This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18488.51 1790.11 9595.12 4490.98 688.92 24977.55 14097.07 8183.13 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Effi-MVS+-dtu85.82 10983.38 15693.14 387.13 22891.15 287.70 10488.42 19874.57 15483.56 23585.65 28678.49 14194.21 8872.04 20592.88 22094.05 102
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13979.26 9989.68 10794.81 5482.44 9487.74 26376.54 15388.74 29096.61 29
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9683.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4888.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 185
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6283.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
EGC-MVSNET74.79 27969.99 31989.19 6394.89 3787.00 1191.89 3486.28 2331.09 4072.23 40995.98 2381.87 11189.48 23779.76 11295.96 12491.10 214
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10379.74 9187.50 15192.38 14381.42 11693.28 12983.07 7497.24 7791.67 202
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8382.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16969.87 22095.06 1196.14 2184.28 7493.07 13787.68 1596.34 10597.09 21
PM-MVS80.20 21779.00 22783.78 16588.17 20586.66 1581.31 23566.81 38069.64 22188.33 13690.19 21264.58 25983.63 32071.99 20690.03 27481.06 367
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11584.26 4290.87 8793.92 9982.18 10389.29 24573.75 18594.81 17193.70 119
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12184.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 178
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 12182.70 16992.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9916.05 40686.57 5295.80 2587.35 2497.62 6294.20 92
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4578.43 11189.16 11992.25 15072.03 22296.36 388.21 790.93 25992.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13393.60 5880.16 8789.13 12193.44 11283.82 7790.98 19383.86 6895.30 15193.60 125
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11793.91 4480.07 8986.75 16693.26 11493.64 290.93 19584.60 6190.75 26593.97 104
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2982.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6881.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 7081.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13578.20 11386.69 16992.28 14980.36 12895.06 6286.17 4496.49 9990.22 237
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4580.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6993.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7386.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7386.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11894.45 82
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
PatchMatch-RL74.48 28173.22 28678.27 26987.70 21485.26 3475.92 31570.09 36464.34 27476.09 32481.25 34265.87 25378.07 34853.86 34383.82 35171.48 387
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
FPMVS72.29 30072.00 29973.14 31788.63 19485.00 3674.65 32867.39 37471.94 20077.80 31187.66 25450.48 33875.83 35649.95 36379.51 37258.58 401
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16481.56 7190.02 9891.20 17882.40 9690.81 20273.58 18894.66 17694.56 76
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18792.38 10170.25 21689.35 11890.68 19882.85 8994.57 7679.55 11595.95 12592.00 192
N_pmnet70.20 31668.80 33074.38 31080.91 32884.81 3959.12 39176.45 32255.06 34475.31 33682.36 33055.74 31654.82 40147.02 37787.24 30883.52 332
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15270.00 21994.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16669.27 22394.39 1696.38 1586.02 6293.52 12083.96 6695.92 12895.34 53
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6981.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 4079.68 9292.09 6293.89 10083.80 7893.10 13682.67 8298.04 3693.64 123
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 7195.37 5180.87 10095.50 14394.53 79
CNLPA83.55 15883.10 16384.90 13589.34 17683.87 4684.54 15988.77 19379.09 10183.54 23688.66 23874.87 18181.73 32966.84 25392.29 23089.11 259
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6379.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14393.03 12182.66 9191.47 17770.81 21196.14 11594.16 96
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14393.03 12182.66 9191.47 17770.81 21196.14 11594.16 96
F-COLMAP84.97 12583.42 15589.63 5592.39 9383.40 4888.83 8791.92 11473.19 17880.18 29189.15 23177.04 15993.28 12965.82 26492.28 23192.21 184
MVS_111021_LR84.28 13883.76 15385.83 12289.23 17983.07 5180.99 24183.56 27272.71 18686.07 18389.07 23281.75 11386.19 29077.11 14793.36 20688.24 270
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17271.54 20194.28 2096.54 1381.57 11494.27 8486.26 4096.49 9997.09 21
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9188.22 1888.53 12997.64 283.45 8394.55 7886.02 4898.60 1296.67 27
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5180.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
h-mvs3384.25 13982.76 16888.72 7191.82 11882.60 5684.00 17084.98 25871.27 20386.70 16790.55 20363.04 27293.92 10078.26 12994.20 18889.63 249
hse-mvs283.47 16081.81 18388.47 7591.03 14282.27 5782.61 20983.69 26971.27 20386.70 16786.05 28263.04 27292.41 15378.26 12993.62 20590.71 224
AUN-MVS81.18 19878.78 23088.39 7790.93 14482.14 5882.51 21583.67 27064.69 27380.29 28785.91 28551.07 33592.38 15476.29 15693.63 20490.65 228
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10893.17 7376.02 13488.64 12791.22 17684.24 7593.37 12777.97 13697.03 8295.52 49
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3488.89 1188.83 12494.26 7777.55 15195.86 2284.88 5895.87 13095.24 58
TSAR-MVS + GP.83.95 14982.69 17087.72 8689.27 17881.45 6383.72 18081.58 29074.73 15285.66 19086.06 28172.56 21592.69 14775.44 16695.21 15289.01 265
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7980.87 8191.13 7893.19 11586.22 5995.97 1282.23 8897.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3879.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 6082.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ZD-MVS92.22 10180.48 6791.85 11771.22 20690.38 9192.98 12386.06 6196.11 681.99 9196.75 90
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7681.10 7795.32 1097.24 572.94 20994.85 6785.07 5497.78 5397.26 16
PLCcopyleft73.85 1682.09 18280.31 21087.45 9090.86 14780.29 6985.88 13490.65 15168.17 23776.32 32086.33 27673.12 20892.61 14961.40 30190.02 27589.44 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LF4IMVS82.75 16981.93 18185.19 13182.08 31380.15 7085.53 14088.76 19468.01 23885.58 19287.75 25271.80 22386.85 27774.02 18093.87 19788.58 268
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12192.78 9278.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAPA-MVS77.73 1285.71 11084.83 13188.37 7888.78 19179.72 7387.15 11293.50 5969.17 22485.80 18989.56 22380.76 12392.13 16173.21 19895.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST992.34 9579.70 7483.94 17190.32 16165.41 26784.49 21190.97 18582.03 10693.63 111
train_agg85.98 10685.28 12588.07 8392.34 9579.70 7483.94 17190.32 16165.79 25884.49 21190.97 18581.93 10893.63 11181.21 9696.54 9690.88 219
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5577.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 7175.37 14792.84 4895.28 3885.58 6496.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21789.33 22783.87 7694.53 7982.45 8494.89 16794.90 65
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2773.53 16689.71 10694.82 5185.09 6595.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior478.97 8084.59 156
test_892.09 10578.87 8183.82 17690.31 16365.79 25884.36 21590.96 18781.93 10893.44 124
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12591.09 14078.77 10784.85 20690.89 18980.85 12295.29 5381.14 9795.32 14892.34 176
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3884.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
新几何182.95 19093.96 5578.56 8480.24 29755.45 34283.93 22991.08 18271.19 22788.33 25865.84 26393.07 21581.95 354
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25978.30 8586.93 11592.20 10565.94 25589.16 11993.16 11783.10 8689.89 23087.81 1194.43 18293.35 132
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9485.26 26978.25 8685.82 13691.82 11965.33 26888.55 12892.35 14782.62 9389.80 23286.87 3294.32 18593.18 141
test_fmvsmconf_n85.88 10885.51 12186.99 9684.77 27678.21 8785.40 14491.39 13165.32 26987.72 14791.81 16182.33 9889.78 23386.68 3494.20 18892.99 149
MAR-MVS80.24 21678.74 23284.73 14086.87 23878.18 8885.75 13787.81 21065.67 26377.84 30978.50 36573.79 19690.53 21061.59 30090.87 26185.49 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3383.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14296.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12677.99 9091.01 14296.05 887.45 2098.17 3292.40 173
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11270.73 21094.19 2196.67 1176.94 16194.57 7683.07 7496.28 10896.15 33
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11994.68 7174.48 17395.35 14692.29 179
test_part293.86 5777.77 9492.84 48
test_fmvsm_n_192083.60 15682.89 16685.74 12385.22 27077.74 9584.12 16690.48 15559.87 31886.45 17991.12 18075.65 17385.89 29782.28 8790.87 26193.58 126
agg_prior91.58 12477.69 9690.30 16484.32 21793.18 132
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8687.95 2089.62 11092.87 12984.56 7093.89 10277.65 13896.62 9390.70 225
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26887.25 26382.43 9594.53 7977.65 13896.46 10194.14 98
save fliter93.75 5977.44 9986.31 12989.72 17870.80 209
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10992.09 10878.87 10584.27 22294.05 8878.35 14293.65 10980.54 10691.58 24792.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PHI-MVS86.38 9785.81 11588.08 8288.44 20077.34 10189.35 8093.05 8073.15 17984.76 20787.70 25378.87 13894.18 9080.67 10496.29 10792.73 156
plane_prior793.45 6577.31 102
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14591.23 13677.31 12487.07 16091.47 17082.94 8894.71 7084.67 6096.27 11092.62 163
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 5078.90 10492.88 4592.29 14886.11 6090.22 21786.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS_fast80.27 886.23 10085.65 11987.96 8591.30 13376.92 10687.19 11091.99 11170.56 21184.96 20290.69 19780.01 13195.14 5978.37 12595.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
plane_prior376.85 10777.79 11886.55 171
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13867.85 24386.63 17094.84 5079.58 13495.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test22293.31 7076.54 10979.38 26177.79 30852.59 35682.36 25390.84 19366.83 24791.69 24381.25 362
plane_prior692.61 8776.54 10974.84 182
Fast-Effi-MVS+-dtu82.54 17381.41 19385.90 11985.60 26276.53 11183.07 19789.62 18373.02 18179.11 30183.51 31480.74 12490.24 21668.76 23989.29 28190.94 217
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11672.61 18892.16 6095.23 4166.01 25195.59 3786.02 4897.78 5397.24 17
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5679.44 9686.55 17192.95 12674.84 18295.22 5680.78 10295.83 13294.46 80
plane_prior76.42 11387.15 11275.94 13895.03 160
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22984.54 4183.58 23493.78 10473.36 20596.48 187.98 996.21 11294.41 86
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
UGNet82.78 16881.64 18586.21 11386.20 25376.24 11786.86 11685.68 24377.07 12673.76 34592.82 13069.64 23291.82 17269.04 23693.69 20290.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvsany_test365.48 35062.97 35873.03 31969.99 39876.17 11864.83 37843.71 40943.68 39080.25 29087.05 26952.83 32763.09 39651.92 35972.44 39179.84 374
test_fmvsmvis_n_192085.22 11685.36 12484.81 13785.80 26176.13 11985.15 14892.32 10261.40 29891.33 7490.85 19283.76 8086.16 29184.31 6393.28 21092.15 187
MVS_111021_HR84.63 12884.34 14585.49 12990.18 16075.86 12079.23 26687.13 21973.35 17185.56 19389.34 22683.60 8290.50 21176.64 15194.05 19290.09 242
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 19177.34 12293.63 3595.83 2565.40 25795.90 1585.01 5798.23 2797.49 13
CDPH-MVS86.17 10485.54 12088.05 8492.25 9975.45 12283.85 17592.01 11065.91 25786.19 18091.75 16483.77 7994.98 6477.43 14396.71 9193.73 118
DP-MVS Recon84.05 14683.22 15886.52 10591.73 11975.27 12383.23 19492.40 9972.04 19882.04 25888.33 24177.91 14693.95 9966.17 25895.12 15790.34 236
wuyk23d75.13 27279.30 22562.63 37275.56 37475.18 12480.89 24273.10 34775.06 15094.76 1295.32 3587.73 4052.85 40234.16 40297.11 8059.85 399
3Dnovator80.37 784.80 12684.71 13585.06 13486.36 24774.71 12588.77 8990.00 17475.65 14284.96 20293.17 11674.06 19291.19 18678.28 12891.09 25389.29 257
NP-MVS91.95 10974.55 12690.17 214
pmmvs-eth3d78.42 23877.04 25082.57 20187.44 22274.41 12780.86 24379.67 30055.68 34184.69 20890.31 20960.91 28085.42 30262.20 29291.59 24687.88 280
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11780.35 8489.54 11688.01 24579.09 13692.13 16175.51 16495.06 15990.41 234
原ACMM184.60 14392.81 8674.01 12991.50 12662.59 28282.73 24990.67 20076.53 16894.25 8669.24 23095.69 14085.55 305
fmvsm_l_conf0.5_n82.06 18381.54 19183.60 17183.94 29073.90 13083.35 18986.10 23658.97 32083.80 23090.36 20674.23 19086.94 27582.90 7790.22 27289.94 244
MVP-Stereo75.81 26773.51 28382.71 19689.35 17573.62 13180.06 24985.20 25060.30 31273.96 34387.94 24757.89 30489.45 24052.02 35574.87 38985.06 311
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Gipumacopyleft84.44 13386.33 10278.78 25784.20 28773.57 13289.55 7290.44 15784.24 4384.38 21494.89 4876.35 17280.40 33876.14 15896.80 8982.36 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
fmvsm_s_conf0.1_n_a82.58 17281.93 18184.50 14487.68 21573.35 13386.14 13277.70 30961.64 29685.02 20091.62 16677.75 14786.24 28782.79 8087.07 31193.91 108
fmvsm_s_conf0.5_n_a82.21 17881.51 19284.32 15286.56 24073.35 13385.46 14177.30 31361.81 29284.51 21090.88 19177.36 15386.21 28982.72 8186.97 31693.38 131
EPNet80.37 21278.41 23786.23 11176.75 36473.28 13587.18 11177.45 31176.24 13168.14 37388.93 23465.41 25693.85 10369.47 22896.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_one_060193.85 5873.27 13694.11 3586.57 2593.47 3894.64 5988.42 26
PVSNet_Blended_VisFu81.55 19280.49 20884.70 14291.58 12473.24 13784.21 16391.67 12362.86 28180.94 27687.16 26567.27 24492.87 14469.82 22688.94 28787.99 277
fmvsm_l_conf0.5_n_a81.46 19380.87 20483.25 18183.73 29573.21 13883.00 20085.59 24558.22 32682.96 24590.09 21672.30 21786.65 28181.97 9289.95 27689.88 245
MVS_030486.35 9885.92 11187.66 8889.21 18073.16 13988.40 9583.63 27181.27 7480.87 27894.12 8671.49 22695.71 3287.79 1296.50 9894.11 100
TAMVS78.08 24176.36 25683.23 18290.62 15172.87 14079.08 26780.01 29961.72 29481.35 27286.92 27063.96 26588.78 25350.61 36193.01 21788.04 276
EI-MVSNet-Vis-set85.12 12084.53 13986.88 9884.01 28972.76 14183.91 17485.18 25180.44 8288.75 12585.49 28880.08 13091.92 16782.02 9090.85 26395.97 39
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5383.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_ONE94.18 4672.65 14293.69 5383.62 4994.11 2293.78 10490.28 1495.50 46
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3685.33 3393.49 3694.64 5981.12 11995.88 1787.41 2295.94 12692.48 168
IU-MVS94.18 4672.64 14490.82 14756.98 33789.67 10885.78 5097.92 4693.28 135
test1286.57 10390.74 14872.63 14690.69 15082.76 24879.20 13594.80 6895.32 14892.27 181
EG-PatchMatch MVS84.08 14584.11 14783.98 15992.22 10172.61 14782.20 22787.02 22472.63 18788.86 12291.02 18378.52 13991.11 18973.41 19091.09 25388.21 271
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14283.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 14890.63 4593.90 4583.61 5093.75 3094.49 6489.76 18
EI-MVSNet-UG-set85.04 12184.44 14186.85 9983.87 29372.52 15083.82 17685.15 25280.27 8688.75 12585.45 29079.95 13291.90 16881.92 9390.80 26496.13 34
CDS-MVSNet77.32 24975.40 26583.06 18689.00 18472.48 15177.90 28382.17 28460.81 30778.94 30283.49 31559.30 29288.76 25454.64 34192.37 22787.93 279
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3695.88 1786.42 3697.97 4392.02 191
testdata79.54 25092.87 8172.34 15380.14 29859.91 31785.47 19591.75 16467.96 24285.24 30368.57 24492.18 23581.06 367
PCF-MVS74.62 1582.15 18180.92 20385.84 12189.43 17472.30 15480.53 24591.82 11957.36 33487.81 14689.92 21877.67 14993.63 11158.69 31395.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
AdaColmapbinary83.66 15483.69 15483.57 17490.05 16472.26 15586.29 13090.00 17478.19 11481.65 26787.16 26583.40 8494.24 8761.69 29894.76 17584.21 323
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16989.44 18688.63 1694.38 1795.77 2686.38 5893.59 11679.84 11195.21 15291.82 197
CANet83.79 15282.85 16786.63 10286.17 25472.21 15783.76 17991.43 12877.24 12574.39 34187.45 25975.36 17695.42 4977.03 14892.83 22192.25 183
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19889.67 22284.47 7295.46 4782.56 8396.26 11193.77 117
test_prior86.32 10890.59 15271.99 15992.85 8994.17 9292.80 154
旧先验191.97 10871.77 16081.78 28791.84 15873.92 19493.65 20383.61 331
xiu_mvs_v1_base_debu80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
xiu_mvs_v1_base80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
xiu_mvs_v1_base_debi80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
pmmvs474.92 27672.98 28980.73 23284.95 27271.71 16476.23 31077.59 31052.83 35577.73 31386.38 27456.35 31384.97 30657.72 32187.05 31285.51 306
MCST-MVS84.36 13483.93 15185.63 12591.59 12171.58 16583.52 18492.13 10761.82 29183.96 22889.75 22179.93 13393.46 12378.33 12794.34 18491.87 196
fmvsm_s_conf0.1_n82.17 18081.59 18883.94 16286.87 23871.57 16685.19 14777.42 31262.27 29084.47 21391.33 17376.43 16985.91 29583.14 7187.14 30994.33 90
fmvsm_s_conf0.5_n81.91 18881.30 19583.75 16686.02 25871.56 16784.73 15377.11 31662.44 28784.00 22790.68 19876.42 17085.89 29783.14 7187.11 31093.81 115
MSLP-MVS++85.00 12486.03 10881.90 20991.84 11671.56 16786.75 12293.02 8475.95 13787.12 15589.39 22577.98 14489.40 24477.46 14194.78 17284.75 314
JIA-IIPM69.41 32666.64 34377.70 27973.19 38871.24 16975.67 31665.56 38270.42 21265.18 38692.97 12533.64 39583.06 32153.52 34769.61 39878.79 376
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 8086.53 2694.29 1896.27 1782.69 9094.08 9586.25 4297.63 6197.82 8
lessismore_v085.95 11791.10 14170.99 17170.91 36291.79 6794.42 6961.76 27692.93 14179.52 11793.03 21693.93 106
HQP5-MVS70.66 172
HQP-MVS84.61 12984.06 14886.27 11091.19 13670.66 17284.77 15092.68 9473.30 17480.55 28390.17 21472.10 21894.61 7477.30 14594.47 18093.56 128
test_vis3_rt71.42 30770.67 30973.64 31469.66 39970.46 17466.97 37589.73 17742.68 39588.20 13983.04 31943.77 37360.07 39765.35 26986.66 31890.39 235
ETV-MVS84.31 13683.91 15285.52 12788.58 19670.40 17584.50 16193.37 6178.76 10884.07 22678.72 36480.39 12795.13 6073.82 18492.98 21891.04 215
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4981.89 6894.70 1395.44 3490.69 888.31 25983.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_rt65.64 34964.09 35370.31 33666.09 40570.20 17761.16 38781.60 28938.65 40072.87 34969.66 39452.84 32660.04 39856.16 32777.77 38180.68 369
API-MVS82.28 17682.61 17281.30 22186.29 25069.79 17888.71 9087.67 21178.42 11282.15 25784.15 31077.98 14491.59 17565.39 26792.75 22282.51 349
DPM-MVS80.10 22079.18 22682.88 19490.71 15069.74 17978.87 27190.84 14660.29 31375.64 33185.92 28467.28 24393.11 13571.24 20991.79 24185.77 303
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2774.04 15892.70 5394.66 5585.88 6391.50 17679.72 11397.32 7596.50 31
IterMVS-SCA-FT80.64 20679.41 22384.34 15183.93 29169.66 18176.28 30981.09 29272.43 18986.47 17790.19 21260.46 28293.15 13477.45 14286.39 32290.22 237
K. test v385.14 11984.73 13286.37 10791.13 14069.63 18285.45 14276.68 32084.06 4592.44 5796.99 862.03 27594.65 7280.58 10593.24 21194.83 72
test_fmvs375.72 26875.20 26877.27 28475.01 38169.47 18378.93 26884.88 26046.67 37987.08 15987.84 25050.44 33971.62 36677.42 14488.53 29190.72 223
EPP-MVSNet85.47 11385.04 12886.77 10191.52 12969.37 18491.63 3687.98 20981.51 7287.05 16191.83 15966.18 25095.29 5370.75 21496.89 8495.64 46
jason77.42 24875.75 26282.43 20487.10 23169.27 18577.99 28181.94 28651.47 36577.84 30985.07 29960.32 28489.00 24770.74 21589.27 28389.03 263
jason: jason.
MVSFormer82.23 17781.57 19084.19 15785.54 26669.26 18691.98 3190.08 17271.54 20176.23 32185.07 29958.69 29794.27 8486.26 4088.77 28889.03 263
lupinMVS76.37 26274.46 27482.09 20685.54 26669.26 18676.79 29980.77 29550.68 37276.23 32182.82 32458.69 29788.94 24869.85 22588.77 28888.07 273
PMMVS61.65 35960.38 36665.47 36565.40 40869.26 18663.97 38261.73 39236.80 40360.11 39768.43 39659.42 29166.35 38748.97 37078.57 37960.81 398
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20781.66 7094.64 1496.53 1465.94 25294.75 6983.02 7696.83 8795.41 51
EIA-MVS82.19 17981.23 19885.10 13387.95 20969.17 19083.22 19593.33 6470.42 21278.58 30479.77 35677.29 15494.20 8971.51 20788.96 28691.93 195
114514_t83.10 16782.54 17484.77 13992.90 8069.10 19186.65 12390.62 15354.66 34781.46 27090.81 19476.98 16094.38 8372.62 20196.18 11390.82 221
test_fmvs273.57 28872.80 29075.90 30172.74 39368.84 19277.07 29684.32 26645.14 38582.89 24684.22 30848.37 34470.36 36973.40 19187.03 31388.52 269
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17892.87 8880.37 8389.61 11291.81 16177.72 14894.18 9075.00 17198.53 1596.99 24
BH-untuned80.96 20180.99 20180.84 23088.55 19768.23 19480.33 24888.46 19772.79 18586.55 17186.76 27174.72 18691.77 17361.79 29788.99 28582.52 348
OpenMVScopyleft76.72 1381.98 18682.00 18081.93 20884.42 28268.22 19588.50 9489.48 18566.92 25081.80 26591.86 15672.59 21490.16 21971.19 21091.25 25287.40 286
mvsany_test158.48 36856.47 37364.50 36865.90 40768.21 19656.95 39542.11 41038.30 40165.69 38377.19 37756.96 30959.35 40046.16 38058.96 40365.93 394
patch_mono-278.89 22879.39 22477.41 28384.78 27568.11 19775.60 31783.11 27560.96 30679.36 29789.89 21975.18 17872.97 36173.32 19292.30 22891.15 213
ET-MVSNet_ETH3D75.28 27072.77 29182.81 19583.03 30968.11 19777.09 29576.51 32160.67 31077.60 31480.52 34838.04 38791.15 18870.78 21390.68 26689.17 258
MSDG80.06 22179.99 22180.25 23983.91 29268.04 19977.51 29089.19 18877.65 11981.94 25983.45 31676.37 17186.31 28663.31 28686.59 31986.41 295
alignmvs83.94 15083.98 15083.80 16387.80 21267.88 20084.54 15991.42 13073.27 17788.41 13487.96 24672.33 21690.83 20176.02 16094.11 19092.69 160
CLD-MVS83.18 16482.64 17184.79 13889.05 18267.82 20177.93 28292.52 9768.33 23485.07 19981.54 34082.06 10592.96 13969.35 22997.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CMPMVSbinary59.41 2075.12 27373.57 28179.77 24475.84 37367.22 20281.21 23882.18 28350.78 37076.50 31787.66 25455.20 32082.99 32362.17 29490.64 27089.09 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sasdasda85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16988.47 13187.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16988.47 13187.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
GeoE85.45 11485.81 11584.37 14790.08 16167.07 20585.86 13591.39 13172.33 19487.59 14990.25 21084.85 6892.37 15578.00 13491.94 24093.66 120
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20682.55 21391.56 12483.08 5790.92 8291.82 16078.25 14393.99 9774.16 17698.35 2197.49 13
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20683.16 19692.21 10481.73 6990.92 8291.97 15477.20 15593.99 9774.16 17698.35 2197.61 10
test_fmvs1_n70.94 31170.41 31472.53 32573.92 38366.93 20875.99 31484.21 26843.31 39279.40 29679.39 35843.47 37468.55 37769.05 23584.91 34182.10 352
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20991.21 3988.64 19686.30 2889.60 11392.59 13769.22 23594.91 6673.89 18297.89 4996.72 26
QAPM82.59 17182.59 17382.58 19986.44 24266.69 21089.94 6290.36 16067.97 24084.94 20492.58 13972.71 21292.18 16070.63 21787.73 30488.85 266
Patchmatch-RL test74.48 28173.68 28076.89 29084.83 27466.54 21172.29 34569.16 37057.70 33086.76 16586.33 27645.79 35982.59 32469.63 22790.65 26981.54 358
test_vis1_n70.29 31569.99 31971.20 33375.97 37266.50 21276.69 30280.81 29444.22 38875.43 33277.23 37550.00 34068.59 37666.71 25582.85 35978.52 377
FE-MVS79.98 22278.86 22883.36 17886.47 24166.45 21389.73 6584.74 26372.80 18484.22 22591.38 17244.95 36993.60 11563.93 28091.50 24890.04 243
tttt051781.07 19979.58 22285.52 12788.99 18566.45 21387.03 11475.51 32873.76 16288.32 13790.20 21137.96 38894.16 9479.36 11995.13 15595.93 42
BH-RMVSNet80.53 20780.22 21481.49 21987.19 22766.21 21577.79 28586.23 23474.21 15783.69 23188.50 23973.25 20790.75 20363.18 28787.90 30187.52 284
FA-MVS(test-final)83.13 16683.02 16483.43 17686.16 25666.08 21688.00 9988.36 20075.55 14385.02 20092.75 13465.12 25892.50 15174.94 17291.30 25191.72 199
PAPM_NR83.23 16383.19 16083.33 17990.90 14565.98 21788.19 9790.78 14878.13 11580.87 27887.92 24973.49 20192.42 15270.07 22388.40 29291.60 204
BH-w/o76.57 25876.07 26078.10 27186.88 23765.92 21877.63 28786.33 23265.69 26280.89 27779.95 35368.97 23890.74 20453.01 35185.25 33377.62 378
TR-MVS76.77 25675.79 26179.72 24686.10 25765.79 21977.14 29483.02 27665.20 27081.40 27182.10 33166.30 24890.73 20555.57 33285.27 33282.65 343
test_fmvs169.57 32569.05 32571.14 33469.15 40065.77 22073.98 33383.32 27342.83 39477.77 31278.27 36743.39 37768.50 37868.39 24584.38 34879.15 375
Effi-MVS+83.90 15184.01 14983.57 17487.22 22665.61 22186.55 12692.40 9978.64 10981.34 27384.18 30983.65 8192.93 14174.22 17587.87 30292.17 186
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22288.86 8693.02 8487.15 2393.05 4397.10 682.28 10292.02 16576.70 15097.99 4096.88 25
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23265.22 22384.16 16494.23 2477.89 11691.28 7793.66 10884.35 7392.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test75.12 27372.66 29382.50 20291.44 13265.19 22472.47 34487.31 21446.79 37880.29 28784.30 30752.70 32892.10 16451.88 36086.73 31790.22 237
VDD-MVS84.23 14184.58 13883.20 18491.17 13965.16 22583.25 19284.97 25979.79 9087.18 15494.27 7474.77 18590.89 19869.24 23096.54 9693.55 130
ambc82.98 18890.55 15364.86 22688.20 9689.15 18989.40 11793.96 9571.67 22591.38 18378.83 12296.55 9592.71 159
MDA-MVSNet-bldmvs77.47 24776.90 25279.16 25479.03 34964.59 22766.58 37675.67 32673.15 17988.86 12288.99 23366.94 24581.23 33264.71 27488.22 29991.64 203
thisisatest053079.07 22677.33 24784.26 15487.13 22864.58 22883.66 18275.95 32368.86 22985.22 19787.36 26138.10 38693.57 11975.47 16594.28 18694.62 74
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22982.21 22590.46 15680.99 7888.42 13391.97 15477.56 15093.85 10372.46 20398.65 1197.61 10
Anonymous2024052986.20 10287.13 8883.42 17790.19 15964.55 23084.55 15790.71 14985.85 3189.94 10295.24 4082.13 10490.40 21369.19 23396.40 10495.31 55
CHOSEN 280x42059.08 36756.52 37266.76 35976.51 36664.39 23149.62 39959.00 39843.86 38955.66 40468.41 39735.55 39268.21 38143.25 38776.78 38767.69 393
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23289.67 6988.38 19988.84 1394.29 1897.57 390.48 1391.26 18472.57 20297.65 6097.34 15
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23384.38 16291.29 13484.88 3992.06 6393.84 10186.45 5593.73 10773.22 19398.66 1097.69 9
IterMVS76.91 25376.34 25778.64 26080.91 32864.03 23476.30 30879.03 30364.88 27283.11 24289.16 23059.90 28884.46 31068.61 24285.15 33687.42 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs362.47 35660.02 36969.80 34071.58 39664.00 23570.52 35958.44 40039.77 39866.05 38075.84 38327.10 40972.28 36246.15 38184.77 34673.11 385
tt080588.09 7489.79 5182.98 18893.26 7263.94 23691.10 4189.64 18185.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
EI-MVSNet82.61 17082.42 17683.20 18483.25 30363.66 23783.50 18585.07 25376.06 13286.55 17185.10 29673.41 20290.25 21478.15 13390.67 26795.68 45
IterMVS-LS84.73 12784.98 12983.96 16087.35 22363.66 23783.25 19289.88 17676.06 13289.62 11092.37 14673.40 20492.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MGCFI-Net85.04 12185.95 10982.31 20587.52 22063.59 23986.23 13193.96 4173.46 16788.07 14187.83 25186.46 5490.87 20076.17 15793.89 19692.47 170
PVSNet_BlendedMVS78.80 23277.84 24181.65 21784.43 28063.41 24079.49 26090.44 15761.70 29575.43 33287.07 26869.11 23691.44 17960.68 30592.24 23290.11 241
PVSNet_Blended76.49 26075.40 26579.76 24584.43 28063.41 24075.14 32390.44 15757.36 33475.43 33278.30 36669.11 23691.44 17960.68 30587.70 30584.42 319
V4283.47 16083.37 15783.75 16683.16 30663.33 24281.31 23590.23 16869.51 22290.91 8490.81 19474.16 19192.29 15980.06 10890.22 27295.62 47
v1086.54 9587.10 8984.84 13688.16 20663.28 24386.64 12492.20 10575.42 14692.81 5094.50 6374.05 19394.06 9683.88 6796.28 10897.17 20
Fast-Effi-MVS+81.04 20080.57 20582.46 20387.50 22163.22 24478.37 27889.63 18268.01 23881.87 26182.08 33382.31 9992.65 14867.10 25088.30 29891.51 207
CHOSEN 1792x268872.45 29770.56 31078.13 27090.02 16663.08 24568.72 36783.16 27442.99 39375.92 32685.46 28957.22 30885.18 30549.87 36581.67 36486.14 298
cascas76.29 26374.81 27080.72 23384.47 27962.94 24673.89 33587.34 21355.94 34075.16 33776.53 38163.97 26491.16 18765.00 27190.97 25888.06 275
v119284.57 13084.69 13684.21 15587.75 21362.88 24783.02 19991.43 12869.08 22689.98 10190.89 18972.70 21393.62 11482.41 8594.97 16496.13 34
DELS-MVS81.44 19481.25 19682.03 20784.27 28662.87 24876.47 30792.49 9870.97 20881.64 26883.83 31175.03 17992.70 14674.29 17492.22 23490.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_cas_vis1_n_192069.20 33069.12 32369.43 34373.68 38662.82 24970.38 36177.21 31446.18 38280.46 28678.95 36252.03 33065.53 39065.77 26577.45 38579.95 373
casdiffmvspermissive85.21 11785.85 11483.31 18086.17 25462.77 25083.03 19893.93 4374.69 15388.21 13892.68 13682.29 10191.89 16977.87 13793.75 20195.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet183.63 15584.59 13780.74 23194.06 5362.77 25082.72 20784.53 26477.57 12190.34 9295.92 2476.88 16785.83 29961.88 29697.42 7293.62 124
CR-MVSNet74.00 28573.04 28876.85 29179.58 34162.64 25282.58 21176.90 31750.50 37375.72 32992.38 14348.07 34684.07 31668.72 24182.91 35783.85 328
RPMNet78.88 22978.28 23880.68 23479.58 34162.64 25282.58 21194.16 2974.80 15175.72 32992.59 13748.69 34395.56 3973.48 18982.91 35783.85 328
v114484.54 13284.72 13484.00 15887.67 21662.55 25482.97 20190.93 14570.32 21589.80 10490.99 18473.50 19993.48 12281.69 9594.65 17795.97 39
MS-PatchMatch70.93 31270.22 31573.06 31881.85 31662.50 25573.82 33677.90 30752.44 35875.92 32681.27 34155.67 31781.75 32855.37 33477.70 38274.94 383
SDMVSNet81.90 18983.17 16178.10 27188.81 18962.45 25676.08 31386.05 23873.67 16383.41 23793.04 11982.35 9780.65 33670.06 22495.03 16091.21 211
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25789.54 7493.31 6790.21 1095.57 995.66 2981.42 11695.90 1580.94 9998.80 298.84 5
baseline85.20 11885.93 11083.02 18786.30 24962.37 25884.55 15793.96 4174.48 15587.12 15592.03 15382.30 10091.94 16678.39 12494.21 18794.74 73
v886.22 10186.83 9684.36 14987.82 21162.35 25986.42 12791.33 13376.78 12892.73 5294.48 6573.41 20293.72 10883.10 7395.41 14497.01 23
pmmvs686.52 9688.06 7481.90 20992.22 10162.28 26084.66 15589.15 18983.54 5289.85 10397.32 488.08 3686.80 27870.43 21997.30 7696.62 28
IB-MVS62.13 1971.64 30468.97 32879.66 24880.80 33262.26 26173.94 33476.90 31763.27 27868.63 37276.79 37833.83 39491.84 17159.28 31287.26 30784.88 312
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_f64.31 35565.85 34559.67 38066.54 40462.24 26257.76 39470.96 36140.13 39784.36 21582.09 33246.93 34851.67 40361.99 29581.89 36365.12 395
D2MVS76.84 25475.67 26480.34 23880.48 33662.16 26373.50 33884.80 26257.61 33282.24 25487.54 25651.31 33487.65 26470.40 22093.19 21391.23 210
dcpmvs_284.23 14185.14 12681.50 21888.61 19561.98 26482.90 20493.11 7668.66 23292.77 5192.39 14278.50 14087.63 26576.99 14992.30 22894.90 65
v192192084.23 14184.37 14483.79 16487.64 21861.71 26582.91 20391.20 13767.94 24190.06 9690.34 20772.04 22193.59 11682.32 8694.91 16596.07 36
v14419284.24 14084.41 14283.71 16887.59 21961.57 26682.95 20291.03 14167.82 24489.80 10490.49 20473.28 20693.51 12181.88 9494.89 16796.04 38
PS-MVSNAJ77.04 25276.53 25578.56 26187.09 23261.40 26775.26 32287.13 21961.25 30274.38 34277.22 37676.94 16190.94 19464.63 27684.83 34483.35 336
v2v48284.09 14484.24 14683.62 17087.13 22861.40 26782.71 20889.71 17972.19 19789.55 11491.41 17170.70 23093.20 13181.02 9893.76 19896.25 32
xiu_mvs_v2_base77.19 25076.75 25378.52 26287.01 23461.30 26975.55 32087.12 22261.24 30374.45 34078.79 36377.20 15590.93 19564.62 27784.80 34583.32 337
v124084.30 13784.51 14083.65 16987.65 21761.26 27082.85 20591.54 12567.94 24190.68 9090.65 20171.71 22493.64 11082.84 7994.78 17296.07 36
OpenMVS_ROBcopyleft70.19 1777.77 24577.46 24378.71 25984.39 28361.15 27181.18 23982.52 28062.45 28683.34 23987.37 26066.20 24988.66 25564.69 27585.02 33886.32 296
MVSTER77.09 25175.70 26381.25 22275.27 37861.08 27277.49 29185.07 25360.78 30886.55 17188.68 23743.14 37890.25 21473.69 18790.67 26792.42 171
GBi-Net82.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20472.43 18986.00 18495.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
test182.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20472.43 18986.00 18495.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
FMVSNet184.55 13185.45 12281.85 21190.27 15861.05 27386.83 11888.27 20478.57 11089.66 10995.64 3075.43 17590.68 20669.09 23495.33 14793.82 112
eth_miper_zixun_eth80.84 20280.22 21482.71 19681.41 32260.98 27677.81 28490.14 17167.31 24886.95 16387.24 26464.26 26192.31 15775.23 16891.61 24594.85 71
miper_lstm_enhance76.45 26176.10 25977.51 28176.72 36560.97 27764.69 38085.04 25563.98 27683.20 24188.22 24256.67 31078.79 34773.22 19393.12 21492.78 155
iter_conf05_1178.40 23977.29 24881.71 21685.55 26460.95 27877.22 29386.90 22860.10 31675.79 32881.73 33764.08 26394.47 8270.37 22193.92 19489.72 246
bld_raw_dy_0_6481.25 19681.17 20081.49 21985.55 26460.85 27986.36 12895.45 957.08 33690.81 8882.69 32965.85 25493.91 10170.37 22196.34 10589.72 246
Anonymous2024052180.18 21881.25 19676.95 28783.15 30760.84 28082.46 21685.99 24068.76 23086.78 16493.73 10759.13 29477.44 35073.71 18697.55 6792.56 164
MVS73.21 29272.59 29475.06 30780.97 32760.81 28181.64 23285.92 24146.03 38371.68 35577.54 37168.47 23989.77 23455.70 33185.39 33074.60 384
iter_conf0578.81 23177.35 24683.21 18382.98 31060.75 28284.09 16788.34 20163.12 27984.25 22489.48 22431.41 39794.51 8176.64 15195.83 13294.38 88
TinyColmap81.25 19682.34 17777.99 27485.33 26860.68 28382.32 22088.33 20271.26 20586.97 16292.22 15277.10 15886.98 27462.37 29095.17 15486.31 297
EPNet_dtu72.87 29571.33 30777.49 28277.72 35560.55 28482.35 21975.79 32466.49 25458.39 40281.06 34353.68 32485.98 29353.55 34692.97 21985.95 300
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 29671.41 30676.28 29783.25 30360.34 28583.50 18579.02 30437.77 40276.33 31985.10 29649.60 34287.41 26770.54 21877.54 38481.08 365
PAPR78.84 23078.10 24081.07 22685.17 27160.22 28682.21 22590.57 15462.51 28375.32 33584.61 30474.99 18092.30 15859.48 31188.04 30090.68 226
diffmvspermissive80.40 21180.48 20980.17 24179.02 35060.04 28777.54 28990.28 16766.65 25382.40 25287.33 26273.50 19987.35 26877.98 13589.62 27993.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss74.82 27873.74 27978.04 27389.57 16960.04 28776.49 30687.09 22354.31 34873.66 34679.80 35460.25 28586.76 28058.37 31584.15 34987.32 287
test_vis1_n_192071.30 30971.58 30470.47 33577.58 35759.99 28974.25 32984.22 26751.06 36774.85 33979.10 36055.10 32168.83 37568.86 23879.20 37782.58 345
thisisatest051573.00 29470.52 31180.46 23681.45 32159.90 29073.16 34274.31 33557.86 32976.08 32577.78 36937.60 38992.12 16365.00 27191.45 24989.35 254
CANet_DTU77.81 24477.05 24980.09 24281.37 32359.90 29083.26 19188.29 20369.16 22567.83 37683.72 31260.93 27989.47 23869.22 23289.70 27890.88 219
v14882.31 17582.48 17581.81 21485.59 26359.66 29281.47 23486.02 23972.85 18288.05 14290.65 20170.73 22990.91 19775.15 16991.79 24194.87 67
pm-mvs183.69 15384.95 13079.91 24390.04 16559.66 29282.43 21787.44 21275.52 14487.85 14595.26 3981.25 11885.65 30168.74 24096.04 12094.42 85
EU-MVSNet75.12 27374.43 27577.18 28583.11 30859.48 29485.71 13982.43 28239.76 39985.64 19188.76 23544.71 37187.88 26273.86 18385.88 32884.16 324
VDDNet84.35 13585.39 12381.25 22295.13 3159.32 29585.42 14381.11 29186.41 2787.41 15296.21 1973.61 19790.61 20966.33 25796.85 8593.81 115
cl____80.42 21080.23 21281.02 22879.99 33859.25 29677.07 29687.02 22467.37 24686.18 18289.21 22963.08 27190.16 21976.31 15595.80 13593.65 122
DIV-MVS_self_test80.43 20980.23 21281.02 22879.99 33859.25 29677.07 29687.02 22467.38 24586.19 18089.22 22863.09 27090.16 21976.32 15495.80 13593.66 120
GA-MVS75.83 26674.61 27179.48 25181.87 31559.25 29673.42 33982.88 27768.68 23179.75 29281.80 33650.62 33789.46 23966.85 25285.64 32989.72 246
c3_l81.64 19181.59 18881.79 21580.86 33059.15 29978.61 27590.18 17068.36 23387.20 15387.11 26769.39 23391.62 17478.16 13194.43 18294.60 75
cl2278.97 22778.21 23981.24 22477.74 35459.01 30077.46 29287.13 21965.79 25884.32 21785.10 29658.96 29690.88 19975.36 16792.03 23693.84 110
miper_ehance_all_eth80.34 21380.04 21981.24 22479.82 34058.95 30177.66 28689.66 18065.75 26185.99 18785.11 29568.29 24091.42 18176.03 15992.03 23693.33 133
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30288.95 8493.19 7291.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
test_yl78.71 23478.51 23579.32 25284.32 28458.84 30378.38 27685.33 24875.99 13582.49 25086.57 27258.01 30090.02 22862.74 28892.73 22389.10 260
DCV-MVSNet78.71 23478.51 23579.32 25284.32 28458.84 30378.38 27685.33 24875.99 13582.49 25086.57 27258.01 30090.02 22862.74 28892.73 22389.10 260
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30589.04 8392.74 9391.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
FMVSNet281.31 19581.61 18780.41 23786.38 24458.75 30683.93 17386.58 23172.43 18987.65 14892.98 12363.78 26690.22 21766.86 25193.92 19492.27 181
dmvs_re66.81 34266.98 33866.28 36176.87 36358.68 30771.66 35072.24 35160.29 31369.52 36973.53 38852.38 32964.40 39344.90 38481.44 36775.76 381
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30888.66 9292.06 10990.78 695.67 795.17 4281.80 11295.54 4179.00 12198.69 998.95 4
baseline269.77 32366.89 33978.41 26579.51 34358.09 30976.23 31069.57 36757.50 33364.82 39077.45 37346.02 35488.44 25653.08 34877.83 38088.70 267
sd_testset79.95 22381.39 19475.64 30388.81 18958.07 31076.16 31282.81 27973.67 16383.41 23793.04 11980.96 12177.65 34958.62 31495.03 16091.21 211
miper_enhance_ethall77.83 24276.93 25180.51 23576.15 37058.01 31175.47 32188.82 19258.05 32883.59 23380.69 34464.41 26091.20 18573.16 19992.03 23692.33 177
131473.22 29172.56 29675.20 30580.41 33757.84 31281.64 23285.36 24751.68 36473.10 34876.65 38061.45 27785.19 30463.54 28379.21 37682.59 344
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31288.93 8592.84 9091.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
MVS_Test82.47 17483.22 15880.22 24082.62 31257.75 31482.54 21491.96 11371.16 20782.89 24692.52 14177.41 15290.50 21180.04 10987.84 30392.40 173
VPA-MVSNet83.47 16084.73 13279.69 24790.29 15757.52 31581.30 23788.69 19576.29 13087.58 15094.44 6680.60 12687.20 27066.60 25696.82 8894.34 89
FIs85.35 11586.27 10382.60 19891.86 11357.31 31685.10 14993.05 8075.83 13991.02 8193.97 9273.57 19892.91 14373.97 18198.02 3997.58 12
Anonymous20240521180.51 20881.19 19978.49 26388.48 19857.26 31776.63 30382.49 28181.21 7684.30 22092.24 15167.99 24186.24 28762.22 29195.13 15591.98 194
USDC76.63 25776.73 25476.34 29683.46 29757.20 31880.02 25188.04 20852.14 36183.65 23291.25 17563.24 26986.65 28154.66 34094.11 19085.17 309
ab-mvs79.67 22480.56 20676.99 28688.48 19856.93 31984.70 15486.06 23768.95 22880.78 28093.08 11875.30 17784.62 30956.78 32390.90 26089.43 253
ADS-MVSNet265.87 34863.64 35672.55 32473.16 38956.92 32067.10 37374.81 33049.74 37566.04 38182.97 32046.71 34977.26 35142.29 38869.96 39683.46 333
ppachtmachnet_test74.73 28074.00 27876.90 28980.71 33356.89 32171.53 35278.42 30558.24 32579.32 29982.92 32357.91 30384.26 31465.60 26691.36 25089.56 250
FMVSNet378.80 23278.55 23479.57 24982.89 31156.89 32181.76 22985.77 24269.04 22786.00 18490.44 20551.75 33390.09 22565.95 26093.34 20791.72 199
FC-MVSNet-test85.93 10787.05 9182.58 19992.25 9956.44 32385.75 13793.09 7877.33 12391.94 6694.65 5674.78 18493.41 12675.11 17098.58 1397.88 7
Test_1112_low_res73.90 28673.08 28776.35 29590.35 15655.95 32473.40 34086.17 23550.70 37173.14 34785.94 28358.31 29985.90 29656.51 32583.22 35487.20 288
LFMVS80.15 21980.56 20678.89 25589.19 18155.93 32585.22 14673.78 34082.96 5884.28 22192.72 13557.38 30690.07 22663.80 28195.75 13890.68 226
SCA73.32 28972.57 29575.58 30481.62 31955.86 32678.89 27071.37 35961.73 29374.93 33883.42 31760.46 28287.01 27158.11 31982.63 36283.88 325
EMVS61.10 36360.81 36561.99 37465.96 40655.86 32653.10 39858.97 39967.06 24956.89 40363.33 40040.98 38167.03 38454.79 33986.18 32563.08 396
LCM-MVSNet-Re83.48 15985.06 12778.75 25885.94 25955.75 32880.05 25094.27 2176.47 12996.09 594.54 6283.31 8589.75 23659.95 30894.89 16790.75 222
tfpnnormal81.79 19082.95 16578.31 26688.93 18655.40 32980.83 24482.85 27876.81 12785.90 18894.14 8474.58 18886.51 28366.82 25495.68 14193.01 148
E-PMN61.59 36061.62 36361.49 37666.81 40355.40 32953.77 39760.34 39666.80 25258.90 40065.50 39940.48 38366.12 38855.72 33086.25 32462.95 397
test-LLR67.21 33766.74 34168.63 35076.45 36855.21 33167.89 36967.14 37762.43 28865.08 38772.39 38943.41 37569.37 37061.00 30284.89 34281.31 360
test-mter65.00 35163.79 35568.63 35076.45 36855.21 33167.89 36967.14 37750.98 36965.08 38772.39 38928.27 40569.37 37061.00 30284.89 34281.31 360
TransMVSNet (Re)84.02 14785.74 11778.85 25691.00 14355.20 33382.29 22187.26 21579.65 9388.38 13595.52 3383.00 8786.88 27667.97 24896.60 9494.45 82
WR-MVS83.56 15784.40 14381.06 22793.43 6754.88 33478.67 27485.02 25681.24 7590.74 8991.56 16872.85 21091.08 19068.00 24798.04 3697.23 18
Anonymous2023120671.38 30871.88 30069.88 33986.31 24854.37 33570.39 36074.62 33152.57 35776.73 31688.76 23559.94 28772.06 36344.35 38693.23 21283.23 339
HY-MVS64.64 1873.03 29372.47 29774.71 30883.36 30154.19 33682.14 22881.96 28556.76 33969.57 36886.21 28060.03 28684.83 30849.58 36782.65 36085.11 310
PAPM71.77 30370.06 31776.92 28886.39 24353.97 33776.62 30486.62 23053.44 35263.97 39284.73 30357.79 30592.34 15639.65 39381.33 36884.45 318
VNet79.31 22580.27 21176.44 29487.92 21053.95 33875.58 31984.35 26574.39 15682.23 25590.72 19672.84 21184.39 31260.38 30793.98 19390.97 216
our_test_371.85 30271.59 30272.62 32380.71 33353.78 33969.72 36471.71 35858.80 32278.03 30680.51 34956.61 31178.84 34662.20 29286.04 32785.23 308
PatchmatchNetpermissive69.71 32468.83 32972.33 32777.66 35653.60 34079.29 26269.99 36557.66 33172.53 35182.93 32246.45 35180.08 34060.91 30472.09 39283.31 338
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet_test_wron70.05 32070.44 31268.88 34773.84 38453.47 34158.93 39367.28 37558.43 32387.09 15885.40 29159.80 29067.25 38359.66 31083.54 35285.92 301
Baseline_NR-MVSNet84.00 14885.90 11278.29 26891.47 13153.44 34282.29 22187.00 22779.06 10289.55 11495.72 2877.20 15586.14 29272.30 20498.51 1695.28 56
YYNet170.06 31970.44 31268.90 34673.76 38553.42 34358.99 39267.20 37658.42 32487.10 15785.39 29259.82 28967.32 38259.79 30983.50 35385.96 299
PVSNet_051.08 2256.10 36954.97 37459.48 38175.12 37953.28 34455.16 39661.89 39044.30 38759.16 39862.48 40154.22 32365.91 38935.40 40047.01 40459.25 400
FMVSNet572.10 30171.69 30173.32 31581.57 32053.02 34576.77 30078.37 30663.31 27776.37 31891.85 15736.68 39078.98 34447.87 37592.45 22687.95 278
KD-MVS_self_test81.93 18783.14 16278.30 26784.75 27752.75 34680.37 24789.42 18770.24 21790.26 9493.39 11374.55 18986.77 27968.61 24296.64 9295.38 52
pmmvs570.73 31370.07 31672.72 32177.03 36252.73 34774.14 33075.65 32750.36 37472.17 35385.37 29355.42 31980.67 33552.86 35287.59 30684.77 313
UnsupCasMVSNet_eth71.63 30572.30 29869.62 34176.47 36752.70 34870.03 36380.97 29359.18 31979.36 29788.21 24360.50 28169.12 37358.33 31777.62 38387.04 289
MG-MVS80.32 21480.94 20278.47 26488.18 20452.62 34982.29 22185.01 25772.01 19979.24 30092.54 14069.36 23493.36 12870.65 21689.19 28489.45 251
XXY-MVS74.44 28376.19 25869.21 34484.61 27852.43 35071.70 34977.18 31560.73 30980.60 28190.96 18775.44 17469.35 37256.13 32888.33 29485.86 302
tfpn200view974.86 27774.23 27676.74 29286.24 25152.12 35179.24 26473.87 33873.34 17281.82 26384.60 30546.02 35488.80 25051.98 35690.99 25589.31 255
thres40075.14 27174.23 27677.86 27786.24 25152.12 35179.24 26473.87 33873.34 17281.82 26384.60 30546.02 35488.80 25051.98 35690.99 25592.66 161
MVEpermissive40.22 2351.82 37250.47 37555.87 38362.66 41051.91 35331.61 40239.28 41140.65 39650.76 40574.98 38756.24 31444.67 40633.94 40364.11 40171.04 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres100view90075.45 26975.05 26976.66 29387.27 22451.88 35481.07 24073.26 34575.68 14183.25 24086.37 27545.54 36088.80 25051.98 35690.99 25589.31 255
thres600view775.97 26575.35 26777.85 27887.01 23451.84 35580.45 24673.26 34575.20 14883.10 24386.31 27845.54 36089.05 24655.03 33892.24 23292.66 161
thres20072.34 29971.55 30574.70 30983.48 29651.60 35675.02 32473.71 34170.14 21878.56 30580.57 34746.20 35288.20 26046.99 37889.29 28184.32 320
CL-MVSNet_self_test76.81 25577.38 24575.12 30686.90 23651.34 35773.20 34180.63 29668.30 23581.80 26588.40 24066.92 24680.90 33355.35 33594.90 16693.12 144
TESTMET0.1,161.29 36160.32 36764.19 36972.06 39451.30 35867.89 36962.09 38745.27 38460.65 39669.01 39527.93 40664.74 39256.31 32681.65 36676.53 379
Vis-MVSNet (Re-imp)77.82 24377.79 24277.92 27588.82 18851.29 35983.28 19071.97 35474.04 15882.23 25589.78 22057.38 30689.41 24357.22 32295.41 14493.05 146
UnsupCasMVSNet_bld69.21 32969.68 32167.82 35479.42 34451.15 36067.82 37275.79 32454.15 34977.47 31585.36 29459.26 29370.64 36848.46 37279.35 37481.66 356
test20.0373.75 28774.59 27371.22 33281.11 32651.12 36170.15 36272.10 35370.42 21280.28 28991.50 16964.21 26274.72 36046.96 37994.58 17887.82 282
sss66.92 33967.26 33765.90 36277.23 35951.10 36264.79 37971.72 35752.12 36270.13 36580.18 35157.96 30265.36 39150.21 36281.01 37081.25 362
CostFormer69.98 32168.68 33173.87 31177.14 36050.72 36379.26 26374.51 33351.94 36370.97 35984.75 30245.16 36887.49 26655.16 33779.23 37583.40 335
tpm cat166.76 34365.21 35171.42 33177.09 36150.62 36478.01 28073.68 34244.89 38668.64 37179.00 36145.51 36282.42 32749.91 36470.15 39581.23 364
mvs_anonymous78.13 24078.76 23176.23 29979.24 34750.31 36578.69 27384.82 26161.60 29783.09 24492.82 13073.89 19587.01 27168.33 24686.41 32191.37 208
MIMVSNet71.09 31071.59 30269.57 34287.23 22550.07 36678.91 26971.83 35560.20 31571.26 35691.76 16355.08 32276.09 35441.06 39187.02 31482.54 347
PVSNet58.17 2166.41 34565.63 34868.75 34881.96 31449.88 36762.19 38672.51 35051.03 36868.04 37475.34 38650.84 33674.77 35845.82 38382.96 35581.60 357
ECVR-MVScopyleft78.44 23778.63 23377.88 27691.85 11448.95 36883.68 18169.91 36672.30 19584.26 22394.20 8051.89 33289.82 23163.58 28296.02 12194.87 67
tpm268.45 33366.83 34073.30 31678.93 35148.50 36979.76 25471.76 35647.50 37769.92 36683.60 31342.07 38088.40 25748.44 37379.51 37283.01 342
tpmvs70.16 31769.56 32271.96 32874.71 38248.13 37079.63 25575.45 32965.02 27170.26 36481.88 33545.34 36585.68 30058.34 31675.39 38882.08 353
WTY-MVS67.91 33568.35 33266.58 36080.82 33148.12 37165.96 37772.60 34853.67 35171.20 35781.68 33958.97 29569.06 37448.57 37181.67 36482.55 346
VPNet80.25 21581.68 18475.94 30092.46 9247.98 37276.70 30181.67 28873.45 16884.87 20592.82 13074.66 18786.51 28361.66 29996.85 8593.33 133
baseline173.26 29073.54 28272.43 32684.92 27347.79 37379.89 25374.00 33665.93 25678.81 30386.28 27956.36 31281.63 33056.63 32479.04 37887.87 281
test111178.53 23678.85 22977.56 28092.22 10147.49 37482.61 20969.24 36972.43 18985.28 19694.20 8051.91 33190.07 22665.36 26896.45 10295.11 62
KD-MVS_2432*160066.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30477.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
miper_refine_blended66.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30477.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
test0.0.03 164.66 35364.36 35265.57 36475.03 38046.89 37764.69 38061.58 39462.43 28871.18 35877.54 37143.41 37568.47 37940.75 39282.65 36081.35 359
testing1167.38 33665.93 34471.73 33083.37 30046.60 37870.95 35669.40 36862.47 28566.14 37976.66 37931.22 39884.10 31549.10 36984.10 35084.49 316
Patchmtry76.56 25977.46 24373.83 31279.37 34646.60 37882.41 21876.90 31773.81 16185.56 19392.38 14348.07 34683.98 31763.36 28595.31 15090.92 218
GG-mvs-BLEND67.16 35773.36 38746.54 38084.15 16555.04 40358.64 40161.95 40229.93 40183.87 31938.71 39676.92 38671.07 388
testing9169.94 32268.99 32772.80 32083.81 29445.89 38171.57 35173.64 34368.24 23670.77 36277.82 36834.37 39384.44 31153.64 34587.00 31588.07 273
testing22266.93 33865.30 35071.81 32983.38 29945.83 38272.06 34767.50 37364.12 27569.68 36776.37 38227.34 40783.00 32238.88 39488.38 29386.62 294
testing9969.27 32868.15 33472.63 32283.29 30245.45 38371.15 35371.08 36067.34 24770.43 36377.77 37032.24 39684.35 31353.72 34486.33 32388.10 272
gg-mvs-nofinetune68.96 33169.11 32468.52 35276.12 37145.32 38483.59 18355.88 40286.68 2464.62 39197.01 730.36 40083.97 31844.78 38582.94 35676.26 380
ANet_high83.17 16585.68 11875.65 30281.24 32445.26 38579.94 25292.91 8783.83 4691.33 7496.88 1080.25 12985.92 29468.89 23795.89 12995.76 43
DSMNet-mixed60.98 36461.61 36459.09 38272.88 39145.05 38674.70 32746.61 40826.20 40465.34 38590.32 20855.46 31863.12 39541.72 39081.30 36969.09 391
gm-plane-assit75.42 37744.97 38752.17 35972.36 39187.90 26154.10 342
test250674.12 28473.39 28476.28 29791.85 11444.20 38884.06 16848.20 40772.30 19581.90 26094.20 8027.22 40889.77 23464.81 27396.02 12194.87 67
WB-MVSnew68.72 33269.01 32667.85 35383.22 30543.98 38974.93 32565.98 38155.09 34373.83 34479.11 35965.63 25571.89 36538.21 39885.04 33787.69 283
MDTV_nov1_ep1368.29 33378.03 35343.87 39074.12 33172.22 35252.17 35967.02 37885.54 28745.36 36480.85 33455.73 32984.42 347
tpm67.95 33468.08 33567.55 35578.74 35243.53 39175.60 31767.10 37954.92 34572.23 35288.10 24442.87 37975.97 35552.21 35480.95 37183.15 340
Patchmatch-test65.91 34767.38 33661.48 37775.51 37543.21 39268.84 36663.79 38662.48 28472.80 35083.42 31744.89 37059.52 39948.27 37486.45 32081.70 355
testgi72.36 29874.61 27165.59 36380.56 33542.82 39368.29 36873.35 34466.87 25181.84 26289.93 21772.08 22066.92 38546.05 38292.54 22587.01 290
ETVMVS64.67 35263.34 35768.64 34983.44 29841.89 39469.56 36561.70 39361.33 30168.74 37075.76 38428.76 40379.35 34134.65 40186.16 32684.67 315
testing371.53 30670.79 30873.77 31388.89 18741.86 39576.60 30559.12 39772.83 18380.97 27482.08 33319.80 41387.33 26965.12 27091.68 24492.13 188
UWE-MVS66.43 34465.56 34969.05 34584.15 28840.98 39673.06 34364.71 38454.84 34676.18 32379.62 35729.21 40280.50 33738.54 39789.75 27785.66 304
tpmrst66.28 34666.69 34265.05 36772.82 39239.33 39778.20 27970.69 36353.16 35467.88 37580.36 35048.18 34574.75 35958.13 31870.79 39481.08 365
Syy-MVS69.40 32770.03 31867.49 35681.72 31738.94 39871.00 35461.99 38861.38 29970.81 36072.36 39161.37 27879.30 34264.50 27985.18 33484.22 321
EPMVS62.47 35662.63 36062.01 37370.63 39738.74 39974.76 32652.86 40453.91 35067.71 37780.01 35239.40 38466.60 38655.54 33368.81 40080.68 369
dp60.70 36560.29 36861.92 37572.04 39538.67 40070.83 35764.08 38551.28 36660.75 39577.28 37436.59 39171.58 36747.41 37662.34 40275.52 382
WAC-MVS37.39 40152.61 353
myMVS_eth3d64.66 35363.89 35466.97 35881.72 31737.39 40171.00 35461.99 38861.38 29970.81 36072.36 39120.96 41279.30 34249.59 36685.18 33484.22 321
ADS-MVSNet61.90 35862.19 36261.03 37873.16 38936.42 40367.10 37361.75 39149.74 37566.04 38182.97 32046.71 34963.21 39442.29 38869.96 39683.46 333
MVS-HIRNet61.16 36262.92 35955.87 38379.09 34835.34 40471.83 34857.98 40146.56 38059.05 39991.14 17949.95 34176.43 35338.74 39571.92 39355.84 402
PatchT70.52 31472.76 29263.79 37179.38 34533.53 40577.63 28765.37 38373.61 16571.77 35492.79 13344.38 37275.65 35764.53 27885.37 33182.18 351
new_pmnet55.69 37057.66 37149.76 38675.47 37630.59 40659.56 38851.45 40543.62 39162.49 39375.48 38540.96 38249.15 40537.39 39972.52 39069.55 390
DeepMVS_CXcopyleft24.13 38932.95 41129.49 40721.63 41412.07 40537.95 40645.07 40430.84 39919.21 40817.94 40833.06 40723.69 404
dmvs_testset60.59 36662.54 36154.72 38577.26 35827.74 40874.05 33261.00 39560.48 31165.62 38467.03 39855.93 31568.23 38032.07 40569.46 39968.17 392
MDTV_nov1_ep13_2view27.60 40970.76 35846.47 38161.27 39445.20 36649.18 36883.75 330
WB-MVS76.06 26480.01 22064.19 36989.96 16720.58 41072.18 34668.19 37283.21 5486.46 17893.49 11170.19 23178.97 34565.96 25990.46 27193.02 147
SSC-MVS77.55 24681.64 18565.29 36690.46 15420.33 41173.56 33768.28 37185.44 3288.18 14094.64 5970.93 22881.33 33171.25 20892.03 23694.20 92
new-patchmatchnet70.10 31873.37 28560.29 37981.23 32516.95 41259.54 38974.62 33162.93 28080.97 27487.93 24862.83 27471.90 36455.24 33695.01 16392.00 192
PMMVS255.64 37159.27 37044.74 38764.30 40912.32 41340.60 40049.79 40653.19 35365.06 38984.81 30153.60 32549.76 40432.68 40489.41 28072.15 386
tmp_tt20.25 37524.50 3787.49 3904.47 4138.70 41434.17 40125.16 4131.00 40832.43 40718.49 40539.37 3859.21 40921.64 40743.75 4054.57 405
test_method30.46 37329.60 37633.06 38817.99 4123.84 41513.62 40373.92 3372.79 40618.29 40853.41 40328.53 40443.25 40722.56 40635.27 40652.11 403
test1236.27 3788.08 3810.84 3911.11 4150.57 41662.90 3830.82 4150.54 4091.07 4112.75 4101.26 4140.30 4101.04 4091.26 4091.66 406
testmvs5.91 3797.65 3820.72 3921.20 4140.37 41759.14 3900.67 4160.49 4101.11 4102.76 4090.94 4150.24 4111.02 4101.47 4081.55 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k20.81 37427.75 3770.00 3930.00 4160.00 4180.00 40485.44 2460.00 4110.00 41282.82 32481.46 1150.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.41 3778.55 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41176.94 1610.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re6.65 3768.87 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41279.80 3540.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
PC_three_145258.96 32190.06 9691.33 17380.66 12593.03 13875.78 16195.94 12692.48 168
eth-test20.00 416
eth-test0.00 416
test_241102_TWO93.71 5283.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 190
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
GSMVS83.88 325
sam_mvs146.11 35383.88 325
sam_mvs45.92 358
MTGPAbinary91.81 121
test_post178.85 2723.13 40745.19 36780.13 33958.11 319
test_post3.10 40845.43 36377.22 352
patchmatchnet-post81.71 33845.93 35787.01 271
MTMP90.66 4433.14 412
test9_res80.83 10196.45 10290.57 229
agg_prior279.68 11496.16 11490.22 237
test_prior283.37 18875.43 14584.58 20991.57 16781.92 11079.54 11696.97 83
旧先验281.73 23056.88 33886.54 17684.90 30772.81 200
新几何281.72 231
无先验82.81 20685.62 24458.09 32791.41 18267.95 24984.48 317
原ACMM282.26 224
testdata286.43 28563.52 284
segment_acmp81.94 107
testdata179.62 25673.95 160
plane_prior593.61 5695.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
plane_prior289.45 7779.44 96
plane_prior192.83 85
n20.00 417
nn0.00 417
door-mid74.45 334
test1191.46 127
door72.57 349
HQP-NCC91.19 13684.77 15073.30 17480.55 283
ACMP_Plane91.19 13684.77 15073.30 17480.55 283
BP-MVS77.30 145
HQP4-MVS80.56 28294.61 7493.56 128
HQP3-MVS92.68 9494.47 180
HQP2-MVS72.10 218
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 136