This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19188.51 2190.11 9695.12 4990.98 688.92 25377.55 14697.07 8383.13 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23391.15 387.70 10888.42 20474.57 16283.56 24485.65 29878.49 14594.21 9272.04 21392.88 22494.05 102
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9686.07 4898.48 1897.22 17
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14379.26 10489.68 10894.81 5982.44 9787.74 26776.54 15888.74 29896.61 27
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 159
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 159
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10083.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 147
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 194
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 190
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 205
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 205
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 169
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
EGC-MVSNET74.79 28669.99 32889.19 6594.89 3887.00 1591.89 3786.28 2371.09 4212.23 42395.98 2781.87 11489.48 24179.76 11695.96 12591.10 222
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10879.74 9687.50 15792.38 15281.42 11993.28 13283.07 7897.24 7991.67 210
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 143
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17569.87 22995.06 1596.14 2584.28 7793.07 14087.68 1896.34 10697.09 19
PM-MVS80.20 22579.00 23483.78 16988.17 20886.66 1981.31 24366.81 39069.64 23088.33 14090.19 22264.58 26383.63 32671.99 21490.03 28081.06 379
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12084.26 4790.87 8993.92 10382.18 10689.29 24973.75 19394.81 17393.70 120
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12584.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 183
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 93
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42086.57 5595.80 2887.35 2797.62 6494.20 93
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11498.27 2695.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26392.98 153
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19783.86 7295.30 15393.60 127
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 19984.60 6590.75 27093.97 104
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 112
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 103
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 13978.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 247
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 105
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13691.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24574.12 18596.10 11994.45 83
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24574.12 18596.10 11994.45 83
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5899.27 199.54 1
PatchMatch-RL74.48 28873.22 29478.27 27587.70 21985.26 3875.92 32570.09 37364.34 28476.09 33681.25 35365.87 25978.07 35853.86 35383.82 36171.48 399
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 96
FPMVS72.29 30872.00 30773.14 32688.63 19785.00 4074.65 33867.39 38471.94 20777.80 32287.66 26550.48 34575.83 36649.95 37379.51 38458.58 413
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17081.56 7690.02 9991.20 18782.40 9990.81 20673.58 19694.66 17994.56 77
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19592.38 10570.25 22589.35 11990.68 20882.85 9294.57 8179.55 11995.95 12792.00 198
N_pmnet70.20 32568.80 34074.38 31980.91 33684.81 4359.12 40476.45 33055.06 35575.31 34782.36 34255.74 32154.82 41447.02 38887.24 31883.52 343
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15670.00 22894.55 1996.67 1487.94 3993.59 11984.27 6895.97 12495.52 49
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17269.27 23294.39 2096.38 1886.02 6593.52 12383.96 7095.92 13095.34 53
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 156
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 13982.67 8698.04 3993.64 124
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10495.50 14594.53 80
CNLPA83.55 16483.10 17084.90 13889.34 17983.87 5084.54 16888.77 19979.09 10683.54 24588.66 24974.87 18681.73 33666.84 26092.29 23489.11 268
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14385.02 6098.45 1992.41 176
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18170.81 21996.14 11694.16 97
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18170.81 21996.14 11694.16 97
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 11973.19 18680.18 30189.15 24177.04 16493.28 13265.82 27292.28 23592.21 189
MVS_111021_LR84.28 14383.76 15985.83 12589.23 18283.07 5580.99 24983.56 27972.71 19486.07 18989.07 24281.75 11686.19 29477.11 15393.36 21088.24 280
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 100
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17871.54 20894.28 2496.54 1681.57 11794.27 8886.26 4396.49 10097.09 19
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9488.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 106
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17884.98 26471.27 21186.70 17390.55 21363.04 27793.92 10478.26 13594.20 19189.63 258
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21783.69 27771.27 21186.70 17386.05 29463.04 27792.41 15778.26 13593.62 20990.71 234
AUN-MVS81.18 20578.78 23888.39 7990.93 14782.14 6282.51 22383.67 27864.69 28380.29 29785.91 29751.07 34192.38 15876.29 16393.63 20890.65 238
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 13077.97 14297.03 8495.52 49
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6195.87 13295.24 58
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18881.58 29774.73 16085.66 19686.06 29372.56 22092.69 15175.44 17395.21 15489.01 274
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9297.18 8190.45 243
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8298.76 494.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 88
Skip Steuart: Steuart Systems R&D Blog.
ZD-MVS92.22 10380.48 7191.85 12171.22 21490.38 9292.98 13186.06 6496.11 781.99 9596.75 92
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5897.78 5697.26 15
PLCcopyleft73.85 1682.09 19080.31 21787.45 9290.86 15080.29 7385.88 14290.65 15568.17 24676.32 33286.33 28873.12 21392.61 15361.40 31090.02 28189.44 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LF4IMVS82.75 17781.93 18885.19 13482.08 32180.15 7485.53 14988.76 20068.01 24785.58 19987.75 26371.80 22986.85 28174.02 18893.87 20188.58 277
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9578.78 11192.51 5893.64 11588.13 3693.84 10884.83 6397.55 6994.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19589.56 23480.76 12692.13 16573.21 20695.51 14493.25 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST992.34 9879.70 7883.94 17990.32 16765.41 27784.49 22090.97 19482.03 10993.63 114
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 17990.32 16765.79 26884.49 22090.97 19481.93 11193.63 11481.21 10096.54 9890.88 229
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 139
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22689.33 23783.87 7994.53 8482.45 8894.89 16994.90 65
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 6998.03 4193.26 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior478.97 8484.59 165
test_892.09 10778.87 8583.82 18490.31 16965.79 26884.36 22490.96 19681.93 11193.44 127
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14478.77 11284.85 21590.89 19980.85 12595.29 5681.14 10195.32 15092.34 181
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6697.81 5591.70 209
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
新几何182.95 19693.96 5978.56 8880.24 30555.45 35383.93 23791.08 19171.19 23288.33 26265.84 27193.07 21981.95 366
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26478.30 8986.93 12092.20 11065.94 26489.16 12193.16 12483.10 8989.89 23487.81 1594.43 18593.35 134
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27378.25 9085.82 14591.82 12365.33 27888.55 13292.35 15682.62 9689.80 23686.87 3594.32 18893.18 144
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28178.21 9185.40 15391.39 13565.32 27987.72 15391.81 17082.33 10189.78 23786.68 3794.20 19192.99 152
MAR-MVS80.24 22478.74 24084.73 14386.87 24378.18 9285.75 14687.81 21565.67 27377.84 32078.50 37673.79 20190.53 21461.59 30990.87 26685.49 317
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 153
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 178
No_MVS88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 178
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11770.73 21994.19 2596.67 1476.94 16694.57 8183.07 7896.28 10896.15 32
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 18095.35 14892.29 184
test_part293.86 6177.77 9892.84 51
test_fmvsm_n_192083.60 16282.89 17385.74 12685.22 27477.74 9984.12 17590.48 15959.87 32786.45 18591.12 18975.65 17885.89 30282.28 9190.87 26693.58 128
agg_prior91.58 12777.69 10090.30 17084.32 22693.18 135
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 8987.95 2589.62 11192.87 13784.56 7393.89 10577.65 14496.62 9590.70 235
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 27987.25 27482.43 9894.53 8477.65 14496.46 10294.14 99
save fliter93.75 6377.44 10386.31 13589.72 18570.80 218
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11378.87 11084.27 23194.05 9278.35 14693.65 11280.54 11091.58 25192.08 194
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PHI-MVS86.38 10085.81 11788.08 8488.44 20377.34 10589.35 8593.05 8373.15 18784.76 21687.70 26478.87 14294.18 9480.67 10896.29 10792.73 159
plane_prior793.45 6877.31 106
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15491.23 14077.31 13187.07 16691.47 17982.94 9194.71 7584.67 6496.27 11092.62 166
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 92
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22186.24 4697.24 7991.36 217
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11670.56 22084.96 21190.69 20780.01 13595.14 6478.37 13195.78 13891.82 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
plane_prior376.85 11177.79 12586.55 177
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14267.85 25286.63 17694.84 5579.58 13895.96 1587.62 1994.50 18294.56 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test22293.31 7376.54 11379.38 26977.79 31652.59 36982.36 26390.84 20366.83 25491.69 24781.25 374
plane_prior692.61 9076.54 11374.84 187
Fast-Effi-MVS+-dtu82.54 18181.41 20185.90 12285.60 26776.53 11583.07 20589.62 19073.02 18979.11 31183.51 32780.74 12790.24 22068.76 24689.29 28990.94 226
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10695.83 13494.46 81
plane_prior76.42 11687.15 11775.94 14595.03 162
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23384.54 4683.58 24393.78 10873.36 21096.48 287.98 1396.21 11294.41 87
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12778.35 13298.76 495.61 48
UGNet82.78 17681.64 19386.21 11686.20 25876.24 12086.86 12285.68 24977.07 13373.76 35692.82 13869.64 23991.82 17669.04 24393.69 20690.56 240
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvsany_test365.48 36162.97 37073.03 32869.99 41076.17 12164.83 39043.71 42143.68 40380.25 30087.05 28052.83 33363.09 40851.92 36972.44 40379.84 386
test_fmvsmvis_n_192085.22 11985.36 12884.81 14085.80 26676.13 12285.15 15792.32 10761.40 30891.33 7690.85 20283.76 8386.16 29584.31 6793.28 21492.15 192
MVS_111021_HR84.63 13384.34 15185.49 13290.18 16375.86 12379.23 27487.13 22473.35 17985.56 20089.34 23683.60 8590.50 21576.64 15794.05 19790.09 253
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18392.01 11565.91 26686.19 18691.75 17383.77 8294.98 6977.43 14996.71 9393.73 119
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20292.40 10372.04 20582.04 26888.33 25277.91 15093.95 10366.17 26695.12 15990.34 246
wuyk23d75.13 27979.30 23262.63 38475.56 38475.18 12680.89 25073.10 35575.06 15894.76 1695.32 4187.73 4352.85 41534.16 41497.11 8259.85 411
mmtdpeth85.13 12385.78 11983.17 19084.65 28374.71 12785.87 14390.35 16677.94 12183.82 23896.96 1277.75 15180.03 34978.44 12996.21 11294.79 73
3Dnovator80.37 784.80 13084.71 13985.06 13786.36 25274.71 12788.77 9490.00 18075.65 14984.96 21193.17 12374.06 19791.19 19078.28 13491.09 25789.29 266
NP-MVS91.95 11274.55 12990.17 225
pmmvs-eth3d78.42 24577.04 25782.57 20787.44 22774.41 13080.86 25179.67 30855.68 35284.69 21790.31 21960.91 28585.42 30762.20 30191.59 25087.88 290
CSCG86.26 10186.47 10385.60 12990.87 14974.26 13187.98 10491.85 12180.35 8889.54 11788.01 25679.09 14092.13 16575.51 17195.06 16190.41 244
原ACMM184.60 14692.81 8974.01 13291.50 13062.59 29282.73 25990.67 21076.53 17394.25 9069.24 23795.69 14185.55 315
fmvsm_l_conf0.5_n82.06 19181.54 19983.60 17583.94 29673.90 13383.35 19786.10 24058.97 32983.80 23990.36 21674.23 19586.94 27982.90 8190.22 27889.94 255
MVP-Stereo75.81 27473.51 29082.71 20289.35 17873.62 13480.06 25785.20 25660.30 32273.96 35487.94 25857.89 30989.45 24452.02 36574.87 40185.06 321
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Gipumacopyleft84.44 13886.33 10578.78 26384.20 29373.57 13589.55 7790.44 16184.24 4884.38 22394.89 5376.35 17780.40 34676.14 16596.80 9182.36 362
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_030485.37 11784.58 14287.75 8885.28 27273.36 13686.54 13385.71 24877.56 12981.78 27792.47 15070.29 23696.02 1185.59 5395.96 12593.87 110
fmvsm_s_conf0.1_n_a82.58 18081.93 18884.50 14887.68 22073.35 13786.14 13977.70 31761.64 30685.02 20991.62 17577.75 15186.24 29182.79 8487.07 32193.91 108
fmvsm_s_conf0.5_n_a82.21 18681.51 20084.32 15686.56 24573.35 13785.46 15077.30 32161.81 30284.51 21990.88 20177.36 15886.21 29382.72 8586.97 32693.38 133
EPNet80.37 21978.41 24586.23 11376.75 37373.28 13987.18 11677.45 31976.24 13868.14 38488.93 24465.41 26193.85 10669.47 23596.12 11891.55 214
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
PVSNet_Blended_VisFu81.55 20080.49 21584.70 14591.58 12773.24 14184.21 17291.67 12762.86 29180.94 28787.16 27667.27 25192.87 14869.82 23388.94 29587.99 287
fmvsm_l_conf0.5_n_a81.46 20180.87 21183.25 18683.73 30173.21 14283.00 20885.59 25158.22 33582.96 25490.09 22772.30 22286.65 28581.97 9689.95 28289.88 256
TAMVS78.08 24776.36 26383.23 18790.62 15472.87 14379.08 27580.01 30761.72 30481.35 28386.92 28163.96 26988.78 25750.61 37193.01 22188.04 286
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29572.76 14483.91 18285.18 25780.44 8688.75 12785.49 30180.08 13491.92 17182.02 9490.85 26895.97 38
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 184
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 172
IU-MVS94.18 5072.64 14790.82 15156.98 34789.67 10985.78 5297.92 4993.28 138
test1286.57 10590.74 15172.63 14990.69 15482.76 25879.20 13994.80 7395.32 15092.27 186
EG-PatchMatch MVS84.08 15084.11 15383.98 16392.22 10372.61 15082.20 23587.02 22972.63 19588.86 12491.02 19278.52 14391.11 19373.41 19891.09 25788.21 281
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14683.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 241
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 29972.52 15383.82 18485.15 25880.27 9088.75 12785.45 30379.95 13691.90 17281.92 9790.80 26996.13 33
CDS-MVSNet77.32 25575.40 27283.06 19189.00 18672.48 15477.90 29182.17 29160.81 31778.94 31283.49 32859.30 29788.76 25854.64 35192.37 23187.93 289
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 197
testdata79.54 25692.87 8472.34 15680.14 30659.91 32685.47 20291.75 17367.96 24985.24 30868.57 25192.18 23981.06 379
PCF-MVS74.62 1582.15 18980.92 21085.84 12489.43 17772.30 15780.53 25391.82 12357.36 34387.81 15189.92 22977.67 15493.63 11458.69 32395.08 16091.58 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
AdaColmapbinary83.66 16083.69 16083.57 17890.05 16772.26 15886.29 13690.00 18078.19 11981.65 27887.16 27683.40 8794.24 9161.69 30794.76 17784.21 334
test_040288.65 6989.58 6085.88 12392.55 9272.22 15984.01 17789.44 19388.63 2094.38 2195.77 2986.38 6193.59 11979.84 11595.21 15491.82 203
CANet83.79 15882.85 17486.63 10486.17 25972.21 16083.76 18791.43 13277.24 13274.39 35287.45 27075.36 18195.42 5277.03 15492.83 22592.25 188
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20789.67 23384.47 7595.46 5082.56 8796.26 11193.77 118
test_prior86.32 11090.59 15571.99 16292.85 9294.17 9692.80 157
旧先验191.97 11171.77 16381.78 29491.84 16773.92 19993.65 20783.61 342
xiu_mvs_v1_base_debu80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
xiu_mvs_v1_base80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
xiu_mvs_v1_base_debi80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
pmmvs474.92 28372.98 29780.73 23884.95 27771.71 16776.23 32077.59 31852.83 36877.73 32486.38 28656.35 31884.97 31157.72 33187.05 32285.51 316
MCST-MVS84.36 13983.93 15785.63 12891.59 12471.58 16883.52 19292.13 11261.82 30183.96 23689.75 23279.93 13793.46 12678.33 13394.34 18791.87 202
fmvsm_s_conf0.1_n82.17 18881.59 19683.94 16686.87 24371.57 16985.19 15677.42 32062.27 30084.47 22291.33 18276.43 17485.91 30083.14 7587.14 31994.33 91
fmvsm_s_conf0.5_n81.91 19681.30 20383.75 17086.02 26371.56 17084.73 16277.11 32462.44 29784.00 23590.68 20876.42 17585.89 30283.14 7587.11 32093.81 116
MSLP-MVS++85.00 12886.03 11181.90 21591.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23577.98 14889.40 24877.46 14794.78 17484.75 324
JIA-IIPM69.41 33666.64 35477.70 28573.19 39871.24 17275.67 32665.56 39370.42 22165.18 39892.97 13333.64 40583.06 32753.52 35769.61 41078.79 388
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 9986.25 4597.63 6397.82 8
lessismore_v085.95 12091.10 14470.99 17470.91 37191.79 6994.42 7461.76 28192.93 14579.52 12193.03 22093.93 106
HQP5-MVS70.66 175
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 15992.68 9773.30 18280.55 29390.17 22572.10 22494.61 7977.30 15194.47 18393.56 130
test_vis3_rt71.42 31670.67 31773.64 32369.66 41170.46 17766.97 38789.73 18442.68 40888.20 14383.04 33243.77 38160.07 40965.35 27786.66 32890.39 245
ETV-MVS84.31 14183.91 15885.52 13088.58 19970.40 17884.50 17093.37 6478.76 11384.07 23478.72 37580.39 13095.13 6573.82 19292.98 22291.04 223
ACMH76.49 1489.34 5991.14 3583.96 16492.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26383.33 7498.30 2593.20 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_rt65.64 36064.09 36470.31 34666.09 41770.20 18061.16 39981.60 29638.65 41372.87 36069.66 40652.84 33260.04 41056.16 33777.77 39380.68 381
API-MVS82.28 18482.61 17981.30 22786.29 25569.79 18188.71 9587.67 21678.42 11782.15 26784.15 32377.98 14891.59 17965.39 27592.75 22682.51 361
DPM-MVS80.10 22879.18 23382.88 20090.71 15369.74 18278.87 27990.84 15060.29 32375.64 34285.92 29667.28 25093.11 13871.24 21791.79 24585.77 313
nrg03087.85 8288.49 7585.91 12190.07 16669.73 18387.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18079.72 11797.32 7796.50 29
IterMVS-SCA-FT80.64 21379.41 23084.34 15583.93 29769.66 18476.28 31981.09 30072.43 19686.47 18390.19 22260.46 28793.15 13777.45 14886.39 33290.22 247
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15176.68 32884.06 5092.44 6096.99 1062.03 28094.65 7780.58 10993.24 21594.83 72
test_fmvs375.72 27575.20 27577.27 29075.01 39169.47 18678.93 27684.88 26646.67 39287.08 16587.84 26150.44 34671.62 37777.42 15088.53 29990.72 233
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21481.51 7787.05 16791.83 16866.18 25795.29 5670.75 22296.89 8695.64 46
jason77.42 25475.75 26982.43 21087.10 23669.27 18877.99 28981.94 29351.47 37877.84 32085.07 31260.32 28989.00 25170.74 22389.27 29189.03 272
jason: jason.
MVSFormer82.23 18581.57 19884.19 16185.54 26969.26 18991.98 3490.08 17871.54 20876.23 33385.07 31258.69 30294.27 8886.26 4388.77 29689.03 272
lupinMVS76.37 26974.46 28182.09 21285.54 26969.26 18976.79 30880.77 30350.68 38576.23 33382.82 33758.69 30288.94 25269.85 23288.77 29688.07 283
PMMVS61.65 37160.38 37865.47 37765.40 42069.26 18963.97 39461.73 40436.80 41760.11 40968.43 40859.42 29666.35 39948.97 38078.57 39160.81 410
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21281.66 7594.64 1896.53 1765.94 25894.75 7483.02 8096.83 8995.41 51
EIA-MVS82.19 18781.23 20685.10 13687.95 21369.17 19383.22 20393.33 6770.42 22178.58 31579.77 36777.29 15994.20 9371.51 21588.96 29491.93 201
114514_t83.10 17382.54 18184.77 14292.90 8369.10 19486.65 12990.62 15754.66 35981.46 28190.81 20476.98 16594.38 8772.62 20996.18 11490.82 231
test_fmvs273.57 29672.80 29875.90 30872.74 40468.84 19577.07 30584.32 27445.14 39882.89 25584.22 32148.37 35170.36 38173.40 19987.03 32388.52 278
mvs5depth83.82 15784.54 14481.68 22282.23 32068.65 19686.89 12189.90 18280.02 9487.74 15297.86 264.19 26782.02 33476.37 16095.63 14394.35 89
BP-MVS182.81 17581.67 19286.23 11387.88 21568.53 19786.06 14084.36 27275.65 14985.14 20690.19 22245.84 36694.42 8685.18 5794.72 17895.75 43
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19883.80 18692.87 9180.37 8789.61 11391.81 17077.72 15394.18 9475.00 17898.53 1696.99 22
BH-untuned80.96 20880.99 20880.84 23688.55 20068.23 19980.33 25688.46 20372.79 19386.55 17786.76 28274.72 19191.77 17761.79 30688.99 29382.52 360
OpenMVScopyleft76.72 1381.98 19482.00 18781.93 21484.42 28868.22 20088.50 9989.48 19266.92 25981.80 27591.86 16572.59 21990.16 22371.19 21891.25 25687.40 296
mvsany_test158.48 38056.47 38564.50 38065.90 41968.21 20156.95 40942.11 42238.30 41465.69 39577.19 38856.96 31459.35 41246.16 39158.96 41565.93 406
patch_mono-278.89 23679.39 23177.41 28984.78 28068.11 20275.60 32783.11 28260.96 31679.36 30789.89 23075.18 18372.97 37273.32 20092.30 23291.15 221
ET-MVSNet_ETH3D75.28 27772.77 29982.81 20183.03 31768.11 20277.09 30476.51 32960.67 32077.60 32580.52 35938.04 39591.15 19270.78 22190.68 27189.17 267
MSDG80.06 22979.99 22880.25 24583.91 29868.04 20477.51 29889.19 19577.65 12681.94 26983.45 32976.37 17686.31 29063.31 29586.59 32986.41 305
alignmvs83.94 15583.98 15683.80 16787.80 21767.88 20584.54 16891.42 13473.27 18588.41 13887.96 25772.33 22190.83 20576.02 16794.11 19492.69 163
CLD-MVS83.18 17082.64 17884.79 14189.05 18467.82 20677.93 29092.52 10168.33 24385.07 20881.54 35182.06 10892.96 14369.35 23697.91 5193.57 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
mvsmamba80.30 22278.87 23584.58 14788.12 21067.55 20792.35 2984.88 26663.15 28985.33 20390.91 19850.71 34395.20 6266.36 26487.98 31090.99 224
CMPMVSbinary59.41 2075.12 28073.57 28879.77 25075.84 38367.22 20881.21 24682.18 29050.78 38376.50 32987.66 26555.20 32582.99 32962.17 30390.64 27689.09 271
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sasdasda85.50 11386.14 10983.58 17687.97 21167.13 20987.55 10994.32 2173.44 17788.47 13587.54 26786.45 5891.06 19575.76 16993.76 20292.54 170
canonicalmvs85.50 11386.14 10983.58 17687.97 21167.13 20987.55 10994.32 2173.44 17788.47 13587.54 26786.45 5891.06 19575.76 16993.76 20292.54 170
GeoE85.45 11685.81 11784.37 15190.08 16467.07 21185.86 14491.39 13572.33 20187.59 15590.25 22084.85 7192.37 15978.00 14091.94 24493.66 121
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21282.55 22191.56 12883.08 6290.92 8491.82 16978.25 14793.99 10174.16 18398.35 2297.49 13
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21283.16 20492.21 10981.73 7490.92 8491.97 16377.20 16093.99 10174.16 18398.35 2297.61 10
test_fmvs1_n70.94 32070.41 32372.53 33473.92 39366.93 21475.99 32484.21 27643.31 40579.40 30679.39 36943.47 38268.55 38969.05 24284.91 35182.10 364
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21591.21 4388.64 20286.30 3389.60 11492.59 14569.22 24294.91 7173.89 19097.89 5296.72 24
QAPM82.59 17982.59 18082.58 20586.44 24766.69 21689.94 6790.36 16567.97 24984.94 21392.58 14772.71 21792.18 16470.63 22587.73 31488.85 275
Patchmatch-RL test74.48 28873.68 28776.89 29684.83 27966.54 21772.29 35569.16 38057.70 33986.76 17186.33 28845.79 36782.59 33069.63 23490.65 27581.54 370
test_vis1_n70.29 32469.99 32871.20 34375.97 38266.50 21876.69 31180.81 30244.22 40175.43 34377.23 38650.00 34768.59 38866.71 26282.85 37078.52 389
FE-MVS79.98 23078.86 23683.36 18386.47 24666.45 21989.73 7084.74 27072.80 19284.22 23391.38 18144.95 37793.60 11863.93 28891.50 25290.04 254
tttt051781.07 20679.58 22985.52 13088.99 18766.45 21987.03 11975.51 33673.76 17088.32 14190.20 22137.96 39794.16 9879.36 12395.13 15795.93 41
BH-RMVSNet80.53 21480.22 22181.49 22687.19 23266.21 22177.79 29386.23 23874.21 16583.69 24088.50 25073.25 21290.75 20763.18 29687.90 31187.52 294
FA-MVS(test-final)83.13 17283.02 17183.43 18186.16 26166.08 22288.00 10388.36 20675.55 15185.02 20992.75 14265.12 26292.50 15574.94 17991.30 25591.72 207
PAPM_NR83.23 16983.19 16783.33 18490.90 14865.98 22388.19 10190.78 15278.13 12080.87 28987.92 26073.49 20692.42 15670.07 23088.40 30191.60 212
BH-w/o76.57 26576.07 26778.10 27786.88 24265.92 22477.63 29586.33 23665.69 27280.89 28879.95 36468.97 24590.74 20853.01 36185.25 34377.62 390
TR-MVS76.77 26275.79 26879.72 25286.10 26265.79 22577.14 30383.02 28365.20 28081.40 28282.10 34366.30 25590.73 20955.57 34285.27 34282.65 355
test_fmvs169.57 33569.05 33571.14 34469.15 41265.77 22673.98 34383.32 28042.83 40777.77 32378.27 37843.39 38568.50 39068.39 25284.38 35879.15 387
Effi-MVS+83.90 15684.01 15583.57 17887.22 23165.61 22786.55 13292.40 10378.64 11481.34 28484.18 32283.65 8492.93 14574.22 18287.87 31292.17 191
Anonymous2023121188.40 7189.62 5984.73 14390.46 15765.27 22888.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 16976.70 15697.99 4396.88 23
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15387.09 23765.22 22984.16 17394.23 2777.89 12291.28 7993.66 11484.35 7692.71 14980.07 11194.87 17295.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test75.12 28072.66 30182.50 20891.44 13565.19 23072.47 35487.31 21946.79 39180.29 29784.30 32052.70 33492.10 16851.88 37086.73 32790.22 247
VDD-MVS84.23 14684.58 14283.20 18891.17 14265.16 23183.25 20084.97 26579.79 9587.18 16094.27 7974.77 19090.89 20269.24 23796.54 9893.55 132
ambc82.98 19490.55 15664.86 23288.20 10089.15 19689.40 11893.96 9971.67 23191.38 18778.83 12796.55 9792.71 162
MDA-MVSNet-bldmvs77.47 25376.90 25979.16 26079.03 35864.59 23366.58 38875.67 33473.15 18788.86 12488.99 24366.94 25281.23 33964.71 28288.22 30891.64 211
thisisatest053079.07 23477.33 25484.26 15887.13 23364.58 23483.66 19075.95 33168.86 23885.22 20587.36 27238.10 39493.57 12275.47 17294.28 18994.62 75
NR-MVSNet86.00 10786.22 10785.34 13393.24 7664.56 23582.21 23390.46 16080.99 8288.42 13791.97 16377.56 15593.85 10672.46 21198.65 1297.61 10
Anonymous2024052986.20 10487.13 9183.42 18290.19 16264.55 23684.55 16690.71 15385.85 3689.94 10395.24 4682.13 10790.40 21769.19 24096.40 10595.31 55
CHOSEN 280x42059.08 37956.52 38466.76 37176.51 37664.39 23749.62 41359.00 41043.86 40255.66 41768.41 40935.55 40168.21 39343.25 39876.78 39967.69 405
UniMVSNet_ETH3D89.12 6590.72 4784.31 15797.00 264.33 23889.67 7488.38 20588.84 1794.29 2297.57 490.48 1391.26 18872.57 21097.65 6297.34 14
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13594.02 5864.13 23984.38 17191.29 13884.88 4492.06 6593.84 10586.45 5893.73 11073.22 20198.66 1197.69 9
IterMVS76.91 25976.34 26478.64 26680.91 33664.03 24076.30 31879.03 31164.88 28283.11 25189.16 24059.90 29384.46 31668.61 24985.15 34687.42 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs362.47 36860.02 38169.80 35071.58 40764.00 24170.52 36958.44 41239.77 41166.05 39275.84 39427.10 42072.28 37346.15 39284.77 35673.11 397
tt080588.09 7789.79 5582.98 19493.26 7563.94 24291.10 4589.64 18885.07 4190.91 8691.09 19089.16 2491.87 17482.03 9395.87 13293.13 145
EI-MVSNet82.61 17882.42 18383.20 18883.25 31163.66 24383.50 19385.07 25976.06 13986.55 17785.10 30973.41 20790.25 21878.15 13990.67 27295.68 45
IterMVS-LS84.73 13284.98 13383.96 16487.35 22863.66 24383.25 20089.88 18376.06 13989.62 11192.37 15573.40 20992.52 15478.16 13794.77 17695.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MGCFI-Net85.04 12585.95 11282.31 21187.52 22563.59 24586.23 13893.96 4473.46 17588.07 14587.83 26286.46 5790.87 20476.17 16493.89 20092.47 174
PVSNet_BlendedMVS78.80 23977.84 24981.65 22384.43 28663.41 24679.49 26890.44 16161.70 30575.43 34387.07 27969.11 24391.44 18360.68 31492.24 23690.11 252
PVSNet_Blended76.49 26775.40 27279.76 25184.43 28663.41 24675.14 33390.44 16157.36 34375.43 34378.30 37769.11 24391.44 18360.68 31487.70 31584.42 329
V4283.47 16683.37 16483.75 17083.16 31463.33 24881.31 24390.23 17469.51 23190.91 8690.81 20474.16 19692.29 16380.06 11290.22 27895.62 47
v1086.54 9887.10 9284.84 13988.16 20963.28 24986.64 13092.20 11075.42 15492.81 5394.50 6874.05 19894.06 10083.88 7196.28 10897.17 18
Fast-Effi-MVS+81.04 20780.57 21282.46 20987.50 22663.22 25078.37 28689.63 18968.01 24781.87 27182.08 34582.31 10292.65 15267.10 25788.30 30791.51 215
CHOSEN 1792x268872.45 30570.56 31978.13 27690.02 16963.08 25168.72 37783.16 28142.99 40675.92 33885.46 30257.22 31385.18 31049.87 37581.67 37586.14 308
cascas76.29 27074.81 27780.72 23984.47 28562.94 25273.89 34587.34 21855.94 35075.16 34876.53 39263.97 26891.16 19165.00 27990.97 26288.06 285
v119284.57 13584.69 14084.21 15987.75 21862.88 25383.02 20791.43 13269.08 23589.98 10290.89 19972.70 21893.62 11782.41 8994.97 16696.13 33
DELS-MVS81.44 20281.25 20482.03 21384.27 29262.87 25476.47 31792.49 10270.97 21781.64 27983.83 32475.03 18492.70 15074.29 18192.22 23890.51 242
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_cas_vis1_n_192069.20 34069.12 33369.43 35473.68 39662.82 25570.38 37177.21 32246.18 39580.46 29678.95 37352.03 33665.53 40265.77 27377.45 39779.95 385
casdiffmvspermissive85.21 12085.85 11683.31 18586.17 25962.77 25683.03 20693.93 4674.69 16188.21 14292.68 14482.29 10491.89 17377.87 14393.75 20595.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet183.63 16184.59 14180.74 23794.06 5762.77 25682.72 21584.53 27177.57 12890.34 9395.92 2876.88 17285.83 30461.88 30597.42 7493.62 125
CR-MVSNet74.00 29373.04 29676.85 29779.58 35062.64 25882.58 21976.90 32550.50 38675.72 34092.38 15248.07 35384.07 32268.72 24882.91 36883.85 339
RPMNet78.88 23778.28 24680.68 24079.58 35062.64 25882.58 21994.16 3274.80 15975.72 34092.59 14548.69 35095.56 4273.48 19782.91 36883.85 339
v114484.54 13784.72 13884.00 16287.67 22162.55 26082.97 20990.93 14970.32 22489.80 10590.99 19373.50 20493.48 12581.69 9994.65 18095.97 38
MS-PatchMatch70.93 32170.22 32473.06 32781.85 32462.50 26173.82 34677.90 31552.44 37175.92 33881.27 35255.67 32281.75 33555.37 34477.70 39474.94 395
SDMVSNet81.90 19783.17 16878.10 27788.81 19262.45 26276.08 32386.05 24373.67 17183.41 24693.04 12782.35 10080.65 34370.06 23195.03 16291.21 219
WR-MVS_H89.91 5091.31 3385.71 12796.32 962.39 26389.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10398.80 398.84 5
baseline85.20 12185.93 11383.02 19286.30 25462.37 26484.55 16693.96 4474.48 16387.12 16192.03 16282.30 10391.94 17078.39 13094.21 19094.74 74
v886.22 10386.83 9984.36 15387.82 21662.35 26586.42 13491.33 13776.78 13592.73 5594.48 7073.41 20793.72 11183.10 7795.41 14697.01 21
pmmvs686.52 9988.06 7981.90 21592.22 10362.28 26684.66 16489.15 19683.54 5789.85 10497.32 588.08 3886.80 28270.43 22797.30 7896.62 26
MVSMamba_PlusPlus87.53 8688.86 7183.54 18092.03 11062.26 26791.49 4092.62 9988.07 2488.07 14596.17 2372.24 22395.79 3184.85 6294.16 19392.58 167
IB-MVS62.13 1971.64 31368.97 33879.66 25480.80 34062.26 26773.94 34476.90 32563.27 28868.63 38376.79 38933.83 40391.84 17559.28 32287.26 31784.88 322
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_f64.31 36765.85 35659.67 39266.54 41662.24 26957.76 40870.96 37040.13 41084.36 22482.09 34446.93 35551.67 41661.99 30481.89 37465.12 407
D2MVS76.84 26075.67 27180.34 24480.48 34462.16 27073.50 34884.80 26957.61 34182.24 26487.54 26751.31 34087.65 26870.40 22893.19 21791.23 218
dcpmvs_284.23 14685.14 13081.50 22588.61 19861.98 27182.90 21293.11 7968.66 24192.77 5492.39 15178.50 14487.63 26976.99 15592.30 23294.90 65
v192192084.23 14684.37 15083.79 16887.64 22361.71 27282.91 21191.20 14167.94 25090.06 9790.34 21772.04 22793.59 11982.32 9094.91 16796.07 35
v14419284.24 14584.41 14883.71 17287.59 22461.57 27382.95 21091.03 14567.82 25389.80 10590.49 21473.28 21193.51 12481.88 9894.89 16996.04 37
balanced_conf0384.80 13085.40 12683.00 19388.95 18861.44 27490.42 5892.37 10671.48 21088.72 12993.13 12570.16 23895.15 6379.26 12494.11 19492.41 176
PS-MVSNAJ77.04 25876.53 26278.56 26787.09 23761.40 27575.26 33287.13 22461.25 31274.38 35377.22 38776.94 16690.94 19864.63 28484.83 35483.35 347
v2v48284.09 14984.24 15283.62 17487.13 23361.40 27582.71 21689.71 18672.19 20489.55 11591.41 18070.70 23593.20 13481.02 10293.76 20296.25 31
xiu_mvs_v2_base77.19 25676.75 26078.52 26887.01 23961.30 27775.55 33087.12 22761.24 31374.45 35178.79 37477.20 16090.93 19964.62 28584.80 35583.32 348
v124084.30 14284.51 14683.65 17387.65 22261.26 27882.85 21391.54 12967.94 25090.68 9190.65 21171.71 23093.64 11382.84 8394.78 17496.07 35
OpenMVS_ROBcopyleft70.19 1777.77 25177.46 25178.71 26584.39 28961.15 27981.18 24782.52 28762.45 29683.34 24887.37 27166.20 25688.66 25964.69 28385.02 34886.32 306
MVSTER77.09 25775.70 27081.25 22875.27 38861.08 28077.49 30085.07 25960.78 31886.55 17788.68 24743.14 38690.25 21873.69 19590.67 27292.42 175
GBi-Net82.02 19282.07 18581.85 21786.38 24961.05 28186.83 12488.27 20972.43 19686.00 19095.64 3463.78 27090.68 21065.95 26893.34 21193.82 113
test182.02 19282.07 18581.85 21786.38 24961.05 28186.83 12488.27 20972.43 19686.00 19095.64 3463.78 27090.68 21065.95 26893.34 21193.82 113
FMVSNet184.55 13685.45 12581.85 21790.27 16161.05 28186.83 12488.27 20978.57 11589.66 11095.64 3475.43 18090.68 21069.09 24195.33 14993.82 113
eth_miper_zixun_eth80.84 20980.22 22182.71 20281.41 33060.98 28477.81 29290.14 17767.31 25786.95 16987.24 27564.26 26592.31 16175.23 17591.61 24994.85 71
miper_lstm_enhance76.45 26876.10 26677.51 28776.72 37460.97 28564.69 39285.04 26163.98 28683.20 25088.22 25356.67 31578.79 35673.22 20193.12 21892.78 158
Anonymous2024052180.18 22681.25 20476.95 29383.15 31560.84 28682.46 22485.99 24568.76 23986.78 17093.73 11259.13 29977.44 36073.71 19497.55 6992.56 168
MVS73.21 30072.59 30275.06 31480.97 33560.81 28781.64 24085.92 24646.03 39671.68 36677.54 38268.47 24689.77 23855.70 34185.39 34074.60 396
TinyColmap81.25 20482.34 18477.99 28085.33 27160.68 28882.32 22888.33 20771.26 21386.97 16892.22 16177.10 16386.98 27862.37 29995.17 15686.31 307
EPNet_dtu72.87 30371.33 31577.49 28877.72 36460.55 28982.35 22775.79 33266.49 26358.39 41481.06 35453.68 33085.98 29753.55 35692.97 22385.95 310
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 30471.41 31476.28 30483.25 31160.34 29083.50 19379.02 31237.77 41676.33 33185.10 30949.60 34987.41 27170.54 22677.54 39681.08 377
PAPR78.84 23878.10 24881.07 23285.17 27560.22 29182.21 23390.57 15862.51 29375.32 34684.61 31774.99 18592.30 16259.48 32188.04 30990.68 236
diffmvspermissive80.40 21880.48 21680.17 24779.02 35960.04 29277.54 29790.28 17366.65 26282.40 26287.33 27373.50 20487.35 27277.98 14189.62 28693.13 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss74.82 28573.74 28678.04 27989.57 17260.04 29276.49 31687.09 22854.31 36073.66 35779.80 36560.25 29086.76 28458.37 32584.15 35987.32 297
test_vis1_n_192071.30 31871.58 31270.47 34577.58 36659.99 29474.25 33984.22 27551.06 38074.85 35079.10 37155.10 32668.83 38768.86 24579.20 38982.58 357
thisisatest051573.00 30270.52 32080.46 24281.45 32959.90 29573.16 35274.31 34357.86 33876.08 33777.78 38037.60 39892.12 16765.00 27991.45 25389.35 263
CANet_DTU77.81 25077.05 25680.09 24881.37 33159.90 29583.26 19988.29 20869.16 23467.83 38783.72 32560.93 28489.47 24269.22 23989.70 28590.88 229
v14882.31 18382.48 18281.81 22085.59 26859.66 29781.47 24286.02 24472.85 19088.05 14790.65 21170.73 23490.91 20175.15 17691.79 24594.87 67
pm-mvs183.69 15984.95 13479.91 24990.04 16859.66 29782.43 22587.44 21775.52 15287.85 15095.26 4581.25 12185.65 30668.74 24796.04 12194.42 86
EU-MVSNet75.12 28074.43 28277.18 29183.11 31659.48 29985.71 14882.43 28939.76 41285.64 19788.76 24544.71 37987.88 26673.86 19185.88 33884.16 335
VDDNet84.35 14085.39 12781.25 22895.13 3259.32 30085.42 15281.11 29986.41 3287.41 15896.21 2273.61 20290.61 21366.33 26596.85 8793.81 116
cl____80.42 21780.23 21981.02 23479.99 34659.25 30177.07 30587.02 22967.37 25586.18 18889.21 23963.08 27690.16 22376.31 16295.80 13693.65 123
DIV-MVS_self_test80.43 21680.23 21981.02 23479.99 34659.25 30177.07 30587.02 22967.38 25486.19 18689.22 23863.09 27590.16 22376.32 16195.80 13693.66 121
GA-MVS75.83 27374.61 27879.48 25781.87 32359.25 30173.42 34982.88 28468.68 24079.75 30281.80 34850.62 34489.46 24366.85 25985.64 33989.72 257
c3_l81.64 19981.59 19681.79 22180.86 33859.15 30478.61 28390.18 17668.36 24287.20 15987.11 27869.39 24091.62 17878.16 13794.43 18594.60 76
cl2278.97 23578.21 24781.24 23077.74 36359.01 30577.46 30187.13 22465.79 26884.32 22685.10 30958.96 30190.88 20375.36 17492.03 24093.84 111
miper_ehance_all_eth80.34 22080.04 22681.24 23079.82 34958.95 30677.66 29489.66 18765.75 27185.99 19385.11 30868.29 24791.42 18576.03 16692.03 24093.33 135
PEN-MVS90.03 4591.88 1884.48 14996.57 558.88 30788.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12898.72 998.97 3
test_yl78.71 24178.51 24379.32 25884.32 29058.84 30878.38 28485.33 25475.99 14282.49 26086.57 28458.01 30590.02 23262.74 29792.73 22789.10 269
DCV-MVSNet78.71 24178.51 24379.32 25884.32 29058.84 30878.38 28485.33 25475.99 14282.49 26086.57 28458.01 30590.02 23262.74 29792.73 22789.10 269
PS-CasMVS90.06 4391.92 1584.47 15096.56 658.83 31089.04 8892.74 9691.40 696.12 596.06 2687.23 4895.57 4179.42 12298.74 699.00 2
FMVSNet281.31 20381.61 19580.41 24386.38 24958.75 31183.93 18186.58 23572.43 19687.65 15492.98 13163.78 27090.22 22166.86 25893.92 19992.27 186
dmvs_re66.81 35366.98 34966.28 37376.87 37258.68 31271.66 36072.24 35960.29 32369.52 38073.53 40052.38 33564.40 40544.90 39581.44 37875.76 393
CP-MVSNet89.27 6290.91 4484.37 15196.34 858.61 31388.66 9792.06 11490.78 795.67 895.17 4781.80 11595.54 4479.00 12698.69 1098.95 4
baseline269.77 33366.89 35078.41 27179.51 35258.09 31476.23 32069.57 37657.50 34264.82 40277.45 38446.02 36188.44 26053.08 35877.83 39288.70 276
sd_testset79.95 23181.39 20275.64 31088.81 19258.07 31576.16 32282.81 28673.67 17183.41 24693.04 12780.96 12477.65 35958.62 32495.03 16291.21 219
RRT-MVS82.97 17483.44 16181.57 22485.06 27658.04 31687.20 11490.37 16477.88 12388.59 13193.70 11363.17 27493.05 14176.49 15988.47 30093.62 125
miper_enhance_ethall77.83 24876.93 25880.51 24176.15 38058.01 31775.47 33188.82 19858.05 33783.59 24280.69 35564.41 26491.20 18973.16 20792.03 24092.33 182
131473.22 29972.56 30475.20 31280.41 34557.84 31881.64 24085.36 25351.68 37773.10 35976.65 39161.45 28285.19 30963.54 29279.21 38882.59 356
DTE-MVSNet89.98 4791.91 1784.21 15996.51 757.84 31888.93 9092.84 9391.92 496.16 496.23 2186.95 5195.99 1279.05 12598.57 1598.80 6
MVS_Test82.47 18283.22 16580.22 24682.62 31957.75 32082.54 22291.96 11871.16 21582.89 25592.52 14977.41 15790.50 21580.04 11387.84 31392.40 178
VPA-MVSNet83.47 16684.73 13679.69 25390.29 16057.52 32181.30 24588.69 20176.29 13787.58 15694.44 7180.60 12987.20 27466.60 26396.82 9094.34 90
FIs85.35 11886.27 10682.60 20491.86 11657.31 32285.10 15893.05 8375.83 14691.02 8393.97 9673.57 20392.91 14773.97 18998.02 4297.58 12
Anonymous20240521180.51 21581.19 20778.49 26988.48 20157.26 32376.63 31282.49 28881.21 8084.30 22992.24 16067.99 24886.24 29162.22 30095.13 15791.98 200
USDC76.63 26476.73 26176.34 30383.46 30457.20 32480.02 25988.04 21352.14 37483.65 24191.25 18463.24 27386.65 28554.66 35094.11 19485.17 319
ab-mvs79.67 23280.56 21376.99 29288.48 20156.93 32584.70 16386.06 24268.95 23780.78 29093.08 12675.30 18284.62 31456.78 33390.90 26489.43 262
ADS-MVSNet265.87 35963.64 36772.55 33373.16 39956.92 32667.10 38574.81 33849.74 38866.04 39382.97 33346.71 35677.26 36142.29 39969.96 40883.46 344
ppachtmachnet_test74.73 28774.00 28576.90 29580.71 34156.89 32771.53 36278.42 31358.24 33479.32 30982.92 33657.91 30884.26 32065.60 27491.36 25489.56 259
FMVSNet378.80 23978.55 24279.57 25582.89 31856.89 32781.76 23785.77 24769.04 23686.00 19090.44 21551.75 33990.09 22965.95 26893.34 21191.72 207
FC-MVSNet-test85.93 10987.05 9482.58 20592.25 10156.44 32985.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 12975.11 17798.58 1497.88 7
Test_1112_low_res73.90 29473.08 29576.35 30290.35 15955.95 33073.40 35086.17 23950.70 38473.14 35885.94 29558.31 30485.90 30156.51 33583.22 36587.20 298
LFMVS80.15 22780.56 21378.89 26189.19 18355.93 33185.22 15573.78 34882.96 6384.28 23092.72 14357.38 31190.07 23063.80 29095.75 13990.68 236
ttmdpeth71.72 31270.67 31774.86 31573.08 40155.88 33277.41 30269.27 37855.86 35178.66 31493.77 11038.01 39675.39 36860.12 31789.87 28393.31 137
SCA73.32 29772.57 30375.58 31181.62 32755.86 33378.89 27871.37 36861.73 30374.93 34983.42 33060.46 28787.01 27558.11 32982.63 37383.88 336
EMVS61.10 37560.81 37761.99 38665.96 41855.86 33353.10 41258.97 41167.06 25856.89 41663.33 41240.98 38967.03 39654.79 34986.18 33563.08 408
LCM-MVSNet-Re83.48 16585.06 13178.75 26485.94 26455.75 33580.05 25894.27 2476.47 13696.09 694.54 6783.31 8889.75 24059.95 31894.89 16990.75 232
MVStest170.05 32969.26 33272.41 33658.62 42355.59 33676.61 31465.58 39253.44 36489.28 12093.32 12022.91 42371.44 37974.08 18789.52 28790.21 251
tfpnnormal81.79 19882.95 17278.31 27288.93 18955.40 33780.83 25282.85 28576.81 13485.90 19494.14 8974.58 19386.51 28766.82 26195.68 14293.01 151
E-PMN61.59 37261.62 37561.49 38866.81 41555.40 33753.77 41160.34 40866.80 26158.90 41265.50 41140.48 39166.12 40055.72 34086.25 33462.95 409
test-LLR67.21 34866.74 35268.63 36176.45 37855.21 33967.89 37967.14 38762.43 29865.08 39972.39 40143.41 38369.37 38261.00 31184.89 35281.31 372
test-mter65.00 36263.79 36668.63 36176.45 37855.21 33967.89 37967.14 38750.98 38265.08 39972.39 40128.27 41569.37 38261.00 31184.89 35281.31 372
TransMVSNet (Re)84.02 15285.74 12078.85 26291.00 14655.20 34182.29 22987.26 22079.65 9888.38 13995.52 3783.00 9086.88 28067.97 25596.60 9694.45 83
WR-MVS83.56 16384.40 14981.06 23393.43 7054.88 34278.67 28285.02 26281.24 7990.74 9091.56 17772.85 21591.08 19468.00 25498.04 3997.23 16
reproduce_monomvs74.09 29273.23 29376.65 30076.52 37554.54 34377.50 29981.40 29865.85 26782.86 25786.67 28327.38 41784.53 31570.24 22990.66 27490.89 228
Anonymous2023120671.38 31771.88 30869.88 34986.31 25354.37 34470.39 37074.62 33952.57 37076.73 32888.76 24559.94 29272.06 37444.35 39793.23 21683.23 350
MonoMVSNet76.66 26377.26 25574.86 31579.86 34854.34 34586.26 13786.08 24171.08 21685.59 19888.68 24753.95 32985.93 29863.86 28980.02 38384.32 330
HY-MVS64.64 1873.03 30172.47 30574.71 31783.36 30854.19 34682.14 23681.96 29256.76 34969.57 37986.21 29260.03 29184.83 31349.58 37782.65 37185.11 320
PAPM71.77 31170.06 32676.92 29486.39 24853.97 34776.62 31386.62 23453.44 36463.97 40484.73 31657.79 31092.34 16039.65 40581.33 37984.45 328
VNet79.31 23380.27 21876.44 30187.92 21453.95 34875.58 32984.35 27374.39 16482.23 26590.72 20672.84 21684.39 31860.38 31693.98 19890.97 225
our_test_371.85 31071.59 31072.62 33280.71 34153.78 34969.72 37471.71 36758.80 33178.03 31780.51 36056.61 31678.84 35562.20 30186.04 33785.23 318
PatchmatchNetpermissive69.71 33468.83 33972.33 33777.66 36553.60 35079.29 27069.99 37457.66 34072.53 36282.93 33546.45 35880.08 34860.91 31372.09 40483.31 349
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet_test_wron70.05 32970.44 32168.88 35873.84 39453.47 35158.93 40667.28 38558.43 33287.09 16485.40 30459.80 29567.25 39559.66 32083.54 36385.92 311
Baseline_NR-MVSNet84.00 15385.90 11478.29 27491.47 13453.44 35282.29 22987.00 23279.06 10789.55 11595.72 3277.20 16086.14 29672.30 21298.51 1795.28 56
YYNet170.06 32870.44 32168.90 35773.76 39553.42 35358.99 40567.20 38658.42 33387.10 16385.39 30559.82 29467.32 39459.79 31983.50 36485.96 309
PVSNet_051.08 2256.10 38154.97 38659.48 39375.12 38953.28 35455.16 41061.89 40244.30 40059.16 41062.48 41354.22 32865.91 40135.40 41247.01 41659.25 412
FMVSNet572.10 30971.69 30973.32 32481.57 32853.02 35576.77 30978.37 31463.31 28776.37 33091.85 16636.68 39978.98 35347.87 38692.45 23087.95 288
KD-MVS_self_test81.93 19583.14 16978.30 27384.75 28252.75 35680.37 25589.42 19470.24 22690.26 9593.39 11974.55 19486.77 28368.61 24996.64 9495.38 52
pmmvs570.73 32270.07 32572.72 33077.03 37152.73 35774.14 34075.65 33550.36 38772.17 36485.37 30655.42 32480.67 34252.86 36287.59 31684.77 323
UnsupCasMVSNet_eth71.63 31472.30 30669.62 35276.47 37752.70 35870.03 37380.97 30159.18 32879.36 30788.21 25460.50 28669.12 38558.33 32777.62 39587.04 299
MG-MVS80.32 22180.94 20978.47 27088.18 20752.62 35982.29 22985.01 26372.01 20679.24 31092.54 14869.36 24193.36 13170.65 22489.19 29289.45 260
XXY-MVS74.44 29076.19 26569.21 35584.61 28452.43 36071.70 35977.18 32360.73 31980.60 29190.96 19675.44 17969.35 38456.13 33888.33 30385.86 312
tfpn200view974.86 28474.23 28376.74 29886.24 25652.12 36179.24 27273.87 34673.34 18081.82 27384.60 31846.02 36188.80 25451.98 36690.99 25989.31 264
thres40075.14 27874.23 28377.86 28386.24 25652.12 36179.24 27273.87 34673.34 18081.82 27384.60 31846.02 36188.80 25451.98 36690.99 25992.66 164
MVEpermissive40.22 2351.82 38450.47 38755.87 39562.66 42251.91 36331.61 41639.28 42340.65 40950.76 41874.98 39856.24 31944.67 41933.94 41564.11 41371.04 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres100view90075.45 27675.05 27676.66 29987.27 22951.88 36481.07 24873.26 35375.68 14883.25 24986.37 28745.54 36888.80 25451.98 36690.99 25989.31 264
thres600view775.97 27275.35 27477.85 28487.01 23951.84 36580.45 25473.26 35375.20 15683.10 25286.31 29045.54 36889.05 25055.03 34892.24 23692.66 164
thres20072.34 30771.55 31374.70 31883.48 30351.60 36675.02 33473.71 34970.14 22778.56 31680.57 35846.20 35988.20 26446.99 38989.29 28984.32 330
CL-MVSNet_self_test76.81 26177.38 25375.12 31386.90 24151.34 36773.20 35180.63 30468.30 24481.80 27588.40 25166.92 25380.90 34055.35 34594.90 16893.12 147
TESTMET0.1,161.29 37360.32 37964.19 38172.06 40551.30 36867.89 37962.09 39945.27 39760.65 40869.01 40727.93 41664.74 40456.31 33681.65 37776.53 391
Vis-MVSNet (Re-imp)77.82 24977.79 25077.92 28188.82 19151.29 36983.28 19871.97 36374.04 16682.23 26589.78 23157.38 31189.41 24757.22 33295.41 14693.05 149
UnsupCasMVSNet_bld69.21 33969.68 33067.82 36579.42 35351.15 37067.82 38275.79 33254.15 36177.47 32685.36 30759.26 29870.64 38048.46 38379.35 38681.66 368
test20.0373.75 29574.59 28071.22 34281.11 33451.12 37170.15 37272.10 36270.42 22180.28 29991.50 17864.21 26674.72 37146.96 39094.58 18187.82 292
sss66.92 35067.26 34865.90 37477.23 36851.10 37264.79 39171.72 36652.12 37570.13 37680.18 36257.96 30765.36 40350.21 37281.01 38181.25 374
CostFormer69.98 33168.68 34173.87 32077.14 36950.72 37379.26 27174.51 34151.94 37670.97 37084.75 31545.16 37687.49 27055.16 34779.23 38783.40 346
tpm cat166.76 35465.21 36271.42 34177.09 37050.62 37478.01 28873.68 35044.89 39968.64 38279.00 37245.51 37082.42 33349.91 37470.15 40781.23 376
mvs_anonymous78.13 24678.76 23976.23 30679.24 35650.31 37578.69 28184.82 26861.60 30783.09 25392.82 13873.89 20087.01 27568.33 25386.41 33191.37 216
MIMVSNet71.09 31971.59 31069.57 35387.23 23050.07 37678.91 27771.83 36460.20 32571.26 36791.76 17255.08 32776.09 36441.06 40287.02 32482.54 359
PVSNet58.17 2166.41 35665.63 35968.75 35981.96 32249.88 37762.19 39872.51 35851.03 38168.04 38575.34 39750.84 34274.77 36945.82 39482.96 36681.60 369
ECVR-MVScopyleft78.44 24478.63 24177.88 28291.85 11748.95 37883.68 18969.91 37572.30 20284.26 23294.20 8551.89 33889.82 23563.58 29196.02 12294.87 67
tpm268.45 34466.83 35173.30 32578.93 36048.50 37979.76 26271.76 36547.50 39069.92 37783.60 32642.07 38888.40 26148.44 38479.51 38483.01 353
tpmvs70.16 32669.56 33171.96 33874.71 39248.13 38079.63 26375.45 33765.02 28170.26 37581.88 34745.34 37385.68 30558.34 32675.39 40082.08 365
WTY-MVS67.91 34668.35 34366.58 37280.82 33948.12 38165.96 38972.60 35653.67 36371.20 36881.68 35058.97 30069.06 38648.57 38281.67 37582.55 358
VPNet80.25 22381.68 19175.94 30792.46 9547.98 38276.70 31081.67 29573.45 17684.87 21492.82 13874.66 19286.51 28761.66 30896.85 8793.33 135
baseline173.26 29873.54 28972.43 33584.92 27847.79 38379.89 26174.00 34465.93 26578.81 31386.28 29156.36 31781.63 33756.63 33479.04 39087.87 291
test111178.53 24378.85 23777.56 28692.22 10347.49 38482.61 21769.24 37972.43 19685.28 20494.20 8551.91 33790.07 23065.36 27696.45 10395.11 62
KD-MVS_2432*160066.87 35165.81 35770.04 34767.50 41347.49 38462.56 39679.16 30961.21 31477.98 31880.61 35625.29 42182.48 33153.02 35984.92 34980.16 383
miper_refine_blended66.87 35165.81 35770.04 34767.50 41347.49 38462.56 39679.16 30961.21 31477.98 31880.61 35625.29 42182.48 33153.02 35984.92 34980.16 383
test0.0.03 164.66 36464.36 36365.57 37675.03 39046.89 38764.69 39261.58 40662.43 29871.18 36977.54 38243.41 38368.47 39140.75 40482.65 37181.35 371
testing1167.38 34765.93 35571.73 34083.37 30746.60 38870.95 36669.40 37762.47 29566.14 39176.66 39031.22 40884.10 32149.10 37984.10 36084.49 326
Patchmtry76.56 26677.46 25173.83 32179.37 35546.60 38882.41 22676.90 32573.81 16985.56 20092.38 15248.07 35383.98 32363.36 29495.31 15290.92 227
GG-mvs-BLEND67.16 36973.36 39746.54 39084.15 17455.04 41558.64 41361.95 41429.93 41183.87 32538.71 40876.92 39871.07 400
testing9169.94 33268.99 33772.80 32983.81 30045.89 39171.57 36173.64 35168.24 24570.77 37377.82 37934.37 40284.44 31753.64 35587.00 32588.07 283
testing22266.93 34965.30 36171.81 33983.38 30645.83 39272.06 35767.50 38364.12 28569.68 37876.37 39327.34 41883.00 32838.88 40688.38 30286.62 304
testing9969.27 33868.15 34572.63 33183.29 30945.45 39371.15 36371.08 36967.34 25670.43 37477.77 38132.24 40784.35 31953.72 35486.33 33388.10 282
gg-mvs-nofinetune68.96 34169.11 33468.52 36376.12 38145.32 39483.59 19155.88 41486.68 2964.62 40397.01 930.36 41083.97 32444.78 39682.94 36776.26 392
ANet_high83.17 17185.68 12175.65 30981.24 33245.26 39579.94 26092.91 9083.83 5191.33 7696.88 1380.25 13285.92 29968.89 24495.89 13195.76 42
DSMNet-mixed60.98 37661.61 37659.09 39472.88 40245.05 39674.70 33746.61 42026.20 41865.34 39790.32 21855.46 32363.12 40741.72 40181.30 38069.09 403
gm-plane-assit75.42 38744.97 39752.17 37272.36 40387.90 26554.10 352
test250674.12 29173.39 29176.28 30491.85 11744.20 39884.06 17648.20 41972.30 20281.90 27094.20 8527.22 41989.77 23864.81 28196.02 12294.87 67
WB-MVSnew68.72 34369.01 33667.85 36483.22 31343.98 39974.93 33565.98 39155.09 35473.83 35579.11 37065.63 26071.89 37638.21 41085.04 34787.69 293
MDTV_nov1_ep1368.29 34478.03 36243.87 40074.12 34172.22 36052.17 37267.02 39085.54 29945.36 37280.85 34155.73 33984.42 357
tpm67.95 34568.08 34667.55 36678.74 36143.53 40175.60 32767.10 38954.92 35672.23 36388.10 25542.87 38775.97 36552.21 36480.95 38283.15 351
Patchmatch-test65.91 35867.38 34761.48 38975.51 38543.21 40268.84 37663.79 39862.48 29472.80 36183.42 33044.89 37859.52 41148.27 38586.45 33081.70 367
testgi72.36 30674.61 27865.59 37580.56 34342.82 40368.29 37873.35 35266.87 26081.84 27289.93 22872.08 22666.92 39746.05 39392.54 22987.01 300
ETVMVS64.67 36363.34 36968.64 36083.44 30541.89 40469.56 37561.70 40561.33 31168.74 38175.76 39528.76 41379.35 35034.65 41386.16 33684.67 325
testing371.53 31570.79 31673.77 32288.89 19041.86 40576.60 31559.12 40972.83 19180.97 28582.08 34519.80 42587.33 27365.12 27891.68 24892.13 193
UWE-MVS66.43 35565.56 36069.05 35684.15 29440.98 40673.06 35364.71 39654.84 35776.18 33579.62 36829.21 41280.50 34538.54 40989.75 28485.66 314
UBG64.34 36663.35 36867.30 36883.50 30240.53 40767.46 38365.02 39554.77 35867.54 38974.47 39932.99 40678.50 35740.82 40383.58 36282.88 354
WBMVS68.76 34268.43 34269.75 35183.29 30940.30 40867.36 38472.21 36157.09 34677.05 32785.53 30033.68 40480.51 34448.79 38190.90 26488.45 279
tpmrst66.28 35766.69 35365.05 37972.82 40339.33 40978.20 28770.69 37253.16 36767.88 38680.36 36148.18 35274.75 37058.13 32870.79 40681.08 377
Syy-MVS69.40 33770.03 32767.49 36781.72 32538.94 41071.00 36461.99 40061.38 30970.81 37172.36 40361.37 28379.30 35164.50 28785.18 34484.22 332
EPMVS62.47 36862.63 37262.01 38570.63 40938.74 41174.76 33652.86 41653.91 36267.71 38880.01 36339.40 39266.60 39855.54 34368.81 41280.68 381
dp60.70 37760.29 38061.92 38772.04 40638.67 41270.83 36764.08 39751.28 37960.75 40777.28 38536.59 40071.58 37847.41 38762.34 41475.52 394
WAC-MVS37.39 41352.61 363
myMVS_eth3d64.66 36463.89 36566.97 37081.72 32537.39 41371.00 36461.99 40061.38 30970.81 37172.36 40320.96 42479.30 35149.59 37685.18 34484.22 332
ADS-MVSNet61.90 37062.19 37461.03 39073.16 39936.42 41567.10 38561.75 40349.74 38866.04 39382.97 33346.71 35663.21 40642.29 39969.96 40883.46 344
MVS-HIRNet61.16 37462.92 37155.87 39579.09 35735.34 41671.83 35857.98 41346.56 39359.05 41191.14 18849.95 34876.43 36338.74 40771.92 40555.84 414
PatchT70.52 32372.76 30063.79 38379.38 35433.53 41777.63 29565.37 39473.61 17371.77 36592.79 14144.38 38075.65 36764.53 28685.37 34182.18 363
new_pmnet55.69 38257.66 38349.76 39875.47 38630.59 41859.56 40151.45 41743.62 40462.49 40575.48 39640.96 39049.15 41837.39 41172.52 40269.55 402
DeepMVS_CXcopyleft24.13 40332.95 42529.49 41921.63 42612.07 41937.95 42045.07 41730.84 40919.21 42217.94 42133.06 41923.69 418
dmvs_testset60.59 37862.54 37354.72 39777.26 36727.74 42074.05 34261.00 40760.48 32165.62 39667.03 41055.93 32068.23 39232.07 41769.46 41168.17 404
MDTV_nov1_ep13_2view27.60 42170.76 36846.47 39461.27 40645.20 37449.18 37883.75 341
dongtai41.90 38542.65 38839.67 40070.86 40821.11 42261.01 40021.42 42757.36 34357.97 41550.06 41616.40 42658.73 41321.03 42027.69 42039.17 416
WB-MVS76.06 27180.01 22764.19 38189.96 17020.58 42372.18 35668.19 38283.21 5986.46 18493.49 11770.19 23778.97 35465.96 26790.46 27793.02 150
SSC-MVS77.55 25281.64 19365.29 37890.46 15720.33 42473.56 34768.28 38185.44 3788.18 14494.64 6470.93 23381.33 33871.25 21692.03 24094.20 93
kuosan30.83 38632.17 38926.83 40253.36 42419.02 42557.90 40720.44 42838.29 41538.01 41937.82 41815.18 42733.45 4217.74 42220.76 42128.03 417
new-patchmatchnet70.10 32773.37 29260.29 39181.23 33316.95 42659.54 40274.62 33962.93 29080.97 28587.93 25962.83 27971.90 37555.24 34695.01 16592.00 198
PMMVS255.64 38359.27 38244.74 39964.30 42112.32 42740.60 41449.79 41853.19 36665.06 40184.81 31453.60 33149.76 41732.68 41689.41 28872.15 398
tmp_tt20.25 38924.50 3927.49 4044.47 4278.70 42834.17 41525.16 4251.00 42232.43 42118.49 41939.37 3939.21 42321.64 41943.75 4174.57 419
test_method30.46 38729.60 39033.06 40117.99 4263.84 42913.62 41773.92 3452.79 42018.29 42253.41 41528.53 41443.25 42022.56 41835.27 41852.11 415
test1236.27 3928.08 3950.84 4051.11 4290.57 43062.90 3950.82 4290.54 4231.07 4252.75 4241.26 4280.30 4241.04 4231.26 4231.66 420
testmvs5.91 3937.65 3960.72 4061.20 4280.37 43159.14 4030.67 4300.49 4241.11 4242.76 4230.94 4290.24 4251.02 4241.47 4221.55 421
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
cdsmvs_eth3d_5k20.81 38827.75 3910.00 4070.00 4300.00 4320.00 41885.44 2520.00 4250.00 42682.82 33781.46 1180.00 4260.00 4250.00 4240.00 422
pcd_1.5k_mvsjas6.41 3918.55 3940.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42576.94 1660.00 4260.00 4250.00 4240.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
ab-mvs-re6.65 3908.87 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42679.80 3650.00 4300.00 4260.00 4250.00 4240.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
PC_three_145258.96 33090.06 9791.33 18280.66 12893.03 14275.78 16895.94 12892.48 172
eth-test20.00 430
eth-test0.00 430
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 196
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 10983.69 7397.55 69
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 153
GSMVS83.88 336
sam_mvs146.11 36083.88 336
sam_mvs45.92 365
MTGPAbinary91.81 125
test_post178.85 2803.13 42145.19 37580.13 34758.11 329
test_post3.10 42245.43 37177.22 362
patchmatchnet-post81.71 34945.93 36487.01 275
MTMP90.66 4833.14 424
test9_res80.83 10596.45 10390.57 239
agg_prior279.68 11896.16 11590.22 247
test_prior283.37 19675.43 15384.58 21891.57 17681.92 11379.54 12096.97 85
旧先验281.73 23856.88 34886.54 18284.90 31272.81 208
新几何281.72 239
无先验82.81 21485.62 25058.09 33691.41 18667.95 25684.48 327
原ACMM282.26 232
testdata286.43 28963.52 293
segment_acmp81.94 110
testdata179.62 26473.95 168
plane_prior593.61 5995.22 5980.78 10695.83 13494.46 81
plane_prior492.95 134
plane_prior289.45 8279.44 101
plane_prior192.83 88
n20.00 431
nn0.00 431
door-mid74.45 342
test1191.46 131
door72.57 357
HQP-NCC91.19 13984.77 15973.30 18280.55 293
ACMP_Plane91.19 13984.77 15973.30 18280.55 293
BP-MVS77.30 151
HQP4-MVS80.56 29294.61 7993.56 130
HQP3-MVS92.68 9794.47 183
HQP2-MVS72.10 224
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140