47 228 | 75.39 137 | | |
|
新几何2 | | | | | | | | 91.41 171 | | | | | | | | | |
|
无先验 | | | | | | | | 92.71 119 | 92.61 120 | 62.03 293 | | | | 97.01 92 | 66.63 209 | | 93.97 117 |
|
原ACMM2 | | | | | | | | 92.01 147 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 127 | 61.26 254 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 63 | | | | |
|
testdata1 | | | | | | | | 89.21 240 | | 77.55 80 | | | | | | | |
|
plane_prior5 | | | | | | | | | 91.31 170 | | | | | 95.55 157 | 76.74 129 | 78.53 183 | 88.39 220 |
|
plane_prior4 | | | | | | | | | | | | 89.14 176 | | | | | |
|
plane_prior3 | | | | | | | 61.95 234 | | | 79.09 56 | 72.53 175 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 102 | | 78.81 61 | | | | | | | |
|
plane_prior | | | | | | | 62.42 225 | 93.85 77 | | 79.38 49 | | | | | | 78.80 180 | |
|
n2 | | | | | | | | | 0.00 380 | | | | | | | | |
|
nn | | | | | | | | | 0.00 380 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 362 | | | | | | | | |
|
test11 | | | | | | | | | 93.01 103 | | | | | | | | |
|
door | | | | | | | | | 66.57 361 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 202 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 126 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 156 | | | 95.61 151 | | | 88.63 214 |
|
HQP3-MVS | | | | | | | | | 91.70 155 | | | | | | | 78.90 178 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 219 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 270 | 80.13 319 | | 67.65 250 | 72.79 170 | | 54.33 195 | | 59.83 262 | | 92.58 158 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 228 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 238 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 196 | | | | |
|