MG-MVS | | | 87.11 32 | 86.27 41 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 40 | 78.74 63 | 83.87 66 | 92.94 115 | 64.34 82 | 96.94 102 | 75.19 138 | 94.09 40 | 95.66 46 |
|
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 44 | 96.26 27 | 72.84 25 | 99.38 1 | 92.64 5 | 95.93 10 | 97.08 9 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 13 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
DVP-MVS++. | | | 90.53 3 | 91.09 4 | 88.87 14 | 97.31 4 | 69.91 38 | 93.96 67 | 94.37 49 | 72.48 162 | 92.07 6 | 96.85 12 | 83.82 2 | 99.15 2 | 91.53 15 | 97.42 4 | 97.55 4 |
|
MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 20 | | | | | 99.07 13 | 92.01 11 | 94.77 25 | 96.51 20 |
|
No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 20 | | | | | 99.07 13 | 92.01 11 | 94.77 25 | 96.51 20 |
|
DP-MVS Recon | | | 82.73 101 | 81.65 108 | 85.98 83 | 97.31 4 | 67.06 107 | 95.15 35 | 91.99 141 | 69.08 239 | 76.50 140 | 93.89 98 | 54.48 192 | 98.20 36 | 70.76 176 | 85.66 133 | 92.69 155 |
|
testtj | | | 86.62 42 | 86.66 40 | 86.50 67 | 96.95 8 | 65.70 143 | 94.41 50 | 93.45 83 | 67.74 248 | 86.19 38 | 96.39 23 | 64.38 81 | 97.91 46 | 87.33 48 | 93.14 58 | 95.90 42 |
|
ETH3 D test6400 | | | 90.27 6 | 90.44 7 | 89.75 6 | 96.82 9 | 74.33 7 | 95.89 17 | 94.80 28 | 77.13 85 | 89.13 21 | 97.38 2 | 74.49 17 | 98.48 28 | 92.32 10 | 95.98 8 | 96.46 25 |
|
CNVR-MVS | | | 90.32 5 | 90.89 5 | 88.61 19 | 96.76 10 | 70.65 25 | 96.47 12 | 94.83 25 | 84.83 8 | 89.07 22 | 96.80 15 | 70.86 32 | 99.06 15 | 92.64 5 | 95.71 11 | 96.12 34 |
|
ZD-MVS | | | | | | 96.63 11 | 65.50 150 | | 93.50 81 | 70.74 218 | 85.26 52 | 95.19 56 | 64.92 77 | 97.29 77 | 87.51 44 | 93.01 59 | |
|
NCCC | | | 89.07 13 | 89.46 13 | 87.91 24 | 96.60 12 | 69.05 55 | 96.38 13 | 94.64 35 | 84.42 9 | 86.74 33 | 96.20 28 | 66.56 59 | 98.76 22 | 89.03 33 | 94.56 33 | 95.92 41 |
|
IU-MVS | | | | | | 96.46 13 | 69.91 38 | | 95.18 13 | 80.75 37 | 95.28 1 | | | | 92.34 7 | 95.36 14 | 96.47 24 |
|
SED-MVS | | | 89.94 8 | 90.36 8 | 88.70 16 | 96.45 14 | 69.38 48 | 96.89 4 | 94.44 42 | 71.65 193 | 92.11 4 | 97.21 5 | 76.79 9 | 99.11 6 | 92.34 7 | 95.36 14 | 97.62 2 |
|
test_241102_ONE | | | | | | 96.45 14 | 69.38 48 | | 94.44 42 | 71.65 193 | 92.11 4 | 97.05 8 | 76.79 9 | 99.11 6 | | | |
|
test_0728_SECOND | | | | | 88.70 16 | 96.45 14 | 70.43 28 | 96.64 8 | 94.37 49 | | | | | 99.15 2 | 91.91 13 | 94.90 21 | 96.51 20 |
|
DVP-MVS |  | | 89.41 11 | 89.73 12 | 88.45 21 | 96.40 17 | 69.99 34 | 96.64 8 | 94.52 38 | 71.92 179 | 90.55 15 | 96.93 10 | 73.77 20 | 99.08 11 | 91.91 13 | 94.90 21 | 96.29 30 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 96.40 17 | 69.99 34 | 96.76 6 | 94.33 51 | 71.92 179 | 91.89 8 | 97.11 7 | 73.77 20 | | | | |
|
AdaColmap |  | | 78.94 166 | 77.00 183 | 84.76 123 | 96.34 19 | 65.86 139 | 92.66 124 | 87.97 285 | 62.18 292 | 70.56 198 | 92.37 131 | 43.53 279 | 97.35 73 | 64.50 234 | 82.86 152 | 91.05 191 |
|
test_one_0601 | | | | | | 96.32 20 | 69.74 43 | | 94.18 55 | 71.42 205 | 90.67 14 | 96.85 12 | 74.45 18 | | | | |
|
test_part2 | | | | | | 96.29 21 | 68.16 77 | | | | 90.78 12 | | | | | | |
|
DPE-MVS |  | | 88.77 14 | 89.21 14 | 87.45 36 | 96.26 22 | 67.56 91 | 94.17 54 | 94.15 57 | 68.77 242 | 90.74 13 | 97.27 3 | 76.09 12 | 98.49 27 | 90.58 21 | 94.91 20 | 96.30 29 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MAR-MVS | | | 84.18 78 | 83.43 78 | 86.44 69 | 96.25 23 | 65.93 138 | 94.28 53 | 94.27 53 | 74.41 118 | 79.16 110 | 95.61 40 | 53.99 197 | 98.88 20 | 69.62 185 | 93.26 56 | 94.50 96 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
API-MVS | | | 82.28 108 | 80.53 124 | 87.54 34 | 96.13 24 | 70.59 26 | 93.63 86 | 91.04 186 | 65.72 266 | 75.45 150 | 92.83 121 | 56.11 173 | 98.89 19 | 64.10 236 | 89.75 101 | 93.15 143 |
|
APDe-MVS | | | 87.54 24 | 87.84 21 | 86.65 60 | 96.07 25 | 66.30 129 | 94.84 45 | 93.78 64 | 69.35 233 | 88.39 24 | 96.34 25 | 67.74 48 | 97.66 58 | 90.62 20 | 93.44 54 | 96.01 38 |
|
PAPR | | | 85.15 60 | 84.47 65 | 87.18 42 | 96.02 26 | 68.29 72 | 91.85 156 | 93.00 105 | 76.59 93 | 79.03 111 | 95.00 60 | 61.59 111 | 97.61 62 | 78.16 122 | 89.00 104 | 95.63 47 |
|
APD-MVS |  | | 85.93 50 | 85.99 46 | 85.76 92 | 95.98 27 | 65.21 156 | 93.59 88 | 92.58 121 | 66.54 259 | 86.17 39 | 95.88 33 | 63.83 88 | 97.00 94 | 86.39 56 | 92.94 60 | 95.06 72 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS_fast | | 79.48 2 | 87.95 19 | 88.00 19 | 87.79 27 | 95.86 28 | 68.32 71 | 95.74 21 | 94.11 59 | 83.82 11 | 83.49 68 | 96.19 29 | 64.53 80 | 98.44 30 | 83.42 78 | 94.88 24 | 96.61 14 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DP-MVS | | | 69.90 269 | 66.48 275 | 80.14 238 | 95.36 29 | 62.93 216 | 89.56 231 | 76.11 344 | 50.27 342 | 57.69 311 | 85.23 221 | 39.68 291 | 95.73 143 | 33.35 353 | 71.05 235 | 81.78 319 |
|
114514_t | | | 79.17 162 | 77.67 169 | 83.68 154 | 95.32 30 | 65.53 149 | 92.85 115 | 91.60 159 | 63.49 279 | 67.92 235 | 90.63 156 | 46.65 260 | 95.72 147 | 67.01 208 | 83.54 150 | 89.79 203 |
|
Regformer-1 | | | 87.24 29 | 87.60 27 | 86.15 80 | 95.14 31 | 65.83 141 | 93.95 70 | 95.12 15 | 82.11 21 | 84.25 59 | 95.73 36 | 67.88 46 | 98.35 33 | 85.60 60 | 88.64 108 | 94.26 101 |
|
Regformer-2 | | | 87.00 36 | 87.43 29 | 85.71 95 | 95.14 31 | 64.73 171 | 93.95 70 | 94.95 22 | 81.69 26 | 84.03 64 | 95.73 36 | 67.35 50 | 98.19 37 | 85.40 62 | 88.64 108 | 94.20 103 |
|
HPM-MVS++ |  | | 89.37 12 | 89.95 11 | 87.64 29 | 95.10 33 | 68.23 76 | 95.24 32 | 94.49 40 | 82.43 17 | 88.90 23 | 96.35 24 | 71.89 31 | 98.63 24 | 88.76 35 | 96.40 6 | 96.06 35 |
|
CSCG | | | 86.87 37 | 86.26 42 | 88.72 15 | 95.05 34 | 70.79 24 | 93.83 81 | 95.33 11 | 68.48 246 | 77.63 126 | 94.35 84 | 73.04 23 | 98.45 29 | 84.92 67 | 93.71 50 | 96.92 11 |
|
LFMVS | | | 84.34 73 | 82.73 94 | 89.18 13 | 94.76 35 | 73.25 10 | 94.99 42 | 91.89 146 | 71.90 181 | 82.16 77 | 93.49 105 | 47.98 252 | 97.05 89 | 82.55 87 | 84.82 138 | 97.25 7 |
|
CDPH-MVS | | | 85.71 53 | 85.46 55 | 86.46 68 | 94.75 36 | 67.19 103 | 93.89 75 | 92.83 110 | 70.90 213 | 83.09 71 | 95.28 48 | 63.62 92 | 97.36 72 | 80.63 102 | 94.18 39 | 94.84 81 |
|
test_prior3 | | | 87.38 27 | 87.70 24 | 86.42 70 | 94.71 37 | 67.35 98 | 95.10 37 | 93.10 101 | 75.40 106 | 85.25 53 | 95.61 40 | 67.94 43 | 96.84 106 | 87.47 45 | 94.77 25 | 95.05 73 |
|
test_prior | | | | | 86.42 70 | 94.71 37 | 67.35 98 | | 93.10 101 | | | | | 96.84 106 | | | 95.05 73 |
|
test12 | | | | | 87.09 45 | 94.60 39 | 68.86 59 | | 92.91 107 | | 82.67 75 | | 65.44 70 | 97.55 63 | | 93.69 51 | 94.84 81 |
|
test_yl | | | 84.28 74 | 83.16 85 | 87.64 29 | 94.52 40 | 69.24 51 | 95.78 18 | 95.09 18 | 69.19 236 | 81.09 86 | 92.88 119 | 57.00 159 | 97.44 67 | 81.11 100 | 81.76 160 | 96.23 32 |
|
DCV-MVSNet | | | 84.28 74 | 83.16 85 | 87.64 29 | 94.52 40 | 69.24 51 | 95.78 18 | 95.09 18 | 69.19 236 | 81.09 86 | 92.88 119 | 57.00 159 | 97.44 67 | 81.11 100 | 81.76 160 | 96.23 32 |
|
CANet | | | 89.61 10 | 89.99 10 | 88.46 20 | 94.39 42 | 69.71 44 | 96.53 11 | 93.78 64 | 86.89 4 | 89.68 18 | 95.78 34 | 65.94 63 | 99.10 9 | 92.99 3 | 93.91 44 | 96.58 17 |
|
test_8 | | | | | | 94.19 43 | 67.19 103 | 94.15 57 | 93.42 86 | 71.87 184 | 85.38 50 | 95.35 44 | 68.19 39 | 96.95 101 | | | |
|
TEST9 | | | | | | 94.18 44 | 67.28 100 | 94.16 55 | 93.51 79 | 71.75 191 | 85.52 48 | 95.33 45 | 68.01 42 | 97.27 81 | | | |
|
train_agg | | | 87.21 30 | 87.42 30 | 86.60 61 | 94.18 44 | 67.28 100 | 94.16 55 | 93.51 79 | 71.87 184 | 85.52 48 | 95.33 45 | 68.19 39 | 97.27 81 | 89.09 29 | 94.90 21 | 95.25 66 |
|
Regformer-3 | | | 85.80 52 | 85.92 47 | 85.46 102 | 94.17 46 | 65.09 164 | 92.95 111 | 95.11 16 | 81.13 33 | 81.68 80 | 95.04 58 | 65.82 65 | 98.32 34 | 83.02 80 | 84.36 142 | 92.97 150 |
|
Regformer-4 | | | 85.45 55 | 85.69 52 | 84.73 125 | 94.17 46 | 63.23 209 | 92.95 111 | 94.83 25 | 80.66 38 | 81.29 83 | 95.04 58 | 65.12 72 | 98.08 40 | 82.74 82 | 84.36 142 | 92.88 154 |
|
agg_prior1 | | | 87.02 35 | 87.26 32 | 86.28 77 | 94.16 48 | 66.97 111 | 94.08 61 | 93.31 89 | 71.85 186 | 84.49 57 | 95.39 43 | 68.91 36 | 96.75 110 | 88.84 34 | 94.32 38 | 95.13 69 |
|
agg_prior | | | | | | 94.16 48 | 66.97 111 | | 93.31 89 | | 84.49 57 | | | 96.75 110 | | | |
|
PAPM_NR | | | 82.97 98 | 81.84 105 | 86.37 73 | 94.10 50 | 66.76 118 | 87.66 266 | 92.84 109 | 69.96 226 | 74.07 161 | 93.57 103 | 63.10 101 | 97.50 65 | 70.66 178 | 90.58 94 | 94.85 79 |
|
FOURS1 | | | | | | 93.95 51 | 61.77 237 | 93.96 67 | 91.92 144 | 62.14 293 | 86.57 34 | | | | | | |
|
VNet | | | 86.20 46 | 85.65 53 | 87.84 26 | 93.92 52 | 69.99 34 | 95.73 23 | 95.94 6 | 78.43 65 | 86.00 42 | 93.07 112 | 58.22 145 | 97.00 94 | 85.22 64 | 84.33 145 | 96.52 19 |
|
9.14 | | | | 87.63 25 | | 93.86 53 | | 94.41 50 | 94.18 55 | 72.76 156 | 86.21 37 | 96.51 19 | 66.64 57 | 97.88 49 | 90.08 23 | 94.04 41 | |
|
xxxxxxxxxxxxxcwj | | | 87.14 31 | 87.19 33 | 86.99 48 | 93.84 54 | 67.89 83 | 95.05 39 | 84.72 315 | 78.19 67 | 86.25 35 | 96.44 21 | 66.98 52 | 97.79 51 | 88.68 36 | 94.56 33 | 95.28 61 |
|
save fliter | | | | | | 93.84 54 | 67.89 83 | 95.05 39 | 92.66 116 | 78.19 67 | | | | | | | |
|
PVSNet_BlendedMVS | | | 83.38 92 | 83.43 78 | 83.22 165 | 93.76 56 | 67.53 93 | 94.06 62 | 93.61 75 | 79.13 55 | 81.00 89 | 85.14 222 | 63.19 99 | 97.29 77 | 87.08 51 | 73.91 214 | 84.83 283 |
|
PVSNet_Blended | | | 86.73 41 | 86.86 38 | 86.31 76 | 93.76 56 | 67.53 93 | 96.33 15 | 93.61 75 | 82.34 18 | 81.00 89 | 93.08 110 | 63.19 99 | 97.29 77 | 87.08 51 | 91.38 83 | 94.13 109 |
|
HFP-MVS | | | 84.73 66 | 84.40 68 | 85.72 93 | 93.75 58 | 65.01 165 | 93.50 92 | 93.19 95 | 72.19 173 | 79.22 108 | 94.93 64 | 59.04 139 | 97.67 55 | 81.55 93 | 92.21 69 | 94.49 97 |
|
#test# | | | 84.98 63 | 84.74 64 | 85.72 93 | 93.75 58 | 65.01 165 | 94.09 60 | 93.19 95 | 73.55 141 | 79.22 108 | 94.93 64 | 59.04 139 | 97.67 55 | 82.66 84 | 92.21 69 | 94.49 97 |
|
Anonymous202405211 | | | 77.96 187 | 75.33 203 | 85.87 87 | 93.73 60 | 64.52 173 | 94.85 44 | 85.36 310 | 62.52 290 | 76.11 141 | 90.18 165 | 29.43 338 | 97.29 77 | 68.51 196 | 77.24 199 | 95.81 44 |
|
SD-MVS | | | 87.49 26 | 87.49 28 | 87.50 35 | 93.60 61 | 68.82 61 | 93.90 74 | 92.63 119 | 76.86 89 | 87.90 26 | 95.76 35 | 66.17 60 | 97.63 60 | 89.06 31 | 91.48 81 | 96.05 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ETH3D-3000-0.1 | | | 87.61 23 | 87.89 20 | 86.75 55 | 93.58 62 | 67.21 102 | 94.31 52 | 94.14 58 | 72.92 153 | 87.13 29 | 96.62 17 | 67.81 47 | 97.94 43 | 90.13 22 | 94.42 36 | 95.09 71 |
|
ACMMPR | | | 84.37 71 | 84.06 70 | 85.28 109 | 93.56 63 | 64.37 183 | 93.50 92 | 93.15 98 | 72.19 173 | 78.85 117 | 94.86 68 | 56.69 166 | 97.45 66 | 81.55 93 | 92.20 71 | 94.02 117 |
|
region2R | | | 84.36 72 | 84.03 71 | 85.36 107 | 93.54 64 | 64.31 185 | 93.43 95 | 92.95 106 | 72.16 176 | 78.86 116 | 94.84 69 | 56.97 161 | 97.53 64 | 81.38 97 | 92.11 73 | 94.24 102 |
|
TSAR-MVS + GP. | | | 87.96 18 | 88.37 17 | 86.70 59 | 93.51 65 | 65.32 152 | 95.15 35 | 93.84 63 | 78.17 69 | 85.93 43 | 94.80 70 | 75.80 13 | 98.21 35 | 89.38 25 | 88.78 105 | 96.59 15 |
|
PHI-MVS | | | 86.83 39 | 86.85 39 | 86.78 54 | 93.47 66 | 65.55 148 | 95.39 29 | 95.10 17 | 71.77 190 | 85.69 47 | 96.52 18 | 62.07 108 | 98.77 21 | 86.06 58 | 95.60 12 | 96.03 37 |
|
SR-MVS | | | 82.81 100 | 82.58 96 | 83.50 160 | 93.35 67 | 61.16 248 | 92.23 138 | 91.28 173 | 64.48 272 | 81.27 84 | 95.28 48 | 53.71 201 | 95.86 137 | 82.87 81 | 88.77 106 | 93.49 133 |
|
EPNet | | | 87.84 21 | 88.38 16 | 86.23 78 | 93.30 68 | 66.05 133 | 95.26 31 | 94.84 24 | 87.09 3 | 88.06 25 | 94.53 75 | 66.79 56 | 97.34 74 | 83.89 75 | 91.68 77 | 95.29 59 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test1172 | | | 81.90 116 | 81.83 106 | 82.13 193 | 93.23 69 | 57.52 298 | 91.61 168 | 90.98 188 | 64.32 274 | 80.20 97 | 95.00 60 | 51.26 222 | 95.61 151 | 81.73 92 | 88.13 112 | 93.26 139 |
|
XVS | | | 83.87 85 | 83.47 76 | 85.05 114 | 93.22 70 | 63.78 195 | 92.92 113 | 92.66 116 | 73.99 127 | 78.18 120 | 94.31 88 | 55.25 180 | 97.41 69 | 79.16 111 | 91.58 79 | 93.95 119 |
|
X-MVStestdata | | | 76.86 201 | 74.13 221 | 85.05 114 | 93.22 70 | 63.78 195 | 92.92 113 | 92.66 116 | 73.99 127 | 78.18 120 | 10.19 371 | 55.25 180 | 97.41 69 | 79.16 111 | 91.58 79 | 93.95 119 |
|
SMA-MVS |  | | 88.14 15 | 88.29 18 | 87.67 28 | 93.21 72 | 68.72 63 | 93.85 77 | 94.03 60 | 74.18 124 | 91.74 9 | 96.67 16 | 65.61 68 | 98.42 32 | 89.24 28 | 96.08 7 | 95.88 43 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
原ACMM1 | | | | | 84.42 136 | 93.21 72 | 64.27 188 | | 93.40 88 | 65.39 267 | 79.51 105 | 92.50 125 | 58.11 147 | 96.69 112 | 65.27 230 | 93.96 42 | 92.32 165 |
|
MVS_111021_HR | | | 86.19 47 | 85.80 50 | 87.37 38 | 93.17 74 | 69.79 41 | 93.99 66 | 93.76 67 | 79.08 57 | 78.88 115 | 93.99 96 | 62.25 107 | 98.15 38 | 85.93 59 | 91.15 87 | 94.15 108 |
|
CP-MVS | | | 83.71 89 | 83.40 81 | 84.65 129 | 93.14 75 | 63.84 193 | 94.59 47 | 92.28 128 | 71.03 211 | 77.41 129 | 94.92 66 | 55.21 183 | 96.19 123 | 81.32 98 | 90.70 92 | 93.91 121 |
|
DELS-MVS | | | 90.05 7 | 90.09 9 | 89.94 4 | 93.14 75 | 73.88 8 | 97.01 3 | 94.40 47 | 88.32 2 | 85.71 46 | 94.91 67 | 74.11 19 | 98.91 17 | 87.26 50 | 95.94 9 | 97.03 10 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ZNCC-MVS | | | 85.33 58 | 85.08 59 | 86.06 81 | 93.09 77 | 65.65 145 | 93.89 75 | 93.41 87 | 73.75 135 | 79.94 99 | 94.68 73 | 60.61 120 | 98.03 41 | 82.63 86 | 93.72 49 | 94.52 94 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 127 | 93.00 78 | 58.16 290 | 96.72 7 | 94.41 45 | 86.50 5 | 90.25 17 | 97.83 1 | 75.46 14 | 98.67 23 | 92.78 4 | 95.49 13 | 97.32 6 |
|
PLC |  | 68.80 14 | 75.23 228 | 73.68 227 | 79.86 246 | 92.93 79 | 58.68 285 | 90.64 206 | 88.30 276 | 60.90 301 | 64.43 270 | 90.53 157 | 42.38 283 | 94.57 186 | 56.52 274 | 76.54 203 | 86.33 252 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DWT-MVSNet_test | | | 83.95 83 | 82.80 92 | 87.41 37 | 92.90 80 | 70.07 33 | 89.12 244 | 94.42 44 | 82.15 20 | 77.64 125 | 91.77 140 | 70.81 33 | 96.22 122 | 65.03 231 | 81.36 164 | 95.94 39 |
|
MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 86 | 92.83 81 | 64.03 192 | 93.06 104 | 94.33 51 | 82.19 19 | 93.65 3 | 96.15 30 | 85.89 1 | 97.19 83 | 91.02 19 | 97.75 1 | 96.43 26 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
mPP-MVS | | | 82.96 99 | 82.44 99 | 84.52 133 | 92.83 81 | 62.92 218 | 92.76 116 | 91.85 148 | 71.52 201 | 75.61 148 | 94.24 90 | 53.48 205 | 96.99 97 | 78.97 114 | 90.73 91 | 93.64 130 |
|
GST-MVS | | | 84.63 69 | 84.29 69 | 85.66 97 | 92.82 83 | 65.27 154 | 93.04 106 | 93.13 99 | 73.20 145 | 78.89 112 | 94.18 92 | 59.41 135 | 97.85 50 | 81.45 95 | 92.48 68 | 93.86 124 |
|
WTY-MVS | | | 86.32 44 | 85.81 49 | 87.85 25 | 92.82 83 | 69.37 50 | 95.20 33 | 95.25 12 | 82.71 15 | 81.91 78 | 94.73 71 | 67.93 45 | 97.63 60 | 79.55 108 | 82.25 156 | 96.54 18 |
|
PGM-MVS | | | 83.25 93 | 82.70 95 | 84.92 118 | 92.81 85 | 64.07 191 | 90.44 209 | 92.20 135 | 71.28 206 | 77.23 132 | 94.43 78 | 55.17 184 | 97.31 76 | 79.33 110 | 91.38 83 | 93.37 134 |
|
EI-MVSNet-Vis-set | | | 83.77 87 | 83.67 73 | 84.06 144 | 92.79 86 | 63.56 205 | 91.76 161 | 94.81 27 | 79.65 47 | 77.87 122 | 94.09 93 | 63.35 97 | 97.90 47 | 79.35 109 | 79.36 175 | 90.74 193 |
|
SF-MVS | | | 87.03 34 | 87.09 35 | 86.84 50 | 92.70 87 | 67.45 97 | 93.64 85 | 93.76 67 | 70.78 217 | 86.25 35 | 96.44 21 | 66.98 52 | 97.79 51 | 88.68 36 | 94.56 33 | 95.28 61 |
|
MVSTER | | | 82.47 105 | 82.05 102 | 83.74 150 | 92.68 88 | 69.01 56 | 91.90 153 | 93.21 92 | 79.83 42 | 72.14 183 | 85.71 218 | 74.72 15 | 94.72 181 | 75.72 135 | 72.49 224 | 87.50 230 |
|
MP-MVS |  | | 85.02 61 | 84.97 61 | 85.17 113 | 92.60 89 | 64.27 188 | 93.24 99 | 92.27 129 | 73.13 147 | 79.63 104 | 94.43 78 | 61.90 109 | 97.17 84 | 85.00 65 | 92.56 65 | 94.06 114 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
thres200 | | | 79.66 153 | 78.33 157 | 83.66 156 | 92.54 90 | 65.82 142 | 93.06 104 | 96.31 3 | 74.90 115 | 73.30 166 | 88.66 179 | 59.67 131 | 95.61 151 | 47.84 307 | 78.67 182 | 89.56 208 |
|
test_part1 | | | 79.63 154 | 77.86 168 | 84.93 117 | 92.50 91 | 71.43 17 | 94.15 57 | 91.08 183 | 72.51 161 | 70.66 197 | 84.98 224 | 59.84 128 | 95.07 170 | 72.07 166 | 62.94 288 | 88.30 224 |
|
APD-MVS_3200maxsize | | | 81.64 119 | 81.32 111 | 82.59 178 | 92.36 92 | 58.74 284 | 91.39 176 | 91.01 187 | 63.35 280 | 79.72 103 | 94.62 74 | 51.82 215 | 96.14 125 | 79.71 106 | 87.93 114 | 92.89 153 |
|
新几何1 | | | | | 84.73 125 | 92.32 93 | 64.28 187 | | 91.46 166 | 59.56 311 | 79.77 102 | 92.90 117 | 56.95 162 | 96.57 115 | 63.40 240 | 92.91 61 | 93.34 135 |
|
1121 | | | 81.25 124 | 80.05 129 | 84.87 121 | 92.30 94 | 64.31 185 | 87.91 262 | 91.39 168 | 59.44 312 | 79.94 99 | 92.91 116 | 57.09 155 | 97.01 92 | 66.63 210 | 92.81 63 | 93.29 138 |
|
EI-MVSNet-UG-set | | | 83.14 95 | 82.96 88 | 83.67 155 | 92.28 95 | 63.19 211 | 91.38 178 | 94.68 33 | 79.22 52 | 76.60 138 | 93.75 99 | 62.64 103 | 97.76 53 | 78.07 123 | 78.01 186 | 90.05 201 |
|
HPM-MVS |  | | 83.25 93 | 82.95 89 | 84.17 142 | 92.25 96 | 62.88 220 | 90.91 195 | 91.86 147 | 70.30 222 | 77.12 133 | 93.96 97 | 56.75 164 | 96.28 120 | 82.04 89 | 91.34 85 | 93.34 135 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HY-MVS | | 76.49 5 | 84.28 74 | 83.36 83 | 87.02 47 | 92.22 97 | 67.74 87 | 84.65 285 | 94.50 39 | 79.15 54 | 82.23 76 | 87.93 193 | 66.88 54 | 96.94 102 | 80.53 103 | 82.20 157 | 96.39 28 |
|
tfpn200view9 | | | 78.79 171 | 77.43 174 | 82.88 170 | 92.21 98 | 64.49 174 | 92.05 146 | 96.28 4 | 73.48 142 | 71.75 189 | 88.26 187 | 60.07 126 | 95.32 164 | 45.16 317 | 77.58 191 | 88.83 211 |
|
thres400 | | | 78.68 174 | 77.43 174 | 82.43 180 | 92.21 98 | 64.49 174 | 92.05 146 | 96.28 4 | 73.48 142 | 71.75 189 | 88.26 187 | 60.07 126 | 95.32 164 | 45.16 317 | 77.58 191 | 87.48 231 |
|
PS-MVSNAJ | | | 88.14 15 | 87.61 26 | 89.71 7 | 92.06 100 | 76.72 1 | 95.75 20 | 93.26 91 | 83.86 10 | 89.55 19 | 96.06 31 | 53.55 202 | 97.89 48 | 91.10 17 | 93.31 55 | 94.54 92 |
|
SR-MVS-dyc-post | | | 81.06 129 | 80.70 120 | 82.15 191 | 92.02 101 | 58.56 286 | 90.90 196 | 90.45 198 | 62.76 286 | 78.89 112 | 94.46 76 | 51.26 222 | 95.61 151 | 78.77 117 | 86.77 124 | 92.28 167 |
|
RE-MVS-def | | | | 80.48 125 | | 92.02 101 | 58.56 286 | 90.90 196 | 90.45 198 | 62.76 286 | 78.89 112 | 94.46 76 | 49.30 239 | | 78.77 117 | 86.77 124 | 92.28 167 |
|
MSLP-MVS++ | | | 86.27 45 | 85.91 48 | 87.35 39 | 92.01 103 | 68.97 58 | 95.04 41 | 92.70 113 | 79.04 58 | 81.50 82 | 96.50 20 | 58.98 141 | 96.78 108 | 83.49 77 | 93.93 43 | 96.29 30 |
|
ETH3D cwj APD-0.16 | | | 87.06 33 | 87.18 34 | 86.71 57 | 91.99 104 | 67.48 96 | 92.97 109 | 94.21 54 | 71.48 204 | 85.72 45 | 96.32 26 | 68.13 41 | 98.00 42 | 89.06 31 | 94.70 31 | 94.65 88 |
|
旧先验1 | | | | | | 91.94 105 | 60.74 258 | | 91.50 164 | | | 94.36 80 | 65.23 71 | | | 91.84 74 | 94.55 90 |
|
thres600view7 | | | 78.00 185 | 76.66 187 | 82.03 199 | 91.93 106 | 63.69 200 | 91.30 183 | 96.33 1 | 72.43 165 | 70.46 200 | 87.89 194 | 60.31 121 | 94.92 176 | 42.64 329 | 76.64 202 | 87.48 231 |
|
LS3D | | | 69.17 273 | 66.40 276 | 77.50 277 | 91.92 107 | 56.12 309 | 85.12 282 | 80.37 338 | 46.96 349 | 56.50 315 | 87.51 199 | 37.25 308 | 93.71 223 | 32.52 358 | 79.40 174 | 82.68 309 |
|
GG-mvs-BLEND | | | | | 86.53 66 | 91.91 108 | 69.67 46 | 75.02 337 | 94.75 30 | | 78.67 119 | 90.85 152 | 77.91 7 | 94.56 188 | 72.25 162 | 93.74 48 | 95.36 54 |
|
thres100view900 | | | 78.37 180 | 77.01 182 | 82.46 179 | 91.89 109 | 63.21 210 | 91.19 189 | 96.33 1 | 72.28 170 | 70.45 201 | 87.89 194 | 60.31 121 | 95.32 164 | 45.16 317 | 77.58 191 | 88.83 211 |
|
zzz-MVS | | | 84.73 66 | 84.47 65 | 85.50 100 | 91.89 109 | 65.16 158 | 91.55 169 | 92.23 130 | 75.32 108 | 80.53 93 | 95.21 54 | 56.06 174 | 97.16 85 | 84.86 68 | 92.55 66 | 94.18 104 |
|
MTAPA | | | 83.91 84 | 83.38 82 | 85.50 100 | 91.89 109 | 65.16 158 | 81.75 305 | 92.23 130 | 75.32 108 | 80.53 93 | 95.21 54 | 56.06 174 | 97.16 85 | 84.86 68 | 92.55 66 | 94.18 104 |
|
RRT_test8_iter05 | | | 80.61 135 | 79.62 138 | 83.60 157 | 91.87 112 | 66.90 113 | 93.42 97 | 93.68 72 | 77.09 87 | 68.83 224 | 85.63 219 | 66.82 55 | 95.42 160 | 76.46 133 | 62.74 290 | 88.48 218 |
|
canonicalmvs | | | 86.85 38 | 86.25 43 | 88.66 18 | 91.80 113 | 71.92 15 | 93.54 90 | 91.71 154 | 80.26 41 | 87.55 27 | 95.25 52 | 63.59 94 | 96.93 104 | 88.18 38 | 84.34 144 | 97.11 8 |
|
TSAR-MVS + MP. | | | 88.11 17 | 88.64 15 | 86.54 65 | 91.73 114 | 68.04 79 | 90.36 213 | 93.55 78 | 82.89 13 | 91.29 11 | 92.89 118 | 72.27 28 | 96.03 132 | 87.99 39 | 94.77 25 | 95.54 50 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP |  | | 81.49 120 | 80.67 121 | 83.93 147 | 91.71 115 | 62.90 219 | 92.13 140 | 92.22 134 | 71.79 189 | 71.68 191 | 93.49 105 | 50.32 228 | 96.96 100 | 78.47 119 | 84.22 149 | 91.93 174 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
BH-RMVSNet | | | 79.46 159 | 77.65 170 | 84.89 119 | 91.68 116 | 65.66 144 | 93.55 89 | 88.09 282 | 72.93 152 | 73.37 165 | 91.12 149 | 46.20 267 | 96.12 126 | 56.28 276 | 85.61 134 | 92.91 152 |
|
baseline1 | | | 81.84 117 | 81.03 117 | 84.28 141 | 91.60 117 | 66.62 121 | 91.08 192 | 91.66 157 | 81.87 24 | 74.86 153 | 91.67 144 | 69.98 35 | 94.92 176 | 71.76 169 | 64.75 276 | 91.29 188 |
|
ACMMP_NAP | | | 86.05 48 | 85.80 50 | 86.80 53 | 91.58 118 | 67.53 93 | 91.79 158 | 93.49 82 | 74.93 114 | 84.61 55 | 95.30 47 | 59.42 134 | 97.92 45 | 86.13 57 | 94.92 19 | 94.94 78 |
|
MVS_Test | | | 84.16 79 | 83.20 84 | 87.05 46 | 91.56 119 | 69.82 40 | 89.99 226 | 92.05 138 | 77.77 76 | 82.84 72 | 86.57 208 | 63.93 87 | 96.09 127 | 74.91 144 | 89.18 103 | 95.25 66 |
|
HPM-MVS_fast | | | 80.25 142 | 79.55 142 | 82.33 184 | 91.55 120 | 59.95 270 | 91.32 182 | 89.16 250 | 65.23 270 | 74.71 154 | 93.07 112 | 47.81 254 | 95.74 142 | 74.87 146 | 88.23 110 | 91.31 187 |
|
CPTT-MVS | | | 79.59 155 | 79.16 150 | 80.89 228 | 91.54 121 | 59.80 272 | 92.10 142 | 88.54 273 | 60.42 304 | 72.96 168 | 93.28 107 | 48.27 248 | 92.80 246 | 78.89 116 | 86.50 129 | 90.06 200 |
|
CNLPA | | | 74.31 236 | 72.30 242 | 80.32 233 | 91.49 122 | 61.66 240 | 90.85 199 | 80.72 337 | 56.67 326 | 63.85 274 | 90.64 154 | 46.75 259 | 90.84 290 | 53.79 284 | 75.99 206 | 88.47 220 |
|
MP-MVS-pluss | | | 85.24 59 | 85.13 58 | 85.56 99 | 91.42 123 | 65.59 147 | 91.54 170 | 92.51 123 | 74.56 117 | 80.62 92 | 95.64 39 | 59.15 138 | 97.00 94 | 86.94 53 | 93.80 46 | 94.07 113 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
gg-mvs-nofinetune | | | 77.18 199 | 74.31 216 | 85.80 90 | 91.42 123 | 68.36 70 | 71.78 339 | 94.72 31 | 49.61 343 | 77.12 133 | 45.92 359 | 77.41 8 | 93.98 215 | 67.62 203 | 93.16 57 | 95.05 73 |
|
xiu_mvs_v2_base | | | 87.92 20 | 87.38 31 | 89.55 12 | 91.41 125 | 76.43 3 | 95.74 21 | 93.12 100 | 83.53 12 | 89.55 19 | 95.95 32 | 53.45 206 | 97.68 54 | 91.07 18 | 92.62 64 | 94.54 92 |
|
EIA-MVS | | | 84.84 65 | 84.88 62 | 84.69 128 | 91.30 126 | 62.36 227 | 93.85 77 | 92.04 139 | 79.45 48 | 79.33 107 | 94.28 89 | 62.42 106 | 96.35 119 | 80.05 105 | 91.25 86 | 95.38 53 |
|
alignmvs | | | 87.28 28 | 86.97 36 | 88.24 23 | 91.30 126 | 71.14 22 | 95.61 25 | 93.56 77 | 79.30 50 | 87.07 32 | 95.25 52 | 68.43 37 | 96.93 104 | 87.87 40 | 84.33 145 | 96.65 13 |
|
EPMVS | | | 78.49 179 | 75.98 196 | 86.02 82 | 91.21 128 | 69.68 45 | 80.23 318 | 91.20 174 | 75.25 110 | 72.48 178 | 78.11 302 | 54.65 188 | 93.69 224 | 57.66 272 | 83.04 151 | 94.69 84 |
|
FMVSNet3 | | | 77.73 191 | 76.04 195 | 82.80 171 | 91.20 129 | 68.99 57 | 91.87 154 | 91.99 141 | 73.35 144 | 67.04 248 | 83.19 244 | 56.62 167 | 92.14 269 | 59.80 264 | 69.34 242 | 87.28 237 |
|
Anonymous20240529 | | | 76.84 203 | 74.15 220 | 84.88 120 | 91.02 130 | 64.95 168 | 93.84 80 | 91.09 181 | 53.57 333 | 73.00 167 | 87.42 200 | 35.91 317 | 97.32 75 | 69.14 191 | 72.41 226 | 92.36 163 |
|
tpmvs | | | 72.88 250 | 69.76 262 | 82.22 189 | 90.98 131 | 67.05 108 | 78.22 330 | 88.30 276 | 63.10 284 | 64.35 271 | 74.98 324 | 55.09 185 | 94.27 199 | 43.25 323 | 69.57 241 | 85.34 278 |
|
MVS | | | 84.66 68 | 82.86 91 | 90.06 2 | 90.93 132 | 74.56 6 | 87.91 262 | 95.54 9 | 68.55 244 | 72.35 182 | 94.71 72 | 59.78 130 | 98.90 18 | 81.29 99 | 94.69 32 | 96.74 12 |
|
PVSNet | | 73.49 8 | 80.05 146 | 78.63 154 | 84.31 139 | 90.92 133 | 64.97 167 | 92.47 132 | 91.05 185 | 79.18 53 | 72.43 180 | 90.51 158 | 37.05 313 | 94.06 208 | 68.06 198 | 86.00 131 | 93.90 123 |
|
RRT_MVS | | | 77.38 196 | 76.59 188 | 79.77 249 | 90.91 134 | 63.61 204 | 91.15 190 | 90.91 189 | 72.28 170 | 72.06 185 | 87.28 203 | 43.92 277 | 89.04 309 | 73.32 150 | 67.47 257 | 86.67 245 |
|
3Dnovator+ | | 73.60 7 | 82.10 113 | 80.60 123 | 86.60 61 | 90.89 135 | 66.80 117 | 95.20 33 | 93.44 85 | 74.05 126 | 67.42 243 | 92.49 127 | 49.46 237 | 97.65 59 | 70.80 175 | 91.68 77 | 95.33 55 |
|
VDD-MVS | | | 83.06 96 | 81.81 107 | 86.81 52 | 90.86 136 | 67.70 88 | 95.40 28 | 91.50 164 | 75.46 103 | 81.78 79 | 92.34 132 | 40.09 290 | 97.13 87 | 86.85 54 | 82.04 158 | 95.60 48 |
|
BH-w/o | | | 80.49 139 | 79.30 147 | 84.05 145 | 90.83 137 | 64.36 184 | 93.60 87 | 89.42 240 | 74.35 120 | 69.09 217 | 90.15 166 | 55.23 182 | 95.61 151 | 64.61 233 | 86.43 130 | 92.17 172 |
|
ET-MVSNet_ETH3D | | | 84.01 81 | 83.15 87 | 86.58 63 | 90.78 138 | 70.89 23 | 94.74 46 | 94.62 36 | 81.44 29 | 58.19 305 | 93.64 101 | 73.64 22 | 92.35 266 | 82.66 84 | 78.66 183 | 96.50 23 |
|
CS-MVS-test | | | 85.35 57 | 85.55 54 | 84.75 124 | 90.77 139 | 65.29 153 | 95.38 30 | 91.54 160 | 78.03 71 | 83.67 67 | 94.32 87 | 62.47 105 | 95.81 138 | 82.73 83 | 91.00 89 | 93.15 143 |
|
Anonymous20231211 | | | 73.08 245 | 70.39 256 | 81.13 218 | 90.62 140 | 63.33 207 | 91.40 174 | 90.06 220 | 51.84 337 | 64.46 269 | 80.67 279 | 36.49 315 | 94.07 207 | 63.83 238 | 64.17 281 | 85.98 264 |
|
TR-MVS | | | 78.77 172 | 77.37 179 | 82.95 169 | 90.49 141 | 60.88 252 | 93.67 84 | 90.07 217 | 70.08 225 | 74.51 155 | 91.37 147 | 45.69 268 | 95.70 148 | 60.12 262 | 80.32 170 | 92.29 166 |
|
CS-MVS | | | 87.54 24 | 87.81 22 | 86.74 56 | 90.46 142 | 70.23 31 | 96.34 14 | 92.31 127 | 81.40 30 | 86.14 40 | 95.17 57 | 65.49 69 | 95.92 135 | 89.09 29 | 93.91 44 | 94.06 114 |
|
SteuartSystems-ACMMP | | | 86.82 40 | 86.90 37 | 86.58 63 | 90.42 143 | 66.38 126 | 96.09 16 | 93.87 62 | 77.73 77 | 84.01 65 | 95.66 38 | 63.39 96 | 97.94 43 | 87.40 47 | 93.55 53 | 95.42 51 |
Skip Steuart: Steuart Systems R&D Blog. |
TAPA-MVS | | 70.22 12 | 74.94 232 | 73.53 228 | 79.17 260 | 90.40 144 | 52.07 328 | 89.19 242 | 89.61 235 | 62.69 288 | 70.07 206 | 92.67 123 | 48.89 246 | 94.32 196 | 38.26 343 | 79.97 171 | 91.12 190 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
mvs_anonymous | | | 81.36 122 | 79.99 132 | 85.46 102 | 90.39 145 | 68.40 69 | 86.88 276 | 90.61 197 | 74.41 118 | 70.31 204 | 84.67 228 | 63.79 89 | 92.32 267 | 73.13 151 | 85.70 132 | 95.67 45 |
|
CANet_DTU | | | 84.09 80 | 83.52 74 | 85.81 89 | 90.30 146 | 66.82 115 | 91.87 154 | 89.01 258 | 85.27 6 | 86.09 41 | 93.74 100 | 47.71 255 | 96.98 98 | 77.90 125 | 89.78 100 | 93.65 129 |
|
Fast-Effi-MVS+ | | | 81.14 126 | 80.01 131 | 84.51 134 | 90.24 147 | 65.86 139 | 94.12 59 | 89.15 251 | 73.81 134 | 75.37 151 | 88.26 187 | 57.26 153 | 94.53 191 | 66.97 209 | 84.92 137 | 93.15 143 |
|
ETV-MVS | | | 86.01 49 | 86.11 45 | 85.70 96 | 90.21 148 | 67.02 110 | 93.43 95 | 91.92 144 | 81.21 32 | 84.13 63 | 94.07 95 | 60.93 117 | 95.63 149 | 89.28 27 | 89.81 98 | 94.46 99 |
|
tpmrst | | | 80.57 136 | 79.14 151 | 84.84 122 | 90.10 149 | 68.28 73 | 81.70 306 | 89.72 233 | 77.63 80 | 75.96 142 | 79.54 294 | 64.94 76 | 92.71 249 | 75.43 136 | 77.28 198 | 93.55 131 |
|
PVSNet_Blended_VisFu | | | 83.97 82 | 83.50 75 | 85.39 106 | 90.02 150 | 66.59 123 | 93.77 82 | 91.73 152 | 77.43 84 | 77.08 135 | 89.81 171 | 63.77 90 | 96.97 99 | 79.67 107 | 88.21 111 | 92.60 158 |
|
UGNet | | | 79.87 150 | 78.68 153 | 83.45 162 | 89.96 151 | 61.51 242 | 92.13 140 | 90.79 191 | 76.83 90 | 78.85 117 | 86.33 211 | 38.16 299 | 96.17 124 | 67.93 200 | 87.17 119 | 92.67 156 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CHOSEN 1792x2688 | | | 84.98 63 | 83.45 77 | 89.57 11 | 89.94 152 | 75.14 5 | 92.07 145 | 92.32 126 | 81.87 24 | 75.68 145 | 88.27 186 | 60.18 123 | 98.60 25 | 80.46 104 | 90.27 97 | 94.96 77 |
|
abl_6 | | | 79.82 151 | 79.20 149 | 81.70 205 | 89.85 153 | 58.34 288 | 88.47 255 | 90.07 217 | 62.56 289 | 77.71 124 | 93.08 110 | 47.65 256 | 96.78 108 | 77.94 124 | 85.45 135 | 89.99 202 |
|
BH-untuned | | | 78.68 174 | 77.08 180 | 83.48 161 | 89.84 154 | 63.74 197 | 92.70 120 | 88.59 271 | 71.57 199 | 66.83 251 | 88.65 180 | 51.75 217 | 95.39 162 | 59.03 267 | 84.77 139 | 91.32 186 |
|
test222 | | | | | | 89.77 155 | 61.60 241 | 89.55 232 | 89.42 240 | 56.83 325 | 77.28 131 | 92.43 129 | 52.76 209 | | | 91.14 88 | 93.09 146 |
|
PMMVS | | | 81.98 115 | 82.04 103 | 81.78 201 | 89.76 156 | 56.17 308 | 91.13 191 | 90.69 193 | 77.96 72 | 80.09 98 | 93.57 103 | 46.33 265 | 94.99 172 | 81.41 96 | 87.46 117 | 94.17 106 |
|
DPM-MVS | | | 90.70 2 | 90.52 6 | 91.24 1 | 89.68 157 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 10 | 97.22 4 | 79.93 5 | 99.10 9 | 83.12 79 | 97.64 2 | 97.94 1 |
|
QAPM | | | 79.95 149 | 77.39 178 | 87.64 29 | 89.63 158 | 71.41 18 | 93.30 98 | 93.70 71 | 65.34 269 | 67.39 245 | 91.75 142 | 47.83 253 | 98.96 16 | 57.71 271 | 89.81 98 | 92.54 160 |
|
3Dnovator | | 73.91 6 | 82.69 104 | 80.82 118 | 88.31 22 | 89.57 159 | 71.26 19 | 92.60 126 | 94.39 48 | 78.84 60 | 67.89 237 | 92.48 128 | 48.42 247 | 98.52 26 | 68.80 195 | 94.40 37 | 95.15 68 |
|
Effi-MVS+ | | | 83.82 86 | 82.76 93 | 86.99 48 | 89.56 160 | 69.40 47 | 91.35 180 | 86.12 304 | 72.59 158 | 83.22 70 | 92.81 122 | 59.60 132 | 96.01 134 | 81.76 91 | 87.80 115 | 95.56 49 |
|
PatchmatchNet |  | | 77.46 194 | 74.63 209 | 85.96 84 | 89.55 161 | 70.35 29 | 79.97 322 | 89.55 236 | 72.23 172 | 70.94 195 | 76.91 313 | 57.03 157 | 92.79 247 | 54.27 282 | 81.17 165 | 94.74 83 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PatchMatch-RL | | | 72.06 256 | 69.98 257 | 78.28 269 | 89.51 162 | 55.70 312 | 83.49 292 | 83.39 329 | 61.24 300 | 63.72 275 | 82.76 246 | 34.77 320 | 93.03 235 | 53.37 287 | 77.59 190 | 86.12 261 |
|
thisisatest0515 | | | 83.41 91 | 82.49 98 | 86.16 79 | 89.46 163 | 68.26 74 | 93.54 90 | 94.70 32 | 74.31 121 | 75.75 143 | 90.92 150 | 72.62 26 | 96.52 117 | 69.64 183 | 81.50 162 | 93.71 127 |
|
h-mvs33 | | | 83.01 97 | 82.56 97 | 84.35 138 | 89.34 164 | 62.02 232 | 92.72 118 | 93.76 67 | 81.45 27 | 82.73 73 | 92.25 134 | 60.11 124 | 97.13 87 | 87.69 42 | 62.96 287 | 93.91 121 |
|
DROMVSNet | | | 84.53 70 | 85.04 60 | 83.01 168 | 89.34 164 | 61.37 245 | 94.42 49 | 91.09 181 | 77.91 74 | 83.24 69 | 94.20 91 | 58.37 144 | 95.40 161 | 85.35 63 | 91.41 82 | 92.27 170 |
|
UA-Net | | | 80.02 147 | 79.65 137 | 81.11 219 | 89.33 166 | 57.72 294 | 86.33 279 | 89.00 259 | 77.44 83 | 81.01 88 | 89.15 176 | 59.33 136 | 95.90 136 | 61.01 256 | 84.28 147 | 89.73 205 |
|
dp | | | 75.01 231 | 72.09 244 | 83.76 149 | 89.28 167 | 66.22 132 | 79.96 323 | 89.75 228 | 71.16 208 | 67.80 239 | 77.19 310 | 51.81 216 | 92.54 257 | 50.39 293 | 71.44 233 | 92.51 161 |
|
sss | | | 82.71 103 | 82.38 100 | 83.73 152 | 89.25 168 | 59.58 275 | 92.24 137 | 94.89 23 | 77.96 72 | 79.86 101 | 92.38 130 | 56.70 165 | 97.05 89 | 77.26 128 | 80.86 168 | 94.55 90 |
|
MVSFormer | | | 83.75 88 | 82.88 90 | 86.37 73 | 89.24 169 | 71.18 20 | 89.07 245 | 90.69 193 | 65.80 264 | 87.13 29 | 94.34 85 | 64.99 74 | 92.67 252 | 72.83 154 | 91.80 75 | 95.27 63 |
|
lupinMVS | | | 87.74 22 | 87.77 23 | 87.63 33 | 89.24 169 | 71.18 20 | 96.57 10 | 92.90 108 | 82.70 16 | 87.13 29 | 95.27 50 | 64.99 74 | 95.80 139 | 89.34 26 | 91.80 75 | 95.93 40 |
|
IB-MVS | | 77.80 4 | 82.18 109 | 80.46 126 | 87.35 39 | 89.14 171 | 70.28 30 | 95.59 26 | 95.17 14 | 78.85 59 | 70.19 205 | 85.82 216 | 70.66 34 | 97.67 55 | 72.19 165 | 66.52 263 | 94.09 111 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13 | | | | 72.61 238 | | 89.06 172 | 68.48 67 | 80.33 316 | 90.11 216 | 71.84 187 | 71.81 188 | 75.92 321 | 53.01 208 | 93.92 218 | 48.04 304 | 73.38 216 | |
|
testdata | | | | | 81.34 211 | 89.02 173 | 57.72 294 | | 89.84 226 | 58.65 316 | 85.32 51 | 94.09 93 | 57.03 157 | 93.28 231 | 69.34 188 | 90.56 95 | 93.03 148 |
|
CostFormer | | | 82.33 107 | 81.15 112 | 85.86 88 | 89.01 174 | 68.46 68 | 82.39 303 | 93.01 103 | 75.59 101 | 80.25 96 | 81.57 263 | 72.03 30 | 94.96 173 | 79.06 113 | 77.48 195 | 94.16 107 |
|
GeoE | | | 78.90 167 | 77.43 174 | 83.29 164 | 88.95 175 | 62.02 232 | 92.31 134 | 86.23 302 | 70.24 223 | 71.34 194 | 89.27 174 | 54.43 193 | 94.04 211 | 63.31 241 | 80.81 169 | 93.81 126 |
|
GBi-Net | | | 75.65 222 | 73.83 225 | 81.10 220 | 88.85 176 | 65.11 161 | 90.01 223 | 90.32 204 | 70.84 214 | 67.04 248 | 80.25 286 | 48.03 249 | 91.54 283 | 59.80 264 | 69.34 242 | 86.64 246 |
|
test1 | | | 75.65 222 | 73.83 225 | 81.10 220 | 88.85 176 | 65.11 161 | 90.01 223 | 90.32 204 | 70.84 214 | 67.04 248 | 80.25 286 | 48.03 249 | 91.54 283 | 59.80 264 | 69.34 242 | 86.64 246 |
|
FMVSNet2 | | | 76.07 211 | 74.01 223 | 82.26 188 | 88.85 176 | 67.66 89 | 91.33 181 | 91.61 158 | 70.84 214 | 65.98 255 | 82.25 252 | 48.03 249 | 92.00 274 | 58.46 269 | 68.73 248 | 87.10 239 |
|
DeepC-MVS | | 77.85 3 | 85.52 54 | 85.24 57 | 86.37 73 | 88.80 179 | 66.64 120 | 92.15 139 | 93.68 72 | 81.07 34 | 76.91 136 | 93.64 101 | 62.59 104 | 98.44 30 | 85.50 61 | 92.84 62 | 94.03 116 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EPP-MVSNet | | | 81.79 118 | 81.52 109 | 82.61 177 | 88.77 180 | 60.21 267 | 93.02 108 | 93.66 74 | 68.52 245 | 72.90 170 | 90.39 161 | 72.19 29 | 94.96 173 | 74.93 143 | 79.29 177 | 92.67 156 |
|
1112_ss | | | 80.56 137 | 79.83 135 | 82.77 172 | 88.65 181 | 60.78 254 | 92.29 135 | 88.36 275 | 72.58 159 | 72.46 179 | 94.95 62 | 65.09 73 | 93.42 230 | 66.38 216 | 77.71 188 | 94.10 110 |
|
tpm cat1 | | | 75.30 227 | 72.21 243 | 84.58 132 | 88.52 182 | 67.77 86 | 78.16 331 | 88.02 283 | 61.88 297 | 68.45 231 | 76.37 317 | 60.65 118 | 94.03 213 | 53.77 285 | 74.11 211 | 91.93 174 |
|
LCM-MVSNet-Re | | | 72.93 248 | 71.84 246 | 76.18 293 | 88.49 183 | 48.02 345 | 80.07 321 | 70.17 357 | 73.96 130 | 52.25 327 | 80.09 289 | 49.98 232 | 88.24 315 | 67.35 204 | 84.23 148 | 92.28 167 |
|
Vis-MVSNet |  | | 80.92 132 | 79.98 133 | 83.74 150 | 88.48 184 | 61.80 236 | 93.44 94 | 88.26 280 | 73.96 130 | 77.73 123 | 91.76 141 | 49.94 233 | 94.76 178 | 65.84 222 | 90.37 96 | 94.65 88 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Vis-MVSNet (Re-imp) | | | 79.24 161 | 79.57 139 | 78.24 271 | 88.46 185 | 52.29 327 | 90.41 211 | 89.12 253 | 74.24 123 | 69.13 216 | 91.91 138 | 65.77 66 | 90.09 302 | 59.00 268 | 88.09 113 | 92.33 164 |
|
ab-mvs | | | 80.18 143 | 78.31 158 | 85.80 90 | 88.44 186 | 65.49 151 | 83.00 300 | 92.67 115 | 71.82 188 | 77.36 130 | 85.01 223 | 54.50 189 | 96.59 113 | 76.35 134 | 75.63 207 | 95.32 57 |
|
gm-plane-assit | | | | | | 88.42 187 | 67.04 109 | | | 78.62 64 | | 91.83 139 | | 97.37 71 | 76.57 131 | | |
|
MVS_111021_LR | | | 82.02 114 | 81.52 109 | 83.51 159 | 88.42 187 | 62.88 220 | 89.77 229 | 88.93 260 | 76.78 91 | 75.55 149 | 93.10 108 | 50.31 229 | 95.38 163 | 83.82 76 | 87.02 120 | 92.26 171 |
|
ECVR-MVS1 |  | | 81.29 123 | 80.38 127 | 84.01 146 | 88.39 189 | 61.96 234 | 92.56 131 | 86.79 296 | 77.66 79 | 76.63 137 | 91.42 145 | 46.34 264 | 95.24 168 | 74.36 148 | 89.23 102 | 94.85 79 |
|
baseline | | | 85.01 62 | 84.44 67 | 86.71 57 | 88.33 190 | 68.73 62 | 90.24 217 | 91.82 150 | 81.05 35 | 81.18 85 | 92.50 125 | 63.69 91 | 96.08 129 | 84.45 70 | 86.71 126 | 95.32 57 |
|
tpm2 | | | 79.80 152 | 77.95 165 | 85.34 108 | 88.28 191 | 68.26 74 | 81.56 308 | 91.42 167 | 70.11 224 | 77.59 128 | 80.50 281 | 67.40 49 | 94.26 201 | 67.34 205 | 77.35 196 | 93.51 132 |
|
thisisatest0530 | | | 81.15 125 | 80.07 128 | 84.39 137 | 88.26 192 | 65.63 146 | 91.40 174 | 94.62 36 | 71.27 207 | 70.93 196 | 89.18 175 | 72.47 27 | 96.04 131 | 65.62 225 | 76.89 201 | 91.49 179 |
|
casdiffmvs | | | 85.37 56 | 84.87 63 | 86.84 50 | 88.25 193 | 69.07 54 | 93.04 106 | 91.76 151 | 81.27 31 | 80.84 91 | 92.07 136 | 64.23 83 | 96.06 130 | 84.98 66 | 87.43 118 | 95.39 52 |
|
Test_1112_low_res | | | 79.56 156 | 78.60 155 | 82.43 180 | 88.24 194 | 60.39 264 | 92.09 143 | 87.99 284 | 72.10 177 | 71.84 187 | 87.42 200 | 64.62 79 | 93.04 234 | 65.80 223 | 77.30 197 | 93.85 125 |
|
PAPM | | | 85.89 51 | 85.46 55 | 87.18 42 | 88.20 195 | 72.42 14 | 92.41 133 | 92.77 111 | 82.11 21 | 80.34 95 | 93.07 112 | 68.27 38 | 95.02 171 | 78.39 120 | 93.59 52 | 94.09 111 |
|
TESTMET0.1,1 | | | 82.41 106 | 81.98 104 | 83.72 153 | 88.08 196 | 63.74 197 | 92.70 120 | 93.77 66 | 79.30 50 | 77.61 127 | 87.57 198 | 58.19 146 | 94.08 206 | 73.91 149 | 86.68 127 | 93.33 137 |
|
ADS-MVSNet2 | | | 66.90 292 | 63.44 297 | 77.26 283 | 88.06 197 | 60.70 259 | 68.01 348 | 75.56 347 | 57.57 318 | 64.48 267 | 69.87 341 | 38.68 293 | 84.10 336 | 40.87 334 | 67.89 254 | 86.97 240 |
|
ADS-MVSNet | | | 68.54 280 | 64.38 293 | 81.03 224 | 88.06 197 | 66.90 113 | 68.01 348 | 84.02 322 | 57.57 318 | 64.48 267 | 69.87 341 | 38.68 293 | 89.21 308 | 40.87 334 | 67.89 254 | 86.97 240 |
|
EPNet_dtu | | | 78.80 170 | 79.26 148 | 77.43 279 | 88.06 197 | 49.71 340 | 91.96 152 | 91.95 143 | 77.67 78 | 76.56 139 | 91.28 148 | 58.51 143 | 90.20 300 | 56.37 275 | 80.95 167 | 92.39 162 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_enhance_ethall | | | 78.86 168 | 77.97 164 | 81.54 207 | 88.00 200 | 65.17 157 | 91.41 172 | 89.15 251 | 75.19 111 | 68.79 225 | 83.98 235 | 67.17 51 | 92.82 244 | 72.73 157 | 65.30 267 | 86.62 250 |
|
IS-MVSNet | | | 80.14 144 | 79.41 144 | 82.33 184 | 87.91 201 | 60.08 269 | 91.97 151 | 88.27 278 | 72.90 154 | 71.44 193 | 91.73 143 | 61.44 112 | 93.66 225 | 62.47 249 | 86.53 128 | 93.24 140 |
|
CLD-MVS | | | 82.73 101 | 82.35 101 | 83.86 148 | 87.90 202 | 67.65 90 | 95.45 27 | 92.18 137 | 85.06 7 | 72.58 175 | 92.27 133 | 52.46 212 | 95.78 140 | 84.18 71 | 79.06 178 | 88.16 225 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ECVR-MVS | | | 80.84 133 | 80.02 130 | 83.33 163 | 87.87 203 | 60.76 256 | 92.62 125 | 86.86 295 | 77.86 75 | 75.73 144 | 91.39 146 | 46.35 263 | 94.70 184 | 72.79 156 | 88.68 107 | 94.52 94 |
|
HyFIR lowres test | | | 81.03 130 | 79.56 140 | 85.43 104 | 87.81 204 | 68.11 78 | 90.18 218 | 90.01 222 | 70.65 219 | 72.95 169 | 86.06 214 | 63.61 93 | 94.50 193 | 75.01 142 | 79.75 173 | 93.67 128 |
|
1314 | | | 80.70 134 | 78.95 152 | 85.94 85 | 87.77 205 | 67.56 91 | 87.91 262 | 92.55 122 | 72.17 175 | 67.44 242 | 93.09 109 | 50.27 230 | 97.04 91 | 71.68 171 | 87.64 116 | 93.23 141 |
|
cl22 | | | 77.94 188 | 76.78 185 | 81.42 209 | 87.57 206 | 64.93 169 | 90.67 204 | 88.86 263 | 72.45 164 | 67.63 241 | 82.68 248 | 64.07 84 | 92.91 242 | 71.79 167 | 65.30 267 | 86.44 251 |
|
HQP-NCC | | | | | | 87.54 207 | | 94.06 62 | | 79.80 43 | 74.18 157 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 207 | | 94.06 62 | | 79.80 43 | 74.18 157 | | | | | | |
|
HQP-MVS | | | 81.14 126 | 80.64 122 | 82.64 176 | 87.54 207 | 63.66 202 | 94.06 62 | 91.70 155 | 79.80 43 | 74.18 157 | 90.30 163 | 51.63 219 | 95.61 151 | 77.63 126 | 78.90 179 | 88.63 215 |
|
NP-MVS | | | | | | 87.41 210 | 63.04 212 | | | | | 90.30 163 | | | | | |
|
diffmvs | | | 84.28 74 | 83.83 72 | 85.61 98 | 87.40 211 | 68.02 80 | 90.88 198 | 89.24 245 | 80.54 39 | 81.64 81 | 92.52 124 | 59.83 129 | 94.52 192 | 87.32 49 | 85.11 136 | 94.29 100 |
|
baseline2 | | | 83.68 90 | 83.42 80 | 84.48 135 | 87.37 212 | 66.00 135 | 90.06 221 | 95.93 7 | 79.71 46 | 69.08 218 | 90.39 161 | 77.92 6 | 96.28 120 | 78.91 115 | 81.38 163 | 91.16 189 |
|
plane_prior6 | | | | | | 87.23 213 | 62.32 228 | | | | | | 50.66 226 | | | | |
|
tttt0517 | | | 79.50 157 | 78.53 156 | 82.41 183 | 87.22 214 | 61.43 244 | 89.75 230 | 94.76 29 | 69.29 234 | 67.91 236 | 88.06 192 | 72.92 24 | 95.63 149 | 62.91 245 | 73.90 215 | 90.16 199 |
|
plane_prior1 | | | | | | 87.15 215 | | | | | | | | | | | |
|
cascas | | | 78.18 183 | 75.77 199 | 85.41 105 | 87.14 216 | 69.11 53 | 92.96 110 | 91.15 178 | 66.71 258 | 70.47 199 | 86.07 213 | 37.49 307 | 96.48 118 | 70.15 181 | 79.80 172 | 90.65 194 |
|
CHOSEN 280x420 | | | 77.35 197 | 76.95 184 | 78.55 266 | 87.07 217 | 62.68 224 | 69.71 344 | 82.95 331 | 68.80 241 | 71.48 192 | 87.27 204 | 66.03 62 | 84.00 339 | 76.47 132 | 82.81 154 | 88.95 210 |
|
HQP_MVS | | | 80.34 141 | 79.75 136 | 82.12 194 | 86.94 218 | 62.42 225 | 93.13 102 | 91.31 170 | 78.81 61 | 72.53 176 | 89.14 177 | 50.66 226 | 95.55 157 | 76.74 129 | 78.53 184 | 88.39 221 |
|
plane_prior7 | | | | | | 86.94 218 | 61.51 242 | | | | | | | | | | |
|
test-LLR | | | 80.10 145 | 79.56 140 | 81.72 203 | 86.93 220 | 61.17 246 | 92.70 120 | 91.54 160 | 71.51 202 | 75.62 146 | 86.94 205 | 53.83 198 | 92.38 263 | 72.21 163 | 84.76 140 | 91.60 177 |
|
test-mter | | | 79.96 148 | 79.38 146 | 81.72 203 | 86.93 220 | 61.17 246 | 92.70 120 | 91.54 160 | 73.85 132 | 75.62 146 | 86.94 205 | 49.84 235 | 92.38 263 | 72.21 163 | 84.76 140 | 91.60 177 |
|
SCA | | | 75.82 220 | 72.76 235 | 85.01 116 | 86.63 222 | 70.08 32 | 81.06 312 | 89.19 248 | 71.60 198 | 70.01 207 | 77.09 311 | 45.53 269 | 90.25 295 | 60.43 259 | 73.27 217 | 94.68 85 |
|
AUN-MVS | | | 78.37 180 | 77.43 174 | 81.17 215 | 86.60 223 | 57.45 300 | 89.46 236 | 91.16 176 | 74.11 125 | 74.40 156 | 90.49 159 | 55.52 179 | 94.57 186 | 74.73 147 | 60.43 313 | 91.48 180 |
|
hse-mvs2 | | | 81.12 128 | 81.11 116 | 81.16 216 | 86.52 224 | 57.48 299 | 89.40 237 | 91.16 176 | 81.45 27 | 82.73 73 | 90.49 159 | 60.11 124 | 94.58 185 | 87.69 42 | 60.41 314 | 91.41 182 |
|
xiu_mvs_v1_base_debu | | | 82.16 110 | 81.12 113 | 85.26 110 | 86.42 225 | 68.72 63 | 92.59 128 | 90.44 201 | 73.12 148 | 84.20 60 | 94.36 80 | 38.04 301 | 95.73 143 | 84.12 72 | 86.81 121 | 91.33 183 |
|
xiu_mvs_v1_base | | | 82.16 110 | 81.12 113 | 85.26 110 | 86.42 225 | 68.72 63 | 92.59 128 | 90.44 201 | 73.12 148 | 84.20 60 | 94.36 80 | 38.04 301 | 95.73 143 | 84.12 72 | 86.81 121 | 91.33 183 |
|
xiu_mvs_v1_base_debi | | | 82.16 110 | 81.12 113 | 85.26 110 | 86.42 225 | 68.72 63 | 92.59 128 | 90.44 201 | 73.12 148 | 84.20 60 | 94.36 80 | 38.04 301 | 95.73 143 | 84.12 72 | 86.81 121 | 91.33 183 |
|
F-COLMAP | | | 70.66 262 | 68.44 267 | 77.32 281 | 86.37 228 | 55.91 310 | 88.00 260 | 86.32 299 | 56.94 324 | 57.28 313 | 88.07 191 | 33.58 323 | 92.49 259 | 51.02 291 | 68.37 250 | 83.55 292 |
|
CDS-MVSNet | | | 81.43 121 | 80.74 119 | 83.52 158 | 86.26 229 | 64.45 177 | 92.09 143 | 90.65 196 | 75.83 100 | 73.95 163 | 89.81 171 | 63.97 86 | 92.91 242 | 71.27 172 | 82.82 153 | 93.20 142 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
VDDNet | | | 80.50 138 | 78.26 159 | 87.21 41 | 86.19 230 | 69.79 41 | 94.48 48 | 91.31 170 | 60.42 304 | 79.34 106 | 90.91 151 | 38.48 297 | 96.56 116 | 82.16 88 | 81.05 166 | 95.27 63 |
|
jason | | | 86.40 43 | 86.17 44 | 87.11 44 | 86.16 231 | 70.54 27 | 95.71 24 | 92.19 136 | 82.00 23 | 84.58 56 | 94.34 85 | 61.86 110 | 95.53 159 | 87.76 41 | 90.89 90 | 95.27 63 |
jason: jason. |
PCF-MVS | | 73.15 9 | 79.29 160 | 77.63 171 | 84.29 140 | 86.06 232 | 65.96 137 | 87.03 272 | 91.10 180 | 69.86 228 | 69.79 213 | 90.64 154 | 57.54 152 | 96.59 113 | 64.37 235 | 82.29 155 | 90.32 197 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MS-PatchMatch | | | 77.90 190 | 76.50 189 | 82.12 194 | 85.99 233 | 69.95 37 | 91.75 163 | 92.70 113 | 73.97 129 | 62.58 285 | 84.44 231 | 41.11 287 | 95.78 140 | 63.76 239 | 92.17 72 | 80.62 327 |
|
FIs | | | 79.47 158 | 79.41 144 | 79.67 251 | 85.95 234 | 59.40 277 | 91.68 165 | 93.94 61 | 78.06 70 | 68.96 221 | 88.28 185 | 66.61 58 | 91.77 278 | 66.20 219 | 74.99 208 | 87.82 227 |
|
VPA-MVSNet | | | 79.03 163 | 78.00 163 | 82.11 197 | 85.95 234 | 64.48 176 | 93.22 101 | 94.66 34 | 75.05 113 | 74.04 162 | 84.95 225 | 52.17 214 | 93.52 227 | 74.90 145 | 67.04 259 | 88.32 223 |
|
tpm | | | 78.58 177 | 77.03 181 | 83.22 165 | 85.94 236 | 64.56 172 | 83.21 298 | 91.14 179 | 78.31 66 | 73.67 164 | 79.68 292 | 64.01 85 | 92.09 272 | 66.07 220 | 71.26 234 | 93.03 148 |
|
OpenMVS |  | 70.45 11 | 78.54 178 | 75.92 197 | 86.41 72 | 85.93 237 | 71.68 16 | 92.74 117 | 92.51 123 | 66.49 260 | 64.56 266 | 91.96 137 | 43.88 278 | 98.10 39 | 54.61 280 | 90.65 93 | 89.44 209 |
|
OMC-MVS | | | 78.67 176 | 77.91 167 | 80.95 226 | 85.76 238 | 57.40 301 | 88.49 254 | 88.67 268 | 73.85 132 | 72.43 180 | 92.10 135 | 49.29 240 | 94.55 189 | 72.73 157 | 77.89 187 | 90.91 192 |
|
miper_ehance_all_eth | | | 77.60 192 | 76.44 190 | 81.09 223 | 85.70 239 | 64.41 181 | 90.65 205 | 88.64 270 | 72.31 168 | 67.37 246 | 82.52 249 | 64.77 78 | 92.64 255 | 70.67 177 | 65.30 267 | 86.24 256 |
|
KD-MVS_2432*1600 | | | 69.03 275 | 66.37 277 | 77.01 285 | 85.56 240 | 61.06 249 | 81.44 309 | 90.25 210 | 67.27 254 | 58.00 308 | 76.53 315 | 54.49 190 | 87.63 322 | 48.04 304 | 35.77 358 | 82.34 312 |
|
miper_refine_blended | | | 69.03 275 | 66.37 277 | 77.01 285 | 85.56 240 | 61.06 249 | 81.44 309 | 90.25 210 | 67.27 254 | 58.00 308 | 76.53 315 | 54.49 190 | 87.63 322 | 48.04 304 | 35.77 358 | 82.34 312 |
|
EI-MVSNet | | | 78.97 165 | 78.22 160 | 81.25 213 | 85.33 242 | 62.73 223 | 89.53 234 | 93.21 92 | 72.39 167 | 72.14 183 | 90.13 167 | 60.99 115 | 94.72 181 | 67.73 202 | 72.49 224 | 86.29 254 |
|
CVMVSNet | | | 74.04 238 | 74.27 217 | 73.33 310 | 85.33 242 | 43.94 355 | 89.53 234 | 88.39 274 | 54.33 332 | 70.37 202 | 90.13 167 | 49.17 242 | 84.05 337 | 61.83 253 | 79.36 175 | 91.99 173 |
|
ACMH | | 63.93 17 | 68.62 278 | 64.81 286 | 80.03 241 | 85.22 244 | 63.25 208 | 87.72 265 | 84.66 317 | 60.83 302 | 51.57 330 | 79.43 295 | 27.29 343 | 94.96 173 | 41.76 330 | 64.84 274 | 81.88 317 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
cl____ | | | 76.07 211 | 74.67 207 | 80.28 235 | 85.15 245 | 61.76 238 | 90.12 219 | 88.73 266 | 71.16 208 | 65.43 258 | 81.57 263 | 61.15 113 | 92.95 237 | 66.54 213 | 62.17 295 | 86.13 260 |
|
DIV-MVS_self_test | | | 76.07 211 | 74.67 207 | 80.28 235 | 85.14 246 | 61.75 239 | 90.12 219 | 88.73 266 | 71.16 208 | 65.42 259 | 81.60 262 | 61.15 113 | 92.94 241 | 66.54 213 | 62.16 297 | 86.14 258 |
|
TAMVS | | | 80.37 140 | 79.45 143 | 83.13 167 | 85.14 246 | 63.37 206 | 91.23 185 | 90.76 192 | 74.81 116 | 72.65 173 | 88.49 181 | 60.63 119 | 92.95 237 | 69.41 187 | 81.95 159 | 93.08 147 |
|
MSDG | | | 69.54 271 | 65.73 280 | 80.96 225 | 85.11 248 | 63.71 199 | 84.19 287 | 83.28 330 | 56.95 323 | 54.50 318 | 84.03 233 | 31.50 331 | 96.03 132 | 42.87 327 | 69.13 245 | 83.14 302 |
|
c3_l | | | 76.83 204 | 75.47 202 | 80.93 227 | 85.02 249 | 64.18 190 | 90.39 212 | 88.11 281 | 71.66 192 | 66.65 253 | 81.64 261 | 63.58 95 | 92.56 256 | 69.31 189 | 62.86 289 | 86.04 262 |
|
ACMP | | 71.68 10 | 75.58 225 | 74.23 218 | 79.62 253 | 84.97 250 | 59.64 273 | 90.80 201 | 89.07 256 | 70.39 221 | 62.95 281 | 87.30 202 | 38.28 298 | 93.87 220 | 72.89 153 | 71.45 232 | 85.36 277 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
FC-MVSNet-test | | | 77.99 186 | 78.08 162 | 77.70 274 | 84.89 251 | 55.51 313 | 90.27 215 | 93.75 70 | 76.87 88 | 66.80 252 | 87.59 197 | 65.71 67 | 90.23 299 | 62.89 246 | 73.94 213 | 87.37 234 |
|
PVSNet_0 | | 68.08 15 | 71.81 257 | 68.32 269 | 82.27 186 | 84.68 252 | 62.31 229 | 88.68 251 | 90.31 207 | 75.84 99 | 57.93 310 | 80.65 280 | 37.85 304 | 94.19 202 | 69.94 182 | 29.05 363 | 90.31 198 |
|
eth_miper_zixun_eth | | | 75.96 217 | 74.40 215 | 80.66 229 | 84.66 253 | 63.02 213 | 89.28 239 | 88.27 278 | 71.88 183 | 65.73 256 | 81.65 260 | 59.45 133 | 92.81 245 | 68.13 197 | 60.53 311 | 86.14 258 |
|
WR-MVS | | | 76.76 205 | 75.74 200 | 79.82 247 | 84.60 254 | 62.27 230 | 92.60 126 | 92.51 123 | 76.06 97 | 67.87 238 | 85.34 220 | 56.76 163 | 90.24 298 | 62.20 250 | 63.69 286 | 86.94 242 |
|
ACMH+ | | 65.35 16 | 67.65 287 | 64.55 289 | 76.96 287 | 84.59 255 | 57.10 304 | 88.08 259 | 80.79 336 | 58.59 317 | 53.00 324 | 81.09 275 | 26.63 345 | 92.95 237 | 46.51 311 | 61.69 304 | 80.82 324 |
|
VPNet | | | 78.82 169 | 77.53 173 | 82.70 174 | 84.52 256 | 66.44 125 | 93.93 72 | 92.23 130 | 80.46 40 | 72.60 174 | 88.38 184 | 49.18 241 | 93.13 233 | 72.47 161 | 63.97 284 | 88.55 217 |
|
IterMVS-LS | | | 76.49 207 | 75.18 205 | 80.43 232 | 84.49 257 | 62.74 222 | 90.64 206 | 88.80 264 | 72.40 166 | 65.16 261 | 81.72 259 | 60.98 116 | 92.27 268 | 67.74 201 | 64.65 278 | 86.29 254 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet_NR-MVSNet | | | 78.15 184 | 77.55 172 | 79.98 242 | 84.46 258 | 60.26 265 | 92.25 136 | 93.20 94 | 77.50 82 | 68.88 222 | 86.61 207 | 66.10 61 | 92.13 270 | 66.38 216 | 62.55 291 | 87.54 229 |
|
FMVSNet5 | | | 68.04 284 | 65.66 282 | 75.18 298 | 84.43 259 | 57.89 291 | 83.54 291 | 86.26 301 | 61.83 298 | 53.64 323 | 73.30 329 | 37.15 311 | 85.08 333 | 48.99 299 | 61.77 300 | 82.56 311 |
|
MVS-HIRNet | | | 60.25 317 | 55.55 323 | 74.35 303 | 84.37 260 | 56.57 307 | 71.64 340 | 74.11 350 | 34.44 360 | 45.54 349 | 42.24 362 | 31.11 334 | 89.81 303 | 40.36 337 | 76.10 205 | 76.67 348 |
|
LPG-MVS_test | | | 75.82 220 | 74.58 211 | 79.56 255 | 84.31 261 | 59.37 278 | 90.44 209 | 89.73 231 | 69.49 231 | 64.86 262 | 88.42 182 | 38.65 295 | 94.30 197 | 72.56 159 | 72.76 221 | 85.01 281 |
|
LGP-MVS_train | | | | | 79.56 255 | 84.31 261 | 59.37 278 | | 89.73 231 | 69.49 231 | 64.86 262 | 88.42 182 | 38.65 295 | 94.30 197 | 72.56 159 | 72.76 221 | 85.01 281 |
|
ACMM | | 69.62 13 | 74.34 235 | 72.73 236 | 79.17 260 | 84.25 263 | 57.87 292 | 90.36 213 | 89.93 223 | 63.17 283 | 65.64 257 | 86.04 215 | 37.79 305 | 94.10 204 | 65.89 221 | 71.52 231 | 85.55 274 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet (Re) | | | 77.58 193 | 76.78 185 | 79.98 242 | 84.11 264 | 60.80 253 | 91.76 161 | 93.17 97 | 76.56 94 | 69.93 211 | 84.78 227 | 63.32 98 | 92.36 265 | 64.89 232 | 62.51 293 | 86.78 244 |
|
test_0402 | | | 64.54 302 | 61.09 308 | 74.92 299 | 84.10 265 | 60.75 257 | 87.95 261 | 79.71 340 | 52.03 336 | 52.41 326 | 77.20 309 | 32.21 329 | 91.64 280 | 23.14 362 | 61.03 307 | 72.36 354 |
|
LTVRE_ROB | | 59.60 19 | 66.27 295 | 63.54 296 | 74.45 302 | 84.00 266 | 51.55 330 | 67.08 351 | 83.53 326 | 58.78 315 | 54.94 317 | 80.31 284 | 34.54 321 | 93.23 232 | 40.64 336 | 68.03 252 | 78.58 343 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
miper_lstm_enhance | | | 73.05 246 | 71.73 248 | 77.03 284 | 83.80 267 | 58.32 289 | 81.76 304 | 88.88 261 | 69.80 229 | 61.01 290 | 78.23 301 | 57.19 154 | 87.51 324 | 65.34 229 | 59.53 316 | 85.27 280 |
|
Patchmatch-test | | | 65.86 297 | 60.94 309 | 80.62 230 | 83.75 268 | 58.83 283 | 58.91 358 | 75.26 349 | 44.50 355 | 50.95 334 | 77.09 311 | 58.81 142 | 87.90 318 | 35.13 349 | 64.03 282 | 95.12 70 |
|
nrg030 | | | 80.93 131 | 79.86 134 | 84.13 143 | 83.69 269 | 68.83 60 | 93.23 100 | 91.20 174 | 75.55 102 | 75.06 152 | 88.22 190 | 63.04 102 | 94.74 180 | 81.88 90 | 66.88 260 | 88.82 213 |
|
GA-MVS | | | 78.33 182 | 76.23 193 | 84.65 129 | 83.65 270 | 66.30 129 | 91.44 171 | 90.14 215 | 76.01 98 | 70.32 203 | 84.02 234 | 42.50 282 | 94.72 181 | 70.98 173 | 77.00 200 | 92.94 151 |
|
FMVSNet1 | | | 72.71 253 | 69.91 260 | 81.10 220 | 83.60 271 | 65.11 161 | 90.01 223 | 90.32 204 | 63.92 276 | 63.56 276 | 80.25 286 | 36.35 316 | 91.54 283 | 54.46 281 | 66.75 261 | 86.64 246 |
|
OPM-MVS | | | 79.00 164 | 78.09 161 | 81.73 202 | 83.52 272 | 63.83 194 | 91.64 167 | 90.30 208 | 76.36 96 | 71.97 186 | 89.93 170 | 46.30 266 | 95.17 169 | 75.10 139 | 77.70 189 | 86.19 257 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
tfpnnormal | | | 70.10 266 | 67.36 272 | 78.32 268 | 83.45 273 | 60.97 251 | 88.85 248 | 92.77 111 | 64.85 271 | 60.83 292 | 78.53 298 | 43.52 280 | 93.48 228 | 31.73 359 | 61.70 303 | 80.52 328 |
|
Effi-MVS+-dtu | | | 76.14 210 | 75.28 204 | 78.72 265 | 83.22 274 | 55.17 315 | 89.87 227 | 87.78 286 | 75.42 104 | 67.98 234 | 81.43 265 | 45.08 272 | 92.52 258 | 75.08 140 | 71.63 229 | 88.48 218 |
|
mvs-test1 | | | 78.74 173 | 77.95 165 | 81.14 217 | 83.22 274 | 57.13 303 | 93.96 67 | 87.78 286 | 75.42 104 | 72.68 172 | 90.80 153 | 45.08 272 | 94.54 190 | 75.08 140 | 77.49 194 | 91.74 176 |
|
CR-MVSNet | | | 73.79 242 | 70.82 254 | 82.70 174 | 83.15 276 | 67.96 81 | 70.25 341 | 84.00 323 | 73.67 139 | 69.97 209 | 72.41 332 | 57.82 149 | 89.48 306 | 52.99 288 | 73.13 218 | 90.64 195 |
|
RPMNet | | | 70.42 265 | 65.68 281 | 84.63 131 | 83.15 276 | 67.96 81 | 70.25 341 | 90.45 198 | 46.83 351 | 69.97 209 | 65.10 349 | 56.48 170 | 95.30 167 | 35.79 348 | 73.13 218 | 90.64 195 |
|
DU-MVS | | | 76.86 201 | 75.84 198 | 79.91 244 | 82.96 278 | 60.26 265 | 91.26 184 | 91.54 160 | 76.46 95 | 68.88 222 | 86.35 209 | 56.16 171 | 92.13 270 | 66.38 216 | 62.55 291 | 87.35 235 |
|
NR-MVSNet | | | 76.05 214 | 74.59 210 | 80.44 231 | 82.96 278 | 62.18 231 | 90.83 200 | 91.73 152 | 77.12 86 | 60.96 291 | 86.35 209 | 59.28 137 | 91.80 277 | 60.74 257 | 61.34 306 | 87.35 235 |
|
XXY-MVS | | | 77.94 188 | 76.44 190 | 82.43 180 | 82.60 280 | 64.44 178 | 92.01 148 | 91.83 149 | 73.59 140 | 70.00 208 | 85.82 216 | 54.43 193 | 94.76 178 | 69.63 184 | 68.02 253 | 88.10 226 |
|
TranMVSNet+NR-MVSNet | | | 75.86 219 | 74.52 213 | 79.89 245 | 82.44 281 | 60.64 261 | 91.37 179 | 91.37 169 | 76.63 92 | 67.65 240 | 86.21 212 | 52.37 213 | 91.55 282 | 61.84 252 | 60.81 309 | 87.48 231 |
|
IterMVS | | | 72.65 255 | 70.83 253 | 78.09 272 | 82.17 282 | 62.96 215 | 87.64 267 | 86.28 300 | 71.56 200 | 60.44 293 | 78.85 297 | 45.42 271 | 86.66 328 | 63.30 242 | 61.83 299 | 84.65 285 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Patchmtry | | | 67.53 289 | 63.93 294 | 78.34 267 | 82.12 283 | 64.38 182 | 68.72 345 | 84.00 323 | 48.23 348 | 59.24 298 | 72.41 332 | 57.82 149 | 89.27 307 | 46.10 314 | 56.68 326 | 81.36 320 |
|
PatchT | | | 69.11 274 | 65.37 285 | 80.32 233 | 82.07 284 | 63.68 201 | 67.96 350 | 87.62 288 | 50.86 340 | 69.37 214 | 65.18 348 | 57.09 155 | 88.53 313 | 41.59 332 | 66.60 262 | 88.74 214 |
|
MIMVSNet | | | 71.64 258 | 68.44 267 | 81.23 214 | 81.97 285 | 64.44 178 | 73.05 338 | 88.80 264 | 69.67 230 | 64.59 265 | 74.79 325 | 32.79 325 | 87.82 319 | 53.99 283 | 76.35 204 | 91.42 181 |
|
MVP-Stereo | | | 77.12 200 | 76.23 193 | 79.79 248 | 81.72 286 | 66.34 128 | 89.29 238 | 90.88 190 | 70.56 220 | 62.01 288 | 82.88 245 | 49.34 238 | 94.13 203 | 65.55 227 | 93.80 46 | 78.88 340 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IterMVS-SCA-FT | | | 71.55 259 | 69.97 258 | 76.32 291 | 81.48 287 | 60.67 260 | 87.64 267 | 85.99 305 | 66.17 262 | 59.50 297 | 78.88 296 | 45.53 269 | 83.65 341 | 62.58 248 | 61.93 298 | 84.63 286 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 310 | 59.65 312 | 72.98 313 | 81.44 288 | 53.00 324 | 83.75 290 | 75.53 348 | 48.34 347 | 48.81 340 | 81.40 267 | 24.14 348 | 90.30 294 | 32.95 355 | 60.52 312 | 75.65 350 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
JIA-IIPM | | | 66.06 296 | 62.45 303 | 76.88 288 | 81.42 289 | 54.45 319 | 57.49 359 | 88.67 268 | 49.36 344 | 63.86 273 | 46.86 358 | 56.06 174 | 90.25 295 | 49.53 297 | 68.83 246 | 85.95 265 |
|
WR-MVS_H | | | 70.59 263 | 69.94 259 | 72.53 316 | 81.03 290 | 51.43 331 | 87.35 270 | 92.03 140 | 67.38 253 | 60.23 294 | 80.70 277 | 55.84 178 | 83.45 343 | 46.33 313 | 58.58 321 | 82.72 306 |
|
Fast-Effi-MVS+-dtu | | | 75.04 230 | 73.37 230 | 80.07 240 | 80.86 291 | 59.52 276 | 91.20 188 | 85.38 309 | 71.90 181 | 65.20 260 | 84.84 226 | 41.46 286 | 92.97 236 | 66.50 215 | 72.96 220 | 87.73 228 |
|
Baseline_NR-MVSNet | | | 73.99 239 | 72.83 234 | 77.48 278 | 80.78 292 | 59.29 280 | 91.79 158 | 84.55 318 | 68.85 240 | 68.99 220 | 80.70 277 | 56.16 171 | 92.04 273 | 62.67 247 | 60.98 308 | 81.11 321 |
|
CP-MVSNet | | | 70.50 264 | 69.91 260 | 72.26 319 | 80.71 293 | 51.00 334 | 87.23 271 | 90.30 208 | 67.84 247 | 59.64 296 | 82.69 247 | 50.23 231 | 82.30 351 | 51.28 290 | 59.28 317 | 83.46 296 |
|
v8 | | | 75.35 226 | 73.26 231 | 81.61 206 | 80.67 294 | 66.82 115 | 89.54 233 | 89.27 244 | 71.65 193 | 63.30 279 | 80.30 285 | 54.99 186 | 94.06 208 | 67.33 206 | 62.33 294 | 83.94 289 |
|
PS-MVSNAJss | | | 77.26 198 | 76.31 192 | 80.13 239 | 80.64 295 | 59.16 281 | 90.63 208 | 91.06 184 | 72.80 155 | 68.58 229 | 84.57 230 | 53.55 202 | 93.96 216 | 72.97 152 | 71.96 228 | 87.27 238 |
|
TransMVSNet (Re) | | | 70.07 267 | 67.66 271 | 77.31 282 | 80.62 296 | 59.13 282 | 91.78 160 | 84.94 314 | 65.97 263 | 60.08 295 | 80.44 282 | 50.78 225 | 91.87 275 | 48.84 300 | 45.46 347 | 80.94 323 |
|
v2v482 | | | 77.42 195 | 75.65 201 | 82.73 173 | 80.38 297 | 67.13 106 | 91.85 156 | 90.23 212 | 75.09 112 | 69.37 214 | 83.39 242 | 53.79 200 | 94.44 194 | 71.77 168 | 65.00 273 | 86.63 249 |
|
MVS_0304 | | | 68.99 277 | 67.23 274 | 74.28 305 | 80.36 298 | 52.54 325 | 87.01 274 | 86.36 298 | 59.89 310 | 66.22 254 | 73.56 328 | 24.25 347 | 88.03 317 | 57.34 273 | 70.11 237 | 82.27 314 |
|
PS-CasMVS | | | 69.86 270 | 69.13 264 | 72.07 322 | 80.35 299 | 50.57 336 | 87.02 273 | 89.75 228 | 67.27 254 | 59.19 300 | 82.28 251 | 46.58 261 | 82.24 352 | 50.69 292 | 59.02 318 | 83.39 298 |
|
v10 | | | 74.77 233 | 72.54 240 | 81.46 208 | 80.33 300 | 66.71 119 | 89.15 243 | 89.08 255 | 70.94 212 | 63.08 280 | 79.86 290 | 52.52 211 | 94.04 211 | 65.70 224 | 62.17 295 | 83.64 291 |
|
test0.0.03 1 | | | 72.76 251 | 72.71 237 | 72.88 314 | 80.25 301 | 47.99 346 | 91.22 186 | 89.45 238 | 71.51 202 | 62.51 286 | 87.66 196 | 53.83 198 | 85.06 334 | 50.16 294 | 67.84 256 | 85.58 272 |
|
v1144 | | | 76.73 206 | 74.88 206 | 82.27 186 | 80.23 302 | 66.60 122 | 91.68 165 | 90.21 214 | 73.69 137 | 69.06 219 | 81.89 256 | 52.73 210 | 94.40 195 | 69.21 190 | 65.23 270 | 85.80 268 |
|
v148 | | | 76.19 209 | 74.47 214 | 81.36 210 | 80.05 303 | 64.44 178 | 91.75 163 | 90.23 212 | 73.68 138 | 67.13 247 | 80.84 276 | 55.92 177 | 93.86 222 | 68.95 193 | 61.73 302 | 85.76 271 |
|
v1192 | | | 75.98 216 | 73.92 224 | 82.15 191 | 79.73 304 | 66.24 131 | 91.22 186 | 89.75 228 | 72.67 157 | 68.49 230 | 81.42 266 | 49.86 234 | 94.27 199 | 67.08 207 | 65.02 272 | 85.95 265 |
|
AllTest | | | 61.66 312 | 58.06 316 | 72.46 317 | 79.57 305 | 51.42 332 | 80.17 319 | 68.61 359 | 51.25 338 | 45.88 345 | 81.23 269 | 19.86 357 | 86.58 329 | 38.98 340 | 57.01 324 | 79.39 336 |
|
TestCases | | | | | 72.46 317 | 79.57 305 | 51.42 332 | | 68.61 359 | 51.25 338 | 45.88 345 | 81.23 269 | 19.86 357 | 86.58 329 | 38.98 340 | 57.01 324 | 79.39 336 |
|
MDA-MVSNet-bldmvs | | | 61.54 314 | 57.70 318 | 73.05 312 | 79.53 307 | 57.00 305 | 83.08 299 | 81.23 334 | 57.57 318 | 34.91 360 | 72.45 331 | 32.79 325 | 86.26 331 | 35.81 347 | 41.95 351 | 75.89 349 |
|
v144192 | | | 76.05 214 | 74.03 222 | 82.12 194 | 79.50 308 | 66.55 124 | 91.39 176 | 89.71 234 | 72.30 169 | 68.17 232 | 81.33 268 | 51.75 217 | 94.03 213 | 67.94 199 | 64.19 280 | 85.77 269 |
|
v1921920 | | | 75.63 224 | 73.49 229 | 82.06 198 | 79.38 309 | 66.35 127 | 91.07 194 | 89.48 237 | 71.98 178 | 67.99 233 | 81.22 271 | 49.16 243 | 93.90 219 | 66.56 212 | 64.56 279 | 85.92 267 |
|
PEN-MVS | | | 69.46 272 | 68.56 266 | 72.17 321 | 79.27 310 | 49.71 340 | 86.90 275 | 89.24 245 | 67.24 257 | 59.08 301 | 82.51 250 | 47.23 258 | 83.54 342 | 48.42 302 | 57.12 322 | 83.25 299 |
|
v1240 | | | 75.21 229 | 72.98 233 | 81.88 200 | 79.20 311 | 66.00 135 | 90.75 203 | 89.11 254 | 71.63 197 | 67.41 244 | 81.22 271 | 47.36 257 | 93.87 220 | 65.46 228 | 64.72 277 | 85.77 269 |
|
pmmvs4 | | | 73.92 240 | 71.81 247 | 80.25 237 | 79.17 312 | 65.24 155 | 87.43 269 | 87.26 293 | 67.64 252 | 63.46 277 | 83.91 236 | 48.96 245 | 91.53 286 | 62.94 244 | 65.49 266 | 83.96 288 |
|
D2MVS | | | 73.80 241 | 72.02 245 | 79.15 262 | 79.15 313 | 62.97 214 | 88.58 253 | 90.07 217 | 72.94 151 | 59.22 299 | 78.30 299 | 42.31 284 | 92.70 251 | 65.59 226 | 72.00 227 | 81.79 318 |
|
V42 | | | 76.46 208 | 74.55 212 | 82.19 190 | 79.14 314 | 67.82 85 | 90.26 216 | 89.42 240 | 73.75 135 | 68.63 228 | 81.89 256 | 51.31 221 | 94.09 205 | 71.69 170 | 64.84 274 | 84.66 284 |
|
pm-mvs1 | | | 72.89 249 | 71.09 252 | 78.26 270 | 79.10 315 | 57.62 296 | 90.80 201 | 89.30 243 | 67.66 250 | 62.91 282 | 81.78 258 | 49.11 244 | 92.95 237 | 60.29 261 | 58.89 319 | 84.22 287 |
|
our_test_3 | | | 68.29 282 | 64.69 288 | 79.11 263 | 78.92 316 | 64.85 170 | 88.40 257 | 85.06 312 | 60.32 306 | 52.68 325 | 76.12 319 | 40.81 288 | 89.80 305 | 44.25 322 | 55.65 327 | 82.67 310 |
|
ppachtmachnet_test | | | 67.72 286 | 63.70 295 | 79.77 249 | 78.92 316 | 66.04 134 | 88.68 251 | 82.90 332 | 60.11 308 | 55.45 316 | 75.96 320 | 39.19 292 | 90.55 291 | 39.53 338 | 52.55 336 | 82.71 307 |
|
TinyColmap | | | 60.32 316 | 56.42 322 | 72.00 323 | 78.78 318 | 53.18 323 | 78.36 329 | 75.64 346 | 52.30 335 | 41.59 356 | 75.82 322 | 14.76 362 | 88.35 314 | 35.84 346 | 54.71 332 | 74.46 351 |
|
SixPastTwentyTwo | | | 64.92 300 | 61.78 307 | 74.34 304 | 78.74 319 | 49.76 339 | 83.42 295 | 79.51 341 | 62.86 285 | 50.27 335 | 77.35 306 | 30.92 335 | 90.49 293 | 45.89 315 | 47.06 345 | 82.78 303 |
|
EG-PatchMatch MVS | | | 68.55 279 | 65.41 284 | 77.96 273 | 78.69 320 | 62.93 216 | 89.86 228 | 89.17 249 | 60.55 303 | 50.27 335 | 77.73 305 | 22.60 352 | 94.06 208 | 47.18 310 | 72.65 223 | 76.88 347 |
|
pmmvs5 | | | 73.35 244 | 71.52 249 | 78.86 264 | 78.64 321 | 60.61 262 | 91.08 192 | 86.90 294 | 67.69 249 | 63.32 278 | 83.64 237 | 44.33 276 | 90.53 292 | 62.04 251 | 66.02 265 | 85.46 275 |
|
UniMVSNet_ETH3D | | | 72.74 252 | 70.53 255 | 79.36 257 | 78.62 322 | 56.64 306 | 85.01 283 | 89.20 247 | 63.77 278 | 64.84 264 | 84.44 231 | 34.05 322 | 91.86 276 | 63.94 237 | 70.89 236 | 89.57 207 |
|
XVG-OURS | | | 74.25 237 | 72.46 241 | 79.63 252 | 78.45 323 | 57.59 297 | 80.33 316 | 87.39 290 | 63.86 277 | 68.76 226 | 89.62 173 | 40.50 289 | 91.72 279 | 69.00 192 | 74.25 210 | 89.58 206 |
|
XVG-OURS-SEG-HR | | | 74.70 234 | 73.08 232 | 79.57 254 | 78.25 324 | 57.33 302 | 80.49 314 | 87.32 291 | 63.22 282 | 68.76 226 | 90.12 169 | 44.89 274 | 91.59 281 | 70.55 179 | 74.09 212 | 89.79 203 |
|
MDA-MVSNet_test_wron | | | 63.78 307 | 60.16 310 | 74.64 300 | 78.15 325 | 60.41 263 | 83.49 292 | 84.03 321 | 56.17 329 | 39.17 358 | 71.59 338 | 37.22 309 | 83.24 346 | 42.87 327 | 48.73 342 | 80.26 331 |
|
YYNet1 | | | 63.76 308 | 60.14 311 | 74.62 301 | 78.06 326 | 60.19 268 | 83.46 294 | 83.99 325 | 56.18 328 | 39.25 357 | 71.56 339 | 37.18 310 | 83.34 344 | 42.90 326 | 48.70 343 | 80.32 330 |
|
DTE-MVSNet | | | 68.46 281 | 67.33 273 | 71.87 324 | 77.94 327 | 49.00 343 | 86.16 280 | 88.58 272 | 66.36 261 | 58.19 305 | 82.21 253 | 46.36 262 | 83.87 340 | 44.97 320 | 55.17 329 | 82.73 305 |
|
USDC | | | 67.43 291 | 64.51 290 | 76.19 292 | 77.94 327 | 55.29 314 | 78.38 328 | 85.00 313 | 73.17 146 | 48.36 341 | 80.37 283 | 21.23 354 | 92.48 260 | 52.15 289 | 64.02 283 | 80.81 325 |
|
jajsoiax | | | 73.05 246 | 71.51 250 | 77.67 275 | 77.46 329 | 54.83 316 | 88.81 249 | 90.04 221 | 69.13 238 | 62.85 283 | 83.51 239 | 31.16 333 | 92.75 248 | 70.83 174 | 69.80 238 | 85.43 276 |
|
mvs_tets | | | 72.71 253 | 71.11 251 | 77.52 276 | 77.41 330 | 54.52 318 | 88.45 256 | 89.76 227 | 68.76 243 | 62.70 284 | 83.26 243 | 29.49 337 | 92.71 249 | 70.51 180 | 69.62 240 | 85.34 278 |
|
N_pmnet | | | 50.55 325 | 49.11 328 | 54.88 342 | 77.17 331 | 4.02 378 | 84.36 286 | 2.00 377 | 48.59 345 | 45.86 347 | 68.82 343 | 32.22 328 | 82.80 348 | 31.58 360 | 51.38 338 | 77.81 345 |
|
test_djsdf | | | 73.76 243 | 72.56 239 | 77.39 280 | 77.00 332 | 53.93 320 | 89.07 245 | 90.69 193 | 65.80 264 | 63.92 272 | 82.03 255 | 43.14 281 | 92.67 252 | 72.83 154 | 68.53 249 | 85.57 273 |
|
bset_n11_16_dypcd | | | 75.95 218 | 74.16 219 | 81.30 212 | 76.91 333 | 65.14 160 | 88.89 247 | 87.48 289 | 74.30 122 | 69.90 212 | 83.40 241 | 42.16 285 | 92.42 261 | 78.39 120 | 66.03 264 | 86.32 253 |
|
OpenMVS_ROB |  | 61.12 18 | 66.39 294 | 62.92 300 | 76.80 289 | 76.51 334 | 57.77 293 | 89.22 240 | 83.41 328 | 55.48 330 | 53.86 322 | 77.84 304 | 26.28 346 | 93.95 217 | 34.90 350 | 68.76 247 | 78.68 342 |
|
v7n | | | 71.31 260 | 68.65 265 | 79.28 258 | 76.40 335 | 60.77 255 | 86.71 277 | 89.45 238 | 64.17 275 | 58.77 304 | 78.24 300 | 44.59 275 | 93.54 226 | 57.76 270 | 61.75 301 | 83.52 294 |
|
K. test v3 | | | 63.09 309 | 59.61 313 | 73.53 309 | 76.26 336 | 49.38 342 | 83.27 296 | 77.15 343 | 64.35 273 | 47.77 343 | 72.32 334 | 28.73 339 | 87.79 320 | 49.93 296 | 36.69 357 | 83.41 297 |
|
RPSCF | | | 64.24 304 | 61.98 306 | 71.01 326 | 76.10 337 | 45.00 352 | 75.83 335 | 75.94 345 | 46.94 350 | 58.96 302 | 84.59 229 | 31.40 332 | 82.00 353 | 47.76 308 | 60.33 315 | 86.04 262 |
|
OurMVSNet-221017-0 | | | 64.68 301 | 62.17 305 | 72.21 320 | 76.08 338 | 47.35 349 | 80.67 313 | 81.02 335 | 56.19 327 | 51.60 329 | 79.66 293 | 27.05 344 | 88.56 312 | 53.60 286 | 53.63 334 | 80.71 326 |
|
Anonymous20231206 | | | 67.53 289 | 65.78 279 | 72.79 315 | 74.95 339 | 47.59 348 | 88.23 258 | 87.32 291 | 61.75 299 | 58.07 307 | 77.29 308 | 37.79 305 | 87.29 326 | 42.91 325 | 63.71 285 | 83.48 295 |
|
ITE_SJBPF | | | | | 70.43 327 | 74.44 340 | 47.06 350 | | 77.32 342 | 60.16 307 | 54.04 321 | 83.53 238 | 23.30 351 | 84.01 338 | 43.07 324 | 61.58 305 | 80.21 333 |
|
EU-MVSNet | | | 64.01 305 | 63.01 299 | 67.02 336 | 74.40 341 | 38.86 364 | 83.27 296 | 86.19 303 | 45.11 353 | 54.27 319 | 81.15 274 | 36.91 314 | 80.01 356 | 48.79 301 | 57.02 323 | 82.19 316 |
|
XVG-ACMP-BASELINE | | | 68.04 284 | 65.53 283 | 75.56 295 | 74.06 342 | 52.37 326 | 78.43 327 | 85.88 306 | 62.03 294 | 58.91 303 | 81.21 273 | 20.38 356 | 91.15 289 | 60.69 258 | 68.18 251 | 83.16 301 |
|
CL-MVSNet_self_test | | | 69.92 268 | 68.09 270 | 75.41 296 | 73.25 343 | 55.90 311 | 90.05 222 | 89.90 224 | 69.96 226 | 61.96 289 | 76.54 314 | 51.05 224 | 87.64 321 | 49.51 298 | 50.59 340 | 82.70 308 |
|
anonymousdsp | | | 71.14 261 | 69.37 263 | 76.45 290 | 72.95 344 | 54.71 317 | 84.19 287 | 88.88 261 | 61.92 296 | 62.15 287 | 79.77 291 | 38.14 300 | 91.44 288 | 68.90 194 | 67.45 258 | 83.21 300 |
|
lessismore_v0 | | | | | 73.72 308 | 72.93 345 | 47.83 347 | | 61.72 367 | | 45.86 347 | 73.76 327 | 28.63 341 | 89.81 303 | 47.75 309 | 31.37 362 | 83.53 293 |
|
pmmvs6 | | | 67.57 288 | 64.76 287 | 76.00 294 | 72.82 346 | 53.37 322 | 88.71 250 | 86.78 297 | 53.19 334 | 57.58 312 | 78.03 303 | 35.33 319 | 92.41 262 | 55.56 278 | 54.88 331 | 82.21 315 |
|
testgi | | | 64.48 303 | 62.87 301 | 69.31 329 | 71.24 347 | 40.62 359 | 85.49 281 | 79.92 339 | 65.36 268 | 54.18 320 | 83.49 240 | 23.74 350 | 84.55 335 | 41.60 331 | 60.79 310 | 82.77 304 |
|
Patchmatch-RL test | | | 68.17 283 | 64.49 291 | 79.19 259 | 71.22 348 | 53.93 320 | 70.07 343 | 71.54 356 | 69.22 235 | 56.79 314 | 62.89 351 | 56.58 168 | 88.61 310 | 69.53 186 | 52.61 335 | 95.03 76 |
|
Gipuma |  | | 34.91 332 | 31.44 335 | 45.30 347 | 70.99 349 | 39.64 363 | 19.85 367 | 72.56 353 | 20.10 366 | 16.16 368 | 21.47 368 | 5.08 372 | 71.16 360 | 13.07 366 | 43.70 350 | 25.08 365 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
UnsupCasMVSNet_eth | | | 65.79 298 | 63.10 298 | 73.88 306 | 70.71 350 | 50.29 338 | 81.09 311 | 89.88 225 | 72.58 159 | 49.25 339 | 74.77 326 | 32.57 327 | 87.43 325 | 55.96 277 | 41.04 353 | 83.90 290 |
|
CMPMVS |  | 48.56 21 | 66.77 293 | 64.41 292 | 73.84 307 | 70.65 351 | 50.31 337 | 77.79 332 | 85.73 308 | 45.54 352 | 44.76 350 | 82.14 254 | 35.40 318 | 90.14 301 | 63.18 243 | 74.54 209 | 81.07 322 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test20.03 | | | 63.83 306 | 62.65 302 | 67.38 335 | 70.58 352 | 39.94 360 | 86.57 278 | 84.17 320 | 63.29 281 | 51.86 328 | 77.30 307 | 37.09 312 | 82.47 349 | 38.87 342 | 54.13 333 | 79.73 334 |
|
MIMVSNet1 | | | 60.16 318 | 57.33 319 | 68.67 330 | 69.71 353 | 44.13 354 | 78.92 325 | 84.21 319 | 55.05 331 | 44.63 351 | 71.85 336 | 23.91 349 | 81.54 355 | 32.63 357 | 55.03 330 | 80.35 329 |
|
pmmvs-eth3d | | | 65.53 299 | 62.32 304 | 75.19 297 | 69.39 354 | 59.59 274 | 82.80 301 | 83.43 327 | 62.52 290 | 51.30 332 | 72.49 330 | 32.86 324 | 87.16 327 | 55.32 279 | 50.73 339 | 78.83 341 |
|
UnsupCasMVSNet_bld | | | 61.60 313 | 57.71 317 | 73.29 311 | 68.73 355 | 51.64 329 | 78.61 326 | 89.05 257 | 57.20 322 | 46.11 344 | 61.96 352 | 28.70 340 | 88.60 311 | 50.08 295 | 38.90 355 | 79.63 335 |
|
Anonymous20240521 | | | 62.09 311 | 59.08 314 | 71.10 325 | 67.19 356 | 48.72 344 | 83.91 289 | 85.23 311 | 50.38 341 | 47.84 342 | 71.22 340 | 20.74 355 | 85.51 332 | 46.47 312 | 58.75 320 | 79.06 339 |
|
KD-MVS_self_test | | | 60.87 315 | 58.60 315 | 67.68 333 | 66.13 357 | 39.93 361 | 75.63 336 | 84.70 316 | 57.32 321 | 49.57 338 | 68.45 344 | 29.55 336 | 82.87 347 | 48.09 303 | 47.94 344 | 80.25 332 |
|
new-patchmatchnet | | | 59.30 320 | 56.48 321 | 67.79 332 | 65.86 358 | 44.19 353 | 82.47 302 | 81.77 333 | 59.94 309 | 43.65 354 | 66.20 347 | 27.67 342 | 81.68 354 | 39.34 339 | 41.40 352 | 77.50 346 |
|
PM-MVS | | | 59.40 319 | 56.59 320 | 67.84 331 | 63.63 359 | 41.86 356 | 76.76 333 | 63.22 365 | 59.01 314 | 51.07 333 | 72.27 335 | 11.72 364 | 83.25 345 | 61.34 254 | 50.28 341 | 78.39 344 |
|
DSMNet-mixed | | | 56.78 321 | 54.44 324 | 63.79 338 | 63.21 360 | 29.44 368 | 64.43 353 | 64.10 364 | 42.12 357 | 51.32 331 | 71.60 337 | 31.76 330 | 75.04 358 | 36.23 345 | 65.20 271 | 86.87 243 |
|
new_pmnet | | | 49.31 326 | 46.44 329 | 57.93 340 | 62.84 361 | 40.74 358 | 68.47 347 | 62.96 366 | 36.48 359 | 35.09 359 | 57.81 354 | 14.97 361 | 72.18 359 | 32.86 356 | 46.44 346 | 60.88 360 |
|
LF4IMVS | | | 54.01 324 | 52.12 325 | 59.69 339 | 62.41 362 | 39.91 362 | 68.59 346 | 68.28 361 | 42.96 356 | 44.55 352 | 75.18 323 | 14.09 363 | 68.39 361 | 41.36 333 | 51.68 337 | 70.78 355 |
|
ambc | | | | | 69.61 328 | 61.38 363 | 41.35 357 | 49.07 362 | 85.86 307 | | 50.18 337 | 66.40 346 | 10.16 365 | 88.14 316 | 45.73 316 | 44.20 348 | 79.32 338 |
|
TDRefinement | | | 55.28 323 | 51.58 326 | 66.39 337 | 59.53 364 | 46.15 351 | 76.23 334 | 72.80 352 | 44.60 354 | 42.49 355 | 76.28 318 | 15.29 360 | 82.39 350 | 33.20 354 | 43.75 349 | 70.62 356 |
|
pmmvs3 | | | 55.51 322 | 51.50 327 | 67.53 334 | 57.90 365 | 50.93 335 | 80.37 315 | 73.66 351 | 40.63 358 | 44.15 353 | 64.75 350 | 16.30 359 | 78.97 357 | 44.77 321 | 40.98 354 | 72.69 352 |
|
test_method | | | 38.59 330 | 35.16 333 | 48.89 346 | 54.33 366 | 21.35 373 | 45.32 363 | 53.71 368 | 7.41 370 | 28.74 361 | 51.62 356 | 8.70 368 | 52.87 367 | 33.73 351 | 32.89 361 | 72.47 353 |
|
DeepMVS_CX |  | | | | 34.71 350 | 51.45 367 | 24.73 372 | | 28.48 376 | 31.46 361 | 17.49 367 | 52.75 355 | 5.80 371 | 42.60 371 | 18.18 364 | 19.42 364 | 36.81 363 |
|
FPMVS | | | 45.64 327 | 43.10 330 | 53.23 344 | 51.42 368 | 36.46 365 | 64.97 352 | 71.91 354 | 29.13 362 | 27.53 362 | 61.55 353 | 9.83 366 | 65.01 365 | 16.00 365 | 55.58 328 | 58.22 361 |
|
wuyk23d | | | 11.30 339 | 10.95 342 | 12.33 354 | 48.05 369 | 19.89 374 | 25.89 366 | 1.92 378 | 3.58 371 | 3.12 373 | 1.37 372 | 0.64 377 | 15.77 373 | 6.23 371 | 7.77 371 | 1.35 369 |
|
PMMVS2 | | | 37.93 331 | 33.61 334 | 50.92 345 | 46.31 370 | 24.76 371 | 60.55 357 | 50.05 369 | 28.94 363 | 20.93 364 | 47.59 357 | 4.41 374 | 65.13 364 | 25.14 361 | 18.55 365 | 62.87 359 |
|
E-PMN | | | 24.61 334 | 24.00 338 | 26.45 351 | 43.74 371 | 18.44 375 | 60.86 355 | 39.66 371 | 15.11 367 | 9.53 371 | 22.10 367 | 6.52 370 | 46.94 369 | 8.31 369 | 10.14 367 | 13.98 367 |
|
EMVS | | | 23.76 336 | 23.20 340 | 25.46 352 | 41.52 372 | 16.90 376 | 60.56 356 | 38.79 374 | 14.62 368 | 8.99 372 | 20.24 370 | 7.35 369 | 45.82 370 | 7.25 370 | 9.46 368 | 13.64 368 |
|
LCM-MVSNet | | | 40.54 328 | 35.79 331 | 54.76 343 | 36.92 373 | 30.81 367 | 51.41 360 | 69.02 358 | 22.07 364 | 24.63 363 | 45.37 360 | 4.56 373 | 65.81 363 | 33.67 352 | 34.50 360 | 67.67 357 |
|
ANet_high | | | 40.27 329 | 35.20 332 | 55.47 341 | 34.74 374 | 34.47 366 | 63.84 354 | 71.56 355 | 48.42 346 | 18.80 366 | 41.08 363 | 9.52 367 | 64.45 366 | 20.18 363 | 8.66 370 | 67.49 358 |
|
MVE |  | 24.84 23 | 24.35 335 | 19.77 341 | 38.09 349 | 34.56 375 | 26.92 370 | 26.57 365 | 38.87 373 | 11.73 369 | 11.37 370 | 27.44 365 | 1.37 376 | 50.42 368 | 11.41 367 | 14.60 366 | 36.93 362 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 26.43 22 | 31.84 333 | 28.16 336 | 42.89 348 | 25.87 376 | 27.58 369 | 50.92 361 | 49.78 370 | 21.37 365 | 14.17 369 | 40.81 364 | 2.01 375 | 66.62 362 | 9.61 368 | 38.88 356 | 34.49 364 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 22.26 337 | 23.75 339 | 17.80 353 | 5.23 377 | 12.06 377 | 35.26 364 | 39.48 372 | 2.82 372 | 18.94 365 | 44.20 361 | 22.23 353 | 24.64 372 | 36.30 344 | 9.31 369 | 16.69 366 |
|
testmvs | | | 7.23 341 | 9.62 344 | 0.06 356 | 0.04 378 | 0.02 380 | 84.98 284 | 0.02 379 | 0.03 373 | 0.18 374 | 1.21 373 | 0.01 379 | 0.02 374 | 0.14 372 | 0.01 372 | 0.13 371 |
|
test123 | | | 6.92 342 | 9.21 345 | 0.08 355 | 0.03 379 | 0.05 379 | 81.65 307 | 0.01 380 | 0.02 374 | 0.14 375 | 0.85 374 | 0.03 378 | 0.02 374 | 0.12 373 | 0.00 373 | 0.16 370 |
|
test_blank | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 373 | 0.00 372 |
|
eth-test2 | | | | | | 0.00 380 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 380 | | | | | | | | | | | |
|
uanet_test | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 373 | 0.00 372 |
|
cdsmvs_eth3d_5k | | | 19.86 338 | 26.47 337 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 93.45 83 | 0.00 375 | 0.00 376 | 95.27 50 | 49.56 236 | 0.00 376 | 0.00 374 | 0.00 373 | 0.00 372 |
|
pcd_1.5k_mvsjas | | | 4.46 343 | 5.95 346 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 53.55 202 | 0.00 376 | 0.00 374 | 0.00 373 | 0.00 372 |
|
sosnet-low-res | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 373 | 0.00 372 |
|
sosnet | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 373 | 0.00 372 |
|
uncertanet | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 373 | 0.00 372 |
|
Regformer | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 373 | 0.00 372 |
|
ab-mvs-re | | | 7.91 340 | 10.55 343 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 94.95 62 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 373 | 0.00 372 |
|
uanet | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 373 | 0.00 372 |
|
PC_three_1452 | | | | | | | | | | 80.91 36 | 94.07 2 | 96.83 14 | 83.57 4 | 99.12 5 | 95.70 2 | 97.42 4 | 97.55 4 |
|
test_241102_TWO | | | | | | | | | 94.41 45 | 71.65 193 | 92.07 6 | 97.21 5 | 74.58 16 | 99.11 6 | 92.34 7 | 95.36 14 | 96.59 15 |
|
test_0728_THIRD | | | | | | | | | | 72.48 162 | 90.55 15 | 96.93 10 | 76.24 11 | 99.08 11 | 91.53 15 | 94.99 17 | 96.43 26 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 85 |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 148 | | | | 94.68 85 |
|
sam_mvs | | | | | | | | | | | | | 54.91 187 | | | | |
|
MTGPA |  | | | | | | | | 92.23 130 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 324 | | | | 20.70 369 | 53.05 207 | 91.50 287 | 60.43 259 | | |
|
test_post | | | | | | | | | | | | 23.01 366 | 56.49 169 | 92.67 252 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 345 | 57.62 151 | 90.25 295 | | | |
|
MTMP | | | | | | | | 93.77 82 | 32.52 375 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 24 | 94.96 18 | 95.29 59 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 55 | 94.75 30 | 95.33 55 |
|
test_prior4 | | | | | | | 67.18 105 | 93.92 73 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 37 | | 75.40 106 | 85.25 53 | 95.61 40 | 67.94 43 | | 87.47 45 | 94.77 25 | |
|
旧先验2 | | | | | | | | 92.00 150 | | 59.37 313 | 87.54 28 | | | 93.47 229 | 75.39 137 | | |
|
新几何2 | | | | | | | | 91.41 172 | | | | | | | | | |
|
无先验 | | | | | | | | 92.71 119 | 92.61 120 | 62.03 294 | | | | 97.01 92 | 66.63 210 | | 93.97 118 |
|
原ACMM2 | | | | | | | | 92.01 148 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 127 | 61.26 255 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 63 | | | | |
|
testdata1 | | | | | | | | 89.21 241 | | 77.55 81 | | | | | | | |
|
plane_prior5 | | | | | | | | | 91.31 170 | | | | | 95.55 157 | 76.74 129 | 78.53 184 | 88.39 221 |
|
plane_prior4 | | | | | | | | | | | | 89.14 177 | | | | | |
|
plane_prior3 | | | | | | | 61.95 235 | | | 79.09 56 | 72.53 176 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 102 | | 78.81 61 | | | | | | | |
|
plane_prior | | | | | | | 62.42 225 | 93.85 77 | | 79.38 49 | | | | | | 78.80 181 | |
|
n2 | | | | | | | | | 0.00 381 | | | | | | | | |
|
nn | | | | | | | | | 0.00 381 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 363 | | | | | | | | |
|
test11 | | | | | | | | | 93.01 103 | | | | | | | | |
|
door | | | | | | | | | 66.57 362 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 202 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 126 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 157 | | | 95.61 151 | | | 88.63 215 |
|
HQP3-MVS | | | | | | | | | 91.70 155 | | | | | | | 78.90 179 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 219 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 271 | 80.13 320 | | 67.65 251 | 72.79 171 | | 54.33 195 | | 59.83 263 | | 92.58 159 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 229 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 239 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 196 | | | | |
|